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Dedication
Ladies and Gentlemen, dear colleagues and friends, it is with my greatest plea-
sure to address our Nestor and always stimulating academic advisor, Professor
Hermann Haken, with my sincerest congratulations on the occasion of his 85th
birthday. I wish to express my warmest thanks and appreciation for his leader-
ship and his guidance.
Thank you, Hermann, for being our ideal over all the years, kindly accept all
my, all our best wishes for you!

Abstract. Recent surprising results on very large Rayleigh-number ther-
mal convection are presented and discussed. For Rayleigh numbers be-
yond about 1014 the scaling of the Nusselt number as well as the profiles
are determined by turbulent boundary layers, though these are extremely
thin. The theoretical interpretation is well consistent with the experimen-
tal data measured with the high pressure convection facility in Göttingen
by Guenter Ahlers et al.
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The results which I shall present have been obtained in close cooperation with
the following colleagues: Detlef Lohse, Twente. – Experiment: Guenter Ahlers,
Santa Barbara; Eberhard Bodenschatz, Göttingen; Denis Funfschilling, Nancy;
Xiao-Zhou He, Göttingen; Ke-Qing Xia, Hong Kong; Quan Zhou, Shanghai. –
Direct Numerical Simulation: Erwin van der Poel, Twente; Kazuyazu Sugiyama,
Riken; Richard J. A. M. Stevens, Baltimore and Twente; Roberto Verzicco, Roma
and Twente.

1 Introduction

Turbulent Rayleigh-Bénard convection has been the Drosophila of the physics
of fluids for many decades, starting with the famous analytical calculation of
© Springer International Publishing Switzerland 2016 3
A. Pelster and G. Wunner (eds.), Selforganization in Complex Systems:
The Past, Present, and Future of Synergetics, Understanding Complex Systems,
DOI: 10.1007/978-3-319-27635-9_1



4 S. Grossmann

the linear instability at the critical Rayleigh number Rac = 1708. The Rayleigh
number is defined as usual, Ra = gβpL

3Δ/(νκ); g is the gravitational acceler-
ation, βp the isobaric expansion coefficient, L the height of the sample, and Δ
the temperature difference between the hotter bottom and the colder top plates;
ν and κ denote the kinematic viscosity and the temperature diffusivity, consid-
ered as temperature independent under present experimental conditions. Over
the last decade experimental, theoretical, and numerical results have converged
up to a Rayleigh number Ra ∼ 1012. – One of the quite unexpected findings
is that even for such large Ra the boundary layers are still of Prandtl-Blasius,
i. e., of laminar type, although time dependent. – In 2001 we had predicted
that the transition to a turbulent boundary layer occurs around Ra = 1014 (for
gases), cf. [1]. Recently Ahlers et al. [2] indeed have experimentally found this
laminar-turbulent transition at this very high Ra. Here due to a sufficiently large
shear in the extremely thin boundary layers these eventually become turbulent,
leading to a much stronger increase of the heat transfer with increasing Ra as
in the laminar, the classical range below this turbulence onset. – In Grossmann
and Lohse [3] we have calculated an effective scaling law Nu ∼ Ra0.38 for this
ultimate regime by extending the unified scaling theory [4], [1], [5], [6], which
determines the scaling behavior of the heat current Nu as well as the thermal
wind amplitude Re as functions of the control parameters Rayleigh and Prandtl
number Ra and Pr. Here the Prandtl number characterizes the fluid, Pr = ν/κ,
Nu = Q/(κΔL−1) describes the non-dimensionalized heat current density Q,
and Re = UL/ν is the non-dimensionalized amplitude U of the convection (or
wind) in the Rayleigh-Bénard container.

2 The Ultimate State of Thermal Convection for Very
Large Rayleigh Numbers

Having explored strong thermal convection as described in the introduction we
now also look at the local flow properties such as the (vertical) temperature
profile. This turns out to show logarithmic dependence with distance z from the
heated bottom and the cooled top plates [7]. This so called law of the wall and its
properties as functions of the control parameters has been derived and analyzed
in [8].

As a previously not yet studied surprise we have noticed the log-law in the
classical regime below O(1014) too, cf. above reference [7], apparently meaning
that a turbulent bulk of thermal flow for Ra beyond the structure formation
regime as observed at lower Ra, can well coexist with still laminar boundary
layers. The notion laminar apparently has to be extended to time dependence
on the gross convective time scale [9].

In the talk some of these self-organized flow structures in strongly driven ther-
mal convection have been detailed together with some overview. The reader, who
is interested in the development which lead to all the recent insight, is referred
to reference [10]. A recent summarizing overview on the experimental details for
the high pressure convection facility, known as the Göttingen Uboot, is provided
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in [11]. The measurement of the wind amplitude U , non-dimensionalized as the
Reynolds number Re = UL/ν, the second important response of the Rayleigh-
Bénard heat flow experiment besides the heat current Nu, is described in [12].
As an overview on Rayleigh-Bénard flow reference [13] is recommended.

Some more details of the talk are: As in most, if not all, laboratory fluid
flows the boundary layers are of utmost importance also in thermal convection.
Although the flow – in particular also in the boundary layers – is time dependent
for not too small Rayleigh numbers Ra, we have learned meanwhile, cf. [9], the
surprising lecture that nevertheless the boundary layers have profile features of
laminar flow; laminar in the sense that they satisfy the Prandtl boundary layer
equations. Thus laminar does not mean time independent!

The validity of the Prandtl boundary layer equations quantitatively means
that the velocity (”kinetic”) boundary layer thickness δ scales with the wind
amplitude U or Re = UL/ν in the container as δ = a/

√
Re. The empirical

constant a in Rayleigh-Bénard flow in containers of width to height ratio (so
called aspect ratio) of order 1 has been found as a = 0.5. Since the wind along
the plates fluctuates locally and temporally in strength, so does δ fluctuate; but
experiment as well as theory have confirmed that on the respective local δ-scale
the profile is excellently of Prandtl-type.

The shear across the boundary layer can be quantified by a shear Reynolds
number Res = Uδ/ν. This then for laminar boundary layers is Res = a

√
Re.

Now, if this boundary layer shear exceeds a certain range of size, say an interval
around some Re∗s, the boundary layer becomes turbulent. Re∗s is not sharp, since
onset of turbulence in shear flow depends on the type of disturbances. Empirical
results for Re∗s for various macroscopic flows give values in the range of about 320
to 420, meaning that Re has to exceed a Re∗ = (Re∗s/a)

2 = 4.1×105−7.1×105.
The wind before transition according to [4] to [6] is Re = 0.346Ra4/9Pr−2/3.
Therefore the onset of turbulence in the boundary layers of thermal flow in
gases, having Pr = 0.84, is expected (and has been predicted cf. [1] !) in the
range Ra∗ = 3.7 × 1013 − 1.3 × 1014. This is well confirmed meanwhile by the
Ahlers et al. experiments.

To give some numbers: The Prandtl boundary layer thickness at turbulence
onset is (using above formulas) δ∗/L = 8 × 10−4 − 6 × 10−4, which in the
Göttingen high pressure convection facility, the Uboot device, of L = 2.24 m
height is δ∗ = 1.8 mm to 1.3 mm, very small indeed. Also after turbulence onset
there is a linear layer in the immediate vicinity of the plates, known as the
linear viscous sublayer, followed – after a transitional buffer range – by the log-
law profile, called the ”law of the wall”. The viscous sublayer width z∗ = ν/u∗ is
determined by the turbulent fluctuation amplitude u∗, defined (and measured)
by the kinematic shear stress or drag at the wall (plate).

u2
∗ = σxz(0) = pxz(0)/ρ = ν∂zUx(0) . (1)

The turbulent fluctuation amplitude u∗ is the key quantity for turbulent flows.
E. g., u2

∗/U
2 is the friction coefficient; u∗ also determines the turbulent transport

coefficients νturb = κ̄zu∗ and κturb = κ̄θzu∗ as well as the local turbulent dissi-
pation rate εu(z) = u3∗/(κ̄z). The empirical constant κ̄ is called the von Kármán
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constant, whose value in many flows is κ̄ = 0.4. – We have calculated u∗ in [3]
for a homogeneous plate to be the solution of the transcendental equation

u∗
U

=
κ̄

ln(Reu∗
U

1
b )

. (2)

Here Bu = κ̄−1ln(b−1) is called the profile constant of the log-law of the wall.
– Calculating from this equation the thickness of the linear sublayer we obtain
that z∗/L is of order 0.5 × 10−4 and thus an order of magnitude smaller than
the laminar Prandtl width δ. In particular in the high Ra Uboot device it is
z∗ ≈ 0.11mm.

The measured profile, see [7], i. e., the log-law of the wall, can be parametrized
in the form

〈T (z)〉 − Tm

Δ
= A · ln

( z

L

)
+B , (3)

with Tm the arithmetic mean temperature between the bottom and top plates.
This profile in vertical, z direction has been measured at about 10.1 cm off the
side wall. Direct numerical simulations allow to calculate the profile also for
all other wall distances but yet for smaller Ra, up to O(1013). In [8] we have
succeeded to evaluate the parameters A and B = ln2 · A and find

A = − κ

κ̄θ

Nu

u∗L
≈ − 1

2κ̄

u∗
U

≈ −0.038 . (4)

A depends on Ra very weakly only, A ∝ Ra−0.043, and it depends on the distance
r from the wall center, its magnitude |A| increasing with distance r. We explain
this by the decrease of the plate parallel velocity component U=̂Ux(r) with
distance r from center; this interpretation is quantitatively well consistent with
the experimental data.

All these theoretical results originate from a Reynolds stress plus mixing
length ansatz in the time averaged Boussinesq equation, as detailed in [8]. The
main issue is u′θ′ ≈ −κturb(z)∂zθ. Surprisingly enough the numerical values of
the characteristic parameters as κ̄ and Bu are rather near to those, which have
been determined for flows along plates, in channels, and through pipes.

As I have demonstrated, there is quite a lot of exciting and surprising new
insight into thermal convection at very large Rayleigh numbers Ra and its flow
organization, but still much more has to be explored.
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