
Chapter 5

Operators on Banach
Space

The Feynman operator calculus and the Feynman path integral
develop naturally on Hilbert space. In this chapter we develop the
theory of semigroups of operators, which is the central tool for both.
In order to extend the theory to other areas of interest, we begin
with a new approach to operator theory on Banach spaces. We first
show that the structure of the bounded linear operators on Banach
space with an S-basis is much closer to that for the same operators
on Hilbert space. We will exploit this new relationship to transfer
the theory of semigroups of operators developed for Hilbert spaces to
Banach spaces. The results are complete for uniformly convex Banach
spaces, so we restrict our presentation to that case, with one excep-
tion. In the Appendix (Sect. 5.3), we show that all of the results in
Chap. 4 have natural analogues for uniformly convex Banach spaces.

5.1. Preliminaries

Let B be a uniformly convex Banach space with an S-basis. Let C[B]
be the set of closed densely defined linear operators and let L[B] be
the set of bounded linear operators on B.
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194 5. Operators on Banach Space

Definition 5.1. A duality map J : B �→ B′ is a set

J (u) =
{
u∗ ∈ B′

∣∣∣〈u, u∗〉 = ‖u‖2B = ‖u∗‖2B′

}
, ∀u ∈ B.

Example 5.2. Let Ω be a bounded open subset of R
n, n ∈ N. If

u ∈ Lp[Ω] = B, 1 < p < ∞, then

J (u)(x) = ‖u‖2−p
p |u(x)|p−2 u(x) = u∗ ∈ Lq[Ω], 1

p + 1
q = 1. (5.1)

Furthermore,

〈u, u∗〉 = ‖u‖2−p
p

∫

Ω
|u(x)|p dλn(x) = ‖u‖2p = ‖u∗‖2q

It can be shown that Lp[Ω] is uniformly convex and that u∗ = J (u)
is uniquely defined for each u ∈ B. Thus, if {un} is an S-basis for
Lp[Ω], then the family vectors {u∗n} is an S-basis for Lq[Ω] = (Lp[Ω])′.
The relationship between u and u∗ is nonlinear [see Eq. (5.1)]. In
the next section we prove the remarkable result that there is another
representation of B′, with u∗ = JB(u) linear, for each u ∈ B. (However,
u∗ is no longer a duality mapping.)

5.1.1. The Natural Hilbert Space for a Uniformly Convex
Banach Space. We follow the same ideas used in Chap. 3 to embed
L2 in KS2. However, we take a restricted approach that applies to all
uniformly convex Banach spaces with an S-basis. Fix B and let {En}
be an S-basis for B. For each n, let tn = 2−n and for each En, let E∗

n

be the corresponding dual vector in B′. For each pair of functions u, v
on B, define an inner product by:

(u, v) =
∞∑
n=1

tn 〈E∗
n, u〉 〈E∗

n, v〉.

we let H be the completion of B in the induced norm. It is clear that
B ⊂ H densely and

‖u‖H =

[ ∞∑
n=1

tn|〈E∗
n, u〉|2

]1/2

� sup
n

|〈E∗
n, u〉|

� sup
‖E∗‖B′�1

|〈E∗, u〉| = ‖u‖B,

(5.2)

so that the embedding is both dense and continuous. It is clear that
H is unique up to a change of S-basis.
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Definition 5.3. If B be a Banach space, we say that B′ has a Hilbert
space representation if there exists a Hilbert space H, with B ⊂ H as
a continuous dense embedding and for each u∗ ∈ B′, u∗ = (·, u)H for
some u ∈ B.
Theorem 5.4. If B be a uniformly convex Banach space with an
S-basis, then B′ has a Hilbert space representation.

Proof. Let H be the natural Hilbert space for B and let J be the
natural linear mapping from H → H′, defined by

〈v,J(u)〉 = (v, u)H, for all u, v ∈ H.

It is easy to see that J is bijective and J∗ = J. First, we note that
the restriction of J to B, JB, maps B to a unique subset of linear
functionals {JB(u), u ∈ B} and, JB(u+ v) = JB(u) + JB(v), for each
u, v ∈ B. We are done if we can prove that {JB(u), u ∈ B} = B′. For
this, it suffices to show that JB(u) is bounded for each u ∈ B. Since B
is dense in H, from equation (5.2) we have:

‖JB(u)‖B′ = sup
v∈B

〈v,JB(u)〉
‖v‖B

� sup
v∈B

〈v,JB(u)〉
‖v‖H

= ‖u‖H � ‖u‖B.

Thus, {JB(u), u ∈ B} ⊂ B′. Since B is uniformly convex, there
is a (unique) one-to-one relationship between B and B′, so that
{JB(u), u ∈ B} = B′. �

5.1.2. Construction of the Adjoint on B. We can now show that
if B′ has a Hilbert space representation, then each closed densely linear
operator on B has a natural adjoint defined on B.
Theorem 5.5. Let B be a uniformly convex Banach space with an
S-basis. If C[B] denotes the closed densely linear operators on B and
L[B] denotes the bounded linear operators, then every A ∈ C[B] has
a well-defined adjoint A∗ ∈ C[B]. Furthermore, if A ∈ L[B], then
A∗ ∈ L[B] with:

(1) (aA)∗ = āA∗,
(2) A∗∗ = A,

(3) (A∗ +B∗) = A∗ +B∗

(4) (AB)∗ = B∗A∗ and

(5) ‖A∗A‖B ≤ ‖A‖2B.
Thus, L[B] is a ∗algebra.
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Proof. Let J be the natural linear mapping from H → H′ and let
JB be the restriction of J to B. If A ∈ C[B], then A′JB : B′ → B′.
Since A′ is closed and densely defined, it follows that J−1

B A′JB : B →
B is a closed and densely defined linear operator. We define A∗ =
[J−1

B A′JB] ∈ C[B]. If A ∈ L[B], A∗ = J−1
B A′JB is defined on all of B.

By the Closed Graph Theorem, A∗ ∈ L[B]. The proofs of (1)–(3) are
straightforward. To prove (4),

(BA)∗ = J−1
B (BA)′JB = J−1

B A′B′JB
=

[
J−1
B A′JB

] [
J−1
B B′JB

]
= A∗B∗.

(5.3)

If we replace B by A∗ in Eq. (5.3), noting that A∗∗ = A, we also see
that (A∗A)∗ = A∗A. To prove (5), we first see that:

〈A∗Av,JB(u)〉 = (A∗Av, u)H = (v,A∗Au)H,

so that A∗A is symmetric. Thus, by Lax’s Theorem, A∗A has a
bounded extension to H and ‖A∗A‖H � k ‖A∗A‖B, where k is a posi-
tive constant. We also have that

‖A∗A‖B � ‖A∗‖B‖A‖B � ‖A‖2B . (5.4)

It follows that ‖A∗A‖B ≤ ‖A‖2B. If equality holds in (5.4), for all
A ∈ L[B], then it is a C∗-algebra. This is true if and only if B is a
Hilbert space. Thus, in general the inequality in (5.4) is strict. �

5.1.2.1. Example: Differential Operators. Let A be a closed
densely defined linear operator defined on Lp[Rn], 1 < p < ∞, and let
A′ be the dual defined on Lq[Rn], 1

p + 1
q = 1. It is easy to show that

if A′ is densely defined on Lp[Rn], it has a closed extension to Lp[Rn]
(without using H2 = KS2[Rn]).

Example 5.6. Let A be a second order differential operator on Lp[Rn]
of the form

A =
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
i,j=1

xibij(x)
∂

∂xj
,

where a(x) = [[aij(x)]] and b(x) = [[bij(x)]] are matrix-valued functions
in C

∞
c [Rn × R

n] (infinitely differentiable functions with compact sup-
port). We also assume that for all x ∈ R

n det [[aij(x)]] > ε and the
imaginary part of the eigenvalues of b(x) are bounded above by −ε,
for some ε > 0. Note, since we don’t require a or b to be symmetric,
A �= A′.
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It is well known that C∞
c [Rn] ⊂ Lp[Rn] ∩ Lq[Rn] for all 1 < p ≤

q < ∞. Furthermore, since A′ is invariant on C
∞
c [Rn],

A′ : C∞
c [Rn] ⊂ Lp [Rn] → C

∞
c [Rn] ⊂ Lp [Rn] .

It follows that A′ has a closed extension to Lp[Rn]. (In this case, we
do not need H2 directly, we can identify J2 with the identity on H2

and A∗ with A′.)

Remark 5.7. For a general A, which is closed and densely defined on
Lp[Rn], we know that it is densely defined on KS2[Rn]. Thus, it has
a well-defined adjoint A∗ on KS2[Rn]. By Theorem 5.5, we can take
the restriction of A∗ from KS2[Rn] to obtain our adjoint on Lp[Rn].

5.1.2.2. Example: Integral Operators. In one dimension, the
Hilbert transform can be defined on L2[R] via its Fourier transform:

Ĥ(f) = −i sgnx f̂ .

It can also be defined directly as principal-value integral:

(Hf)(x) = lim
ε→0

1

π

∫

|x−y|�ε

f(y)

x− y
dy.

For a proof of the following results see Grafakos [GRA, Chap. 4].

Theorem 5.8. The Hilbert transform on L2[R] satisfies:

(1) H is an isometry, ‖H(f)‖2 = ‖f‖2 and H∗ = −H.

(2) For f ∈ Lp[R], 1 < p < ∞, there exists a constant Cp > 0
such that,

‖H(f)‖p ≤ Cp‖f‖p. (5.5)

The next result is technically obvious, but conceptually nontrivial.

Corollary 5.9. The adjoint of H, H∗ defines a bounded linear oper-
ator on Lp[R] for 1 < p < ∞, and H∗ satisfies Eq. (5.5) for the same
constant Cp.

The Riesz transform, R, is the n-dimensional analogue of the
Hilbert transform and its jth component is defined for f ∈ Lp[Rn],
1 < p < ∞, by:

Rj(f) = cn lim
ε→0

∫

|y−x|�ε

yj − xj

|y − x|n+1 f(y)dy, cn =
Γ
(
N+1
2

)

π(n+1)/2
.
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Definition 5.10. Let Ω be defined on the unit sphere Sn−1 in Rn.

(1) The function Ω(x) is said to be homogeneous of degree n if
Ω(tx) = tnΩ(x).

(2) The function Ω(x) is said to have the cancellation property if∫

Sn−1

Ω(y)dσ(y) = 0, where dσ is the induced

Lebesgue measure on Sn−1.

(3) The function Ω(x) is said to have the Dini-type condition if

sup
|x−y|�δ

|x|=|y|=1

|Ω(x)− Ω(y)| � ω(δ) ⇒
∫ 1

0

ω(δ)dδ

δ
< ∞.

A proof of the following theorem can be found in Stein [STE]
(see p. 39).

Theorem 5.11. Suppose that Ω is homogeneous of degree 0, satisfying
both the cancellation property and the Dini-type condition. If f ∈
Lp[Rn], 1 < p < ∞ and

Tε(f)(x) =

∫

|y−x|�ε

Ω(y − x)

|y − x|n f(y)dy.

Then

(1) There exists a constant Ap, independent of both f and ε such
that

‖Tε(f)‖p � Ap‖f‖p.
(2) Furthermore, lim

ε→0
Tε(f) = T (f) exists in the Lp norm and

‖T (f)‖p � Ap‖f‖p. (5.6)

Treating Tε(f) as a special case of the Henstock–Kurzweil integral,
conditions (1) and (2) are automatically satisfied and we can write the
integral as

T (f)(x) =

∫

Rn

Ω(y − x)

|y − x|n f(y)dy.

For g ∈ Lq, 1
p +

1
q = 1, we have 〈T (f), g〉 = 〈f, T ∗(g)〉. Using Fubini’s

Theorem for the Henstock–Kurzweil integral (see [HS]), we have that

Corollary 5.12. The adjoint of T, T ∗ = −T is defined on Lp and
satisfies Eq. (5.6)
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It is easy to see that the Riesz transform is a special case of the
above theorem and corollary.

Another closely related integral operator is the Riesz potential,
Iα(f)(x) = (−Δ)−α/2f(x), 0 < α < n, is defined on Lp[Rn], 1 < p <
∞, by (see Stein [STE], p. 117):

Iα(f)(x) = γ−1(α)

∫

Rn

f(y)dy

|x− y|n−α , and γ(α) = 2απ
n
2

Γ(α2 )

Γ(n−α
2 )

.

Since the kernel is symmetric, application of Fubini’s Theorem shows
that the adjoint I∗α = Iα is also defined on Lp[Rn]. Since (−Δ)−1 is
not bounded, we cannot obtain Lp bounds for Iα(f)(x). However, if
1/q = 1/p− α/n, we have the following (see Stein [STE], p. 119)

Theorem 5.13. If f ∈ Lp[Rn] and 0 < α < n, 1 < p < q < ∞, 1/q =
1/p − α/n, then the integral defining Iα(f) converges absolutely for
almost all x. Furthermore, there is a constant Ap,q, such that

‖Iα(f)‖q � Ap,q‖f‖p. (5.7)

5.1.3. Extension of the Adjoint. In this section we discuss an
extension of the adjoint for a Banach space B, which need not be uni-
formly convex. If B is not uniformly convex, Theorem 5.5 no longer
holds and we need H1. The next theorem shows that, for A bounded,
we can always define a reasonable version of the adjoint A∗, which has
many of the essential properties that we find for a Hilbert space.

Theorem 5.14. Let A be a bounded linear operator on B. Then A
has a well-defined adjoint A∗ defined on B such that:

(1) the operator A∗A ≥ 0 (accretive),

(2) (A∗A)∗ = A∗A (naturally self-adjoint), and

(3) I +A∗A has a bounded inverse.

Proof. For i = 1, 2, let Ji : Hi → H′
i. As in Theorem 5.5, J∗

i = Ji.
Now, let A1 = A|H1

: H1 → H2, and A′
1 : H′

2 → H′
1.

It follows that A′
1J2 : H2 → H′

1 and J−1
1 A′

1J2 : H2 → H1 ⊂ B so

that, if we define A∗ = [J−1
1 A′

1J2]B, then A∗ : B → B (i.e., A∗ ∈ L[B]).
To prove (1), let g ∈ B, then (A∗Ag, g)H2

≥ 0 for all g ∈ B. Hence
〈A∗Ag, g∗〉 ≥ 0 for all g∗ ∈ J(g) (the duality map of g), so that A∗A
is accretive.



200 5. Operators on Banach Space

To prove (2), we have for g ∈ H1,

(A∗A)∗g = ({J−1
1 [{[J−1

1 A′
1J2]|BA}1]′J2}|B)g

= ({J−1
1 [{A′

1[J2A1J
−1
1 ]|B}]J2}|B)g

= A∗Ag.

It follows that the same result holds on all of B.
The proof of (3), that I +A∗A is invertible, follows the same lines

as in von Neumann’s theorem. �

Since A∗A is self-adjoint on B (in the sense of (2) above), it is
natural to expect that the same is true on H2. However, this need
not be the case. To obtain a simple counterexample, recall that, in
standard notation, the simplest class of bounded linear operators on
B is B ⊗ B′, in the sense that:

B ⊗ B′ : B → B, by Au = (b⊗ lb′(·))u =
〈
b′, u

〉
b.

Thus, if lb′(·) ∈ B′\H′
2, then J2{J−1

1 [(A1)
′]J2|B(u)} is not in H′

2, so
that A∗A is not defined as an operator on all of H2 and thus cannot
have a bounded extension.

We now provide the correct extension of Lax’s Theorem.

Theorem 5.15. Let A be a bounded linear operator on B. If B′ ⊂ H2,
then A has a bounded extension to L[H2], with ‖A‖H2

≤ k ‖A‖B (for
some positive k).

Proof. We first note that if g, h ∈ B, then J−1
1 J2(g) = g and (A′

1)
′h =

Ah. Now let T = A∗A, then

(Tg, h)H2
= 〈Tg,J2(h)〉

= 〈A∗Ag,J2(h)〉 =
〈
J−1
1 A′

1J2(Ag),J2(h)
〉

=
〈
A′

1J2(Ag), h
〉
=

〈
J2(Ag), (A

′
1)

′h
〉

= 〈Ag,J2(Ah)〉 =
〈
g, (A′

1)J2(Ah)
〉

=
〈
J−1
1 J2(g), (A

′
1)J2(Ah)

〉
=

〈
J2(g),J

−1
1 (A′

1)J2(Ah)
〉

= (g, Th)H2

We can now apply Lax’s Theorem to see that, for some k, ‖T‖H2
=

‖A‖2H2
≤ k2 ‖A‖2B. �
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Remark 5.16. Thus, the algebra L[B] also has a ∗operation for all
Banach spaces with an S-basis and B′ ⊂ H2. However, if B is not
uniformly convex and A �= B, B′ then, unless

(AB |H1 )
′ = (B |H1 )

′ (A |H1 )
′ , (AB)∗ �= A∗B∗.

A natural question is “which Banach spaces with an S-basis have
the property that, B′ ⊂ H2”? This question has no general answer.
However, if B is one of the following classical Banach spaces and H2 =
KS2[Rn], then B′ ⊂ H2 (H1 = GS2[Rn]). A few of the spaces below
are not separable (do not have an S-basis).

(1) Cb[R
n], the bounded continuous functions on R

n.

(2) Cu[R
n], the bounded uniformly continuous functions on R

n.

(3) C
k
0[R

n], the continuous functions on R
n, with k derivatives

that vanish at infinity.

(4) Lp[Rn], 1 ≤ p ≤ ∞, the Lebesgue integrable functions on R
n

of order p.

(5) M[Rn], the space of finitely additive set functions (measures)
on R

n.

We note that both Cb[R
n] and L∞[Rn] are nonseparable Banach

spaces, with the same dual space M[Rn] ⊂ KS2[Rn] and, the dual
space of Cu[R

n], C
′
u[R

n] ⊂ M[Rn] ⊂ KS2[Rn]. In each case, we can
use Theorem 5.15.

5.2. Semigroups of Operators

Introduction. Semigroups of operators form the basis for both the
Feynman operator calculus and path integral theory of Chaps. 7 and 8.
We have restricted our presentation to those aspects that are abso-
lutely necessary and should even be reviewed those with some training
in the subject. We provide all of the basic results along with proofs,
for those without prior background.

The theory of semigroups of operators is a fairly mature field of
study, which has continued to attract the interest of those in analy-
sis, probability theory, partial differential equations, dynamical sys-
tems, and quantum theory, in addition to the many areas of applied
mathematics. This continued interest is expected because of the sim-
ple (conceptual) framework provided, the robustness of the techni-
cal methodology, and the wealth of problems and new applications.
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Those interested in the finer details are encouraged to seek out the
wealth of interesting material by consulting some of the major works
in the field. See the standards by Hille and Phillips [HP], Yosida [YS],
Kato [K], Pazy [PZ], Goldstein [GS] and the recent ones by Engel and
Nagel [EN] and Vrabie [VR]. The book by Vrabie [VR] offers a number
of new and interesting applications.

We develop most of the theory for a fixed separable Hilbert spaceH
over C and will assume when convenient that H = KS2[Rn]. However,
we begin with the general theory on a Banach space B.
Definition 5.17. A family of linear operators {S(t), 0 ≤ t < ∞} (not
necessarily bounded), defined on D ⊂ B, is a semigroup if

(1) S(t+s)f = S(t)S(s)f for f ∈ D, the domain of the semigroup.

(2) The semigroup is said to be strongly continuous if lim
τ→0

S(t+

τ)f = S(t)f for all f ∈ D, t > 0.

(3) It is said to be a C0-semigroup if it is strongly continuous,
S(0) = I, D = B and lim

t→0
S(t)f = f for all f ∈ B.

(4) S(t) is a C0-contraction semigroup if ‖S(t)‖B � 1.

(5) S(t) is a C0-unitary group if S∗(t) exists and S(t)S(t)∗ =
S(t)∗S(t) = I, and ‖S(t)‖B = 1.

Definition 5.18. For a C0-semigroup S(t), the linear operator A
defined by

D(A) =

{
f ∈ B

∣∣∣∣limt↓0
1
t [S(t)f − f ] exists

}
and

Af = lim
t↓0

1
t [S(t)f − f ] =

d+S(t)f

dt

∣∣∣∣
t=0

for f ∈ D(A)

is the infinitesimal generator of the semigroup S(t) and D(A) is the
domain of A.

Lemma 5.19. Let S(t) be a C0-semigroup. Then there exist constants
ω ≥ 0 and M ≥ 1 such that:

‖S(t)‖H � Meωt, for 0 � t < ∞.

Proof. If ‖S(t)‖B is not bounded in any interval 0 ≤ t ≤ m, m > 0,
then there is a nonnegative sequence tn such that limn→∞ tn = 0 and
‖S(tn)‖B � n. By the uniform boundedness theorem it follows that, for
some f, S(t)f is unbounded. But then S(t) is not strongly continuous
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(see (3) above). Thus ‖S(t)‖B � M for 0 ≤ t ≤ m. From ‖S(0)‖B = 1
and M � 1, we can choose ω = m−1logM . Let t ≥ 0 be given, then
t = nm+ δ, where 0 ≤ δ < m, so, by the semigroup property of S(t),
we have:

‖S(t)‖B = ‖S(δ)S(m)n‖H � Mn+1 � MM t/m = Meωt.

�

Theorem 5.20. Let S(t) be a C0 contraction semigroup and let A be
its infinitesimal generator. Then

(1) For all f ∈ B, we have

lim
h→0

1
h

∫ t+h

t
S(u)fdu = S(t)f.

(2) For all f ∈ B, ∫ t
0 S(u)fdu ∈ D(A) and,

A

∫ t

0
S(u)fdu = S(t)f − f.

(3) For all f ∈ D(A),

d

dt
S(t)f = AS(t)f = S(t)Af.

(4) For all f ∈ D(A),

S(t)f − S(u)f =

∫ t

u
AS(τ)fdτ =

∫ t

u
S(τ)Afdτ.

(5) A is closed and D(A) = B.
(6) The resolvent set ρ(A) of A contains R+ and, for every λ > 0,

‖R(λ,A)‖B � 1

λ
.

Proof. The proof of (1) follows from the strong continuity of S(t).
To prove (2), let f ∈ B and suppose that h > 0. Then

S(h)− I

h

∫ t

0
S(u)fdu = 1

h

∫ t

0
(S(u+ h)f − S(u)f)du

= 1
h

∫ t+h

t
S(u)fdu− 1

h

∫ h

0
S(u)fdu
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and, as h ↘ 0, the right-hand side tends to S(t)f − f . To prove (3),
if f ∈ D(A) and h > 0, we have

S(h)− I

h
S(t)f = S(t)

(
S(h)− I

h

)
f

h→0−−−→ S(t)Af.

It follows that S(t)f ∈ D(A) and S(t)Af = AS(t)f . This also means
that

d+

dt
S(t)f = AS(t)f = S(t)Af.

To complete our proof, we need to show that, for t > 0, the left-hand
derivative exists and is equal to S(t)Af . To prove this, note that

lim
h↘0

[
S(t)f − S(t− h)f

h
− S(t)Af

]

= lim
h↘0

S(t− h)

(
S(h)f − f

h
−Af

)
+ lim

h↘0
(S(t− h)Af − S(t)Af) .

We are done since the limit of both terms on the right is zero. To prove
(4), we need to only look at the integral of d

dtS(t)f = AS(t)f =

S(t)Af . To prove (5), for each f ∈ B set fh = 1
h

∫ h
0 S(u)fdu. By

(2), fh ∈ D(A) and, by (1), fh → f , so that D(A) = B. To prove that
A is closed, let fn ∈ D(A), fn → f and Afn → g (as n → ∞). From
(4), we have that

S(t)fn − fn =

∫ t

0
S(u)Afndu → S(t)f − f =

∫ t

0
S(u)Agdu.

If we divide the last integral by t and let t ↘ 0, we see from (1) that
f ∈ D(A) and Af = g. The proof of (6) requires a little additional
work. If f ∈ H and λ > 0, define a bounded linear operator R(λ,A)
by (the Laplace transform of S(t)):

R(λ,A)f =

∫ ∞

0
e−λtS(t)fdt.

Since the function t → S(t)f is continuous and uniformly bounded,
the integral exists and provides a well-defined linear operator with

‖R(λ,A)f‖B �
∫ ∞

0
e−λt ‖S(t)f‖B dt � 1

λ ‖f‖B .

For h > 0,

S(h)− I

h
R(λ,A)f = 1

h

∫ ∞

0

e−λt (S(t− h)f − S(t)f)

=
e−λh − 1

h

(∫ ∞

0

e−λtS(t)fdt

)
− e−λh

h

∫ h

0

e−λtS(t)fdt →
h↘0

λR(λ,A)f − f.
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Thus, we see that, for every λ > 0 and f ∈ B, R(λ,A)f ∈ D(A) and
AR(λ,A)f = λR(λ,A)f − f ⇒ (λI − A)R(λ,A)f = f . We also have
that, for f ∈ D(A),

R(λ,A)Af =

∫ ∞

0
e−λtS(t)Afdt =

∫ ∞

0
e−λtAS(t)fdt

= A

[∫ ∞

0
e−λtS(t)fdt

]
= AR(λ,A)f.

It now follows that R(λ,A)(λI − A)f = f for each f ∈ D(A), so that
R(λ,A) is the inverse of (λI −A) for all λ > 0 and

‖R(λ,A)f‖B � 1
λ ‖f‖B .

�

Lemma 5.21. Suppose that R(λ,A) = (λI−A)−1, where A is a linear
operator such that:

(1) A is closed and D(A) = B.
(2) The resolvent set ρ(A) of A contains R+ and, for every λ > 0,

‖R(λ,A)‖B � 1/λ.

Then lim
λ→∞

λR(λ,A)f = f for all f ∈ B.

Proof. For each f ∈ D(A), we have that

‖λR(λ,A)f − f‖B = ‖AR(λ,A)f‖B = ‖R(λ,A)Af‖B � 1
λ
‖Af‖B

λ→∞−−−−→ 0.

Since D(A) is dense and ‖λR(λ,A)‖B � 1, as λ → ∞, λR(λ,A)f → f
for each f ∈ B. �

5.2.1. Hilbert Space. We now look at the case when B = H is a
Hilbert space.

Definition 5.22. For each λ > 0, we define the Yosida approximator
by: Aλ = λAR(λ,A) = λ2R(λ,A)− λI.

The next result is due to Yosida and applies to generators of
strongly continuous semigroups defined on [0,∞). We will prove a
generalized version of the theorem, which applies to strongly continu-
ous semigroups (0,∞).

Theorem 5.23. (Yosida) Let A be a closed linear operator with

D(A) = H. If the resolvent set ρ(A) of A contains R+ and, for every
λ > 0, ‖R(λ,A)‖H � λ−1. Then
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(1) lim
λ→∞

Aλf = Af for f ∈ D(A).

(2) Aλ is a bounded generator of a contraction semigroup and,
for each f ∈ H, λ, μ > 0, we have:

∥∥etAλf − etAμf
∥∥
H � t ‖Aλf −Aμf‖H .

If all we know is that A is the generator of a strongly continuous
semigroup S(t) = exp(tA) for t > 0, the above result is not enough.
Unfortunately, for general strongly continuous semigroups, A may not
have a bounded resolvent. The following (artificial example) shows
what can (and will) happen in some real cases.

Example 5.24. Let H = H0(R
n) be the Hilbert space (over R) of

functions mapping R
n to itself, which vanish at infinity. Consider the

Cauchy problem:

d

dt
u(x, t) = a |x|u(x, t), u(x, 0) = f(x),

where a =
∏n

i=1 sign(xi). Let S(t)f(x) = eta|x| f(x), where x =
[x1, · · · , xn]t. It is easy to see that S(t) is a semigroup on H with gener-
ator A such that Af(x) = a |x| f(x). It follows that u(x, t) = S(t)f(x)
solves the above initial-value problem. If we compute the resolvent, we
get that:

R(λ,A)f(x) =

∫ ∞

0
e−λt exp{−t |x|}f(x)dt = 1

λ− a |x| f(x).

It is clear that the spectrum of A is the real line, so that R(λ,A) is an
unbounded operator for all real λ. However, it can be checked that the
bounded linear operator

Aλ = aλ|x|/[λ+ |x|]
converges strongly to A (on D(A)) as λ → ∞, and

lim
λ→0

Sλ(t)f(x) = S(t)f(x).

As an application of the polar decomposition, the next result shows
that the Yosida approach can be generalized in such a way as to give
a contractive approximator for all strongly continuous semigroups of
operators on H.

For any closed densely defined linear operator A on H, let
T = −[A∗A]1/2, T̄ = −[AA∗]1/2. Since T (T̄ ) is m-dissipative, it
generates a contraction semigroup. We can now write A as A = V T ,
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where V = −U is the unique partial isometry of Chap. 4. Define Aλ by
Aλ = λAR(λ, T ). Note that Aλ = λUTR(λ, T ) = λ2UR(λ, T ) − λU
and, althoughA does not commute withR(λ, T ), we have λAR(λ, T ) =
λR(λ, T̄ )A.

Theorem 5.25. (Generalized Yosida) Let A be a closed densely
defined linear operator on H. Then

(1) Aλ = λAR(λ, T ) is a bounded linear operator and limλ→∞Aλf
= Af , for all f ∈ D(A),

(2) exp[tAλ] is a bounded contraction for t > 0, and

(3) if S(t) = exp[tA] is defined on D, D(A) ⊂ D, then for t >
0, f ∈ D, limλ→∞ ‖exp[tAλ]f − exp[tA]f‖H = 0.

Proof. To prove (1), let f ∈ D(A). Now use the fact that

lim
λ→∞

λR(λ, T̄ )f = f

and Aλf = λR(λ, T̄ )Af . To prove (2), use

Aλ = λ2UR(λ, T )− λU

with ‖λR(λ, T )‖H = 1, and ‖U‖H = 1 to get that

‖exp[tλ2UR(λ, T )− tλU ]‖H ≤ exp[−tλ‖U‖H] exp[tλ‖U‖H‖λR(λ, T )‖H] ≤ 1.

To prove (3), let t > 0 and f ∈ D(A). Then

‖ exp [tA]f − exp [tAλ]f‖H = ‖
∫ t

0

d

ds
[e(t−s)AλesA]fds‖H

≤
∫ t

0
‖[e(t−s)Aλ(A−Aλ)e

sAf ]‖H

≤
∫ t

0
‖[(A−Aλ)e

sAf ]‖Hds.

Now use

‖[Aλe
sAf ]‖H = ‖[λR(λ, T̄ )esAAf ]‖H ≤ ‖[esAAf ]‖H,

to get

‖[(A−Aλ)e
sAf ]‖H ≤ 2‖[esAAf ]‖H.

Since ‖[esAAf ]‖H is continuous, by the bounded convergence theorem
we have

lim
λ→∞

‖exp[tA]f − exp[tAλ]f‖H ≤
∫ t

0
lim
λ→∞

‖[(A−Aλ)e
sAf ]‖Hds = 0.
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Thus, S(t)f exists and the convergence is uniform on bounded intervals
for t > 0 and all f ∈ D(A). Since D(A) is dense in D, S(t) can be
extended to all of D. �

Remark 5.26. The first result (1) provides an independent proof that
every closed densely defined linear operator on a Hilbert space is of
first Baire class (may be approximated by bounded linear operators
on its domain).

We now turn to the main theorem for semigroups of linear
operators.

Theorem 5.27. (Hille–Yosida Theorem) A linear operator A is
the generator of a C0-semigroup of contractions S(t), t ≥ 0, if
and only if A is closed, densely defined, R

+ ⊂ ρ(A) and, for every
λ > 0, ‖R(λ,A)‖H ≤ λ−1.

Proof. The necessity is shown in Theorem 5.23. To prove sufficiency,
from Theorem 5.25, we see that, if A is closed and densely defined,
with

‖R(λ,A)‖H ≤ 1

λ
for λ > 0, then, for μ > 0 we have∥∥∥etAλf − etAμf

∥∥∥
H

� t ‖Aλf −Aμf‖H ≤ t ‖Aλf −Af‖H + t ‖Af −Aμf‖H .

It follows that for f ∈ D(A), etAλf converges as λ → ∞ and the
convergence is uniform on bounded intervals. Since

∥∥etAλf
∥∥
H ≤ 1, it

follows that etAλf → S(t) for every f ∈ H. It is clear that S(t) is
a semigroup and that

∥∥etA∥∥H ≤ 1, with S(0) = 1. Thus, S(t) is a
C0-semigroup, since it is strongly continuous. Finally,

etAλf − f =

∫ t

0
esAλAλfds →

∫ t

0
esAAfds = etAf − f,

so that A is the generator. �

5.2.2. Lumer–Phillips Theory. We now discuss the characteriza-
tion of an infinitesimal generator of a C0-semigroup of contractions,
due to Lumer and Phillips [LP].

Definition 5.28. Let A be a linear operator on H. A is said to be
dissipative if

Re 〈Af, f〉 � 0 for all f ∈ D(A).
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Theorem 5.29. (Lumer–Phillips) Let A be a linear operator on H;
then

(1) A is dissipative if and only if

‖(λI −A) f‖H � λ ‖f‖H for all f ∈ D(A) and all λ > 0.

(2) If D(A) is dense in H and there is a λ0 such that Ran(λ0I −
A) = H, then A is the generator of a C0 semigroup of con-
tractions.

(3) If A is the generator of a C0 semigroup of contractions on H,
then Ran(λI −A) = H for all λ > 0 and A is dissipative.

Remark 5.30. We note that (2) implies that A is m-dissipative,
while (3) asserts that every generator of a contraction semigroup is
m-dissipative.

Proof. To prove (1), let A be dissipative, f ∈ D(A) and λ > 0. If
Re 〈Af, f〉 ≤ 0 then:

‖(λI −A) f‖ ‖Hf‖ ≥ |〈(λI −A) f, f〉| ≥ Re 〈(λI −A) f, f〉 ≥ λ ‖f‖2H .

It follows that ‖(λI −A) f‖H ≥ λ ‖f‖H. Conversely, assume that
λ ‖f‖H ≤ ‖(λI −A) f‖H for f ∈ D(A) and all λ > 0. If we square
both sides, an easy calculation shows that

‖Af‖2H − 2λRe 〈Af, f〉 ≥ 0.

Since this is true for all λ > 0, we see that Re 〈Af, f〉 ≤ 0. To prove
(2), note that since A is dissipative we can use (1) for λ > 0 to get that
‖(λI −A) f‖H � λ ‖f‖H for all f ∈ D(A). Since Ran(λ0I − A) = H,
with λ = λ0, it follows that (λ0I −A)−1 is a bounded linear operator.
But this means that it is a closed operator, so that (λ0I−A) and hence
A is also a closed operator. Now note that if Ran(λI − A) = H for
every λ > 0, then (0,∞) ⊂ ρ(λ) and ‖R(λ,A)‖H ≤ λ−1. It will then
follow by Theorem 5.27 (Hille–Yosida) that A is the generator of a C0

contraction semigroup. Thus, we need to show that Ran(λI−A) = H
for every λ > 0. Let

Λ = {λ : 0 < λ < ∞} and Ran(λI −A) = H.

If λ ∈ Λ, λ ∈ ρ(λ). As ρ(λ) is an open set, there is a nonempty
neighborhood of λ ⊂ ρ(λ). It follows that the intersection of this
neighborhood with R is in Λ, so that Λ is an open set. If λn ∈ Λ, λn →
λ > 0, then, for every g ∈ H, there exists a fn ∈ D(A) such that

λnfn −Afn = g. (5.8)
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Since A is dissipative, we have that ‖fn‖H ≤ λ−1
n ‖g‖H ≤ C for some

C > 0. We also have that:

λm ‖fn − fm‖H ≤ ‖λm (fn − fm)−A (fn − fm)‖H
= |λn − λm| ‖fn‖H ≤ C |λn − λm| ,

so that {fn} is a Cauchy sequence. If we let fn → f , we see from (5.5)
that Afn → λf − g. As A is closed, f ∈ D(A) and λf − Af = g.
It follows that Ran(λI −A) = H and λ ∈ Λ so that Λ is also closed in
(0,∞). Since λ0 ∈ Λ, we see that Λ �= ∅ and therefore Λ = (0,∞).

To prove (3), we first observe that if A is the generator of a C0

contraction semigroup S(t) on H, then it is closed and densely de-
fined. Furthermore, by Theorem 5.27 (Hille–Yosida), (0,∞) ⊂ ρ(A)
and Ran(λI −A) = H for all λ > 0. If f ∈ D(A) then

|〈S(t)f, f〉| � ‖S(t)f‖H ‖f‖H � ‖f‖2H
so that

Re 〈S(t)f − f, f〉 = Re 〈S(t)f, f〉 − ‖f‖2H ≤ 0.

If we divide the above equation by t > 0 and let t ↓ 0, we get that:

Re 〈Af, f〉 � 0,

so that A is dissipative. �

The next result follows from the Lumer–Phillips Theorem (see
Remark 5.30).

Theorem 5.31. Suppose A is a densely defined m-dissipative opera-
tor. Then A is the generator of a C0 semigroup S(t) of contraction
operators on H.

Theorem 5.32. If A is closed and densely defined on H, with both A
and A∗ dissipative, then A is m-dissipative.

Proof. It suffices show that Ran(I −A) = H. Since A is both closed
and dissipative, Ran(I − A) is closed in H. If Ran(I − A) �= H
then there is a nonzero g ∈ H such that (f −Af, g) = 0 for all

f ∈ D(A). This implies that (g, g −A∗g) = ‖g‖2 − (g,A∗g) = 0,
so that g −A∗g = 0. Since A∗ is dissipative, from part (1) of Theo-
rem 5.29 (Lumer–Phillips), we must have that g = 0. But this is a
contradiction since we assumed that g �= 0. �

We now consider an important class of operators which generates
C0-contractions. The next result is due to Vrabie [VR].
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Theorem 5.33. Suppose −A is a closed densely defined positive self-
adjoint operator. Then A is the generator of a C0-contraction semi-
group S(t). Furthermore, if f ∈ H and h(t) = S(t)f , then the problem:

h′(t) = Ah(t), h(0) = f, (5.9)

has an unique solution

h ∈ D(A) ∩ C
1((0,∞);H)

and

‖Ah(t)‖H ≤ 1
2t‖f‖H.

Proof. First, since −A is a positive, self-adjoint, closed, and densely
defined linear operator on H, it follows that both A and A∗ = A are
dissipative. Hence, by Theorem 5.29, A is m-dissipative so that A gen-
erates a C0-contraction semigroup and for Re(λ) > 0, ‖R(λ, T )‖H ≤

1
Re(λ) .

It is clear that both S(t) and A determine each other uniquely on
D(A), so that, at least for f ∈ D(A), the solution to (5.6) is unique.
If f ∈ D(A2), we see that, since (h′′(t), h′(t)) = (Ah′(t), h′(t)), the
problem

h′′(t) = Ah′(t), h(0) = f,

has an unique solution. Thus, with (h′′(t), h′(t)) = (Ah′(t), h′(t)) and,
for 0 ≤ s ≤ t, we have

1

2

∥∥h′(t)∥∥2H − 1

2

∥∥h′(s)∥∥2H =

∫ t

s
(Ah′(τ), h′(τ))dτ ≤ 0

(since A is dissipative). This shows that ‖h′(t)‖H is a nonincreasing
function. Furthermore,

d

dt
‖h(t)‖2H = 2(Ah(t), h(t)) (5.10)

and

d

dt
(Ah(t), h(t)) = 2(Ah(t), Ah(t)) = 2

∥∥h′(t)∥∥2H ≥ 0. (5.11)

It follows that (Ah(t), h(t)) is nondecreasing. If we integrate Eq. (5.7)
from 0 → t, we have:

‖h(t)‖2H − ‖f‖2H = 2

∫ t

0

(Ah(τ), h′(τ))dτ ≤ 2t(Ah(t), h(t)),

⇒ −t(Ah(t), h(t)) ≤ −
∫ t

0

(Ah(τ), h′(τ))dτ = −1

2

∥∥h′(t)∥∥2H +
1

2
‖f‖2H ≤ 1

2
‖f‖2H .
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Now recall that ‖h′(t)‖H is a nonincreasing function and integrate
equation (5.8) from 0 → t to get

(Ah(t), h(t))− (Af, f) = 2

∫ t

0

∥∥h′(τ)∥∥2H dτ ≥ 2t
∥∥h′(t)∥∥2H .

Since (Ah(t), h(t)) ≤ 0, we see that 2t ‖h′(t)‖2H ≤ (−Af, f). If we now
multiply both sides of Eq. (5.7) by t and integrate, we see that

2t2
∥∥h′(t)∥∥2H ≤

∫ t

0
τ(Ah(τ), h′(τ))dτ =

∫ t

0
τ
d

dτ
(Ah(τ), h(τ))dτ

= t(Ah(t), h(t))−
∫ t

0
τ(Ah(τ), h(τ))dτ .

Since t(Ah(t), h(t)) ≤ 0, we see from the inequality above and Eq. (5.7)

that 4t2 ‖Ah(t)‖2H ≤ ‖f‖2H so that

‖Ah(t)‖H ≤ ‖f‖H
2t

. �

The next result shows that we can recover the semigroup as the
inverse Laplace transform of the resolvent. It will be important for
our study of analytic semigroups in the next section.

Theorem 5.34. Let A be a closed densely defined dissipative linear
operator on H satisfying:

(1) For some 0 < δ < π/2,

ρ(A) ⊃ Σδ = {λ : |arg λ| < π/2 + δ} ∪ {0}.
(2) The resolvent of A satisfies ‖R(λ ,A)‖ � 1/|λ|, for each

λ ∈ Σδ, with λ �= 0.

Then A is the generator of a C0-contraction semigroup S(t), which
can be represented as:

S(t) =
1

2πi

∫

Γ
eλtR(λ,A)dλ, (5.12)

where Γ is a smooth curve in Σδ going from ∞e−iθ → ∞eiθ, for π/2 <
θ < π/2+δ and the integral converges in the uniform topology for t > 0.

Proof. Let

Z(t) =
1

2πi

∫

Γ
eμtR(μ,A)dμ. (5.13)

Since ‖R(μ ,A)‖ � 1/|μ|, we see from the definition of Σδ that, for t >
0, this integral converges in the uniform norm. In order to see that Z(t)
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is a semigroup, suppose that Z(s) also has the above representation,
with another slightly shifted path Γ′ inside Σδ. Then

Z(s)Z(t) =

(
1

2πi

)2 ∫

Γ′

∫

Γ
eμtR(μ,A)eμ

′tR(μ′, A)dμdμ′

=

(
1

2πi

)2 [∫

Γ′
eμ

′sR(μ′, A)dμ′
∫

Γ
eμt(μ− μ′)−1dμ

−
∫

Γ
eμtR(μ,A)dμ

∫

Γ′
eμ

′s(μ− μ′)−1dμ′
]
,

where we have used the resolvent equation, R(μ′, A)R(μ,A) = (μ −
μ′)−1R(μ′, A) − R(μ,A), in the second line. If we now use the fact
that:

∫

Γ′
eμ

′s(μ− μ′)−1dμ′ = 2πieμs &

∫

Γ′
eμt(μ− μ′)−1dμ = 0,

we get that

Z(s)Z(t) =
1

2πi

∫

Γ
eμ(t+s)R(μ,A)dμ = Z(t+ s).

Since the resolvent uniquely determines the semigroup, we are done
if we can show that R(λ,A) is the resolvent of Z(t). To do this,
use the fact that R(λ,A) is analytic in Σδ, so that we can shift the
path of integration to a new path Γt, still inside Σδ. We choose Γt =
Γ1 ∪ Γ2 ∪ Γ3, where Γ1 = {re−iθ : t−1 ≤ r < ∞}, Γ2 = {t−1eiφ : −θ ≤
φ ≤ θ} and Γ3 = {reiθ : t−1 ≤ r < ∞} without changing the value of
the integral. In this case, for the path Γ3, we have

∥∥∥∥
1

2πi

∫

Γ3

eμtR(μ,A)dμ

∥∥∥∥
H
� 1

2π

∫ ∞

t−1

e−rt sin(θ−π/2)r−1dr

=
1

2π

∫ ∞

sin(θ−π/2)
e−ss−1ds � C1.

For the path Γ2, we see that
∥∥∥∥

1

2πi

∫

Γ2

eμtR(μ,A)dμ

∥∥∥∥
H
� 1

2π

∫ θ

−θ
ecos(φ)dφ � C2.

The estimate for Γ1 is like that of Γ3. This shows that Z(t) is bounded
by some constant K for 0 < t < ∞. Now, if we multiply Eq. (5.10)
by e−λt and integrate from 0 to T , using Fubini’s Theorem along with
the residue theorem, we have
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∫ T

0
e−λtZ(t)dt =

1

2πi

∫ T

0
e−λt

[∫

Γ
eμtR(μ,A)dμ

]
dt

=
1

2πi

∫

Γ

[∫ T

0
e(μ−λ)tdt

]
R(μ,A)dμ =

1

2πi

∫

Γ

(
e(μ−λ)T − 1

)
μ− λ

R(μ,A)dμ

= R(λ,A) +
1

2πi

∫

Γ
e(μ−λ)T R(μ,A)

μ− λ
dμ.

However, on Γ,
∥∥∥∥

1

2πi

∫

Γ
e(μ−λ)T R(μ,A)

μ− λ
dμ

∥∥∥∥ � e−λT

∫

Γ

d |μ|
|μ| |μ− λ| → 0, T → ∞.

Thus, if we take the limit in our equation, we get∫ ∞

0
e−λtZ(t)dt = R(λ,A).

Since for Re(λ) > 0, 1
|λ| ≤ 1

Re(λ) , we see that Z(t) = S(t) is a contrac-

tion semigroup. �

5.2.3. Analytic Semigroups. Let Δ = {w ∈ C : θ1 < argw <
θ2, θ1 < 0 < θ2}. For each w ∈ Δ, let S(w) be a bounded linear
operator on H.

Definition 5.35. The family S(w) is said to be an analytic semigroup
on H, for w ∈ Δ, if

(1) S(w)f is an analytic function of w ∈ Δ for each f in H,

(2) S(0) = I and limw→0 S(w)f = f for every f ∈ H,

(3) S(w1 + w2) = S(w1)S(w2) for w1, w2 ∈ Δ.

Theorem 5.36. Let S(t) be a C0-contraction semigroup and let A be
the generator of S(t), with 0 ∈ ρ(A). Suppose A satisfies:

(1) For 0 < δ < π/2,

ρ(A) ⊃ Σδ = {λ : |arg λ| < π/2 + δ} ∪ {0}.
(2) ‖R(λ ,A)‖ � M/|λ| for each λ ∈ Σδ, with λ �= 0.

Then the following are equivalent:

(1) S(t) is differentiable for t > 0 and there is a constant C such
that

‖AS(t)‖H ≤ C

t
for t > 0.
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(2) For t > 0 and |z − t| � Kt for some constant K, the series

S(z + t) = S(t) +
∑∞

n=1
(zn/n!)S(n)(t)

converges uniformly in the above interval.

(3) S(t) can be extended to a C0-analytic semigroup S(z), for
z ∈ Δ̄δ′ , with Δ̄δ′ = {z : |arg z| � δ′ < δ}.

Proof. From Eq. (5.9), S(t) = (1/2πi)
∫
Γ e

λtR(λ,A)dλ, where Γ is a

smooth curve in Σδ composed of two rays ρeiθ and ρe−iθ, 0 < ρ < ∞
and π/2 < θ < π/2 + δ and Γ is oriented so that Im(λ) increases
along Γ. The integral converges in the uniform topology for t > 0.
If we differentiate it formally, we see that:

S′(t) =
1

2πi

∫

Γ
λeλtR(λ,A)dλ.

However, this integral converges in H for all t > 0, since

∥∥S′(t)
∥∥ � (1/π)

∫ ∞

0
e−ρ cos θtdρ =

1

πt cos θ
=

(
1

π cos θ

)
1

t
. (5.14)

Thus, the formal differentiation is justified for t > 0 and

‖AS(t)‖H ≤ C

t
, where C =

1

π cos θ
.

We now prove that S(t) has derivatives of any order, by induction.
From above, we know it is true for k = 1. Suppose that it is true for
k = n and t � s, then

S(n)(t) = (AS(t/n))n = S(t− s) (AS(s/n))n . (5.15)

If we differentiate Eq. (5.12) with respect to t we have

S(n+1)(t) = (AS(t/n))n = AS(t− s) (AS(s/n))n .

Now set s = nt/(n+ 1) to get S(n+1)(t) = [AS(t/(n+ 1)]n+1, so that
S(t) has derivatives of all orders. If we use this result in Eq. (5.11),
and the fact that n!en � nn, we get that:

1

n!

∥∥∥S(n)(t)
∥∥∥ �

(
Ce

t

)n

.

Now, consider the power series

S(z) = S(t) +
∑∞

n=1

S(n)(t)

n!
(z − t)n.

The series converges uniformly in L[H] for |z − t| � Kt, where K =
k/eC, 0 < k < 1. Thus, S(z) is analytic in Δ = {z : |arg z| <
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arctanK} and hence extends S(t). It is easy to check that S(z) is a
C0-contraction semigroup in any closed subsector Δ̄ε = {z : |arg z| �
arctanM − ε} of Δ. �

5.2.4. Perturbation Theory. One of the major concerns for the
theory of semigroups of operators is to identify conditions under which
the sum of two generators is a generator (when properly understood).
We restrict our attention to generators of analytic contraction semi-
groups. (In practice, by the use of an equivalent norm and a shift in
the spectrum, most semigroups of interest can be reduced to contrac-
tions.) The next result shows when the sum of generators of analytic
contraction semigroups generate an analytic contraction semigroup.

Theorem 5.37. Let A0 be an m-dissipative generator of an analytic
C0-semigroup and let A1 be closed on H, with D(A1) ⊇ D(A0). Sup-
pose and there are positive constants 0 ≤ α < 1, β ≥ 0 such that

‖A1ϕ‖ � α ‖A0ϕ‖+ β ‖ϕ‖ , ϕ ∈ D(A0). (5.16)

Then A = A0+A1, with domain D(A) = D(A1), generates an analytic
C0 semigroup.

Remark 5.38. We note that, by the Closed Graph Theorem, it suf-
fices to assume that A1 is dissipative and D(A1) ⊇ D(A0) in order to
find constants 0 ≤ α < 1, β ≥ 0 satisfying Eq. (5.13).

Proof. To prove our result, first use the fact that A0 generates an
analytic C0-semigroup to find a sector Σ in the complex plane, with
ρ(A0) ⊃ Σ (Σ = {λ : |arg λ| < π/2 + δ′}, for some δ′ > 0), and for

λ ∈ Σ, ‖R(λ :, A0)‖H � |λ|−1. From (5.13), A1R(λ ,A0) is a bounded
operator and:

‖A1R(λ ,A0)ϕ‖H � α ‖A0R(λ ,A0)ϕ‖H + β ‖R(λ ,A0)ϕ‖H
� α ‖[R(λ ,A0)− I]ϕ‖H + β |λ|−1 ‖ϕ‖H
� 2α ‖ϕ‖H + β |λ|−1 ‖ϕ‖H .

Thus, if we set α = 1/4 and |λ| > 2β, we have ‖A1R(λ ,A0)‖H < 1
and it follows that the operator I − A1R(λ ,A0) is invertible. Now it
is easy to see that:

(λI − (A0 +A1))
−1 = R(λ , A0) (I −A1R(λ , A0))

−1 . (5.17)
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Using |λ| > 2β, with |arg λ| < π/2 + δ′′ for some δ′′ > 0, and the fact
that A0 and A1 are m-dissipative generators, we get from (5.14) that

‖R(λ , A0 +A1)‖B � |λ|−1 .

Thus, A generates a C0-analytic semigroup. Finally, we note that if
Re(λ) > 0, then 1

|λ| ≤ 1
Re(λ) , so that A also generates a C0-contraction

semigroup. �

Corollary 5.39. Let A0 be the generator of an analytic C0-semigroup
and suppose that A1 is bounded. Then A0 +A1 is the generator of an
analytic C0-semigroup on H.

Corollary 5.40. Let A, A1 be generators of C0-contraction semi-
groups on H and assume that A1 is bounded. Then A + A1 is the
generator of a C0-contraction semigroup S(t).

Theorem 5.25 shows that all closed densely defined linear opera-
tors on H may be approximated by bounded generators of contraction
semigroups. This leads to the following result, which shall prove quite
useful later.

Theorem 5.41. Let A0, A1 and A0+A1 be generators of contraction
semigroups on H, with a common dense domain. Then:

lim
λ→∞

exp {(A0 +A1,λ) t}ϕ = exp {(A0 +A1) t}ϕ for t > 0.

Proof. The proof is standard. Set A = A0 + A1, & Aλ = A0 + A1,λ;
then, for ϕ ∈ D(A0) ∩D(A1):

∥∥(etAλ − etA
)
ϕ
∥∥
H =

∥∥∥∥
∫ 1

0

d

ds

[
etsAλet(1−s)A

]
ϕds

∥∥∥∥
H

=

∥∥∥∥t
∫ 1

0

[
etsAλAλe

t(1−s)A − etsAλAet(1−s)A
]
ϕds

∥∥∥∥
H

=

∥∥∥∥t
∫ 1

0

[
etsAλ (Aλ −A) et(1−s)A

]
ϕds

∥∥∥∥
H

� tsups≥0

∥∥∥(Aλ −A) et(1−s)Aϕ
∥∥∥

H
= t

∥∥∥(A1,λ −A1) e
t(1−s̄)Aϕ

∥∥∥
H
,

where s̄ is the point in [0, 1] where the sup is attained. The limit
of this last term is clearly zero. (Note that Aλ need not commute
with A.) �
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We reserve our proof of the next result until Chap. 7 (see [K1]).
There, we will use it to provide a very general version of the Feynman–
Kac formula.

Theorem 5.42. Trotter–Kato product formula Suppose that A0, A1

and A=A0 +A1 are generators of C0-contraction semigroups T0(t),
T1(t) and T (t) on H. Then, for ϕ ∈ H, we have

lim
n→∞ {T0(

t
n)T1(

t
n)}nϕ = T (t)ϕ.

5.2.5. Semigroups on Banach Spaces. The purpose of this section
is to show that the Hilbert space theory is sufficient for the theory
on separable Banach spaces. We assume that “B is rigged,” so that
H1 ⊂ B ⊂ H2 as continuous dense embeddings.

Theorem 5.43. Suppose that A generates a C0-contraction semigroup
T (t), on B and B′ ⊂ H2 then:

(1) A has a closed densely defined extension Ā to H2, which is
also the generator of a C0-contraction semigroup.

(2) ρ(Ā) = ρ(A) and σ(Ā) = σ(A).

(3) The adjoint of Ā, Ā∗, restricted to B, is the adjoint A∗ of A,
that is:

– the operator A∗A � 0,
– (A∗A)∗ = A∗A and
– I +A∗A has a bounded inverse.

Proof. Part I
Let T (t) be the C0-contraction semigroup generated by A. By Theo-
rem 5.15, T (t) has a bounded extension T̄ (t) to H2.

We prove that T̄ (t) is a C0-semigroup. (The fact that it is a con-
traction semigroup will follow later.) It is clear that T̄ (t) has the semi-
group property. To prove that it is strongly continuous, use the fact
that B is dense in H2 so that, for each g ∈ H2, there is a sequence
{gn} in B converging to g. We then have:

lim
t→0

∥∥T̄ (t)g − g
∥∥
2
� lim

t→0

{∥∥T̄ (t)g − T̄ (t)gn
∥∥
2
+

∥∥T̄ (t)gn − gn
∥∥
2

}
+ ‖gn − g‖2

� k ‖g − gn‖2 + lim
t→0

∥∥T̄ (t)gn − gn
∥∥
2
+ ‖gn − g‖2

= (k + 1) ‖g − gn‖2 + lim
t→0

‖T (t)gn − gn‖2 = (k + 1) ‖g − gn‖2 ,

where we have used the fact that T̄ (t)gn = T (t)gn for gn ∈ B, and k
is the constant in Theorem 5.15. It is clear that we can make the last
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term on the right as small as we like by choosing n large enough, so
that T̄ (t) is a C0-semigroup.

To prove (2), note that if Ā is the extension of A, and λI−Ā has an
inverse, then λI−A also has one, so ρ(Ā) ⊂ ρ(A) and Ran(λI−A)B ⊂
Ran(λI − Ā)H2 ⊂ Ran(λI −A)H2

for any λ ∈ C. For the other
direction, since A generates a C0-contraction semigroup, ρ(A) �= ∅.
Thus, if λ ∈ ρ(A), then (λI − A)−1 is a continuous mapping from
Ran(λI−A) onto D(A) and Ran(λI−A) is dense in B. Let g ∈ D(Ā),

so that (g, Āg) ∈ Ĝ(A), the closure of the graph ofA inH2. Thus, there
exists a sequence {gn} ⊂ D(A) such that ‖g − gn‖G = ‖g − gn‖H2

+∥∥Āg − Āgn
∥∥
H2

→ 0 as n → ∞. Since Āgn = Agn, it follows that

(λI − Ā)g = limn→∞(λI − A)gn. However, by the boundedness of
(λI −A)−1 on Ran(λI −A), we have that, for some δ > 0,
∥∥(λI − Ā)g

∥∥
H2

= lim
n→∞ ‖(λI −A)gn‖H2

≥ lim
n→∞ δ ‖gn‖H2

= δ ‖g‖H2
.

It follows that λI − Ā has a bounded inverse and since D(A) ⊂ D(Ā)
implies that Ran(λI −A) ⊂ Ran(λI − Ā), we see that Ran(λI − Ā) is
dense in H2 so that λ ∈ ρ(Ā) and hence ρ(A) ⊂ ρ(Ā). It follows that
ρ(A) = ρ(Ā) and necessarily, σ(A) = σ(Ā).

Since A generates a C0-contraction semigroup, it is m-dissipative.
From the Lumer–Phillips Theorem, we have that Ran(λI − A) = B
for λ > 0. It follows that Ā is m-dissipative and Ran(λI − Ā) = H2.
Thus, T̄ (t) is a C0-contraction semigroup.

We now observe that the same proof applies to T̄ ∗(t), so that Ā∗

is also the generator of a C0-contraction semigroup on H2.

Clearly Ā∗ is the adjoint of Ā so that, from von Neumann’s The-
orem, Ā∗Ā has the expected properties. D̄ = D(Ā∗Ā) is a core for Ā
(i.e., the set of elements {g, Āg} is dense in the graph, G[Ā], of Ā for
g ∈ D̄). From here, we see that the restriction A∗ of Ā∗ to B is the
generator of a C0-contraction semigroup and D = D(A∗A) is a core
for A. The proof of (3) for A∗A now follows. �

Remark 5.44. Theorem 5.43 shows that all C0-contraction semi-
groups defined on B have the same properties as its extension to H2.
Thus, if B is reflexive or B′ ⊂ H2, then all the theorems on H2 apply
to B.

The next result implies that the generalized Yosida Approximation
Theorem applies to C0-semigroups on B
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Theorem 5.45. Let A ∈ C[B] be the generator of a C0-contraction
semigroup. Then there exists an m-accretive operator T and a partial
isometry W such that A = WT and D(A) = D(T ).

Proof. The fact that B′ ⊂ H2 ensures that A
∗A is a closed self-adjoint

operator on B by Theorem 5.40. Furthermore, both A and A∗ have
closed densely defined extensions Ā and Ā∗ to H2. Thus, the op-
erator T̂ = [Ā∗Ā]1/2 is a well-defined m-accretive self-adjoint linear
operator on H2, Ā = W̄ T̄ for some partial isometry W̄ defined on H2,
and D(Ā) = D(T̄ ). Our proof is complete when we notice that the
restriction of Ā to B is A and T̄ 2 restricted to B is A∗A, so that the
restriction of W̄ to B is well defined and must be a partial isometry.
The equality of the domains is obvious. �

With respect to our definition of natural self-adjointness, the fol-
lowing related definition is due to Palmer [PL], where the operator is
called symmetric. This is essentially the same as a Hermitian operator
as defined by Lumer [LU].

Definition 5.46. A closed densely defined linear operator A on B is
called self-conjugate if both iA and −iA are dissipative.

Theorem 5.47. (Vidav–Palmer) A linear operator A, defined on B,
is self-conjugate if and only if iA and −iA are generators of isometric
semigroups.

Theorem 5.48. The operator A, defined on B, is self-conjugate if and
only if it is naturally self-adjoint.

Proof. Let Ā and Ā∗ be the closed densely defined extensions of A
and A∗ to H2. On H2, Ā is naturally self-adjoint if and only if iĀ
generates a unitary group, if and only if it is self-conjugate. Thus,
both definitions coincide onH2. It follows that the restrictions coincide
on B. �

Additional discussion of the adjoint for operators on Banach spaces
can be found in the Appendix (Sect. 5.3).

5.3. Appendix

The appendix is devoted to a number of topics that are not directly
related to our main direction, but have independent interest for func-
tional analysis and operator theory. We first discuss the existence of
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an adjoint for spaces that are not uniformly convex. We then apply
our results in subsequent sections to show that the spectral theory
that is natural for Hilbert spaces and the Schatten theory of compact
operators can also be partially extended to Banach spaces.

5.4. The Adjoint in the General Case

In this section we continue our discussion of the adjoint for an operator
on Banach space with an S-basis B, which is not uniformly convex.

5.4.1. The General Case for Unbounded A. A Banach space is
said to have the approximation property if every compact operator
is the limit of operators of finite rank. It is known that every clas-
sical Banach space has the approximation property. However, it is
also known that there are separable Banach spaces without the ap-
proximation property (see Diestel [DI]). Theorem 5.15 tells us that

if B′ ⊂ H2, then L[B] ⊂ L[H2] as a continuous embedding. (It’s not
hard to show that if B has the approximation property, the embedding
is dense.)

Let A ∈ C[B], the closed densely defined linear operators on B.
By definition, A is of Baire class one if it can be approximated by a
sequence, {An}, of bounded linear operators. In this case, it is natural
to define A∗= s-limA∗

n (see below). However, if B is not uniformly
convex there may be operators A ∈ C[B] that are not of Baire class
one, so that it is not reasonable to expect Theorem 5.11 to hold for all
of C[B]. First, we note that every uniformly convex Banach space is
reflexive. In order to understand the problem, we need the following:

Definition 5.49. A Banach space B is said to be:

(1) quasi-reflexive if dim {B′′/B} < ∞, and

(2) nonquasi-reflexive if dim {B′′/B} = ∞.

A theorem by Vinokurov et al. [VPP] shows that, for every
nonquasi-reflexive Banach space B (for example, C[0; 1] or L1[Rn], n ∈
N), there is at least one closed densely defined linear operator A, which
is not of Baire class one. It can even be arranged so that A−1 is a
bounded linear injective operator (with a dense range). This means,
in particular, that there does not exist a sequence of bounded linear
operators An ∈ L[B] such that, for g ∈ D(A), Ang → Ag, as n → ∞.
The following result shows that whenever B′ ⊂ H2, every operator of
Baire class one has an adjoint.
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Theorem 5.50. If A ∈ C[B] and B′ ⊂ H2, then A is in the first Baire
class if and only if it has an adjoint A∗ ∈ C[B].

Proof. Let H1 ⊂ B ⊂ H2 and suppose that A has an adjoint
A∗ ∈ C[B]. Let T = [A∗A]1/2, T̄ = [AA∗]1/2. Since T is m-accretive
and naturally self-adjoint, for all α > 0, I + αT has a bounded inverse
S(α) = (I + αT )−1. It is easy to see that AS(α) is bounded and, for
g ∈ D(A), AS(α)g = S̄(α)Ag = (I + αT̄ )−1Ag. Using this result, we
have:

lim
α→0+

AS(α)g = lim
α→0+

S̄(α)Ag = Ag, for g ∈ D(A).

It follows that A is in the first Baire class.

To prove the converse suppose that A ∈ C[B] is of first Baire class.
If {An} is a sequence of bounded linear operators with Ang → Ag, for
all g ∈ D(A), then each An has an adjoint A∗

n. Since B′ ⊂ H2, each
AnA

∗
n has a bounded extension Ān Ā

∗
n to H2. Furthermore, since A

is densely defined, it has a closed densely defined extension Ā on H2.
Let Ā∗ be the adjoint of Ā. Then, for all g ∈ D(A), h ∈ B, we have:

lim
n→∞ (Ang, h)H2

= lim
n→∞ (g,A∗

nh)H2
= (Ag, h)H2

=
(
Āg, h

)
H2

From here, we see that A∗ = limn→∞A∗
n is a densely defined linear

operator. If we let D(A∗) ⊂ B be the dense set, then for h ∈ D(A∗)

lim
n→∞ (g,A∗

nh)H2
= lim

n→∞ (g,A∗h)H2
=

(
g, Ā∗h

)
H2

,

so that A∗ is the restriction of Ā∗ to B. �

Corollary 5.51. If A ∈ C[B] is in the first Baire class and B′ ⊂ H2,

then A = WT , where W is a partial isometry and T = [A∗A]1/2.

5.4.1.1. The Adjoint Is Not Unique. In this section we show that
if A is defined on a fixed Banach space B, then two different Hilbert
space riggings can produce two different adjoints for A.

Recall that a regular σ-finite measure on the σ-algebra of Borel
sets of a Hausdorff topological space is called a Radon measure, and
a function u is of bounded variation on Ω, or u ∈ BV [Ω], if u ∈ L1[Ω]
and there is a Radon vector measure Du such that∫

Ω
u(x)∇φ(x)dx = −

∫

Ω
φ(x)Du(x),
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for all functions φ ∈ C
∞
c [Ω,Rn], the R

n-valued infinitely differentiable

functions on Ω with compact support. It is easy to see that W 1,1
0 [Ω] ⊂

BV [Ω]. (In this case, we can show that Du(x) = ∇u(x)dx.)

Let us return to the two pair of Hibert spaces H1
0 [Ω] ⊂ C0[Ω] ⊂

H0[Ω] and H1[Ω] ⊂ C0[Ω] ⊂ H2[Ω] of Example 3.32 in Chap. 3.

Let A = [−Δ] be defined on C0[Ω], with domain:

Dc(A) = {Δu ∈ C0[Ω] |u = 0 on ∂Ω} .
It is easy to see that A extends to a self-adjoint operator on H0[Ω],
with domain

D2(A)= {Δu ∈ H0[Ω] |u=0 on ∂Ω and, ∇u is absolutely continuous} .
To begin, we first compute the adjoint A∗, of A directly as an operator
on C0[Ω]. The dual space of C0[Ω] is C

∗
0[Ω] = rca[Ω], the space of

regular countable additive measures on Ω.

It follows from

〈Au, v〉 = −
∫

Ω
Δu(x)v(x)dx,

that

〈u,A∗v〉 = −
∫

Ω
u(x)Δv(x)dx

and

Dc(A
∗) = {u : Δu ∈ BV [Ω] | u = 0 on ∂Ω} ,

so that Dc(A) ⊂ Dc(A
∗) (proper). Thus, if we restrict A∗ to Dc(A) it

becomes a self-adjoint operator on C0[Ω] without the rigging.

We now investigate the adjoint obtained from use of the first rig-
ging, H1

0 [Ω] ⊂ C0[Ω] ⊂ H0[Ω] (see Barbu [B], p. 4). In this case,
J1 = [−Δ] and J2 = I2, the identity operator on H0[Ω], so that

A∗
1 = J−1

1 A′
1J2,= I2.

In the second rigging, H1[Ω] ⊂ C0[Ω] ⊂ H2[Ω], constructed in
Example 3.10 in Chap. 3, we have

A∗
2 = J−1

1 A′
1J2.

In this case,

J1(v) =
∑∞

n=1
t−1
n (en, v)2( ·, en)2, J2(v) =

∑∞
n=1

tnF̄n(v)Fn( · )

and

(en, v)2 =
∑∞

k=1
tkF̄k(v)Fk(en) =tnF̄n(v),
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so that J1(v) =
∑∞

n=1 F̄n(v)( ·, en)2. However,
( · , en)2 =

∑∞
k=1

tkF̄k(en)Fk( · ) =tnFn( · ), so that J1 = J2.

It follows that J2(A
∗
2u) = J2(Au), so that A∗

2 = A = [−Δ], with the
same domains.

It follows that the natural adjoint obtained on C0[Ω] coincides with
the adjoint constructed from our special rigging. On the other hand,
we also see that different riggings can give distinct adjoints. (It is clear
that the requirements of Theorem 5.5 are satisfied by both adjoints.)

Definition 5.52. We say that H1 and H2 is an adjoint canonical pair
for B if H1 ⊂ B ⊂ H2 as continuous dense embeddings and B′ ⊂ H2.
In this case, when A ∈ C[B], A∗ is called the canonical adjoint.

5.4.2. Operators on B.
Definition 5.53. Let B have an S-basis, U be bounded, A ∈ C[B] and
let U , V be subspaces of B. Then:

(1) A is said to be naturally self-adjoint if D(A) = D(A∗) and
A = A∗.

(2) A is said to be normal if D(A) = D(A∗) and AA∗ = A∗A.
(3) U is unitary if UU∗ = U∗U = I.

(4) The subspace U is ⊥ to V if, for each v ∈ V and ∀u ∈
U , 〈v, J(u)〉 = 0 and, for each u ∈ U and ∀v ∈ V , 〈u, J(v)〉 =
0 (J(u) respectively J(v) may be multivalued).

The last definition is transparent since, for example,

〈v, J(u)〉 = 0 ⇔ 〈v, J2(u)〉 = (v, u)2 = 0 ∀v ∈ V .
Thus, orthogonal subspaces in H2 induce orthogonal subspaces in B.
Theorem 5.54. (Gram–Schmidt) For each fixed basis {ϕi, 1 � i <
∞} of B, there is at least one set of dual functionals {Si} such that
{{ψi}, {Si}, 1 � i < ∞} is a biorthonormal set of vectors for B, (i.e.,
〈ψi, Sj〉 = δij).

Proof. Since each ϕi is in H2, we can construct an orthogonal set of
vectors {φi, 1 � i < ∞} in H2 by the standard Gram–Schmidt pro-

cess. Set ψi = φi/‖φi‖B, choose Ŝi ∈ J(ψi)/‖ψi‖2H and restrict it to the
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subspace Mi = [ψi] ⊂ B. For each i, let M⊥
i be the subspace spanned

by {ψj , i �= j}. Now use the Hahn–Banach Theorem to extend Ŝi

to Si, defined on all of B, with Si = 0 on M⊥
i (see Theorem 1.47).

From here, it is easy to check that {{ψi}, {Si}, 1 � i < ∞} is a
biorthonormal set. If B is reflexive, the family {Si} is unique. �

We close this section with the following observation about the use
of H2 = KS2, when B is one of the classical spaces. Let A be any
closed densely defined positive naturally self-adjoint linear operator on
B with a discrete positive spectrum {λi}. In this case, −A generates
a C0-contraction semigroup, so that it can be extended to H2 with

the same properties. If we compute the ratio
〈Aψ,Sψ〉
〈ψ,Sψ〉 in B, it will be

“close” to the value of
(Āψ,ψ)H2
(ψ,ψ)H2

in H2. On the other hand, note that

we can use the min-max theorem on H2 to compute the eigenvalues
and eigenfunctions of A via Ā exactly on H2. Thus, in this sense, the
min-max theorem holds on B.

5.5. The Spectral Theorem

5.5.1. Background. Dunford and Schwartz define a spectral opera-
tor as one that has a spectral family similar to that defined in The-
orem 5.29 of Chap. 4, for self-adjoint operators. (A spectral opera-
tor is an operator with countably additive spectral measure on the
Borel sets of the complex plane.) Strauss and Trunk [STT] define a
bounded linear operator A, on a Hilbert space H, to be spectralizable
if there exists a nonconstant polynomial p such that the operator p(A)
is a scalar spectral operator (has a representation as in Eq. (4.27) in
Chap. 4). Another interesting line of attack is represented in the book
of Colojoară and Foiaş [CF], where they study the class of generalized
spectral operators. Here, one is not opposed to allowing the spectral
resolution to exist in a generalized sense, so as to include operators
with spectral singularities.

The following theorem was proven by Helffer and Sjöstrand [HSJ]
(see Proposition 7.2):

Theorem 5.55. Let g ∈ C∞
0 [R] and let ĝ ∈ C∞

0 [C] be an extension of

g, with ∂ĝ
∂ẑ = 0 on R. If A is a self-adjoint operator on H, then

g(A) = − 1

π

∫∫

C

∂ĝ

∂z̄
(z −A)−1 dxdy.
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This defines a functional calculus. Davies [DA] showed that the
above formula can be used to define a functional calculus on Banach
spaces for a closed densely defined linear operator A, provided ρ(A)∩
R = ∅. In this program the objective is to construct a functional
calculus pre-supposing that the operator of concern has a reasonable
resolvent.

5.5.1.1. Problem. The basic problem that causes additional difficulty
is the fact that many bounded linear operators are of the form A =
B + N , where B is normal and N is nilpotent (i.e., there is a k ∈ N,
such that Nk+1 = 0, Nk �= 0). In this case, A does not have a rep-
resentation with a standard spectral measure. On the other hand,
T = [N∗N ]1/2 is a self-adjoint operator, and there is a unique partial
isometry W such that N = WT . If E( · ) is the spectral measure as-
sociated with T , then WE(Ω)x is not a spectral measure, but it is a
measure of bounded variation. This idea was used in Chap. 4 (Theo-
rem 4.57) to provide an alternate approach to the spectral theory. In
this section, we consider the same possibly for operators on Banach
spaces.

To begin, we note that in either of the Strauss and Trunk [STT],
Helffer and Sjöstrand [HSJ], or Davies [DA] theory, the operator A is
in Baire class one. Thus, A has an adjoint, so that, by Corollary 5.51
A = WT , where W is a partial isometry and T is a nonnegative self-
adjoint linear operator.

5.5.2. Scalar Case.

Theorem 5.56. If B′ ⊂ H2 and A ∈ C[B] is an operator of Baire
class one, then there exists a unique vector-valued function Fx(λ) of
bounded variation such that, for each x ∈ D(A), we have:

(1) D(A) also satisfies

D(A) =

{
x ∈ B |

∫

|σ(A)|
λ2 〈dFx(λ), x

∗〉 < ∞
}

for each x∗ ∈ J(x) and

(2) Ax = lim
n→∞

∫ n

0
λdFx(λ), for all x ∈ D(A).

Proof. Let A = WT , where W is the unique partial isometry and
T = [A∗A]1/2. Let T̄ be the extension of T to H2. It follows that there
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is a unique spectral measure Ē(Ω) such that for each x ∈ D(T̄ ):

T̄ x = lim
n→∞

∫ n

0
λdĒ(dλ)x. (5.18)

Furthermore, Ē(λ)x is a vector-valued function of bounded variation
and, if W̄ is the extension of W, W̄ Ēx(λ) is of bounded variation,
with V ar(W̄ Ēx,R) ≤ V ar(Ēx,R). If we set F̄x(λ) = W̄ Ēx(λ), for
each interval (a, b) ⊂ [0,∞),

{
W̄

∫ b

a
λdĒx(λ)

}
=

∫ b

a
λdF̄x(λ).

Since Āx = W̄ T̄x and the restriction of Ā to B is A, we have, for all
x ∈ D(A),

Ax = lim
n→∞

∫ n

0
λdFx(λ). (5.19)

This proves (2). The proof of (1) follows from (1) in Theorem 4.61 of
Chap. 4 and the definition of x∗. �

5.5.3. General Case. In this section, we assume that for each i, 1 ≤
i ≤ n, n ∈ N, Bi = B is a fixed separable Banach space. We set
B = ×n

i=1Bi, and represent a vector x ∈ B by xt = [x1, x2, · · · , xn].
An operator A = [Aij ] ∈ C[B] is defined whenever Aij : B → B, is in
C[B].

If B′ ⊂ H2 and Aij is of Baire class one, then by Theorem 5.54,

there exists a unique vector-valued function F ij
x (λ) of bounded varia-

tion such that, for each x ∈ D(Aij), we have:

(1) D(Aij) also satisfies

D(Aij) =

{
x ∈ B |

∫ ∞

0
λ2

〈
dF ij

x (λ), x∗
〉
B < ∞

}

for all x∗ ∈ J(x) and

(2)

Aijx = lim
n→∞

∫ n

0
λdF ij

x (λ), for all x ∈ D(Aij).

If we let dF(λ) = [dF ij(λ)], then we can represent A by:

Ax = lim
n→∞

∫ n

0
λdF(λ)x, for all x ∈ D(A).
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5.6. Schatten Classes on Banach Spaces

In this section, we show how our approach allows us to provide a nat-
ural definition for the Schatten class of operators on B. Here, we as-
sume that the reader has at least read the section concerning compact
operators on Hilbert spaces in Chap. 4.

5.6.1. Background: Compact Operators on Banach Spaces.
Let K(B) be the class of compact operators on B and let F(B) be
the set of operators of finite rank. Recall that, for separable Banach
spaces, K(B) is an ideal that need not be the maximal ideal in L[B].
If M(B) is the set of weakly compact operators and N(B) is the set
of operators that map weakly convergent sequences into strongly con-
vergent sequences, it is known that both are closed two-sided ideals
in the operator norm, and, in general, F(B) ⊂ K(B) ⊂ M(B) and
F(B) ⊂ K(B) ⊂ N(B) (see part I of Dunford and Schwartz [DS],
p. 553). For reflexive Banach spaces, K(B) = N(B) and M(B)=L[B].
For the space of continuous functions C[Ω] on a compact Hausdorff
space Ω, Grothendieck [GO] has shown that M(B)=N(B). On the
other hand, it was shown in part I of Dunford and Schwartz [DS] that
for a positive measure space, (Ω,Σ, μ), on L1 (Ω,Σ, μ) , M(B) ⊂ N(B).

5.6.2. Uniformly Convex Spaces. We assume that B is uniformly
convex, with an S-basis. In operator theoretic language, the interpre-
tation of our S-basis assumption is that the compact operators on B
have the approximation property, namely that every compact operator
can be approximated by operators of finite rank. In this section, we
will show that, for the class of uniformly convex Banach spaces with an
S-basis, L[B] almost has the same structure as that of L[H], when H
is a Hilbert space. The difference being that L[B] is not a C∗-algebra
(i.e., ‖A∗A‖ = ‖A‖2, for all A ∈ L[B]).

In what follows, we fix H2. Let A be a compact operator on B
and let Ā be its extension to H2. For each compact operator Ā on H2,
there exists an orthonormal set of functions {ϕ̄n |n � 1} such that

Ā =
∑∞

n=1
μn(Ā) (· , ϕ̄n)2 Ū ϕ̄n.

Where the μn are the eigenvalues of [Ā∗Ā]1/2 =
∣∣Ā∣∣, counted by mul-

tiplicity and in decreasing order, and Ū is the partial isometry asso-
ciated with the polar decomposition of Ā = Ū

∣∣Ā∣∣. Without loss, we
can assume that the set of functions {ϕ̄n |n � 1} is contained in B
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and {ϕn |n � 1} is normalized version in B. If Sp[H2] is the Schatten
Class of order p in L[H2], it is well known that if Ā ∈ Sp[H2], its norm
can be represented as:

∥∥Ā∥∥H2

p
=

{
Tr

[
Ā∗Ā

]p/2}1/p
=

{ ∞∑
n=1

(
Ā∗Āϕ̄n, ϕ̄n

)p/2
H2

}1/p

=

{ ∞∑
n=1

∣∣μn

(
Ā
)∣∣p

}1/p

.

Definition 5.57. We represent the Schatten Class of order p in
L[B] by:

Sp[B] = Sp[H2] |B .

Since Ā is the extension of A ∈ Sp[B], we can define A on B by

A =
∑∞

n=1
μn(A) 〈· , ϕ∗

n〉Uϕn,

where ϕ∗
n is the unique dual map in B′ associated with ϕn and U is

the restriction of Ū to B. The corresponding norm of A on Sp[B] is
defined by:

‖A‖B
p
=

{∑∞
n=1

〈A∗Aϕn, ϕ
∗
n〉p/2

}1/p
.

Theorem 5.58. Let A ∈ Sp[B], then ‖A‖B
p
=

∥∥Ā∥∥H2

p
.

Proof. It is clear that {ϕn |n � 1} is a set of eigenfunctions for A∗A
on B. Furthermore, by Theorem 5.11, A∗A is naturally self-adjoint
and, since every compact operator generates a C0-semigroup, by The-
orem 5.40, the spectrum of A∗A is unchanged by its extension to H2.
It follows that A∗Aϕn = |μn(A)|2 ϕn, so that

〈A∗Aϕn, ϕ
∗
n〉 = |μn|2 〈ϕn, ϕ

∗
n〉 = |μn(A)|2 ,

and

‖A‖B
p
=

{∑∞
n=1

〈A∗Aϕn, ϕ
∗
n〉p/2

}1/p

=
{∑∞

n=1
|μn(A)|p

}1/p

=
∥∥Ā∥∥H2

p
.

�
It is clear that all of the theory of operator ideals on Hilbert

spaces extend to uniformly convex Banach spaces with an S-basis in a
straightforward way. We state a few of the more important results to
give a sense of the power provided by the existence of adjoints. The
first result extends theorems due to Weyl [WY], Horn [HO], Lalesco
[LE] and Lidskii [LI]. The proofs are all straightforward, for a given



230 5. Operators on Banach Space

A extend it to H2, use the Hilbert space result and then restrict back
to B.
Theorem 5.59. Let A ∈ K(B), the set of compact operators on B,
and let {λn} be the eigenvalues of A counted up to algebraic multiplic-
ity. If Φ is a mapping on [0,∞] which is nonnegative and monotone
increasing, then we have:

(1) (Weyl)∑∞
n=1

Φ(|λn(A)|) �
∑∞

n=1
Φ(μn(A))

and

(2) (Horn) If A1, A2 ∈ K(B)∑∞
n=1

Φ(|λn(A1A2)|) �
∑∞

n=1
Φ(μn(A1)μn(A2)).

In case A ∈ S1(B), we have:

(3) (Lalesco) ∑∞
n=1

|λn(A)| �
∑∞

n=1
μn(A)

and

(4) (Lidskii) ∑∞
n=1

λn(A) = Tr(A).

Simon [SI1] provides a very nice approach to infinite determinants
and trace class operators on separable Hilbert spaces. He gives a com-
parative historical analysis of Fredholm theory, obtaining a new proof
of Lidskii’s Theorem as a side benefit and some new insights. A review
of his paper shows that much of it can be directly extended to operator
theory on separable reflexive Banach spaces.

5.6.3. Discussion. On a Hilbert spaceH, the Schatten classes Sp(H)
are the only ideals in K(H), and S1(H) is minimal. In a general Banach
space, this is far from true. A complete history of the subject can be
found in the recent book by Pietsch [PI1] (see also Retherford [RE],
for a nice review). We limit this discussion to a few major topics in
the subject. First, Grothendieck [GO] defined an important class of
nuclear operators as follows:

Definition 5.60. If A ∈ F(B) (the operators of finite rank), define
the ideal N1(B) by:

N1(B) = {A ∈ F(B) | N1(A) < ∞} ,
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where

N1(A) = glb
{∑m

n=1
‖fn‖ ‖φn‖

∣∣∣fn ∈ B′, φn ∈ B, A =
∑m

n=1
φn 〈· , fn〉

}

and the greatest lower bound is over all possible representations for A.

Grothendieck showed that N1(B) is the completion of the finite
rank operators and is a Banach space with norm N1(·). It is also a
two-sided ideal in K(B). It is easy to show that:

Corollary 5.61. M(B),N(B) and N1(B) are two-sided *ideals.

In order to compensate for the (apparent) lack of an adjoint for
Banach spaces, Pietsch [PI2], [PI3] defined a number of classes of op-
erator ideals for a given B. Of particular importance for our discussion
is the class Cp(B), defined by

Cp(B) =
{
A ∈ K(B)

∣∣∣Cp(A) =
∑∞

i=1
[si(A)]

p < ∞
}
,

where the singular numbers sn(A) are defined by:

sn(A) = inf {‖A−K‖B | rank of K � n} .
Pietsch has shown that C1(B) ⊂ N1(B), while Johnson et al. [JKMR]
have shown that for each A ∈ C1(B),

∑∞
n=1 |λn(A)| < ∞. On the other

hand, Grothendieck [GO] has provided an example of an operator A in
N1(L

∞[0, 1]) with
∑∞

n=1 |λn(A)| = ∞ (see Simon [SI], p. 118). Thus,
it follows that, in general, the containment is strict. It is known that if
C1(B) = N1(B), then B is isomorphic to a Hilbert space (see Johnson
et al.). It is clear from the above discussion that:

Corollary 5.62. Cp(B) is a two-sided *ideal in K(B), and S1(B) ⊂
N1(B).

For a given Banach space, it is not clear how the spaces Cp(B) of
Pietsch relate to our Schatten Classes Sp(B) (clearly Sp(B) ⊆ Cp(B)).
Thus, one question is that of the equality of Sp(B) and Cp(B). (We
suspect that S1(B) = C1(B).)
Remark 5.63. In closing, we should point out that if B is not uni-
formly convex, then for a given φ ∈ B the set J(φ) ∈ B′ can be multi-
valued and there is no unique way to define Sp(B) (i.e., to choose
φ∗ ∈ J(φ)). If B′ is strictly convex, J(φ) ∈ B′ is uniquely defined
(single-valued), so that all of our results still hold. However, to our
knowledge, all known examples Banach spaces with B′ strictly convex
are uniformly convex.
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Conclusion. The most interesting aspect of this section is the obser-
vation that the dual space of a Banach space can have more than one
representation. It is well known that a given Banach space B can have
many equivalent norms that generate the same topology. However,
the geometric properties of the space depend on the norm used. We
have shown that the properties of the linear operators on B depend
on the family of linear functionals used to represent the dual space B′.
This approach offers an interesting tool for a closer study of the struc-
ture of bounded linear operators on B.
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(Birkhäuser, Boston, 2007)



References 235

[PI2] A. Pietsch, Einige neue Klassen von kompacter linear Ab-
bildungen. Revue der Math. Pures et Appl. (Bucharest) 8,
423–447 (1963)

[PI3] A. Pietsch, Eigenvalues and s-Numbers (Cambridge Uni-
versity Press, Cambridge, 1987)

[PL] T.W. Palmer, Unbounded normal operators on Banach
spaces. Trans. Am. Math. Sci. 133, 385–414 (1968)

[PZ] A. Pazy, Semigroups of Linear Operators and Applications
to Partial Differential Equations. Applied Mathematical
Sciences, vol. 44 (Springer, New York, 1983)

[RE] J.R. Retherford, Applications of Banach ideals of operators.
Bull. Am. Math. Soc. 81, 978–1012 (1975)

[SI] B. Simon, Trace Ideals and Their Applications. London
Mathematical Society Lecture Notes Series, vol. 35 (Cam-
bridge University Press, New York, 1979)

[SI1] B. Simon, Notes on infinite determinants of Hilbert space
operators. Adv. Math. 24, 244–273 (1977)

[STE] E.M. Stein, Singular Integrals and Differentiability Prop-
erties of Functions (Princeton University Press, Princeton,
1970)

[STT] V.A. Strauss, C. Trunk, Spectralizable operators. Integr.
Equ. Oper. Theory 61, 413–422 (2008)

[VPP] V.A. Vinokurov, Yu. Petunin, A.N. Pliczko, Measurabil-
ity and regularizability mappings inverse to continuous lin-
ear operators (in Russian). Mat. Zametki. 26(4), 583–591
(1979). English translation: Math. Notes 26, 781–785 (1980)

[VR] I. Vrabie, C0-Semigroups and Applications. North-Holland
Mathematics Studies, vol. 191 (Elsevier, New York, 2002)

[WY] H. Weyl, Inequalities between the two kinds of eigenvalues of
a linear transformation. Proc. Natl. Acad. Sci. 35, 408–411
(1949)

[YS] K. Yosida, Functional Analysis, 2nd edn. (Springer, New
York, 1968)


	Chapter 5. Operators on Banach Space
	5.1. Preliminaries
	5.1.1. The Natural Hilbert Space for a Uniformly Convex Banach Space
	5.1.2. Construction of the Adjoint on B
	5.1.2.1. Example: Differential Operators
	5.1.2.2. Example: Integral Operators

	5.1.3. Extension of the Adjoint

	5.2. Semigroups of Operators
	Introduction
	5.2.1. Hilbert Space
	5.2.2. Lumer–Phillips Theory
	5.2.3. Analytic Semigroups
	5.2.4. Perturbation Theory
	5.2.5. Semigroups on Banach Spaces

	5.3. Appendix
	5.4. The Adjoint in the General Case
	5.4.1. The General Case for Unbounded A
	5.4.1.1. The Adjoint Is Not Unique

	5.4.2. Operators on B

	5.5. The Spectral Theorem
	5.5.1. Background
	5.5.1.1. Problem

	5.5.2. Scalar Case
	5.5.3. General Case

	5.6. Schatten Classes on Banach Spaces
	5.6.1. Background: Compact Operators on Banach Spaces
	5.6.2. Uniformly Convex Spaces
	5.6.3. Discussion
	Conclusion



	References

