Chapter 2
Diffusion and Kinetics

Everything changes and nothing stands still.

Heraclitus of Ephesus (544-483 BC)

The principles of physical and chemical laws are essential for the understanding of
drug kinetics in mammalian species. This also applies to pharmacodynamics since
the interaction of drug with the receptor(s) relies on the physicochemical principles
of the law of mass action. In reality one can consider the entire course of drug in
the body as consecutive and/or concurrent processes of diffusion and convection.
For example, the oral administration of a drug may include, among many others, the
following processes:

» dissolution in the gastrointestinal fluids (diffusion),

 transport in the chyme by intestinal peristalsis (convection),

* transcellular uptake (diffusion),

 transport with the blood to organs (convection),

 transfer from the bloodstream into the interstitial and intracellular spaces (diffu-
sion),

* interaction with receptors at the effect site (diffusion),

¢ transfer from tissues back into blood (diffusion),

* glomerular filtration (convection),

 transport with the urine into the efferent urinary tract (convection),

* reabsorption from the tubular lumen to the peritubular capillary (diffusion).

The above convection processes are the result of the movement of a liquid in bulk,
i.e., the flow of the biological fluid. Consequently, convection processes are partic-
ularly dependent on physiology. For example, the glomerular filtration of a drug is
extremely important from a therapeutic point of view, but it is solely determined by
the physiological condition of the patient, e.g., the glomerular filtration rate. This is
s0, since a common translational velocity is superposed on the thermal motions of all
drug molecules in any element of volume. On the other hand, convection processes
for the dissolved and undissolved drug in the gastrointestinal tract are much more
complicated. Here, physiology still plays a major role but dietary conditions and the
type of formulation are important too. The picture becomes even more complicated
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16 2 Diffusion and Kinetics

if one takes into account the oscillatory nature of intestinal motility, which is
related to the food intake. Despite the complexity involved, the term convection
implies that both dissolved drug molecules and undissolved drug particles along
with the gastrointestinal fluid molecules are transported together without separation
of individual components of the solution/suspension.

On the other hand, diffusion is the random migration of molecules or small
particles arising from motion due to thermal energy. Here, drug diffusive fluxes are
produced by differences in drug concentrations in different regions. Thus, diffusion
is one of the most significant process in all fields of pharmaceutical research either
in vitro or in vivo. This is justified by the fact that everything is subject to thermal
fluctuations, and drug molecules or particles immersed in aqueous environments are
in continuous riotous motion. Therefore, understanding of these random motions is
crucial for a sound interpretation of drug processes.

2.1 Random Walks and Regular Diffusion

Particles under the microscope exhibiting Brownian motion demonstrate clearly that
they possess kinetic energy. We are also familiar with the diffusional spreading
of molecules from the classical experiment in which a drop of dye is carefully
placed in an aqueous solution. Fick’s laws of diffusion describe the spatial and
temporal variation of the dye molecules in the aqueous solution. However, before
presenting Fick’s differential equation, attention will be given to a proper answer
for the fundamental question: How much do the molecules move on average during
diffusional spreading?

The correct answer to the above question is a law of physics: “the mean square
displacement is proportional to time.” We can intuitively reach this conclusion with
particles executing an imaginary one-dimensional random walk. A simple model is
presented in Figure 2.1, ignoring the detailed structure of the liquid and temperature
effects and assuming no interaction between particles. The particles are placed at
z = 0 and start their random walk at t = 0 moving at a distance § either to the right
or to the left once every 7, units of time; thus, the particles execute i steps in time
t = it,. Equal probabilities (1/2) are assigned for each movement of the particles
(either to the right or to the left). This means that the successive jumps of particles
are statistically independent and therefore the walk is unbiased. We say that the
particles are blind since they have no “memory” of their previous movement(s).
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Fig. 2.1 A one-dimensional random walk of particles placed at z = 0 at + = 0. The particles
occupy only the positions 0, £8, £25, £34, £46
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The question arises: How far will a particle travel in a given time interval? The
average distance a particle travels is given by mean square displacement evaluated
as follows: The position of a particle along the z-axis after i steps z; is

Zi=2zi1 £, (2.1)

where z;_; is the position of the particle at the previous (i — 1)-th step. Taking the
square of (2.1) we get the square displacement

Z? = ziz_l + 267 + 82,

which if averaged for the total number of particles, provides their mean square
displacement <zlz)

() = ) £ 28 (o) + 8 = [24) + 5. 2

The second term in the brackets vanishes since the plus sign corresponds to half

of the particles and the minus sign to the other half. Given that zp = 0 and
applying (2.2) for the successive steps 1,2, ..., i, we get

(3) =8 (B) =28, ..., () = i8" (2.3)

Since as previously mentioned the number of steps is proportional to time (i =
t/t,), we can express the positioning of particles as a function of time ¢ using (2.3):

()= (82 / 2to> ‘. (2.4)

The use of 2 in the denominator of the previous equation will be explained in
Section 2.4. The last expression shows that the mean square displacement of the
particles is proportional to time, #:

() . (2.5)

The same result is obtained if one considers a simple random walk in two
dimensions, i.e., the walk is performed on a two-dimensional lattice. Here, the
walker (particle) moves either vertically or horizontally at each time step (¢, units
of time) with equal probabilities. Two configurations for eight-time-step random
walks are shown in Figure 2.2A, along with the trail of a random walk of 10,000
steps, Figure 2.2B. In the general case and assuming that the lattice spacing is §, the
position of the walker on the plane after i steps z; is

i
= 8 § l’tj3
Jj=1



18 2 Diffusion and Kinetics

2 1 0,4,6
5
A
0 \ b | 5 L \ 4
7 7
2,8 3,7
7 6
8

Fig. 2.2 (A) Two configurations of eight-step random walks in two dimensions. The numbers

correspond to the successive eight steps and the arrows indicate the direction of movement. (B) A
random walk of 10, 000 steps

where u; is a (unit) vector pointing to a nearest-neighbor site; it represents the j-th
step of the walk on the two-dimensional lattice. The mean displacement (z;) of the
walker can be obtained if z; is averaged for the total number of walkers, (z;) = 0.
This equation is obtained from the previous one since (u]) = 0. Moreover, the mean
square displacement can be obtained from the previous equation if one takes into
account that (w;u;) = 1, and (uju) = 0:

) 2
(@) =(]8D_u
=1

= 8 (4 1y + .. A w) (0 + 1+ .+ 1))
= §* Z (i) + 8 Z (i) = is%. (2.6)

J=1 J=1
k#j
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Substituting i = t/t, in the last equation, (2.4) is recovered using the factor % for
the derivation once again.

The theory for motion in three dimensions results in the same law if the
same assumptions are applied and motions in the three directions are statistically
independent. The important result for regular diffusion is that its time dependence is
universal regardless of the dimension of the medium. This square root relation (2.5)
has striking consequences for the distance covered by diffusing molecules. It takes
four times as long to get twice as far while a particle can cover half the distance in
a quarter of the time. Thus, transport by diffusion is very slow if there is far to go,
but very rapid over very short distances. For example, the exchange and transport of
solutes within cells and between cells and capillaries can be effectively maintained
by diffusion due to the small size and close spacing of cells and capillaries in the
body of mammals. On the contrary, the slowness of diffusion over large distances
points to the necessity for a circulatory system to bring oxygen, for example, from
the lungs to the brain or glucose from the liver to the muscles of the arms. To permit
these exchanges, the bulk flow of blood carries a large number of solutes around the
body in the vascular system by convection.

Equation (2.4) will help us to define and understand the meaning of the diffusion
coefficient D. This term corresponds to the proportionality constant of (2.4),

DA & 2.7)
T2, ’

has dimensions of areaxtime™! and takes different values for different solutes in a
given medium at a given temperature. Hence, the value of D is characteristic for a
given solvent (or better, medium structure) at a given temperature of the diffusing
tendency of the solute. For example, a small drug molecule in water at 25 °C has
D ~ 107> cm?/s, while a protein molecule like insulin has D ~ 1077 cm?/s.
Using these values one can roughly calculate the time required for the drug and
protein molecules to travel a distance of 1 mm; it takes (0.1)2/10™ ~ 1000s ~
16.6 min for the drug and 1666.6 min for insulin. Hence, the value of D is heavily
dependent on the size of the solute molecules. These numerical calculations are
very useful in obtaining insight into the rapidity or slowness of a solute migration,
e.g., drug release from controlled release formulations when regular diffusion is the
operating mechanism.

2.2 Anomalous Diffusion

In the previous section we analyzed the random walk of molecules in Euclidean
space and found that their mean square displacement is proportional to time (2.5).
Interestingly, this important finding is not true when diffusion is studied in fractals
and disordered media. The difference arises from the fact that the nearest-neighbor
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sites visited by the walker are equivalent in spaces with integer dimensions but are
not equivalent in fractals and disordered media. In these media the mean correlations
between different steps <ujuk) are not equal to zero, in contrast to what happens
in Euclidean space; cf. derivation of (2.6). In reality, the anisotropic structure of
fractals and disordered media makes the value of each of the correlations u;uy
structurally and temporally dependent. In other words, the value of each pair u;u
depends on where the walker is at the successive times j and k, and the Brownian
path on a fractal may be a “fractal of a fractal” [9]. Since the correlations u;u; do not
average out, the final important result is (ujuk) # 0, which is the underlying cause
of anomalous diffusion. In reality, the mean square displacement does not increase
linearly with time in anomalous diffusion and (2.5) is no longer exact.

To characterize the dynamic movement of particles on a fractal object, one needs
two additional parameters: the spectral or fracton dimension d; and the random-
walk dimension d,,. Both terms are quite important when diffusion phenomena are
studied in disordered systems. This is so since the path of a particle or a molecule
undergoing Brownian motion is a random fractal. A typical example of a random
fractal is the percolation cluster shown in Figure 1.5.

The definition of spectral dimension d; refers to the probability p(z) of a random
walker returning to its origin after time #:

p (1) o 742, (2.8)

According to (2.8), the value of d; governs the decrease of the probability p(¢) with
time. When diffusion is considered in Euclidean spaces the various dimensionality
terms become identical: d, = d; = dy. However, in fractal spaces the following
inequalities hold: d, < d; < df < d,, where d, is the embedding dimension. For
example, we found for the Sierpinski gasket (Figure 1.2A) dr = 1.5815, while
d; = 1.3652 and the embedding dimension in this case is d, = 2. The meaning
of d; can be understood if one considers a walker executing a random walk on a
ramified system, like the Sierpinski gasket with dy = 1.5815, Figure 1.2A. Due
to the system’s ramification, the walker has many alternatives of movement in the
branched system, and therefore the probability of the walker being back at the origin
is small. Hence, the value of d; goes up in accord with (2.8) and is higher than one
(dy > 1), 1.e., the topological dimension of a curve. In actual practice, the calculation
of d; is accomplished numerically. Analytical solutions for d; are available when the
recursion algorithm of the system is known, e.g., Sierpinski gasket.

Finally, a stochastic viewpoint may be associated with the relation (2.8) since the
spectral dimension also characterizes the number n (¢) of distinct sites visited by the
random walker up to time ¢:

n (1) o 172, (2.9)
The random-walk dimension d,, is useful whenever one has a specific interest

in the fractal dimension of the trajectory of the random walk. The value of d,, is
exclusively dependent on the values of dr and dj:
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d.
d,, = min [2l, df] :
ds

The type of the random walk (recurrent or nonrecurrent) determines the minimum
value of the two terms in the brackets of the previous equation. If the walker does
not visit the same sites (nonrecurrent), then d,, = 2dy/d. If the walk is of recurrent
type, then the walker visits the same sites again and again and therefore the walker
covers the available space (space-filling walk). Consequently, the meaning of d,,
coincides with dr (d,, = df). The mean square displacement in anomalous diffusion
follows the pattern

(2% (1)) oc 2/, (2.10)

where d,, is the fractal dimension of the walk and its value is usually d,, > 2.
The exponent d,, arises from the obstacles of the structure such as holes, bottlenecks,
and dangling ends, i.e., the diffusional propagation is hindered by geometric hetero-
geneity. The previous equation is the fundamental relation linking the propagation
of the diffusion front to the structure of the medium, and it recovers also the classical
law of regular diffusion when d,, = 2.

In conclusion, the dynamic movement of particles on a fractal object may be
described by functional characteristics such as the spectral dimension d; and the
random-walk dimension d,,. This anomalous movement of the molecules induces
heterogeneous transport and heterogeneous reactions. Such phenomena present a
challenge to several branches of science: chemical kinetics, surface and solid state
physics, etc. Consequently, one may argue that all mechanisms involved in drug
absorption, metabolism, enzymatic reactions, and cell microscopic reactions can be
analyzed in the new heterogeneous context since these processes are taking place
under topological constraints.

2.3 Fick’s Laws of Diffusion

Apart from the above considerations of diffusion in terms of the distance traveled
in time, the amount of substance transported per unit time is useful too. This
approach brings us to the concept of the rate of diffusion. The two considerations
are complementary to each other since the diffusion of molecules at the microscopic
level results in the observed “flux” at the macroscopic level. Fick’s laws of diffusion
describe the flux of solutes undergoing classical diffusion.

The simplest system to consider is a solution of a solute with two regions of
different concentrations ¢; and ¢, to the left and right, respectively, of a boundary
separating the two regions, Figure 2.3. In reality, the rate of diffusion is the net flux,
i.e., the difference between the two opposite unidirectional fluxes. There will be a
net movement of solute molecules to the right if ¢; > ¢, or to the left if ¢; < c¢,.
When ¢; = ¢,, the unidirectional fluxes are equal and the net flux is zero. Since the
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Fig. 2.3 A solute diffuses
across a plane. (A) Solute A ¢ C,
diffusion from two regions of
different concentrations c; __>kcl
and c,; the plane indicates the
boundary of the regions. The
transfer rate of material is
proportional to concentrations B
c; and ¢,. (B) At a given time Attime ¢ :
t there are n(z, t) and
n(z + 8, t) molecules at n(z t) n(z +0 t)
positions z and z 4 6, | ’ | ’
respectively I I

z z+0

ke, ———

two fluxes across the boundary from left to right and vice versa are proportional to
c¢; and c,, respectively, the net flux is proportional to the concentration difference
across the boundary.

The derivation of Fick’s first law of diffusion requires a reconsideration of
Figure 2.3A in terms of the one-dimensional random walk as shown in Figure 2.3B.
Let us suppose that at time ¢, there are n(z, f) molecules at the left position z and
n(z+4, t) molecules at the right position z+§, Figure 2.3B. Since equal probabilities
(1/2) are assigned for the movement of the molecules (either to the right or to the
left), half of the n(z, t) and n(z + §,¢) molecules will cross the plane at the next
instant of time ¢ + f,, moving in opposing directions. The net number of molecules
crossing the plane to the right is —% [n(z+ 8,1) — n(z,t)] and the corresponding net
flux J of the diffusate is

J(z.1) = — n(z+68.1)—n(z1)],

2At,

where A is the area of the plane and #, is the time interval. Multiplying and dividing
the right part by 8% and rearranging, we get

J(z,0) =

_ﬁl n(iz+6,1) _n(z,t)
2t, 6 As As |

The terms in the brackets express the concentration of molecules per unit volume
Aé,ie., c(z+6,t) = ¢, (¢) and c(z,1) = ¢ () at positions z 4 § and z, respectively,
while the term §°/2t, is the diffusion coefficient D; the presence of 2 in the
denominator explains its use in (2.4). We thus obtain

c(z+468,1)—c(z1)

J(z.t) =-D 5
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Since the term in the brackets in the limit § — 0 is the partial derivative of ¢ (z, )
with respect to z, one can write

dc (z, 1)

J(z1) =-D
(@1 0z

@2.11)

The minus sign indicates that the flow occurs from the concentrated to the dilute
region of the solution. Equation (2.11) is Fick’s first law, which states that the net
flux is proportional to the gradient of the concentration function (at z and #). Flux
has dimensions of massxarea™! xtime™".

Since the flux J is the flow of material ¢ (z, ) from the left to the right through

the surface A, (2.11) is rewritten as follows:

dc (z,1)

Q(Zv t) = _D-A
0z

. (2.12)

From this relationship it is clear that the force acting to diffuse the material ¢ through
the surface is the concentration gradient dc/dz. This gradient may be approximated
by differences

dc (z,1) N Ac(z,1) _ c(z+6,0)—c(z,0) _ e () —c (0

2.13
0z Az ) ) 2.13)
and the previous expression becomes
. DA
() 2 Ry = === [e: () — (0], (2.14)

where Rj, is the transfer rate of material. This equation usually takes one of two
similar forms:

q() =—CLy[c;()—ci()]  or g =—PA[e,()—c;(1)].  (2.15)

The new introduced parameter CL;, 2 DA/S is called clearance, and it has
dimensions of flow, volumextime™!. The clearance has a bidirectional use and
indicates the volume of the solution that is cleared from drug per unit of time
because of the drug movement across the plane. For an isotropic membrane,
structural and functional characteristics are identical at both sides of the membrane,
CL;, = CL,. In practice, the term “clearance” is rarely used except for the
irreversible removal of a material from a compartment by unidirectional pathways of
metabolism, storage, or excretion. The other new parameter P £D /& characterizes
the diffusing ability of a given solute for a given membrane, and it is called
permeability. Permeability has dimensions of lengthxtime ™.

We now write a general mass conservation equation stating that the rate of change
of the amount of material in a region of space is equal to the rate of flow across the
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boundary plus any that is created within the boundary. If the regionis z; < z < 2»
and no material is created

22 22

0 0

E[dq(z,t) = E[c(z,t)dZZJ(zl,t)—J(zZ,t).
21 21

Here, if we assume D constant in (2.11) and z, = z; + Az, at the limit Az — 0, this
relation leads to

dc (z,1) _ Dazc (z, f)_
ot 022

(2.16)

This is the second Fick’s law stating that the time rate of change in concentration
(at z and ¢) is proportional to the curvature of the concentration function (at z and ¢).
There is a clear link between the two laws (2.11) and (2.16).

In order to examine the relevance of the two laws, let us consider that the
layer separating the two regions in Figure 2.3A is not thin but has an appreciable
thickness §, while z is the spatial coordinate along it. According to (2.11), if
dc/0z is constant, then the flux J is constant. This happens when ¢ is a linear
function of z. Consequently, 9%c/dz> = 0 in (2.16) and this implies the steady-
state condition dc (z,t) /dt = 0, where the concentration is stationary in time.
Under these conditions, as many drug molecules diffuse in from the side of
higher concentration as diffuse out to the side of lower concentration. This can be
accomplished experimentally if the concentrations ¢; and ¢, in the two regions of
Figure 2.3A are maintained constant. With boundary conditions ¢(0,7) = ¢; and
¢(8,1) = ¢, and initial condition ¢(z, 0) = 0, the solution of (2.16) is given by [10]

Z
c(z,1) :Cl_(cl_cr)g

[ele)
46‘1

T ~2i—1
i=1

. 2
sin [(21’ -1 n%] exp |:—(21_8—12)712Dt:|

i+1 '27.[2

sin (ing) exp (—IS—ZDI) . 2.17)

2(c—¢) = (-1)
+ brg ; i

By using the above relationship, Figure 2.4 simulates the distance—concentration
profiles ¢ (z,f) at times + = 15 min, 1 and 5 h with D = 0.1 cmz/ h,§ = 1 cm,
¢; = 10and ¢, = 2 g/ 1. Since there is no solute inside the layer initially (c(z,0) =
0), for early times (e.g., t+ = 15 min) the solute molecules undergo diffusion with
two opposite directions, from the boundaries to the interior of the layer (dc/dz < 0
and J(z,7) > 0for 0 < z < z*;dc/dz > Oand J(z,1) < Oforz® <z < lcm
with z* &~ 0.6 cm according to Figure 2.4). As time grows, the diffusion becomes
unidirectional with dc/dz < 0 and J (z,f) > 0 because ¢; > c¢,. As time goes by



2.3 Fick’s Laws of Diffusion 25

10

5h

¢ (gl

15 min

O 1 1 1 1
0 0.2 0.4 0.6 0.8 1

z (cm)

Fig. 2.4 Simulation of distance—concentration profiles ¢ (z, 7) at times t = 15 min, 1 and 5 h with
D=0.1cm?/h,§ =1cm,¢;=10andc, =2 g/1

(e.g., t = 5 h), the steady state is reached, the solution of the partial differential
equation 2.16 is ¢ (z,.) = ¢; — (¢; — ¢;) § and according to the definition 2.11 the
net flux

D
J(,) = E (c1—c¢;)

is constant.

If we postulate that molecules move independently, the concentration ¢ (z, t) at
some point z is proportional to the probability density p (z, f) of finding a molecule
there. Thus, the diffusion partial differential equation (2.16) holds when probability
densities are substituted for concentrations:

I (z.1) _ D ?p (z,1)

i 022 219

If a molecule is initially placed at z = 0, then the solution of the previous equation is

2
p(z.1) = (4nDr)~?exp (—%) .

For t > 1 at any z, we obtain p (z,) o t~'/2. This behavior in a homogeneous
medium corresponds to (2.8), giving the probability density in a fractal medium
with spectral dimension d.
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2.4 Classical Kinetics

Pharmacy, like biology and physiology, is wet and dynamic. Drug molecules
immersed in the aqueous environment of intravascular, extravascular, and intra-
cellular fluids participate in reactions, such as reversible binding to membrane or
plasma proteins; biotransformation or transport processes, e.g., drug release from
a sustained release formulation; drug uptake from the gastrointestinal membrane;
and drug permeation through the blood-brain barrier. This classification is very
rough since some of these processes are more complex. For example, drug release
is basically a mass transport phenomenon but may involve reaction(s) too, e.g.,
polymer dissolution and/or polymer transition from the rubbery to the glassy state.
However, irrespective of the detailed characteristics, the common and principal
component of the underlying mechanism of numerous drug processes is diffusion.
This is the case for the ubiquitous passive transport processes that rely on diffusion
exclusively. The value of D depends on the nature of the environment of the
diffusing species. If the environment changes from one point to another, the value of
D may depend on position. Usually, we deal with systems in which the environment
of the diffusing species is the same everywhere, so that D is a constant. The
diffusion coefficient is constant for diffusion of dilute solute in a uniform solvent.
This case takes in a large number of important situations, and if the dilute solute is
chemically the same as the solvent but is isotopically tagged, then the diffusion is
termed self-diffusion. In contrast, chemical reactions can be either reaction-limited
or diffusion-limited. In the following sections we will discuss them separately.

2.4.1 Passive Transport Processes

There appear to be two main ways for solutes to pass through cell membranes,
namely, transcellular and paracellular. The most important is the transcellular route,
whereby compounds cross the cells by traversing the cell membrane following either
passive diffusion or carrier-mediated transport. Undoubtedly, the transcellular pas-
sive diffusion is the basic mechanism of solute permeation through cell membranes.
According to this mechanism the solute leaves the fluid bathing the membrane,
dissolves in the substance of the membrane, diffuses across in solution, and then
emerges into the intracellular fluid. Accordingly, the mathematical treatment of
drug diffusion across a membrane can be based on (2.12), which is a very useful
expression of Fick’s first law of diffusion. This equation is used extensively in the
pharmaceutical sciences. It describes the mass (number of molecules, or moles, or
amount) transported per unit time, é], across an area A with a concentration gradient
dc/dz at right angles to the area. According to this definition, the numerical value
of the diffusion coefficient D, expressed in mass units, corresponds to the amount
of solute that diffuses per unit time across a unit area under the influence of a unit
concentration gradient.
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For a passive transport process, the concentration gradient across the membrane
can be considered constant and therefore the gradient can be approximated by
differences as in (2.13) to obtain

/

2o~ 0],

q(t) =

where D’ is a modified diffusion coefficient, for restricted diffusion inside the
membrane. The value of D’ is much smaller than the diffusion coefficient D in
free solution. The minus sign is not used in the previous equation since the rate
of transport corresponds to the solute transfer from the external to the internal site
(¢; > ¢,). Furthermore, if sink conditions prevail (¢; >> c¢,), the previous equation
can be simplified to

g (t) = CLe (1) = PAc (7). (2.19)

The last equation reveals that estimates for P can be obtained in an experimental
setup if the permeation rate g (r) and the total membrane area A available for
transport are measured and the drug concentration ¢ (f) in the donor compartment
remains practically constant. What is implicit from all the above is that the diffusion
coefficient D’ is at the origin of the definition of the clearance CL and permeability
P, and these parameters are incorporated into the global rate constant of the rate
equations used in pharmacokinetics. For example, the first-order absorption rate
constant k, in the following equation is proportional to the diffusion coefficient D’
of drug in the gastrointestinal membrane:

cp (t) = kacar (1),

where ¢, () and cg; () denote drug concentration (amount absorbed/volume of
distribution) in blood and in the gastrointestinal lumen (amount dissolved in
the gastrointestinal fluids/volume of gastrointestinal fluids), respectively. In other
words, D’ controls the rate of drug absorption from the gastrointestinal tract.

2.4.2 Reaction Processes: Diffusion- or Reaction-Limited?

Pharmacokinetics has been based on the concepts of classical chemical kinet-
ics. However, the applicability of the rate equations used in chemical kinetics
presupposes that the reactions are really reaction-limited. In other words, the typical
time for the two chemical species to react when placed in close proximity (reaction
time f.,.) is larger than the typical time needed for the two species to reach each
other (diffusion time #4) in the reaction space. When the condition fe,c > fgisr 1S
met, then one can use the global concentrations of the reactant species in the medium
to obtain the classical rate equations of chemical kinetics. This is so since the rate of
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the reaction is proportional to the global concentrations of the reactant species (law
of mass action). The inequality e, > tqir underlines the fact that the two reactant
species have encountered each other more than one time previously in order to react
effectively.

The opposite case, teoc < t4iff, indicates that the two reactant species actually
react upon their first encounter. The diffusion characteristics of the species control
the rate of the reaction, and therefore these reactions are called diffusion limited.
Consider, for example, a system consisting of species A and B with ny and ng
molecules of A and B, respectively. The problem of the reaction rate between A
and B is in essence reduced to the rate at which A and B molecules will encounter
one another. The principal parameters governing the reaction rate are the diffusion
coefficients D4 and Dpg of the reactant species since they determine the diffusing
tendency of the species. Focusing on B molecules, it can be proven that the rate of B
molecules diffusing to an A molecule is proportional to the diffusion coefficient
of B, the number of B molecules, and the distance between A and B, namely,
4nDg(p,4 + pg)ns, where p, + pp is the distance between the centers of A and B
molecules; accordingly, the total rate of A and B encounters is 47 Dg(p4 + pg)nsha.
In an analogous manner the total rate of A and B encounters, viewed in terms of the
A molecules, is 47 D4 (p,4 + pg)nsna. The mean of these separate rates provides a
reasonable expression for the rate per unit volume for A and B molecules separately:

Rate of A and B encounters = 27 (Dy + Dp)(p4 + pp)nans.

Although the previous equation signifies the importance of the diffusion charac-
teristics of the reactant species, it cannot be used to describe adequately the rate of
the reaction. The reason is that the concept of global concentrations for the n4 and
np molecules is meaningless, since a unit volume cannot be conceived due to the
local fluctuations of concentrations. Hence, the local concentrations of the reactants
determine the rate of the reaction for diffusion-limited reactions. Accordingly, local
density functions with different diffusion coefficients for the reactant species are
used to describe the diffusion component of reaction—diffusion equations describing
the kinetics of diffusion-limited reactions.

2.4.3 Carrier-Mediated Transport

The transport of some solutes across membranes does not resemble diffusion
and suggests a temporary, specific interaction of the solute with some component
(protein) of the membrane characterized as “carrier,” e.g., the small-peptide carrier
of the intestinal epithelium. The rate of transport increases in proportion to concen-
tration only when this is small, and it attains a maximal rate that cannot be exceeded
even with a large further increase in concentration. The kinetics of carrier-mediated
transport is theoretically treated by considering carrier—solute complexes in the
same manner as enzyme—substrate complexes following the principles of enzyme-
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catalyzed reactions in Michaelis—Menten kinetics. In both biotransformation and
carrier-mediated transport, unrestricted diffusion is considered for the reactant
species. Due to the analogous formulation of the two processes, the equations
describing the rates of biotransformation,

* Vmaxc (t)
c(t)y = ———, 2.20
( ) kM +c (t) ( )
and carrier-mediated transport,
* Rmaxc (t)
c(t) = ———, 2.21
( ) kM +c (t) ( )

are similar. In these expressions, c(¢) is the solute (substrate) concentration,
ky is the Michaelis constant, V. is the maximum biotransformation rate, and
Riax is the maximum transport rate. Both equations indicate that the rate of
biotransformation or carrier-mediated transport becomes independent of substrate
(solute) concentration when this is large. In this case, the rate of biotransformation
or carrier-mediated transport is said to exhibit saturation kinetics. The graphical
representation of the previous equations is shown in Figure 2.5.

12 T T T .

de(r) / dt

c(?)

Fig. 2.5 The rate of biotranformation or carrier-mediated transport vs. solute concentration. The

plateau value corresponds to Vi Or Ryax. kayr and Viax were set to 1 and 10, respectively, with
arbitrary units
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2.5 Fractal-like Kinetics

The undisputable dogma of chemistry whether in chemical synthesis or classical
chemical kinetics is to “stir well the system.” The external stirring re-randomizes
the positioning of the reactant species, and therefore the rate of the reaction
follows the classical pattern imposed by the order of the reaction. However, many
reactions and processes take place under dimensional or topological constraints
that introduce spatial heterogeneity. A diffusion process under such conditions is
highly influenced, drastically changing its properties. A general well-known result
is that in such constrained spaces, diffusion is slowed down and diffusion follows
an anomalous pattern. Obviously, the kinetics of the diffusion-limited reactions
(processes) are then sensitive to the peculiarities of the diffusion process. In other
words, the transport properties of the diffusing species or the reactants largely
determine the kinetics of the diffusion-limited processes. Under these circumstances
one can no longer rely on classical rate equations and a different approach is
necessary. The drastic and unexpected consequences of nonclassical kinetics of
diffusion-limited reactions are called fractal-like kinetics. An extensive review on
the ubiquitous presence of fractals and fractal concepts in pharmaceutical sciences
has been published recently [11]; the essentials for this “understirred” type of
kinetics are delineated below.

2.5.1 Segregation of Reactants

Classical homogeneous kinetics assumes that the reactants are located in a three-
dimensional vessel, and that during the reaction process the system is constantly
stirred, thus causing the positions (locations) of the reactants to be constantly re-
randomized as a function of time. However, there are important chemical reactions,
which are called “heterogeneous,” in which the reactants are spatially constrained by
either walls or phase boundaries, e.g., liquid—solid boundaries. This is the case for
in vivo drug dissolution as well as for many bioenzymatic and membrane reactions.
Due to dimensional or topological constraints these heterogeneous reactions take
place under understirred conditions. The most dramatic manifestation of such highly
inefficient stirring is the spontaneous segregation of reactants in A + B reactions
[12-14]. This means that correlations begin to develop between the reactants’
positions, which subsequently have a profound effect on the rate of a diffusion-
controlled reaction. The build-up of such correlations is strongly dependent on
the dimensionality, being more pronounced the further one goes below three-
dimensional spaces. This is so because quantitatively the parameter values in the
diffusion laws are very different in different dimensions. In addition, if the space
where the reaction takes place is not smooth, but highly irregular, this has an added
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effect on the building of such correlations. This happens if the space is a fractal
structure characterized by its own dimensionality, which as discussed in Chapter 1
could be different from the integer 1, 2, or 3.

An important segregation effect is related to the violation of Wenzel’s old law for
heterogeneous reactions; this law states that the larger the interface, the higher the
reaction rate [15]. Thus, the most classical way to speed up a heterogeneous process,
e.g., drug dissolution, is to grind the material in order to increase the surface area.
At the macroscopic level, this law has been verified in numerous physicochemical
studies [16] as well as in in vitro drug dissolution studies and in vivo bioavailability
studies using micro instead of macro drug particles. However, violation of Wenzel’s
law has been observed in simulation studies [17, 18] at the microscopic level.
Simulations for the catalytic reaction A + B — AB 1, which takes place only on
the rims of surfaces, indicate that the steady-state rate per unit surface area is not
constant but rather depends on the size of the sample. In reality, lower reaction rates
were observed for a connected catalyst compared to a disjointed one despite the fact
that equal lengths for both designs were used. This is due to the lower segregation
of the reactants on the rims of the disjointed catalyst, which results in a higher rate
coefficient for the catalytic reaction. The clear message taken from these results is
that shredding a sample not only increases the surface area but can also increase the
reactivity per unit area. The latter observation violates Wenzel’s law.

2.5.2 Time-Dependent Rate Coefficients

The spatial reactant correlations result in building a depletion zone around each
reactant, which grows steadily with time. This means that in the close neighborhood
of each reactant there is a void, a space that is empty of reactants. The net result
is that the reactant distribution for the two-reactant case (A + B — C) shows clear
segregation of unlike species (A from B) and aggregation of like species (either A
or B). Naturally, the diffusion-controlled reaction slows down, since as reactants get
further apart, they must travel longer distances to find another reactant to react with
(cf. equation 2.9). A curious effect now is that the rate constant k of the reaction
is no longer “constant,” but depends on the growth of this depletion zone and
consequently is time-dependent:

k() =kot™  (t>1o),

where k (¢) is the instantaneous rate coefficient since it depends on time ¢, and A
is the fractal kinetics exponent with 0 < A < 1. In fact, k (f) crosses over from
a constant regime at short times, ¢ < f., to a power-law decrease at longer times,
t > t,. The switching time ¢, depends on the experimental conditions. This behavior
is the hallmark of fractal kinetics [17].

Under homogeneous conditions (e.g., vigorous stirring), A = 0 and therefore
k (¢) is a constant giving back the classical kinetics result. The previous equation
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has been applied to the study of various reactions in fractals as well as in many
other nonclassical situations. For instance, theory, simulations, and experiments
have shown that the value of A for A+A reactions is related to the spectral dimension
d; of the walker (species) as follows [9, 19]:

A=1——.
2
From this relationship, we obtain A = 1/3 since the value of d; is ~ 4/3 forA + A
reactions taking place in random fractals in all embedded Euclidean dimensions
[9, 20]. It is also interesting to note that A = 1/2 for an A + B reaction in a square
lattice for very long times [13]. Thus, it is now clear from theory, computer sim-
ulation, and experiment that elementary chemical kinetics are quite different when
reactions are diffusion limited, dimensionally restricted, or occur on fractal surfaces
[9, 12, 21-23].

We emphasize that the fractal-like kinetic characteristics are not observed only
under “bing-bang” type conditions (also called batch) as discussed above but also
under quasi-steady-state conditions (cf. Section 8.5.1). Consider, for example, the
homodimeric reaction with two molecules of a single substrate reacting to form
product (A + A — (). Under homogeneous conditions the rate at quasi-steady
state will be proportional to substrate concentration squared, ¢? (1), i.e., it is time-
independent (by definition). However, the rate for the bimolecular A + A diffusion-
limited reaction under topological or dimensional constraints will be proportional
to ¢” (#). Surprisingly, the effective reaction order y is higher than 2 and is related
to the spectral dimension d, and in turn to the fractal kinetics exponent A [9]:

2
y=1+d—=1+(l—k)_l,

s

with d; < 2. Typical values for the Sierpinski gasket and the percolation cluster are
y = 2.46 and y = 2.5, respectively. If d; = 1, so that diffusion is compact, then
y = 3 for the bimolecular A + A reaction. In all these cases, the mechanism of
diffusion is bimolecular. However, the increase in the effective reaction order arises
from the distribution of the species, which as time goes by becomes “less random,”
i.e., it is actually more ordered.

Before we close this section some major, unique kinetic features and conclusions
for diffusion-limited reactions that are confined to low dimensions or fractal
dimensions or both can now be derived from our previous discussion. First, a
reaction medium does not have to be a geometric fractal in order to exhibit fractal
kinetics. Second, the fundamental linear proportionality & o D of classical kinetics
between the rate constant k and the diffusion coefficient D does not hold in fractal
kinetics simply because both parameters are time-dependent. Third, diffusion is
compact in low dimensions and therefore fractal kinetics is also called compact
kinetics [24, 25] since the particles (species) sweep the available volume compactly.
For dimensions d; > 2, the volume swept by the diffusing species is no longer
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compact and species are constantly exploring mostly new territory. Finally, the
initial conditions have no importance in classical kinetics due to the continuous
re-randomization of species but they may be very important in fractal kinetics [17].

2.5.3 Effective Rate Equations

The dependence of kinetics on dimensionality is due to the physics of diffusion.
This modifies the kinetic differential equations for diffusion-limited reactions,
dimensionally restricted reactions, and reactions on fractal surfaces. All these
chemical kinetic patterns may be described by power-law equations with time-
invariant parameters like

c () = —ke” (1), c(to) = co, (2.22)

with y > 2. Under these conditions, the traditional rate law for the A + A
reaction with concentration squared exhibits a characteristic reduction of the rate
constant with time:

c(t) =—k(®)A@), c(to) = co, (2.23)

where k(f) = kot *. Conversely, (2.23) is equivalent to a time-invariant rate
law (2.22) with an increased kinetic order y. New parameters A and k. are given by

A= —-2)/(y—1) and ko = /=D (y — 1)@/0~D

with0 < A < 1.

In traditional chemical kinetics A = 0, the rate constant is time-invariant,
and the effective kinetic order y equals molecularity 2. As the reaction becomes
increasingly diffusion-limited or dimensionally restricted, A increases, the rate
constant decreases more quickly with time, and the kinetic order in the time-
invariant rate law increases beyond the molecularity of the reaction. When the
reaction is confined to a one-dimensional channel, y = 3.0, or it can be as large
as 50 when isolated on finely dispersed clusters or islands [9, 22]. The kinetic order
is no longer equivalent to the molecularity of the reaction. The increase in kinetic
order results in behavior with a higher effective cooperativity. The kinetic orders
in some cases reflect the fractal dimension of the physical surface on which the
reaction occurs.

This anomaly stems from the nonrandomness of the reactant distributions in low
dimensions. Although in a classical reaction system the distribution of the reactants
stays uniformly random, in a fractal-like reaction system the distribution tends to
become “less random.” Similar changes take place in other reactions and other
spaces. Such findings are well established today, and they have been observed
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experimentally and theoretically. Also, results from Monte Carlo simulations
(a powerful tool in this field) are in very good agreement with these findings.

The solution of the differential equations above is a power function of time,
namely c(f) = pt* with parameters B and « satisfying the initial condition
¢ (ty) = co. Usually B and « are estimated by curve fitting on experimental data,
and the parameters of (2.22) and (2.23) are obtained by

k=—af"andy =1-1/a
and
ko =—a/Band A =1+ «,

respectively. Since we have assumed y > 2 or 0 < A < 1, the parameter « satisfies
-1 <a<0.

2.5.4 Enzyme-Catalyzed Reactions

In the same vein and under dimensionally restricted conditions, the description of
the Michaelis—Menten mechanism can be governed by power-law kinetics with
kinetic orders with respect to substrate and enzyme given by noninteger powers.
Under quasi-steady-state conditions, Savageau [26] defined a fractal Michaelis
constant and introduced the fractal rate law. The behavior of this fractal rate law
is decidedly different from the traditional Michaelis—Menten rate law:

* the effective ks decreases as the concentration of enzyme increases, and
* the kinetic order of the overall reaction with respect to total enzyme is greater
than unity.

These properties are likely to have an important influence on the behavior of
intact biochemical systems, e.g., within the living cell, enzymes do not function
in dilute homogeneous conditions isolated from one another. The postulates of the
Michaelis—Menten formalism are violated in these processes and other formalisms
must be considered for the analysis of kinetics in situ. The intracellular environment
is very heterogeneous indeed. Many enzymes are now known to be localized within
two-dimensional membranes or quasi-one-dimensional channels, and studies of
enzyme organization in situ [27] have shown that essentially all enzymes are found
in highly organized states. The mechanisms are more complex, but they are still
composed of elementary steps governed by fractal kinetics.

Power-law formalism was used by Savageau [28] to examine the implications of
fractal kinetics in a simple pathway of reversible reactions. Starting with elementary
chemical kinetics, that author proceeded to characterize the equilibrium behavior
of a simple bimolecular reaction, then derived a generalized set of conditions
for microscopic reversibility, and finally developed the fractal kinetic rate law
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for a reversible Michaelis—Menten mechanism. By means of this fractal kinetic
framework, the results showed that the equilibrium ratio is a function of the amount
of material in a closed system, and that the principle of microscopic reversibility
has a more general manifestation that imposes new constraints on the set of fractal
kinetic orders. So, Savageau concluded that fractal kinetics provide a novel means
to achieve important features of pathway design.

2.5.5 Importance of the Power-Law Expressions

Power-law expressions are found at all hierarchical levels of organization from
the molecular level of elementary chemical reactions to the organismal level of
growth and allometric morphogenesis. This recurrence of the power law at different
levels of organization is reminiscent of fractal phenomena. In the case of fractal
phenomena, it has been shown that this self-similar property is intimately associated
with the power-law expression [29]. The reverse is also true; if a power function of
time describes the observed kinetic data or if a reaction rate higher than 2 is revealed,
the reaction takes place in fractal physical support.

The power-law formalism is a mathematical language or representation with a
structure consisting of ordinary nonlinear differential equations whose elements
are products of power-law functions. Power-law formalism meets two of the most
important criteria for judging the appropriateness of a kinetic representation for
complex biological systems: the degree to which the formalism is systematically
structured, which is related to the issue of mathematical tractability, and the degree
to which actual systems in nature conform to the formalism, which is related to the
issue of accuracy.

2.6 Fractional Diffusion Equations

Before closing this chapter we would like to mention briefly a novel consideration
of diffusion based on the recently developed concepts of fractional kinetics [30].
From our previous discussion it is apparent that if d; < 2, diffusion is recurrent.
This means that diffusion follows an anomalous pattern described by (2.10); the
mean squared displacement grows as (zz (t)) o< ¢ with the exponent y # 1. To deal
with this, a consistent generalization of the diffusion equation (2.18) could have a
fractional order temporal derivative such as

"p (z,1) _
ory

?p (z,1)

D, 02

where D, is the fractional diffusion coefficient and the fractional order y depends
on d,,, the fractal dimension of the walk. The previous fractional diffusion equation
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generalizes Fick’s second law, and therefore it allows scientists to describe complex
systems with anomalous behavior in much the same way as simpler systems [30].

Also, in order to appreciate the extent of spatial heterogeneity, Berding [31]
introduced a heterogeneity function for reaction—diffusion systems evolving to spa-
tially inhomogeneous steady-state conditions. The same author discusses particular
applications and compares specific reaction—diffusion mechanisms with regard to
their potential for heterogeneity.
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