
Chapter 8
Deterministic Compartmental Models

This is Polyfemos the copper Cyclops whose body is full of
water and someone has given him one eye, one mouth and one
hand to each of which a tube is attached. Water appears to drip
from his body and to gush from his mouth, all the tubes have
regular flow. When the tube connected to his hand is opened his
body will empty within 3 days, while the one from his eye will
empty in one day and the one from his mouth in 2/5 of a day.
Who can tell me how much time is needed to empty him when all
three are opened together?

Metrodorus (331-278 BC)

Compartmental modeling is a broad modeling strategy that has been used in
many different fields, though under varying denominations. Virtually all current
applications and theoretical research in compartmental analysis are based on
deterministic theory. In this chapter deterministic compartmental models will be
presented. The concept of compartmental analysis assumes that a process may be
divided though it were occurring in homogeneous components, or “compartments.”
Various characteristics of the process are determined by observing the movement
of material. A compartmental system is a system that is made up of a finite
number of compartments, each of which is homogeneous and well mixed, and the
compartments interact by exchanging material. Compartmental systems have been
found useful for the analysis of experiments in many branches of biology.

We assume that compartment i is occupied at time 0 by qi0 amount of material
and we denote by qi .t/ the amount in the compartment i at time t. We also assume
that no material enters the compartments from the outside of the compartmental
system and we denote by Ri0 .t/ the rate of elimination from compartment i to the
exterior of the system. Let also Rji .t/ be the transfer rate of material from the j-
th to i-th compartment. Because the material is distributed in each compartment at
uniform concentration, we may assume that each compartment occupies a constant
volume of distribution Vi. The box in Figure 8.1 represents the i-th compartment of
a system of m compartments.

Mathematics is now called upon to describe the compartmental configurations
and then to simulate their dynamic behavior. To build up mathematical equations

© Springer International Publishing Switzerland 2016
P. Macheras, A. Iliadis, Modeling in Biopharmaceutics, Pharmacokinetics
and Pharmacodynamics, Interdisciplinary Applied Mathematics 30,
DOI 10.1007/978-3-319-27598-7_8

191



192 8 Deterministic Compartmental Models

Fig. 8.1 The rates of transfer
for the i-th compartment ( )tRi0( ) ii Vtq ,( )tRji

expressing compartmental systems, one has to express the mass balance equations
for each compartment i:

�
qi .t/ D �Ri0 .t/ C

mX

jD1
j¤i

Rji .t/ , (8.1)

with initial condition qi .0/ D qi0. Thus, we obtain m differential equations, one for
each compartment i.

8.1 Linear Compartmental Models

Now, some fundamental hypotheses, commonly called laws, were employed to
expand the transfer rates appearing in (8.1). Fick’s law is largely used in current
modeling (cf. Section 2.3 and equation 2.14). It assumes that the transfer rate of
material by diffusion between regions l (left) and r (right) with concentrations cl

and cr, respectively, is

Rlr .t/ D �CLlr .cr � cl/ . (8.2)

This law may be applied to the transfer rates Rji .t/ of the previous equation for
all pairs j and i of compartments corresponding to l and r and for the elimination
rate Ri0 .t/, where the concentration is assumed nearly zero in the region outside the
compartmental system. One has for the compartment i,

�
qi .t/ D �CLi0ci .t/ C

mX

jD1
j¤i

CLji
�
cj .t/ � ci .t/

�
,

where CLi0 is the total clearance from compartment i and CLji is the intercompart-
mental clearance between i and j. We recall that the clearance has a bidirectional
property (CLji D CLij) and the subscript ij denotes simply the pair of compartments
referenced. The initial condition associated with the previous differential equation
is denoted by qi .0/ D qi0. Using the volumes of distribution Vi and the well-
known relationship qi .t/ D Vici .t/, we substitute the concentrations with the
corresponding amounts of material:

�
qi .t/ D �ki0qi .t/ C

mX

jD1
j¤i

kjiqj .t/ �
mX

jD1
j¤i

kijqi .t/ .
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The constants k are called the fractional flow rates. They have the dimension of
time�1 and they are defined as follows:

CLi0

Vi
, ki0,

CLij

Vi
, kij,

CLij

Vj
, kji. (8.3)

In contrast to the clearance, the fractional flow rates indicate the flow direction, i.e.,
kji ¤ kij, the first subscript denoting the start compartment, and the second one, the
ending compartment. The fractional flow rates and the volumes of distribution are
usually called microconstants.

When the volume of the compartment being cleared is constant, the assumption
that the fractional flow rate is constant is equivalent to assuming that the clearance
is constant. But in the general case, in which the volume of distribution cannot
be assumed constant, the use of fractional flow rates k is unsuitable, because the
magnitude of k depends as much upon the volume of the compartment as it does
upon the effectiveness of the removal process. In contrast, the clearance depends
only upon the overall effectiveness of removal, and can be used to characterize any
removal process whether it be constant or changing, capacity-limited or supply-
limited [339].

Through the following procedure the equations for a deterministic model can be
obtained:

1. Represent the underlying mechanistic model with the desired physiological
structure through a set of phenomenological compartments with their intercon-
nections.

2. For each compartment in the configuration, apply the mass balance law to obtain
the differential equation expressing the variation of amount per unit of time. In
these expressions, constant or variable fractional flow rates k can be used.

3. Solve the system of differential equations obtained for all the compartments by
using classical techniques or numerical integration (e.g., Runge–Kutta) [340].

Therefore, Fick’s law, when applied to all elements of the compartmental
structure, leads to a system of linear differential equations. There are as many
equations as compartments in the configuration. If we set

kii D ki0 C
mX

jD1
j¤i

kij,

the equation for the i-th compartment is

�
qi .t/ D �kiiqi .t/ C

mX

jD1
j¤i

kjiqj .t/ , (8.4)
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associated with initial conditions qi0. In the previous equation, the qi .t/ and qi0

amounts of material can be compiled in vector forms as q .t/ and q
0
, respectively. In

the same way, the fractional flow rates kij may be considered as the .i; j/-th elements
of the m � m fractional flow rates matrix K. Thus, the set of linear differential
equations can be expressed as

�
q

T
.t/ D qT .t/ K,

and having the following solution:

qT .t/ D qT
0

exp .Kt/ , (8.5)

where the initial conditions are postmultiplied by exp .Kt/, which is defined by

exp .Kt/ , I C
1X

iD1

Kiti

iŠ
.

In most pharmacokinetic applications, one can assume that the system is open and
at least weakly connected. This is the case of mammillary compartmental models,
where the compartment no.1 is referred to as the central compartment and the other
compartments are referred to as the distribution compartments, characterized by
ki0 D 0 and kij D 0 for i; j D 2 W m. For open mammillary compartmental
configurations, the eigenvalues of K are distinct, real, and negative, implying that

qi .t/ D
mX

jD1

Bij exp
��bjt

�
,

the so-called formula of sum of exponentials, which is common in pharmacokinetics.
The Bij and positive bj are often called macroconstants, and they are functions of
the microconstants. The equations relating these formulations are given explicitly
for the common two- and three-compartment models in many texts [332, 341]. It
should be noted, however, that the addition of a few more compartments usually
complicates the analysis considerably.

8.2 Routes of Administration

In practice, it is unlikely to have compartmental models with initial conditions
unless there are residual concentrations obtained from previous administrations.
Drugs are administered either by extravascular, or intravascular in single or
repeated experiments. Extravascular routes are oral, or intramuscular routes, and
intravascular are the constant rate short- and long-duration infusions.
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• For the extravascular route, the rate of administration is

uev .t/ D q0ka exp .�kat/ ,

where q0 is the amount of material initially given to the extravascular site of
administration and ka is the fractional flow rate for the passage of material from
the site of administration toward the recipient compartment; ka is the absorption
rate constant.

• For the intravascular route with constant rate, we have

uiv .t/ D q0

TE � TS
ŒH .t � TS/ � H .t � TE/� ,

where q0 is the amount of material given at a constant rate in the venous
compartment between the starting time TS and the ending time TE. Here, H .t/
is the step Heaviside function.

Extravascular and intravascular routes can be conceived as concomitant or
repeated, e.g., delayed oral intake with respect to an intramuscular administration,
or piecewise constant rate infusions, etc. Applying the superposition principle, the
contribution of all administration routes in the same recipient compartment is given
by the following input function:

u .t/ D
mevX

iD1

q0ikai exp Œ�kai .t � Ti/� C
mivX

iD1

q0i

TEi � TSi

ŒH .t � TSi/ � H .t � TEi/� ,

where the mev and miv administrations preceding the time t are associated with the
q0i amounts of material. Ti is the time of the i-th extravascular administration, and
TSi and TEi are the starting and ending times in the i-th intravascular administration.
The contribution of the input function u .t/ in the mass balance differential equation
for the recipient compartment is represented by an additive term in the right-hand
side of (8.1).

8.3 Time–Concentration Profiles

In (8.4), by dividing the amounts qi .t/ by non-time-dependent volumes of distribu-
tion Vi, one obtains the differential equations for the concentrations ci .t/:

�
ci .t/ D �kiici .t/ C

mX

jD1
j¤i

Vj

Vi
kjicj .t/ . (8.6)

Additional assumptions further reduce the complexity of these equations. One
such assumption is the incompressibility of the volumes of distribution or, as usually
known, the flow conservation. This assumption applied to compartment j leads to
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mX

iD1
i¤j

Vikij D Vj

mX

iD1
i¤j

kji.

In the special case of a mammillary compartmental configuration, the above relation
allows one to express the volume of distribution in peripheral compartments as
functions of the fractional flow rates and the volume of distribution of the central
compartment Vj D �

k1j=kj1
�

V1 for j D 2 W m. Substituting this relationship in (8.6),
we obtain

�
ci .t/ D �kiici .t/ C

mX

jD1
j¤i

kijcj .t/ .

This set of linear differential equations can be expressed as
�
c .t/ D Kc .t/, and it has

the following solution:

c .t/ D exp .Kt/ c0,

where the initial conditions are premultiplied by exp .Kt/ (instead of the postmulti-
plication in the case of amounts; cf. equation 8.5).

These equations are widely used to simulate simple or complex compartmental
systems and currently to identify pharmacokinetic systems from observed time–
concentration data. However, it is not always possible to write the equations in
terms of concentrations that represent true physical blood or plasma levels. In
practice, it may occur that some, say two, compartments exchange so rapidly on the
time scale of an experiment that they are not distinguishable but merge kinetically
into one compartment. If the two compartments represent material that exists at
different concentrations in two different spaces, or two forms of a compound in one
space, the calculated concentration may not correspond to any actual measurable
concentration and thus may be misleading. For this reason the development of
differential equations in terms of compartment amounts qi .t/ is more general. If
these equations are available, it is not difficult to convert to concentrations ci .t/
by assuming that Vi is a proportionality constant, called the apparent volume of
distribution, and to solve the equations as long as the volumes are constant in time
[342]. If the volumes are changing the problem becomes more difficult.

8.4 Random Fractional Flow Rates

The deterministic model with random fractional flow rates may be conceived on the
basis of a deterministic transfer mechanism. In this formulation, a given replicate
of the experiment is based on a particular realization of the random fractional flow
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rates and/or initial amounts ‚. Once the realization is determined, the behavior of
the system is deterministic. In principle, to obtain from the assumed distribution
of ‚ the distribution of qi .t/, i D 1 W m, the common approach is to use the
classical procedures for transformation of variables. When the model is expressed
by a system of differential equations, the solution can be obtained through the theory
of random differential equations [343–345]. However, in practice, one can find the
moments directly using conditional expectations (cf. Appendix D):

E Œqi .t/� D E‚ Œqi .t j ‚/� ,

Var Œqi .t/� D Var‚ Œqi .t j ‚/� .

Besides the deterministic context, the predicted amount of material is subjected
now to a variability expressed by the second equation. This expresses the random
character of the fractional flow rate, and it is known as process uncertainty.
Extensive discussion of these aspects will be given in Chapter 11.

Example 4. One-Compartment Model

As an illustration of the procedure, consider the one-compartment model q .t/ D
q0 exp .�kt/. Assuming that k has a gamma distribution k �Gam.�; �/, one has the
solutions

E Œq .t/� D q0E Œexp .�kt/� D q0 .1 C t=�/�� ,

Var Œq .t/� D q2
0Var Œexp .�kt/� D q2

0

h
.1 C 2t=�/�� � .1 C t=�/�2�

i
.

Figure 8.2 shows E Œq .t/� and E Œq .t/� ˙ p
Var Œq .t/� with q0 D 1 and

k �Gam.2; 2/. It is noteworthy that confidence intervals are present due to the
variability of the fractional flow elimination rate k. This variability is inherent to
the process and completely different from that introduced by the measurement
devices. �

8.5 Nonlinear Compartmental Models

Many systems of interest are actually nonlinear:

• A first formulation considers the transfer rates of material from compartment
i to j as functions of the amounts in all compartments q .t/ and of time t, i.e.,

Rij

h
q .t/ ; t

i
. In this case, Rij .t/ in (8.1) should be substituted with Rij

h
q .t/ ; t

i
.

If we expand the Rij

h
q .t/ ; t

i
in a Taylor series of q .t/ and retain only the linear

terms, the nonlinear transfer rates take the form kij .t/ qi .t/ and one obtains a
linear time-varying compartmental model.
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Fig. 8.2 One-compartment model with gamma-distributed elimination flow rate k �Gam.2; 2/.
The solid line represents the expected profile E Œq .t/�, and dashed lines, the confidence intervals
E Œq .t/� ˙ p

Var Œq .t/�

• A second formulation considers the fractional flow rate of material as a function
of q .t/ and t, i.e., kij

h
q .t/ ; t

i
. In this case, kij in (8.4) should be substituted with

kij

h
q .t/ ; t

i
.

Therefore, the transfer rates and the fractional flow rates are functions of the
vector q .t/ and t. The dependence on t may be considered as the exogenous envi-
ronmental influence of some fluctuating processes. If no environmental dependence
exists, it is more likely that the transfer rates and the fractional flow rates depend
only on q .t/. Nevertheless, since q .t/ is a function of time, the observed data in the
inverse problem can reveal only a time dependency of the transfer rate, i.e., Rij .t/,
or of the fractional flow rate, i.e., kij .t/. Hence, the dependency of Rij .t/ and kij .t/
on q .t/ is obscured, and a second-level modeling problem now arises, i.e., how
to regress the observed dependency on the q .t/ and t separately. This problem is
mentioned in Section 7.7.

Until now, the compartmental model was considered as consisting of compart-
ments associated with several anatomical locations in the living system. The general
definition of the compartment allows us to associate in the same location a different
chemical form of the original molecule administered into the process. In other
words, the compartmental analysis can include not only diffusion phenomena but
also chemical reaction kinetics.

One source of nonlinear compartmental models is processes of enzyme-catalyzed
reactions that occur in living cells. In such reactions, the reactant combines with
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an enzyme to form an enzyme–substrate complex, which can then break down to
release the product of the reaction and free enzyme or can release the substrate
unchanged as well as free enzyme. Traditional compartmental analysis cannot
be applied to model enzymatic reactions, but the law of mass balance allows us
to obtain a set of differential equations describing mechanisms implied in such
reactions. An important feature of such reactions is that the enzyme is sometimes
present in extremely small amounts, the concentration of enzyme being orders of
magnitude less than that of substrate.

8.5.1 The Enzymatic Reaction

The mathematical basis for enzymatic reactions stems from work done by Michaelis
and Menten in 1913 [346]. They proposed a situation in which a substrate reacts
with an enzyme to form a complex, one molecule of the enzyme combining with
one molecule of the substrate to form one molecule of complex. The complex can
dissociate into one molecule of each of the enzyme and substrate, or it can produce
a product and a recycled enzyme. Schematically, this can be represented by

Œsubstrate� C Œenzyme�
kC1

�
k�1

Œcomplex� ,

Œcomplex�
kC2! Œproduct� C Œenzyme� .

(8.7)

In this formulation kC1 is the rate parameter for the forward enzyme–substrate
reaction, k�1 is the rate parameter for the backward reaction, and kC2 is the rate
parameter for the creation of the product.

Let s .t/, e .t/, c .t/, and w .t/ be the amounts of the four species in the reac-
tion (8.7), and s0 and e0 the initial amounts for substrate and enzyme, respectively.
The differential equations describing the enzymatic reaction,

�
s .t/ D �kC1s .t/ Œe0 � c .t/� C k�1c .t/ , s .0/ D s0;
�
c .t/ D kC1s .t/ Œe0 � c .t/� � .k�1 C kC2/ c .t/ ; c .0/ D 0;
�
w .t/ D kC2c .t/ ; w .0/ D 0;

(8.8)

are obtained by applying the law of mass balance for the rates of formation and/or
decay, and the conservation law for the enzyme, e0 D e .t/ C c .t/.

Relying on a suggestion by Segel [347], we make the variables of the above
equations dimensionless

x .�/ D s .t/

s0

, y .�/ D c .t/

e0

, z .�/ D w .t/

s0

,

� D kC2

kC1s0

, � D k�1 C kC2

kC1s0

, " D s0

e0

,
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Fig. 8.3 Profiles of dimensionless reactant amounts, substrate x .�/, complex y .�/, and
product z .�/

with � D kC1e0t and � > �. The set of differential equations becomes

�
x .�/ D �x .�/ Œ1 � y .�/� C .� � �/ y .�/ , x .0/ D 1,
�
y .�/ D " fx .�/ Œ1 � y .�/� � �y .�/g , y .0/ D 0,
�
z .�/ D �y .�/ , z .0/ D 0.

This system cannot be solved exactly, but numerical methods easily generate
good solutions. The time courses for all reactant species of reaction (8.7) generated
from the previous equations with .�; �/ D .0:015; 0:010/ and " D 2 are shown in
the semilogarithmic plot of Figure 8.3. We note that:

• The substrate x .�/ drops from its initial condition value, equal to 1, at a rapid
rate, but quickly decelerates. Progressively, and for � > 50, the substrate
decreases rapidly in a first phase and then slowly, in a second phase. This irregular
profile of substrate in the semilogarithmic plot is reflected as a concavity or
nonlinearity, as it is usually called.

• The intermediate compound complex y .�/ reaches a maximum (called quasi-
steady state in biology) that persists only for a time period and then decreases;
this time period corresponds to the period of nonlinearity for the substrate time
course. In fact, saturation of the complex form is responsible for the nonlinearity
in the substrate time course. During this period, there is no free enzyme to
catalyze the substrate conversion toward the product.

• The product z .�/ reaches the maximum plateau level asymptotically. In contrast
to the substrate profile, the nonlinear behavior along the saturation of the complex
is not easily defined on the product profile.
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Fig. 8.4 Influence of " on the substrate x .�/ profiles with fixed .�; �/ D .0:015; 0:010/ and
" D .0:5; 1; 2; 5/

Figure 8.4 shows the influence of " on the x .�/ shape. For fixed .�; �/, we
simulated the time courses for " D 0:5, 1, 2, 5. It is noted that the shape of the
substrate profiles varies remarkably with the values of "; thus profiles of biphasic,
power-law, and nonlinear type are observed. So, the sensitivity of the kinetic profile
regarding the available substrate and enzyme amounts is studied by using several "

values: for low substrate or high enzyme amounts the process behaves according to
two decaying convex phases, in the reverse situation the kinetic profile is concave,
revealing nonlinear behavior.

Other processes that lead to nonlinear compartmental models are processes
dealing with transport of materials across cell membranes that represent the transfers
between compartments. The amounts of various metabolites in the extracellular and
intracellular spaces separated by membranes may be sufficiently distinct kinetically
to act like compartments. It should be mentioned here that Michaelis–Menten
kinetics also apply to the transfer of many solutes across cell membranes. This
transfer is called facilitated diffusion or in some cases active transport (cf. Chap-
ter 2). In facilitated diffusion, the substrate combines with a membrane component
called a carrier to form a carrier–substrate complex. The carrier–substrate complex
undergoes a change in conformation that allows dissociation and release of the
unchanged substrate on the opposite side of the membrane. In active transport
processes not only is there a carrier to facilitate membrane crossing, the carrier
mechanism is somehow coupled to energy dissipation so as to move the transported
material up its concentration gradient.
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8.6 Complex Deterministic Models

The branching pattern of the vascular system and the blood flow through it
has continued to be of interest to anatomists, physiologists, and theoreticians
[4, 348, 349]. The studies focusing on the geometric properties such as lengths,
diameters, generations, orders of branches in the pulmonary, venular, and arterial
tree of mammals have uncovered the principles on which these properties are based.
Vascular trees seem to display roughly the same dichotomous branching pattern
at different levels of scale, a property found in fractal structures [350–352]. The
hydrodynamics of blood flow in individual parts of the dichotomous branching
network have been the subject of various studies. Recently, West et al. [353], relying
on an elegant combination of the dynamics of energy transport and the mathematics
of fractal geometry, developed a hydrodynamic model that describes how essential
materials are transported through space-filling fractal networks of branching tubes.

Although these advances provide an analysis of the scaling relations for mam-
malian circulatory systems, models describing the transport of materials along the
entire fractal network of the mammalian species are also needed. Pharmacokinetics
and toxicokinetics, the fields in which this kind of modeling is of the greatest
importance, are dominated by the concept of homogeneous compartments [354].
Physiologically based pharmacokinetic models have also been developed that define
the disposition patterns in terms of physiological principles [282, 354, 355]. The
development of models that study the heterogeneity of the flow and the materials
distribution inside vascular networks and individual organs has also been fruitful
in the past years [294, 356–358]. Herein, we present a simple model for the
heterogeneous transport of materials in the circulatory system of mammals, based on
a single-tube convection–dispersion system that is equivalent to the fractal network
of the branching tubes.

8.6.1 Geometric Considerations

We consider a fractal arterial tree that consists of several branching levels where
each level consists of parallel vessels, Figure 8.5A. Each vessel is connected to m
vessels of the consequent branching level [353]. We make the assumption that the
vessel radii and lengths at each level k follow a distribution around the mean values
�k and �k, respectively. The variance of the vessel radii and lengths at each level
produces heterogeneity in the velocities.

The total flow across a section of the entire tree is constant (conservation of
mass). This allows us to replace the tree with a single one-dimensional tube. Since
the tree is not area-preserving and the area of the cross section of the tube is equal to
the total area of the cross sections of each level of the tree, the total cross-sectional
area of subsequent levels increases, i.e., the tube is not cylindrical (Figure 8.5A–C).
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Fig. 8.5 (A) Schematic
representation of the
dichotomous branching
network. (B) Cross sections at
each level. (C) Single tube
with continuously increasing
radius. (D) Volume-
preserving transformation of
the varying radius tube to a
fixed radius tube. Reprinted
from [359] with permission
from Springer

A

D

B C

Based on the scaling properties of the fractal tree, the noncylindrical tube
is described in terms of a continuous spatial coordinate, z, which replaces the
branching levels of the fractal tree from the aorta to the capillaries. As suggested
by West [353], both the radii and the vessel lengths scale according to “cubic law”
branching, i.e., �kC1=�k D �kC1=�k D m�1=3. These assumptions allow us to
obtain the expression for the area A.z/ of the noncylindrical tube (Figure 8.5C)
as a function of the coordinate z:

A.z/ D ��2
0�0em

z .1 � em/ C �0em
, (8.9)

where �0 and �0 are the radius and the length of aorta, respectively, and em D m1=3.
Further, a volume-preserving transformation allows the replacement of the

varying radius tube with a tube of fixed radius �0 and fixed area A0 D ��2
0

(Figure 8.5D). This is accomplished by replacing z with a new coordinate z� with
the condition that the constant total flow of the fluid across a section is kept invariant
under the transformation:

z D �0em
em � 1

�
1 � exp

�
z� .1 � em/

�0em

�	
. (8.10)

8.6.2 Tracer Washout Curve

The disposition of a solute in the fluid as it flows through the system is governed by
convection and dispersion. The convection takes place with velocity

v .z/ D A0

A.z/
v0, (8.11)
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where v0 is the velocity in the aorta and A.z/ is given by (8.9). If molecular diffusion
is considered negligible, dispersion is exclusively geometric and consists of two
components originating from the variance of the path lengths and of the vessel
radii. Because the components are independent of each other, the global form of
the dispersion coefficient is

D .z/ D
�

k1	2
10 C 2k2	2

20

�0

�0

� � A0

A.z/

�2

v0, (8.12)

where k1 and k2 are proportionality constants, and 	2
10 and 	2

20 are the variances
of the radius and the length of aorta, respectively [357, 360, 361]. The equation
that describes the concentration c .z; t/ of solute inside the tube is a convection–
dispersion partial differential equation:

@c .z; t/

@t
D @

@z

�
D .z/

@c .z; t/

@z

�
� v .z/

@c .z; t/

@z

with D .z/ and v .z/ given by (8.12) and (8.11), respectively. Applying the trans-
formation (8.10), the previous equation becomes a simple convection–dispersion
equation with constant coefficients:

@c .z�; t/

@t
D D�

0

@2c .z�; t/

@z�2
� v�

0

@c .z�; t/

@z� , (8.13)

where

D�
0 D k0v0, v�

0 D


em k0

�0
C 1

�
v0, k0 D k1	2

10 C 2k2	2
20

�0

�0
.

These forms relate the dependence on the system characteristics. Equation (8.13)
describes the concentration c .z�; t/ of a solute in a tree-like structure that corre-
sponds to the arterial tree of a mammal. Considering also the corresponding venular
tree situated next to the arterial tree and appropriate inflow and outflow boundary
conditions, we are able to derive an expression for the spatiotemporal distribution of
a tracer inside a tree-like transport network. We also make the assumption that the
arterial and venular trees are symmetric, that is, have the same volume V; then, the
total length is L D V=A0. The initial condition is c .z�; 0/ D 0 and the boundary
conditions are:

• Inflow at z� D 0:

�
�D�

0

@c .z�; t/

@z� C v�
0 c

�
z�; t

��ˇ̌
ˇ̌
z�D0

D q0

a0

ı .t/

where q0 is the dose, and ı .t/ is the Dirac delta function.
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• Outflow at z� D L:

@c .z�; t/

@z�

ˇ̌
ˇ̌
z�DL

D 0:

The outflow concentration c .L; t/ of the above model describes tracer washout
curves from organs that have a tree-like network structure, and it is given by an
analytic form reported in [359].

8.6.3 Model for the Circulatory System

Based on the above, an elementary pharmacokinetic model considering the entire
circulatory system was constructed. Thus, apart from the arterial and venular
trees, a second set of arterial and venular trees, corresponding to the pulmonary
vasculature, must be considered as well. These trees follow the same principles
of (8.10) and (8.13), i.e., tubes of radius �0 are considered with appropriate length
to accommodate the correct blood volume in each tree.

8.6.3.1 Structure

An overall tube of appropriate length L is considered and is divided into four sequen-
tial parts, characterized as arterial, venular, pulmonary arterial, and pulmonary
venular, Figure 8.6.

We assign the first portion of the tube length from z� D 0 to z� D z�
c to the

arterial tree, the next portion from z� D z�
c to z� D z�

p to the venular, and the rest
from z� D z�

p to z� D L to the two symmetrical trees of the lungs. We consider that
the venular tree is a structure similar to the arterial tree, only of greater, but fixed,
capacity. Also, the two ends of the tube are connected, to allow recirculation of the
fluid. This is implemented by introducing a boundary condition, namely c .0; t/ D
c .L; t/, which makes the tube ring-shaped. The “heart” is located at two separate
points. The left ventricle-left atrium is situated at z� D 0, and the right ventricle-
right atrium is situated at z� D z�

p , Figure 8.6.

8.6.3.2 Dispersion

Two separate values were used for the dispersion coefficient Da for the arterial
segment and Dp for the pulmonary segment. For the venular segment we consider
that the dispersion coefficient has the value Da

�
z�

p � z�
c

�
=z�

c , meaning that it is
proportional to the length of the segment. The flux preservation boundary condition,

Dp
@c .z�; t/

@z�

ˇ̌
ˇ̌
z�DL

D Da
@c .z�; t/

@z�

ˇ̌
ˇ̌
z�D0

;

must also be satisfied.



206 8 Deterministic Compartmental Models

he
art

0* =z

*
cz

*
pz arteries

capillaries

pulmonary capillaries

pulmonary arteries

pulmonary veins

veins

ratdogman

Fig. 8.6 Schematic representation of the ring-shaped tube that models the circulatory system of a
mammal. Blood flows clockwise. The tube is divided into segments corresponding to the arterial,
venular, pulmonary arterial, and pulmonary venular trees

8.6.3.3 Elimination

The contribution of elimination of drugs is appreciable and is integrated into the
model. A segment in the capillary region of the tube (z� � z�

c ) is assigned as
the elimination site and a first-order elimination term kc .z�; t/ is now introduced
in (8.13). The length of the elimination segment is arbitrarily set to 0:02L, which
is in the order of magnitude of the capillary length. The position of the elimination
site is imprecise in physiological terms, but it is the most reasonable choice in order
to avoid further model complexity.

8.6.3.4 Drug Administration and Sampling

The necessary initial condition for the intravenous administration of an exogenous
substance, c .z�; 0/, which is the spatial profile of c at the time of administration, is
determined by the initial dose and the type of administration. This profile may have
the shape of a “thin” Gaussian function if an intravenous bolus administration is
considered, or the shape of a “rectangular” gate for constant infusion. The reference
location z�

0 of this profile for an intravenous administration must be set close to the
heart. Similarly, when lung administration is considered, z�

0 should be set in the
capillary area of the lungs. Due to the geometric character of the model, a sampling
site z�

s should be either specified, in simulation studies, or calculated when fitting is
performed.
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The final model can be summarized as follows:

@c .z�; t/

@t
D @

@z�

�
D� �

z�� @c .z�; t/

@z�

�
� v�

0

@c .z�; t/

@z� � W
�
z��

kc
�
z�; t

�
,

where W .z�/ is a combination of delayed in space Heaviside functions, i.e.,
W .z�/ D H

�
z� � z�

c C 0:01L
� � H

�
z� � z�

c � 0:01L
�
, and

D� �
z�� D

8
<̂

:̂

Da for 0 < z� � z�
c ,

Da
�
z�

p � z�
c

�
=z�

c for z�
c < z� � z�

p ,
Dp for z�

p < z� � L.

Boundary and initial conditions are considered as discussed above.

Example 5. Indocyanine Green Injection

The model was used to identify indocyanine green profile in man after a q0 D
10 mg intravenous bolus injection. Both injection and sampling sites (z�

0 and z�
s ,

respectively) were closely located on the ring-shaped tube. The model of drug
administration was a “thin” Gaussian function:

c
�
z�; 0

� D q0

V

r
b

�
exp

"
�b

�
z�

L
� z�

0

L


2
#

.

This administration corresponds to a bolus injection at the cephalic vein. The
parameters set in the model were m D 3, �0 D 50 cm, A0 D 3 cm2, and b D 105.
The estimated model parameters were:

• Structure: z�
c =L D 0:28, z�

0 =L D 0:83, z�
p =L D 0:85, and V D 4:4 l. These values

result in L D 1470 cm.
• Dispersion and elimination: Da D 1826 cm2 s�1, Dp D 1015 cm2 s�1, v0 D

44:98 cm s�1, and k D 1:13 s�1.

Figure 8.7 depicts the fitted concentration profile of indocyanine green at the
sampling site along with the experimental data. �

A one-dimensional linear convection–dispersion equation was developed with
constant coefficients that describes the disposition of a substance inside a tree-like
fractal network of tubes that emulates the vascular tree. Based on that result, a simple
model for the mammalian circulatory system is built in entirely physiological terms
consisting of a ring-shaped, one-dimensional tube. The model takes into account
dispersion, convection, and uptake, describing the initial mixing of intravascular
tracers. This model opens new perspectives for studies dealing with the disposition
of intravascular tracers used for various hemodynamic purposes, e.g., cardiac output
measurements [362, 363], volume of circulating blood determination [362], and
liver function quantification [364]. Most importantly, the model can be expanded
and used for the study of xenobiotics that distribute beyond the intravascular space.
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Fig. 8.7 Indocyanine profile at the sampling location z�
s D 1220 cm after intravenous bolus

administration of 10 mg. The peaks correspond to successive passes of the drug bolus from the
sampling site as a result of recirculation. The dots indicate the experimental data

In future developments of the model, the positioning of organs that play an
important role in the disposition of substances can be implemented by adding
parallel tubes at physiologically based sites to the present simple ring-shaped
model. Consequently, applications can be envisaged in interspecies pharmacokinetic
scaling and physiologically based pharmacokinetic-toxicokinetic modeling, since
both fields require a realistic geometric substrate for hydrodynamic considerations.

8.7 Compartmental Models and Heterogeneity

Initially, the deterministic theory was applied to describe the movement of a
population of tracer molecules. Briefly, a drug administered as a bolus input into
an organ modeled by homogeneous compartments results in a time–concentration
curve describing the amount of the drug remaining in the organ as a function of
the elapsed time of the form of a sum of exponential terms. Possibly because the
individual molecules are infinitesimal in size, in most of the literature the implicit
assumption is made of deterministic flow patterns. So, compartmental analysis,
grounded on deterministic theory, has provided a rich framework for quantitative
modeling in the biomedical sciences with many applications to tracer kinetics in
general [365, 366] and also to pharmacokinetics [341]. The linear combinations of
exponential function forms have provided a very rich class of curves to fit to time–
concentration data, and compartmental models turn out to be good approximations
for many processes.
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Thus, compartmental models have been used extensively in the pharmacokinetic
literature for some time, but not without criticism. These criticisms were directed:

• First, at the compartmental approach per se grounded on the assumption of
homogeneous compartments. Compartmental models are in fact appropriate
when there is an obvious partitioning of the material in the process into
discrete portions, the compartments that exchange amounts of materials. From
a theoretical standpoint, there has always been a consensus that the notion of
a homogeneous compartment is merely a simplified representation for different
tissues that are pooled together [367, 368].

• Second, at the fact that the models obtained are not necessarily exact because
mixing in a compartment is not instantaneous. How good a compartment model
is depends on the relative rates of mixing within a compartment as compared
to the transfer rates between the compartments. Mixing may occur by diffusion,
various types of convection, and combinations of them, so it is difficult to come
up with a uniform theory of mixing. Ideally, we should measure the concentration
of material throughout the process and define mixing in terms of the time course
of a ratio such as the standard deviation divided by the mean concentration.

• Third, at the ill-conditioning of numerical problems for parameter estimation
with models involving a large number of exponential terms. Wise [324] has
developed a class of powers of time models as alternatives to the sums of
exponentials models and has validated these alternative models on many sets
of experimental data. From an empirical standpoint, Wise [269] reported “1000

or more” published time–concentration curves where alternative models fit the
data as well or better than the sums-of-exponentials models.

Moreover, it is clear that even the continuous models are often unreliable models.
Matter is atomic, and at a fine enough partition, continuity is no longer an acceptable
solution. Furthermore, living tissues are made up of cells, units of appreciable size
that are the basic structural and functional units of living things. And cells are
not uniform in their interiors; they contain smaller units, the cellular organelles.
There is inhomogeneity at a level considerably above the molecular. All these
facts enhanced the criticism against determinism and the use of homogeneous
compartments. More realistic alternatives have aimed at removing the limiting
assumption of homogeneity:

• The process was considered as continuous and compartmental models were
used to approximate the continuous systems [366]. For such applications, there
is no specific compartmental model that is the best; approximation improves
as the number of compartments is increased. In order to put compartmental
models of continuous processes in perspective it may help to recall that the
first step in obtaining the partial differential equation, descriptive of a process
continuous in the space variables, is to discretize the space variables so as to give
many microcompartments, each uniform in properties internally. The differential
equation is then obtained as the limit of the equation for a microcompartment
as its spatial dimensions go to zero. It is better to approximate the continuous
processes with a finite-compartment system rather than go to the limit. In that
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case, the partial differential equation is approximated by a set of simultaneous
ordinary differential equations. In philosophy, compartmental modeling shares
basic ideas with the finite element method, where the structure of the system is
also used to define the elements of a partition of the system. But even if a finite-
compartment approximation is used, how can we define the approximation error
and its dependence on the size of the compartmental model? In addition, many
compartmental models approximating continuous processes are so large that it
may be difficult to deal with them and it may be useful or necessary to lump
some of the compartments into one compartment. This raises a set of questions
about the errors incurred in aggregation and about the optimal way of aggregating
compartments.

• Noncompartmental models were introduced as models that allow for transport
of material through regions of the body that are not necessarily well mixed or of
uniform concentration [273]. For substances that are transported relatively slowly
to their site of degradation, transformation, or excretion, so that the rate of diffu-
sion limits their rate of removal from the system, the noncompartmental model
may involve diffusion or other random-walk processes, leading to the solution in
terms of the partial differential equation of diffusion or in terms of probability
distributions. A number of noncompartmental models deal with plasma time–
concentration curves that are best described by power functions of time.

• Physiological and circulatory models have been developed, and they have
provided information of physiological interest that was not available from
compartmental analysis. Rapidly, physiological models turned to the modeling
of complex compartmental structures. In contrast, circulatory models associated
with a statistical framework have proved powerful in describing heterogeneity
in the process [271, 369]. Recently, the above presented complex model for
the entire circulatory system was built, describing initial mixing following
an intravascular administration in a tree-like network by a relatively simple
convection–dispersion equation [359, 370].

• Stochastic compartmental analysis assumes probabilistic behavior of the
molecules in order to describe the heterogeneous character of the processes. This
approach is against the unrealistic notion of the “well-stirred” system, and it is
relatively simpler mathematically than homogeneous multicompartment models.
At first glance, this seems to be a paradox since the conventional approaches rely
on the simpler hypothesis of homogeneity. Plausibly, this paradox arises from the
analytical power of stochastic approaches and the unrealistic hypothesis of homo-
geneity made by compartmental analysis. Nevertheless with only a few excep-
tions, stochastic modeling has been slow to develop in pharmacokinetics and only
recently have some applications also included stochastic behavior in the models.

In conclusion, compartmental models are generally well determined if there is an
obvious partitioning of the material into compartments, and if the mixing processes
within these compartments are considerably faster than the exchanges between the
compartments.
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