
Chapter 9
Fractional Pharmacokinetics

It leads to a paradox, from which one day useful consequences
will be drawn.

Gottfried Wilhelm von Leibnitz (1646–1716)
when asked (1695) by Guillaume de L’Hospital

“what would be the result of half-differentiating?”

by Dr. A. DOKOUMETZIDIS
Faculty of Pharmacy National and Kapodistrian

University of Athens

Diffusion is one of the main mechanisms of various processes in living species
and as such, plays an important role in the course of a drug in the body. Processes
like membrane permeation, dissolution of solids, and dispersion in cellular matrices
are considered to take place by diffusion. As mentioned in Chapter 2, diffusion
is classically described by Fick’s law and is based on the fact that a molecule
makes a random walk, where its mean squared displacement is proportional to time.
However, in the last few decades, strong experimental evidence has suggested that
this is not always true and diffusional processes that deviate from this law have
been observed. These are either faster (super-diffusion) or slower (sub-diffusion)
than the classic case and the mean square displacement is a power of time, with
exponent greater or less than 1, respectively, [371]. This type of diffusion gives
rise to kinetics that are referred to as anomalous, to indicate the fact that deviate
from the classic description [371]. Moreover, anomalous kinetics can also result
from reaction-limited processes and long-time trapping. It is thought that anomalous
kinetics introduces memory effects in the process that need to be accounted for
to correctly describe it. As mentioned in Chapter 7, a theory that describes such
anomalous kinetics is the so- called fractal kinetics where explicit power functions
of time, in the form of time-dependent coefficients, are used to account for the
memory effects. In pharmacokinetics several data sets have been characterized by
power laws [269, 372] which has been justified by the presence of anomalous
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diffusion. These include mainly pharmacokinetics of drugs that distributed in deeper
tissues [369] and bone seeking elements [281, 373].

An alternative theory to describe anomalous kinetics uses fractional calculus
[30, 374], which introduces derivatives and integrals of fractional order, such as
half or 3 quarters. Although fractional calculus was introduced by Leibniz more
than 300 years ago, it is only within the last couple of decades that real-life
applications have been explored [375–377]. It has been shown that differential
equations with fractional derivatives describe experimental data of anomalous
diffusion more accurately. In this chapter the recent applications of fractional
calculus in pharmacokinetics are presented, which have formed a new area of
research referred to as fractional pharmacokinetics.

9.1 Fractional Calculus

9.1.1 The Fractional Derivative

Derivatives of integer order n, dnf .t/ =dtn of a function f .t/ are well defined. For a
fractional order of differentiation ˛, where for simplicity we assume that 0 < ˛ < 1,
the ˛-th derivative is defined through fractional integration and successive ordinary
differentiation. Fractional integration of order ˛ is defined, according to the
Riemann–Liouville integral [378]

0D�˛
t f .t/ , 1

� .˛/

Z t

0

�
t � t0

�˛�1
f

�
t0
�

dt0

where � .:/ is the gamma function. Consequently, fractional differentiation is
defined as

0D˛
t f .t/ , d
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�
1

� .1 � ˛/
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0

f .t0/
.t � t0/˛ dt0

�
:

This is the Riemann–Liouville definition of the fractional derivative. One can
notice that the fractional integration is basically a convolution integral between the
function and a power law of time, i.e., 0D�˛

t f .t/ D t˛�1 � f .t/, where the star
“�” denotes convolution, accounting for the memory effects of the studied process.
The fractional derivatives have properties that are not intuitive, for example, the
half derivative of a constant � with respect to x does not vanish and instead is
�=

p
�x. The left-side index “0” of the D operator denotes the lower end of the

integration which in this case has been assumed to be zero. However alternative
lower bounds can be considered leading to different definitions of the fractional
derivative with slightly different properties. An alternative lower bound which has
been considered is “�1” and is referred to as the Wyel definition [375], which
accounts for the entire “history” of the studied function, and is considered preferable
in some applications. In fact one of the disadvantages of the Riemann–Liouville
definition with the “0” lower bound is that when used in differential equations it
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gives rise to initial conditions that involve the fractional integral of the function and
are difficult to interpret physically. This is one of the reasons the Wyel definition has
been introduced, but this definition may not be very practical for most applications
either, as it involves an initial condition at time �1.

An alternative definition of the fractional derivative which is referred to as the
Caputo definition is preferable for most physical processes as it involves explicitly
the initial condition at time zero [374]. The definition is

C
0 D˛

t f .t/ D 1

� .1 � ˛/

Z t

0

�
f .t0/

.t � t0/˛ dt0

where the upper-left index “C” stands for Caputo and the “dot” in
�
f .t/ denotes

classic differentiation. This definition for the fractional derivative, apart from the
more familiar initial conditions, gives rise to more familiar properties, one of
them being that the Caputo derivative of a constant is in fact zero as usual. The
different definitions of the fractional derivative give different results but these are not
contradicting, since they apply for different conditions and it is a matter of choosing
the appropriate one for each specific application. All the definitions collapse to the
usual derivative for integer values of the order of differentiation.

9.1.2 Fractional Differential Equations

The most common type of kinetics encountered in pharmaceutical literature are
zero- and first-order kinetics. The fractional versions of these types of kinetics are
presented below and take the form of fractional order ordinary differential equations
(FDE). Throughout this presentation the Caputo version of the fractional derivative
is considered for the reasons already explained.

9.1.2.1 Zero-Order Kinetics

The classical zero-order kinetics equation, where the rate of change of quantity q .t/,
expressed in mass units, is considered to be constant and equal to k0, expressed in
.mass/ = .time/ units, is given by

�
q .t/ D k0. Its solution is a linear function of time

and when the initial condition is zero, it has the form q .t/ D k0t. The fractional
expression for the zero-order kinetics equation can be obtained by replacing the
derivative of order 1 by a derivative of fractional order ˛

C
0 D˛

t q .t/ D k0f

where k0f is a constant with dimension .mass/ = .time/˛ . The solution of this
equation for initial condition q .t/ D 0 is a power law [374]

q .t/ D k0f

� .˛ C 1/
t˛:
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9.1.2.2 First-Order Kinetics

The first-order differential equation, where the rate of change of quantity q .t/
is proportional to its current value, is given by

�
q .t/ D k1q .t/. Its solution by

considering an initial condition of q .t/ D q0 is given by the classical equation of
exponential decay q .t/ D q0 exp .�k1t/. In fractional terms however, the first-order
equation can be written by replacing the derivative of order 1 by a fractional one

C
0 D˛

t q .t/ D �k1f q .t/ (9.1)

where k1f is a constant with .time/�˛ dimension. The solution of this equation can
be found in most books or papers of the fast growing literature on fractional calculus
[374] and for initial condition q .t/ D q0 it has the form

q .t/ D q0E˛

��k1f t
˛
�

where E˛ .:/ is a Mittag–Leffler function [374] which is defined as

E˛ .x/ ,
1X

kD0

xk

� .˛k C 1/
:

The function E˛ .x/ is a generalization of the exponential function and it collapses
to the exponential when ˛ D 1, i.e., E1 .x/ D exp .x/. The general form of the
Mittag–Leffler function with two parameters ˛ and ˇ is also defined as

E˛;ˇ .x/ ,
1X

kD0

xk

� .˛k C ˇ/
:

The solution of equation 9.1 basically means that the fractional derivative of
order ˛ of the function E˛ .t˛/ is itself a function of the same form, exactly like the
classic derivative of an exponential is also an exponential. It also makes sense to
restrict ˛ to values 0 < ˛ < 1, since for values of ˛ larger than 1 the solution of
equation 9.1 is non-monotonous and negative values for q .t/ appear.

From these elementary equations the basic relations for the time evolution in drug
disposition can be formulated, with the assumption of diffusion of drug molecules
taking place in heterogeneous space.

9.1.3 Solving FDE by the Laplace Transform

FDE can easily be written in the Laplace domain since each of the fractional
derivatives can be transformed similarly to the ordinary derivatives, as follows, for
order ˛ � 1
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L
˚

C
0 D˛

t f .t/
� D s˛ Qf .s/ � s˛�1f .0/ (9.2)

where Qf .s/ is the Laplace transform of f .t/ [374]. For ˛ D 1, the Laplace
transform 9.2 collapses to the classic expression for ordinary derivatives, i.e.,
L ff .t/g D sQf .s/ � f .0/.

For example, the following simple FDE

C
0 D1=2

t q .t/ D �q .t/

with initial value q .0/ D 1 can be written in the Laplace domain, by applying the
transform 9.2, as follows

s1=2 Qq .s/ � s�1=2q .0/ D �Qq .s/ :

By substituting the initial value, the above can be rearranged as

Qq .s/ D 1

s C p
s

By applying the inverse Laplace transform to the previous expression, the analytical
solution of the FDE can be obtained; it is a Mittag–Leffler function of order one-
half, and

q .t/ D E1=2

��t1=2
� D exp .t/

�
1 C erf

��p
t
��

:

Although it is always easy to transform an FDE in the Laplace domain and in
most cases feasible to rearrange it, solving it explicitly for the system variables,
it is more difficult to apply the inverse Laplace transform, such that an analytical
solution in the time domain is obtained. However, it is possible to perform that step
numerically using a Numerical Inverse Laplace Transform (NILT) algorithm [379].

9.2 Fractional Calculus in Pharmacokinetics

9.2.1 A Basic Fractional Model

In the simplest pharmacokinetic relationship, the intravenous bolus injection with
first-order elimination in a one-compartment model, the drug concentration c .t/
follows the common expression

�
c .t/ D �k10c .t/
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where k10 is the elimination rate constant. The fractional version of this equation
[380] can be written as

C
0 D˛

t c .t/ D �k10f c .t/

where k10f is a constant with dimensions .time/�˛ . As already mentioned, the
solution of this equation can be written as

c .t/ D c0E˛

��k10f t
˛
�

for ˛ < 1 (9.3)

where c0 is the ratio .dose/ = .volume of distribution/. By introducing t0 D k
� 1

˛

10f , the
above equation becomes

c .t/ =c0 D E˛ Œ� .t=t0/
˛� : (9.4)

This equation for small times behaves as a stretched exponential, i.e.,

exp

�
� .t=t0/˛

� .1 C ˛/

�
;

while for large values of time as a power law, i.e.,

.t=t0/
�˛

� .1 � ˛/

(Figure 9.1). It is therefore a good candidate to describe various data sets exhibiting
power-law-like kinetics due to the slow diffusion of the drug in deeper tissues.

The relationship 9.3 applies for the simplest case of fractional pharmacokinetics.
It accounts for the anomalous diffusion process, which may be considered to be the
limiting step of the entire kinetics. Classic clearance may be considered not to be
the limiting process here and is absent from the equation.

9.2.2 Fractionalizing Linear Multicompartment Models

A single ordinary differential equation is easily fractionalized by changing the
derivative on the left-hand side to a fractional order as in the previous paragraph.
However, in pharmacokinetics and other fields where compartmental models are
used, two or more ordinary differential equations are often necessary and it is not
as straightforward to fractionalize systems of differential equations, especially when
certain properties such as mass balance need to be preserved.

When a compartmental model with two or more compartments is being built,
typically an outgoing mass flux becomes an incoming flux to the next compartment.
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Fig. 9.1 Log–log plot of relationship 9.4 (solid line), the stretched exponential function (dotted
line), and the power-law function (dashed line) for ˛ D 0:5. The relationship 9.4 starts close to the
stretched exponential and finishes close to the power function

Thus, an outgoing mass flux that is defined as a rate of fractional order cannot
appear as an incoming flux into another compartment, as a rate of a different
fractional order, without violating mass balance [381]. It is therefore, in general,
impossible to fractionalize multicompartment systems simply by changing the order
of the derivatives on the left-hand side of the ordinary differential equations. The
latter is possible only in the special case where a common fractional order is
considered for all ordinary differential equations, what is referred of commensurate
order. In the general case, of the non-commensurate orders, a different approach for
fractionalizing systems of ordinary differential equations needs to be applied.

In the following part, a general form of a fractional two-compartment system
is considered and then generalized to a system of an arbitrary number of compart-
ments, which first appeared in [382]. A general ordinary linear two-compartment
model is defined by the following system of linear ordinary differential equations

�
q1 .t/ D �k12q1 .t/ C k21q2 .t/ � k10q1 .t/ C u1 .t/ (9.5)
�
q2 .t/ D k12q1 .t/ � k21q2 .t/ � k20q2 .t/ C u2 .t/

where q1 .t/ and q2 .t/ are the mass or molar amounts of material in the respective
compartments and the kij constants control the mass transfer between the two
compartments and elimination from each of them. The notation convention used
for the indices of the rate constants is that the first corresponds to the source
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compartment and the second to the target one, e.g., k12 corresponds to the transfer
from compartment 1 to 2, k10 corresponds to the elimination from compartment 1,
etc. The dimensions of all the kij rate constants are .time/�1. Input rates ui .t/ in
each compartment may be zero, constant, or time dependent. Initial values for q1 .t/
and q2 .t/ have to be considered also, q1 .0/ and q2 .0/, respectively.

In order to fractionalize this system, first the ordinary system is integrated,
obtaining a system of integral equations and then the integrals are fractionalized
as shown in [382]. Finally, the fractional integral equations are differentiated in an
ordinary way. The resulting fractional system contains ordinary derivatives on the
left-hand side and with Riemann–Liouville derivatives on the right-hand side

�
q1 .t/ D �k12f 0D1�˛12

t q1 .t/ C k21f 0D1�˛21
t q2 .t/ � k10f 0D1�˛10

t q1 .t/ C u1 .t/
�
q2 .t/ D k12f 0D1�˛12

t q1 .t/ � k21f 0D1�˛21
t q2 .t/ � k20f 0D1�˛20

t q2 .t/ C u2 .t/

where 0 < ˛ij < 1 is a constant representing the order of the specific process.
Different values for the orders of different processes may be considered, but the
order of the corresponding terms of a specific process is kept the same when these
appear in different equations, e.g., there can be an order ˛12 for the transfer from
compartment 1 to 2 and a different order ˛21 for the transfer from compartment 2

to 1, but the order for the corresponding terms of the transfer, from compartment
1 to 2, ˛12, is the same in both equations. Also the index “f ” in the rate constant
was added to emphasize the fact that these are different to the ones of 9.5 and carry
dimensions .time/�˛ .

Now, it is convenient to rewrite the above FDE system with Caputo derivatives.
An FDE with Caputo derivatives accepts the usual type of initial conditions
involving the variable itself, as opposed to Riemann–Liouville derivatives which
involve an initial condition on the derivative of the variable, which is not practical.
When the initial values are zero then the respective Riemann–Liouville and Caputo
derivatives are the same. This is convenient since a zero initial value is very common
in compartmental analysis. When the initial value is not zero, converting to a
Caputo derivative is possible, for the particular term with a non-zero initial value.
The conversion from a Riemann–Liouville to a Caputo derivative is done with the
following expression

0D
1�˛ij
t qi .t/ DC

0 D
1�˛ij
t qi .t/ C qi .0/ t˛ij�1

�
�
˛ij

� : (9.6)

Summarizing about initial conditions, we can identify three cases .1ı/ the initial
condition is zero and then the derivative becomes a Caputo by definition, .2ı/

the initial condition is non-zero but it is involved in a term with an ordinary
derivative so it is treated as usual, .3ı/ the initial condition is non-zero and is
involved in a fractional derivative which means that in order to present a Caputo
derivative, an additional term, involving the initial value appears, by substituting the



9.3 Examples of Fractional Models 219

relationship 9.6. Alternatively, a zero initial value for that variable can be assumed,
with a Dirac delta input to account for the initial quantity for that variable.

So, the previous system of FDE with two compartments can be reformulated, by
using as fractional derivatives the Caputo derivatives. Also, it is easy to generalize
the above approach to a system with an arbitrary number of n compartments as
follows

�
qi .t/ D �ki0

C
0 D1�˛i0

t qi .t/ �
nX

j¤i

kij
C
0 D

1�˛ij
t qi .t/ C

nX
j¤i

kji
C
0 D

1�˛ji
t qj .t/ C ui .t/

(9.7)
for i D 1 W n. Here Caputo derivatives have been considered throughout since, as
explained above, this is feasible. The system of equations 9.7 is too general for most
purposes as it allows every compartment to be connected with every other. Typically
the connection matrix would be much sparser than that, with most compartments
being connected to just one neighboring compartment while only a few “hub”
compartments would have more than one connection.

The advantage of the described approach of fractionalization is that each
transport process is fractionalized separately, rather than fractionalizing each com-
partment or each equation. Thus, processes of different fractional orders can coexist
since they have consistent orders when the corresponding terms appear in different
equations. Also, it is important to note that equation 9.7 does not have problems,
such as violation of mass balance or inconsistencies with the units of the rate
constants.

As mentioned, FDE can easily be written in the Laplace domain. In the case
of FDE of the form of equation 9.7 where the fractional orders are 1 � ˛ij, the
relationship 9.2 becomes

L
n

C
0 D

1�˛ij
t qi .t/

o
D s1�˛ij Qqi .s/ � s�˛ij qi .0/ :

9.3 Examples of Fractional Models

9.3.1 One-compartment Model with Constant Rate Input

A one-compartment model with a fractional elimination and a constant rate input
is considered [382]. Even in this simple one-compartment model, it is necessary to
employ the approach of fractionalizing each process separately, described above,
since the constant rate of infusion is not in fractional order. That would have
been difficult if one followed the approach of changing the order of the derivative
of the left-hand side of the ordinary differential equation, however here it is
straightforward.
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The system can be described by the following equation

�
q .t/ D k01 � k10f

C
0 D1�˛

t q .t/ (9.8)

with q .0/ D 0 and where k01 is a zero-order input rate constant, with dimensions
.mass//.time/, k10f is a rate constant with units .time/�˛ , and ˛ is a fractional order
less than 1. The previous equation can be written in the Laplace domain as

sQq .s/ � q .0/ D k01

s
� k10f

�
s1�˛ Qq .s/ � s�˛q .0/

�
:

Since q .0/ D 0, the above equation can be solved to obtain

Qq .s/ D k01s˛�2

s˛ C k10f
:

By applying the following inverse Laplace transform formula (equation 1:80 in ref.
[374], page 21)

L�1

	
s˛�ˇ

s˛ C k



D tˇ�1E˛;ˇ .�kt˛/

where E˛;ˇ is the Mittag–Leffler function with two parameters. For ˇ D 2 the
following is obtained

q .t/ D k01tE˛;2

��k10f t
˛
�

: (9.9)

In theorem 1.4 of ref. [374], the following expansion for the Mittag–Leffler function
is proven to hold for jzj ! 1

E˛;ˇ .z/ D �
pX

iD1

z�i

� .ˇ � ˛/
C O

�
jzj�1�p

�
:

Applying this formula for relationship 9.9 and keeping only the first term of the
sum since the rest are of higher order, the limit of 9.9 for t going to infinity can be
calculated [382]

lim
t!1 fq .t/g D lim

t!1
˚
k01tE˛;2

��k10f t
˛
�� � lim

t!1

	
k01

k10f

t1�˛

� .2 � ˛/



D 1;

for ˛ < 1. The fact that the limit of the relationship 9.9 diverges when t goes
to infinity, for ˛ < 1, means that unlike the classic case, for ˛ D 1, where the
relationship 9.9 approaches exponentially the steady state k01=k10f , for ˛ < 1,
there is infinite accumulation. In Figure 9.2 left panel, a plot of relationship 9.9
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Fig. 9.2 For ˛ D 0:25, k10f D 0:1 h�˛ , and k01 D 1 mg= l : Plot of relationship 9.9 with constant
infusion (dashed line) which exhibits infinite accumulation and of relationship 9.10 with power-
law infusion (solid line) which approaches a steady state. In the right panel, the profiles of left
panel are for 10-times longer time span

is shown for ˛ < 1 showing that unlike the classic case where a steady state is
approached, in the fractional case the amount keeps rising. In Figure 9.2 right panel,
the same profiles are shown for 10-times larger time span, demonstrating the effect
of continuous accumulation.

The lack of a steady state under constant rate administration which results to
infinite accumulation is one of the most important clinical implications of the
presence of fractional pharmacokinetics. It is clear that this implication extends
to repeated doses as well as constant infusion, which is the most common dosing
regimen, and can be important in chronic treatments. In order to avoid accumulation
the constant rate administration must be adjusted to replaced by a decreasing with
time rate. Indeed, in equation 9.8, if the constant rate of infusion k01 is replaced by
the term f .t/ D k01t�.1�˛/ [378], then the solution of the resulting FDE is, instead
of relationship 9.9, the following

q .t/ D k01� .˛/ t˛E˛;˛C1

��k10f t
˛
�

: (9.10)

The previous solution converges to the steady state � .˛/ k01=k10f as time goes
to infinity, while for the special case of ˛ D 1, the steady state is the usual
k01=k10f . Similarly, for the case of repeated doses, if a steady state is intended to
be achieved, in the presence of fractional elimination of order ˛, then the usual
constant rate of administration, e.g., a constant daily dose, needs to be replaced by an
appropriately decreasing rate of administration. As shown in [378], the decreasing
rate of administration can be achieved by the following two approaches. The first
approach uses the same dose given at increasing inter-dose intervals, i.e.,

Ti D �
T˛

i�1 C ˛��˛
�1=˛

;
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where Ti is the time of the i-th dose and �� is the inter-dose interval of the
corresponding kinetics of order ˛ D 1. The second approach is based on a
decreasing dose q0;i described by the following equation

q0;i D q0

˛
Œ.i C 1/˛ � i˛� :

given at constant time intervals. In this way an ever decreasing administration
rate is implemented which compensates the decreasing elimination rate due to the
fractional kinetics.

9.3.2 Two-Compartment Intravenous Model

Based on the generalized approach for the fractionalization of compartmental
models, which allows mixing different fractional orders, developed in the previous
section, a two-compartment fractional pharmacokinetic model is considered, shown
schematically in Figure 9.3. Compartment 1 (central) represents general circulation
and well-perfused tissues while compartment 2 (peripheral) represents deeper
tissues. Three transfer processes (fluxes) are considered: elimination from the
central compartment and a mass flux from the central to the peripheral compartment,
which are both assumed to follow classic kinetics (order 1), while a flux from the
peripheral to the central compartment is assumed to follow slower fractional kinetics
accounting for tissue trapping.

The system is formulated mathematically as follows

�
q1 .t/ D � .k10 C k12/ q1 .t/ C k21f

C
0 D1�˛

t q2 .t/ (9.11)
�
q2 .t/ D k12q1 .t/ � k21f

C
0 D1�˛

t q2 .t/

10k

1 2

12k

21 ,fk α

Fig. 9.3 A fractional 2-compartment pharmacokinetic model with an intravenous bolus. Elimina-
tion from the central compartment and a mass flux from the central to the peripheral compartment,
which are both assumed to follow classic kinetics (order 1), while a flux from the peripheral to the
central compartment is assumed to follow slower fractional kinetics, accounting for tissue trapping
(dashed arrow)
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with ˛ < 1 and initial conditions are q1 .0/ D q0, q2 .0/ D 0 which account for a
bolus dose injection and no initial amount in the peripheral compartment. Note that
it is allowed to use Caputo derivatives here since the fractional derivatives involve
only terms with q2 .t/ for which there is no initial amount, which means that Caputo
and Riemann–Liouville derivatives are identical (relationship 9.6).

Applying the Laplace transform to the above system, the following algebraic
equations are obtained

sQq1 .s/ � q1 .0/ D � .k10 C k12/ Qq1 .s/ C k21f
�
s1�˛ Qq2 .s/ � s�˛q2 .0/

�
sQq2 .s/ � q2 .0/ D k12 Qq1 .s/ � k21f

�
s1�˛ Qq2 .s/ � s�˛q2 .0/

�

Solving for Qq1 .s/ and Qq2 .s/ and substituting the initial conditions

Qq1 .s/ D q0

�
s˛ C k21f

�
.s C k12 C k10/

�
s˛ C k21f

� � k12k21f
(9.12)

for the central compartment and

Qq2 .s/ D q0s˛�1k12

.s C k12 C k10/
�
s˛ C k21f

� � k12k21f
(9.13)

for the peripheral compartment. The above expressions can be used by a NILT
algorithm [379] to simulate values of q1 .t/ and q2 .t/ in the time domain.

Kilbas et al. [383] pointed out that the inverse Laplace transform of such
relationships could lead to closed-form solutions. These solutions were derived in
[384] to be

q1 .t/ D q0

1X
nD0

.�1/n kn
21f

nX
�D0

�EnC1
1;�C˛nC1 Œ� .k10 C k12/ t� C

q0

1X
nD0

.�1/n knC1
21f

nX
�D0

�t˛EnC1
1;�C˛.nC1/C1

Œ� .k10 C k12/ t� (9.14)

for relationship 9.12 and

q2 .t/ D q0k12
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Nevertheless, these closed-form solutions involve terms with an infinite series of
Mittag–Leffler functions and they are hard to implement and apply in practice.

Note, that primarily, q1 .t/ is of interest, since in practice, we only have data
from this compartment. The time–amount profile q1 .t/ may be used to obtain the
drug concentration in the blood c .t/ according to the elementary definition c .t/ ,
q1 .t/ =V1 involving the distribution volume of the central compartment V1. The so
obtained model c .t/ can be fitted to the pharmacokinetic data in order to estimate
parameters V1, k10, k12, k21f , and ˛.

9.4 Applications of Fractional Models

9.4.1 Amiodarone Pharmacokinetics

An application of the fractional two-compartment model, the system of 9.11 to
amiodarone, was presented in [382]. Amiodarone is an antiarrhythmic drug known
for its anomalous, nonexponential pharmacokinetics, which have important clinical
implications due to the accumulation pattern of the drug in long-term administration.
The fractional two-compartment model of the previous section was used to analyze
an amiodarone intravenous data set which first appeared in [385] and estimates
of the model parameters were obtained. The values for q1 .t/ were obtained from
the expression of Qq1 .s/ in the Laplace domain (relationship 9.12) using a NILT
algorithm [379]. In Figure 9.4 the model predicted values are plotted together with
the data demonstrating good agreement for the 60 day period of this study. The
estimated fractional order was ˛ D 0:587 and nonexponential character of the curve
is evident, while the model follows well the data both for long and for short times,
unlike empirical power laws which explode at t D 0.

9.4.2 Other Pharmacokinetic Applications

Apart from the amiodarone example, other applications of fractional pharma-
cokinetics have appeared in literature. From the authors Popovic et al. various
applications of fractional pharmacokinetics to model drugs have appeared, namely
for diclofenac [386], valproic acid [387], bumetanide [388], and methotrexate [389].
Also, Copot et al. have used a fractional pharmacokinetics model for propofol [390].
In most of these cases the fractional model has been compared with an equivalent
ordinary pharmacokinetic model and has been found superior.

FDE have been proposed to describe drug response too, apart from their kinet-
ics. Verotta has proposed several alternative fractional pharmacokinetic-dynamic
models that are capable to describe pharmacodynamic times series with favorable
properties [391]. Although these models are empirical, i.e., they have no mechanistic
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Fig. 9.4 The fractional two-compartment model of relationships 9.11. The fitted concentrations
(line) to the amiodarone data (circles) were obtained from the expression Qq1 .s/ in the Laplace
domain (relationship 9.12) using a NILT algorithm. Parameter estimates were: k10 D 1:49 d�1,
k12 D 2:95 d�1, k21f D 0:48 d�˛ , ˛ D 0:58, q0=V1 D 4:72 ng ml�1

basis, they are attractive since the memory effects of the FDE can link smoothly the
concentration to the response with a variable degree of influence, while the shape of
the responses generated by fractional pharmacokinetic-dynamic models can be very
flexible, with very few parameters.

Overall, fractional kinetics offers an elegant description of anomalous kinetics,
i.e. nonexponential terminal phases, the presence of which has been acknowledged
in pharmaceutical literature extensively. The approach offers simplicity and a valid
scientific basis, since it has been applied in problems of diffusion in physics
and biology. It introduces the Mittag–Leffler function which describes power-law
behaved data well, in all time scales, unlike the empirical power laws which describe
the data only for large times. Despite the mathematical difficulties, fractional
pharmacokinetics is an interesting approach for the toolbox of the pharmaceutical
scientist.
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