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Abstract. We explore two possible applications of the theory of Bose-
Einstein condensates in astrophysical contexts, one being white dwarfs
and neutron stars, the other being Bose-Einstein condensates of dark
matter. There is a general consensus that the conditions in these astro-
physical environments allow for the formation of a Bose-Einstein conden-
sate and thus the investigation of such scenarios are important for the
determination of the physical properties of these astrophysical objects.
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1 Introduction

The earliest work on neutron stars has been performed by Tolman [1], as well
as Oppenheimer and Volkoff [2]. They considered neutrons with an equation of
state determined by Fermi statistics in a general relativistic setting and calcu-
lated the resulting stable equilibrium configuration, see also Ref. [3]. The gravita-
tional collapse of a cloud of neutrons is counteracted by the neutron degeneracy
pressure due to the Pauli exclusion principle, which leads to a prediction for
the maximum masses of neutron stars of about 0.7M�. Observations however
proved the existence of neutron stars with up to 2M� [4], which is in contradic-
tion with the limit predicted by Refs. [1, 2]. Currently there exists an abundance
of different models trying to explain the observed masses of neutron stars, most
of them predicting the existence of other kinds of matter in the core of a neutron
star. Explanations reach from hyperons, i.e. strange baryons, over kaons and pi-
ons, both heavy mesons, to quark matter in the core, while the outer layers
and crusts are supposed to be dominated by neutrons and electrons [5]. There
is the general consensus that the neutrons in neutron stars are in a superfluid
phase [6], i.e. they are bound in states of two neutrons, so-called Cooper pairs,
and can thus effectively be treated as bosons. Investigations of typical temper-
atures and densities in neutron stars show that these bosons, with an effective
mass of m = 2mn, are in a regime in which Bose-Einstein condensation (BEC)
can occur. Thus it is reasonable to investigate whether the maximum mass or
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other properties like the equation of state of the neutron star change under the
assumption of Bose-Einstein condensated neutron pairs. This theory is known as
BCS-BEC-crossover [7], and has been proven to exist in laboratory experiments
on dilute ultracold quantum gases [8], but was never addressed in astrophysi-
cal settings. A second field of application for BECs in astrophysics are boson
stars - either denoting the abstract concept of a star purely consisting of generic
bosons [9], or using objects like white dwarfs, which contain in principle several
species of particles, but are dominated by one bosonic species, like e.g. 4He white
dwarfs [10, 11]. Results can be compared to an abundance of existing theories on
neutron stars and white dwarfs, explaining observations with varying success.
Finally, some theories suggest dark matter to be bosonic and present in the form
of a Bose-Einstein condensate [12–14]. This could explain some of the puzzles
observed in galactic dynamics, like the rotation curves of visible matter around
the center of a galaxy. Due to the completely unknown nature of dark mat-
ter, the application of BEC is yet unspecified. However, it is assumed that the
conditions in dark matter halos are in principle suitable for superfluid or Bose-
Einstein condensated phases of the constituent particles for some models of dark
matter [15].

In the following we review the idea of applying the theory of Bose-Einstein
condensation, a phenomenon occurring in cold dilute quantum gases, in the
context of astrophysical compact objects. To this end we compare in Section 2
different theoretical treatments of interacting bosons in astrophysical contexts.
In Section 3 we then investigate the implications in the cases of neutron stars
(NSs), white dwarfs (WDs), and dark matter (DM).

2 Theoretical treatment of interacting bosons

There have been plenty of calculations in the field of Bose-Einstein condensates
in astrophysical contexts, for generic boson stars as well as white dwarfs and
even neutron stars. All kinds of scenarios have been considered, from Newtonian
gravity to general relativistic treatments, and from non-relativistic to relativistic
particle dispersions [16–18]. In the following we will introduce three approaches
which differ in the assumed conditions for the investigated system.

2.1 Non-relativistic bosons in Newtonian gravity

Non-relativistic bosons are described by a condensate wave function which obeys
the Gross-Pitaevskii equation, i.e. a non-linear Schrödinger type equation [16],

i�
∂

∂t
ψ(x, t) =

[
− �

2

2m
∇2 +

∫
d3r′ U(x,x′) |ψ(x′, t)|2

]
ψ(x, t) , (1)

using contact interaction and Newtonian gravitational interaction,

U(x,x′) = g0 δ(x− x′)− Gm2

|x− x′| , (2)
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where m denotes the particle mass, and g = 4π�2a/m represents the strength of
the contact interaction depending on the s-wave scattering length a.
Choosing the Madelung representation of the condensate wave function, i.e. split-
ting it into an amplitude and a phase according to

ψ(x, t) =
√
n(x, t) eiS(x,t) , (3)

transforms the Gross-Pitaevskii equation Eq. (1) into two coupled hydrodynamic
equations for the mass density ρ(x, t) = mn(x, t), namely the continuity equa-
tion and the Euler equation for the velocity field v = �∇S/m of the fluid,

∂ρ

∂t
+∇ · (ρv) = 0 , (4a)

ρ

[
dv

dt
+ (v · ∇)v

]
= −∇P (ρ)− ρ∇Φ(x, t)−∇ · σQ . (4b)

Here, the Newtonian gravitational potential Φ(x, t) is defined as

Φ(x, t) = −
∫

d3x′ Gm

|x− x′| ρ(x
′, t) , (5)

fulfilling Poisson’s equation

∇2Φ(x, t) = 4πGρ(x, t) . (6)

Furthermore,

σQ
ij =

�
2

4m2
ρ∇i∇j ln

ρ

m
(7)

denotes the so-called quantum stress tensor, which has the dimension of a pres-
sure and represents a quantum contribution stemming from the kinetic term
in the Gross-Pitaevskii equation. From the form of the equations above, the
pressure can be read off as

P (ρ) =
g

2m2
ρ2 , (8)

which corresponds to a polytropic equation of state of the form P = K ρ1+1/n,
with the polytropic index n = 1.
Henceforth we will apply the Thomas-Fermi approximation in the scenario,
which is justified for a system with a very large particle number and a uni-
form distribution of particles. Mathematically this corresponds to neglecting the
quantum pressure term σQ. Moreover, we will assume a static configuration, and
thus neglect time derivatives as well as all velocity terms. Using the identification
of the pressure in Eq. (8), Eq. (4b) turns out to be

∇P = −ρ∇Φ . (9)

Here it is suitable to introduce spherical coordinates as, due to the symmetry of
the problem, the angular coordinates do not occur in the calculations any more.
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Combining Eq. (6) and Eq. (9) leads, with appropriate units for radial coordinate
and density, to the so-called Lane-Emden equation,

1

r2
d

dr

(
r2

dρ

dr

)
= −ρn , (10)

describing the density profile of the condensate ρ(r). From this, quantities like
the maximum mass of stable configurations can be calculated. Solving for the
density and subsequently integrating up to the first zero of the function yields the
maximum mass, which depends on the yet unspecified s-wave scattering length
a of the particles [16]:

Mmax " π

2

�c2
√
a

(Gm)3/2
. (11)

2.2 Non-relativistic neutrons in general relativistic setting

Instead of Newtonian gravity, we can also consider the laws of General Relativ-
ity [16]. With a spherically symmetric ansatz for the metric,

ds2 = −e−ν(r)dt2 + eμ(r)dr2 + r2dΩ2 , (12)

and the following assumptions for the metric functions,

dν(r)

dr
= −

[
2

P (r) + ρ(r)c2

]
dP (r)

dr
, (13)

eμ(r) =

[
1− 2GM(r)

r

]−1

, (14)

Einsteins field equations are transformed into the Tolman-Oppenheimer-Volkoff
form [1, 2],

dP (r)

dr
= −

G
[
ρ(r) + P (r)

c2

] [
4πP (r)r3

c2 +M(r)
]

r2
[
1− 2GM(r)

rc2

] , (15)

which, together with the mass conservation equation,

dM(r)

dr
= 4πρ(r) r2 (16)

replace Eqs. (6) and (9). The final set of equations is then Eq. (8), (15) and (16).
Processing these equations leads to a similar expression as in Eq. (10) with several
additional terms which are due to general relativity. Solving for the density as
a function of the radius and then integrating up to the first zero leads to the
maximum mass [17]

Mmax " 1

2

�c2
√
a

(Gm)3/2
. (17)
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2.3 Relativistic neutrons in general relativistic setting

Now we treat relativistic neutrons, for which the equation of state changes. We
will no longer use the non-relativistic Gross-Pitaevaskii equation (1), but start
deriving the governing equations from the action of a scalar field,

S =

∫
d4x

√
−gL (18)

with the Lagrangian density

L =
1

2
gμν∂μφ

∗∂νφ− 1

2

m2c2

�2
|φ|2 − λ

4
|φ|4 (19)

containing a scalar field with quartic self interaction in curved spacetime [17, 18].
A variation with respect to the complex conjugate of the scalar field φ∗ yields
the Klein-Gordon equation

(
ΔLB − m2c2

�2
− λ |φ|2

)
φ = 0 , (20)

where

ΔLB =
1√−g

∂μ
√
−ggμν∂ν (21)

represents the Laplace-Beltrami operator for curved spacetimes. It can be shown
that with the ansatz φ(x, t) = exp(−imc2t/�)ψ(x, t), a spherically symmetric
metric and in the non-relativistic limit the Gross-Pitaevskii equation Eq. (1) will
be recovered with the identification λ = 2mg/�2.
Furthermore the energy-momentum tensor T μν of the scalar field follows from
varying the action (18) with respect to the metric gμν :

T μ
ν =

1

2
gμσ

(
φ∗
;σφ;ν + φ;σφ

∗
;ν

)
− 1

2
δμν

[
gκσφ∗

;κφ;σ +m2|φ|2 + 1

2
λ|φ|4

]
. (22)

Using the spherically symmetric ansatz from Eq. (12) for the metric, we end up
with three equations, i.e. the Klein-Gordon equation (20), as well as the tt- and
rr-components of the Einstein equations, Eqs. (9a)-(9c) in Ref. [17]. From these
we obtain in analogy to above the maximum mass of the star as

Mmax " 0.22

√
λ

4π

M3
P

m2
=

0.22√
4π

�c2
√
a

(Gm)3/2
, (23)

with the Planck mass MP =
√
�c/G. Note that the qualitative dependence on λ

has been found analytically using the Thomas-Fermi approximation, while the
exact form with the coefficient 0.22 has been read off a numerical plot [17]. Inves-
tigations including thermal or quantum fluctuations have also been performed
more recently in Refs. [18, 19] in a purely numerical approach.
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Fig. 1. Results for the predicted maximum masses of neutron stars in different treat-
ments. Red (full line) are non-relativistic neutrons in Newtonian gravity (11), blue
(dashed line) are non-relativistic neutrons in General Relativity (17), and green (dot-
dashed line) are relativistic neutrons in General Relativity (23). The horizontal grid
line marks the maximum observed mass of 2M� [4], and the vertical grid lines denote
the corresponding s-wave scattering length deduced from the respective theories.

2.4 Comparison of treatments

Even though the three models differ significantly in their physical assump-
tions, Fig. 1 reveals that the quantitative outcomes are rather similar and the
resulting predictions all lie in the same order of magnitude. We can see that the
maximum mass decreases from Newtonian to general relativistic, and from non-
relativistic to relativistic treatment of neutrons. The three maximum masses are
given by Eqs. (11), (17), and (23), and only differ in their numerical prefactor,
which is in all three cases of the order of unity, but otherwise are proportional to
�c2

√
a/(Gm)3/2. Using the observed maximum mass of a neutron star of about

2M� [4], we can infer the corresponding s-wave scattering length a of the neu-
trons from relations Eqs. (11), (17), and (23) and the plot in Fig. 1. The values
for a are 0.8 fm, 8 fm, and 11 fm, respectively, for the three different treatments.
Unfortunately astrophysical measurements do not permit the determination of
the s-wave scattering length of neutrons in a neutron star, but it is surprising
that the values predicted from the maximum masses are not so different from
those obtained in laboratory experiments.

3 Choosing the right treatment

Some simple considerations are helpful to figure out the appropriate choice of
setting for a realistic analysis. The following estimations are carried out for



Bose-Einstein Condensates in Compact Astrophysical Objects 303

the example of a neutron star. To decide whether Newtonian gravity or Gen-
eral Relativity is physically appropriate, it is instructive to calculate the typical
Schwarzschild radius of a neutron star from observed masses, and compare it
with the observed radii of neutron stars. The Schwarzschild radius of an object
is defined as

RS =
2GM

c2
, (24)

and with typical masses of neutron stars of about M " 1.5M�, this leads to a
Schwarzschild radius of about RS " 4 · 103m, which is about half of the typical
radius of a neutron star of Rtyp " 104m. This clearly hints at the necessity of a
general relativistic treatment.
As for the choice of treatment for the neutrons, we consider the estimated tem-
peratures in neutron stars, Ttyp " 1011K, and equate the thermal energy of the
neutrons with their kinetic energy. Assuming for now the non-relativistic energy
expression, the average velocity of the particles is given by

v =

√
2kBTtyp

m
, (25)

leading to a typical velocity of neutrons in a neutron star of v " 3 · 107m/s,
which is a velocity well in the relativistic regime. For the lower temperature of
about Ttyp " 106K in the outer regions of a neutron star however, we end up
with particle velocities of around v " 9 · 104m/s, which would justify a non-
relativistic treatment. Thus, the different treatments outlined above seem to
be applicable for different physical scenarios. Finally, we remark that for white
dwarfs in general the Newtonian treatment of non-relativistic bosons would be
sufficient, as well as for dark matter in the galactic core and halo.

4 Outlook

Plenty of calculations in the field of Bose-Einstein condensates in astrophysical
contexts, ranging from generic boson stars to neutron stars and white dwarfs have
been performed, and all kinds of scenarios have been considered, analytically as
well as within the framework of numerical simulations. However, the majority
of investigations have been carried out at zero temperature, and thus have ne-
glected thermal fluctuations around the Bose-Einstein condensated ground state.
Our estimations of temperatures and conditions in the astrophysical settings in
question have shown that this assumption of zero temperature is in reality not
justified, and thus thermal fluctuations would have to be taken into account.
This could be accomplished in a first step by extending the zero-temperature
treatment of Section 2 to a Hartree-Fock theory at finite temperature. This
leads to a depletion of the condensate through the presence of thermally ex-
cited bosons. Self-consistency equations for both condensate and thermal den-
sity would change predictions of measurable quantities, such as the maximum
masses shown in Fig. 1, considerably. It is expected that thermal fluctuations
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would destabilize compact astrophysical objects, resulting in a lower limit for
the maximum mass.
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