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    Chapter 3   
 Induced Pluripotent Stem Cells 
in Regenerative Medicine                     

       Luna     Simona     Pane    ,     Ilaria     My    , and     Alessandra     Moretti    

    Abstract     The conversion of somatic cells into pluripotent cells is transforming the 
way diseases are studied and treated. Owing to their ability to differentiate into any 
cell type in the body and being patient-specifi c, induced pluripotent stem cells 
(iPSCs) hold great promise for disease modeling, drug discovery and regenerative 
medicine. Since their discovery in 2006, signifi cant efforts have been made to 
understand the reprogramming process and to generate human iPSCs with potential 
for clinical use. Additionally, the development of advanced genome-editing plat-
forms to increase homologous recombination effi ciency, namely DNA nucleases, is 
making the generation of gene-corrected patient-specifi c iPSCs an achievable goal, 
with potential future therapeutic applications. Here, we review recent developments 
in the generation, differentiation and genetic manipulation of human iPSCs and 
discuss their relevance to regenerative medicine and the challenges still remaining 
for clinical application.  

  Keywords     Induced pluripotent stem cells   •   Reprogramming   •   Retrovirus   • 
  Lentivirus   •   Transduction   •   Zero-footprint method   •   PiggyBac transposase   •   Cardiac 
differentiation   •   Targeting vector   •   Macula degeneration  

3.1       Introduction 

 The promise of using pluripotent stem cells (PSCs) for regenerative medicine dates 
back to 1998 when James Thomson (Thomson et al.  1998 ) fi rst derived human 
embryonic stem cells (hESCs) from the inner cell mass of developing embryos. 
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Not only do PSCs have the ability to self-renew indefi nitely, but in theory they can 
also differentiate into any cell type in the body, thus providing functional replace-
ment or trophic support to dysfunctional cells and diseased tissues. Ethical concerns 
surrounding the destruction of human embryos, which occurs in most hESC deriva-
tion methods, and safety issues created controversy in developing therapies from 
hESC lines for many years and stimulated researchers to fi nd alternative approaches 
to obtain hESC-like cells. In 2006 Kazutoshi Takahashi and Shinya Yamanaka made 
the seminal discovery that mouse skin fi broblasts can be reprogrammed to an ESC-
like state by simple overexpression of master stemness regulators (Takahashi and 
Yamanaka  2006 ). They named these cells “induced pluripotent stem cells” (iPSCs). 
One year later, these same investigators as well as groups headed by James Thomson 
and George Daley succeeded in converting human fi broblasts into human iPSCs 
(hiPSCs) (Takahashi et al.  2007 ; Yu et al.  2007 ; Park et al.  2008 ). Reprogramming 
to pluripotency has now been achieved starting with a variety of somatic cell types 
(Aasen et al.  2008 ; Hanna et al.  2008 ; Utikal et al.  2009 ; Carette et al.  2010 ; Miyoshi 
et al.  2010 ; Seki et al.  2010 ; Tsai et al.  2010 ; Kim et al.  2011a ) and generation of 
patient- and disease-specifi c hiPSCs is now possible, opening new avenues for 
exploring disease etiology, developing novel drugs, toxicology screening and cell 
replacement therapies. Overcoming the ethical diffi culties regarding the use of 
human embryos that are related with hESCs and being genetically matched to the 
donor, hiPSCs are increasingly used in modern medicine. Latest advances in genome 
editing of hiPSCs enable researchers to investigate the intricacies of the human 
genome in a dish and expand the possibilities of combining cell and gene therapies 
for treating congenital and degenerative disorders. 

 Here, we review recent developments for the generation of hiPSCs and empha-
size those attractive for obtaining translational-grade cells. Furthermore, we sum-
marize the latest advances in their differentiation and the challenges for obtaining 
functional and safe hiPSC derivatives for therapy, with specifi c focus on cardiac 
muscle cells. Finally, we give a brief overview on the latest available genome- 
editing platforms for generation of gene-corrected patient-specifi c hiPSCs and dis-
cuss their relevance for regenerative medicine purposes.  

3.2     Discovery of iPSCs 

 Pioneering work in cellular reprogramming had demonstrated that somatic cells can be 
reprogrammed by transferring their nuclear contents into oocytes (Wilmut et al.  1997 ) 
or by fusion with ESCs (Tada et al.  2001 ; Cowan et al.  2005 ), indicating that unfertil-
ized eggs and ESCs contain factors that can confer pluripotency to somatic cells. 

 In 2006, Yamanaka and Takahashi hypothesized that factors that play important 
roles in the maintenance of ESC identity also play pivotal roles in the induction of 
pluripotency in somatic cells. Using a retroviral system, they forced expression of a 
selected set of 24 candidate genes in mouse embryonic fi broblasts (MEFs) and were 
successful in establishing clones that possessed ESC-like morphologies, prolifera-
tion rates, expressed ESC markers and had demethylated the promoter of pluripo-
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tency genes (Takahashi and Yamanaka  2006 ). These cells were termed as induced 
pluripotent stem cells (iPSCs). Removing one factor at a time they further demon-
strated that a minimum set of only four factors namely, Klf4, cMyc, Oct4 and Sox2 
were necessary for reprogramming MEFs as well as tail-tip fi broblasts from adult 
mice into iPSCs. Later studies showed that the presence of cMyc is not an absolute 
reprogramming requirement but its absence signifi cantly reduces the effi ciency of 
the process (Nakagawa et al.  2008 ). 

 The successful reprogramming of human somatic cells to hiPSCs was reported 
within 1 year (Takahashi et al.  2007 ; Yu et al.  2007 ; Park et al.  2008 ). Takahashi and 
Yamanaka, as well as Daley’s group used KLF4, cMYC, OCT4 and SOX2, the same 
factors as in the mouse system, to convert human fi broblasts into hiPSCs (Takahashi 
et al.  2007 ; Park et al.  2008 ). Thomson’s group achieved the same results using 
LIN28, NANOG, OCT4 and SOX2 (Yu et al.  2007 ). 

 Since then the fi eld of cellular reprogramming has progressed at an unprece-
dented pace. An increasing number of studies constantly provide new insights into 
the molecular mechanism of the reprogramming process (Brambrink et al.  2008 ; 
Mikkelsen et al.  2008 ; Li et al.  2010 ; Samavarchi-Tehrani et al.  2010 ; Fussner et al. 
 2011 ). Moreover, specifi c advances have been made to facilitate the transition of 
this technology into the clinic, including the use of various cell types for reprogram-
ming (Aasen et al.  2008 ; Hanna et al.  2008 ; Utikal et al.  2009 ; Carette et al.  2010 ; 
Miyoshi et al.  2010 ; Seki et al.  2010 ; Tsai et al.  2010 ; Kim et al.  2011a ), and the 
replacement of individual factors by other regulators (Zhao et al.  2008 ; Feng et al. 
 2009 ; Heng et al.  2010 ; Nakagawa et al.  2010 ; Moon et al.  2011 ), small molecules 
(Huangfu et al.  2008 ; Shi et al.  2008 ; Ichida et al.  2009 ; Li et al.  2009 ; Zhu et al. 
 2010 ; Moon et al.  2011 ; Staerk et al.  2011 ) or a modifi ed culture condition (Marson 
et al.  2008 ). Furthermore, hiPSC lines have been derived from patients affected by 
various diseases (Moretti et al.  2010 ; Unternaehrer and Daley  2011 ; Zhu et al.  2011 ; 
Jung et al.  2012 ; Cherry and Daley  2013 ; Gramlich et al.  2015 ) and from species 
other than mice or humans, including rhesus monkey (Liu et al.  2008 ), marmoset 
(Tomioka et al.  2010 ), rat (Liao et al.  2009 ; Maherali and Hochedlinger  2009 ), pig 
(Esteban et al.  2009 ; Ezashi et al.  2009 ; Wu et al.  2009 ), dog (Shimada et al.  2010 ; 
Luo et al.  2011 ), sheep (Bao et al.  2011 ), horse (Nagy et al.  2011 ) and cow (Han 
et al.  2011 ). 

 The following section will focus on developed approaches for the generation of 
iPSCs from human origin.  

3.3     Generation of Human iPSCs: Developments 
Towards Translational-Grade hiPSCs 

  Cell Source for Reprogramming 
 Among the different issues to be considered when reprogramming human somatic 
cells into hiPSCs an important one is the choice of the starting material. In general, 
each actively dividing somatic cell type can be used for reprogramming (Haase 
et al.  2009 ). Takahashi and Yamanaka used fi broblasts as the starting somatic cell 
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type and to date, owing their easy culture conditions and effi cient transduction, 
dermal fi broblasts are still one of the most commonly used primary cell source. 
However, the relatively low reprogramming effi ciency (0.01–0.5 %) and especially 
the need of uncomfortable biopsies have stimulated the search for other, “easier 
accessible” cell sources. Effi cient reprogramming has been demonstrated for 
peripheral blood mononuclear cells (PBMCs) (Loh et al.  2009 ), exfoliated renal 
tubular epithelial cells obtained from urine (Zhou et al.  2011 ), and keratinocytes 
from plucked hair (Aasen et al.  2008 ). One advantage of PBMCs is that they can be 
obtained from routine blood tests or in patient follow- up and can be frozen and 
stored before reprogramming.  

 It has been acknowledged that reprogrammed iPSCs can retain specifi c DNA 
methylation profi les associated with their parental source cell type (Bar-Nur et al. 
 2011 ; Kim et al.  2011b ; Lister et al.  2011 ). Variations in these signatures also appear 
to account for intra-line variability among different clones originating from the 
same iPSC line (Kim et al.  2011b ; Lister et al.  2011 ). The long-term effect of epi-
genetic pattern retention, such as methylation profi les from the originating somatic 
cell type, is not yet fully understood. However, the somatic source cell type is known 
to affect differentiation effi ciency into specifi c iPSC derivatives and epigenetic 
memory is a key determinant of iPSC differentiation into lineages that are distinct 
from the parental one (Ohi et al.  2011 ; Sanchez-Freire et al.  2014 ). For example, 
cardiac progenitor cell-derived iPSC lines have shown an enhanced ability to dif-
ferentiate into cardiomyocytes compared to fi broblast-derived iPSC lines (Sanchez- 
Freire et al.  2014 ). Prolonged propagation of iPSCs through many passages reduces 
these effects, suggesting that residual epigenetic memory is attenuated in the course 
of long-term culture (Ohi et al.  2011 ; Sanchez-Freire et al.  2014 ). This issue, clearly 
important for therapeutic applications, will require further study in order to deter-
mine to what extent the ultimate transplantable cell type should infl uence the source 
of patient-specifi c cells for reprogramming. As this remains unclear, the choice of 
the starting tissue material should be based, fi rst, on the most accessible and least 
invasive, and then, depending on the future use of the hiPSCs, an epigenetically 
related cell source should be considered if available. 

  Reprogramming Methodologies 
 The common aim of all reprogramming methods is the forced expression of the 
reprogramming factors. As mentioned above, hiPSCs were initially derived from 
fi broblasts by retrovirus- and lentivirus-mediated transduction of genes encoding 
transcriptional regulators of stem cells: OCT4, SOX2, LIN28, and NANOG (OSLN) 
(Yu et al.  2007 ) or OCT4, SOX2, KLF4, and c-MYC (OSKM) (Takahashi et al. 
 2007 ; Park et al.  2008 ). However, viral delivery of transgenes results in the integra-
tion of vector sequences into the genome, which is a source of potential insertion 
mutagenesis, residual expressions, and reactivation of transgenes during differentia-
tion. Therefore, cells generated by permanent and random integration of exogenous 
genes have a certain oncogenic potential and are not suitable for therapeutic 
applications.  
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 Safer non-integrating reprogramming methods have since been developed using 
minimal footprint systems, such as excisable viruses (Chang et al.  2009 ; Soldner 
et al.  2009 ; Somers et al.  2010 ), and zero footprint technologies, including adenovi-
rus (Stadtfeld et al.  2008 ), Sendai virus (Fusaki et al.  2009 ), plasmids (Okita et al. 
 2008 ; Gonzalez et al.  2009 ; Si-Tayeb et al.  2010 ), episomal or minicircle vectors 
(Yu et al.  2009 ; Jia et al.  2010 ), piggyBac transposons (Kaji et al.  2009 ; Woltjen 
et al.  2009 ; Yusa et al.  2009 ), microRNA mimics (Miyoshi et al.  2011 ), synthetic 
mRNAs (Warren et al.  2010 ), and proteins (Zhou et al.  2009 ) (Fig.  3.1 ).

   Minimal footprint approaches mostly use lentiviruses containing loxP sites in the 
5′ and 3′ LTR of the viral vectors. The presence of loxP sites provides a substrate to 
remove most of the transgene sequences by Cre-mediated recombination. However, 
one loxP site fl anked by small portions of the 5′ and 3′ LTRs remains in the iPSC 

  Fig. 3.1     Generation of human iPSCs . Different starting cell types are available for the genera-
tion of human induced pluripotent stem cells (hiPSCs). Fibroblasts were the fi rst and still the most 
commonly used cell source. Amongst others, three easily accessible starting cell type are blood 
cells (T lymphocytes), exfoliated renal tubular epithelial cells obtained from urine, and keratino-
cytes from plucked hair. The reprogramming can be obtained through the expression of several 
combinations of pluripotency regulators (OCT4, SOX2, NANOG, LIN28, cMYC AND KLF4) 
and different methods are available to induce their expression. They can be divided into two major 
groups: integrating methods, which consist of retrovirus or lentivirus delivery of transgenes that 
randomly integrate into the genome, and non-integrating methods that enable the generation of 
hiPSCs without any permanent genetic modifi cation       
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genome following Cre-mediated excision (Soldner et al.  2009 ; Somers et al.  2010 ). 
Thus, the continued presence of exogenous transgene sequences (no matter how 
minimal) could be a concern if differentiated cells derived from these hiPSCs are to 
be transplanted into a patient. 

 Zero-footprint methods include adenoviruses, which are non-integrating viruses 
that infect both replicating and non-replicating cells. Human iPSCs created  via  ade-
novirus showed no signs of transgene integration (Zhou and Freed  2009 ), which is 
a favorable result for translational applications. However, adenovirus-based repro-
gramming has low effi ciency. More suitable are Sendai viruses, which are negative 
sense, single-stranded RNA viruses that produce large amounts of protein without 
entering the nucleus of the infected cells, thus being completely lost after several 
cell passages. Generation of translational-grade hiPSCs from multiple somatic cell 
types, including PBMCs (Seki et al.  2010 ; Orban et al.  2015 ), has been successfully 
and effi ciently achieved with this method (Fusaki et al.  2009 ; Ban et al.  2011 ; Seki 
et al.  2012 ). 

 Another way to generate zero-footprint hiPSCs is the overexpression of the 
reprogramming factors by episomal plasmids. Yu et al. ( 2009 ) developed an oriP/
EBNA (Epstein–Barr nuclear antigen)-based plasmid that allows their expression 
for a long enough period of time suffi cient to initiate the reprogramming process. 
The plasmid will be lost from proliferating cells if drug selection is removed, there-
fore leaving no footprint. Further modifi cations of the episomal plasmid reprogram-
ming method (Chen et al.  2011 ; Okita et al.  2011 ) have made this approach also 
very attractive for generation of iPSCs that could be used in translational studies. 
Episomal vectors are particularly appealing because they are easy to manipulate, 
allow a relatively high effi ciency of reprogramming, and have been proven to work 
for many somatic cell types, including blood cells (Chou et al.  2011 ). 

 Additional DNA-based zero-footprint systems that have been tested for cellular 
reprogramming are minicircle vectors and piggyBac transposons. Minicircle vec-
tors are circularized constructs in which the plasmid backbone has been released 
leaving only the eukaryotic promoter and cDNA(s) that are to be expressed. A 
minicircle vector was produced with LIN28, NANOG, SOX2, and OCT4 and used 
to reprogram human adipose stem cells (Jia et al.  2010 ; Narsinh et al.  2011 ). 
However, more validation is required since this method worked at lower effi ciency 
for neonatal fi broblasts and no data of successful reprogramming exist for any other 
cell types. On the hand, hiPSCs have been generated at a reasonable reprogramming 
effi ciency using a piggyBac transposon (Mali et al.  2010 ), which is a mobile genetic 
element that in the presence of the piggyBac transposase can be integrated into 
chromosomal TTAA sites. Re-expression of the transposase after the transposon has 
been stably integrated results in its excision with no sequence vestiges at the inte-
grated site. Limitations of this system that hamper any clinical translation are the 
additional step required for excision of the transposon plus the dearth of information 
on successful excision in hiPSCs (Mali et al.  2010 ). 

 More recently, new zero-footprint tools, which are virus- and DNA-free, have 
emerged. Direct expression of reprogramming factors as proteins has been used to 
successfully generate hiPSCs (Kim et al.  2009 ; Zhou et al.  2009 ). However, this 
method is limited by the lengthy timeline, low effi ciency, and special technical 
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skills required for the synthesis of bioactive reprogramming proteins. Synthetic 
modifi ed mRNAs have also been explored (Warren et al.  2010 ). In mRNA repro-
gramming, cells are transfected with  in vitro -transcribed mRNAs encoding for the 
reprogramming factors. Several chemical measures are employed to limit activation 
of the innate immune system by foreign nucleic acids and, due to the very short 
half-life of mRNAs, daily transfections are required to induce hiPSCs. Also miR-
NAs have been proven useful for generation of hiPSCs without genome-integrating 
DNA elements (Miyoshi et al.  2011 ). It is worth noting that since miRNA-mediated 
reprogramming are mostly dependent on endogenous pathways and, hence, main-
tain a smooth epigenetic modifi cation, it shows certain advantages in producing 
better, safer hiPSCs, but more studies are needed to tackle this issue. Finally, a 
recent report by Hou et al. ( 2013 ) described a gene-free, small molecule–based 
method for generation of mouse iPSCs, demonstrating that the fi eld of pluripotency 
induction continues to evolve at a rapid pace. 

 It is worth mentioning that, based on a recent systematic evaluation of the three 
so far most widely used techniques for generating integration-free hiPSCs (Sendai 
viruses, episomal plasmids, and synthetic modifi ed mRNAs) (Schlaeger et al.  2015 ), 
signifi cant differences exist in aneuploidy rates, reprogramming effi ciency, reliabil-
ity and workload, but all methods generate high-quality hiPSCs. Thus the choice of 
the reprogramming method should depend on each laboratory’s particular 
requirements. 

 Genomic stability is critical for clinical applications of hiPSCs. There are evi-
dences that hiPSCs may harbor epigenetic and transcriptional abnormalities (Kim 
et al.  2010 ; Polo et al.  2010 ; Stadtfeld et al.  2010 ; Bar-Nur et al.  2011 ; Kim et al. 
 2011b ) as well as genomic aberrations that are either pre-existing or generated dur-
ing reprogramming (Mayshar et al.  2010 ; Gore et al.  2011 ; Laurent et al.  2011 ; 
Lister et al.  2011 ; Pera  2011 ), raising signifi cant concerns about their safety for 
potential clinical applications. However, most of the hiPSCs described in these stud-
ies have genomic abnormalities generated from integrating reprogramming meth-
ods. A recent comparative work demonstrated, using high resolution HD genotyping, 
that hiPSC lines obtained by non-integrating approaches have lower incidences of 
genomic aberrations (Kang et al.  2015 ). The use of high-resolution methods to 
monitor genomic aberrations in hiPSCs intended for clinical applications will be 
necessary. Moreover, the focus of current technology development efforts should be 
the identifi cation of novel pathways that can be manipulated to augment the effi -
ciency and completeness of reprogramming (Jiang et al.  2013 ), possibly leading to 
improved methodologies for safe clinical translation.  

3.4     iPSC Differentiation and Challenges for Translational- 
Grade Derivatives: Cardiomyocytes as an Example 

 Owing their potential of differentiating into virtually all cell types found in the 
human  body   (neurons, cardiac muscle cells, hepatocytes, chondrocytes, retinal pig-
ment epithelial cells, and many others), hiPSCs serve as an unlimited source of 
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human cells for both biomedical research and regenerative medicine purposes. 
There are a number of ways in which the fate of hiPSCs can be directed towards 
specifi c cell lineages and the methodologies are being continuously optimized to 
improve differentiation effi ciency and scalability and enable clinical applications. 
Depending on the tissue of interest, various differentiation approaches have been 
explored, ranging from two-dimensional (2D) monolayer cultures with specifi c 
growth factors/cytokines and signaling inhibitors, co-culture with supporting cells, 
up to three-dimensional (3D) differentiation systems. In some cases, when organ 
development and differentiation pathways are well characterized, it is also feasible 
to isolate precursor cells at intermediate stages and then direct them further to ter-
minal differentiation (Cao et al.  2013 ; Reinhardt et al.  2013a ). More recently, 
through the development of 3D culture systems, structures exhibiting multiple cell 
types that self-organize to form an organ-like tissue, termed “ organoids  ”, have been 
generated from hPSCs (Lancaster and Knoblich  2014 ; Huch and Koo  2015 ). To 
date, derivation methods specifi c for obtaining intestinal (Spence et al.  2011 ), kid-
ney (Humphreys  2014 ), brain (Lancaster et al.  2013 ), and retinal (Nakano et al. 
 2012 ) organoids, as well as liver organoid-like tissues called liver buds (Takebe 
et al.  2013 ) have been established, making the therapeutic promise of organoids an 
area of greatest potential for personalized regenerative medicine. 

 It is important to keep in mind that the differentiation process of PSCs is consid-
ered to mimic developmental processes. Therefore, most of the differentiated cells 
from hPSCs tend to be a refl ection of the early stage of development (i.e., embry-
onic or infant stage). Such immature cells signifi cantly differ from adult cells. 
Establishment of  mature phenotypes   is an important challenge for obtaining func-
tional cells for cell therapy. Likewise, the purity and cell number are critical issues 
for any translational application. Below, we discuss these aspects in details for the 
differentiation of hiPSCs towards the cardiac lineage. 

  Cardiac Differentiation of hiPSCs 
 Historically, the most common method by which cardiomyocytes have been derived 
from PSCs has involved the formation of three-dimensional aggregates, so-called 
 embryoid bodies   (EBs)    (Mummery et al.  2003 ) (Fig.  3.2 ). Spontaneous EB differ-
entiation relies on a combination of physical and chemical cues to modulate cell 
signaling pathways and directs PSCs toward various cell types, with 5–70 % of EBs 
contain beating cardiomyocytes (Kawamura et al.  2012 ). High variability between 
experiments, low cardiomyocyte yield (often, 1 %) and immature cardiomyocyte 
phenotype (Lafl amme et al.  2007 ; Kawamura et al.  2012 ) have stimulated research-
ers to explore alternative methods (Moretti et al.  2013 ). Coculture systems with 
END-2 stromal cells (Mummery et al.  2003 ), cardiac fi broblasts (Ou et al.  2011 ) or 
human umbilical-vein endothelial cells (Stevens et al.  2009 ) have been tested in 
order to mimic microenvironmental factors that are potentially important for car-
diac differentiation (Fig.  3.2 ). In the last decade, knowledge from  in vivo  develop-
mental studies (Garry and Olson  2006 ; Evans et al.  2010 ; Noseda et al.  2011 ) has 
guided the establishment of novel 2D and 3D cardiomyocyte differentiation 
approaches that rely on specifi c temporal and  dose   dependent modulation of key 
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pathways involved in cardiogenesis, such as activin/nodal/transforming growth 
factor-β, Wnt, and bone morphogenetic protein (Kehat et al.  2001 ; Mummery et al. 
 2007 ; Paige et al.  2010 ; Burridge et al.  2012 ; Zhang et al.  2012 ) (Fig.  3.2 ). Most 
recently, specifi c small molecules have been employed to replace growth factors as 
modulators of these signaling pathways (Lian et al.  2012 ; Burridge et al.  2014 ). 
Using distinct growth factors and small molecules to specifi cally direct hPSCs 
towards the cardiac lineages has allowed to achieve more effi cient cardiomyocyte 
differentiation, with yields as high as 85–95 %, and, thanks to the fully defi ned 
culture conditions, more reproducible results (Lafl amme et al.  2007 ; Lian et al. 
 2012 ,  2013 ; Cao et al.  2013 ; Burridge et al.  2014 ). Although different hiPSC lines 
can respond differently to developmental signals because of the intrinsic differences 
in their genetic background, directed differentiation protocols have been success-
fully applied to various hiPSCs derived from distinct sources of somatic cells and 
 reprogramming   methods (Passier et al.  2005 ; Paige et al.  2010 ; Lian et al.  2012 ; Xu 
et al.  2012 ; Okano et al.  2013 ).

    Yet despite the advances in differentiation  effi ciency  , major challenges still 
remain for safe clinical translation of hiPSC-derived cardiomyocytes. One impor-
tant issue is their purity and risk of teratomas arising from residual undifferentiated 
hiPSCs. Several non-genetic methods has been reported to improve cardiomyocyte 
purity after directed hiPSC differentiation, including cell-surface markers 
(Mummery et al.  2003 ; Graichen et al.  2008 ), mitochondria-specifi c dyes (Kawamura 

  Fig. 3.2     Differentiation of human iPSCs into the cardiac lineage . Methods for differentiation 
of human iPSCs into cardiomyocytes are based on a combination of physical and chemical cues 
able to induce temporal and dose dependent modulation of specifi c signaling pathways with piv-
otal roles during cardiovascular development (Activin, WNT, transforming growth factor β (TGF- 
β) and bone morphogenic protein (BMP)). The current differentiation protocols can be divided into 
three main categories: three-dimensional (3D) systems, which mainly include embryoid bodies 
and the more recently developed 3D systems (Microtissues, engineered heart muscle and cardiac 
microchambers); two-dimensional (2D) systems, which include several monolayer directed dif-
ferentiation protocols; and co-culture systems with cells able to promote cardiogenesis (e.g. 
END-2 stromal cells, cardiac fi broblasts or human umbilical-vein endothelial cells (HUVEC))       
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et al.  2012 ), fl uorescent probes (Lafl amme et al.  2007 ), and  g  lucose deprivation 
(Burridge et al.  2014 ). 

 Another fundamental concern regarding iPSC cardiac differentiation is the vary-
ing degree of heterogeneity achieved in the generated cardiomyocyte population. 
Current  hiPSC   differentiation strategies yield a heterogeneous mixture of atrial-like 
and ventricular-like lineages, as well as pacemaker-like lineages such as atrioven-
tricular node-like, sinoatrial node-like, and Purkinje fi ber-like cells (Burridge et al. 
 2012 ). A deeper understanding of directed lineage differentiation, followed by its 
modulation, would facilitate subtype-specifi c cardiac differentiation. In this respect, 
recent reports suggest that hiPSCs could be directed either to atrial- or to ventricular- 
like cardiomyocytes by modulating the retinoic acid (Cao et al.  2013 ; Lian et al. 
 2013 ; Devalla et al.  2015 ) and Wnt signaling pathways (Kim et al.  2013 ). 
Additionally, direct manipulations at the epigenetic level or by achieving mRNA- 
based delivery of lineage-specifi c factors have also been tested (Ong et al.  2015 ). 

 The most immediate need for potential translational applications of  hiPSC  - 
derived cardiomyocytes, however, is to achieve defi ned culture conditions and stan-
dardized protocols that address the issue of cellular maturation. These cells begin 
contracting in the fi rst 2 weeks of differentiation (Burridge et al.  2014 ), but have a 
relative immature phenotype more similar to fetal than to adult cardiomyocytes 
(Robertson et al.  2013 ). For instance, at the structural level, hPSC-derived cardio-
myocytes have a smaller length-to-width aspect ratio (3:1 compared to 15:1), are 
mononuclear, have fewer mitochondria, and have poor sarcomere organization 
(Lundy et al.  2013 ). Also their global gene expression profi le is closer to embryonic 
than adult cardiomyocytes (Gupta et al.  2010 ). Finally, from the functional point of 
view, they show underdeveloped Ca 2+  handling, low Ca 2+  buffering capacity in the 
sarcoplasmic reticulum, slow beat rates (∼40 BPM), immature action potential 
characteristics, abnormal levels of ionic currents, and negative force–frequency 
relationships (Lundy et al.  2013 ). Attempts to bypass this limitation have demon-
strated that long-term culture enhances the appearance of more mature sarcomeric 
structural organization and change in global gene expression profi le (Otsuji et al. 
 2010 ; Lundy et al.  2013 ). In addition, external cues such as electrical stimulation 
and mechanical cyclic stretching have been reported to aid in obtaining functionally 
mature  hiPSC  - derived cardiomyocytes (Lieu et al.  2013 ; Hirt et al.  2014a ). 
Improvements in maturation were also achieved via genetic overexpression of dis-
tinct factors (Fu et al.  2011 ; Bett et al.  2013 ; Lieu et al.  2013 ) and novel 3D culture 
methods (Nunes et al.  2013 ; Rao et al.  2013 ). Moreover,  3D differentiation   systems 
have also been scaled up to generate three-dimensional microtissues (3D-MTs) 
(Emmert et al.  2013 ; Thavandiran et al.  2013 ), engineered heart muscle (EHM) 
(Kensah et al.  2013 ; Hirt et al.  2014a ), and more recently cardiac microchambers 
(Ma et al.  2015 ). Since low retention rate of transplanted single-cell suspensions 
remains a major issue for clinical translation, the concept of scaffold-free cellular 
self-assembly into 3D-MTs or EHMs prior to transplantation may be also benefi cial 
to enhance cellular engraftment and survival. These approaches are currently sub-
jects of intense research (Hirt et al.  2014b ).  
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3.5     Genetic Engineering of iPSCs and Personalized Medicine 

 With the advent of hPSCs, it has become clear that effi cient and precise genome 
editing is crucial for realizing their full potential in research and therapy. 

 In particular for hiPSCs,  genetic correction   of the disease-associated mutation(s) 
in patient-specifi c lines serves several purposes (Fig.  3.3 ). First, it will generate 
isogenic cells that share a common genotype with the exception of the disease- 
causing mutation, thereby eliminating confounding effects from genetic heteroge-
neity. These disease-corrected hiPSCs are the perfect control for any comparative 
analyses of disease phenotype and allow generation of accurate, reliable, and less 
expensive  in vitro  human models for understanding diseases and studying genotype/
phenotype relationships. Second, genomic modifi cation to directly correct disease- 
specifi c point mutations  in vitro  is also valuable for exploring drug development and 
performing toxicology tests in patient-specifi c cells. A large majority of identifi ed 
candidate drugs fail to reach the market because of safety concerns (about one third 

  Fig. 3.3     Genetic engineering of hiPSCs and applications in personalized medicine . Patient- 
specifi c iPSCs and isogenic control iPSC lines generated through genome editing approaches can 
be differentiated toward a specifi c cell type of interest. Patient-specifi c and corrected iPSC deriva-
tives can then be used for disease modeling studies, tissue engineering approaches, and high- 
throughput drug/toxicity screenings, thus facilitating personalized therapy and ultimately 
autologous cell transplantation for regenerative purposes       
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of pharmaceuticals are withdrawn due to cardiotoxicity (Guo et al.  2011 ) and effi -
cacy issues). Human iPSC-derived cardiomyocytes are currently being utilized as a 
system to evaluate novel and existing medications and to test patient-specifi c drug 
responses (Liang et al.  2013 ; Sinnecker et al.  2013 ; Wang et al.  2014 ). Finally, 
genome editing may accelerate the future clinical application of integration-free 
cell-based gene therapy, including the autologous transplantation of patient- specifi c, 
genome-corrected hiPSC-derived target cells. Of note, genetic correction directly in 
hiPSCs is however not always achievable, because some genetic diseases imply a 
reprogramming barrier (e.g. Fanconi anemia (Raya et al.  2009 )). In those cases, the 
cells of origin could be corrected before generating patient-specifi c hiPSCs.

3.5.1       Genetic Manipulation of hiPSCs and Gene Correction 
Approaches 

 Owing to the fragile nature of hPSCs when dissociated into single cells and their 
low transfection frequency, gene targeting in hPSCs present a bigger challenge than 
in the mouse counterparts. An important contribution to improving the handling of 
hPSCs was made by Yoshiki Sasai’s team whit the discovery of a selective inhibitor 
of  Rho-associated kinase   (ROCKi) Y-27632 (Watanabe et al.  2007 ). The inhibitor 
signifi cantly suppressed the apoptosis of hPSCs when dissociated, enabling cells to 
be electroporated and subcloned more easily. 

 At present, various strategies have been tested and proven for genetic manipula-
tion of patient-specifi c hiPSCs (Hotta and Yamanaka  2015 ). Below, we focus 
exclusively on the approaches that have been used for site-specifi c genome modi-
fi cation  via  homologous recombination (HR) and emphasize their advantages and 
limitations. 

  Targeting Vector Approach 
 Initial triumphs in gene targeting of hPSCs were achieved by using a  targeting vec-
tor  , which employs long (5–10 kb) and short (1–4 kb) homology arms on both sides 
(Zwaka and Thomson  2003 ). Owing to the low frequency of targeting events in 
general, the classical targeting vector also contained a drug-selection cassette, such 
as a neomycin resistance gene derived from a ubiquitous PGK gene promoter, for 
positive selection. Flanking of the selection cassette by two loxP sequences allowed, 
after successful targeting, its excision by a Cre recombinase. Using this targeting 
strategy, only few disease-causing mutations have been corrected in patient-specifi c 
hiPSCs (Yusa et al.  2011 ; Bellin et al.  2013 ), merely due to the inherently low HR 
effi ciencies. In fact, the propensity of a genomic region to undergo HR is dependent 
on the local chromatin structure and the generation of a double strand break (DSB) 
at the specifi c target site (Carroll  2011b ), as well as on transit through the S–G2 
phase of the cell cycle (Delacote and Lopez  2008 ). Thus, the nonhomologous end- 
joining pathway (NHEJ), which is several orders of magnitude more effi cient than 
HR, is responsible for random integration of targeting vectors. Improved HR 
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effi ciency in hPSCs has been achieved by using viral vector-mediated targeting 
approaches (adeno and adeno-associated viruses) (Mitsui et al.  2009 ; Khan et al. 
 2010 ), which have the advantage of high transduction effi ciency, and bacterial arti-
fi cial chromosome-based strategy (Song et al.  2010 ), which allows increasing the 
length of homology between targeting vectors and endogenous loci.  

  Engineered  DNA Nucleases   
  Another strategy to enhance the effi ciency of gene targeting is to introduce site spe-
cifi c DSBs to target loci.  DSBs   are highly recombinogenic and can stimulate HR in 
hPSCs by three orders of magnitude (Zou et al.  2009 ). Cells are obligated to repair 
the introduced DSBs either by NHEJ, generating small deletions or insertions, or by 
the homology-directed repair pathway when a homologous donor template is pro-
vided. The endonucleases employed must then recognize DNA sequences that occur 
uniquely at target loci and have minimal off-target activity. Several endonucleases 
have been engineered to meet these requirements. Currently, the most used for site- 
specifi c gene targeting in hPSCs are: zinc fi nger nucleases (ZFNs), transcription 
activator-like (TAL) effector nucleases (TALENs), and more recently the clustered 
regulatory inter-spaced short palindromic repeats (CRISPRs)/Cas9 nucleases (Li 
et al.  2014 ). Importantly, owing to the high HR effi ciency of genome editing 
achieved by such nucleases, the HR donor template can be supplied as a single- 
strand oligonucleotide (ssODN) as short as 80–150 bases, thus facilitating gene 
correction applications in hiPSCs (Soldner et al.  2011 ; Ding et al.  2013a ,  b ).  

  ZFNs   are hybrid nucleases that rely on a series of linked zinc fi nger motifs to 
recognize specifi c DNA sequences and the DNA-cleavage domain FokI restriction 
enzyme to sever DNA. Because FokI nuclease activity depends on dimerization, the 
ZFN system works as pairs of two monomers of ZFN in reverse orientation that can 
be designed to bind to a genomic sequence 18–36 nucleotides in length (Porteus and 
Carroll  2005 ; Carroll  2011a ). Successful ZNF-mediated gene correction in hiPSCs 
was achieved for several disease-causing mutations (Sebastiano et al.  2011 ; 
Reinhardt et al.  2013b ). However, due to the complexity of the required engineering 
steps, ZFNs have been largely supplanted by TALENs and more recently by the 
CRISPRs/Cas9 nuclease system. 

   TALENs   have a similar structure to ZFNs, but the DNA-binding domain comes 
from TAL effector proteins and is a tandem array of amino acid repeats. Each of 
these units is able to bind to one of the four possible nucleotides. TALENs also 
cleave as dimers (Li et al.  2011 ) and display not only the unique advantage of easy 
modular assembly but also enhanced specifi city as well as reduced off-target action 
compared to ZFNs (Li et al.  2011 ; Pattanayak et al.  2014 ). As demonstrated in a 
recent study, TALENs have greatly simplifi ed genome editing in hiPSCs for gener-
ating disease models (Ding et al.  2013a ). However, despite the initial enthusiasm, 
TALEN technology has several limitations for future clinical applications of gene- 
edited hiPSCs. TALEN target-site selection is restricted by the requirement of a 
preceding T base (Boch et al.  2009 ). Although this should not prohibit successful 
design of TALENs in most cases, it may be an issue when modifying a specifi c 
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mutation for future cell-based gene therapy. The reported sensitivity of TALENs to 
5-methylcytosine could be a more serious drawback of the TALEN technology 
because of the prevalence of this DNA modifi cation in the genome, though this 
problem may be overcome by engineering 5-methylcytosine- insensitive TALEN 
DNA-binding domains (Valton et al.  2012 ).  

  CRISPRs/Cas9   are RNA-guided engineered nucleases that have been developed 
from microbial adaptive immune systems named as clustered regularly interspaced 
short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems (Ishino 
et al.  1987 ; Jansen et al.  2002 ). The system utilizes a protein component Cas9 
(CRISPR-associated 9) and two small RNAs, crRNA (CRISPR RNA) and tracrRNA 
(trans crRNA), to mediate target sequence-specifi c cleavage of double-stranded 
DNA. To simplify expression in mammalian cells, crRNA and tracrRNA have been 
fused into one sgRNA (single guide RNA) by a tetranucleotide loop to generate a 
DSB at a target site. Remarkably, the RNA component of the CRISPR system deter-
mines the target sequence based on the Watson-Crick base pairing. Therefore, the 
design and construction of a target-specifi c sgRNA is versatile and straightforward 
and, because of the small size of the sgRNA (20 nucleotides), it is also possible to 
deliver multiple sgRNAs at the same time to achieve multiplex targeting (Cong 
et al.  2013 ; Mali et al.  2013 ). This makes CRISPRs/Cas9 system as the most acces-
sible means to facilitate and optimize genetic engineering so far (Hsu et al.  2014 ) 
and since 2013, several groups have already demonstrated its usefulness for genome 
editing in hiPSCs (Ding et al.  2013b ; Mali et al.  2013 ; Flynn et al.  2015 ; Song et al. 
 2015a ). Despite its versatility, also the CRISPR/CAS9 system has several restraints. 
First, the targetable sites of Cas9 are constrained by the requirement of a GN 20 GG 
sequence motif (Jinek et al.  2012 ), which may cause a problem when targeting cer-
tain loci. Second, up to six mismatches between crRNA and target DNA are toler-
ated by Cas9, which may result in off-target cleavage (Jinek et al.  2012 ). Indeed, a 
recent study showed that CRISPR/CAS9 nucleases induce mutations at off-target 
sites with up to fi ve mismatches (Fu et al.  2013 ). More importantly, frequencies of 
off-target mutations are equal to or higher than those of on-target mutations (Fu 
et al.  2013 ). Cas9 mutants with a more stringent requirement of crRNA-target DNA 
complementation may be engineered. For instance, Cas9 has been converted into a 
nickase, which reduces mutagenesis at off-target sites (Cong et al.  2013 ). 

 Thanks to the rapid development of engineered DNA nucleases, genome editing 
in hiPSCs has evolved from being a daunting task a few years ago to a routine pro-
cedure in most laboratories. However, the use of genome editing in the clinic 
requires very high levels of inspection to ensure safety. A systemic examination of 
 off-target mutagenesis   by whole-genome (Kiskinis et al.  2014 ; Smith et al.  2014 ; 
Suzuki et al.  2014 ; Veres et al.  2014 ; Yang et al.  2014 ) or exome sequencing (Yusa 
et al.  2011 ; Li et al.  2015 ) needs to be performed before any clinical translation of 
genome editing technologies and patient-specifi c, genome-corrected hiPSC deriva-
tives will be possible.    
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3.6     Clinical Applications of hiPSCs in Regenerative 
Medicine: Where Do We Stand? 

  Regenerative medicine aims to replace and/or regenerate damaged cells, organs, or 
tissues in order to restore normal function. Cell therapy is an important regenerative 
medicine approach. The inherent pluripotency of hiPSCs, along with their genetic 
identity to specifi c patients, raises the possibility of autologous transplantation to 
treat patients suffering from a myriad of disorders characterized by loss of a key 
cellular function, such as cardiomyocytes in myocardial infarct, dopaminergic neu-
rons in Parkinson’s disease, beta cells in type 1 diabetes, or hematopoietic stem cells 
in aplastic anemias. In the case of monogenic diseases, in which all the cells from 
the body initially carry the disease-causing mutation in their genomic DNA, a gene 
correction approach can be considered to generate disease-free autologous cells, as 
discussed in the previous paragraph. 

 However, compared to other cell-based therapies, the Investigational New Drug 
(IND) review process for hPSCs involves a higher level of scrutiny owing to their 
potential to form tumors and ectopic tissue. The lack of data on the potential untoward 
effects of hPSC-derived therapies in humans means that parameters surrounding effi -
cacy, biodistribution, persistence, toxicity, presence of residual pluripotent cell con-
taminants and tumorigenicity potential all need to be thoroughly addressed before 
these therapies receive IND approval (Bailey  2012 ). Preclinical animal models need 
to be carefully designed to address these issues in a manner that satisfi es the regula-
tory agencies (Frey-Vasconcells et al.  2012 ). Furthermore, the starting hPSC line itself 
needs to undergo extensive characterization for assurances of safety, such as analyses 
of genetic stability, virus and pathogen testing, derivation methods in the spirit of good 
manufacturing practices (GMPs), maintenance of the line under GMP conditions, and 
donor screening and eligibility (Carpenter et al.  2009 ). For hiPSCs, the reprogram-
ming strategy is an additional consideration and those  methods that do not involve 
integration of transgenes into the genome are defi nitely safer. Another major consid-
eration for hPSC-based therapies is the route of administration. For the time being, 
therapies that are injected locally or contained within a device that limits their migra-
tion may have an easier time achieving IND status than those that are systemically 
injected, as these approaches help to limit the area in which potential adverse effects 
may occur. That being said, since 2010 several clinical trails using hPSC-based ther-
apy have been initiated in various countries, as overviewed below. 

3.6.1     Clinical Trials Involving hiPSCs 

 The current wave of  clinical trials   testing hPSC-based therapy predominantly 
focuses on hESC-derived cells (Fig.  3.4 ), including retinal pigment epithelium (for 
macula degeneration and related diseases) (Schwartz et al.  2012 ,  2015 ; Song et al. 
 2015b ), pancreatic endoderm derivatives (for type 1 diabetes) (Schulz et al.  2012 ; 
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Pagliuca et al.  2014 ), oligodendrocytes (for spinal cord injury) as well as cardiac 
progenitors (for severe heart failure) (Menasche et al.  2015 ). Yet, only one trial 
using autologous patient-specifi c hiPSC derivatives exists, which aims at curing the 
wet form of age-related macular degeneration using retinal pigment epithelium cells 
transplanted as sheets (Kamao et al.  2014 ) (Fig.  3.4 ). It started in September 2014 
with the treatment of the fi rst patient at the Riken Institute in Japan (Reardon and 
Cyranoski  2014 ), but was recently put on hold because hiPSCs from a second 
patient were found to carry genetic mutations.

   Considering that hESCs took almost 12 years from the fi rst establishment to the 
fi rst transplantation into a spinal cord injury patient in October 2010, the transition 
of patient-specifi c hiPSCs from bench to bedside was relatively quick and, as time 
goes on, the number of hiPSC-based clinical trials will probably increase.    

3.7     Concluding Remarks 

 Though hiPSC technology is not even a decade old, it has signifi cantly revolution-
ized the world of stem cells, disease modeling, drug testing and regenerative medi-
cine. The advent of improved reprogramming methods that do not involve integration 
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of transgenes into the genome and the rapid development of large-scale culture 
systems and effi cient differentiation protocols as well as of advanced genome- 
editing technologies has begun to overcome the shortcomings of using hiPSCs in 
regenerative medicine. 

 The year 2014 marked the arrival of patient-specifi c hiPSCs onto the clinical 
stage, and this is just the beginning. Further efforts are needed to tap the full poten-
tial of hiPSC-mediated cell therapy to benefi t human health. In addition, 
 incorporating newly emerging genome-editing technologies might trigger a new era 
of gene therapy using hiPSCs.     
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