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4.1       Introduction 

 Head and neck squamous cell carcinoma (HNSCC) is the 
most common histology of cancers arising from the upper 
aerodigestive tract, comprising approximately 90 % of all 
tumors in this region. HNSCC encompasses a variety of ana-
tomic subsites. Despite possessing similar histologic charac-
teristics, the clinical behavior, including metastatic rate and 
response to therapy, varies between subsites and even within 
an individual subsite, indicating biologic heterogeneity in the 
setting of common histology. Current treatment strategies rely 
on traditional, clinical, radiologic, and histopathologic param-

eters to determine the stage of disease using the T (tumor), N 
(node), and M (metastasis) classifi cation system. This system 
allows for estimation of disease burden, which is presumed to 
predict clinical outcomes and assist the clinician in making 
the most appropriate decision for patient management. 
However, the biologic heterogeneity of HNSCC is refl ected 
by the dysregulation of multiple pathways including cellular 
differentiation, angiogenesis, and apoptosis. Apparently, 
identical histologic tumors may have similar phenotypic char-
acteristics but develop through dysregulation of different 
pathways and can have different clinical courses. 

 Despite their intrinsic differences, all HNSCCs are treated 
similarly. Standard therapy for stage I/II tumors is surgical 
resection and/or radiation therapy. By contrast, treatment for 
advanced stage III/IV tumor requires the combination of 
chemotherapy, radiation therapy, and/or surgery. Given this 
relatively uniform treatment, clinical outcome after curative 
therapy varies greatly. The advent of new surgical tech-
niques, radiation therapy, and chemotherapy have improved 
local control and overall quality of life, but survival rates for 
head and neck cancer have not increased signifi cantly. It is 
likely that the diversity in outcome refl ects intrinsic hetero-
geneity in the molecular components of individual tumors. 

 Clinical outcome is not accurately predicted by clinical, 
radiographic, or histologic characteristics. A limited number 
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of histologic features such as perineural, perivascular, or 
nodal extracapsular spread are associated with increased 
tumor aggressiveness and may infl uence management deci-
sions. Unfortunately, currently recognized individual mark-
ers associated with tumor development generally lack 
sensitivity or specifi city, and there is currently no single 
molecular marker that is used for patient management in 
HNSCC. Human papillomavirus (HPV) has emerged as a 
viral-mediated driver of oropharyngeal HNSCC. Although 
patients with HPV-positive HNSCC generally have better 
survival outcomes compared with individuals with HPV- 
negative disease, HPV status is not a part of current evidence- 
based NCCN (National Comprehensive Cancer Network) 
guidelines. Ongoing clinical trials include both surgical and 
nonsurgical phase II studies that are determining eligibility 
based, in part, on HPV (or its surrogate p16) tumor status. 

 Given the heterogeneity of genetic alterations found in 
these tumors, a greater understanding of the molecular basis 
of the biochemical pathways involved in carcinogenesis 
potentially can facilitate diagnosis, drug discovery, and ther-
apy for affected patients. These molecular changes involve 
interacting networks that operate at the transcriptional, trans-
lational, and posttranslational levels. Traditional approaches 
have generally not been useful due to the complexity of 
interactions, the diffi culty of fi nding the proper combinations 
of genes and proteins to investigate, and the reliance on tech-
niques that examine one or only several genes or proteins at 
a time. 

 The application of novel unbiased discovery technologies 
offers the opportunity for comprehensive and systematic 
molecular analysis to capture the complex cascade of events 
underpinning the clinical behavior of tumors. Tumors are 
believed to harbor molecular signatures that can be identifi ed 
through the combined application of high-throughput profi l-
ing techniques and sophisticated bioinformatics tools for 
complex data analysis and pattern recognition. The main 
underlying goal is the identifi cation of new targets that may 
provide insights into the underlying mechanisms of cancer 
biology, which in turn can potentially lead to novel 
approaches to cancer diagnosis, prediction of clinical out-
comes, and development of new therapeutic strategies.  

4.2     Oncogenomic Technologies 

 Cancer can be simplistically thought of as the overexpres-
sion of oncogenes and/or the silencing of tumor suppressor 
genes. However, in most cancers, including HNSCC, cancer 
development and progression is likely due to numerous 
genetic alterations involving a variety of different pathways. 
Although common alterations underlie many types of cancer, 
an individual cancer often develops due to an accumulation 
of specifi c mutations in DNA. Since these mutations accu-

mulate randomly, different combinations of mutations exist 
between different individuals with the same type of cancer. 
Cytogenetic analysis of cells has evolved from the gross 
visual analysis of chromosomes to a detailed study of the 
regions of chromosomal gain, loss, and translocation. 
Techniques used include comparative genomic hybridization 
(CGH) where normal and tumor DNA is labeled and hybrid-
ized to normal metaphase chromosomes and the fl uorescence 
pattern is then analyzed for increased or decreased intensity, 
representing copy number differences between genomes. 
Similarly, fl uorescent in situ hybridization (FISH) utilizes 
labeled sequence specifi c probes, allowing for the detection 
of particular genes of interest as well as visualization of copy 
number per cell. 

 More localized and specifi c analysis has been made pos-
sible through the advent of high-throughput DNA-sequencing 
facilities as well as novel approaches to examine genomic 
variability. Single nucleotide polymorphisms (SNPs) are 
areas in the genome with an altered DNA sequence that may 
represent markers for disease predisposition or may be used 
to genetically identify patients. Microsatellites are tandem 
nucleotide repeats that are generally located in noncoding 
areas of the genome. They can have variable length and have 
been mapped to specifi c chromosomal regions, allowing for 
detection of adjacent genes of interest. In addition, microR-
NAs are a noncoding family of genes involved in posttran-
scriptional gene regulation that are associated with cell 
proliferation, cell differentiation, cell death, and carcinogen-
esis. Each of these can be investigated through the use of 
array technologies. 

 Another commonly utilized platform for oncogenomic 
analysis is DNA microarray technology, which offers the 
capacity for parallel measurement of relative gene expres-
sion levels (Fig.  4.1 ). These technologies are based on the 
selective mRNA or cDNA hybridization to DNA probes on 
the array surface. There are two general categories of micro-
arrays, commercially available microarrays with defi ned 
content or microarrays produced with variable and customiz-
able content. Microarray technology involves DNA sequence 
hybridization onto microscopic surfaces, which can be read 
by a laser able to detect the signal of minute fl uorophores. 
These studies can incorporate nearly the entire known 
genome in a single experiment.

   Advances in DNA-sequencing technology now allow for 
large-scale whole-genome sequencing with high fi delity and 
low cost in a timely fashion. Collectively referred to as next- 
generation sequencing, these technologies can sequence 
upward of three billion bases in a single run [ 1 ]. There are 
currently over ten different strategies being applied to whole- 
genome sequencing. They employ technologies that vary 
from amplifying DNA fragments inside water droplets 
immersed in oil to the detection of electric currents created 
from the chemical reaction during DNA synthesis. One of 
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the fastest strategies includes engineered polymerases with 
reversible fl uorescent nucleotides that can rapidly terminate 
and restart DNA synthesis. This provides nucleotide read-
outs of over one million nucleotides/second. Accuracy varies 
between 98 % and 99.9 % depending on the sequencing 
strategy. Additionally, by looking at only the coding regions 
of a genome, the exome, one can rapidly identify all the 
expressed mutations in an individual tumor. 

 Each of these technologies generates large amounts of 
data from a single sample, particularly from tumor lysates or 
serum. Bioinformatics technologies enable the statistical 
analysis of the data and generate prediction algorithms to 
shortcut the experimental process. These data can be exam-
ined via unsupervised analysis using data based only on gene 
expression patterns regardless of the specifi c characteristics 
of the tissue being examined. This approach offers the poten-
tial to segregate different tumor types and allows identifi ca-
tion of tumor subtypes that are not distinguishable by clinical, 
radiologic, or histologic characteristics. By contrast, super-
vised approaches select genes with parameters or conditions, 
and the analysis is dependent on the supervising parameter to 
discriminate the groups or categories with highest prediction 
accuracy. A predictive gene list is generated from a training 
set and the results are then confi rmed by cross validation and 
analysis by an independent cohort of patient samples. 
Importantly for many cancers, including HNSCC, the molec-
ular data has been collated and organized into a readily avail-
able online database that can be accessed by researchers 
worldwide (Table  4.1 ). The Cancer Genome Atlas (TCGA) 
provided by the National Cancer Institute has sequenced 528 

head and neck tumors to date and represents a valuable trans-
lational research resource [ 8 ].

4.3        Proteomic Technologies 

 Proteome analysis is complementary to DNA microarray and 
sequencing technologies. Some techniques of proteomic 
analysis are widely used and clinically applicable such as 
enzyme-linked immunosorbent assay and immunohisto-
chemistry, while others are used primarily as research tools 
such as immunoblotting and immunoprecipitation. Most of 
these techniques are limited to the study of only one or a few 
proteins at a given time. More comprehensive screening is 
permitted through 2D gel electrophoresis (2-DE). 2-DE is 
the method with the highest resolution for separation of pro-
tein mixtures and is believed to be superior for pattern analy-
sis of complex samples. However, 2-DE may be diffi cult to 
use with certain proteins such as membrane proteins and 
basic proteins and has limited resolution of proteins in the 
low molecular weight spectrum. 2-DE separates proteins 
according to isoelectric points (isoelectric focusing) fol-
lowed by separation according to molecular mass (SDS- 
PAGE). Peptide mass fi ngerprinting permits in-gel digestion 
of the protein spot of interest with a specifi c enzyme and 
resulting peptides are extracted from the gel and molecular 
weights of these peptides are measured. Alternatively, the 
peptides can be fragmented in a mass spectrometer yielding 
partial amino acid sequences from the peptides, which act as 
sequence tags. 

  Fig. 4.1    Algorithm for using 
DNA microarray analysis to 
identify altered expression 
levels in HNSCC. After 
careful selection of patients, 
tissue samples are collected 
from study participants and 
mRNA is isolated. The 
mRNA represents the 
expression profi le of the 
isolated cells as only active 
genes will produce 
mRNA. Microarray data from 
various tissues can be 
compared to generate 
differential expression 
patterns refl ective of 
variations in gene expression 
between subjects. This data 
can be combined to defi ne 
cancer signatures refl ective of 
specifi c steps in tumorigenesis       
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 Fundamentally important to recent advances in pro-
teomics have been improvements in the speed, accuracy, 
and sensitivity of mass spectrometry (MS) instruments for 
the analysis of complex protein mixtures or tissues 
(Fig.  4.2 ). MS analyzes proteins or peptides as ions, which 
can be distinguished based on mass to charge ratio ( m / z ). 
Basic components of the instrument are the ion source that 
volatilizes and ionizes the proteins, the mass analyzer 

which separates proteins based on  m / z  values, and the 
detector which detects the sample after separation. The two 
most commonly used MS approaches are matrix-assisted 
laser desorption ionization (MALDI) and surface-enhanced 
laser desorption ionization (SELDI). These high-through-
put methodologies have the ability to observe large num-
bers of protein events. Furthermore, as compared to 2-DE, 
they permit improved speed, high-throughput capability, 

    Table 4.1    Publically available HNSCC microarray gene expression datasets   

 Authors  Tissue samples  Platform 

 Cohen et al. [ 2 ]  10 primary HNSCC  Affymetrix HG-U133 Plus 2 

 Rickman et al. [ 3 ]  186 primary HNSCC  Affymetrix HG-U133 Plus 2 

 Thurlow et al. [ 4 ]  71 primary HNSCC, 14 normal oral epithelium  Affymetrix HG-U133 Plus 2 

 Chung et al. [ 5 ]  40 primary HNSCC from 29 patients  Affymetrix X3P 

 Chung et al. [ 6 ]  55 primary HNSCC, 5 recurrent  Agilent Human 1 

 Walter et al. [ 7 ]  138 tumors from larynx, oral cavity, oropharynx and hypopharynx  Agilent 44 K microarray 

 TCGA [ 8 ]  528 primary HNSCC from 508 patients (as of 11/2014)  >20 platforms 
 (  https://tcga-data.nci.nih.gov/tcga/
tcgaPlatformDesign.jsp    ) 

 Toruner et al. [ 9 ]  16 primary oral cavity SCC and 4 adjacent normal tissue from 16 patients  Affymetrix HG-U133A 

 Ye et al. [ 10 ]  26 primary oral cavity SCC and 12 adjacent normal tissues from 26 
patients 

 Affymetrix HG-U133A 

 Kuriakose et al. [ 11 ]  22 primary HNSCC and 22 adjacent normal tissues from 22 patients  Human Genome U95A (Affymetrix) 

 Sticht et al. [ 12 ]  35 primary oral cavity SCC from 35 patients and 6 normal oral tissue from 
normal controls 

 Human Oligo Set 4.0 (Operon) 

 Pyeon et al. [ 13 ]  42 primary HNSCC from 42 patients and 14 normal oral tissue from 
normal controls 

 Affymetrix HG-U133A 

∗

∗

∗

Ionization Mass
Analyzer Detector

Non-tumor

Protein Fingerprint

Tumor

  Fig. 4.2    Mass spectrometry 
approaches to biomarker 
analysis. Analysis begins with 
a protein or peptide mixture 
that is processed to maximize 
the number of detected 
differentially expressed 
proteins. The sample is 
subsequently ionized by a 
variety of instruments such as 
a laser and separated by a 
mass analyzer (time-of-fl ight 
or ion trap) based on mass 
and charge. The resulting 
spectra are representative of 
the ionized proteins within the 
initial sample. Bioinformatics 
approaches are then utilized 
to compare the spectra to 
identify unique and differing 
protein components ( asterisk  
indicates differentially 
expressed  m / z  species)       
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lower amounts of protein sample, effective resolution of 
low mass proteins, and direct application to assay develop-
ment. Furthermore, sample loading and processing can be 
fully automated.

   MALDI is commonly used for bioanalysis and employs 
laser energy to ionize and volatize proteins. A matrix such as 
a UV-absorbing organic acid is mixed with the sample to 
absorb laser energy and transfer it to the proteins to generate 
ions, which are then transferred to the mass analyzer. 
Ionization is not uniform and depends on relative protein 
abundance and intrinsic chemical characteristics. MALDI is 
generally coupled with a time-of-fl ight (TOF) mass analyzer, 
which separates proteins based on time to traverse a fl ight 
tube and strike a detector. MALDI-TOF-MS is a particle- 
counting method that relies on molar abundance. It requires 
minimal sample preparation, can distinguish hundreds to 
thousands of proteins from a complex mixture, and can 
detect subtle protein modifi cations. However, MALDI has a 
limited mass range and limited sensitivity for low-abundance 
proteins, and proteins with extremely high concentration can 
interfere with detection of proteins with similar  m / z  ratios. 

 SELDI utilizes a surface to capture and partially purify 
proteins from a complex sample based on physical and bio-
chemical properties and is dependent on protein conforma-
tional stability for reliable detection. A variety of coated 
surfaces are presently available that bind proteins based on 
hydrophobicity, anionic or cationic charge, or binding to 
metals. SELDI also partially purifi es the protein sample, 
making it less complex than the similar unfractionated sam-
ple for MALDI. This partial purifi cation may lose critical 
proteins, but theoretically generates fewer problems with 
highly abundant proteins. When the process is expanded to 
many hundreds of samples, population-specifi c protein 
expression profi les can be deduced that are characteristic of 
the assayed group. However, the identifi ed mass spectrum 
does not enable protein identifi cation and none of the inter-
actions are specifi c. 

 Reverse phase protein array (RPPA) is another high- 
throughput platform for marker screening. RPPA utilizes 
lysed histopathologically relevant pure cell populations. The 
lysate is immobilized in an array confi guration via a pin- 
based microarray onto nitrocellulose slides with each spot 
containing the whole cellular protein contents. Each slide is 
then probed with an antibody that can be detected by a vari-
ety of assays. Protein samples are arrayed in miniature dilu-
tion curves to ensure that the analyte of interest remains in 
the linear range of detection. A subset of HNSCC TCGA 
samples have been analyzed by RPPA and the proteomic 
information is publically available. 

 Tissue microarray (TMA) technology applies advanced 
array-based approaches to data gathering with standardized 
medical pathology laboratory practices. A TMA block is 
loaded with freshly sectioned core biopsies from paraffi n- 

embedded tissues derived from cohorts of cancer patients on 
a single slide. Automated digital image capture is followed 
by pathologist scoring of the image. Further evolution in the 
analysis of stained TMA sections involves automated scor-
ing of staining intensities and features on TMA slides using 
image analysis software. TMA provides the capability to 
perform rapid analysis of comprehensive panels of normal 
and disease specimens. TMA allows visualization of molec-
ular targets in up to thousands of tissue specimens at a time 
and reveals cellular localization, prevalence, and clinical sig-
nifi cance of candidate genes and gene products. However, 
TMA is limited by the availability of antisera, only provides 
a semiquantitative estimation of protein levels, and may miss 
important histologic areas due to the small size of the core 
biopsies utilized in these arrays.  

4.4     Oncogenomics of HNSCC 

4.4.1     Genomic Changes Underlying 
Malignant Transformation 

 Cancer develops from the accumulation of various genetic 
alterations. DNA microarrays and whole-exome sequencing 
have emerged as powerful tools for the parallel measurement 
of relative gene expression levels in HNSCC (Table  4.1 ). The 
usage of DNA microarrays and genome sequencing to gener-
ate clinically relevant molecular signatures has grown in its 
acceptance. Early studies showed the heterogeneous nature 
of HNSCC tumors at the molecular level. However, direct 
comparison between studies has often proved diffi cult due to 
the variety of gene expression arrays, platforms, and data 
analysis algorithms used. 

 HNSCC cell line studies have provided initial insights 
into the genetic variations that may underlie the cancer phe-
notype using these preclinical models. Cell lines offer rela-
tive homogeneity of samples for investigation but may suffer 
from artifacts of immortalization and passage in vitro com-
pared with human tumors. One microarray study analyzed 
25 HNSCC cell lines and one immortalized human oral kera-
tinocyte cell line and found wide alteration in the gene 
expression in cell cycle regulation, oncogenesis, cell 
 proliferation, differentiation, and apoptosis [ 14 ]. This study 
revealed two distinctive subtypes of gene expression pat-
terns, but these patterns did not seem to correlate with the 
clinical staging or differentiation grade of the original 
tumors. Another study used SNP array-based loss of hetero-
zygosity (LOH) profi ling on whole-genome loss of 41 
HNSCC cell lines and found several frequent LOH regions 
[ 15 ]. This report identifi ed a region on chromosome 8 that 
exhibited the most frequent LOH (87.9 %) and found that the 
mitochondrial tumor suppressor gene 1, a candidate tumor 
suppressor gene residing in this area, was consistently down-
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regulated in expression, suggesting that it may be a tumor 
suppressor in HNSCC. 

 Another report utilized genome-wide comparative 
genomic hybridization and expression microarray analyses 
to reveal known and novel amplicons that showed concomi-
tant increase of copy number and expression of target genes 
for both laryngeal SCC cell lines and primary tumors [ 16 ]. 
They found that the overexpression of 739 genes could be 
attributed to gene copy number alteration in cell lines, of 
which 325 genes showed the same phenomenon in primary 
tumors. Subsequently, this group analyzed oral tongue SCC 
cell lines and found that these cell lines exhibited similar 
genomic alterations as had been previously found in their 
laryngeal SCC cell lines despite the differences in clinico-
pathologic features between these anatomic subsites [ 17 ]. A 
wide variety of genes were found to be altered including 
deletions of known tumor suppressor genes including  FHIT , 
 CSMD1 , and  CDKN2A . 

 Other studies have attempted to provide a framework for 
improving our understanding of the molecular events under-
pinning various aspects of these tumors. The progression of 
normal epithelia through premalignancy to HNSCC is a mul-
tistep process that has been associated with distinct histo-
logic characteristics at each stage. An early study analyzed 
invasive SCC lesions from the oropharynx and oral cavity, 
and using hierarchical clustering analysis, they were able to 
show that oral SCC was distinguishable from normal oral 
tissue, but there was heterogeneity among the tumors even of 
a particular histopathologic grade and stage [ 18 ]. This study 
identifi ed 239 genes that were overexpressed and 75 genes 
that were downregulated, but could not fi nd statistically sig-
nifi cant differences in gene expression between metastatic 
and nonmetastatic tumors. Later, another group established a 
transcriptional progression model of HNSCC in the progres-
sion from normal mucosa to dysplastic epithelium to inva-
sive HNSCC [ 14 ]. Matched samples were analyzed using 
gene expression arrays, signifi cance analysis of microarrays, 
hierarchical clustering, and principal components analysis to 
identify genes with differential expression patterns between 
the tissue groups. The progression from normal to premalig-
nant was associated with altered expression of 334 genes 
(108 upregulated and 226 downregulated), while the pro-
gression of premalignant to malignant was only associated 
with altered expression of 18 genes (5 upregulated and 13 
downregulated). This transcriptional model suggested that 
the majority of alterations occurred before the development 
of invasive cancer. 

 An alternative strategy was used in another study employ-
ing forward and stepwise logistic regression analyses to 
identify potential biomarkers for the early detection of oral 
SCC by comparing gene expression of primary oral SCC, 
oral dysplasia, and clinically normal oral tissue [ 15 ]. They 
identifi ed combinations of genes, which differentiated oral 
SCC from controls that included laminin-gamma 2 chain, 

collagen type IV alpha 1 chain, collagen type I alpha 1 chain, 
and peptidyl arginine deiminase type 1. Another group ana-
lyzed 41 HNSCC tumors from various anatomic sites and 
compared them with normal oral mucosa with gene expres-
sion arrays [ 16 ]. They used statistical and data-fi ltering crite-
ria to identify 2890 genes differentially expressed between 
the two groups and revealed functional gene expression sig-
natures that were highly represented in HNSCC including 
those involved in infl ammatory response, epidermal differ-
entiation, cell adhesion, and extracellular matrix functions. 
They suggested that the disease signature is an intrinsic fea-
ture of a HNSCC and may function as a predictor of early 
local treatment failure. 

 Several studies have attempted to build on the growing 
lists of putative biomarkers by generating gene sets, which 
may be able to lead to useful predictions regarding the pro-
pensity for a given lesion to be or develop into a cancerous 
lesion. One study matched tumor and normal specimens from 
the oral cavity and analyzed microarray gene expression data 
with a supervised learning algorithm [ 17 ]. This study gener-
ated a 25-gene signature that could classify normal and tumor 
specimen that was highly accurate on independent validation 
test sets but failed to predict non-oral tumors. Many of the 
genes in the predictor set had been previously implicated in 
oral SCC. The predictor set comprised several epithelial 
marker genes that had categories of potential interest includ-
ing extracellular matrix components and cell adhesion mole-
cules. Similarly, a different group attempted to generate a 
classifi er set for oral SCC and leuokoplakias and found dif-
ferential expression of 118 marker gene candidates by com-
plementary DNA microarray [ 18 ]. Further evaluation 
demonstrated an 11-gene predictor set that could distinguish 
the two groups with greater than 97 % accuracy. 

 Most recently, there have been collaborative efforts to 
sequence the exome of HNSCC tumors. In 2011, two groups 
reported on genome data from 125 tumors [ 19 ,  20 ]. The 
whole-exome sequencing of 92 tumors provided a snapshot 
of the commonly mutated genes and signaling pathways for 
individual tumors [ 19 ]. Not surprisingly, this data validated 
many of the smaller sequencing efforts in the literature. The 
most commonly mutated genes were involved in cell death 
(TP53, PTEN, PIK3CA) and proliferation (CDKN2A, 
HRAS). This work revealed a previously unknown contribu-
tion from genes involved in terminal differentiation of squa-
mous cells (NOTCH1, IRF6, TP63). Additionally, there 
were clear mechanistic differences between patients whose 
cancers were driven by tobacco and alcohol exposure as 
compared to HPV-positive tumors in the oropharynx. HPV- 
positive oropharyngeal tumors had two- to fourfold fewer 
mutations, did not have TP53 mutations, and were more 
likely to have PIK3CA-activating mutations. Interestingly, 
the impact of HPV on HNSCC outside the oropharynx does 
carry the same impact on mutation rate [ 21 ]. Overall, there 
were few activating mutations observed in the sequence data, 
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and the majority of mutations were tumor suppressor genes. 
The phosphoinositol 3-kinase (PI3K) pathway is one of the 
few pathways that have activating mutations. Inhibitors of 
PIK3CA are in phase I and II clinical trials.  

4.4.2     Genomic Changes Underlying 
Metastases 

 Metastasis is the principal cause of death in patients suffer-
ing from cancer, but the underlying molecular mechanisms 
are poorly understood. It is widely believed that the accumu-
lation of genetic damage leads to the expression of a malig-
nant phenotype that precedes metastasis formation. In order 
for a tumor to metastasize, it has to gain a number of func-
tions distinct from the primary tumor. These include the abil-
ity to adhere to and then traverse the basement membrane, 
pass through an extracellular matrix, enter and exit the blood 
stream, and fi nally invade a new microenvironment to repli-
cate. To do so requires a number of molecular changes dis-
tinct from cellular division [ 22 ]. 

 Several groups have investigated differences in gene 
expression between head and neck primary tumors that had 
or had not metastasized. In one analysis of tumors from the 
oral cavity and oropharynx, 101 genes demonstrated signifi -
cant expression differences between the metastatic and non-
metastatic tumors [ 23 ]. These genes included a variety of 
cellular functions putatively associated with cancer behavior, 
and the gene with the greatest differential expression between 
the metastatic and nonmetastatic tumors was collagen type 
11 alpha 1. A different study used microarray analysis to 
measure gene expression changes associated with tumor pro-
gression in patients with stage III or stage IV untreated oral 
SCC [ 24 ]. They identifi ed 140 genes that consistently 
increased in expression during progression from normal tis-
sue to invasive tumor to metastatic node as well as 94 genes 
that decreased in expression in a similar progression, which 
revealed a distinct pattern of gene expression during the pro-
gression from histologically normal tissue to primary carci-
noma to nodal metastasis. 

 In another study, 82 primary tumors located in the oro-
pharynx or oral cavity regions were analyzed using DNA 
microarray gene expression profi ling [ 25 ]. This study estab-
lished a set of 102 predictor genes for determining the pres-
ence of lymph node metastases. Many of the predictor genes 
they found were previously implicated in metastasis. The 
application of this gene set to a validation group gave an 
overall predictive accuracy of 86 % as compared with 68 % 
based solely on clinical diagnosis. A subsequent study 
implemented this dataset as a reference dataset and an inde-
pendent gene expression dataset of metastasized and non- 
metastasized HNSCC tumors as validation dataset [ 26 ]. 
They utilized supervised gene-based and pathway-based 

analysis to evaluate differences in gene expression to enhance 
the understanding of the biological context of the results. 
The identifi ed gene sets were involved in extracellular matrix 
remodeling (including matrix metalloproteinases (MMPs) 
and their regulatory pathways) as well as hypoxia and 
angiogenesis. 

 Another group looked at 186 primary tumors and ana-
lyzed the samples with respect to whether the development 
of metastasis was the fi rst recurrent event [ 3 ]. They collected 
transcriptome and array-comparative genomic hybridization 
data followed by non-supervised hierarchical clustering to 
distinguish tumors differing in pathological differentiation. 
They were able to identify associated functional changes and 
created a four-gene model ( PSMD10 ,  HSD17B12 ,  FLOT2 , 
and  KRT17 ) which predicted metastatic status with 77 % 
success in a separate validation group, and the prediction 
was independent of clinical criteria. Similarly, another study 
revealed that gene expression patterns in 60 primary and pre-
viously untreated HNSCC allowed the tumors to be catego-
rized into four distinct subtypes with statistically different 
recurrence-free survival [ 6 ]. Clinical nodal staging resulted 
in low prediction accuracy when used as the supervising 
parameter. However, supervised analyses using pathological 
staging to predict lymph node metastasis status improved the 
prediction accuracy of gene expression from the primary 
tumor, which was further improved by analysis based on 
anatomic subsites leading to a prediction accuracy of 83 %. 

 A large-scale gene expression analysis of the hypophar-
ynx, a location associated with particularly aggressive 
behavior, found 119 genes that were highly differentially 
expressed between early and late tumors [ 27 ]. Furthermore, 
164 differentially expressed genes were found that differen-
tiated between relatively non-aggressive and aggressive 
tumors. Clustering of the associated probe sets defi ned the 
two groups of samples and correctly assigned 92 % of the 
tumors. In a separate study, genome-wide analysis was per-
formed looking for LOH and allelic imbalance (AI) on speci-
mens of tumor stroma and tumor epithelium isolated by laser 
capture microdissection on 122 patients with HNSCC and a 
history of smoking [ 28 ]. They found nearly twice as many 
areas of LOH/AI within the stroma as was found in the epi-
thelium, more than 40 areas in total. Furthermore, they found 
three stroma-specifi c loci that were signifi cantly associated 
with tumor size and cervical lymph node metastasis, high-
lighting the importance of examining stromal and epithelial 
elements and suggesting that stromal alterations play an 
important role in HNSCC behavior. 

 In the last 7–10 years, a new concept has been solidifi ed 
regarding metastases of squamous cell carcinoma. This 
refl ects recognition of dedifferentiation of squamous cells 
from an epithelial molecular profi le to a more primal mesen-
chymal phenotype, normally present in embryonic develop-
ment, but lost in mature tissues. This change in gene 
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expression has collectively been referred to as “epithelial to 
mesenchymal transition” (EMT). During EMT, many of the 
genetic changes documented above occur including a loss of 
cell attachment via changes in integrins (E-cadherin), activa-
tion of matrix metalloproteinases, and activation of genes 
involved with cell migration. In metastatic HNSCC, these 
tumors have altered patterns of expression, refl ecting these 
changes with changes in EMT-related genes including  snail  
and  twist  [ 29 ]. 

 Finally, although head and neck cancer cells may become 
mesenchymal as they leave their primary site and metasta-
size, they switch back to an epithelial expression pattern 
once they arrive in a new distant site. It is currently unknown 
how this occurs, but recent evidence regarding a chloride ion 
channel may provide insight regarding this behavior. 
 TMEM16A (Ano1) , a calcium-activated chloride channel, is 
frequently overexpressed in HNSCC and has been shown to 
behave as an oncogene [ 30 ]. When  TMEM16A  is inhibited in 
stable cell lines, these cells became more motile and were 
able to metastasize in a mouse model [ 31 ]. On the expression 
level, inhibition of the ion channel correlated with an expres-
sion pattern of a mesenchymal phenotype, while overexpres-
sion correlated with an epithelial phenotype. Dynamic 
changes in ion channel function may play a role in how cells 
transition between these phenotypes.  

4.4.3     Genomic Changes Underlying Variable 
Responses to Treatment 

 Treatment protocols often involve the use of chemotherapy 
and/or radiation. Several recent studies have directed their 
attention toward the identifi cation of genetic alterations that 
would give prognostic information regarding a given tumor’s 
likelihood of response to various treatment protocols. 
Cetuximab, the  EGFR  antagonist, was initially developed as 
a potential radiosensitizer, when it was observed that tumors 
with high  EGFR  expression were radioresistant. 

 One study on HNSCC cell lines that exhibited relative 
radioresistance and radiosensitivity identifi ed 167 genes 
that were signifi cantly overexpressed in radioresistant cells, 
25 of which included cancer-related genes involved in 
growth, proliferation, apoptosis, and adhesion [ 32 ]. Another 
study used signifi cance analysis of microarrays for gene 
selection and a multivariate linear regression model for pre-
diction of radiosensitivity [ 33 ]. They identifi ed three novel 
genes whose expression values correlated with radiation 
sensitivity, and the overexpression of one of these genes, 
 RbAp48 , in a cancer cell line induced radiosensitization. 

 The use of tissue microarrays has also been used clini-
cally to fi nd genes that may help predict a response to ther-
apy. Recently, 38 patients who received radiation were 

analyzed using a cDNA tissue microarray, and fi ve candidate 
genes were identifi ed ( VEGF ,  BCL-2 ,  CLAUDIN-4 ,  YAP-1 , 
and  c-MET ) as predictors for response to therapy. Protein 
expression of these fi ve genes was then prospectively evalu-
ated in 86 patients who underwent radiation. All fi ve bio-
markers were predictive of a poor response to therapy and 
two ( YAP-1  and  c-MET ) were synergistic [ 34 ]. 

 In another study, 92 biopsies were obtained from untreated 
HNSCC patients prior to treatment with cisplatin-based 
chemoradiation for advanced HNSCC [ 35 ]. This group uti-
lized supervised analyses to predict locoregional control and 
disease recurrence and found several gene sets that were 
enriched in recurrences. They utilized a signature established 
by Chung et al. [ 6 ] for HNSCC defi ning a high-risk group 
and found it to be predictive for locoregional control and 
disease-free survival in their dataset. A more targeted analy-
sis utilized a cDNA array consisting of genes associated with 
angiogenesis and/or metastasis [ 36 ]. Seventeen genes were 
correlated with locoregional failure, of which  MDM2  and 
 erbB2  were found to be predictors of locoregional failure in 
their population of patients treated with CRT. 

 The biomarker  ERCC1 , a DNA repair enzyme, has been a 
strong biomarker for response to cisplatin. Cisplatin acts as 
an alkylating agent inducing lethal mutations in cell and 
preferentially targets dividing cells. Tumors that express 
high levels of  ERCC1  can repair these DNA mutations and 
are resistant to cisplatin. Patients whose tumors have low 
 ERCC1  expression are more susceptible to treatment. The 
usefulness of  ERCC1  to predict response to cisplatin has 
been documented prospectively in the treatment of non- 
small- cell lung cancer [ 37 ] as well as a recent randomized 
phase II clinical trial of HSNCC [ 38 ]. 

 Other targeted chemotherapeutics are in development. 
 TP53 , the most widely mutated gene in HNSCC, leads to 
loss of apoptosis and oncogenesis, and strategies to restore 
 TP53  function could be promising in the treatment of 
HNSCC. Recently, a small molecule 17-(allylamino)-17- 
demethoxygelanamycin (17AAG) has been shown to restore 
p53 function and induce increased cell death in HNSCC cell 
lines [ 39 ]. It remains to be seen what effect it can have in 
animal and human models.  

4.4.4     Genomic Changes Found in Surrogate 
Tissues 

 An evolving area of investigation involves the use of surro-
gate tissues in the investigation of HNSCC. Using saliva 
from patients with primary T1/T2 oral SCC with matched 
control patients in terms of age, gender, and smoking history, 
one group used microarrays to profi le the human salivary 
transcriptome [ 40 ]. They found 1679 genes that were signifi -
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cantly differentially expressed between the groups including 
seven cancer-related mRNA biomarkers that exhibited at 
least a 3.5-fold elevation in oral SCC saliva ( IL8 ,  IL1B , 
 DUSP1 ,  HA3 ,  OAZ1 ,  S100P ,  SAT ). The combination of four 
of these biomarkers had a discriminatory power of 91 % sen-
sitivity and specifi city for oral cancer detection. A subse-
quent study compared the clinical accuracy of saliva with 
that of blood by using RNA biomarkers for oral cancer detec-
tion [ 41 ]. Using four serum mRNA markers, a sensitivity of 
91 % and a specifi city of 71 % were obtained for distinguish-
ing oral cancer. However, the four salivary mRNA markers 
had a higher receiver operating characteristic curve value, 
demonstrating that for oral cancer detection, salivary tran-
scriptome diagnostics may demonstrate a slight advantage as 
compared with serum. 

 MicroRNAs (miRNAs) are small noncoding molecules of 
RNA, often 20 nucleotides in length, that act at the posttran-
scriptional level to change the expression of key genes and 
have emerged as a mechanism for transcriptional control of 
tumors, including HNSCC [ 42 ,  43 ]. As of June 2013, there 
were over 1600 human miRs documented. Many are specifi c to 
squamous epithelium and associated with all aspects of cellular 
function including cell cycle regulation, apoptosis, cell prolif-
eration, migration, and growth [ 44 ]. There are even miRNA 
expression profi les that are different between HPV- infected 
and non-infected cells. As with mRNA, miRs can be detected 
in saliva. A recent study of panel of three miRs, which are 
 differentially expressed in HNSCC, was tested in 112 subjects 
(56 with HNSCC and 56 normal controls) [ 45 ]. These three 
miRs (miR-9, miR-134, and miR-191) were able to discrimi-
nate with good reliability HNSCC from normal controls. These 
miRs were also validated by TCGA miR data. 

 In the current era of HPV-associated oropharyngeal 
HNSCC, both plasma and saliva have been investigated as 
markers for response to treatment. HPV-16 DNA can be 
detected in both saliva and plasma samples. The presence of 
HPV-16 DNA in both saliva and plasma has been noted to be 
100 % specifi c with a 100 % positive predictive value [ 46 ]. 
In this study however it had poor sensitivity (76 %) and very 
low negative predictive value (42 %). Interestingly, its pres-
ence after treatment was 91 % specifi c in predicting recur-
rence within 3 years.  

4.4.5     Meta-analyses of HNSCC Microarray 
Studies 

 A cumulative analysis looked at studies incorporating DNA 
microarray analysis to examine genetic expression changes 
associated with the development of HNSCC [ 47 ]. Eighty- 
four genes were identifi ed with common alterations in 

transcriptional expression across multiple studies. Many of 
these had been reported to be involved with HNSCC includ-
ing MMPs, integrins, collagens, fi bronectin, tenascin C, and 
cathepsin L, as well as many genes with less characterized 
roles in HNSCC. Only one gene, transglutaminase 3, was 
common to at least three of the reviewed studies. Overall, 
they found that genes encoding extracellular matrix and inte-
gral membrane proteins, cell adhesion molecules, and pro-
teins involved in epidermal development and differentiation 
were most frequently identifi ed in these studies. Furthermore, 
their results suggested a global downregulation of genes 
encoding ribosomal proteins and cholesterol biosynthesis 
enzymes and an upregulation of MMPs and infl ammatory 
response genes. 

 Another study looked at 63 HNSCC transcriptomic 
studies in three categories of comparisons, premalignant 
vs. normal (Pre), primary tumors vs. normal (TvN), and 
metastatic or invasive vs. primary tumors (Meta) [ 48 ]. 
They used a systems biology approach via network-based 
meta-analysis and verifi ed that 82 genes, 1260 genes, and 
321 genes in the Pre, TvN, and Meta comparisons, respec-
tively, were found reported at least twice. Overall, 1442 
unique genes were reported at least twice in the studies 
that they analyzed. In terms of the direction of fold changes 
of the verifi ed genes, the least contradiction was found in 
the TvN group and the most contradiction was found in the 
Pre group. Furthermore, they found that few genes over-
lapped between the Pre and Meta groups, although many 
genes overlapped between the other pairs of comparisons. 
Genes that were highly reported in prior studies across all 
three stages were  ECM1 ,  EMP1 ,  CXCL10 , and  POSTN . 
Subsequently, they constructed knowledge-based net-
works, which revealed that integrin signaling and antigen 
presentation pathways were highly enriched in the dataset, 
and they found that chromosomal regions of 6p21, 19p13, 
and 19q13 had genomic alterations that were correlated 
with the nodal status of HNSCC. 

 There are currently 12 published gene expression datasets 
of HNSCC publically available with full clinical annotation 
[ 49 ]. Three of them were obtained using the same Affymetrix 
platform (U133 plus 2.0) and contain nearly 21,000 gene 
transcripts. These three datasets were recently used to 
 generate a 172-gene profi le to risk-stratify patients as either 
high or low for disease recurrence and then validated against 
six other datasets. This most recent gene profi le compares 
well to the four other genetic signatures also generated by 
microarray data (radiosensitivity index, 13-gene SCCA sig-
nature, hypoxia metagene, and 42-gene high-risk signature). 
These genetic signatures are working their way toward a 
clinical- grade assay for detecting HSNCC and determining 
the severity of disease.   
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4.5     HNSCC Proteomics 

4.5.1     Tumor Tissue Studies 

 High-throughput proteomic technologies have been utilized 
to detect biologically signifi cant differences in protein 
expression of HNSCC in the same types of samples utilized 
in gene expression analysis. These studies have used a vari-
ety of techniques as outlined earlier in the chapter. One study 
utilized SELDI-TOF-MS to generate proteomic spectra and 
used the “Lasso algorithm” to extrapolate proteomic patterns 
that can best discriminate HNSCC patients from non-cancer 
controls which identifi ed 65 signifi cant data points to be used 
for discrimination [ 50 ]. Testing of these points yielded mod-
erate sensitivity of 68 % and specifi city of 73 % indicating 
that with further improvement and validation, it may be use-
ful as a screening test for HNSCC in the future. More 
recently, another study analyzed 113 HNSCC, 73 healthy, 99 
tumor-distant, and 18 samples of tumor-adjacent squamous 
mucosa by SELDI-TOF-MS [ 51 ]. They found 48 protein 
peaks differentially expressed between healthy mucosa and 
HNSCC. A supervised prediction analysis revealed greater 
than 90 % classifi cation of healthy mucosa and tumor sam-
ples, and 72 % of the tumor-adjacent mucosa samples were 
predicted as aberrant, providing evidence for the existence of 
genetically altered fi elds with inconspicuous histology. 

 MALDI-TOF has also been successfully used in HNSCC 
proteomic studies. In one such investigation, MALDI-TOF 
was coupled with magnetic bead fractionation to analyze an 
HNSCC cohort consisting of matched pretreatment and 6–12 
month posttreatment samples for analysis [ 52 ]. A set of 
approximately 200 spectral peaks was used and was able to 
largely correctly classify normal from pretreatment HNSCC 
samples, pretreatment from posttreatment, and normal from 
posttreatment samples. This showed the potential for use of 
this technology as a discovery platform in order to generate 
biomarker panels that potentially could be used for more 
accurate prediction of prognosis and treatment effi cacies for 
HNSCC. 

 Another study used multidimensional LC-MS/MS to 
identify proteins that are differentially expressed in HNSCC 
for cancer biomarker discovery [ 53 ]. More than 811 proteins 
were identifi ed which included structural proteins, signaling 
components, and transcription factors. They utilized a panel 
of the three best performing biomarkers, YWHAZ, stratifi n, 
and S100-A7, to discriminate cancerous from noncancerous 
head and neck tissue. Their differential expression was veri-
fi ed by immunohistochemistry, immunoblotting, and 
RT-PCR and achieved a sensitivity of 92 % and specifi city of 
87 % in an independent set of HNSCC in discriminating tis-
sue types. More recently, an analysis of samples from 
HNSCC patients with 2-DE and MALDI-TOF-MS revealed 
181 proteins with differential expression between pretreat-

ment and posttreatment samples [ 54 ]. Classifi cation by dis-
ease status revealed signifi cant differential expression of 16 
proteins including several protease inhibitors and other mol-
ecules with direct implications on tumor survival. Another 
study attempted to validate DNA microarray results on a 
subset of genes that could potentially serve as biomarkers of 
oral SCC [ 55 ]. This group identifi ed six potential biomarkers 
and used Q-RT-PCR to examine expression changes in oral 
SCC and normal control tissues, fi ve of which were validated 
by this technique. TMA analysis then revealed that four of 
the six biomarkers ( SPARC ,  POSTN ,  TNC , and  TGM3 ) had 
differential expression and localization. 

 Biomarker clinical results from the EGOG 2303 phase II 
trial, where locally advanced stage III/IV resectable HNSCC 
was treated with induction chemo followed by CRT, were 
recently published [ 56 ]. Forty-two of the 63 patients had tis-
sue samples available. A TMA was constructed and probed 
for the following proteins: EGFR, ERK ½, Met, Akt, STAT3, 
beta-catenin, E-cadherin, EGFR vIII, IGFR-1, NF-kB, p53, 
PI3Kp85, PI3Kp110a, PTEN, NRAS, and pRB. These pro-
tein biomarkers highlighted the important role that the MAPK 
and PI3K pathways play in HNSCC. Consistent with muta-
tional analysis, overexpression of the peptides in these path-
ways were associated with inferior overall survival and 
inferior progression-free survival. Protein expression of ERK 
1/2 had the most promising correlation with outcomes.  

4.5.2     Surrogate Tissue Studies 

 Serum studies have been widely used in investigations of 
HNSCC given the challenges in obtaining repeat tumor sam-
ples. One study used MALDI on sera from 99 HNSCC and 
143 controls to obtain serum protein patterns [ 57 ]. The mass 
spectra and linear discriminant analysis were used to select 
the top 45 spectral features. The subsequent spectral profi les 
from the sera of the HNSCC patients statistically signifi -
cantly differed from the sera of control subjects. In a separate 
study, samples were analyzed by SELDI-TOF, and 80 com-
mon peaks or clusters were generated from the training set 
and used to create classifi cation trees [ 58 ]. This algorithm 
correctly identifi ed 91 % of HNSCC sera in the training set 
and 83 % of HNSCC samples in the test set, yielding an 
overall sensitivity of 83 % and an overall specifi city of 90 %. 
Furthermore, they were able to identify a particular peak as 
the known biomarker metallopanstimulin-1 based on mass 
and whose relative intensity consistently correlated with lev-
els detected by radioimmunoassay. 

 More recent research has sought novel surrogate tissue 
sources, which may be convenient for investigation. 
Alterations in the levels of biomarkers have been investi-
gated in other body fl uids that are near or bathe tumor sites. 
Accordingly, saliva is an ideal complementary resource for 
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developing HNSCC diagnostics, and more recent study 
attempts have focused on the use of salivary proteomics for 
oral cancer biomarker discovery. One analysis collected 
saliva from 64 oral SCC and 64 healthy subjects and uti-
lized subtractive proteomics to fi nd that several salivary 
proteins were differentially expressed [ 59 ]. Five candidate 
biomarkers were validated and demonstrated high sensitiv-
ity (90 %) and specifi city (83 %) in detecting oral 
SCC. Another recent study found two proteins, alpha-1-B-
glycoprotein and complement factor B proteins, to be pres-
ent in patients with HNSCC but not in normal specimens, 
while cystatin S, parotid secretory factor, and poly-4-hydro-
lase beta-subunit proteins were detected in most normal 
saliva samples but not in HNSCC [ 60 ]. These results sug-
gest that certain proteins are differentially found in patients 
and normal saliva and a small set of proteins may be useful 
for future validation for clinical investigation. Finally, 
another study built on prior data indicating that the expres-
sion of IL-6 and IL-8 are uniquely associated with oral 
SCC. They analyzed patients with newly diagnosed T1 or 
T2 oral cavity or histologically confi rmed oropharyngeal 
SCC. Their analysis revealed that IL-8 was detected at 
higher concentrations in saliva and IL-6 was detected at 
higher concentrations in serum of patients with oral SCC, 
indicating that these markers and tissues hold promise for 
biomarker analysis in oral SCC [ 61 ]. 

 Tandem mass spectrometry has also been used to identify 
proteins that may serve as biomarkers for neck disease. A 
recent study used serum from 40 patients, 18 without neck 
disease, and quantifi ed 282 serum proteins [ 62 ]. Four candi-
date biomarkers (gelsolin, fi bronectin, angiotensinogen, and 
haptoglobin) were identifi ed, and the best one, gelsolin, had 
high validity for identifying node-positive HNSCC. Gelsolin 
is a cytosolic protein that regulates cytoskeleton assembly 
and disassembly. It is a protein that has been implicated in 
epithelial to mesenchymal transitions.   

4.6     Challenges of HNSCC Oncogenomics/
Proteomics 

 The application of these novel technologies offers many 
opportunities for advanced analyses of HNSCC (Table  4.2 ). 
With the completion of the Human Genome Project and 
advances in array technology, gene expression studies offer 
an opportunity to look at the full complement of genes 
expressed by a tumor. Gene expression profi ling experiments 
have generated a tremendous amount of information regard-
ing concomitant genetic events during disease. However, the 
functional consequences of disease are also regulated by the 
deregulation of protein products and protein networks so the 
information fl ow cannot be ascertained from gene analysis 
alone.

   Furthermore, there are a variety of potential pitfalls in 
microarray analysis that may obscure the quantifi cation of 
genes of interest. One of the most important variables relates 
to the quality of the transcripts utilized for the microarray, 
which may relate to initial and long-term tissue handling as 
well as processing of the transcripts for use in the microarray 
studies. A recent report indicated that there may be a storage 
time decrease in the predictive performance of tissue sam-
ples. There may be a decrease in the predictive performance 
of tissue samples based on their storage time. Other common 
causes of signal variations include errors with fl uidics proto-
cols, spoiled or omitted hybridization cocktail reagents, and 
inaccurate quantifi cation of labeled samples. There are also a 
variety of factors inherent to the microarray technology such 
as intensity-dependent dye effect and spatial-dependent dye 
effect that can infl uence the quantifi cation process. In addi-
tion, studies vary in the heterogeneity of the cell types 
included in the samples from 50 % tumor cells to the pure 
isolation of single tumor cells. 

 By contrast, proteins are dependent on highly regulated 
processes at the transcriptional, translational, and posttrans-
lational level (Table  4.3 ). Many of the standard proteomic 
approaches rely on the usage of complex protein mixtures 
and the indirect assignment of spectra to identify target pro-   Table 4.2    Key advantages and limitations of DNA microarrays   

 Advantages 

  – Provide insight into fl uctuations in gene transcription 

  – Capable of generating large amounts of expression data quickly 

  –  Current microarrays give expression data from essentially the 
entire genome 

  –  Technological advances have generated microarrays that can be 
implemented using automated, high-throughput strategies at 
reduced costs 

 Limitations 

  –  High-quality RNA is required for the generation of good 
expression data 

  –  Changes in RNA expression may not correlate with changes in 
protein levels 

  –  Advanced biostatistics are necessary to process vast amounts of 
data generated 

   Table 4.3    Key advantages and limitations of proteomic approaches   

 Advantages 

  –  Provide insight into fl uctuations in transcribed and translated 
gene products as well as posttranslational modifi cations 

  –  Capable of using a variety of tissue sources with minimal 
processing to analyze variations 

  – Increasingly offering high-throughput technologies 

 Limitations 

  – High-abundance proteins may obscure data 

  –  Generally only analyze a minority of proteins within the entire 
sample 

  –  Diffi cult to correlate individual spectral peaks/signatures with 
actual proteins 
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teins. These approaches are often hampered by the presence 
of large quantity proteins that may obscure quantifi cation of 
the proteins of interest. Accordingly, there has been increas-
ing interest in developing protein microarrays capable of 
identifying hundreds of protein events simultaneously; how-
ever, these arrays have a set of unique problems. Protein 
interactions are governed by complex associations between 
the target protein and the antigen-binding site on the anti-
body. Furthermore, proteins tend to denature with changes in 
pH or temperature, and antibodies must exhibit strong affi ni-
ties and specifi city to each of their respective substrates espe-
cially in the analysis of specifi c protein states such as 
phosphorylation or proteolytic cleavage. In addition, the 
variation in protein concentration in cells may vary widely, 
so detection methods must exist that can quantify protein 
concentration over many orders of magnitude.

   These studies also require careful experiment planning 
starting with the selection of appropriate controls. Many 
studies use matched “normal” epithelium, but this may con-
found interpretations of gene expression changes occurring 
in HNSCC tumorigenesis. Although logistically diffi cult to 
achieve, the theoretically ideal control tissue would match 
for patient age, gender, smoking and drinking history, and 
other variables to minimize further confounding factors.  

4.7     Conclusion and Future Directions 

 The goals of oncogenomics and proteomics are to improve 
diagnosis, therapy, and cure rates for cancer patients. A 
patient’s genomic signature of a cancer may serve as the 
basis for choosing the most effective therapy for the indi-
vidual patient to improve their chances of recovery and their 
quality of life. Oncogenomics and proteomics have pro-
gressed from molecular profi ling to model systems, cancer 
pharmacology, and clinical trials. With whole-genome 
sequencing, personalized tumor profi les are now possible. 
Although it is unlikely that a single biomarker will accu-
rately predict response to therapy, analyses that can detect 
multiple markers may have improved predictive value when 
used in combination. Imperfect biomarkers may still be clin-
ically useful for serial testing of single individuals because 
acute changes in biomarker levels may signal the need for an 
aggressive search for the cause. An important challenge for 
biomarker validation is the considerable molecular heteroge-
neity of individual cancers and the low overall incidence of 
the disease in general population, making it diffi cult to vali-
date the true prognostic potential of a biomarker or panel of 
biomarkers. Non-concordance of predictive gene lists is 
common in many microarray studies using different plat-
forms and data mining tools and may represent differences in 
experimental design or data analyses but also may represent 

true differences in biology based on different subsites or 
other unknown factors. 

 Furthermore, although current oncogenomic and proteomic 
approaches may yield valuable information in the identifi ca-
tion of novel diagnostic markers, gene and protein expression 
profi les may not be able to provide an alternative method of 
diagnosis on their own. It may become necessary to include 
other technologies such as metabolomics, peptidomics, gly-
comics, and lipidomics for better isolation and identifi cation 
of molecular targets. In order to obtain reliable prognostic 
markers, these technologies will need to be combined with 
advanced bioinformatics tools to integrate and mine the data 
from basic and clinical research. Once molecular signatures 
are successfully validated, it will also be important to perform 
long-term clinical studies to determine the validity of using 
these signatures in independent cohorts of patients for the 
 prediction of patient response to therapeutic options.     
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