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Abstract. The synergetic computer that has originally been developed
as an algorithm for pattern recognition has also been used in the life sci-
ences as a model for various self-organizing perceptual processes. Coarse-
graining of the order parameter equations of the synergetic computer is
discussed for sets of to-be-perceived patterns that vary in the degree
to which they can be distinguished from each other. Coarse-gaining is
exploited to conduct a model-based analysis on literature data of multi-
stable perception under schizophrenia as tested in motion-induced blind-
ness (MIB) experiments. The analysis not only supports earlier sugges-
tions that schizophrenia reduces the occurrence frequency of the MIB
effect but also suggests that the perceptual system of schizophrenia pa-
tients is characterized by a greater degree of asymmetry.

Keywords: multistable perception, schizophrenia, synergetic computer, motion-
induced blindness

1 Introduction

The synergetic computer is an algorithm for pattern recognition [1]. The algo-
rithm is based on self-organization principles and has been developed within
the framework of synergetics [2]. Although the algorithm has been developed to
solve pattern recognition problems [1, 3–7], it has been generalized and applied
in various related, interdisciplinary fields. In particular, the algorithm has been
generalized to allow for hierarchical pattern recognition processes [8]. Economic
and industrial applications in the field of settlement dynamics [9, 10], job as-
signment problems and robotics [11–17], and signal transmission via message
buffer [18] have been addressed. Although the synergetic computer describes an
artifical associative memory or decision-making system, due to its roots in syner-
getics and the theory of self-organization, the synergetic computer has also been
regarded as a benchmark model for self-organizing psychological processes and
self-organizing motor control system. In this context, oscillatory phenomenon
induced by certain perceptual [19, 20], and auditory [21, 22] stimuli have been
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discussed and application to priming [23, 24], grasping [25, 26], and motor devel-
opment during infancy [27, 28] can be found in the literature.

The pattern recognition algorithm is a winner-takes-all system that for a
given initial stimulus pattern converges to a fixed point solution indicating the
perception of a stored prototype pattern. The algorithm can be discussed from
the perspective of the to-be-perceived and stored patterns. Alternatively, the
algorithm can be studied from the perspective of the pattern amplitudes. In line
with the fact that the synergetic computer is considered as a computational or
artificial self-organizing system mimicking natural self-organizing systems, the
amplitudes have typically been considered as order parameters [1, 29, 30].

Let ξk denote the order parameters of k = 1, . . . , N patterns. We consider the
order-parameter dynamics of the synergetic computer in the following form [1]

d

dt
ξk = ξk

⎛
⎝λ−B

N∑
m �=k,m=1

ξ2m − C

N∑
m=1

ξ2m

⎞
⎠ (1)

with λ,B,C > 0. Equation (1) can be cast into a form that is convenient for
conducting a stability analysis of fixed points in the generalized case that will
be considered in Section 3 when the attention parameter λ depends on the
pattern index [7, 23–27]. Accordingly, Eq. (1) can equivalently be expressed by

dξk/dt = ξk(λ−g C
∑N

m �=k,m=1 ξ
2
m−Cξ2k), where we have introduced the coupling

parameter g = 1+B/C > 1. The parameter C can be put to C = 1 without loss
of generality such that

d

dt
ξk = ξk

⎛
⎝λ− g

N∑
m �=k,m=1

ξ2m − ξ2k

⎞
⎠ . (2)

Alternatively, the parameter λ and the order parameters ξk may be rescaled by√
C and the rescaled equations are considered [26]. Solutions of Eq. (2) under

initial conditions ξk(0) ≥ 0 will be considered, which implies that all order
parameters remain semi-positive definite for all times (i.e., ξk(t) > 0 ∀t ≥ 0).

In what follows, we will derive order parameter equations on several levels
of coarse-graining. The ideas that will be developed below are closely related to
the ideas developed in earlier studies on hierarchical generalizations of the order
parameter equations of the synergetic computer [8].

2 Approximative coarse-grained order parameter
dynamics

In Section 2.1, we will consider first a special case that will be used in Section 3
in the application for multistable perception of schizophrenia. Subsequently, in
section 2.2, the general case will be discussed.
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2.1 Special case

In this section, it is assumed that all patterns k = 2, . . . , N possess a common
feature that is not present in the ’default’ pattern k = 1. In this special case, we
consider the course-grained order parameter U defined by

U =

√∑
s∈IU

ξ2s (3)

with the index set IU = {2, . . . , N}. Due to the ’winner-takes-all’ property of the
synergetic computer (see Section 1) it follows that if one of the order parameters
ξ∗k with k∗ ∈ IU becomes finite in the stationary case, then U = ξ∗k > 0. If the
order parameter ξ1 of the default pattern becomes finite in the stationary case,
then U = 0.

Before exploiting the definition (3), it is useful to cast the order parameter
equations (2) of the synergetic computer in yet another form. Eq. (2) can be
written like

d

dt
ξk = ξk

(
λ− g

N∑
m=1

ξ2m − (1 − g)ξ2k

)
, (4)

where the mixed term contains the sum of all squared order parameters. Note
that in Eq. (4) the cubic term ξ3k actually has a positive coefficient because of
g > 1 (or since −(1 − g) = B > 0 holds using C = 1 again). Substituting the
definition (3) into Eq. (4), we obtain

d

dt
ξ1 = ξ1

(
λ− g[U + ξ21 ]− (1− g)ξ21

)
,

d

dt
U = U

(
λ− g[U + ξ21 ]

)
− (1− g)

1

U

∑
s∈IU

ξ4s . (5)

In the stationary case, we have either U = ξ∗k > 0 and ξj �=k∗ = 0 if a pattern
k∗ ∈ IU is selected or U = 0, ξk∈IU = 0, ξ1 > 0. In both cases, the dynamical
system (5) for ξ1 and U exhibits the same stationary fixed points as the coupled
dynamical system

d

dt
ξ1,a = ξ1,a

(
λ− g[Ua + ξ21,a]− (1− g)ξ21,a

)
,

d

dt
Ua = Ua

(
λ− g[Ua + ξ21,a]− (1− g)U2

a

)
(6)

for the variables ξ1,a and Ua. Note that Eq. (6) assumes the form of the order
parameter equations of the synergetic computer again. The question arises to
what extent the variables ξ1,a and Ua can be regarded as useful approximations
to the order parameter ξ1 and the coarse-grained order parameter U .

In this context, we first note that the expression U4 reads

U4 =

[∑
s∈IU

ξ2s

]2
=
∑
s∈IU

ξ4s +mixed terms of the form
(
ξ2i ξ

2
j �=i

)
i,j∈IU

. (7)
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Consequently, Eq. (5) reads

d

dt
ξ1 = ξ1

(
λ− g[U + ξ21 ]− (1− g)ξ21

)
,

d

dt
U = U

(
λ− g[U + ξ21 ]− (1− g)U2

)

+mixed 3rd order terms of the form
1

U

(
ξ2i ξ

2
j �=i

)
i,j∈IU

. (8)

As indicated the mixed terms are considered third order terms because the prod-
ucts of order 4 are divided with the variable U that depends linearly on the scales
of the variables ξk∈IU .

The dynamical systems (6) and (8) differ by the mixed terms occurring in
the U -dynamics of the model (8). In order to assess the relevance of these terms,
we apply a concept from psychophysics: the ’just noticeable difference’ (JND)
of sensations [31]. We assume that all patterns under consideration differ from
each other by a distance measure D that will not be specified in detailed. For
a human observer the patterns under consideration differ such that they can be
distinguished from each other. In this sense, for all pairs of patterns the distance
measure D is larger than a certain threshold that corresponds to the JND.

Mathematically speaking, we assume that the initial conditions are such that
the order parameters ξk differ at t = 0 by a certain amount that reflects the dis-
tance D between the patterns and accounts for the aforementioned requirement
that the sensation patterns (stimuli) under consideration differ at least by the
JND. We distinguish between two cases.

Case I: It is assumed that patterns with a JND induce relative large differ-
ences between the initial values ξk(0) of the order parameters. Accordingly, we
assume that

∃k∗ : ∀j �= k∗ : ξk∗(0)� ξj(0) . (9)

In this case, the order parameter ξ∗k of the pattern k∗ will not only win the
selection process defined by Eq. (4) but the mixed terms in the U -dynamics of
Eq. (8) will be negligibly small at all times relative to the U3 term:

∀t ≥ 0 : U3(t)� mixed 3rd order terms of the form
1

U(t)

(
ξ2i (t)ξ

2
j �=i(t)

)
i,j∈IU

.

If Eqs. (10) holds, then the dynamical systems (6) and (8) exhibit approximately
the same transient and stationary solutions. Consequently, the model (6) involv-
ing the variable Ua is a good approximative model for the original order pa-
rameter model (4) of the synergetic computer. In particular, in the limiting case
ξj �=k∗(0)/ξ∗k(0) → 0 a point-wise convergence ξ1,a(t) → ξ1(t) and Ua(t) → U(t)
holds at any time point t provided that we use the consistent initial conditions
ξ1,a(0) = ξ1(0) and Ua(0) = U(0). An illustration is shown in Fig. 1AB.

Case II: It is assumed that patterns with a JND induce differences between
order parameters ξk(0) that are scaled to the size of the set of patterns and are
at least of the magnitude

√
N − 1. More precisely, we assume that

∃k∗ : ∀j �= k∗ : ξk∗(0) > ξj(0)
√
N − 1 . (10)
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Case I
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Fig. 1. Illustrations of solutions for case I (A,B), II (C,D), III (E,F) initial conditions.
Solutions of Eq. (4) (solid lines) and Eq. (6) (circles) are shown under consistent initial
condition: ξ1,a(0) = ξ1(0), Ua(0) = U(0). See text for details. Parameters: N = 10,
λ = 2.0, g = 1.3. Case I initial conditions: ξ5(0) = 0.2, ξj �=5(0) = 0.2/

√
(N − 1)/10/(1+

0.1ε). Case II: ξ5(0) = 0.2, ξj �=5(0) = 0.2/
√

(N − 1)/(1 + 0.2ε). Case III: ξ1(0) = 0.25,
ξj �=1(0) = 0.2 + 0.01ε. In all cases, ε was uniformly distributed in [0, 1].

Let us distinguish between the two sub-cases that k∗ ∈ IU and k∗ �∈ IU (i.e.,
k∗ = 1). If k∗ ∈ IU then the original order parameter dynamics will converge to
a fixed point with ξk∗ > 0 such that in the stationary case U(st) = ξk∗(st) holds.
Moreover, it follows that U(0) > ξk∗(0) > ξ1(0). Consequently, if the dynamical
system (6) is considered under consistent initial conditions (i.e., ξ1,a(0) = ξ1(0)
and Ua(0) = U(0)), then Ua converges to the finite stationary value Ua(st) =
U(st) = ξk∗(st) > 0 of the original dynamical system (4) and x1,a(t) converges
to zero consistent with the stationary behavior of ξ1: ξ1,a(st) = ξ1(st) = 0. In
contrast, if k∗ = 1 then the original selection equation dynamics (4) converges
to the fixed point with ξ1 > 0 and U = 0. In addition, it follows that

U2(0) =
∑
s∈IU

ξ2s (0) <
∑
s∈IU

ξ21(0)

N − 1
= ξ21(0) ⇒ U(0) < ξ1(0) . (11)

If, again, the dynamical system (6) is considered under consistent initial con-
ditions (i.e., ξ1,a(0) = ξ1(0) and Ua(0) = U(0)), then Ua converges to the sta-
tionary value Ua(st) = U(st) = 0 and x1,a(t) converges to its finite fixed point
value consistent with the stationary behavior of ξ1: ξ1,a(st) = ξ1(st) > 0. In
summary, if condition (10) is satisfied, then the dynamical system (6) involving
the variable Ua exhibits the same stationary behavior than the original selection
equation model (4) provided that both dynamical systems are considered under
consistent initial conditions. Figure 1CD exemplifies solutions of the dynamical
systems (4) and (6) for this case.

In view of the fact that in the two aforementioned cases the performance of
the dynamical model (6) is consistent in the stationary case with the original
order parameter equation model (4) and given that both models exhibit formally
the same mathematical structure, we will consider in what follows the coupled
differential equations (6) involving the variables ξ1,a and Ua as the (approxima-
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tive) coarse-grained order parameter equation model of the original synergetic
computer model (4) (or (1)) involving the variables ξ1, . . . , ξN .

Finally, let us consider the general case in which neither of the two conditions
described above are satisfied.

Case III: If the conditions considered in cases I and II are not satisfied, then
the dynamical model (6) may exhibit solutions that are inconsistent with the
order parameter dynamics (4) even if both dynamical models are solved under
consistent initial conditions. Let us prove this statement by an example. Let
ξ1(0) = b > 0 and ξk∈IU (0) = a > 0 with b > a. For these initial conditions
the original pattern recognition algorithm (4) converges to a fixed point with
ξ1(st) > 0 and ξk = 0 for k ∈ IU indicating that the default pattern k = 1 is
recognized. Next, we consider the special case in which the distance D between
the default pattern k = 1 and the other patterns k ≥ 2 is not that large such
that if the default pattern is presented we have b > a but b2 < (N − 1)a2.
That is, the condition of case II is violated. From b2 < (N − 1)a2 it follows
that U(0)2 = (N − 1)a2 > a2 = ξ21(0). In other words, although for b > a
and b2 < (N − 1)a2 the condition ξ1(0) > ξk(0) holds for any k �= 1, we have
U(0) > ξ1(0). Consequently, if we solve the coarse-grained selection equations
(6) under consistent initial conditions (ξ1,a(0) = ξ1(0) and Ua(0) = U(0)), then
Ua(t) converges to a finite stationary value Ua(st) > 0 and x1,a(t) converges to
zero in the stationary case. The coarse-grained dynamical model (6) indicates
that one of the patterns k ≥ 2 was recognized, which is in contradiction with the
recognition process described by the original selection equations (4). Figure 1EF
illustrates this case.

In summary, we have considered the special case in which the set of N pat-
terns under considerations exhibits a distinct default pattern and N−1 patterns
that constitute a class of non-default patterns. On a coarse-grained level, we
considered the order parameters x1 and U that describe whether a pattern is
recognized as the default pattern (ξ1(st) > 0) or as a pattern belonging to the
class of non-default patterns (U(st) > 0). It was shown that for this special case
a dynamical model for the variables ξ1,a and Ua can be derived (see Eq. (6))
that under certain circumstances behave approximatively in the same way as ξ1
and U , respectively. More precisely, if patterns are considered that differ at least
by a JND that induces (i) a relative large gap or (ii) at least a gap of

√
N − 1 in

the spectrum of initial amplitudes ξk(0), then in the stationary case the coarse-
grained order parameter dynamics involving ξ1,a and Ua yields consistent results
with the fine-grained dynamics of ξ1, . . . , ξN . This implies that the pattern se-
lection made by the two dynamical systems is consistent. Under the condition
(i) the two dynamical models exhibit also approximatively the same transient
solutions. If neither of the two gap conditions (i) and (ii) are satisfied, then the
two models may yield inconsistent results. These considerations are summarized
schematically in Table 1.

Importantly, the two dynamical models for the approximative coarse-grained
order parameters ξ1,a and Ua and for the fine-grained order parameters ξ1, . . . , ξN
exhibit formally the same mathematical structure.
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Table 1. Correspondence of fine- and coarse grained dynamics

Case ’JND’ impact Initial conditions Fine- & coarse-grained

I Large gap ∃k∗ : ∀j �= k∗ : Consistent transient

ξk∗(0) � ξj(0) and stationary solutions

II Moderate gap ∃k∗ : ∀j �= k∗ : Consistent

ξk∗(0) >
√
N − 1 ξj(0) stationary solutions

III Gap conditions Stationary solutions may

I and II not satisfied or may not be consistent

2.2 General case

Let us consider M levels of coarse-graining L ∈ {1, ..,M}. The first level (L = 1)
contains N1 patterns. To each pattern an order parameter ξk,1 is assigned that is
used to indicate whether the pattern is recognized. On the second level, patterns
are grouped together such that there are N2 < N1 pattern classes. To each
pattern class a coarse-grained order parameter ξk,2 is assigned that is used to
indicate whether a pattern out of the class is recognized. In general, each level
exhibits NL pattern classes (with N1 > N2 > · · · > NM ) that are described by
NL coarse-grained order parameters ξk,L. For the sake of simplicity, the patterns
of level L = 1 and the corresponding amplitudes ξk,1 will be treated as if they
were pattern classes and pattern class amplitudes, respectively.

At this stage, it is useful to introduce the index sets Ik,L+1 ⊂ {1, . . . , NL}.
The index set Ik,L+1 contains all the pattern class indices j from the coarse-
grained level L that are grouped together to the class k of the level L + 1.
For example, the index set IU discussed in Section 2.1 becomes Ik=2,L=2 =
{2, . . . , N}. The sets satisfy ∀k �= j , k, j ∈ {1, . . . , NL+1} : Ik,L+1 ∩ Ij,L+1 = ∅
and ∪NL+1

k=1 Ik,L+1 = {1, . . . , NL}. In words, all sets belonging to a particular
level of coarse-graining are mutually disjunct and the unification of all sets of
a coarse-graining level L + 1 gives the index set of all pattern classes of the
previous level L. In analogy to Eq. (3), coarse-grained order parameters ξk,L+1

are defined iteratively by

ξk,L+1 =

√ ∑
s∈Ik,L+1

ξ2s,L . (12)

Let us assume that for a particular level L of coarse-graining the selection equa-
tions for ξk,L assume the form of the order parameter equations of the synergetic
computer. In analogy to Eq. (4), we consider the selection equations

d

dt
ξk,L = ξk,L

(
λ− g

NL∑
m=1

ξ2m,L − (1− g)ξ2k,L

)
(13)
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for k ∈ {1, . . . , NL}. Proceeding as in Section 2.1, we use

NL∑
m=1

ξ2m,L =

NL+1∑
k=1

⎛
⎝ ∑

s∈Ik,L+1

ξ2s,L

⎞
⎠ =

NL+1∑
m=1

ξ2m,L+1 . (14)

Differentiating Eq. (12) with respect to time t and substituting Eqs. (13) and
(14) into the resulting equation, we obtain in analogy to Eq. (5) the following
result

d

dt
ξk,L+1 = ξk,L+1

⎛
⎝λ− g

NL+1∑
m=1

ξ2m,L+1

⎞
⎠− (1− g)

1

ξk,L+1

∑
s∈Ik,L+1

ξ4s,L (15)

for k ∈ {1, . . . , NL+1}. Using the same line of arguments as in Section 2.1, the
most right standing term in Eq. (15) can be expressed in terms of ξk,L+1 and
mixed terms of the form ξ2i,Lξ

2
j,L with i �= j. Consequently, in analogy to Eq. (8),

Eq. (15) can be cast into the form

d

dt
ξk,L+1 = ξk,L+1

⎛
⎝λ− g

NL+1∑
m=1

ξ2m,L+1 − (1− g)ξ2k,L+1

⎞
⎠

+mixed 3rd order terms
1

ξk,L+1

(
ξ2i,Lξ

2
j �=i,L

)
i,j∈Ik,L+1

. (16)

Neglecting the third order mixed terms, we obtain a coupled set of approximate
selection equations of the coarse-grained level L+ 1 that read

d

dt
ξk,L+1 = ξk,L+1

⎛
⎝λ− g

NL+1∑
m=1

ξ2m,L+1 − (1 − g)ξ2k,L+1

⎞
⎠ (17)

and just assumes the form of the order parameter equations of the previous level
L, see Eq. (13).

Finally, we assume that the patterns under consideration exhibit a JND that
induces gap conditions as discussed in cases I and II of Section 2.1 for the
initial amplitudes ξk,L(0) on all coarse-grained levels L. Under these conditions,
the mixed third order terms in Eq. (16) can be neglected (Case I) or affect
the transient dynamics only to a relatively small degree which implies that the
approximate selection equations (17) of the level L + 1 yield consistent results
with the selection equations (13) of the level L (Case II).

Let us exemplify the relationship between the selection equations (13) and
(17) on subsequent levels L and L+1 of coarse-graining. For illustration purposes
it is sufficient to consider just two levels M = 2 and a set of N1 = 4 patterns on
L = 1 that is reduced to N2 = 2 pattern classes on the level L = 2. Furthermore,
the patterns k = 1, 2 and k = 3, 4 on L = 1 are assumed to constitute the pattern
classes k = 1 and k = 2 on L = 2. That is, we have I1,2 = {1, 2} and I2,2 = {3, 4}.
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Fig. 2. ξ1,2 (panel A) and ξ2,2 (panel B) computed from Eqs. (18) and (19) (solid lines)
and Eq. (20) (circles) for consistent Case II conditions with ξ3,1(0) = 0.2, ξj �=3(0) =
0.2/

√
(N − 1)/(1 + 0.2ε), ε uniformly distributed in [0, 1], and N = 4, λ = 2, g = 1.3.

For L = 1 the order parameter equations for ξk,1 with k = 1, 2, 3, 4 read

d

dt
ξk,1 = ξk,1

(
λ− g

NL∑
m=1

ξ2m,L − (1− g)ξ2k,1

)
(18)

and the coarse-grained order parameters on the level L = 2 are defined by

ξ1,2 =
√
ξ21,1 + ξ22,1 , ξ2,2 =

√
ξ23,1 + ξ24,1 . (19)

Under Case I and II initial conditions, the coarse-grained order parameters on
level L = 2 satisfy at least approximately the selection equations

d

dt
ξ1,2 = ξ1,2

(
λ− g[ξ21,2 + ξ22,2]− (1− g)ξ21,2

)
,

d

dt
ξ2,2 = ξ2,2

(
λ− g[ξ21,2 + ξ22,2]− (1− g)ξ22,2

)
. (20)

Under case I initial conditions ∃ k∗ : ξk∗,1(0)� ξj �=k∗ ,1(0) the solutions of the
coarse-grained differential equations (20) are good approximations to the exact
solutions calculated from Eqs. (18) and (19) provided consistent initial conditions

ξ2,1(0) =
√
ξ21,1(0) + ξ22,1(0) and ξ2,2(0) =

√
ξ23,1(0) + ξ24,1(0) are used. In order

to illustrate this correspondence, we solved Eqs. (18), (19), and (20) numerically,
see Figure 2.

3 Motion-induced blindness and schizophrenia

Motion-induced blindness is an optical illusion produced by a visual stimulus
composed of a fixed stationary foreground pattern and a rotating background
pattern. Typically, the foreground pattern consists of three yellow dots arranged
in a triangle, whereas the background pattern is a rotating array (or grid) of
blue dots. A human observer exposed to the MIB stimulus typically reports that
some of the target dots disappear for a while. In this sense, the motion of the
background pattern induces a temporary blindness with respect to the target
pattern [32].



256 T.D. Frank and D.G. Dotov

3.1 Modeling of fine- and coarse-grained order parameter dynamics

We distinguish between 8 spatio-temporal patterns on the level L = 1 that
fall into two classes on the coarse-grained level L = 2. There is one perceptual
pattern not subjected to a MIB effect (i.e., the three yellow target dots are
perceived), which is regarded as the default pattern indexed by k = 1 on L = 1.
The default pattern constitutes its own class on L = 2 Moreover, there are 7
different patterns that are subjected to a MIB effect (i.e., at least one dot is
perceived as being absent). They are indexed by k = 2, . . . , 8 on L = 1. and
constitute the class of ’incomplete patterns’ on L = 2. On L = 2 the default
pattern is index by k = 1 and the incomplete patter class is index by k = 2.
Following earlier work on selective attention phenomena [1, 4], certain oscillatory
phenomena of the perceptual [19, 20] and auditory system [21, 22], priming [23,
24], grasping [25, 26], and child development [27, 28], we assume that in general
the attention parameters of the two classes are different from each other. In this
case, the evolution equations for L = 1 and L = 2 read

d

dt
ξk,1 = ξk,1

⎛
⎝λk,1 − g

N∑
m=1,m �=k

ξ2m,1 − ξ2k,1

⎞
⎠ , k = 1, . . . , 8 (21)

and

d

dt
ξ1,2 = ξ1,2

(
λ1,2 − g U2 − ξ21,2

)
,

d

dt
U = U

(
λU − g ξ21,2 − U2

)
(22)

with λ1,1 = λ1,2 and λk,2 = λU for k = 2, . . . , 8. The coarse-grained order
parameter variables ξ1,2 and U are related to the fine-grained order parameters

ξ1,1, . . . , ξ8,1 as discussed in the Section 2 with ξ1,2 ↔ ξ1,1 and U ↔
√∑8

k=2 ξ
2
k,1.

The stability of the winner-takes-all fixed points ξk∗,1 =
√
λk∗,1 ∧ ξj �=k∗ ,1 = 0

of Eq. (21) and (ξ1,2 =
√
λ1,2 , U = 0), (ξ1,2 = 0 , U =

√
λU ) for Eq. (22)

depend on the attention parameter spectrum. The stability of fixed points of
the synergetic computer in the case of an inhomogeneous attention parameter
spectrum has been discussed in detail in a series of studies [7, 23–27]. From these
studies it follows that for the default pattern the stability depends on λ1,2, λU ,
and g like

ξ1,1 =
√
λ1,2 ∧ ξk≥2,1 = 0

ξ1,2 =
√
λ1,2 ∧ U = 0

}
=

{
stable if λ1,2 > λU/g
unstable if λ1,2 < λU/g

. (23)

By analogy, for the incomplete patterns we have

∃ k∗ ≥ 2 : ξk∗,1 =
√
λU ∧ ξj �=k∗ ,1 = 0

ξ1,2 = 0 ∧ U =
√
λU

}
=

{
stable if λU > λ1,2/g
unstable if λU < λ1,2/g

. (24)

In what follows, we will primarily focus on the coarse-grained model. The
oscillatory switching between the default pattern and a pattern out of the class of
incomplete patterns can be modeled by assuming that the attention parameters
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λ1,2 and λU vary in time [18–22]. More precisely, we assume that if the default
pattern is perceived then λ1,2 decays gradually until the critical ratio λ1,2 = λU/g
is reached at which the percept becomes unstable, see Eq. (23). Consequently, the
perceptual dynamics is subjected to a bifurcation and the perceptual experience
of the default pattern is replaced by the percept of one of the incomplete patterns.
However, the percept is assumed to induce again a decay in the corresponding
attention parameter. That is, λU is assumed to decay gradually, while λ1,2 relaxes
back to a ’rest level of attention’. Among various possible dynamical systems
that are able to capture these mechanisms, we will use the following evolution
equations for the attention parameter dynamics:

d

dt
λ1,2 = − 1

τ
(λ1,2(t)− b1,2) ,

d

dt
λU = − 1

τ
(λU (t)− bU ) (25)

with

b1,2 = 0 ∧ bU = b0 if ξ1,2 =
√
λ1,2 ∧ U = 0

b1,2 = b0 ∧ bU = 0 if ξ1,2 = 0 ∧ U =
√
λU , (26)

where b0 denotes the aforementioned rest level and τ > 0 is a time constant.
Our aim is to investigate the oscillatory dynamics (22), (25), (26) in a special

case which allows for a semi-analytical approach. To this end, we note that the
parameter τ defines the characteristic time scale of the attention parameter
dynamics. Likewise, 1/λ1,2 and 1/λU define the characteristic time scale of the
dynamics of ξ1,2 and U . Let λc,low and λc,high with λc,low > λc,high = gλc,low

denote the critical attention parameters at which percept-switching occurs. Then
λ1,2 and λU oscillate between these levels. Consequently, ξ1,2(t) and U(t) evolve
on a time scale at least as fast as given by 1/λc,low. If λc,low is chosen large
enough (the value of λc,low depends on the model parameters b and g) such
that 1/λc,low is much shorter than τ , then the ξ1,2(t) and U(t) are fast evolve
variables, whereas the attention parameters λ1,2(t) and λU (t) are slowly evolving
variables. Figure 3 illustrates this case. In this case, the oscillation period can be
calculated from the attention parameter dynamics alone. Moreover, differences in
the transient behavior of the fine- and coarse-grained dynamics become irrelevant
as long as both levels of consideration yield consistent results in the stationary
case (case II, see Table 1).

In order to derive an expression for the oscillation period, we consider the
case in which λU decays from λc,high towards zero and λ1,2 relaxes back towards
b0:

λ1,2 = λc,low exp

{
− t

τ

}
+ b0

(
1− exp

{
− t

τ

})
,

λU = λc,high exp

{
− t

τ

}
. (27)

This phase will be terminated when λ1,2 = λc,high and λU = λc,low. The duration
of the phase corresponds to half of the oscillation period. Therefore, at t = T/2
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Fig. 3. Oscillatory behavior of the order parameters (panel A) ξ1,2 (solid), ξU (circles)
and attention parameters (panel B) λ1,2 (solid), λU (circles) for τ = 100ms, g = exp{1},
b0 = g + 1 as computed from Eqs. (22), (25), (26). Note that the observed period is
T ≈ 2τ as expected.

we have

λc,high = λc,low exp

{
− T

2τ

}
+ b0

(
1− exp

{
− T

2τ

})
,

λc,low = λc,high exp

{
− T

2τ

}
. (28)

Substituting λc,high = gλc,low into the second relation of Eq. (28), we can deter-
mine T as a function of g and τ like T = 2τ ln(g). Substituting λc,high = gλc,low

into the first relation of Eq. (28), we then obtain a relationship between the
parameters b0 and g:

b0 = g + 1 . (29)

This relation tells us that the scenario described above can not be realized for
any arbitrary values of g and b0. Rather, the model parameters must satisfy the
matching condition (29). Eliminating b0 by means of Eq. (29), the model defined
by Eqs. (22), (25), (26) involves two unknown parameters g and τ . If we fix one
of the two parameters, then the remaining parameter can be estimated from
the experimentally observed oscillation period Tobs. In this context, a particular
simple model can be constructed if we put g = e (where e = exp{1}). In this
case, we have T = 2τ , and the model parameter τ can be estimated from the
observed oscillation period Tobs like τestim = Tobs/2.

Let us generalize the model in order to account for the fact that in MIB
experiments the default percept and the incomplete percepts are not necessarily
perceived for the same amount of time. That is, in general, the MIB paradigm
involves perceptual oscillations composed of two phases with unequal durations.
In order to introduce two phases with different phase durations, we include a bias
in the dynamical model defined by Eqs. (22), (25), (26). To this end, Eq. (22) is
replaced by

dξ1,2
dt

= ξ1,2

(
λ1,2 +

δ

2
− g U2 − ξ21,2

)
,
dU

dt
= U

(
λU −

δ

2
− g ξ21,2 − U2

)
.(30)

For δ > 0 the duration of the phase with ξ1,2 > 0 and U = 0 becomes longer
than the duration of the phase with ξ1,2 = 0 and U > 0. According to our



Synergetic Computer and Multistable Perception in Schizophrenia 259

interpretation of the model, we say that for δ > 0 there is a bias towards per-
ceiving the default pattern. Likewise, for δ < 0 the model reflects a perceptual
systems exhibiting a bias towards the perception of an incomplete pattern. If
we consider the parsimony model defined by Eqs. (25), (26), and (30) with fixed
parameters g = exp{1} and b0 = g+1, then we have two parameters τ and δ at
our disposal to model experimentally observed durations of the phase of default
pattern perception and the phase of incomplete pattern perception.

3.2 Schizophrenia patients data versus controls

Schizophrenia patients frequently show deficits in the perceptual processing of
visual stimuli. In particular, perceptual processes are affected that involve higher
cognitive functions such as feature binding [33–36]. On the other hand, there is
evidence that the MIB phenomenon involves such higher cognitive processes and
does not arise from low hierarchical processes like retinal suppression. For exam-
ple, visual aftereffects that are assumed to emerge on a relative low hierarchical
level of sensory processes are induced by the target dots of the MIB stimulus
although these dots are not perceived by the observers [37, 38]. In other words,
there is experimental evidence that when a target dot is not perceived by an
observer then the sensory stimuli of the target dot is still processed in low hi-
erarchical levels of the perceptual system but it is not processed (’correctly’)
on higher cognitive levels involved in consciousness and sensory experiences that
are explicit to the observer. This point of view is also supported by experimental
studies that point out the similarity between the MIB phenomenon and other
Gestalt theoretical phenomena such as perceptual filling-in [39]. In summary,
higher cognitive functions are relevant both for the MIB phenomenon and our
understanding of schizophrenia, which makes the MIB phenomenon a promising
paradigm to investigate schizophrenia [40].

In a study by Tschacher et al. [40] controls and schizophrenia patients were
tested on the MIB phenomenon. Both groups were exposed to three trials of
60 seconds. On the average, the number of total MIB experiences within these
three minutes was about 42 for controls and 29 for patients (see Table 3 in [40]).
In what follows we distinguish between total and single event durations. The
total durations of the MIB experiences was about 42 seconds for controls and
33 seconds for patients. From these data we can obtain a crude measure for the
duration of a single MIB event. For controls we obtain a single MIB duration of
about TMIB = 1.0s (i.e., 42sec/42). For patients we obtain a single MIB event du-
ration duration of about TMIB = 1.1s (i.e., 33sec/29). Likewise, we can calculate
a crude measure for how long on average the perception of a default pattern was
experience before it became unstable (single event duration). Controls perceived
the default pattern on the average for a total period of 138 seconds. Assuming
(in line with our simplified model) that there were on average 42 switches to the
default percept, we obtain an estimated single event duration of Tdefault = 3.3s
(i.e., 138sec/42). Likewise, for patients we obtain a single event duration of the
default pattern of about Tdefault = 4.5s (i.e., 147sec/33). In view of Eq. (30),
we anticipate that a model-based analysis of the data should reveal that the
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Table 2. Descriptive experimental data and model parameters

Data Model

Group Tdefault [ms] TMIB [ms] τ [ms] δ [1/ms]

Controls 3300 1000 1500 1.6

Patients 4500 1100 1700 1.8

parameter δ is larger for schizophrenia patients because the asymmetry of the
durations of the MIB and non-MIB phases is more pronounced.

We fitted the model parameters δ and τ to reproduce the duration data TMIB

and Tdefault for controls and patients. To this end, τ was varied in the interval
[Tdefault, TMIB] in steps of 100 ms, while δ was varied in the interval [0, 2.0] 1/ms
in steps of 0.1. The results of this fitting procedure are summarized in Table 2. As
expected, we found that the asymmetry parameter δ is larger for schizophrenia
patients than for controls.

4 Discussion

We studied coarse-graining of order parameter equations of the synergetic com-
puter and followed in part earlier studies on hierarchical generalizations of the
synergetic computer concept [8]. In particular, we showed that under certain
conditions the coarse-grained order parameter equations exhibit the same math-
ematical structure as the corresponding fine-grained order parameter equations.
In this sense, self-organizing artificial and natural systems, whose dynamics can
be described (at least to some approximation) by the synergetic computer equa-
tions, exhibit a scale free system dynamics. A model-based analysis of literature
data on multistable perception of schizophrenia patients tested in an MIB exper-
iment was carried out. The observation that the frequency of MIB experiences is
lower for schizophrenia patients than for controls corresponds in the model to a
time scale parameter τ that is larger for schizophrenia patients than for controls.
In addition, the model-based analysis highlights a second perceptual character-
istics of schizophrenia patients that has so far received only little attention. The
two different perceptual phases in MIB experiments seem to be less symmetric in
duration under schizophrenia. This shows up as a symmetry breaking parameter
δ which is larger for schizophrenia patients than for controls.
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