
Chapter 8

Applications of the
Feynman Calculus

Introduction

This chapter is devoted to a few applications of the Feynman operator
calculus. We first consider the theory of linear evolution equations and
provide a unified approach to a class of time-dependent parabolic and
hyperbolic equations.

We then show that KS2[R3] allows us to construct the elementary
path integral in the manner intended by Feynman. We also use the
sum over paths theory of the last chapter along with time-ordering to
extend the Feynman path integral to a very general setting. We then
prove an extended version of the Feynman–Kac theorem. Finally, we
prove the last remaining Dyson conjecture concerning the foundations
for quantum electrodynamics.

8.1. Evolution Equations

As our first application, we provide a unified approach to a class
of time-dependent parabolic and hyperbolic evolution equations.
We restrict ourselves to first and second order initial-value problems
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316 8. Applications of the Feynman Calculus

u̇(t) = A(t)u(t), u(0) = u0, or v̈(t) = B2(t)v(t), v(0) = v1 and
˙v(0) = v2. In each case, we assume that A(t), B(t) generates a

C0-semigroup for each t ∈ I.

For second order equations, let

u(t) =

(
v(t)
v̇(t)

)
, u0 =

(
v1
v2

)
, A(t) =

(
0 I

B2(t) 0

)
.

We now define a norm on X = H×H by∥∥∥∥
(

f
g

)∥∥∥∥
X
= ‖f‖H + ‖g‖H.

This makes X a Hilbert space. It follows that the second order equa-
tion on H becomes the first order equation on X : u̇(t) = A(t)u(t),
u(0) = u0. Thus, it suffices to study first order equations. For addi-
tional details on this approach, see Yosida [YS] or Goldstein [GS].

In order to prove existence and uniqueness for the initial-value
(Cauchy) problem a number of conditions are imposed (see Pazy [PZ],
in Chap. 7). The important assumption for the time-ordered theory
is a weak continuity condition. (In the following, let H be a Hilbert
space.)

8.2. Parabolic Equations

In the abstract parabolic problem, it is assumed that, on H, the family
A(t), t ∈ I, satisfies:

(1) For each t ∈ I, A(t) is densely defined, R(λ; A(t)) exists in
a sector Σ = Σ(φ + π/2) for some φ, 0 < φ < π/2 and a
constant φ independent of t, such that

‖R(λ; A(t))‖ ≤ 1/|λ| for λ ∈ Σ, t ∈ I.

(2) The function A−1(t) is continuously differentiable on I.

(3) There are constants C1 > 0 and ρ : 0 < ρ < 1, such that, for
each λ ∈ Σ and every t ∈ I, we have

‖DtR(λ; A(t))‖ ≤ C1/|λ|1−ρ.

(4) The function DA−1(t) is Holder continuous in H and there
are positive constants C2, α such that∥∥DA−1(t)−DA−1(s)

∥∥ ≤ C2 |t− s|α , s, t ∈ I.
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The first condition states that A(t) generates an analytic contraction
semigroup for each t ∈ I. The four conditions are required to prove
the following theorem.

Theorem 8.1. Let the family A(t), t ∈ I, have a common dense
domain and satisfy assumptions (1)–(4). Then the problem

∂u(t)

∂t
= A(t)u(t), u(a) = ua,

has a unique solution u(t) = V (t, s)ua, for t, s ∈ I. Furthermore,

(1) V (t, s) is strongly continuous on I and continuously differen-
tiable (in the norm of H) with respect to both s and t ∈ I,

(2) V (t, s)H ⊂ D(A(t)),

(3) A(t)V (t, s) and V (t, s)A(s) are bounded,

(4) DtV (t, s) = A(t)V (t, s), DsV (t, s) = −V (t, s)A(s), and

(5) for t, s ∈ I,

‖DtV (t, s)‖ ≤ C/(t− s), ‖DsV (t, s)‖ ≤ C/(t− s).

In the proof of this result takes seven pages plus five pages of
preparatory work (see page 397). (In Pazy [PZ], in Chap. 7, the proof
takes 17 pages.)

Example 8.2. Let the family of operators A(t), t ∈ I = [0, 1], be
defined on H = L2(0, 1) by:

A(t)u(x) = − 1

(t− x)2
u(x).

It is easy to see that each A(t) is self-adjoint and (A(t)u, u) ≤ −‖u‖2H
for u ∈ D(A(t)). It follows that the spectrum of A(t), σ(A(t)) ⊂
(−∞,−1], for t ∈ [0, 1]. The first condition is satisfied for any φ ∈
(0, π/2), while the second condition is clear and makes the fourth con-
dition obvious. For λ /∈ (−∞,−1], we have

R(λ; A(t))u(x) =
(t− x)2

λ(t− x)2 + 1
u(x),

so that

‖R(λ; A(t))u(x)‖2H =

∫ 1

0

(t− x)4

[λ(t− x)2 + 1]2
u2(x)dx ≤ 1

|λ|2 ‖u‖
2
H .



318 8. Applications of the Feynman Calculus

It is now clear that each A(t) generates a contraction semigroup and

DtR(λ; A(t))u(x) =
2(t− x)

[λ(t− x)2 + 1]2
u(x).

From here, an easy estimation shows that, for λ ∈ Σ,

‖DtR(λ; A(t))‖H ≤ C

|λ|1/2
,

so that the third condition follows. The theorem would follow if there
was a common dense domain. However, it is not hard to see that⋂

t∈I D(A(t)) = {0}.
We now notice that

(A(t)−A(s))A(τ)−1 =

[
(τ − x)2

(s− x)
+

(τ − x)2

(t− x)

]
(s− t),

so that, for some constants C > 0, 0 < β ≤ 1, we have∥∥(A(t)−A(s))A(τ)−1
∥∥ � C |t− s|β (a.s) for all t, s, τ ∈ [0, 1].

It follows that the family A(t), t ∈ [0, 1], is strongly continuous and
hence satisfies (7.3). Thus, the time-ordered integral exists and gener-
ates a contraction semigroup. It is now an exercise to prove that the
semigroup is also analytic in the same sector, Σ.

Returning to the abstract parabolic problem, the conditions used
by Pazy [PZ], in Chap. 7, make it easy to see that the A(t), t ∈ I, is
strongly continuous in general:

(1) For each t ∈ I, A(t) generates an analytic C0-semigroup with
domains D(A(t)) = D independent of t.

(2) For each t ∈ I, R(λ,A(t)) exists for all λ such that Reλ � 0,
and there is an M > 0 such that:

‖R(λ,A(t))‖ � M/[|λ|+ 1].

(3) There exist constants L and 0 < α � 1 such that∥∥(A(t)−A(s))A(τ)−1
∥∥ � L |t− s|α for all t, s, τ ∈ I.

From (3), for ϕ ∈ D, we have

‖[A(t)−A(s)]ϕ‖ =
∥∥[(A(t)−A(s))A−1(τ)

]
A(τ)ϕ

∥∥
�
∥∥(A(t)−A(s))A−1(τ)

∥∥ ‖A(τ)ϕ‖ � L |t− s|α ‖A(τ)ϕ‖ .
Thus, the family A(t), t ∈ I, is strongly continuous on D. For com-
parison with the time-ordered approach, we have:
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Theorem 8.3. Let the family A(t), t ∈ I be weakly continuous on H
satisfying:

(1) For any complete orthonormal basis {ei}, for H and any parti-
tion Pn, of I with mesh μ, there is a number δ, with 0 < δ < 1
such that:

n∑
k=1

Δtk
∥∥A(sk)ei − 〈A(sk)ei, ei〉 ei∥∥2 � Cμδ−1

n (8.1)

(2) For each t ∈ I, A(t) generates an analytic C0-semigroup with
dense domains D(A(t)) = D(t) ⊂ H.

(3) For each t ∈ I, R(λ,A(t)) exists for all λ such that Reλ � 0,
and there is an M(t) > 0, t ∈ I such that:

‖R(λ,A(t))‖ � M(t)/[|λ|+ 1],

with supt∈I M(t) < ∞.

Then, for each φ ∈ H the time-ordered family A(t), t ∈ I has a strong
Riemann integral on D0 = ⊗t∈ID(t) ∩ H2⊗(Φ), which generates an
analytic C0-semigroup on H2⊗(Φ), where Φ = ⊗t∈Iφt, φt = φ for all
t ∈ I.

Remark 8.4. The left-hand side of Eq. (8.1) could diverge as μ → 0,
but remains finite if the family A(t), t ∈ I is strongly continuous. If
the family A(t), t ∈ I is not strongly continuous, Eq. (8.1) ensures
that weak continuity on H is sufficient in order for the time-ordered
family A(t), t ∈ I to have a strong Riemann integral on H2⊗(Φ), for
each Φ. (We do not require a common dense domain.)

8.3. Hyperbolic Equations

In the abstract approach to hyperbolic evolution equations, it is as-
sumed that:

(1) For each t ∈ I, A(t) generates a C0-semigroup.

(2) For each t ∈ I, A(t) is stable with constants (M, 0) and the
resolvent set ρ(A(t)) ⊃ (0,∞), t ∈ I, such that:∥∥∥∥∥∥

k∏
j=1

exp{τjA(tj)}
∥∥∥∥∥∥ � M.
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(3) There exists a Hilbert space Y densely and continuously em-
bedded in H such that, for each t ∈ I, D(A(t)) ⊃ Y and
A(t) ∈ L[Y,H] (i.e., A(t) is bounded as a mapping from
Y → H), and the function g(t) = ‖A(t)‖Y→H is continuous.

(4) The space Y is an invariant subspace for each semigroup
St(τ) = exp{τA(t)} and St(τ) is a stable C0-semigroup on
Y with the same stability constants.

This case is not as easily analyzed as the parabolic case, so we need
the following:

Lemma 8.5. Suppose conditions (3) and (4) above are satisfied with
‖ϕ‖H � ‖ϕ‖Y . Then the family A(t), t ∈ I, is strongly continuous on
H (a.e.) for t ∈ I.

Proof. Let ε > 0 be given and, without loss, assume that ‖ϕ‖H � 1.
Set c = ‖ϕ‖Y

/‖ϕ‖H, so that 1 � c < ∞. Now

‖[A(t+ h)−A(t)]ϕ‖H �
{‖[A(t+ h)−A(t)]ϕ‖H

/‖ϕ‖Y} [‖ϕ‖Y/‖ϕ‖H]
� c ‖A(t+ h)−A(t)‖Y→H .

Choose δ > 0 such that |h| < δ implies ‖A(t+ h)−A(t)‖Y→H < ε/c,
which completes the proof. �

Remark 8.6. The important point of this section is that once we
know that A(t) generates a semigroup for each t, the only other condi-
tions required are that the family {A(t) : t ∈ I} is weakly continuous
and satisfies the growth condition (8.1). However, when the family
{A(t) : t ∈ I} is strongly continuous, the growth condition (8.1) is
automatically satisfied.

8.4. Path Integrals I: Elementary Theory

Introduction

In this and the next section, we will obtain a general theory for path
integrals in exactly the manner envisioned by Feynman. Our approach
is distinct from the methods of functional integration, so we do not
discuss that subject directly. However, since functional integration
represents an important approach to path integrals, a few brief re-
marks are in order. The methods of functional differentiation and
integration were major tools for the Schwinger program in quantum
electrodynamics, which was developed in parallel with the Feynman
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theory (see [DY], in Chap. 7). Thus, these methods were not developed
for the study of path integrals. However, historically, path integrals
have been studied from the functional integration point of view, and
many authors have sought to restrict consideration to the space of con-
tinuous functions or related function spaces in their definition of the
path integral. The best known example is undoubtedly the Wiener in-
tegral [WSRM]. However, from the time-ordering point of view, such
a restriction is not natural nor desirable. Thus, our approach does not
depend on formulations with countably additive measures. In fact, we
take the view that integration theory, as contrasted with measure the-
ory, is the appropriate vehicle for path integrals. Indeed, as shown in
[GZ1], there is a one-to-one mapping between path integrals and semi-
groups of operators that have a kernel representation. In this case, the
semigroup operation generates the reproducing property of the kernel.

In their recent (2000) review of functional integration, Cartier and
DeWitt-Morette [CDM1] discuss three of the most fruitful and impor-
tant applications of functional integration to the construction of path
integrals. In 1995, the Journal of Mathematical Physics devoted a
special issue to this subject, Vol. 36, No. 5 (edited by Cartier and
DeWitt-Morette). Thus, those with interest in the functional integra-
tion approach will find ample material in the above references (see also
the book [CDM2]). Both the review and book are excellent on many
levels, in addition to the historical information that could only come
from one with first-hand information on the evolution of the subject.

8.4.1. Summary. In this section, we restrict our discussion to kernel
representations for an interesting class of solutions to partial differen-
tial equations. In each case, a path integral representation is fairly
straightforward.

We begin with the path integral as first introduced by Feynman
[FY1]. The purpose is to show that the simplicity of his original ap-
proach becomes possible when the problem is considered on KS2[R3].

Recall that, in elementary quantum theory, the (simplest) problem
to solve in R

3 is:

i�
∂ψ(x, t)

∂t
− �

2

2m
Δψ(x, t) = 0, ψ(x, s) = δ(x− y), (8.2)
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with solution

ψ(x, t) = K [x, t; y, s] =

[
2πi�(t− s)

m

]−3/2

exp

[
im

2�

|x− y|2
(t− s)

]
.

In his formulation of quantum theory, Feynman wrote the solution to
Eq. (8.2) as

K [x, t; y, s] = ∫x(t)=x
x(s)=y Dx(τ) exp

{
im
2� ∫ ts

∣∣dx
dt

∣∣2 dτ} , (8.3)

where

∫x(t)=x

x(s)=y Dx(τ) exp
{

im
2�

∫ t
s

∣∣ dx
dt

∣∣2 dτ
}
=:

lim
N→∞

[
m

2πi�ε(N)

]3N/2

∫
R3

N∏
j=1

dxj exp

{
i
�

N∑
j=1

[
m

2ε(N)
(xj − xj−1)

2
]}

,
(8.4)

with ε(N) = (t− s)/N .

Equation (8.4) represents an attempt to define an integral on the
space of continuous paths with values in R

3 (i.e., C
(
[s, t] : R

3
)
). This

approach has a number of well-known mathematical problems:

• The kernel K [x, t; y, s] and δ(x) are not in L2[R3], the
standard space for quantum theory.

• The kernelK [x, t; y, s] cannot be used to define a measure.

Notwithstanding these problems, the physics community has con-
tinued to make progress using this integral and have consistently ob-
tained correct answers, which have been verified whenever independent
(rigorous) methods were possible.

In response, the mathematics community has developed a large
variety of indirect methods to justify the integral. The recent book
by Johnson and Lapidus [JL] discusses many important contributions
from the literature.

If we want to retain the approach used by Feynman, the problems
identified above must be faced directly. Thus, the natural question
is: Does there exist a separable Hilbert space containing K [x, t; y, s]
and δ(x)? A positive answer is required if the limit in Eq. (8.4) is
to make sense. If we also want a space that allows us to include
the Feynman, Heisenberg, and Schrödinger representations, we must
require that the convolution and Fourier transform exist on the space
as bounded linear operators. This requirement is necessary, since the
convolution operator is needed for the path integral and the position
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and momentum operators, x,p, are canonically conjugate variables
(i.e., Fourier transform pairs).

8.4.2. Background. The properties of KS2[Rn] derived in Chap. 3
suggest that it is a perfect choice for the Feynman formulation. It
is easy to see that both the position and momentum operators have
closed, densely defined extensions to KS2[Rn]. A full theory requires
that the Fourier transform, F, and the convolution operator C (as
bounded linear operators) have extensions KS2[Rn] in order to ensure
that both the Schrödinger and Heisenberg theories have faithful repre-
sentations on KS2[Rn]. For this, we restate Theorem 5.15 as it applies
to KS2[Rn].

Theorem 8.7. Let A be a bounded linear operator on a Banach space
B ⊂ KS2. If B′ ⊂ KS2, then A has a bounded extension to L[KS2],
with ‖A‖KS2 ≤ k ‖A‖B with k constant.

We can now use Theorem 8.7 to prove that F and C, the Fourier
(transform) operator and the convolution operator respectively, de-
fined on L1[Rn], have bounded extensions to KS2[Rn].

Theorem 8.8. Both F and C extend to bounded linear operators on
KS2[Rn].

Proof. To prove our result, first note that C0[R
n], the bounded contin-

uous functions onRn which vanish at infinity, is contained inKS2[Rn].
Now F is a bounded linear operator from L1[Rn] to C0[R

n], so we can
consider it as a bounded linear operator from L1[Rn] toKS2[Rn]. Since
L1[Rn] is dense in KS2[Rn] and L∞[Rn] ⊂ KS2[Rn], by Theorem 8.7,
F extends to a bounded linear operator on KS2[Rn].

To prove that C has a bounded extension, fix g in L1[Rn] and define
Cg on L1[Rn] by:

Cg(f)(x) =

∫
g(y)f(x− y)dy.

Once again, since Cg is bounded on L1[Rn] and L1[Rn] is dense in
KS2[Rn], by Theorem 8.7 it extends to a bounded linear operator on
KS2[Rn]. Now use the fact that convolution is commutative to get
that Cf is a bounded linear operator on L1[Rn] for all f ∈ KS2[Rn].
Another application of Theorem 8.7 completes the proof. �
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We now return to M[Rn], the space of bounded finitely addi-
tive measures on R

n, that are absolutely continuous with respect to
Lebesgue measure.

Definition 8.9. A uniformly bounded sequence {μk} ⊂ M[Rn] is said

to converge weakly to μ (μn
w−→ μ), if, for every bounded uniformly

continuous function h(x),∫
Rn

h(x)dμn →
∫
Rn

h(x)dμ.

Theorem 8.10. If μn
w−→ μ in M[Rn], then μn

s−→ μ (strongly) in
KSp[Rn].

Proof. Since the characteristic function of a closed cube is a bounded
uniformly continuous function, μn

w−→ μ in M[Rn] implies that∫
Rn

Em(x)dμn →
∫
Rn

Em(x)dμ

for each m, so that limn→∞ ‖μn − μ‖KSp = 0. �

A little reflection gives:

Theorem 8.11. The space KS2[Rn] is a commutative Banach algebra
with unit.

Since KS2[Rn] contains the space of measures, it follows that all
the approximating sequences for the Dirac measure converge strongly
to it in the KS2[Rn] topology. For example, [sin(λ · x)/(λ · x)] ∈
KS2[Rn] and converges strongly to δ(x). On the other hand, the

function e−2πiz(x−y) ∈ KS2[Rn], so we can define the delta function
directly:

δ(x− y) =

∫
Rn

e−2πiz(x−y)dλn(z),

as an HK-integral.

It is easy to see that the Feynman kernel [FH], defined by (with
m = 1 and � = 1):

Kf [t,x ; s,B] =

∫
B
(2πi(t− s))−n/2 exp{i|x− y|2

/
2(t− s)}dy,

is in KS2[Rn] and ‖Kf [t,x ; s,B]‖KS � 1, while ‖Kf [t,x ; s,B]‖M = ∞
(the variation norm). Furthermore,

Kf [t,x ; s,B] =

∫
Rn

Kf [t,x ; τ, dz]Kf [τ, z ; s,B], (HK-integral).
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Remark 8.12. It is not hard to show that Kf [t,x ; s,B] generates a
finitely additive set function defined on the algebra of sets B, such
that EB(|y|) is of bounded variation in the |y| variable.
Definition 8.13. LetPk = {t0, τ1, t1, τ2, · · · , τk, tk} be a HK-partition
of the interval [0, t] for each k, with limk→∞ μk = 0 (mesh). Set
Δtj = tj − tj−1, τ0 = 0 and, for ψ ∈ KS2[Rn], define

∫ x(τ)=x(t)

x(τ)=x(0)

Kf [Dλx(τ)] = e−λt

[[λt]]∑
k=0

(λt)k

k!

{
k∏

j=1

∫

Rn

Kf [tj ,x(τj) ; tj−1, dx(τj−1)]

}
,

and
∫ x(τ)=x(t)

x(τ)=x(0)
Kf [Dx(τ)]ψ[x(0)] = lim

λ→∞

∫ x(τ)=x(t)

x(τ)=x(0)
Kf [Dλx(τ)]ψ[x(0)]

= lim
λ→∞

e−λt
[[λt]]∑
k=0

(λt)k

k!

⎧
⎨
⎩

k∏
j=1

∫

Rn

Kf [tj ,x(τj) ; tj−1, dx(τj−1)]ψ[x(0)]

⎫
⎬
⎭,

(8.5)

whenever the limit exists.

It is easy to see that the limit exists in KS2[Rn], whenever we have
a reproducing kernel.

Theorem 8.14. The function ψ(x) ≡ 1 ∈ KS2[Rn] and
∫ x(τ)=x(t)

x(τ)=y(s)

Kf [Dx(τ)]ψ[y(s)] = Kf [t,x ; s,y] = 1√
[2πi(t−s)]n

exp{i|x− y|2/2(t− s)}.

The above result is what Feynman was trying to obtain (in this
simple case).

8.5. Examples and Extensions

In this section, we provide a few interesting examples. Those with
broader interest should consult the references below.

Independent of the mathematical theory, the practical develop-
ment and use of path integral methods has proceeded at a continuous
rate. At this time, it would be impossible to give a survey of the many
different types of path integrals and the problems that they have been
used to solve. It would be a separate task to provide a reasonable
set of references on the subject. However, the following books are sug-
gested for both the material they cover and the references contained in
them: Albeverio and H∅egh-Krohn [AH], Cartier and Dewitt-Morette
[CDM2], Feynman and Hibbs [FH], Grosche and Steiner [GS], and
Kleniert [KL].
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8.5.1. The Diffusion Problem. For our first example, let H =

L2[R3, dμ], where dμ = e−π|x|2dλ3(x). The form is nonstandard, but
has advantages as discussed in Chap. 2. Consider the problem:

∂

∂t
u(t,x) = Δu(t,x)− x · ∇u(x, t), u(0,x) = u0(x).

This is the Ornstein–Uhlenbeck equation, with solution (T (t)u0)(x) =
u(t,x), where:

(T (t)u0)(x) =
1√

[(1− e−t)]3

∫

R3

exp

⎧
⎪⎨
⎪⎩
−π

(
e−t/2x− y

)2

(1− e−t)

⎫
⎪⎬
⎪⎭

u0(y)dλ3(y).

The operator T (t) is a (analytic) contraction semigroup, with genera-
tor D2 = Δ− x · ∇. It follows that the kernel is given by

Kf [t,x ; 0, dy] =
1√

[(1− e−t)]3
exp

{
−π

(
e−t/2x− y

)2
(1− e−t)

}
dλ3(y).

By Theorem 8.7 T (t) can be extended to KS2(R3), as a C0-contraction
semigroup. It now follows that

u(t,x) =

x(τ)=x(t)∫
x(τ)=y(0)

Kf [Dx(τ)]u[y(0)].

For a more interesting example, let B be a nondegenerate 3 × 3 ma-
trix with eigenvalues λ such that Re(λ) < 0, with Q strictly positive
definite and set

Qt =

∫ t

0
esBQesB

∗
ds.

In this case, H = L2[R3, dμ], with

μ(dx) =
1√

(detQ∞
exp
{−π

〈
Q−1

∞ x,x
〉}

dλ3(x),

and we consider the problem:

∂

∂t
u(t,x) = Δu(t,x)−Bx · ∇u(x, t), u(0,x) = u0(x).

This is also a version of the Ornstein–Uhlenbeck equation. (However,
since we don’t assume that B is symmetric, A = Δ−Bx · ∇ need not
be self-adjoint.) The explicit solution is generated by the contraction
semigroup (T (t), where:

(T (t)u0(x) =
1√

detQt

∫

R3
exp

{
−π

〈
Q−1

t

(
etBx− y

)
, etBx− y

〉}
u0(y)dλ3(y).
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It follows that

Kf [t,x ; 0, dy] =
1√

detQt

exp
{−π

〈
Q−1

t

(
etBx− y

)
, etBx− y

〉}
dλ3(y).

For this equation, we can also replace R
3 by a separable Hilbert space

H and λ3 by cylindrical Gaussian measure μ. In this case, B is a
symmetric bounded linear operator with spectrum σ(B) < 0 and 0 <
Q∞ < ∞ is strictly positive definite. Those with interest in this subject
can consult Lorenzi and Bertoldi [LB] for the finite-dimensional case
and De Prato [DP] for Hilbert space. In either case, the path integral
representation is defined on KS2[R3] or KS2[H].

8.5.2. Wave Equation. For this example, write the standard wave
equation as

∂2ψ

∂t2
− Ic2Δψ =

1

�2

[
i�

∂

∂t
+ β
√
−c2�2Δ

] [
−i�

∂

∂t
+ β
√
−c2�2Δ

]
ψ = 0.

In electromagnetic theory, we only see the wave equation on the left
and assume that I = 1. On the right, the β matrix can be of any
finite order. Thus, the above equation introduces a rather interesting
relationship between quantum theory and the classical wave equation,
namely the massless square root equation for any spin. In order to
solve this equation, we follow Lieb and Loss [LL], in Chap. 3, and use
imaginary time to get:

ψ(x, t) =
itβ

π2
lim
ε→0

∫
R3

ψ0(y)dy[
|x− y|2 − t2

]2
+ ε2

= U(t)ψ0(x), (8.6)

where ψ0(x) is the given initial data at time t = 0. The convergence
factor is necessary for the integral representation because of the light
cone problem (in the Lebesgue sense). This is not necessary if we
interpret it in the Henstock–Kurzweil sense. We could also compute
the solution directly by using the fact that the square root operator
is a self-adjoint generator of a unitary group. However, extra work
would still be required to obtain the integral representation.

We can now use (8.6) to provide a new representation for the
solution of the wave equation. Assume that ψ(x, t) |t=0 = ψ0(x)

and ψ̇(x, t) |t=0 = ψ̇0(x) are given (smooth) initial data. Let A =

β
√−c2�2Δ and ϕ(x, t) = (−i�∂t +A)ψ(x, t). It follows from this

that

ϕ(x, 0) = ϕ0 = i�ψ̇0(x) +Aψ0(x).
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We must now solve:

(i�∂t +A)ϕ(x, t) = 0, ϕ(x, 0) = ϕ0.

The solution to this problem is easily seen to be (8.6), with t replaced
by −t, so that ϕ(x, t) = U(−t)ϕ0. Using this result, we can now get
our new representation. The solution to the wave equation has been
reduced to solving:

(−i�∂t +A)ψ(x, t) = U(−t)ϕ0.

Using the method of variation of constants, we have: (see Sell and You
[SY], p. 7).

ψ(x, t) = U(t)ψ0 +

∫ t

0
U(t− s)U(−s)ϕ0(x)ds.

Combining terms, we have:

ψ(x, t) = U(t)ψ0 +

∫ t

0
U(t− 2s)ϕ0(x)ds. (8.7)

It is now easy to check that ψ(x, 0) = ψ0(x) and that ψ̇(x, 0) = ψ̇0(x).
We can now use Eq. (8.6) to obtain the explicit representation for a
general solution to the wave equation:

ψ(x, t) = − itβ

π2
lim
ε→0

∫
R3

ψ0(y)dy[
|x− y|2 − t2

]2
+ ε2

+

∫ t

0

⎧⎪⎨
⎪⎩
i(t− 2s)β

π2
lim
ε→0

∫
R3

ϕ0(y)dy[
|x− y|2 − (t− 2s)2

]2
+ ε2

⎫⎪⎬
⎪⎭ ds.

(8.8)

We have only worked in R
3. For n arbitrary, the only change (other

than initial data) is the kernel. In the general case, we must replace
Eq. (8.6) by

ψ(x, t) =
itβΓ

[
n+1
2

]
π(n+1)/2

lim
ε→0

∫
Rn

ψ0(y)dy[
|x− y|2 − t2

] (n+1)
2

+ ε2
.

Thus, the method is quite general. Recall that the standard approach
is based on the method of spherical means (see Evans [EV]). This
approach requires different computations depending on the dimension
(even or odd). It follows that our approach has some advantages. The
path integral representation is straightforward.
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8.5.3. The Square-Root Klein–Gordon Equation. The fourth
example is taken from [GZ4] and provides another example that is not
directly related to a Gaussian kernel. It is shown that if the vector
potential A is constant, μ = mc/�, and β is the standard beta matrix,
(I,O : O,−I), then the solution to the equation for a spin 1/2 particle
in square-root form,

i�∂ψ(x, t)/∂t =

{
β

√
c2
(
p− e

cA
)2

+m2c4
}
ψ(x, t), ψ(x, 0) = ψ0(x),

is given by:

ψ(x, t) = U[t, 0]ψ0(x) =

∫
R3

exp

{
ie

2�c
(x− y) ·A

}
Kf [x, t ; y, 0]ψ0(y)dy,

where

Kf [x, t ; y, 0] =
ctμ2β

4π

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−H
(1)
2

[
μ(c2t2−||x−y ||2)1/2

]

[c2t2−||x−y ||2] , ct < −‖x− y‖ ,
−2iK2

[
μ(||x−y ||2−c2t2)

1/2
]

π[||x−y ||2−c2t2]
, c |t| < ‖x− y‖ ,

H
(2)
2

[
μ(c2t2−||x−y ||2)1/2

]

[c2t2−||x−y ||2] , ct > ‖x− y‖ .
The function K2( · ) is a modified Bessel function of the third kind of

second order, while H
(1)
2 , H

(2)
2 are the Hankel functions (see Grad-

shteyn and Ryzhik [GRRZ]). Thus, we have a kernel that is far from
standard. To our knowledge, this representation is new.

8.5.4. Semigroups, Kernels, and Pseudodifferential Opera-
tors. In this section, we investigate the general question of the ex-
istence of relations of the form:

U(t)φ(x) =

∫
Rn

K(x, t : y,0)φ0(y)dy, (8.9)

between a semigroup of operators U(t), t ∈ R and a kernel K. We
observe that if a kernel exists, then the semigroup property automat-
ically induces the reproducing property of the kernel and vice versa.
Equation (8.9) also leads to a discussion of the close relationship be-
tween kernels and the theory of pseudodifferential operators. In this
section we show how to associate a reproducing kernel with a large
class of semigroups U(t). A more detail discussion of pseudodifferen-
tial operators can be found in Treves [TR], Kumano-go [KG], Taylor
[TA], Cordes [CO], or Shubin [SHB].
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Pseudodifferential operators are a natural extension of linear par-
tial differential operators and interest in them grew out of the study
of singular integral operators like the one induce by the square-root
operator. The basic idea is that the use of pseudodifferential operators
allows one to convert the theory of partial differential equations into
an algebraic theory for the characteristic polynomials, or symbols, of
the differential operators by means of Fourier transforms.

We begin our study with the definition of hypoelliptic pseudodif-
ferential operators of class Sm

ρ, δ and investigate their basic properties.
As noted above, we confine our discussion to Euclidean spaces, Rn,
and only consider those parts that pertain to the construction of ker-
nel representations. (Readers interested in more general treatments
can consult the cited references.)

Definition 8.15. Recall that a complex-valued function f defined on
R
n is a Schwartz function (f ∈ S(Rn) or S) if, for all multi-indices α

and β, there exist positive constants Cα,β such that

sup
x∈Rn

∣∣∣xα∂βf(x)
∣∣∣ = Cα,β < ∞.

In what follows, R
n
x denotes n-dimensional space in the x vari-

able. For continuity with the literature, we keep the standard notation,
where one works on the tangent space of a differential manifold.

Definition 8.16. Let p(x, η) be a C∞ function on R
n
x × R

n
η .

(1) We say that p(x, η) is a symbol of class Sm
ρ,δ (n ∈ N, 0 ≤ δ ≤

ρ ≤ 1, δ < 1) if, for any multi-indices α, β, there exists a
constant Cα,β such that∣∣∣p(α)(β)(x, η)

∣∣∣ = Cα,β 〈η〉m+δ|β|−ρ|α| ,

where

p
(α)
(β)(x, η) = ∂α

ηD
β
xp(x, η), 〈η〉 =

√
1 + ‖η‖2, |α| =

∑n

i=1
αi,

∂α
η = ∂α1

η1 · · · ∂αn
ηn , Dβ

x = Dβ1
x1

· · ·Dβn
xn

and Dxj
= −i

∂

∂xj
.

Also, we set

S−∞
ρ,δ =

∞⋂
m=1

Sm
ρ,δ and S∞

ρ,δ =

∞⋃
m=1

Sm
ρ,δ.
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(2) A linear operator P : S(Rn
x) → S(Rn

x) is said to be a pseu-
dodifferential operator with symbol p(x, η) of class Sm

ρ,δ if, for

u ∈ S(Rn
x), we can write Pu(x) as

Pu(x) =

∫
Rn

eπix·ηp(x, η)û(η)dη,

where

û(η) = F(u)(η) =

∫
Rn

e−πix·ηu(x)dx

is the Fourier transform of u(x).

Whenever m ≤ m′, ρ′ ≤ ρ, δ ≤ δ′, for any ρ and δ, we have
Sm(= Sm

1,0) ⊂ Sm
ρ,δ ⊂ Sm′

ρ′,δ′ . It follows that

∞⋂
m=1

Sm
ρ,δ =

∞⋂
m=1

Sm
1,0,

so that S−∞ =
⋂∞

m=1 S
m
ρ,δ. For p(x, η) ∈ Sm

ρ,δ we define the family of

seminorms |p|(m)
l , l = 0, 1, . . . by

|p|(m)
l = max

|α+β|=l
sup

R
n
x×R

n
η

{∣∣∣p(α)(β)(x, η)
∣∣∣ 〈η〉(m+δ|β|−ρ|α|)

}
.

Then Sm
ρ,δ is a Fréchet space with these seminorms, and we have, for

any p(x, η) ∈ Sm
ρ,δ:∣∣∣p(α)(β)(x, η)

∣∣∣ � |p|(m)
|α+β| 〈η〉(m+δ|β|−ρ|α|) .

We say that a set B ⊂ Sm
ρ,δ is bounded in Sm

ρ,δ if sup
p∈B

{
|p|(m)

l

}
< ∞.

For p(x, η) ∈ Sm
ρ,δ we can represent Pu(x), u ∈ S(Rn), in terms of

oscillatory integrals. These are integrals of the form:

Af(x) =

∫
Rn

eπis(x,η)a(x, η)f̂(η)dη,

where s(x, η) is called the phase function and a(x, η) is called the am-
plitude function. These functions were first introduced by Lax [LX1]
and used to construct asymptotic solutions of hyperbolic differential
equations. (In the hands of Hörmander [HO], this later led to the
(related) theory of Fourier integral operators.)

We are interested in a restricted class of these integrals.
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Definition 8.17. We say that a C∞ function a(ζ,y), (ζ,y) ∈ R
2n
ζ,y =

R
n
ζ × R

n
y belongs to the class Am

δ,τ (m ∈ N, 0 ≤ δ < 1, 0 ≤ τ) if, for
any multi-indices α, β, there exists a positive constant Cα,β such that∣∣∣∂α

ζ ∂
β
ya(ζ,y)

∣∣∣ � Cα,β 〈ζ〉(m+δ|β|) 〈y〉τ , l = |α+ β| .
We set

A =
⋃

0�δ<1

∞⋃
m=−∞

⋃
0�τ

Am
δ,τ .

Then we have

Theorem 8.18. For a(ζ,y) ∈ Am
δ,τ , we define the seminorms |a|l , l =

0, 1, . . . , by

|a|l = max
|α+β|�l

sup
ζ,y

{∣∣∣∂α
ζ ∂

β
ya(ζ,y)

∣∣∣ 〈ζ〉−(m+δ|β|) 〈y〉τ
}
.

(1) Then Am
δ,τ is a Frechet space and for a(ζ,y) ∈ Am

δ,τ we have∣∣∣∂α
ζ ∂

β
ya(ζ,y)

∣∣∣ � |a|l 〈ζ〉(m+δ|β|) 〈y〉τ , l = |α+ β| .

(2) If a, a1, a2 ∈ A, then ∂α
η ∂

β
ya, a1 + a2, a1a2 ∈ A.

Definition 8.19. We say that B ⊂ A is a bounded subset of A if there
exists Am

δ,τ such that

B ⊂ Am
δ,τ and sup

a∈B
{|a|l} < ∞

for l ∈ {0} ∪ N.

Definition 8.20. For a(ζ,y) ∈ A, we define the oscillatory integral
Os(e

−πiyη̇a) =: Os by

Os = lim
ε→0

∫∫
R2n

e−πiy·ηχ(εη, εy)a(η,y)dydη,

where χ(η,y) ∈ S(R2n
η,y) and χ(0, 0) = 1.

It is shown in Kumano-go ([KG], p. 47) that Os is well defined and
independent of the choice of χ(η,y) ∈ S(R2n

η,y) satisfying χ(0, 0) = 1.

We note that when a(η,y) ∈ L1(R2n
η,y), the Lebesgue dominated con-

vergence theorem shows that Os coincides with the Lebesgue integral∫∫
e−πiy·ηa(η,y)dydη.
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A fundamental question is: under what general conditions can we
expect a given (time-independent) generator of a semigroup to have
an associated kernel? Here, we discuss a class of general conditions for
unitary groups. It will be clear that the results of this section carry
over to semigroups with minor changes.

Let A(x, p) denote a k × k matrix operator [Aij(x, p)], i, j =
1, 2, · · · , k, whose components are pseudodifferential operators with
symbols aij(x, η) ∈ C

∞(Rn×Rn), and we have, for any multi-indices
α and β, ∣∣∣a(α)ij(β)(x,η)

∣∣∣ � Cαβ(1 + |η|)m−ξ|α|+δ|β|, (8.10)

where

a
(α)
ij(β)(x,η) = ∂αpβaij(x,η),

with ∂l = ∂/∂ηl, and pl = (1/i)(∂/∂xl). The multi-indices are defined
in the usual manner by α = (α1, · · · , αn) for integers αj ≥ 0, and |α| =∑n

j=1 αj , with similar definitions for β. The notation for derivatives

is ∂α = ∂α1
1 · · · ∂αn

n and pβ = pβ1
1 · · · pβn

n . Here, m, β, and δ are
real numbers satisfying 0 ≤ δ < ξ. Equation (8.10) states that each
aij(x, η) belongs to the symbol class Sm

ξ,δ (see [SH]).

Let a(x,η) = [aij(x,η)] be the matrix-valued symbol for A(x,η),
and let λ1(x,η) · · ·λk(x,η) be its eigenvalues. If | · | is the norm in the
space of k × k matrices, we assume that the following conditions are
satisfied by a(x,η). For 0 < c0 < |η| and x ∈ R

n we have

(1)
∣∣∣a(α)(β)(x,η)

∣∣∣ ≤ Cαβ |a(x,η)| (1 + |η)|)−ξ|α|+δ|β| (hypoelliptic-
ity),

(2) λ0(x,η) = max
1�j�k

Reλj(x,η) < 0,

(3) |a(x,η)|
|λ0(x,η)| = O

[
(1 + |η|)(ξ−δ)/(2k−ε)

]
, ε > 0.

We assume that A(x,p) is a self-adjoint generator of an unitary group
U(t, 0), so that

U(t, 0)ψ0(x) = exp[(i/�)tA(x,p)]ψ0(x) = ψ(x, t)

solves the Cauchy problem

(i/�)∂ψ(x, t)/∂t = A(x,p)ψ(x, t), ψ(x, t) = ψ0(x). (8.11)
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Definition 8.21. We say that Q(x, t,η, 0) is a symbol for the Cauchy
problem (8.11) if ψ(x, t) has a representation of the form

ψ(x, t) =

∫
Rn

eπi(x,η)Q(x, t,η, 0)ψ̂0(η)dη. (8.12)

It is sufficient that ψ0 belongs to the Schwartz space S(Rn), which
is contained in the domain of A(x,p), in order that (8.12) makes sense.

Following Shishmarev [SH], and using the theory of Fourier integral
operators, we can define an operator-valued kernel for U(t, 0) by

K(x, t ; y, 0) =

∫
Rn

eπi(x−y,η)Q(x, t,η, 0)dη,

so that

ψ(x, t) = U(t, 0)ψ0(x) =

∫
Rn

K(x, t ; y, 0)ψ0(y)dy. (8.13)

The following results are due to Shishmarev [SH].

Theorem 8.22. If A(x,p) is a self-adjoint generator of a strongly
continuous unitary group with domain D, S(Rn) ⊂ D in L2(Rn), such
that conditions (1)–(3) are satisfied, then there exists precisely one
symbol Q(x, t,η, 0) for the Cauchy problem (8.11).

Theorem 8.23. If we replace condition (3) in Theorem 8.22 by the
stronger condition

(3′) |a(x,η)|
|λ0(x,η)| = O

[
(1 + |η|)(ξ−δ)/(3k−1−ε)

]
, ε > 0, |η| > c0,

then the symbol Q(x, t,η, 0) of the Cauchy problem (8.11) has the as-
ymptotic behavior near t = 0:

Q(x, t,η, 0) = exp[−(i/�)ta(x,η)] + o(1),

uniformly for x, y ∈ R
n.

Now, using Theorem 8.23 we see that, under the stronger condition
(3′), the kernel K(x, t ; y, 0) satisfies

K(x, t;y, 0) =

∫
Rn

exp[πi(x− y,η)− (i/�)ta(x,η)]dη

+

∫
Rn

exp[πi(x− y,η)]o(1)dη.

From the extension theory of Chap. 5, we see that A(x,p) has a self-
adjoint extension to KS2(Rn), which also generates a unitary group.
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This means that we can construct a path integral in the same (iden-
tical) way as was done for the free-particle propagator (i.e., for all
Hamiltonians with symbols in Sm

α,δ). Furthermore, it follows that the
same comment applies to any Hamiltonian that has a kernel repre-
sentation, independent of its symbol class. This partially proves a
conjecture made in [GZ3], to the effect that there is a kernel for every
“physically generated” semigroup.

8.6. Path Integrals II: Time-Ordered Theory

If we want to consider perturbations of the Hamiltonians with various
potentials, the normal analytical problems arise. In this case, we must
resort to the limited number of Trotter–Kato type results that may
apply on KS2(Rn). The general question is, “Under what conditions
can we expect a path integral to exist?”

8.6.1. Time-Ordered Path Integrals. The results of the last sec-
tion have direct extensions to time-dependent Hamiltonians, but the
operators need not commute. Thus, in order to construct general path
integrals, we must use the full power of the time-ordered operator
theory in Chap. 7. In this section, we show that the path integral
is a special case of the time-ordered operator theory as suggested by
Feynman and automatically leads to a generalization and extension of
Feynman–Kac theory.

Before proceeding, we should briefly pause for a few words about
progress on the development of the Feynman–Kac theory as it relates
to nonautonomous systems, evolution processes or time-dependent
propagators and their relationship to path integrals and quantum field
theory. The major developments in these areas along with many in-
teresting applications can be found in the relatively recent books by:
Jefferies [JE], Lorinczi [LO], Gulishashvili and Van Casteren [GC], and
Del Moral [MO].

Let U [t, a] be an evolution operator on KS2(R3), with time-
dependent generator A(t), which has a kernel K[x(t), t ; x(s), s]
such that:

K [x(t), t; x(s), s] =

∫
R3

K [x(t), t; dx(τ), τ ]K [x(τ), τ ; x(s), s] ,

U [t, s]ϕ(s) =

∫
R3

K [x(t), t; dx(s), s]ϕ(s).
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Now let U[t,s] be the corresponding time-ordered version defined on
FD2

⊗ ⊂ H2⊗, with kernel Kf [x(t), t; x(s), s]. Since U[t,τ ]U[τ ,s] =
U[t,s], we have:

Kf [x(t), t; x(s), s] =

∫
R3

Kf [x(t), t; dx(τ), τ ]Kf [x(τ), τ ; x(s), s] .

From our sum over paths representation for U[t, s], we have:

U[t, s]Φ(s) = lim
λ→∞

Uλ[t, s]Φ(s)

= limλ→∞ e−λ(t−s)
∞∑
k=0

[λ (t− s)]k

k!
Uk[t, s]Φ(s),

where

Uk[t, s]Φ(s) = exp

⎧⎨
⎩(−i/�)

k∑
j=1

∫ tj

tj−1

E[(j/λ), τ ]A(τ)dτ

⎫⎬
⎭Φ(s).

As in Sect. 8.1, we define Kf [Dλx(τ)] by:∫ x(τ)=x(t)

x(τ)=x(s)

Kf [Dλx(τ)]

=: e−λ(t−s)
n∑

k=0

[λ(t− s)]
k

k!

⎧⎨
⎩

k∏
j=1

∫
R3

Kf [tj ,x(tj) ; dx(tj−1), tj−1]|(j/λ)
⎫⎬
⎭,

where n = [|λ(t−s)|], the greatest integer in λ(t−s), and |(j/λ) denotes
that the integration is performed in the time-slot (j/λ).

Definition 8.24. We define the Feynman path integral associated
with U[t, s] by:

U[t, s]Φ(s) =

∫ x(τ)=x(t)

x(τ)=x(s)

Kf [Dx(τ)]Φ(s) = lim
λ→∞

∫ x(τ)=x(t)

x(τ)=x(s)

Kf [Dλx(τ)]Φ(s).

Theorem 8.25. For the time-ordered theory, whenever a kernel exists,
we have that:

lim
λ→∞

Uλ[t, s]Φ(s) = U[t, s]Φ(s) =

∫ x(τ)=x(t)

x(τ)=x(s)
Kf [Dλx(τ)]Φ[x(s)],

and the limit is independent of the space of continuous functions.

Let us assume that A0(t) and A1(t) are strongly continuous gen-
erators of C0-contraction semigroups, with a common dense domain
D(t), for each t ∈ E = [a, b], and let A1,ρ(t) = ρA1(t)R(ρ,A1(t)) be
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the Yosida approximator for the time-ordered version of A1(t), with
dense domain D = FD2

⊗ ∩ ⊗t∈ID(t). Define Uρ[t, a] and U0[t, a] by:

Uρ[t, a] = exp{(−i/�)

t∫
a

[A0(s) +A1,ρ(s)]ds},

U0[t, a] = exp{(−i/�)

t∫
a

A0(s)ds}.

Since A1,ρ(s) is bounded, A0(s) + A1,ρ(s) is a generator of a C0-
contraction semigroup for s ∈ E and finite ρ. Now assume thatU0[t, a]
has an associated kernel, so that U0[t, a] =

∫
R3[t,s] Kf [Dx(τ);x(a)]. We

now have the following general result, which is independent of the space
of continuous functions.

Theorem 8.26. (Feynman–Kac)* If A0(s)⊕A1(s) is a generator of
a C0-contraction semigroup, then

lim
ρ→∞Uρ[t, a]Φ(a) = U[t, a]Φ(a)

=

∫ x(τ)=x(t)

x(τ)=x(a)
Kf [Dx(τ)] exp{(−i/�)

τ∫
a

A1(s)ds]}Φ[x(a)].

Proof. The fact that Uρ[t, a]Φ(a) → U[t, a]Φ(a) is clear. To prove
that

U[t, a]Φ(a) =

∫ x(τ)=x(t)

x(τ)=x(a)
Kf [Dx(τ)] exp{(−i/�)

∫ t

a
A1(s)ds}Φ(a),

first note that, since the time-ordered integral exists and we are only
interested in the limit, we can write for each k

Uρ
k [t, a]Φ(a)

= exp

{
(−i/�)

∑k

j=1

∫ tj

tj−1

[
E[τj , s]A0(s) +E[τ ′j , s]A1,ρ(s)

]
ds

}
Φ(a),
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where τj and τ ′j are distinct points in the interval (tj−1, tj). Thus, we

can also write Uρ
k [t, a]Φ(a) as

Uρ
k[t, a]

= exp

⎧⎨
⎩−i

�

k∑
j=1

∫ tj

tj−1

E[τj , s]A0(s)ds

⎫⎬
⎭ exp

⎧⎨
⎩−i

�

k∑
j=1

∫ tj

tj−1

E[τ ′j , s]A1,ρ(s)ds

⎫⎬
⎭

=

k∏
j=1

exp

{
−i
�

∫ tj

tj−1

E[τj , s]A0(s)ds

}
exp

⎧⎨
⎩−i

�

k∑
j=1

∫ tj

tj−1

E[τ ′j , s]A1,ρ(s)ds

⎫⎬
⎭

=
k∏

j=1

∫
R3

Kf [tj ,x(tj) ; tj−1, dx(tj−1)]exp

⎧⎨
⎩−i

�

k∑
j=1

∫ tj

tj−1

E[τ ′j , s]A1,ρ(s)ds

⎫⎬
⎭ .

If we put this in our experimental evolution operator Uρ
λ[t, a]Φ(a) and

compute the limit, we have:

Uρ[t, a]Φ(a)

=

∫ x(τ)=x(t)

x(τ)=x(a)
Kf [Dx(τ)] exp

{
(−i/�)

∫ t

a
A1,ρ(s)ds

}
Φ(a).

Since the limit as ρ → ∞ on the left exists, it defines the limit on the
right. �

8.6.2. Examples. In this section, we pause to discuss a few exam-
ples. Theorem 8.26 is somewhat abstract, so it may not be clear as
to its application. Our first example is a direct application of this
theorem, which covers all of nonrelativistic quantum theory (i.e., the
Feynman formulation of quantum theory).

Let � be the Laplacian on Rn and let V be any potential such that
A = (−�

2/2)�+ V generates an unitary group. Then the problem:

(i�)∂ψ(x, t)/∂t = Aψ(x, t), ψ(x, 0) = ψ0(x),

has a solution with a Feynman–Kac representation.

Our second example is more specific and is due to Albeverio and
Mazzucchi [AM]. Their paper provides an excellent view of the power
of the approach first introduced by Albeverio and H∅egh-Krohn [AH].
Let C be a completely symmetric positive definite fourth-order co-
variant tensor on R

n, let Ω be a symmetric positive definite n × n
matrix, and let λ be a nonnegative constant. It is known [RS1] that
the operator

Ā = −�
2

2 Δ+ 1
2xΩ

2x+ λC[x,x,x,x]
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is a densely defined self-adjoint generator of an unitary group on
L2[Rn]. Using a substantial amount of elegant analysis, Albeverio and
Mazzucchi [AM] prove that Ā has a path integral representation as the
analytic continuation (in the parameter λ) of an infinite dimensional
generalized oscillatory integral.

Our approach to the same problem is both simple and direct using
the results of the previous sections. First, since Ā = Ā∗ is densely
defined on L2[Rn], Ā has a closed densely defined self-adjoint ex-
tension A to KS2[Rn], which generates a unitary group. If we set

V = 1
2xΩ

2x+λC[x,x,x,x] and Vρ = V (I+ρV 2)−1/2, ρ > 0, it is easy
to see that Vρ is a bounded self-adjoint operator which converges to V
onD(V ). (This follows from the fact that a bounded (self-adjoint) per-
turbation of an unbounded self-adjoint operator is self-adjoint.) Now,

since −�
2

2 Δ generates a unitary group, Aρ = −�
2

2 Δ+Vρ also generates
one and converges to A on D(A). Let

A(τ) = ( ⊗̂
t�s>τ

Is)⊗A⊗ ( ⊗
τ>s�0

Is),

then A(t) generates a unitary group for each t and Aρ(t) converges
to A(t) on D[A(t)] ⊂ FD2

⊗. We can now apply Theorem 8.26 to get
that:

U[t, a]Φ

=

∫ x(τ)=x(t)

x(τ)=x(a)
Kf [Dx(τ)] exp{−(i/�)

∫ τ

a
V (s)ds}Φ

= lim
ρ→0

∫ x(τ)=x(t)

x(τ)=x(a)
Kf [Dx(τ)] exp{−(i/�)

∫ τ

a
Vρ(s)ds}Φ.

Under additional assumptions, Albeverio and Mazzucchi are able to
prove Borel summability of the solution in power series of the coupling
constant. With Theorem 7.25 of Chap. 7, we get the Dyson expansion
to any order with remainder.

8.7. Dyson’s First Conjecture

This section is the last one in the book for two reasons. First, our
original objective, leading to most of the work in the book, was to
provide an answer this conjecture. The second reason is that this
section does not provide any additional mathematics. It essentially
gives a physical reinterpretation of the mathematics developed earlier.



340 8. Applications of the Feynman Calculus

At the end of his second paper on the relationship between the
Feynman and Schwinger–Tomonaga theories, Dyson explored the dif-
ference between the divergent Hamiltonian formalism that one must
begin with and the finite S-matrix that results from renormalization
(see [DY2]). He takes the view that it is a contrast between a real
observer and a fictitious (ideal) observer. The real observer can only
determine particle positions with limited accuracy and always gets fi-
nite results from his measurements. Dyson then suggests that “. . . The
ideal observer, however, using nonatomic apparatus whose location in
space and time is known with infinite precision, is imagined to be able
to disentangle a single field from its interactions with others, and to
measure the interaction. In conformity with the Heisenberg uncer-
tainty principle, it can perhaps be considered a physical consequence
of the infinitely precise knowledge of (particle) location allowed to the
ideal observer, that the value obtained when he measures (the interac-
tion) is infinite.” He goes on to remark that if his analysis is correct,
the problem of divergences is attributable to an idealized concept of
measurability. The purpose of this section is to develop the conceptual
and technical framework that will allow us to discuss this conjecture.

8.7.1. The S-Matrix. The objective of this section is to provide
a formulation of the S-matrix that will allow us to investigate the
mathematical sense in which we can believe Dyson’s conjecture.

In order to explore this idea, we work in the interaction representa-
tion with obvious notation. Replace the interval [t, 0] by [T,−T ], H(t)
by −i

�
HI(t), and our experimental evolution operator Uλ[T,−T ]Φ by

the experimental scattering operator (or S-matrix) Sλ[T,−T ]Φ, where

Sλ[T,−T ]Φ =
∞∑
n=0

(2λT )n

n!
exp [−2λT ]Sn[T,−T ]Φ, (8.14)

Sn[T,−T ]Φ = exp

⎧⎨
⎩−i

�

n∑
j=1

∫ tj

tj−1

E[τj , s]HI(s)ds

⎫⎬
⎭Φ, (8.15)

and HI(t) =
∫
R3 HI(x(t), t)dx(t) is the interaction energy. We now

give a physical interpretation of our formalism. Rewrite Eq. (8.14) as

Sλ[T,−T ]Φ

=

∞∑
n=0

(2λT )n

n!
exp

⎧⎨
⎩−i

�

n∑
j=1

∫ tj

tj−1

[E[τj , s]HI(s)− iλ�I⊗] ds

⎫⎬
⎭Φ.

(8.16)
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In this form, it is clear that the term −iλ�I⊗ has a physical inter-
pretation as the absorption of photon energy of amount λ� in each
subinterval [tj−1, tj ] (cf. Mott and Massey [MM]). When we compute
the limit, we get the standard S-matrix (on [T,−T ]). It follows that
we must add an infinite amount of photon energy to the mathematical
description of the experimental picture (at each point in time) in or-
der to obtain the standard scattering operator. This is the ultraviolet
divergence and shows explicitly that the transition from the experi-
mental to the ideal scattering operator requires that we illuminate the
particle throughout its entire path. Thus, it appears that we have,
indeed, violated the uncertainty relation. This is further supported if
we look at the form of the standard S-matrix:

S[T,−T ]Φ = exp

{
(−i/�)

∫ T

−T
HI(s)ds

}
Φ (8.17)

and note that the differential ds in the exponent implies perfect in-
finitesimal time knowledge at each point, strongly suggesting that the
energy should be totally undetermined. If violation of the Heisenberg
uncertainty relation is the cause for the ultraviolet divergence, then as
it is a variance relation, it will not appear in first order (perturbation)
but should show up in all higher-order terms. On the other hand, if
we eliminate the divergent terms in second order, we would expect
our method to prevent them from appearing in any higher order term
of the expansion. The fact that this is precisely the case in quantum
electrodynamics is a clear verification of Dyson’s conjecture.

If we allow T to become infinite, we once again introduce an infinite
amount of energy into the mathematical description of the experimen-
tal picture, as this is also equivalent to precise time knowledge (at
infinity). Of course, this is the well-known infrared divergence and
can be eliminated by keeping T finite (see Dahmen et al. [DA]) or
introducing a small mass for the photon (see Feynman [FY3]). If we
hold λ fixed while letting T become infinite, the experimental S-matrix
takes the form:

Sλ[∞,−∞]Φ = exp

⎧⎨
⎩(−i/�)

∞∑
j=1

∫ tj

tj−1

E[τj , s]HI(s)ds

⎫⎬
⎭Φ,

∞⋃
j=1

[tj−1, tj ] = (−∞,∞) , & Δtj = λ−1.

(8.18)
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This form is interesting since it shows how a minimal time elim-
inates the ultraviolet divergence. Of course, this is not unexpected,
and has been known at least since Heisenberg [HE] introduced his
fundamental length as a way around the divergences. This was a
prelude to the various lattice approximation methods. The review
by Lee [LE] is interesting in this regard. In closing this section, we
record our exact expansion for the S-matrix to any finite order. Let

Hk = HI(s1) · · ·HI(sk) and let Φ ∈ D
[
(Q[∞,−∞])n+1

]
, we have

S[∞,−∞]Φ(−∞) =
n∑

k=0

(−i
�

)k ∞∫
−∞

ds1 · · ·
sk−1∫
−∞

dskHkΦ

+
(−i

�

)n+1

1∫
0

(1− ξ)ndξ

∞∫
−∞

ds1 · · ·
sn∫

−∞
dsn+1Hn+1S

ξ[sn+1,−∞]Φ.

(8.19)

It follows that (in a theoretical sense) we can consider the standard
S-matrix expansion to be exact, when truncated at any order, by
adding the last term of Eq. (8.19) to give the remainder. This result
also means that whenever we can construct an exact nonperturba-
tive solution, it always implies the existence of a perturbative solution
valid to any order. However, in general, only in particular cases can
we know if the series at some n (without the remainder) approximates
the solution.

In this section we have provided a precise formulation and proof
of Dyson’s conjecture that the ultraviolet divergence is caused by a
violation of the Heisenberg uncertainty relation at each point in time.

In closing, since the time of Dyson’s original work, a large amount
of progress has been made in understanding the mathematical and
physical foundations of relativistic quantum theory. (For a brief dis-
cussion including references for further reading, see Gill and Zachary
[GZ] and [GZ1].) However, many of the problems encountered by the
earlier workers are still with us in one form or another.
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