
The Brain as a Synergetic and Physical System

Hermann Haken

Center of Synergetics, Institut für Theoretische Physik 1, Universität Stuttgart,
Pfaffenwaldring 57, 70550 Stuttgart, Germany

cos@itp1.uni-stuttgart.de

http://itp1.uni-stuttgart.de/institut/arbeitsgruppen/haken

Abstract. This paper presents an outline of our brain theory that we
have developed over the past 30 years. Some remarks on the early stages
of Synergetics that I initiated some 40 years ago are included. Using
basic concepts of Synergetics such as order parameters and the slaving
principle, brain functions are modeled both at the macroscopic (order
parameter) and the microscopic (neuronal) levels. I deal with movement
coordination, psychophysics (ambiguous figures), pattern recognition by
the synergetic computer, my “light house model” of a neural net, and give
some hints at applications to psychology and psychotherapy (“principle
of indirect steering”). Finally, I discuss relations between Synergetics and
Complexity Science.

1 The human brain

Our brain is the most complex system we know. It consists of about 100 billion
neurons, where a single neuron can be connected with up to 10000 other neurons.
This “system” enables our recognition of faces and objects, movement patterns,
it serves movement control of our limbs, it produces our thoughts and allows us
to express them by speech and gestures, it homes our feelings, just to mention
a few characteristic features. But who or what steers the neurons so to produce
all these marvelous processes? The famous neurophysiologist Sir John Eccles
suggested that the brain is a computer and the mind its programmer. Indeed, the
“computer” metaphor is still present in numerous publications (with the “mind”
exorcised). In contrast to this picture, some thirty years (in 1982) ago I suggested
to treat the brain as a “synergetic” system and jointly with E. Basar, H. Flohr,
and A.J. Mandell (Basar et al. [1]), I organized a meeting entitled: “Synergetics
of the brain”. According to this suggestion, the brain is a self-organizing system,
which can be theoretically treated by basic concepts and results of Synergetics.

2 Synergetics: Two examples from physics and a
historical remark

I initiated this kind of study by a lecture, jointly with my then coworker Robert
Graham in the winter term 1969/70, and continued it in the summer term 1970
(cf. also Haken, Graham [2]). To explain the incentive of our endeavor, I briefly
recall my favorate subject of my research at that time:
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2.1 The laser paradigm

A typical example is the ruby laser (first realized by Maiman in 1960 [3]). In a
crystal (Al2O3) rod, impurity atoms (Cr+) are embedded. When excited by a
“pump” lamp from the outside, the impurity atoms emit light which lends the
ruby crystal its typical red color. Two mirrors (one semitransparent) mounted at
the rod’s end faces serve for a reflection of light waves, emitted in axial direction,
so that they can intensely interact with the atoms. By means of stimulated emis-
sion (first introduced by Einstein to derive Planck’s law of black body radiation),
light waves are amplified and, eventually, leave the laser rod in axial direction.
What happens, when we increase the pump power of the outer light source?
First, light waves (or photons) are spontaneously emitted, which is an entirely
random process. Even when the waves are enhanced by stimulated emission,
which is expressed by the acronym laser (light emission by stimulated emission
of radiation) this randomness (“Gaussian noise”) persists (while the linewidth
decreases with increasing pump strength). In the physics community, this line
narrowing was considered as the typical feature of laser light (besides its high
intensity and directionality). In 1964 I showed theoretically, that at a critical
pump strength laser light undergoes a dramatic qualitative change (Haken [4]):
the noisy output is replaced by a single highly ordered (“coherent”) wave. This
was the first example of an open (quantum) system far from equilibrium which
shows a disorder-order transition actually in close analogy to phase-transitions
of systems in thermal quilibrium, based on the Landau theory, as we elaborated
later (Graham, Haken 1968,70; also de Giorgio, Scully 1970). But still more
important: Here we had an explicit example of a process of self-organization!

2.2 A fluid heated from below

In order to bring out some typical features of self-organization which can be
clearly visualized (“demonstrare ad oculos”) I quote some experimental results
(Fig. 1).

In a circular pan, a thin fluid layer (e.g. oil) is heated from below and cooled
from above. If the temperature difference Δ between the lower and upper surface
is small, heat is conducted microscopically: macroscopically the fluid is at rest.
Beyond a critical Δ, a macroscopic pattern emerges: a honey comb structure
(Bénard [5]). In spite of a completely homogenous heating and cooling, a highly
ordered structure appears! When, in addition, also the border of the pan is
heated uniformly, the structure changes qualitatively: the hexagons are replaced
by a spiral (which can be one-or multi-armed) (Bodenschatz et al., experiments
[6]; Bestehorn et al., theory [7]).

2.3 A historical remark

While the laser provides us with a quantum system away from thermal equilib-
rium that shows temporal order, the fluid exemplifies the formation of spatially
ordered patterns in a classical non-equilibrium system.
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Fig. 1. Fluid layer heated from below.: l.h.s.: formation of hexagons, r.h.s.: formation
of spirals when the border is heated in addition. (From Bestehorn, M., Fantz, M.,
Friedrich, R., Haken, H. [7].)

Are these two cases just two strange singular events (which even seemed to
contradict the second law of thermodynamics) or are they just two manifestations
of an important new class of phenomena? The attempt to answer such a question
lies at the heart of my “Synergetics” endeavor. Historically, the incentive for my
approach was – besides the laser paradigm – not the just mentioned example
of fluid dynamics, but two phenomena of “phase transitions” in quite other
fields, namely Sociology and biological evolution. In 1968 my close colleague
Wolfgang Weidlich developed his theory on phase-transitions in the formation of
public opinion (Weidlich 1971 [8]), and I learned of Manfred Eigen’s work on the
evolution of molecular species (Eigen [9]) (see also Eigen, Schuster [10], Weidlich
[11]). So my conclusion at that time was: phase-transition-like phenomena must
be ubiquitous.

To put this new insight into a broader context, in 1972 I organized a sympo-
sium on Synergetics (cf. its proceedings (Haken [12])).

My introduction started with the words “In many disciplines of science we
deal with systems composed of many subsystems . . . Very often the properties
of the large system cannot be explained by a mere random superposition of
actions of the subsystems. Quite on the contrary the subsystems behave in a
well organized manner, so that the total system is in an ordered state or shows
actions which one might even call purposeful. Furthermore one often observes
abrupt changes between disorder and order or transitions between different states



150 H. Haken

of order. Thus the question arises, who are the mysterious demons who tell the
subsystems in which way to behave so to create order, or, in a more scientific
language, which are the principles by which order is created.” And I concluded
my introduction with the statement . . . “that in spite of the completely different
nature of the systems, their behavior is governed, at a well defined level of
consideration, by a few very general principles which offers an explanation of
the often amazingly similar performance of such systems.”

3 Synergetics: Goal

This interdisciplinary field of research, Synergetics (S.), deals with systems com-
posed of many parts, elements etc. S. distinguishes between the macroscopic
level and the microscopic level by length- and/or time-scale separation. S. stud-
ies the spontaneous formation of temporal, spatial, functional structures, i.e. the
emergence of new qualities via self-organization. S. focusses its attention on open
systems, i.e. systems subject to an in – and outflow of energy, matter and/or
information. The central goal of S. is: to unearth general principles (or laws)
underlying self-organization irrespective of the nature of the individual parts of
the considered systems.

Thus the parts may be, e.g., atoms, photons, molecules, but also neurons
or people in society. “It hardly needs to be mentioned that once such common
principles are established, they are of an enormous stimulus and help for future
research” (quotation from my preface to the proceedings of our first Synergetics
meeting in 1972 (Haken [12])).

An important feature of Synergetics has always been to make contact with
experiments as closely as possible. For more details cf. Haken [13–16] and the
Springer Series in Synergetics.

In the present paper I don’t present the theoretical approaches but rather
their verbalization. For lack of space, I must also refrain from discussing the
various relationships between S. and general system theory (in the sense of L.
von Bertalanffi [17, 18] dynamic systems theory including bifurcation theory,
center and inertial manifold theory (e.g. Pliss [19], Kelley [20]), Robinson [21]),
Landau theory of phase transitions (Landau, Lifshitz [22]), thermodynamics,
statistical physics, quantum field theory, cybernetics and possibly other fields.
(In my opinion, the work of myself and my coworkers has given substantial new
insights into several of these fields).

4 Synergetics: Basic concepts

4.1 Control parameters

They qualitatively describe the input of energy, matter, information into the con-
sidered system. Examples are: power input into the laser, temperature difference
in convection experiments.
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In brain dynamics : Coffein (blocks Serotonin receptors), Haldol (blocks Dop-
amin2 receptors), neurotransmitters, neuromodulators, hormones (e.g. oxytoc-
ine); the latter acting as internal control parameters.

4.2 Instability

At a critical control parameter value the state of a system tends to disappear
and to be replaced by a new one. Critical fluctuations may occur that drive the
system into its new state.

4.3 Order parameters

occur close to the instability point. They are new collective variables that serve
as macroscopic descriptors. They are in general few and obey low dimensional
nonlinear dynamics subject to fluctuations.

4.4 Slaving principle

The order parameters determine the behavior of the individual parts (like a
puppeteer who lets the puppets dance).

4.5 Circular causality

In contrast to the “puppeteer” metaphor, the puppets – through their coopera-
tion – determine the behavior of the order parameters. This raises far reaching
ontological questions. (catchword: mind-body problem) that I will not discuss
here.

At any rate: This concept allows us to treat a synergetic (self-organizing)
system at two levels:

– macroscopic: order parameters
– microscopic: “consensualization” between parts (elements)

While the second approach requires very many data, the former requires
few data (“information compression”). In the following I will elaborate on this
distinction in the context of brain dynamics.

5 The phenomenological level I
Movement coordination and order parameters

In 1981 Scott Kelso published his experimental results on human movement
coordination (Kelso [23]). He instructed subjects to move their index fingers
in parallel at a given frequency, ω. While at low frequency the subjects could
perform this movement, at an increased, critical frequency ωc, the movement
switched involuntarily to a symmetric coordination (Fig. 2). This transition was
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Fig. 2. Kelso Experiment: Change of relative phase in index finger movement

modeled by Haken, Kelso, Bunz (HKB) [24] in the spirit of Synergetics: The
pronounced change of the movement pattern occurs at a critical frequency, ωc.
Thus the frequency ω serves as control parameter.

The relative position of the index fingers can be mathematically captured by
a relative phase φ. Because φ changes at ω = ωc, it may serve as order parameter.

As had been elaborated previously in Synergetics, the order parameter dy-
namics can be modeled by an equation of the form

dφ

dt
=

∂V (φ)

∂φ
+ F (t) , (1)

where V is a “potential” and F (t) a stochastic force. The crux was to find a
suitable V (φ). Our model V is depicted in Fig. 3. Initially (upper valley) the
movement state is characterized by φ = π. With increasing ω, the correspond-
ing potential minimum flattens and disappears: The state φ = π undergoes an
instability and changes into φ = 0.

Now, again in the spirit of Synergetics, a number of important conclusions
can be drawn:

1. hysteresis : When lowering ω, the “system” will not return from φ = 0 to
φ = π.

2. a flat potential implies critical slowing down and
3. critical fluctuation (see Fig. 4).

Kelso and his co-workers were able to experimentally (even quantitatively)
verify our predictions. These results lead us to conclude that the brain does
not act according to a computer motor program. Rather the features 1-3 are
characteristic of self-organization. This is a strong hint at our interpretation
that the brain is a self-organizing system.

Further beautiful experiments on this issue were performed by Kelso and
his group, while theory was carried further by L. Borland, A. Daffertshofer, T.
Frank, A. Fuchs, G. Schöner and others, both at Stuttgart and Boca Raton, FA.
(For reviews cf. e.g. Kelso [26], Haken [27]). A general conclusion based on these
experiments and related ones is: Humans (as well as animals, e.g. quadrupeds)
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Fig. 3. Change of potential V when frequency ω is increased. Read Fig. from upper
left to lower right corner (Haken et al. [24]).

realize only specific movement patterns depending on control parameters, e.g.
prescribed speed of performance.

6 The phenomenological level II
Psychophysics and order parameters

Our starting point is a typical relation between order parameters and the en-
slaved parts: While order parameters react to external influences (“perturba-
tions”) slowly, parts act on a faster time-scale (time-scale separation). This in-
vites us to the following analogy with brain processes:

While percepts are processed on time scales of 1/10 sec or still longer, neurons
function on a time scale of milliseconds.

These facts suggest to establish an analogy (for a review cf. Haken [27])

percepts ↔ orderparameters

neurons ↔ parts(elements)

Note the ontological question that lurks behind this analogy!
Nevertheless, let us study a few typical cases of order parameter dynamics

with respect to perception. A typical order parameter potential has two valleys
indicating two different stable order parameter values, i.e. bistability. Which is
actually happening in perception (Fig. 5). Do you perceive Einstein’s face or?
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Fig. 4. Fluctuations of relative phase (open circles) and mean phase (solid dots) versus
driving frequency (Kelso et al. [25])

Thus, the same picture “induces” two quite different percepts, i.e. “bistability”
in perception. Strictly speaking over a somewhat longer time span, oscillations
occur (see below). I owe Michael Stadler (Bremen) the hint to oscillations in
perception.

A further example is hysteresis, we already came across above in a different
context. Hysteresis means that the state of a system depends on history. Fig. 6
provides us with an example from perception: The switching from the perception
of a man’s face (upper left corner) to that of a kneeling woman (lower right
corner) depends on the sequence in which we look at this series of pictures.

In the case of two order parameters, oscillations may occur (limit cycles in
the sense of dynamical system theory). In perception such oscillations may be
observed when looking at ambiguous figures (Fig. 7). Old or young lady? The
dynamics was mathematically modelled under the assumption that each percept
is controlled by an “attention” parameter that fades away after that the percept
is recognized. As I learned later, Gestaltpsychologist Wolfgang Köhler had made
the same suggestion in 1920 [29] (though he didn’t model it mathematically).
Our model allowed us to establish several relationships between first recognition
time, bias, recognition times etc. (Ditzinger, Haken [30]), and to make contact
with experimental results (Borsellini et al. [31, 32]).
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Fig. 5. Bistability in perception: Einstein’s face or three bathing girls?

7 Down to the microscopic level: models
Pattern recognition by the synergetic computer

Here, I exploit an analogy between pattern formation and pattern recognition.
This analogy is based on the concepts of order parameters, on the slaving prin-
ciple, and on circular causality (for a review cf. Haken [33]).

In pattern formation, let initially a part of the total system be in an ordered
state. This part calls on, in general, several order parameters which then compete
among each other. The initially stronger order parameter wins this competition
(“principle of winner takes all”) and, eventually enslaves the total system, i.e. it
establishes a fully ordered pattern. (An example: in the convection instability,
initially a single roll is prescribed. Then, by the just described mechanism, a
complete system of parallel rolls is formed.)

In pattern recognition, the individual parts are features, e.g. grey values of
pixels into which a pattern is decomposed. Consider as a concrete example face
recognition. Then only some features, e.g. that of a nose, may be given. Those
features call upon order parameters which compete among each other, the ini-
tially strongest wins and, again via the slaving principle, restores the whole
pattern, e.g. face. Cf. Fig. 8: example of stored prototype patterns, and Fig. 9:
recognition process, based on the following algorithm, which I formulate, quite
in the spirit of Synergetics, both at the microscopic (feature) level and at the
macroscopic (order parameter) level.
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Fig. 6. Hysteresis in perception (cf. text)

At the microscopic level, each pixel l, l = 1, ...L, is represented by its grey
value ql, which is mapped onto a neutral net so that ql is also the excitation
level of the model neuron l. Then I introduced evolution equations for the state
vector q = (q1, ..., qL),

q̇(t) = −gradqV (q, c) , (2)

where V is a polynominal of q up to fourth order with coefficients c = (cll′ , . . . )
that can be interpreted as synaptic strengths. V describes a hilly landscape
which I constructed in such a way that each of its valleys corresponds to one
and only one of the prototype patterns: The corresponding values of c can be
either inserted “by hand” into the computer or, more importantly, learned by
the rule

〈V (q, c)〉q = min ! , (3)

where the average 〈 〉 refers to a sequence of partially incomplete patterns whose
“idealization” is thus achieved. My algorithm was implemented by my former
co-worker Armin Fuchs on a serial computer (cf. Figs. 8, 9) (Fuchs, Haken [34]),
where recognition has been made invariant against displacements, rotation and
scaling. Using attention parameters and their fading away (cf. Sect. 6) our ap-
proach was also able to recognize faces in a complex scene. An example is given
by Fig. 10. The transition to the macroscopic (order parameter) level is achieved
by the transformation of the pixel vector q

q(t) =
∑
k

ξk(t)νk + rest , k = 1, . . . , k ≤ L (4)
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Fig. 7. Oscillations in perception (cf. text)

where ξk(t) is the order parameter associated with the prototype pattern vector

νk = (νk1, . . . , νk,L) . (5)

The resulting order parameter equations are

ξ̇k = ξk

(
λk + aξ2k − b

∑
m

ξ2m

)
, (6)

wih λk ≥ 0 the attention parameters, and a, b > 0.
A comparison with the vast body of pattern recognition procedures developed

by other authors can be only sketched.
My procedure belongs to the class of recurrent neural attractor networks.

The probably best known example is the Hopfield net (Hopfield [35]). Its disad-
vantage is the large number of spurious attractor states. To let the dynamical
system escape from these unwanted attractors, the laborious procedure of simu-
lated annealing has to be applied. The Grossberg/Carpenter procedure rests on
Lyapunov functions (Carpenter, Grossberg [36]) which are less precise than our
potential function, however.

8 Down to the physical level of the brain:
Coping with the dynamics of “real” neurons

This problem has been dealt with by several members of my former institute,
including A. Daffertshofer, T. Frank, V. Jirsa, P. Tass. Of course, there are also
approaches by other authors. Here I present my own “light house model” (cf.
Haken [37]) which starts from some well known experimental findings. A typical



158 H. Haken

Fig. 8. Example of stored prototype patterns (after Fuchs, Haken [34])

Fig. 9. Example of recognition process (after Fuchs, Haken [34])

neuron emits spike trains into its axon which branches making contact to other
neurons. The contact is achieved by synapses which convert spikes into electric
currents to the soma of the neuron, which sums them up, and “fires” beyond
a threshold, i.e. it emits a spike train. The basic equations of the light house
model are:

1. Electric current ψm of dendrite m is generated by an axonal pulse from
neuron k: (

d

dt
+ γ

)α

ψm = amkPk . (7)

Here, γ is a damping constant, exponent α with 1 < α < 2 is a fraction in
accordance with experiments, amk is an experimentally determined trans-
formation rate. (A more general formulation contains a sum over k on the
r.h.s.)

2. Pulse production by neuron k, light house analogy:
When the rotating light beam emitted from a light house hits an observer,
he or she will notice a series of light flashes (“spikes”). Their time intervals
depend on the rotation speed of the beam.
The direction of the beam is described by an angle φ. If the beam hits
the observer at φ = 0, then (s)he will be hit again and again at times
tn, n = 1, 2, . . . , where φ(tn) = 2πn.
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Fig. 10. Recognition of a complex scene (after Fuchs, Haken [34])

Thus the rotation speed φ̇ determines the spike emission rate, which, in the
case of a neuron, is determined by the incoming dendritic currents. I model
this effect by means of the equation

φ̇k(t) + Γφk(t)mod 2π =
∑
m

Ckmψm(t) +
∑
ml

dkmlψm(t)ψl(t) + pk , (8)

where pk is the incoming signal. I have treated these equations rather ex-
tensively (including also time-delays and noise). Here I mention only two
special cases: In the case of dense pulse sequence I was able to derive the
equations of the synergetic computer [33, 38] so that my equations allow
pattern recognition. Under different conditions, my equations describe spike
train synchronization where contact can be made with experiments by Gray
and Singer [39] as well as by Eckhorn et al. [40] and their respective groups.

9 Further down to the molecular level

In the foregoing I have given a brief sketch of how I had applied basic concepts
of Synergetics to different levels of brain functions. In this approach, neurons
(somata), axons and dendrites are treated as entities. But these “devices” are, by
themselves, complicated systems, composed of molecules. Among the numerous
phenomena at this level, the following intrigues me particularly (cf. Alberts et
al. [41] for a review).

In an axon, there are microtubuli enbedded, which are long fibers. Along
them, biomolecules called kinesin may move by means of movable “heads” (or
better “legs”). The kinesin molecules can transport organels that are larger than
the kinesin. Powered by ATP, kinesin is an open system – to be treated as a
quantum system.

In our recently (September 2012) published book: Haken/Levi: Synergetic
Agents [42] we have started to deal with such processes. In a first step we
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treated a related problem: muscle contraction based on the propagation of myosin
molecules on actin fibers by using methods of quantum field theory and quantum
statistics of systems far from equilibrium.

10 Back to the phenomenological level: Psychology and
psychotherapy

Interestingly, Synergetics, originally quite unexpected, has made its way into
psychology and psychotherapy (cf. also the contribution by Günter Schiepek to
these proceedings, as well as Haken and Schiepek [43]). Clearly in the present
context, a few remarks must suffice here.

Behavioral patterns may be conceived as order parameters. Thus changes
of behavioral patterns can be interpreted as phase transitions, often with their
typical features, e.g. critical fluctuations. Research in Synergetics has revealed
the important role of the principle of indirect steering.

This means, the change of a control parameter can induce the evolution
of a new (behavioral) pattern by means of self-organization. This has fired a
discussion on appropriate control parameters in psychotherapy: specific verbal
interventions, or specific drugs? Or both?

Eventually, Synergetics cannot escape to try an answer to the eternal mind-
body problem (on which I am presently having fascinating discussions with Har-
ald Atmanspacher and Wolfgang Tschacher).

My suggestion is the analogy

body ↔ parts

mind ↔ orderparameters

Thus in view of the principle of “circular causality” mind and body are just
two sides of the same coin. As I had learned in the meantime, this is just the
opinion of Spinoza. Just to conclude this section with a burning question: Will
the problem of qualia remain an eternal enigma?

11 Concluding remarks and outlook

Out of the vast field of Synergetics with its relations to many scientific disciplines,
I have presented a small section.

I have chosen the example of our attempts to model some aspects of brain
function to elucidate how basic concepts of Synergetics can be applied to this
fascinating field. As our studies (seem to) suggest, the human brain manages
to compress the complexity of perception and action time and again into low
dimensional dynamics of a rather small number of – in each case appropriately
established – order parameters.

Critics may object that this is a too narrow view based on a “Synergetic
bias”. On the other hand, our brain manages to compress the complexity of our
world all the time: e.g. by categorization as witnessed by language. Thus I think
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that the Synergetics approach may be a useful tool to cut one’s way through the
jungle of the brain’s complexity.

At any rate, this issue brings me to discuss the relation between Synergetics
and the presently flourishing field of Complexity Science. Synergetics is surely
one (or even the) forerunner of Complexity Science, both of which share their
emphasis on interdisciplinarity. But there are also differences that are best ex-
plained by looking at the different styles of scientific work:

1. Production of new data (information production)
2. Formulation of principles, laws etc. (information compression)

When I defined the scope of Synergetics I strongly emphasized 2.
Searching for common principles still remains an important goal which has to

go along also with 1. This is clearly demonstrated by the various presentations
at the Delmenhorst meeting (cf. these proceedings).

Readers interested in Synergetics/Complexity Science are referred to the
monograph series edited by H. Haken and S. Kelso (cf. references [14], [28]).
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