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7.1       Introduction 

 Head and neck cancer is a heterogeneous disease which 
includes cancers arising from the paranasal sinuses, nasal 
cavity, oral cavity, pharynx, larynx, salivary glands, and thy-
roid. Head and neck squamous cell carcinoma (HNSCC) 
refers to a major subset of head and neck cancer that arise in 
the mucosal epithelium of the oral cavity, pharynx, and lar-
ynx. The management of patients with HNSCC has changed 
dramatically over the past 30 years from a surgically domi-
nated specialty to a multidisciplinary decision-making 
approach. Nearly all patients presenting with locally 

advanced cancers now receive chemotherapy combined with 
radiotherapy as a part of their treatment, often as a strategy 
to preserve organ function or as an adjuvant therapy follow-
ing surgery. Advances have also occurred in radiation tech-
nology for treatment planning and dose delivery to improve 
local control and reduce the volume of normal tissue treated 
and risk of late effects. The introduction of novel therapeu-
tics including molecularly targeted therapy and immune 
therapy offers an exciting opportunity to improve upon the 
outcomes achievable with standard cytotoxic chemotherapy 
and radiotherapy. 

 The National Cancer Institute defi nes biomarker as “a 
biological molecule found in the blood, other body fl uids, or 
tissues that is a sign of a normal or abnormal process or of a 
condition or disease. A biomarker may be used to see how 
well the body responds to a treatment for a disease or condi-
tion.” [ 1 ]. Biomarkers can be prognostic or predictive; 
prognostic biomarkers provide long-term outcome of a dis-
ease process independent of treatment, whereas predictive 
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biomarkers offer information on outcome associated with a 
specifi c treatment. A biomarker can be both prognostic and 
predictive. Successful implementation of a biomarker 
requires an extensive validation process to ensure robust 
clinical performance, a streamlined assay process to ensure a 
short turnaround time, and reasonable cost to ensure feasibil-
ity [ 2 ]. 

 The current standard for assessing risk in HNSCC largely 
depends on clinical tumor staging which encompasses histo-
pathology and imaging; the approach has limited ability to 
stratify patients for specifi c risk of metastasis, local–regional 
recurrence, or development of a second primary. The human 
papillomavirus (HPV) has been established as a prognostic 
biomarker in oropharyngeal squamous cell carcinoma 
(OPSCC) [ 3 ], but no validated predictive biomarkers have 
been identifi ed in HNSCC yet. Further identifi cation of prog-
nostic and predictive markers is a logical and rational next 
step to achieve improvement in outcome without increasing 
acute and chronic toxicity associated with treatment. Recent 
advances in genomics have provided detailed data on genetic 
alterations in HNSCC from large genome-wide sequencing 
studies [ 4 – 7 ]. Most of the mutations were found in tumor 
suppressor genes (TSGs), which are harder to target, rather 
than oncogenes. Some of these mutations, such as  TP53  and 
 CDKN2A , were consistent with previously known altera-
tions in a multistep model of tobacco-related HNSCC carci-
nogenesis, but novel mutations such as  NOTCH1  were also 
identifi ed [ 8 ]. These genetic alterations have great potential 
to serve as reliable predictive biomarkers against targeted 
therapy as each of them may represent a distinct biological 
process in individual cancer. 

 This chapter will focus on an established biomarker in 
HNSCC, HPV, and p16 and emerging biomarkers including 
predictive biomarkers to existing treatments, genomic altera-
tions, gene-expression profi le, and immunotherapy-related 
biomarkers.  

7.2     Established Biomarker: HPV and p16 

 HPV is associated with a subset of HNSCC that is biologi-
cally very distinct from non-HPV-related HNSCC [ 9 ]. 
Among greater than 100 subtypes of HPV, HPV 16 is the 
subtype most frequently associated with HNSCC; it is also 
associated with cervical and vulvar cancers in women, anal 
cancer in men and women, and penile cancer [ 10 ]. Over the 
past decade, the incidence of oropharynx cancers has been 
rising, especially in younger individuals in the US and 
Europe who have little or no history of exposure to two 
major risk factors, tobacco and alcohol [ 11 ]. 

 HPV, which is a circular double-stranded DNA virus, 
causes inactivation of p53 and retinoblastoma (RB) medi-
ated by two viral oncoproteins, E6 and E7, respectively [ 12 , 
 13 ]. HPV integrates its DNA into the host cell genome, 

encodes for E6 and E7 genes, and dysregulates the cell cycle. 
The E6 oncoprotein promotes ubiquitination and degrada-
tion of p53, promoting cell survival. The E7 oncoprotein 
binds and inactivates the retinoblastoma tumor suppressor 
protein leading to upregulation of p16, low expression of 
cyclin D1, cell-cycle disruption, proliferation, and malignant 
transformation (Fig.  7.1 ).

   Patients with HPV-related OPSCC are more likely to be 
nonsmokers and nondrinkers. As HPV is a sexually transmit-
ted virus, the major risk factors appear to be a high number 
of lifetime sexual partners, younger age at fi rst intercourse, a 
history of genital warts, and possibly marijuana use [ 18 ]. 
Patients with HPV-positive head and neck cancer commonly 
present with large cystic neck nodes and a small primary 
(low T stage) in the tonsil or base of the tongue [ 19 ]. 
Histologically, these cancers are usually nonkeratinizing, 
poorly differentiated squamous carcinomas with basaloid 
features [ 20 ]. 

 HPV status in a tumor tissue can be determined by detec-
tion of the presence of HPV DNA or mRNA or by detection 
of p16 which is overexpressed by the downstream effect of 
viral oncoprotein E7. The gold standard for detection of HPV 
in a tumor is detection of high-risk HPV E6/E7 oncogene 
expression through reverse transcriptase–polymerase chain 
reaction (PCR), which is currently not available in most clini-
cal laboratory settings [ 21 ]. Commonly used detection meth-
ods include HPV DNA in situ hybridization (ISH), HPV 
RNA ISH, and p16 immunohistochemistry (IHC) [ 22 ]. It has 
been shown in multiple studies that p16 IHC or ISH/FISH are 
very sensitive and specifi c at least in OPSCC (Table  7.1 ).

   The presence of HPV or p16 has been consistently shown 
to be a strong prognostic factor of favorable outcome with 
signifi cant improvement in both overall survival and 
progression- free survival in locally advanced OPSCC in 
multiple phase 2–3 clinical trials (Table  7.2 ) [ 3 ,  23 – 26 ]. The 
presence of p16 in OPSCC appears to remain as an important 
prognostic factor for patients who had surgery followed by 
adjuvant concurrent chemoradiotherapy or patients who 
develop recurrent and/or metastatic disease. A recent study 
showed that patients with HPV-positive OPSCC had better 
locoregional control and longer survival after postoperative 
platinum-based concurrent chemoradiotherapy regardless of 
p53 expression (by IHC) and the presence of extracapsular 
extension [ 27 ]. Another study reported that patients with 
p16-positive OPSCC had better overall survival (HR 0.48, 
95 %CI 0.31–0.74), independent of initial tumor stage, pro-
gression type (distant versus locoregional), salvage surgery, 
and smoking status compared to p16-negative patients after 
progression of disease in a combined analysis of two large 
prospective clinical trials [ 28 ]. Even in non-OPSCC tumors, 
p16 expression was shown to be associated with better 
progression- free survival (HR 0.63, 95 %CI 0.42–0.95) and 
overall survival (HR 0.56, 95 %CI 0.35–0.89) in analyses of 
three phase 2–3 clinical trials [ 29 ]. These trials, though, did 
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not include oral cavity squamous cell carcinoma (OCSCC), 
6 % of which can be positive for HPV16. In OCSCC, p16 
expression by IHC has a poor positive predictive value [ 30 ] 
for HPV infection and thus should not be used as a surrogate 
marker for the presence of HR-HPV. Also, the prognostic 
role of either p16 or HPV DNA/RNA has not been estab-
lished in OCSCC [ 31 ].

   Although HPV status or p16 expression have been well 
established as a strong prognostic marker for OPSCC, 
whether it can serve as a predictive biomarker for certain 
therapies is still not clear. HPV-negative tumors tend to have 
higher total and phosphorylated epidermal growth factor 
receptor (EGFR) protein expression than HPV-positive 
tumors [ 32 ]; thus, there is a possibility that EGFR-targeting 
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  Fig. 7.1    Cell-cycle deregulation by human papillomavirus. Schematic 
diagram of molecular pathogenesis of HPV-related HNSCC. HPV can 
cause cell-cycle dysregulation and result in genomic instability and 
therefore promote malignant transformation. (1) Ubiquitination by 
viral E6 leads to p53 degradation [ 13 ,  14 ]. (2) Ubiquitination by viral 
E7 leads to pRb degradation [ 15 ,  16 ]. (3) Increased expression of 

p16 INK4A  as a consequence of increased S-phase gene expressions from 
the absence of pRb function [ 17 ].  Abbreviation :  CDK  cyclin-depen-
dent kinase [Reprinted from Leemans CR, Braakhuis BJM, Brakenhoff 
RH. The molecular biology of head and neck cancer. Nature Rev 
Cancer 2011;11(1):12. With permission from Nature Publishing 
Group]       

   Table 7.1    Comparison of HPV detection methods in OPSCC a   

 Study 

 Number 
of samples 

 HPV-DNA PCR  ISH/FISH  p16 INK4A  IHC  p16 INK4A  IHC interpretation 

 Sens.  Spec.  Sens.  Spec.  Sens.  Spec.  Intensity  %  Pattern 

 Smeets et al. [ 115 ]   19  100 %  92 %  83 %  100 %  100 %  70 %  ≥1+  >10  N or C 

 Shi et al. [ 116 ]  111  NA  NA  84 %  92 %  89 %  81 %  Strong  N/A  N and C 

 Schache et al. [ 117 ]   95  97 %  87 %  88 %  88 %  94 %  82 %  Strong  >70  N and C 

 Schlecht et al. [ 118 ]   21  NA  NA  38 %  100 %  90 %  100 %  ≥2+  ≥75  N and C 

 Rotnaglova et al. [ 119 ]  109  100 %  89 %  NA  NA  94 %  96 %  ≥1+  >50  N or C 

 Jordan et al. [ 21 ]  235  99 %  63 %  88 %  95 %  97 %  84 %  ≥2+  >70  N and C 

 92 %  90 %  H score b  ≥ 60 

  From Kang H, Kiess AP and Chung CH. Emerging biomarkers in head and neck cancer in the era of genomics. Nature Rev Clin Oncol  
2015;12(1):14. Reprint permission waived (authored by Kang H and Chung CH) 
  C  cytoplasmic,  FISH  fl uorescence in situ hybridization,  HPV  human papillomavirus,  IHC  immunohistochemistry,  N  nuclear,  OSCC  oropharyngeal 
squamous cell carcinoma,  Sens . sensitivity,  Spec . specifi city 
  a Sensitivities and specifi cities are based on gold standard of E6 mRNA qRT-PCR 
  b H score is derived from cross product of the intensity score (0–3) and from the percentage of tumor staining at the highest intensity (0–100 %)  

 

7 Biomarkers in Head and Neck Cancer



152

therapy may work better for HPV-negative HNSCC. In a ret-
rospective subset analysis of the SPECTRUM study, in 
which patients received panitumumab, a monoclonal anti-
body against EGFR, in combination with cisplatin and 5-FU, 
a survival benefi t from the addition of panitumumab was 
limited to p16-negative patients [ 33 ]. Another study, com-
paring MEHD7945A, a dual-action antibody against EGFR 
and HER3, and cetuximab in a second-line systemic therapy 
of recurrent or metastatic HNSCC, showed that the response 
to either MEHD7945A or cetuximab is limited to HPV- 
negative patients [ 34 ]. However, a retrospective analysis of 
the EXTREME study demonstrated that the benefi t of cetux-
imab is not limited to HPV-negative patients [ 35 ]. As these 
studies are all retrospective, unplanned analyses of prospec-
tive studies of limited numbers of patients, a prospective 
study will be required to address this question. 

 As the long-term survival of patients with HPV-positive 
HNSCC treated with current standard of care multimodality 
regimens is excellent, current clinical trials are focused on 
de-intensifi cation of multimodality treatment [ 36 ]. HPV sta-
tus may become a biomarker for less intensive curative intent 
treatment if randomized controlled de-intensifi cation trials 
demonstrate comparable outcome. Also, HPV status may 
become a predictive biomarker for HPV-targeted therapies in 
the future, such as therapeutic HPV vaccines [ 37 ].  

7.3     Emerging Biomarkers 

 Recent advances in tumor biology and multiplex genomic 
analysis have enabled us to access expansive information on 
genetic and epigenetic alterations of HNSCC. Comprehensive 
genome-wide sequencing data from several studies available 
to date have shown that there are more alterations in tumor 
suppressor genes (TSGs) rather than in oncogenes (Fig.  7.2 ) 

[ 4 – 6 ,  38 ,  39 ]. TSG mutations are more diffi cult to target than 
oncogene mutations, as it is harder to restore loss of function 
than to suppress gain of function. In addition, while onco-
gene mutations tend to occur in certain hotspots, TSG muta-
tions tend to occur scattered throughout the gene [ 40 ].

   Genomic analyses clearly demonstrate distinct biologic 
difference between HPV-positive and HPV-negative tumors. 
HPV-positive tumors tend to have fewer mutations per tumor 
and frequently have helical domain mutations of the onco-
gene,  PIK3CA . This is not very surprising given that all 
HPV-positive tumors have already altered p53 and Rb path-
ways from actions of viral oncoproteins, E6 and E7. Almost 
all HPV-negative tumors show loss-of-function  TP53  muta-
tions and  CDKN2A  inactivation which leads to p16 INK4A  
functional loss (Table  7.3 ) [ 38 ]. These biological differences 
support clinical observations and may provide further insight 
on development of specifi c treatments for each type of 
HNSCC.

7.3.1       Epidermal Growth Factor Receptor 

 The epidermal growth factor receptor (EGFR) is a trans-
membrane glycoprotein and a member of the human epider-
mal receptor (HER) family receptor tyrosine kinases. EGFR 
is composed of an extracellular ligand-binding domain, a 
transmembrane region, and an intracellular domain that 
includes the tyrosine kinase enzyme. When a ligand binds to 
the receptor, it undergoes a conformational change and 
dimerization with another EGFR or other HER family mem-
bers such as HER2, HER3, or HER4. Dimerization results in 
activation of intracellular tyrosine kinase, protein phosphor-
ylation and stimulation of various cell signaling pathways 
that mediate cell-cycle progression, angiogenesis, inhibition 
of apoptosis, tumor invasion, and metastasis [ 41 ]. 

   Table 7.2    Impact of HPV status on outcome of HNSCC   

 Study  Site 
 Detection 
method 

 Number 
of patients 

 PFS rate  OS rate 

 HPV +   HPV −   HR  HPV +   HPV −   HR 

 Fakhry et al. [ 23 ]  OP; L  DNA ISH   96  86 % at 
2 years 

 53 % at 
2 years 

 3.57 
(1.33–9.09) 

 95 % at 
2 year 

 62 % at 
2 year 

 2.86 (1.25–6.67) 

 Ang et al. [ 3 ]  OP  DNA ISH  323  73.7 % at 3 
years 

 43.4 % at 
3 years 

 2.50 
(1.75–3.45) 

 82.4 % 
at 3 year 

 57.1 % 
at 3 year 

 2.63 (1.82–3.85) 

 Rischin et al. [ 24 ]  OP  p16 INK4A  IHC  185  87 % at 2 
years 

 72 % at 2 
years 

 2.56 
(1.35–5) 

 91 % at 
2 year 

 74 % at 
2 year 

 2.78 (1.35–5.88) 

 Posner et al. [ 25 ]  OP  DNA PCR 
for E6/E7 

 111  78 % at 5 
years 

 28 % at 5 
years 

 NA  82 % at 
5 year 

 35 % at 
5 year 

 5.00 (2.63–10.00) 

 Lassen et al. [ 26 ]  OP; OC; 
L; P 

 p16 INK4A  IHC  794  68 % at 5 
years 

 57 % at 5 
years 

 1.52 
(1.14–2.04) 

 62 % at 
5 year 

 47 % at 
5 year 

 1.61 (1.28–2.04) 

  Reprinted from Kang H, Kiess AP, Chung CH. Emerging biomarkers in head and neck cancer in the era of genomics. Nature Rev Clin Oncol 
2015;12(1):14. With permission from Nature Publishing Group 
  HNSCC  head and neck squamous cell carcinoma,  HPV  human papillomavirus,  HR  hazard ratio,  ISH  in situ hybridization,  IHC  immunohistochem-
istry,  L  larynx,  NA  not available,  OC  oral cavity,  OP  oropharynx,  OS  overall survival,  P  pharynx,  PFS  progression-free survival  

H. Kang et al.



153

 EGFR has been a major therapeutic target in the treatment 
of HNSCC, as the majority of HNSCC (~90 %) overexpresses 
EGFR relative to normal tissue [ 42 ]. High EGFR expression 
has been associated with worse outcome in patients who were 
treated with resection or radiotherapy [ 43 ,  44 ]. However, 
EGFR expression detected by IHC has not been widely 
adopted as a biomarker because there is no standardized anti-
EGFR antibody, staining protocol, or quality control measure 
for the assay. Furthermore, EGFR expression assessed by 
IHC has not been shown to be predictive of response to 
EGFR-targeting therapy, such as cetuximab, a chimeric 
monoclonal IgG1 antibody directed against EGFR [ 45 ]. 

  EGFR  amplifi cation has been investigated as a prognostic 
factor in HNSCC.  EGFR  is amplifi ed in 10–58 % of HNSCC 
and is measured by fl uorescence in situ hybridization (FISH) 
and quantitative PCR and was associated with worse 
progression- free and overall survival in two independent 

studies [ 46 ,  47 ]. However, there is no evidence correlating 
gene amplifi cation with response outcome to EGFR-targeting 
therapies in HNSCC. The Cancer Genome Atlas (TCGA) 
showed that only 15 % of HPV-negative HNSCC and 6 % of 
HPV-positive HNSCC have mutations or amplifi cations of 
 EGFR  [ 38 ], which suggests that the previous studies may 
have overestimated  EGFR  mutations or copy number 
 variations. More investigations are needed to clarify the role 
of  EGFR  alterations as a predictive biomarker. 

 The resistance mechanisms against EGFR-targeting 
therapy provide insight into potential prognostic and pre-
dictive biomarkers and therapeutic targets. These include 
increased nuclear localization of EGFR, transactivation 
and dimerization with other HER family receptors, activa-
tion of other receptor tyrosine kinases such as MET or 
IGF-1R, or activation of downstream signaling molecules 
(Fig.  7.3 ) [ 48 ].

  Fig. 7.2    Tumors with alterations in oncogenes (OG), tumor suppres-
sor genes (TSG), or both (TSG and OG) based on selected 236 cancer- 
related gene sequencing, ( a ) HPV-positive HNSCC, ( b ) HPV-negative 
HNSCC [Reprinted from Chung CH, Guthrie VB, Masica DL et al. 

Genomic alterations in head and neck squamous cell carcinoma deter-
mined by cancer gene-targeted sequencing. Ann Oncol 2015 2015 
Jun;26(6):1216–23. With permission from Oxford University Press]       

   Table 7.3    Frequently mutated genes in HPV-positive and HPV-negative tumors in selected studies   

 HPV-positive HNSCC  HPV-negative HNSCC 

 Gene 
 TCGA 
( N  = 36) [ 38 ] 

 Chicago 
( N  = 51) [ 6 ] 

 Foundation medicine 
( N  = 84) [ 39 ]  Gene 

 TCGA 
( N  = 243) [ 38 ] 

 Chicago 
( N  = 69) [ 6 ] 

 Foundation medicine 
( N  = 168) [ 39 ] 

  PIK3CA   56 %  35 %  30 %   TP53   84 %  80 %  87 % 

  SOX2   28 %  NA  11 %   CDKN2A/B   57 %  32 %  54 % 

  MLL2 (KMT2D)   17 %  20 %  13 %   FGF19   32 %  NA  23 % 

  RB1   6 %  24 %  7 %   FGF3   31 %  NA  22 % 

  BCL6   25 %  18 %  1 %   FGF4   31 %  NA  22 % 

  EP300   14 %  12 %  10 %   PIK3CA   34 %  29 %  16 % 

  NOTCH1   11 %  18 %  6 %   CCND1   32 %  13 %  24 % 

  PTEN   3 %  8 %  15 %   NOTCH1   21 %  26 %  16 % 

  FGFR3   11 %  24 %  1 %   LRP1B   22 %  30 %  6 % 

  ASXL1   19 %  10 %  5 %   SOX2   21 %  NA  8 % 

  Modifi ed from Chung CH, Guthrie VB, Masica DL et al. Genomic alterations in head and neck squamous cell carcinoma determined by cancer 
gene-targeted sequencing. Ann Oncol 2015 2015 Jun;26(6):1216–23. With permission from Oxford University Press 
  TCGA  The Cancer Genome Atlas  
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7.3.2         PIK3CA  

  PIK3CA  encodes p110α, a p110 catalytic subunit of phos-
phoinositol 3-kinase (PI3K), which is a family of lipid 
kinases that integrate signals from growth factors, cytokines, 
and other environmental cues, and relays them to intracellu-
lar signaling for such functions as cell growth, proliferation, 
and survival [ 49 ]. An example of a signaling cascade medi-
ated by activated PI3K is shown in Fig.  7.4 . PI3K activates 
AKT, which subsequently leads to the activation of the 
mammalian target of rapamycin (mTOR), triggering down-
stream effects on transcription, protein synthesis, metabo-
lism, proliferation, and apoptosis (Fig.  7.4 ) [ 50 ].

    PIK3CA  is the most commonly mutated gene in HPV- 
positive HNSCC, and the mutation tends to be located in the 
helical domain (E542K and E545K), while  PIK3CA  muta-
tions in HPV-negative HNSCC are more diverse throughout 
the gene [ 38 ,  51 ]. The distinctive mutation loci may result in 
functionally different mutant proteins that could serve as 
novel therapeutic targets and predictive biomarkers. In a 
comparative protein array study, HPV-positive and HPV- 
negative OPSCC differentially activate PI3K/AKT/mTOR 

pathway— PIK3CA  mutations in HPV-positive OPSCC were 
associated with activation of mTOR but not AKT [ 32 ], sug-
gesting that an mTOR inhibitor may have activity against 
HPV-positive  PIK3CA  mutant OPSCC. In a preclinical 
study, dual inhibition of mTOR/PI3K was shown to be effec-
tive in controlling a  PIK3CA  mutant patient tumor-derived 
xenograft mouse model [ 51 ]. 

 Numerous clinical trials of drugs targeting the PI3K 
pathway are currently on-going. Early data from phase I/II 
trials have suggested limited effi cacy as monotherapy in 
tumors with PI3K pathway activation partly because of 
lack of specifi city and activation of alternate signaling 
pathways [ 52 ]. Clinical trials in nonselected RM-HNSCC 
population with an irreversible oral PI3K inhibitor, 
PX-866, in combination with either cetuximab or docetaxel 
did not show any improvement in the response rate or pro-
gressive-free survival [ 53 ,  54 ]. There was no correlation 
between the response and the PI3K mutation status, 
although only small number of patients harbored PI3K 
mutations (17 % and 8 %). Further development should 
account for the specifi c characteristics of  PIK3CA  muta-
tions in HNSCC.  

  Fig. 7.3    EGFR and receptor tyrosine kinase signaling in head and 
neck cancer. Resistance to EGFR inhibitors can arise via signaling from 
redundant receptor tyrosine kinases, such as HER family members, 
MET, or IGF-1R, as well as the activation of downstream signaling 

intermediaries [Reprinted from Chong CR, Janne PA. The quest to 
overcome resistance to EGFR-targeted therapies in cancer. Nat Med 
2013;19(11):1390. With permission from Nature Publishing Group]       
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7.3.3     Cyclin D1 

 Cyclin D1 is a protein expressed in a cell-cycle-dependent 
manner and plays an important role in regulating G1-S transi-
tion by forming a complex with cyclin-dependent kinases 
(CDKs), such as CDK4 and CDK6. This complex phosphory-
lates Rb and activates transcription factors, promoting prolif-
eration through the expression of S-phase proteins [ 55 ]. Cyclin 
D1 also has non-catalytic functions independent of CDKs and 
can interact with various transcription factors [ 56 ] and regulate 
histone acetylation and methylation [ 57 ].  CCND1 , which 

encodes for cyclin D1, was shown to be amplifi ed in 28 % of 
HNSCC in TCGA, mostly in HPV- negative tumors (32 %) 
rather than in HPV-positive tumors (6 %) [ 38 ]. 

 Overexpression of cyclin D1 or amplifi cation of  CCND1  
has been associated with poor outcome and resistance to 
EGFR-targeted therapy in HNSCC [ 58 ,  59 ]. This interaction 
may be further perturbed by inactivation of p16 INK4a , an inhibi-
tor of CDK4 and CDK6. Inactivation of p16 INK4a  by deletion of 
 CDKN2A  (which is documented in 57 % of HPV- negative 
HNSCC) has been associated with poor prognosis [ 58 ,  60 ]. 
Increased cyclin D1 expression and loss of p16 INK4a  expression 
is associated with particularly poor clinical outcome in HNSCC 
[ 61 ], and there seems to be an inverse correlation between 
expressions of cyclin D1 and p16 INK4a  [ 62 ,  63 ]. As direct target-
ing of cyclin D1 is very diffi cult at this time, indirect targeting 
through inhibitors for CDK4/CDK6 is in development and 
might play role in patients with  CCND1  amplifi cation.  

7.3.4     Fibroblast Growth Factor Receptor 

 The FGF and fi broblast growth factor receptor (FGFR) path-
way regulate developmental pathways, angiogenesis, wound 
repair, proliferation, differentiation, and survival. FGFRs are 
a family of highly conserved transmembrane tyrosine kinase 
receptors (FGFR1–4), which are activated by 18 ligands 
(FGFs) [ 64 ,  65 ]. The activated FGFR phosphorylates FGFR 
substrate 2 (FRS2) on several sites, allowing recruitment of 
the adaptor proteins, which in turn activate RAS–RAF–
MAPK pathways and PI3K–AKT–mTOR pathways [ 64 ]. 

 In HPV-negative HNSCC,  FGFR1 ,  FGFR2 ,  FGFR3 , and 
 FGFR4  are amplifi ed or mutated in 10 %, 2 %, 2 %, and 
0.4 %, respectively. HPV-positive HNSCC did not demon-
strate any alteration in  FGFR1  and  FGFR2 , but  FGFR3  
mutation or fusion was seen in 11 %, and  FGFR4  mutation 
was seen in 3 % [ 38 ]. In a preclinical study, FGF2 and 
FGFR2 and FGFR3 were found to be frequently expressed in 
HNSCC cell lines, forming an autocrine signaling network 
[ 66 ]. In a predominantly HPV-negative cohort primarily 
treated with surgery followed by radiation, FGF2 
 overexpression was shown to be independently associated 
with worse outcome after adjusting clinical factors and HPV 
status [ 67 ]. Inhibition of FGFR1 was shown to suppress cell 
growth and reverses epithelial–mesenchymal transition 
(EMT) features in HNSCC preclinical models [ 68 ]. Further 
investigation will be needed to validate this target.  

7.3.5      KRAS  Variant 

  KRAS  is a well-known oncogene, although its alteration is 
rarely reported in HNSCC (amplifi cation or mutation in 3 % of 
samples in TCGA) [ 38 ,  69 ]. A single nucleotide polymorphism 
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  Fig. 7.4    The PI3K/AKT/mTOR pathway and associated signaling 
pathways.  AKT  protein kinase B,  EGFR  epidermal growth factor recep-
tor,  ERK 1/2  extracellular signal-regulated kinase 1/2,  FGFR  fi broblast 
growth factor receptor,  HER2  human epidermal growth factor 2,  IGF  
insulin-like growth factor,  IRS-1  insulin receptor substrate 1,  MEK 1/2  
mitogen-activated protein kinase 1/2,  mTORC  mammalian target of 
rapamycin complex,  PI3K  phosphatidylinositol 3-kinase,  PIP   2   phos-
phatidylinositol 4,5-bisphosphate,  PIP   3   phosphatidylinositol 
(3,4,5)-trisphosphate,  PTEN  phosphatase and tensin homolog,  p70S6K  
p70S6 kinase,  VEGFR  vascular endothelial growth factor [Reprinted 
from Simpson DR, Mell LK, Cohen EE. Targeting the PI3K/AKT/
mTOR pathway in squamous cell carcinoma of the head and neck. Oral 
Oncol 2015;51(4):292. With permission from Elsevier]       
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(SNP) in its 3′ UTR,  rs61764370 , has been associated with 
increased risk of non-small cell lung cancer [ 70 ], ovarian can-
cer [ 71 ], and triple-negative breast cancer [ 72 ]. The variant 
 KRAS  has altered  let -7 miRNA complementary site (LCS) and 
is thought to cause decreased degradation of  KRAS  mRNA. The 
presence of  KRAS  variant was shown to be associated with 
higher mortality from ovarian cancer and a greater chance of 
platinum resistance [ 73 ]. 

 In HNSCC, prevalence of the  KRAS  variant was reported 
to be around 20–30 % [ 74 ,  75 ] and associated with reduced 
survival [ 74 ]. A retrospective analysis of several prospective 
studies showed that the  KRAS  variant was associated with 
worse progression-free survival when treated with platinum- 
containing chemotherapy (cisplatin ± cetuximab). However, 
in patients treated with non-platinum-containing chemother-
apy (docetaxel + bortezomib), no difference was observed in 
PFS between the  KRAS  variant group and the  KRAS  wild- 
type group [ 75 ]. This observation suggests that the  KRAS  
variant may serve as a predictive biomarker for platinum 
response, and further studies are warranted.  

7.3.6      TP53  

 Discovered in 1979 and characterized as a tumor suppressor 
in 1983, p53 is a highly studied, critical element of cell-cycle 
regulation and is mutated in over half of all human malig-
nancies [ 76 ]. The normal role of p53 is to respond to an enor-
mous variety of stress signals by modulating cellular 
responses, including transient cell-cycle arrest, cellular 
senescence, and apoptosis (Fig.  7.5 ) [ 77 ].

    TP53  is the most commonly mutated gene in all cancers 
[ 78 ], and the mutation is found in 84 % of HPV-negative 
HNSCC tumors [ 38 ]. Including the inactivation of p53 by 
HPV viral oncoprotein E6 in HPV-positive OPSCC, func-
tional loss of p53 occurs in more than 90 % of HNSCC [ 13 , 
 79 ]. The majority of  TP53  mutations in human cancers are 
missense mutations (80 %) [ 80 ], leading to the substitution 
of a single amino acid in the p53 protein that can be stably 
expressed in the tumor cell. These mutations can occur any-
where in the gene but are most commonly found in the DNA- 
binding domain of p53 [ 81 ]. Diverse mutations may function 
differently in the different context, refl ecting diverse expres-
sion patterns of target proteins of p53 [ 82 ]. Besides muta-
tions resulting in loss of wild-type p53 functions, certain 
missense mutations exhibit gain-of-function properties [ 83 ], 
which is described to be oncogenic in HNSCC cell lines 
through inhibition of tumor-suppressive AMP-activated pro-
tein kinase (AMPK) signaling [ 84 ]. 

 Loss of p53 function has been investigated as a prognostic 
biomarker in HNSCC, but early studies were confounded by 
poor assays, small sample size, and a lack of distinction 

between functional and nonfunctional alterations [ 85 ]. In sev-
eral studies, disruptive  TP53  mutations which cause trun-
cated p53 have been associated with worse clinical outcome 
in HNSCC patients [ 86 ,  87 ]. A recent study reported an evo-
lutionary action score of  TP53  (EAp53) that identifi ed high- 
risk mutations associated with decreased survival and 
increased distant metastases in HNSCC patients [ 88 ]. Cells 
harboring the high-risk  TP53  mutations tended to have 
decreased expression of certain p53 target genes, such as p21, 
Notch1, and BTG2. The same authors reported that high-risk 
 TP53  mutations identifi ed by EAp53 were associated with 
decreased sensitivity to cisplatin in both preclinical tumor 
models and in patients treated with platinum-based chemo-
therapy [ 89 ]. These fi ndings highly suggest that the functional 
status of p53, rather than the presence or absence of  TP53  
alteration, may act as a prognostic biomarker in HNSCC. 

 Traditionally TSGs such as  TP53  have been regarded as 
hard to target. Recently, the concept of synthetic lethality 
in which a combination of mutations in two or more sepa-
rate genes leads to cell death [ 90 ] has gained attention as a 
way to target TSGs. Synthetic lethality can be exploited 
when a maladaptive genetic change, not lethal by itself, 
makes cancer cells vulnerable to specifi c targeted therapies 
[ 91 ]. A high-throughput RNA interference functional 
genomic screen of the human kinome in HNSCC cell lines 
has shown that inhibition of WEE1, a G2-M cell-cycle-
regulating protein, can render synthetic lethality in  TP53 -
mutated tumors [ 92 ]. A WEE1 inhibitor, MK-1775, has 
been shown to sensitize platinum-resistant HNSCC cells 
with  TP53  mutations to cisplatin treatment in vitro and 
in vivo [ 93 ]. A similar approach can be taken by inhibiting 
CHK1, another G2-M cell-cycle-regulating protein, and a 
Chk inhibitor, AZD7762, has been shown to sensitize 
HNSCC cells with loss of functional p53 to cisplatin 
(Fig.  7.6 ) [ 94 ].  TP53  mutations can be a potential predic-
tive marker for these synthetic lethal approaches, in the 
context of functional disruption of p53.

7.3.7        Excision Repair Cross Complementing 
Group 1 

 The excision repair cross complementing group 1 (ERCC1)/
xeroderma pigmentosum-complementation group F (XPF) is 
a heterodimeric DNA structure-specifi c endonuclease com-
plex. This enzyme plays a key role in several DNA-repair 
pathways, particularly in repairing ultraviolet-induced 
lesions and intra- or interstrand cross-linked DNA adducts 
created by alkylating agents, such as cisplatin [ 95 ]. As 
platinum- based chemotherapy is routinely used in the man-
agement of HNSCC, ERCC1 has been investigated as a 
potential predictive biomarker. 
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 Overexpression of ERCC1 determined by IHC has been 
associated with lower response rates to cisplatin-contain-
ing chemotherapy [ 96 ]. Results from various studies have 
not been consistent as there were inconsistencies in assay 
and interpretation, although there has been a strong signal 
that ERCC1 may be a useful predictive biomarker to plati-
num therapy [ 97 ]. A recent study with improved assays 
using specifi c antibodies and automatic quantitative analy-
sis (AQUA) has shown that low ERCC1 expression was 
associated with improved outcome in patients treated with 
surgery followed by concurrent chemoradiation with cis-
platin. There was no difference in survival between ERCC1 
high and ERCC1 low group in patients treated only with 
surgery [ 98 ]. A retrospective analysis of patients treated 
with cisplatin-based concurrent chemoradiotherapy 
showed that higher ERCC1 expression determined by 
AQUA was associated with inferior PFS, irrespective of 
HPV status [ 99 ]. Similarly, low expression of XPF, a bind-
ing partner of ERCC1, has been associated with poor clini-
cal outcome in HNSCC patients treated with platinum-based 
induction chemotherapy [ 100 ]. ERCC1 is a promising 
potential predictive biomarker for response to platinum 
chemotherapy, but these fi ndings are needed to be vali-
dated in prospective studies.  

7.3.8     Classifi cation by Gene Expression 
Profi les 

 HNSCC can be classifi ed based on gene-expression profi les 
using expression arrays. Four distinct subtypes have been 
identifi ed as “basal,” “mesenchymal,” “atypical,” and “clas-
sical” to refl ect specifi c molecular characteristics [ 101 ]. This 
classifi cation was validated in two independent cohorts 
[ 102 ]. These studies included only a small number of HPV- 
positive tumors which were classifi ed in the “atypical” sub-
type. Recent analysis of an HPV-positive tumor-enriched 
cohort has led to the revision of the classifi cation into fi ve 
categories—“basal HPV,” “classic HPV,” “classic non- HPV,” 
“mesenchymal HPV,” and “mesenchymal non-HPV” [ 103 ]. 
Regardless of HPV status, the mesenchymal subtype was 
associated with the expression of immune response genes 
such as  CD8 ,  ICOS ,  LAG3 , and  HLA-DRA  which could be 
used as predictive biomarkers for immune-based therapy in 
the future. In addition, a meta-analysis with a publicly avail-
able nine microarray gene-expression dataset in HNSCC 
showed a robust association of a 172-gene- expression signa-
ture with prognosis of patients regardless of HPV status 
[ 104 ]. Future studies will focus more on pathway- based 
analyses that integrate genomic data.  
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  Fig. 7.5    p53 activation and response. In response to acute DNA 
damage, ataxia telangiectasia mutated (ATM) and/or ataxia telangi-
ectasia and RAD3 related (ATR) is recruited and activates CHK1 
and/or CHK2. ATM, ATR, CHK,1 or CHK2 can phosphorylate p53 
and then stabilize it. MDM2 and MDM4 can bind to the transcrip-
tional activation domain of p53 and can inhibit p53 transactivation 

function. Activation of p53 regulates crucial cellular processes by 
modulating cell-cycle arrest, DNA repair, apoptosis, and senescence 
[Reprinted from Bieging KT, Spano Mello S and Attardi 
LD. Unraveling mechanisms of p53-mediated tumor suppression. 
Nat Rev Cancer 2014;14(5):361. With permission from Nature 
Publishing Group]       
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7.3.9     Immune-Related Biomarkers 

 Head and neck cancer is recognized as an immunosuppres-
sive disease. Most patients demonstrate low absolute lym-
phocyte counts, impaired natural killer cell activity, and 
decreased antigen-presenting function [ 105 – 107 ]. Immune 
system evasion is mediated by several different mechanisms. 
The antigen-processing molecules, TAP 1/2, and the major 
histocompatibility complex (MHC) 1 are downregulated 
[ 108 ]. At the same time, co-inhibitory receptors, pro-
grammed death ligand 1 (PD-L1), and cytotoxic 
T-lymphocyte antigen 4 (CTLA-4), which induce immune 
tolerance to HNSCC, are frequently expressed on tumors 
[ 109 ,  110 ]. Immunosuppressive cytokines such as TGF-beta, 
VEGF, IL-6, and IL-10 are upregulated in the tumor micro-
environment [ 111 ]. 

 The recent success of immune checkpoint inhibitors in 
solid tumors along with the increased incidence of HPV- 

positive HNSCC has raised enthusiasm for novel immuno-
therapeutic approaches and identifi cation of corresponding 
predictive biomarkers. Indeed, HPV-positive HNSCC 
arises from the deep crypts in lymphoid tissues of the lin-
gual and palatine tonsils, and characteristic tumor-infi ltrat-
ing lymphocytes (TILs) are found in the stroma and tumor 
nests [ 112 ]. Expression of PD-L1 is noted within deep ton-
sillar crypts as well as 70 % of HPV(+) HNSCC tumor 
cells. These PD-L1-expressing tumors were associated 
with an increased number of TILs [ 113 ]. High PD-L1 
expression in the tumor or the tumor microenvironment, 
especially when it is expressed in tumor-infi ltrating immune 
cells, seems to correlate with the likelihood of response in 
early clinical studies with PD1 pathway-targeting therapies 
[ 114 ]. Thus, the presence of TILs and expression of PD-L1 
are promising candidates as predictive biomarkers for 
immune checkpoint inhibitors, but further evaluation is 
necessary.   
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  Fig. 7.6    Synthetic lethal approach for p53 dysfunctional tumors. 
Following DNA damage, ATR, and ATM initiate cell-cycle arrest, fol-
lowing their respective activation sites of single-strand (SSB) or 
double- strand breaks (DSB). ATR directly phosphorylates checkpoint 
kinase 1 (CHK1), whereas ATM activates p53 and CHK2, although 
there is extensive cross talk between these pathways. At the G2 check-

point, G2-M arrest is triggered when CHK1 inhibits the activator of 
CDC2 and CDC25 or when WEE1 directly inactivates CDC2 [Reprinted 
from Bauman JE, Chung CH. CHK it out! Blocking WEE kinase routs 
TP53 mutant cancer. Clin Cancer Res 2014;20(16):4174. With permis-
sion from American Association for Cancer Research]       
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7.4     Conclusion 

 Current research and patient care are infl uenced by the rap-
idly advancing knowledge of the molecular biology of head 
and neck cancer and of complex interconnecting pathways 
from cell surface receptors to transcriptional activation of 
genes that mediate uncontrolled cellular proliferation and 
survival. Molecular target identifi cation and an array of new 
therapeutics present challenges to the standard methodolo-
gies for clinical trial designs, evaluation of effi cacy, and tox-
icity. Risk stratifi cation based on molecular prognostic and 
predictive markers is next on the horizon for advancing the 
fi eld. This chapter has focused on markers with potential for 
testing in large-validation clinical trials. As yet, no predictive 
biomarker has been validated in the selection of therapy for 
individuals with head and neck cancer. HPV status, deter-
mined by p16 expression, HPV DNA, or RNA ISH, has been 
confi rmed to be prognostic for better outcome. It is our 
responsibility to critically appraise and validate emerging 
biomarkers in prospective clinical trials to deliver optimal 
individualized care to patients with HNSCC.     
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