Chapter 5
Other Applications in General Integer
Programming

In this chapter, we briefly review an alternative application of dual-feasible functions
in general integer programming. We explore these functions in particular to derive
valid inequalities for integer programs. Since the notion of superadditivity is
essential for this purpose, we start by reviewing superadditivity in the scope of
valid inequalities. Different examples are provided with alternative families of dual-
feasible functions. We discuss also the difference between the valid inequalities
derived by dual-feasible functions and the well-known Chvatal-Gomory cuts.

5.1 Superadditive Functions in Integer Programming

When good dual-feasible functions are sought, they are frequently characterized by
superadditivity and monotonicity. For the sake of clarity, these properties are briefly
recalled in the sequel for general domains. Given X € R”, a function F : X — R is
superadditive if for all X,y € X with x + y € X, it holds that

F(x) + F(y) < F(x+Yy).
The function F : X — R is nondecreasing if for all X,y € X, one has that
x <y= F(x) < F(y).

Analogously to the duality theory of linear optimization (without integer con-
straints), there is also a strong duality theorem in the discrete counterpart. Here
superadditive and nondecreasing functions are essential. Given A € Q"™", b € Q"
and ¢ € Q" and an integer linear optimization problem
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max ¢'x 6.1
s.to Ax<b 5.2)
xeZ, (5.3)

the dual consists in determining a nondecreasing and superadditive function F :
R™ — R such that

min F(b) (5.4)
s.to F(0) =0 (5.5)
F@) = ¢iforj=1,....n, (5.6)

where & is the Jj-th column of the matrix A, and o denotes as usual the zero vector.
As mentioned before, the relationship between the two problems is given by the
strong duality theorem. If the problem (5.1)—(5.3) is solvable, i.e. a feasible x exists
and the objective function value is bounded from above, then the optimal objective
function values of the primal and the dual problem are equal. If F(b) is unbounded
from below (—00), then there is no x € 7, fulfilling (5.2), and if (5.1)—(5.3) yields
an unbounded objective function value (400) then F does not exist. Furthermore,
if X is an optimal solution of (5.1)—(5.3) then any optimal F in the dual problem
necessarily obeys the equation

F(AX) = ¢'x = F(b) — F(b — Ax)

forall x € Z" withx < X.

Since the problem (5.1)—(5.3) is NP-hard, solving it exactly or finding an optimal
superadditive and nondecreasing function F : R™ — IR according to the above
conditions (5.4)—(5.6) may be very difficult. However, contributing to the resolution
of (5.1)—(5.3) is possible by deriving valid inequalities using a superadditive and
nondecreasing function ' : R” — R fulfilling the constraints (5.5). These functions
lead to the following valid inequalities:

Y F(@) xx; < F(b).

Jj=1

5.2 Valid Inequalities for Integer Programs

General dual-feasible functions can be used not only to compute fast lower bounds,
but also to generate valid inequalities for integer problems defined over sets of the
kind {x € 7" Ax < b}, as stated formally in the sequel.
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Proposition 5.1 If f is a maximal general dual-feasible function (and hence a
superadditive function with f(0) = 0) and § = {x € 7} : Z;l=1aijxj < b i=
1,...,m}, then for any i, Z;.’Zlf(aij)xj < f(b)) is a valid inequality for S.

In Chaps.?2 and 3 it turned out that (general) dual feasible functions should be
superadditive to get good lower bounds, because otherwise another dominating
function exists. In the context of valid inequalities for integer problems, the same
applies. Any valid inequality for § can be obtained either through a superadditive
function or it is dominated by an inequality that can be computed in this way. Cuts
generated by a superadditive function are commonly referred to as superadditive
inequalities. Among these cuts, those that are not dominated by any other valid
inequality are called maximal. This applies particularly to the facets of the integer
hull of S. Maximal valid inequalities are necessarily superadditive. The same
properties characterize the dominant families of dual-feasible functions.

Any maximal inequality for S can be obtained through the Gomory procedure
based on recursive linear combinations and rounding of other inequalities for S.
However, in order to get these maximal cuts, it might be necessary to use a very
long recursion. Other authors assumed that other superadditive functions, eventually
more complex ones, might generate these maximal cuts using shorter recursions,
demonstrating the relevance of research on dual-feasible functions as tools to
compute valid inequalities for integer programs. Other works propose alternative
characterizations of the integer hull of § in terms of a finite set of superadditive
inequalities, but the cardinality of this set may be very large, such that many cuts
are required.

5.3 Examples

In this section, we show through different examples how to apply several generalized
dual-feasible functions to derive valid inequalities, which may be better than the
well-known Chvatal-Gomory cuts.

Given the inequality system Ax < b, x € IN", any nonnegative linear
combination of the inequalities may be used to derive cuts. Choosing u > o yields
u' Ax < u'b, hence the following scalar inequality

d'x <r, (5.7)

and finally the Chvétal-Gomory cut

> ldi] x x; < ). (5.8)

J=1
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If r > 0, then dividing the inequality (5.7) by r and applying a maximal general
dual-feasible function f : R — R with (1) = 1 leads to the valid inequality

n d]
dF (7) xx; < 1. (5.9)
j=1

In some situations it may happen that the inequality (5.9) is stronger than (5.8),
but not if 0 < r < 1, as the right-hand sides show immediately. The following
example demonstrates the strength of a maximal general dual-feasible function for
the construction of valid inequalities, even in the case r = 1.

Example 5.1 We use the function (3.7), p. 65, with the parameter b := 1, hence

12d], ifd<1/2.
fldy=14 1/2, ifd=1/2, (5.10)
[2d] —1,ifd > 1/2.

Let be given the inequality
1.6x; — 0.4x, < 1.

Of course, if there would be no negative coefficient then a coefficient d; > 1 would
immediately imply x; = O for that j. The Chvétal-Gomory cut (5.8) transforms the
given inequality to x; — x, < 1, but the function (5.10) used in (5.9) leads to the
stronger inequality 3x; —x; < 1. This inequality would be obtained by the Chvétal-
Gomory procedure only after multiplying the given inequality by a suitable number
like 1.9. O

Example 5.2 The dual-feasible function (2.10) is used for deriving valid inequali-
ties. It was defined as

X, if (k4+ 1) xx € N,

frs1(xik) := | (k + 1) x x| /k, otherwise.

and is again illustrated in Fig. 5.1. Next, we show the result of applying the function
frs.1 with parameters k € {1,2, 3} to a given knapsack inequality (after dividing it
by the right-hand side):

Ix1 4+ Txp + 6x3 + 4dxg + 2x5 <12

ai/b 075 058 05 033 0.17

k=1 1x; + lx + ix3 <1
k=2 1x3 + %Xz + %X3 + %X4 < 1
k=3 %Xl + %xz + %x_v, + %X4 < 1
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Fig. 5.1 MDFF frs. (k) fork € {1,...,4}
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Given multiple knapsack constraints like in the vector packing problem, one may

use a VP-MDFF to get cuts.

Example 5.3 Neglecting the integrality constraints in

would allow the fractional solution x = (0.5, 0.8, 0.2)T, because

8x054+5x08+5%x02=44+4+1=9<10

and

5x054+8x08+5%x02=254+644+1=99=<10.

8x1 + 5x5 + 5x3
5x1 + 8xp + 5x3

10
10

IA

A

X1,X2,X3 € {07 1}



130 5 Other Applications in General Integer Programming

However, taking e.g. the VP-MDFF (4.9), p. 106, with the parameter u := (%, %)T,
which considers all constraints simultaneously, yields the valid inequality

X1 +x +0.5x3 <1,
which is violated by the fractional solution, since
05+08+05x02=14>1.

|

The following example illustrates the generation of valid inequalities with dual-
feasible functions obtained from bin packing problems with conflicts.

Example 5.4 Consider the following system of inequalities:

4x; + 3x, +3x3 < 10

X +x <1

X1,X2,X3 € {07 1}

The first inequality does not restrict anything. However, a BPC-DFF yields the
valid inequality

0.9x; + 0.1x; + 0.1x3 < 1.

The DFF used is the one defined in Proposition 4.17, with J = {2, 3}, a, = 0.1 and
oz = 0.1. O

5.4 Related Literature

In Nembhauser and Wolsey (1998), the relationship between the integer linear opti-
mization problem (5.1)—(5.3) and its dual (5.4)—(5.6) and a revision of superadditive
valid inequalities are provided, together with the basic function underlying the
Chvaital-Gomory procedure. Previous results on the (explicit or implicit) use of dual-
feasible functions to generate valid inequalities for integer programs were reported
by Vanderbeck (2000), Alves (2005), Rietz et al (2014), Letchford and Lodi (2002),
and Dash and Giinliik (2006).



5.5 Exercises 131

5.5 Exercises

n

1. Let be given the feasible region ) agx; < b, i = 1,...,m,x € IN" for an
Jj=1

integer linear optimization problem. Which of the following assertions are true?

Justify your answer.

(@) Y f(ay)x; < f(b;)is a valid inequality for every general DFF f : R — R.

i=1
(d) Y f(aj)x; < f(by) is a valid inequality for every superadditive function
f:R—R.

2. Consider the set of all ordered triplets (x;,x2,x3) € Zi, for which

S5x; +4x +3x3 < 11
3x1 +4x +2x3 <8

holds. Derive the valid inequality
2x1 +2x +x3 <4

using the VP-MDFF f; g5 1 of Corollary 4.1, p. 102, with the parameter choice v :=
(3.2)7.

3. Letw:=(1,...,1)T € R™. Given the inequality system

n
E ax; <w; x>o,
Jj=1

where @/ € [0, 1]™ for all j, suppose that a VP-MDFF f : [0, 1]" — [0, 1] yields
f(@°) = 1 for a certain jo € {1,...,n}. Why does this imply f(a’) = 0 for all those
Jj, for which a® + @/ < w? What is the conclusion for the possible usage of the
functions of Classes II, III and IV?



	5 Other Applications in General Integer Programming
	5.1 Superadditive Functions in Integer Programming
	5.2 Valid Inequalities for Integer Programs
	5.3 Examples
	5.4 Related Literature
	5.5 Exercises


