
Chapter 1
The Geometry of Nature

The proper route to an understanding of the world is an
examination of our errors about it.

Euclid (325-265 BC)

Our understanding of nature has been based on the classical geometric figures of
smooth line, triangle, circle, cube, sphere, etc. Each of these regular forms can be
determined by a characteristic scale. For example, the length of a straight line can
be measured with a ruler that has a finer resolution than the entire length of the line.
In general, each Euclidean object has a unique value for its characteristics (length,
area, or volume). It is also known that when these objects are viewed at higher
magnification they do not reveal any new features.

In the real world, however, the objects we see in nature and the traditional
geometric shapes do not bear much resemblance to one another. Mandelbrot [2]
was the first to model this irregularity mathematically: clouds are not spheres,
mountains are not cones, coastlines are not circles, and bark is not smooth, nor does
lightning travel in a straight line. Mandelbrot coined the word fractal for structures
in space and processes in time that cannot be characterized by a single spatial or
temporal scale. In fact, the fractal objects and processes in time have multiscale
properties, i.e., they continue to exhibit detailed structure over a large range of
scales. Consequently, the value of a property of a fractal object or process depends
on the spatial or temporal characteristic scale measurement (ruler size) used.

The physiological implications of the fractal concepts are serious since fractal
structures and processes are ubiquitous in living things, e.g., the lung, the vascular
system, neural networks, the convoluted surface of the brain, ion channel kinetics,
and the distribution of blood flow through the blood vessels. Besides, many
applications of fractals exist for the morphology of surfaces, e.g., the surface area
of a drug particle, surface reactions on proteins. Thus, fractal geometry allows
scientists to formulate alternative hypotheses for experimental observations, which
lead to more realistic explanations compared to the traditional approaches. These
fractal hypotheses can be expressed in terms of quantifying the fractal properties of
the system under study as delineated below.
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4 1 The Geometry of Nature

1.1 Geometric and Statistical Self-Similarity

The most interesting property of fractals is geometric self-similarity, which means
that the parts of a fractal object are smaller exact copies of the whole object.
Replacement algorithms are used to generate geometric fractals. For example, the
Koch curve shown in Figure 1.1 can be produced after four successive replacements
according to the following replacement rule: two lines of the same length replace
the middle third of the length of the line at each step. Infinite recursions can be
applied resulting in a continuous increase of the “line” length by a factor of 4=3

at each successive step. This continuous ramification of the Koch curve leads to a
surprising result if one attempts to measure the length of its perimeter: the length is
dependent on the ruler size used for its measurement. In fact, the smaller the ruler
size used, the longer the perimeter. Accordingly, when we deal with fractal objects
or processes we say that their characteristics (length in this case) “scale” with the
measurement resolution.

Similar algorithms for area and volume replacement can be used to create fractals
from two- or three-dimensional objects. The fractals shown in Figure 1.2 are called
the Sierpinski triangle (gasket) and Menger sponge. They have been generated
from an equilateral triangle and a cube, respectively, by applying the following
replacement algorithms:

• Sierpinski triangle: At each step an equilateral triangle with area equal to one-
quarter of the remaining triangle is removed.

• Menger sponge: At each step one-third of the length of the side of each cube
is removed taking care to apply this rule in 3 dimensions and avoiding removal

Fig. 1.1 The first four
iterations of the Koch curve
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Fig. 1.2 Generation of the (A) Sierpinski triangle (gasket) (the first three iterations are shown),
(B) Menger sponge (the first two iterations are shown) from their Euclidean counterparts

of corner cubes. This means that if the original cube has been constructed from
3 � 3 � 3 D 27 small cubes, after the first iteration 20 small cubes are remaining
(6 are removed from the center of the faces and one is removed from the center
of the cube).

These line, area, and volume replacement rules give fractal structures
(Figures 1.1 and 1.2), which are quite different from the original Euclidean objects.
This obvious difference in shape has implications when one considers physical
measurements or (bio)chemical processes taking place in Euclidean vs. fractal
spaces. For example, surface and/or surface/volume ratios are extremely important
for reactions or transport processes taking place at interfaces of different phases like
liquid–solid boundaries, e.g., drug dissolution, drug uptake from the gastrointestinal
mucosa. In general, objects with fractal surfaces are very efficient for surface
reactions.

Replacement rules are expressed mathematically by difference equations, which
can be used to generate the fractal structures. These equations are usually called
maps and have the form

ziC1 D g .zi/ , (1.1)

where zi and ziC1 are the input and output, respectively, at two successive steps,
while the functional form of g in (1.1) depends on the exact features of the recursion
process. The discrete nature of (1.1) allows for a recursive creation of the fractal
object utilizing the output ziC1 as the next input zi. In this respect, (1.1) operates
like a copy machine, which produces the self-similar object in accord with the rule
imposed on g.
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The replacement rules used for the generation of fractal objects ensure the
geometric self-similarity discussed above. However, the fractal objects or processes
we encounter in nature are not generated by exact mathematical rules. For example,
some biological objects with fractal structure like the venular and arterial tree cannot
be characterized by geometric self-similarity; rather they possess statistical self-
similarity. The fractal is statistically self-similar since the characteristics (such as
the average value or the variance or higher moments) of the statistical distribution
for each small piece are proportional to the characteristics that concern the whole
object. For example, the average rate at which new vessels branch off from their
parent vessels in a physiological structure can be the same for large and small
vessels. This is due to the fact that portions of fractal biological objects resemble
the whole object instead of being exact copies of the whole. The term random
fractal is used for these fractal structures to underline their statistical character. Also,
statistical self-similarity can be observed when time series data are recorded for
physiological processes, e.g., the electroencephalogram or the electrocardiogram.
In this case, we speak of statistical self-similarity in time and not in space.

At this point, a distinction should be made between geometrically and statisti-
cally self-similar fractals. The pure mathematical basis of geometric fractals does
not impose any restriction on the range of application of their scaling laws. In
contrast, scaling laws for statistically self-similar fractals adhering to biological
objects or processes are subject to the limitations imposed by the physiology and/or
the resolution of the measurement technique. In other words, experimental data
usually obey scaling laws over a finite range of resolution measurements. This
important aspect of scaling laws, with regard to the range of their application, should
be carefully considered when one is applying scaling principles for the analysis of
experimental data.

1.2 Scaling

The issue of scaling was touched upon briefly in the previous section. Here, the
quantitative features of scaling expressed as scaling laws for fractal objects or
processes are discussed. Self-similarity has an important effect on the characteristics
of fractal objects measured either on a part of the object or on the entire object. Thus,
if one measures the value of a characteristic � .!/ on the entire object at resolution
!, the corresponding value measured on a piece of the object at finer resolution
� .r!/ with r < 1 will be proportional to � .!/

� .r!/ D k� .!/; (1.2)

where k is a proportionality constant that may depend on r. When statistical self-
similarity in time for recordings of an observable is examined, the scale r! is a finer
time resolution than scale !. Relation (1.2) reveals that there is a constant ratio k
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between the characteristic � .!/ measured at scale ! and the same characteristic
� .r!/ measured at scale r!.

The above-delineated dependence of the values of the measurements on the
resolution applied suggests that there is no true value of a measured characteristic.
Instead, a scaling relationship exists between the values measured and the corre-
sponding resolutions utilized, which mathematically may have the form of a scaling
power law

� .!/ D ˇ!˛ , (1.3)

where ˇ and a are constants for the given fractal object or process studied.
Equation (1.3) can be written as

ln � .!/ D ln ˇ C ˛ ln !.

This equation reveals that when measurements for fractal objects or processes are
carried out at various resolutions, the log–log plot of the measured characteristic
� .!/ against the scale ! is linear. Such simple power laws, which abound in nature,
are in fact self-similar: if ! is rescaled (multiplied by a constant), then � .!/ is still
proportional to !a, albeit with a different constant of proportionality. As we will see
in the rest of this book, power laws, with integer or fractional exponents, are one of
the most abundant sources of self-similarity characterizing heterogeneous media or
behaviors.

1.3 Fractal Dimension

The objects considered are sets of points embedded in a Euclidean space. The
dimension of the Euclidean space that contains the object under study is called the
embedding dimension, de, e.g., the embedding dimension of the plane is de D 2 and
of three-dimensional space is de D 3.

One is accustomed to associating topological dimensions with special objects:
dimension 1 with a curve, dimension 2 with a square, and dimension 3 with a cube.
Because there are severe difficulties for the definition of the topological dimension
dt, it is convenient to associate the topological dimension of an object with its cover
dimension do.

A curve in the plane is covered with three different arrangements of disks
(Figure 1.3 center). In the right part of the figure there are only pairs of disks with
nonempty intersections, while in the center part there are triplets and in the left
part even quadruplets. Thus, one can arrange coverings of the curve by only one
intersection of each disk with another, and the cover dimension of a line is defined
as do D dt D 1.

A set of points (Figure 1.3 top) can be covered with disks of sufficiently small
radius so that there is no intersection between them. Their covering dimension is
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Fig. 1.3 The cover dimension

do D dt D 0. A surface (Figure 1.3 bottom) has covering dimension do D dt D 2,
because one needs at least two overlapping spheres to cover the surface. The same
ideas generalize to higher dimensions.

Similarly, the degree of irregularity of a fractal object is quantified with the
fractal dimension, df . This term is used to show that apart from the Euclidean
integer dimensions (1 or 2 or 3) for the usual geometric forms, fractal objects have
noninteger dimensions. The calculation of df using the concept of self-similarity
requires in essence the knowledge of the replacement rule, which dictates how many
similar pieces m are found when the scale is reduced by a given factor r at each step.
Thus, if we count the number m of the exact copies of the entire geometric fractal
that are observed when the resolution of scale is changed by a factor of r, the value
of df can be derived from

df D ln m

ln r
(1.4)

after logarithmic transformation of

m D rdf . (1.5)

For example, the fractal dimension of the Koch curve is 1:2619 since four (m D 4)
identical objects are observed (cf. levels i D 0 and i D 1 in Figure 1.1) when the
length scale is reduced by a factor r D 3, i.e., df D ln 4= ln 3 � 1:2619. What
does this noninteger value mean? The Koch curve is neither a line nor an area since
its (fractal) dimension lies between the Euclidean dimensions, 1 for lines and 2 for
areas. Due to the extremely ramified structure of the Koch curve, it covers a portion
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of a two-dimensional plane and not all of it and therefore its “dimension” is higher
than 1 but smaller than 2.

Similarly, the first iteration in the generation of the Sierpinski gasket (Figure 1.2
A) involves the reduction of the scale by a factor r D 2 and results in 3 identical
black equilateral triangles (m D 3); thus, df D ln 3= ln 2 � 1:5815. For the Menger
sponge (Figure 1.2B), the reduction of the scale by a factor r D 3 results in m D 20

identical cubes, i.e., df D ln 20= ln 3 � 2:727. Both values of df are consistent with
their dimensions since the Sierpinski gasket lies between 1 and 2, while the Menger
sponge lies between 2 and 3.

Equations (1.4) and (1.5) are also valid for Euclidean objects. For example, if
one creates m D 16 identical small squares in a large square by reducing the length
scale by one-fourth, r D 4, the value of df is ln 16= ln 4 D 2, which is the anticipated
result, i.e., the topological dimension dt D 2 for a plane.

1.4 Estimation of Fractal Dimension

Irrespective of the origin of fractals or fractal-like behavior in experimental studies,
the investigator has to derive an estimate for df from the data. Since strict
self-similarity principles cannot be applied to experimental data extracted from
irregularly shaped objects, the estimation of df is accomplished with methods that
unveil either the underlying replacement rule using self-similarity principles or the
power-law scaling. Both approaches give identical results and they will be described
briefly.

1.4.1 Self-Similarity Considerations

In principle, the object under study is covered with circles for one- and two-
dimensional objects or spheres for three-dimensional objects. This process is
repeated using various sizes ! for circles or spheres, while overlapping may be
observed. Then, the minimum number of “balls” (circles or spheres) m.!/ of size
! needed to cover the object is calculated. Finally, the fractal dimension, which in
this case is called the capacity dimension, dc is calculated from the relationship

dc D lim
!!0

ln m .!/

ln .1=!/
. (1.6)

Note that (1.6) relies on the self-similarity concept since the number of identical
objects m and the scale factor r in (1.5) have been replaced by the number of “balls”
m.!/ and the reciprocal of the size 1=!, respectively. The limit (! ! 0) is being
used to indicate the estimation of dc at the highest possible resolution, i.e., as the
“ball” size ! decreases continuously.
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The reference situation implied in this definition is that at ! D 1, one “ball”
covers the object. A clearer definition of dc is

dc D ln Œm .!/ =m .1/�

ln .1=!/
,

or in general, if at ! D 1, k “balls” cover the object,

dc D ln Œm .k!/ =m .k/�

ln .k=k!/

and

dc D �d ln Œm .!/�

d ln !
. (1.7)

The capacity dimension tells us how the number of “balls” changes as the size of the
“balls” is decreased. This method is usually called box counting since the method
is implemented in computers with a variety of algorithms utilizing rectangular
grids instead of “balls.” Dimensions df and dc are quite similar, and the differences
between them are usually much smaller than the error of estimates [3].

1.4.2 Power-Law Scaling

When the scaling law (1.3) of the measured characteristic � can be derived from
the experimental data .!; �/, an estimate of the fractal dimension df of the object
or process can be obtained as well. In order to apply this method one has first to
derive the relationship between the measured characteristic � and the function of
the dimension g.df /, which satisfies

� / !g.df /, (1.8)

where ! represents the various resolutions used. Then, the exponents of (1.3)
and (1.8) are equated,

g.df / D ˛, (1.9)

and (1.9) is solved in terms of df to derive an estimate for df .
The form of the function g.df / in (1.9) depends on the measured characteristic �

[4]. For instance:

• When the characteristic is the mass of the fractal object, the exponent of (1.8)
corresponds to the value of df , df D ˛.
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• When the characteristic is the average density of a fractal object, df D de C ˛,
where de is the embedding dimension.

• For measurements regarding lengths, areas, or volumes of objects, a simple
equation can be derived using scaling arguments, df D de � ˛.

Apart from the estimation of df from experimental data for mass, density, and
purely geometric characteristics, the calculation of df for a plethora of studies
dealing with various characteristics like frequency, electrical conductivity, and
intensity of light is also based on the exact relationship that is applicable in each
case between df and the scaling exponent ˛ (1.9).

1.5 Self-Affine Fractals

The replacement rule we have used so far to generate geometric fractals creates
isotropic fractals. In other words, the property of geometric self-similarity is the
same in all directions. Thus, a unique value for the fractal dimension df is being
used to quantify an irregular structure. When either the replacement algorithm
or the actual physical object exhibits an asymmetry in different directions, then
the anisotropic fractal is characterized as a self-affine fractal. For example, if one
divides a large square into 6 identical small parallelograms and discards 3 of
them in an alternate series at each iteration, the result is a disconnected self-affine
fractal. Obviously, the unequal horizontal and vertical sides of the parallelograms
produced with the successive replacements follow different scaling laws in accord
with the dimensions of the sides. The basic difference between self-similarity and
self-affinity lies in the fact that self-similar fractals become identical upon simple
magnification (classical scaling), while to become identical, self-affine fractals
should be scaled by different amounts of the spatial directions. Accordingly, there
is no single value of df for self-affine fractals; it varies with the ruler size used
for measurements. Usually, the box-counting method is applied in conjunction
with (1.6) with limits ! ! 0 and ! ! 1; two estimates for df are derived, namely,
df ;local and df ;global, respectively, and used to characterize a self-affine fractal. Both
values indicate limiting values of the fractal dimension: the former is relevant when
the size of the boxes decreases infinitely, while the latter corresponds to the largest
length scale used for measurements.

1.6 More About Dimensionality

The concept of fractals has helped us to enrich the notion of dimensionality. Apart
from the classical systems with dimensions 1, 2, and 3 there are disordered systems
with noninteger dimensions.



12 1 The Geometry of Nature

In the simplest case, a system is called Euclidean or nonfractal if its topological
dimension dt is identical to the fractal dimension df . This means dt D df D 1 for
a curve, dt D df D 2 for a surface, and dt D df D 3 for a solid. The following
relationship holds for the three expressions of dimensionality

dt � df � de.

Although we have used the value of the fractal dimension df as a means to quantify
the degree of disorderliness, it is the magnitude of the difference df � dt that in
essence reflects how irregular (disordered) the system is. Geometrically speaking,
this difference df �dt allows the disordered system to accommodate structure within
structure, and the larger this difference is, the more disordered the system.

The above-defined df and dt are structural parameters characterizing only the
geometry of a given medium. However, when we are interested in processes like
diffusion or reactions in disordered media, we need functional parameters, which
are associated with the notion of time in order to characterize the dynamic behavior
of the species in these media. The spectral or fracton dimension ds and random-walk
dimension dw are two such parameters, and they will be defined in Section 2.2.

1.7 Percolation

The origins of percolation theory are usually attributed to Flory and Stockmayer
[5–8], who published the first studies of polymerization of multifunctional units
(monomers). The polymerization process of the multifunctional monomers leads to
a continuous formation of bonds between the monomers, and the final ensemble of
the branched polymer is a network of chemical bonds. The polymerization reaction
is usually considered in terms of a lattice, where each site (square) represents a
monomer and the branched intermediate polymers represent clusters (neighboring
occupied sites), Figure 1.4 A. When the entire network of the polymer, i.e., the
cluster, spans two opposite sides of the lattice, it is called a percolating cluster,
Figure 1.4B.

In the model of bond percolation on the square lattice, the elements are the
bonds formed between the monomers and not the sites, i.e., the elements of
the clusters are the connected bonds. The extent of a polymerization reaction
corresponds to the fraction of reacted bonds. Mathematically, this is expressed by
the probability p for the presence of bonds. These concepts can allow someone
to create randomly connected bonds (clusters) assigning different values for the
probability p. Accordingly, the size of the clusters of connected bonds increases as
the probability p increases. It has been found that above a critical value of pc D 0:5

the various bond configurations that can be formed randomly share a common
characteristic: a cluster percolates through the lattice. A more realistic case of a
percolating cluster can be obtained if the site model of a square lattice is used with
probability p D 0:6, Figure 1.5. Notice that the critical value of pc is 0:593 for the
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Fig. 1.4 A 6 � 6 square lattice site model. The dots correspond to multifunctional monomers. (A)
The encircled neighboring occupied sites are clusters (branched intermediate polymers). (B) The
entire network of the polymer is shown as a cluster that percolates through the lattice from left to
right

Fig. 1.5 A percolation cluster derived from computer simulation in a 300 � 300 square site model
with p D 0:6. Only the occupied sites that belong to the percolating cluster are shown

two-dimensional site model. Also, the percolation thresholds vary according to the
type of model (site or bond) as well as with the dimensionality of the lattice (2 or 3).

The most remarkable properties of percolation clusters arise from their sudden
inception when the bond concentration (probability) reaches the critical threshold
value p D pc. At this specific value the emerged cluster spans two opposite sides of
the lattice and if one conceives of the bonds as channels, the cluster allows a fluid
to flow through the medium from edge to edge. Accordingly, the terms percolation
and percolation transition have been coined in an attempt to capture the sudden
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change in the geometry and the phase transition. In the same vein, the probability
p1 that a bond belongs to the percolating cluster undergoes a sharp transition, i.e.,
p1 D p D 0 for p1 D p < pc, while p1 becomes finite following a power law
when p > pc

p1 / .p � pc/
� ,

where � is an exponent usually called the critical exponent. According to the
findings in this field of research the critical exponent � depends exclusively on the
dimensionality of the system. This independence from other factors is characterized
as universality.

Important characteristics of the clusters like the mass q and the typical length �

of the clusters, usually called the correlation length, obey power laws too

q / jp � pcj�� , � / jp � pcj�� ,

where � and � are also critical exponents. These laws allow reconsideration of the
fractal properties of the clusters. According to the last equation the clusters are
self-similar as long as the length scale used for measurements is shorter than � .
For example, the giant cluster shown in Figure 1.5 is a random fractal and as such
has a characteristic value for its fractal dimension df . However, the calculation of
the fractal dimension for the percolating cluster of Figure 1.5 should be performed
with radii � shorter than �. In other words, when � < � the self-similar character
of the cluster is kept and the scaling law holds. Indeed, when the box-counting
method is applied, the scaling law q / �1:89 between the mass q (calculated from
the mass of ink or equivalently from the number of dots) and the radius � of the
box is obtained. This means that df D 1:89 for the percolating cluster of Figure 1.5
since the characteristic measured is the mass for various radii �, and no further
calculations are required in accord with (1.8). On the contrary, for measurements
with � > �, self-similarity no longer exists.
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