
Chapter 1

Preliminary
Background

This chapter is composed of two parts: Basic Analysis and Intermedi-
ate Analysis.

The first part is a review of some of the basic background that is
required from the first 2 years of a standard program in mathematics.
There are program differences so that some areas may receive more
coverage while others receive less. Our purpose is to provide a reference
point for the reader and establish notation. In a few important cases,
we have provided proofs of major theorems. In other cases, we delayed
a proof when a more general result is proven in a later chapter.

In the second part of this chapter, we include some intermediate
to advanced material that is required later. In most cases, motivation
is given along with additional proof detail and specific references.

Part I: Basic Analysis

The first part of this chapter is devoted to a brief discussion of the
circle of ideas required for advanced parts of analysis and the basics
of operator theory. Those with a strong background in theoretical
chemistry or physics but little or no formal training in analysis will
find Reed and Simon (vol.1) to be an excellent copilot (see below).
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2 1. Preliminary Background

General references for this section are Dunford and Schwartz [DS],
Jones [J], Reed and Simon [RS], Royden [RO], and Rudin [RU].

1.1. Analysis

1.1.1. Sets. Let X be a nonempty set, let ∅ be the emptyset, and let
P(X) be the power set of X (i.e., the set of all subsets of X).

Definition 1.1. Let A,B,An ∈ P(X), n ∈ N, then

(1) Ac = {a ∈ X : a /∈ A}, the compliment of A.

(2) A\B = A ∩Bc.

(3) (De Morgan’s Laws)[ ∞⋃
k=1

Ak

]c
=

∞⋂
k=1

Ac
k,

[ ∞⋂
k=1

Ak

]c
=

∞⋃
k=1

Ac
k.

We define the lim inf and lim sup for sets by:

lim inf
n→∞ An =

∞⋃
n=1

∞⋂
k=n

Ak lim sup
n→∞

An =
∞⋂
n=1

∞⋃
k=n

Ak.

Theorem 1.2. Let {An} ⊂ P(X), n ∈ N, then the lim inf and lim sup
satisfy:

(1)

lim inf
n→∞ An ⊂ lim sup

n→∞
An.

(2)

lim sup
n→∞

An = {a : a ∈ Ak for infinitely many k}.

(3)

lim inf
n→∞ An = {a : a ∈ Ak for all but finitely many k}.

(4)

(lim sup
n→∞

An)
c = lim inf

n→∞ Ac
n.

(5) If An ⊃ An+1, then

lim inf
n→∞ An = lim sup

n→∞
An = lim

n→∞An =
∞⋂
k=1

Ak.
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(6) If An ⊂ An+1, then

lim inf
n→∞ An = lim sup

n→∞
An = lim

n→∞An =
∞⋃
k=1

Ak.

Definition 1.3. Let A,B ⊂ X. (We assume they are nonempty.)

(1) The cartesian product, denoted A×B, is defined by

A×B = {(a, b) : a ∈ A, b ∈ B}.
In general, A × B �= B × A, so that the order matters. If
{Ak} is a countable collection of subsets of X, we define the
cartesian product by:

∞∏
k=1

Ak = {(a1, a2, . . .) : ak ∈ Ak}.

Definition 1.4. A map f : A → B (a function, or a transformation),
with domainD(f) ⊂ A and range R(f) ⊂ B is a subset f ⊂ A×B such
that, for each x ∈ A, there is one and only one y ∈ B, with (x, y) ∈ f .
We write y = f(x) and call f(A) = {f(x) : x ∈ A} ⊂ B, the image
of f and, call f−1(B) = {x : f(x) ∈ B} ⊂ A, the inverse image of B.
We say that f is one to one or injective, if for all x1 �= x2 ∈ A, we have
that y1 = f(x1) �= y2 = f(x2) ∈ B. We say that f is onto or surjective
if, for each y ∈ B, there is a x ∈ A, with y = f(x).

1.1.2. Topology. We only consider Hausdorff spaces or spaces with
the Hausdorff topology (see below). For an elementary introduction
to topology, we recommend Mendelson [ME]. Dugundji [DU] is more
advanced, but is also worth consulting.

Definition 1.5. Let X be a nonempty set and let τ be a set of subsets
of X. We say that τ defines a Hausdorff topology on X, or that X is
Hausdorff, if

(1) X and ∅ ∈ τ .

(2) If O1, . . . , On is a finite collection of sets in τ , then
⋂n

i=1Oi∈τ .
(3) If Γ is a index set and, for each γ ∈ Γ, there is a set Oγ ∈ τ ,

then
⋃

γ∈ΓOγ ∈ τ .

(4) If x, y ∈ X are any two distinct points, there are two disjoint
sets O1, O2 ∈ τ (i.e., O1 ∩ O2 = ∅), such that x ∈ O1 and
y ∈ O2.
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We call the collection τ the open sets of the topology for X. A set
N ∈ τ is called a neighborhood for each point x ∈ N , and the set τx ⊂ τ
of all neighborhoods for x is called a complete neighborhood basis for x.
Thus, any set O, containing x, also contains some neighborhood basis
set N(x) ∈ τx.

A set P is said to be closed if P c is open. It follows that, if Γ is
any index set and, for each γ ∈ Γ, there is a closed set Pγ ∈ τ , then
by De Morgan’s Law,

⋂
γ∈Γ Pγ is also closed. Thus, we can also define

the same topology τ , using closed sets.

Let M �= ∅, be a subset of X.

(1) The interior of M , denoted int(M), is the union of all O ∈ τ
such that O ⊂ M . If x ∈ int(M), we say that x is an interior
point of M .

(2) The closure of M , which we denote by M , is the set of all
x ∈ X such that, for all N(x) ∈ τx, N(x) ∩M �= ∅.

(3) We say that M is dense in X if M = X. If M is also count-
able, we say that X is separable.

If M and N are any two subsets of X, then M ∪N = M ∪ N and,
M = M if and only if M is closed.

We say that x0 ∈ X is a limit point of M ⊂ X, if x0 ∈ M\{x0} or
equivalently, for every N(x0) ∈ τx0 , there is a y ∈ N(x0) and y /∈ M .

Definition 1.6. Let (X1, τ1) and (X2, τ2) be two Hausdorff spaces.
A function f , with D(f) = X1 and R(f) ⊂ X2, is said to be continuous
at a point x ∈ X1 if, for each neighborhood basis set N [f(x)] ∈ τ2,x,
there is a neighborhood basis set N(x) ∈ τ1,x such that f [N(x)] ⊂
N [f(x)]. In terms of inverse images, this says that f−1{N [f(x)]} is
open in X1 for each N [f(x)] in X2. (A little reflection shows that the
above definition may be translated to the one we learned in elementary
calculus, using ε’s and δ’s, when X1 = X2 = R.) We say that f is
continuous on X1 if it is continuous at each point of X1.

The topological space (X, τ) is said to be connected if it is not the
disjoint union of two open sets. In a connected space X and ∅ are the
only two sets that are both open and closed.

If Γ is a index set, {Aγ : γ ∈ Γ} ⊂ X is called a cover of M ⊂ X,
if M ⊂ ⋃

γ∈ΓAγ . If each Aγ ∈ τ , we call {Aγ : γ ∈ Γ} an open cover
of M . If in addition Γ is finite, we call it a finite open cover of M .
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We say that M is compact if, for every open cover {Aγ : γ ∈ Γ}, there
always exists a finite subset of Γ, γ1, . . . , γn such that M ⊂ ⋃n

k=1Aγk .

Definition 1.7. Let (X1, τ1) and (X2, τ2) be two topological spaces,
with X1 ∩X2 = ∅. The coproduct space (X, τ) = (X1, τ1) ⊕ (X2, τ2)
is the unique topological space, with the property that each open set
O ⊂ X is of the form O = O1 ∪O2, where O1 ∈ τ1 and O2 ∈ τ2.

(X, τ) is also known as the disjoint union space or direct sum space.
(If (X1, τ1) and (X2, τ2) are Hausdorff, then it is easy to see that (X, τ)
is Hausdorff.)

1.1.3. σ-Algebras.

Definition 1.8. Let A ⊂ P(X) be a collection of subsets of X �= ∅.
We say that A is an algebra if the following holds:

(1) X, ∅ ∈ A and,

(2) If A,B ∈ A then Ac, Bc ∈ A and A ∪B ∈ A.
It is easy to verify that:

(3) A ∩B ∈ A and A \B ∈ A.

(4) If n is finite and {Ak} ⊂ A, 1 ≤ k ≤ n, then
n⋃

k=1

Ak ∈ A,
n⋂

k=1

Ak ∈ A.

Definition 1.9. Let A ⊂ P(X) be an algebra. We say that A is a
σ-algebra if

∞⋃
k=1

Ak ∈ A,

for any countable family of sets {Ak} ∈ A. It is also easy to see that
∞⋂
k=1

Ak ∈ A,

along with
lim inf
n→∞ An ∈ A

and
lim sup
n→∞

An ∈ A.

Definition 1.10. If Σ is a nonempty class of subsets ofX, the smallest
σ-algebra A, with Σ ⊂ A is called the σ-algebra generated by Σ and
is written A(Σ).
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Remark 1.11. Since Σ ⊂ P(X), there is at least one σ-algebra con-
taining Σ.

Lemma 1.12. If J is an index set and for each α ∈ J, Aα is σ-algebra,
then A =

⋂
α∈J Aα is a σ-algebra.

Definition 1.13. If A is a σ-algebra of subsets of a nonempty set X,
we call the couple (X,A) a measurable space.

Definition 1.14. If A is a σ-algebra of subsets of a nonempty set X,
we call a sequence {Ak} ⊂ A a partition of X if the sequence is disjoint
and

⋃∞
k=1Ak = X.

Definition 1.15. If X is a topological space and Σ is the class of open
sets of X, then A(Σ) = B(X) is called the Borel σ-algebra of X.

1.1.4. Measure Spaces.

Definition 1.16. Let X be a nonempty set. An outer measure ν∗ is
a function on P(X) → [0,∞], such that

(1) ν∗(∅) = 0.

(2) If B ⊂ A, then ν∗(B) ≤ ν∗(A).
(3) If A ⊂ ⋃∞

k=1Ak, then

ν∗(A) ≤
∞∑
k=1

ν∗(Ak).

If for each sequence of disjoint sets {Ak} ⊂ A,

ν

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

ν(Ak),

we say that ν is a measure. We also say that ν is σ-additive and call
the triple (X,A, ν) a measure space.

Definition 1.17. Let (X,A) be a measurable space and let ν(A) ∈ C,
the complex numbers, for each A ∈ A. We say that ν is a complex
measure if ν(∅) = 0 and for each disjoint countable union

⋃∞
k=1Ak of

sets in A, we have

ν

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

ν(Ak),

where the convergence on the right is absolute.
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Definition 1.18. Let (X,A, ν) a measure space.

(1) We say that ν is a finite measure if ν(X) < ∞.

(2) We say that ν is concentrated on a set A ∈ A, if A = U c and
U is the largest open set with the property that ν(U) = 0.
We also call A the support of ν.

(3) We say that ν is a regular measure if given A ∈ A, for each
ε > 0, there is a open set O and a closed set K such that:
K ⊂ A ⊂ O and ν(O \K) < ε.

(4) We say that ν is a σ-finite measure if there is a sequence
{Ak} ⊂ A, with

X =
∞⋃
k=1

Ak, and ν(Ak) < ∞.

(5) We say that ν is a Radon measure, if the set K in (3) can be
chosen as compact or the sequence {Ak} ⊂ A in (4) can be
chosen with each Ak is compact.

(6) We say that ν is a complete measure if A ∈ A, with B ⊂ A
and ν(A) = 0 then B ∈ A and ν(B) = 0.

(7) We say that ν is a probability measure if ν(X) = 1.

(8) We say that a complex measure ν is of bounded variation if

|ν| (X) = sup
∞∑
k=1

|ν(Ak)| < ∞,

where the supremum is taken over all partitions of X. We call
|ν| (X) the total variation of ν.

(9) We say that the complex measure ν is a signed measure if
both |ν|+ν and |ν|−ν are real valued. In this case, we define
the positive part and the negative part by: ν+ = 1

2(|ν| + ν)

and ν− = 1
2(|ν| − ν). We call this the Jordan Decomposition.

Theorem 1.19 (The Hahn Decomposition Theorem). Let ν be a
signed measure on (X,A). Then there exists a partition X1, X2 of
X such that, for every A ∈ A:

ν+(A) = ν(A ∩X1) and ν−(A) = −ν(A ∩X2).

Theorem 1.20 (The Jordan Decomposition Theorem). Let ν be a
signed measure on (X,A). If μ1 and μ2 are positive measures and
ν = μ1 − μ2, then ν+ ≤ μ1 and ν− ≤ μ2.
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Thus, the Jordan decomposition ν = ν+ − ν−, has the above
minimal property. If ν is complex, this decomposition becomes ν =
ν+1 − ν−1 + i(ν+2 − ν−2 ), for two positive measures, ν1 and ν2.

Definition 1.21. We say that X is an Abelian group if for each pair
x, y ∈ X, x⊕ y ∈ X and

(1) x⊕ y = y ⊕ x. (The Abelian property.)

(2) For all x, y, z ∈ X (x⊕ y)⊕ z = x⊕ (y ⊕ z).

(3) There is an element 0 ∈ X called the identity and x ⊕ 0 =
0⊕ x = 0, for all x ∈ X.

(4) For each y ∈ X, there is a unique element y− ∈ X, such that
y ⊕ y− = y− ⊕ y = 0.

(5) We say that Y is a subgroup of X if Y ⊂ X and for all
y1, y2 ∈ Y, y1 ⊕ y2 ∈ Y , satisfying conditions (1)–(4) above.

The real or complex numbers form an Abelian group with addition
(or multiplication if we exclude zero). The rational numbers (real or
complex) form a subgroup, with the same exception for multiplication.

When X is an Abelian group (with ⊕ = +) and (X,A, ν) is a
measure space, we say that T is an admissible translation invariance
group for (X,A, ν) if T is a subgroup of X and ν(A − t) = ν(A), for
all t ∈ T. If T = X, we say that ν is translation invariant on X.

1.1.5. Integral. Let (X,A, ν) a measure space.

Definition 1.22. Let f be a function on X, f : X → K, where
K = R or C.

(1) We say that f is measurable if f−1(B) ∈ A, for every set
B ∈ B[K], the Borel algebra on K. In this case, we say that
f ∈ M[X] or M, when X is understood.

(2) We say that two functions f and g are equal almost every-
where and write f(x) = g(x), ν-(a.e.), if they have the same
domain and ν{x : f(x) �= g(x)} = 0. In general, a property
is said to hold ν-(a.e.) on X if the set of points where this
property fails has ν-measure zero.

Definition 1.23. A (nonnegative) simple function s is defined onX by

s(x) =
n∑

k=1

akχAk
(x),
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where the ak ∈ [0,∞) and the family of measurable sets {Ak} form a
(finite) partition of X (i.e., ν(Ai ∩Aj) = 0, i �= j and

⋃n
k=1Ak = X).

(By convention, if need be, we can always add a set An+1 to the
collection and define an+1 = 0 so that the union is always X.)

Lemma 1.24. If 0 ≤ f ∈ M, then there is a sequence of simple
functions {sn}, with sn ≤ sn+1 and sn → f (a.e.) at each point of X,
as n → ∞.

Definition 1.25. If f : X → [0,∞] is a measurable function and
A ∈ B(X), we define the integral of f over A by:∫

A
f(x)dν = lim

n→∞

∫
A
sn (x) dν,

where {sn} is any increasing family of simple functions converging
to f(x).

Theorem 1.26. If f, g are nonnegative measurable functions and 0 ≤
c < ∞, we have:

(1)
∫
X f(x)dν(x) is independent of the family of simple functions
used;

(2) 0 ≤ ∫
X f(x)dν(x) ≤ ∞;

(3)
∫
X cf(x)dν(x) = c

∫
X f(x)dν(x);

(4)∫
X
[f(x) + g(x)]dν(x) =

∫
X
f(x)dν(x) +

∫
X
g(x)dν(x).

(5) If f ≤ g, then
∫
X f(x)dν(x) ≤ ∫

X g(x)dν(x).

Theorem 1.27 (Fatou’s Lemma). Let {fn} ⊂ M be a nonnegative
family of functions, then:∫

X

(
lim inf
n→∞ fn(x)

)
dν(x) ≤ lim inf

n→∞

∫
X
fn(x)dν(x).

Theorem 1.28 (Monotone Convergence Theorem). Let {fn} ⊂ M be
a nonnegative family of functions, with fn ≤ fn+1. Then:

lim
n→∞

∫
X
fn(x)dν(x) =

∫
B

(
lim
n→∞ fn(x)

)
dν(x).

Definition 1.29. If f ∈ M, we define∫
X
f(x)dν(x) =

∫
X
f+(x)dν(x)−

∫
X
f−(x)dν(x),
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where f+(x) = 1
2 (|f(x)|+ f(x)) and f−(x) = 1

2 (|f(x)| − f(x)).
We say that f is integrable whenever both integrals on the right are fi-
nite. The set of all integrable functions is denoted by L1[X,B(X), ν] =
L1[X].

Remark 1.30. As is carefully discussed in elementary analysis, the
functions in L1[X] are not uniquely defined. Following tradition, we let
L1[X] denote the set of equivalence classes of functions in L1[X] that
differ by a set of ν-measure zero. By a slight abuse, we will identify
an integrable function f as measurable (in L1[X]) and its equivalence
class in L1[X]. The same convention also applies to functions in Lp[X]
and will be used later without further comment.

Theorem 1.31 (Dominated Convergence Theorem). Let fn ∈ M[X,
ν], n ∈ N, g ∈ L1(X), with g ≥ 0 and |fn(x)| ≤ g(x), ν-(a.e.). If
limn→∞ fn(x) exists ν-(a.e.), then limn→∞ fn ∈ L1[X] and

lim
n→∞

∫
X
fn(x)dν(x) =

∫
X

(
lim
n→∞ fn(x)

)
dν(x).

1.2. Functional Analysis

In this section, we include a few basic background results from func-
tional analysis and Banach space theory. Detailed discussions can be
found in Dunford and Schwartz [DS], Hille and Phillips [HP], Lax [L1],
Reed and Simon [RS], Rudin [RU], or Yosida [YS].

1.2.1. Topological Vector Spaces.

Definition 1.32. A vector space X over C is an Abelian group under
addition that is closed under multiplication by elements of C. That is:

(1) For each x, y ∈ X, x+ y ∈ X.

(2) For all x, y, z ∈ X, x+y = y+x and (x+y)+z = x+(y+z).

(3) There is a unique element 0 ∈ X called zero and x + 0 =
0 + x = x for all x ∈ X.

(4) For all x ∈ X, there is a unique element −x ∈ X and x +
(−x) = (−x) + x = 0.

(5) For all x, y ∈ X and a, b ∈ C, ax ∈ X, 1x = x, (ab)x = a(bx)
and a(x+ y) = ax+ ay. We call b ∈ C a scalar.

If X is a vector space over C, a mapping ρ(·) : X → [0,∞) is a
seminorm on X if:
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(1) For each x, y ∈ X, ρ(x) ≥ 0 and ρ(x+ y) ≤ ρ(x) + ρ(y).

(2) For each λ ∈ C and each x ∈ X, ρ(λx) = |λ| ρ(x).
Definition 1.33. Let V be a subset of X.

(1) We say that V is a convex subset of X if for each x, y ∈
V, αx+ (1− α)y ∈ V , for all α ∈ [0, 1].

(2) We say that V is an balanced subset of X if for each x ∈ V
and α ∈ C, with |α| ≤ 1, αx ∈ V .

(3) We say that V is an absolutely convex subset of X if it is both
convex and balanced.

(4) We say that V is a absorbent subset of X if for each x ∈
X, αx ∈ V , for some α > 0. Thus, every point in x ∈ X is in
αV for some positive α.

Definition 1.34. A locally convex topological vector space is a vector
space with its topology defined by a family of semi-norms {ργ}, where
γ is in some index set Γ. Given any x ∈ X, a base of ε-neighborhoods
about x is a set of the form VΓ0,ε(x), where Γ0 is a finite subset of Γ
and

VΓ,ε(x) = { y ∈ X : ργ(x− y) < ε, γ ∈ Γ }.
Definition 1.35. A locally convex topological vector space X is a
Fréchet space if it satisfies the following:

(1) X is a Hausdorff space.

(2) The neighborhood base about each x ∈ X is induced by a
countable number of seminorms (i.e., Γ is a countable set).

(3) X is a complete relative to the family of seminorms.

Theorem 1.36. The vector space X is a Fréchet space if and only if:

(1) X is a locally convex.

(2) There is a metric d : X×X → [0,∞) such that, for all x, y, z ∈
X, d(x+ z, y + z) = d(x, y).

(3) X is a complete relative to the metric d(·, ·).
Remark 1.37. If the index Γ for the family of semi-norms is count-
able, then we can define a metric d(x, y) by:

d(x, y) =

∞∑
n=1

1

2n
ρn(x− y)

1 + ρn(x− y)
.



12 1. Preliminary Background

A sequence {xn} in a metric space X converges to a limit x ∈ X if and
only if limn→∞d (xn, x) = 0. In this case, by the triangle inequality

d (xn, xm) ≤ d (xn, x) + d (xm, x) .

We say that a sequence satisfies the Cauchy convergence condition, or
is a Cauchy sequence if

lim
m,n→∞ d (xn, xm) = 0.

A metric space is said to be complete if every Cauchy sequence con-
verges to a point in the space.

1.2.2. Separable Banach Spaces. Hilbert and Banach spaces are
discussed further in Chaps. 4 and 5. Let B be a vector space over
R or C. We say that B is separable if it contains a countable dense
subset.

Definition 1.38. A norm on a vector space B is a mapping ‖·‖B :
B → [0,∞], such that

(1) ‖x‖B = 0 if and only if x = 0.

(2) ‖ax‖B = |a| ‖x‖B for all x ∈ B and a ∈ C.

(3) ‖x+ y‖B ≤ ‖x‖B + ‖y‖B, for all x, y ∈ B.
(4) We say that B is uniformly convex if, for each ε > 0, there is

a δ = δ(ε) > 0 such that, for all x, y ∈ B with

max (‖x‖ , ‖y‖) � 1, ‖x− y‖ � ε ⇒ 1
2 ‖x+ y‖ � 1− δ.

The topology on B is generated by the metric defined by:

d(x, y) = ‖x− y‖B ,

so that {x : ‖x− y‖B < r} is an open ball about y of radius r.

The space B is complete if every Cauchy sequence in the above
norm converges to an element in B. A complete normed space is called
a Banach space.

Definition 1.39. Let B be a Banach space and let A be a transfor-
mation on B, with domain D(A) (i.e., A : D(A) ⊂ B → B).

(1) We say that A is a linear operator on B, if A(ax + by) =
aAx+ bAy, for all a, b ∈ C and all x, y ∈ D(A).

(2) We say that A is densely defined if D(A) is dense in B.
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(3) We say that A is a closed linear operator if and only if the
following condition is satisfied: {xn} ⊂ D(A), xn → x and
Axn → z always implies that x ∈ D(A) and z = Ax.

(4) We say that A is a bounded linear operator if and only if
D(A) = B and

sup
‖x‖B�1

‖Ax‖B < ∞.

In this case we define the norm of A, ‖A‖B, by the above
supremum.

1.2.2.1. Dual Spaces.

Definition 1.40. Let B be a Banach space.

(1) The dual space B′ is the set of all bounded linear operators
x∗ : B → C (called bounded linear functionals on B). The
norm of x∗ is defined by:

‖x∗‖B′ = sup
‖x‖B≤1

|x∗(x)| = sup
‖x‖B≤1

|〈x, x∗〉| .

With this norm B′ is a Banach space. We write B′ as B′
s and

call it the strong dual. The topology is known as the strong
topology.

(2) The weak and weak∗ topology are defined on B and B′

respectively in the following manner:
• A sequence {xn} ⊂ B is said to converge in the weak
topology to x ∈ B if and only if, for each bounded linear
functional y∗ ∈ B′,

lim
n→∞ y∗(xn) = y∗(x).

We also write w − limn→∞ xn = x.
• A sequence {x∗n} ⊂ B′ is said to converge in the weak∗

topology to x∗ ∈ B′ if and only if, for each y ∈ B,
lim
n→∞x∗n(y) = x∗(y).

We also write w∗ − limn→∞ x∗n = x∗.
(3) If B = B′′, we say that B is reflexive.

(4) A duality map J : B �→ B′ is a set

J (u) =
{
u∗ ∈ B′

∣∣∣u∗(u) = 〈u, u∗〉 = ‖u‖2 = ‖u∗‖2
}
, for all u ∈ B.
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Remark 1.41. The following remarks are important.

(1) In the definition, we used x∗ to represent an element in B′.
The notation used varies with the tradition of the particular
topical area. To the extent possible, we will try to be con-
sistent within topics studied and the tradition of the field so
that the reader will see some correspondence when consulting
references for different topics.

(2) It is easy to see that

|y∗(xn)− y∗(x)| ≤ ‖xn − x‖B ‖y∗‖B′

for all y∗ ∈ B, so that norm convergence in B always implies
weak convergence. It is also easy to see that

|x∗n(y)− x∗(y)| ≤ ‖x∗n − x∗‖B′ ‖y‖B ,

for all y ∈ B, so that norm convergence in B′ always implies
weak∗ convergence. However (in both cases), the reverse is
not true (see Lax [L1, p. 106]).

(3) It is known that every uniformly convex Banach space is re-
flexive. Furthermore, when B is uniformly convex, the duality
set J (u), is single valued and uniquely defined by u. How-
ever, if B is not uniformly convex, the duality set J (u) can
have the power of the continuum.

The following examples will help one see what is possible in con-
crete cases.

(1) If λn is Lebesgue measure on R
n, u ∈ Lp[Rn], 1 < p < ∞ and

q is such that 1
p + 1

q = 1, then

J (u)(x) = ‖u‖2−p
p |u(x)|p−2 u(x) = u∗ ∈ Lq

R
n],

and

〈u, u∗〉 = ‖u‖2−p
p

∫
Rn

|u(x)|p dλn(x) = ‖u‖2p = ‖u∗‖2q .

Thus, it is easy to see that (Lp[Rn])′′ = Lp[Rn], so that Lp[Rn]
is reflexive for 1 < p < ∞.

(2) The space L1[Rn] is not reflexive, for if u ∈ L1[Rn], then

J (u)(x) = {v ∈ L∞[Rn]| : v(x) ∈ {‖u‖1 sign[u(x)]}} ,
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where

sign [u(x)] =

⎧⎨
⎩

1, u(x) > 0,
−1, u(x) < 0,

[−1, 1], u(x) = 0.

It follows that J (u)(x) is uncountable for each u ∈ L1[Rn].

The transpose matrix on R
n or the transpose conjugate matrix on

C
n has its parallel for Banach spaces. In this case, they are known

as dual operators. They are also known as adjoint operators, but we
will reserve this term for a special class of operators on Banach spaces,
discussed in Chap. 5. We will also use adjoint for the same class defined
on Hilbert spaces in the next section and explain the distinction.

Definition 1.42. Let A : D(A) → B be a closed linear operator on
B with a dense domain D(A). The dual of A, A′ is defined on B′ as
follows. Its domain D(A′) is the set of all y∗ ∈ B′ for which there
exists an x∗ ∈ B′ such that

〈Ax, y∗〉 = 〈x, x∗〉 ,
for all x ∈ D(A); in this case we define A′y∗ = x∗.

A proof of the following theorem can be found in [HP] or [YS].

Theorem 1.43. Let A : D(A) → B be a closed linear operator on B
with a dense domain D(A).

(1) Then A′ : D(A′) → B′ is a closed linear operator on B′ and
its domain D(A′) is dense in B′.

(2) If, in addition, ‖A‖B < ∞, then D(A′) = B′ and ‖A′‖B′ =
‖A‖B.

1.2.2.2. Hilbert Space.

Definition 1.44. An inner product on B = H is a bilinear mapping
(·, ·)H : H×H → C, such that

(1) (x, x)H ≥ 0 and (x, x)H = 0 if and only if x = 0.

(2) (ax + by, z)H = a(x, z)H + b(y, z)H and (w, ax + by)H =
ac(w, x)H + bc(w, y)H.

If (·, ·)H is a inner product, it induces a norm on H by

‖x− y‖H =
√

(x− y, x− y)H.

If H is complete with this norm, we call it a Hilbert space.
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If (·, ·)H is the inner product on the Hilbert space H, then the same
Cauchy–Schwarz inequality from R

n still holds, |(x, y)H| ≤ ‖x‖H ‖y‖H.
The following polarization identity also holds for a general Hilbert

space:

(x, y)H = 1
4

(
‖x+ y‖2H − ‖x− y‖2H

)
,

if the field of H is R and

(x, y)H = 1
4

{(
‖x+ y‖2H − ‖x− y‖2H

)
+ i

(
‖x+ iy‖2H − ‖x− iy‖2H

)}
,

if the field of H is C.

Definition 1.45. Let A : D(A) → H be a closed linear operator on
H with a dense domain D(A). The adjoint of A, A∗ is defined on H
as follows. Its domain D(A∗) is the set of all y ∈ H for which there
exists an x ∈ H such that

(Ax, y)H = (x,A∗y)H.

We will always call A∗ the adjoint of A when it is defined on the
same space and A′, the dual of A when it is defined on the dual space.
In Chap. 5, we will see that the adjoint is also possible for a certain
class of Banach spaces, which include the uniformly convex ones.

Theorem 1.43 can be slightly modified to show that D(A∗) is dense
in H and, if ‖A‖H < ∞, then D(A∗) = H and ‖A∗‖H = ‖A‖H.

Recall that, two functions f, g ∈ H are orthogonal, if (f, g)H = 0
and they are orthonormal if in addition, ‖f‖H = ‖g‖H = 1. A set
{φn} ⊂ H is an orthonormal basis for H if they are orthonormal and
each x ∈ H can be written as x =

∑∞
k=1 akφk, for a unique family of

scalars {an} ⊂ C.

Definition 1.46. Let A be a linear operator defined on H.

(1) We say that A is a projection operator if A2x = Ax for all
x ∈ H.

(2) We say that A is the self-adjoint if D(A) = D(A∗) and Ax =
A∗x, for all x ∈ D(A).

(3) We say that a bounded linear operator A is the compact, if
for every bounded sequence {xn} ⊂ H, the sequence {Axn}
has a convergent subsequence.

(4) We say that a compact operator A is trace class if, for some
orthonormal basis {φn} of H, the trace of A, tr[A] is finite,
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where

tr[A] =
∞∑
n=1

(Aφn, φn).

It is easy to check that the trace (if it exists) is independent of the
basis used.

1.2.3. The Hahn–Banach Theorem.

Theorem 1.47. Let B be a Banach space over C and let p : B → R

be such that, for all x, y ∈ B
p(ax+ by) ≤ |a| p(x) + |a| p(y), whenever |a|+ |b| = 1. (1.1)

If L̄ is a linear functional defined on a subspace D ⊂ B, with ∣∣L̄(x)∣∣ ≤
p(x), for all x ∈ D, then L̄ can be extended to a linear functional L
on B such that |L(x)| ≤ p(x), x ∈ B and L(x) = L̄(x) on D.

Proof. We first assume that the field is R. Suppose that x ∈ B but
x /∈ D. Let E = (x,D) be the vector space spanned by x and D. If we
have an extension L of L̄ from D to E , it must satisfy

L (ax+ by) = λL(x) + L̄(y), y ∈ D.

and from (1.1), |a|+ |b| = 1 implies that

p(ax+ by) ≤ |a| p(x) + |b| p(y).
Suppose that y1, y2 ∈ D, a, b > 0, a+ b = 1. Then

aL̄(y1) + bL̄(y2) = L̄(ay1 + by2) � p[a(y1 − 1
ax) + b(y2 +

1
bx)]

� ap(y1 − 1
ax) + bp(y2 +

1
bx).

We see that for all y1, y2 ∈ D and all a, b > 0, a+ b = 1, we have

1
a

[−p[y1 − ax) + L̄(y1)
]
� 1

b

[
p(y2 + bx)− L̄(y2)

]
.

It now follows that we must be able to find a number c such that for
all a > 0,

sup
y∈D

1
a

[−p[y − ax) + L̄(y)
]
� c � inf

y∈D
1
a

[
p(y + ax)− L̄(y)

]
.

We can define L(x) = c. It is easy to check that L(x) ≤ p(x), for
all x ∈ E . We now appeal to Zorn’s Lemma (see Yosida [YS, p. 2]), to
show that L̄ can be extended to all of B, when the field is R.
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To extend our result to complex linear functionals, let L̄ be given
on D and define L′(x) = Re{L̄(x)}, so that it is a real linear functional
on D. Since

L′(ix) = Re{iL̄(x)} = −Im{L̄(x)},
we see that L̄(x) = L′(x) − iL′(ix). Furthermore, since L′ is real, it
has an extension L, to all of B such that L(x) ≤ p(x), for all x ∈ B.
We can now define F (x) = L(x) − iL(ix). It is easy to check that F
is a complex linear functional.

Since |a| = 1 implies that p(ax) = p(x), we can set θ = Arg{F (x)}.
If we now use the fact that Re{F} = L, we have

|F (x)| = e−iθF (x) = F (e−iθx) = L(e−iθx) � p(e−iθx) = p(x),

we are done. �

Theorem 1.48. Let M be a linear subspace of B. If x0 ∈ B, with
0 < c = d(M,x0), then there exists a bounded linear functional L(·)
defined on B such that

L(x0) = 1, ‖L‖B =
1

c
, L(x) = 0, for all x ∈ M.

Proof. Let M1 = (M,x0) be the subspace spanned by M and x0.
Thus, each point z ∈ M1 is of the form z = y+λx0, where y ∈ M and
λ ∈ C are uniquely determined by z. Define F (·) on B by F (y + λx0)
= λ. Clearly F is a bounded linear functional, and if λ �= 0 then

‖y + λx0‖B =
∥∥∥y
λ
+ x0

∥∥∥
B
|λ| � c |λ| .

It follows that |F (z)| � 1
c ‖z‖B, so that ‖F‖B′ � 1

c . If {zn} ⊂
M, ‖x0 − zn‖ → c, then

1 = F (x0 − zn) � ‖q‖B ‖x0 − zn| B → c ‖F‖B .

Thus, ‖F‖B = 1
c . Thus, by Theorem 1.47 with L replacing F finishes

the proof. �

The following is a consequence of the last two results.

Theorem 1.49. If B is a Banach space, we have

(1) For any x ∈ B, x �= 0, there exists a linear functional L ∈ B′

such that ‖L‖B′ = 1 and L(x) = ‖x‖B.
(2) If x �= y, there exists a linear functional L ∈ B′ with L(x) �=

L(y).
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(3) For x ∈ B,

‖x‖B = sup
L 	=0

|L(x)|
‖L‖B′

= sup
‖L‖=1

|L(x)| .

(4) If M is a subspace of B and x0 ∈ B, x0 /∈ M , then there exists
a linear functional L ∈ B′ such that L(x0) = 1 and L(x) = 0,
for all x ∈ M .

1.2.4. The Baire Category Theorem. In this section we intro-
duce Baire’s Theorem and some of its consequences. First we need a
definition.

Definition 1.50. Let B be a Banach space. A subset E ⊂ B is said
to be nowhere dense if its closure has empty interior. A set is said to
be meager (or of the first category) in B if it is a countable union of
nowhere dense sets. A set in B that is not meager (not of the first
category) in B is said to be nonmeager (of the second category) in B.
Theorem 1.51. (Baire’s Theorem) If B is a Banach space, then the
intersection of every countable collection of dense open subsets of B is
a dense set in B.

Proof. Let {U1, U2, U3, . . .} be any countable collection of dense open
subsets of B. If T0 is any ball in B of radius 1, choose a ball T1 of
radius 1

2 such that the closure of T1, T 1 ⊂ U1 ∩ T0. (Check that this
is possible.) Continue this process, so that at step n, we choose a ball
Tn of radius 1

n such that Tn ⊂ Un ∩ Tn−1 and define K by:

K =

∞⋂
n=1

Tn.

It is easy to see that the centers of our nested balls form a Cauchy
sequence that converges to a point in K, so that K is nonempty. Since
K ⊂ T0 and K ⊂ Tn for each n, we see that the intersection of T0 with
∞⋂
n=1

Un is nonempty. �

The following two lemmas are required for our proof of the Banach–
Steinhaus Theorem in the next section. The second lemma is true for
an arbitrary index set, but for our use the restriction of the index set
to R

+ is sufficient.
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Lemma 1.52. Let B be a Banach space. Suppose that {V1, V2, V3, . . .}
is a countable collection of closed subsets of B with int(Vn) = ∅. Then

V =
∞⋂
n=1

Vn = ∅.

Proof. Since V is meager and int(V ) ⊂ V , it follows that int(V ) is
meager. By Baire’s Theorem, we see that int(V ) = ∅. �

Lemma 1.53. Let B be a Banach space. Suppose that {ft}, t ∈ R
+ is

a pointwise bounded family of continuous real-valued functions on B.
Then the family is uniformly bounded on some nonempty open subset
of B.

Proof. Suppose that |ft(ϕ)| ≤ cϕ for all t ∈ R
+ and define

V t
n = {ϕ ∈ B | |ft(ϕ)| ≤ n} .

It is clear that V t
n is closed in B, since ft is continuous. Therefore the

set:

Vn =

∞⋂
n=1

{ϕ ∈ B | |ft(ϕ)| ≤ n} ,

defined for each n, is also closed in B. Since ft is pointwise bounded,
we have that B =

⋃∞
n=1 Vn. If int(Vm) = ∅ for all m, then from

Lemma 1.52,
⋃∞

n=1 Vn is meager. Since B is of the second category,
this is a contradiction. Therefore, int(Vm) �= ∅ for some m. If we set
M = m and U = int(Vm), it follows that {f(t)}, t ∈ R

+ is uniformly
bounded on U . �

1.2.5. The Banach–Steinhaus Theorem. The next important re-
sult, known in the early literature as the Banach–Steinhaus Theorem,
is much better known now as the principle of uniform boundedness.

Theorem 1.54 (Uniform Boundedness Theorem). Let {T (t)} be a
family of continuous mappings on the Banach space B for t ∈ R

+. If
for each ϕ ∈ B, the family {‖T (t)ϕ‖B} is bounded for all t ∈ R

+, then
the {‖T (t)‖B} is a bounded family.

Proof. For each t ∈ R
+ define ft : B → R

+ by ft(ϕ) = ‖T (t)ϕ‖B.
Since the norm is continuous, we see that ft is also continuous. From
Lemma 1.53, there is a nonempty open set Vn0 ⊂ B and ft(ϕ) ≤ n0 for
all t ∈ R

+ and all ϕ ∈ Vn0 . Without loss of generality, we can assume
that U = {ϕ| ‖ϕ‖B < r} ⊂ Vn0 for some r > 0. It follows that, for
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ϕ0 ∈ U , ‖ft(ϕ+ rφ)‖B � n0 for all t ∈ R
+ and all φ with ‖φ‖B < 1.

This implies that

r‖T‖B = r sup
‖φ‖B�1

‖T (t)φ‖B = sup
‖φ‖B�1

‖T (t) [ϕ0 + rφ]− T (t)ϕ0‖B
� n0 + ‖T (t)ϕ0‖B < ∞.

�

The next result (the open mapping theorem) is one of the im-
portant theorems in functional analysis. It is used to prove the two
theorems that follow. The first of the two will be used in the next
section, while the second is fundamental for Chaps. 4 and 5.

Theorem 1.55 (Open Mapping Theorem). Let B1,B2 be two Banach
spaces and let A be a continuous linear surjective mapping of B1 → B2.
Then, whenever U is an open set in B1, A[U ] is an open set in B2.

Proof. It suffices to show that, for every open ball U about zero in
B1, A[U ] contains an open ball about zero in B2. Hence, fix U and
let {U0, U1, U2, . . .} be a sequence of open balls of radius r/2n, (n =
0, 1, 2, . . .), where r is chosen so that U0 ⊂ U . We are done if we can
prove that there is an open set W such that:

W ⊂ A(U1) ⊂ A(U),

where A(U1) is the closure of A(U1). Since U2−U2 ⊂ U1, we first need

to prove that W ⊂ A(U1). To do this, note that:

A(U1) ⊃ A(U2)−A(U2) ⊃ A(U2)−A(U2).

We will be done with this part of the proof if we show that the interior
of A(U2) is nonempty. But

A(B1) =

∞⋃
m=1

mA(U2),

since U2 is a ball centered at zero and A is a surjection. Therefore,
at least one of the mA(U2) is of the second category in B2. But, as
the mapping ϕ → mϕ is a homeomorphism of B2 onto B2, A(U2) is

nonmeager in B2. Therefore, there exists an open set W ⊂ A(U2).

To prove that A(U1) ⊂ A(U), let ϕ1 ∈ A(U1) be fixed, and observe
by the first part that(

ϕ1 −A(U2)
)⋂

A(U) �= ∅.
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Thus, there is a y1 ∈ U1 with A(y1) ∈ ϕ1 − A(U2). Now, for any

n ≥ 1, A(Un) contains an open neighborhood of zero. Hence, assume

that ϕn ∈ A(Un) has been chosen with(
ϕn −A(Un+1)

)⋂
A(Un) �= ∅.

This means there is a yn ∈ Un such that A(yn) ∈ ϕn −A(Un+1).

Set yn+1 = yn − A(ϕn). Then yn+1 ∈ A(Un+1) and we continue the
construction. It is easy to see that the sums ϕ1 + ϕ2 + ϕ3 + · · ·+ ϕn

form a convergent Cauchy sequence which converges to some ϕ ∈ B,
and ‖ϕ‖ < r. It follows that ϕ ∈ U and, as

m∑
n=1

A(ϕn) =
m∑

n=1

(yn − yn+1) = y1 − ym+1,

we see that ym+1 → 0 sinceA is continuous. Thus, y1 = A(ϕ1) ∈ A(U).

Since ϕ1 was arbitrary, we see that A(U1) ⊂ A(U). �

Theorem 1.56 (Inverse Mapping Theorem). Let B1,B2 be two Ba-
nach spaces and let A be a continuous bijective linear mapping of
B1 → B2. Then A−1 : B2 → B1 is continuous.

Proof. Since A is continuous, injective, and surjective, it is an open
mapping. As A−1 exists and, since A−1{A[O]} = O for all open sets,
A−1 is continuous. �

Theorem 1.57 (Closed Graph Theorem). Let B be a Banach space
and let A a closed linear operator on B. If D(A) = B, then A ∈ L[B].
Proof. By definition, G(A) is closed and is a Banach space in the norm
‖(ϕ,Aϕ)‖ = ‖ϕ‖B + ‖Aϕ‖B. Consider the two continuous mappings:

π1 : (ϕ,Aϕ) → ϕ, π2 : (ϕ,Aϕ) → Aϕ. Since π1 is a bijection, π−1
1 is

continuous so A = π2 ◦ π−1
1 is also continuous. �

Part II: Intermediate Analysis

In this second part of this chapter, we introduce a number of topics
that are rarely covered in the first 2 years of the standard graduate
programs. These topics will be used at a number of points in the book
and are collected here for reference as needed.
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S-Basis. In this section, we review a few results that belong to Banach
space theory proper. We provide a few proofs, but all the results can
be found in Carothers [CA]. Let B be a separable Banach space.

Definition 1.58. A sequence (xn) ∈ B is called a Schauder basis
(S-basis) for B if ‖xn‖B = 1 for all n and, for each f ∈ B, there is a
unique sequence (an) of scalars such that

x = lim
k→∞

k∑
n=1

anxn =
∞∑
n=1

anxn.

All spaces of interest in this book have an S-basis. However, it is
known that there are separable Banach spaces without an S-basis (see
Carothers [CA] or Diestel [DI]).

Example 1.59. Let B = �p, 1 < p < ∞, where

�p =

{
x = (x1, · · ·) :

∞∑
k=1

|xk|p < ∞
}
.

The set of vectors {ek}, where

ek =

(
0, 0, . . . ,

k
1, 0, . . .

)
,

form a norm-one S-basis for this space (see [CA]).

If Ω = [0, 1] and B = Lp[Ω], 1 < p < ∞, the family of vectors

{1, cos(2πt), sin(2πt) cos(4πt), sin(4πt), . . . }
is a norm-one S-basis for B (see [CA]).

It is easy to see that every Banach space with an S-basis is sepa-
rable. Let Pnx =

∑n
k=1 akxk and define a new norm on B by

�x�B = sup
n

‖Pnx‖B = sup
n

∥∥∥∥∥
n∑

k=1

akxk

∥∥∥∥∥
B
.

Example 1.60. Let Ω = [0, 1] and B = Lp[Ω] over the complex num-
bers. If x(t) ∈ B, define

ck =

∫ 1

0
e−2πiktx(t)dt, k = 0, ±1, ±2, . . .
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It is easy to see that,

�x�B = sup
n

∫ 1

0

∣∣∣∣∣
n∑

k=−n

cke
2πit

∣∣∣∣∣
2

dt

defines a norm on B.
Theorem 1.61. The norm �·�B, is an equivalent norm on B and

‖x‖B ≤ �x�B = sup
n

‖Pnx‖B .

Proof. Since limn Pnx → x, it is clear that �x�B is finite for all x ∈ B.
Since the identity map of (B,�·�B) → (B, |‖ · ‖|B) is continuous, by
the Inverse Mapping Theorem (Theorem 1.56), we are done if we can
show that this map has a continuous inverse. It suffices to show that
(B,�·�B) is complete (i.e., a Banach space).

For this, suppose that let (zk) be a Cauchy sequence in (B,�·�B).
Then (Pnzk) is a Cauchy sequence in (B,�·�B), since ‖Pnzi − Pnzj‖B
� �zi − zj�B, for all n (uniformly Cauchy). Thus, if yn = limk→∞ Pnzk
then limk→∞ ‖Pnzk − yn‖B = 0, uniformly in n.

It now follows using the standard ε
3 argument that (yn) is a Cauchy

sequence in (B,�·�B). If y = limn→∞ yn in (B,�·�B), we are done if
we show that y = limk→∞ zk in (B,�·�B).

Since there is a unique sequence of scalars (ai) such that y =∑∞
i=1 aixi, we see that yn =

∑n
i=1 aixi, so that Pny = yn and

�zk − y�B = sup
n

‖Pnzk − yn‖B → 0 as k → ∞.

�

Since, x ∈ B implies that ‖Pnx‖B < ∞ for all n, By the Uniform
Boundedness Theorem 1.54, we see that sup

n
‖Pn‖B < ∞.

Definition 1.62. The set {Pn} is called the natural family of projec-
tions associated with the S-basis {xn} and sup

n
‖Pn‖B = K is called

the basis constant of {xn}. In terms of the equivalent norm of the last
theorem, K = 1.

Definition 1.63. Let B be a Banach space with an S-basis and let
x∗n be the linear functional on B defined by x∗n(x) = an, where x =∑∞

k=1 akxk. Since x∗n(xm) = δmn, we say that the sequence of pairs
{x∗n, xn} are biorthogonal. We call the family {x∗n} the coordinate
functionals.
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Definition 1.64. We define the span of a set of vectors {xn}, in a
vector space B, written span({xn}), to be the set of all finite linear
combinations of subsets of {xn}. When B is a Banach space, we let
[xn] represent the closed subspace of B generated by span({xn}).

A proof of the next result can be found in Carothers (see [CA,
pp. 67–71]).

Theorem 1.65. If B is a reflexive Banach space and {xn} is an S-
basis for B, then {x∗n} is an S-basis for B′. Furthermore, the natural
embedding j : B → B′′ defined by x∗∗(y∗) = y∗(x) for all y∗ ∈ B′, is an
isometric isomorphism.

1.3. Distributions and Sobolev Spaces

References for this section are Strichartz [SZ], Yosida [YS], Leoni [GL],
Reed and Simon [RS], Rudin [RU1], and Evans [EV]. The purpose of
this section is to establish the basic ideas for use in Chaps. 2 and 3.
However, neither this section nor the material in Chaps. 2 and 3 is a
substitute for a complete introduction to the subject. Those with no
background should at least consult Strichartz [SZ].

1.3.1. The Test Functions and Distributions.

Definition 1.66. Let α = (α1, α2, . . . , αn) be a multi-index of non-
negative integers, with |α| = ∑n

k=1 αk. We define the operators Dα
n

and Dα,n by

Dα
n =

n∏
k=1

∂αk

∂xαk
Dα,n =

n∏
k=1

(
1

2πi

∂

∂xk

)αk

Let Cc(R
n) be the class of infinitely differentiable functions on R

n

with compact support and impose the natural locally convex topology
τ on Cc(R

n) to obtain D(Rn). A definition in terms of neighborhoods
can be found in Leoni [GL] (see also Yosida [YS] and Reed and Si-
mon [RS]).

Definition 1.67. A sequence {fm} converges to f ∈ D(Rn) with
respect to the compact sequential limit topology if and only if there
exists a compact set K ⊂ R

n, which contains the support of fm − f
for each m and Dα

nfm → Dα
nf uniformly on K, for every multi-index

α ∈ N
n.
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Let u ∈ C
1(Rn) and suppose that φ ∈ C

∞
c (Rn) has its support in

a ball Br, of radius r > 0. Integration by parts gives:∫
Rn

(φuyi)dλn =

∫
∂Br

(uφ)νidS−
∫
Rn

(uφyi)dλn, 1 ≤ i ≤ n,

where ν is the unit outward normal to Br. Since φ vanishes on the
∂Br, the above reduces to:∫

Rn

(φuyi) dλn = −
∫
Rn

(uφyi)dλn, 1 ≤ i ≤ n.

In the general case, for any u ∈ C
m[Rn] and any multi-index α =

(α1, . . . , αn), |α| =
∑n

α=1 αi = m, we have∫
Rn

φ(Dαu)dλn = (−1)m
∫
Rn

u(Dαφ)dλn. (1.2)

We now observe that the right-hand side of Eq. (1.2) makes sense,
even if Dαu does not exist according to our normal definition. This is
the basic idea behind the notion of a distributional derivative. Before
giving the formal definition, recall that a function u ∈ L1

loc[R
n] if it is

Lebesgue integrable on every compact subset of Rn.

Definition 1.68. If α is a multi-index and u, v ∈ L1
loc[R

n], we say

that v is the αth-weak (or distributional) partial derivative of u and
write Dαu = v provided that∫

Rn

u(Dαφ)dλn = (−1)|α|
∫
Rn

φv dλn

for all functions φ ∈ C
∞
c [Rn]. Thus, v is in the dual space D′[Rn]

of D[Rn].

The next result is easy.

Lemma 1.69. If a weak αth-partial derivative exists for u, then it is
unique λn-(a.e.).

Definition 1.70. If m ≥ 0 is fixed and 1 ≤ p ≤ ∞, we define the
Sobolev space Wm,p[Rn] to be the set of all locally integrable functions
u : R

n → R such that, for each multi-index α with |α| � m, Dαu
exists in the weak sense and belongs to Lp[Rn].
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Extensions and Decompositions. We need an extension theorem for
functions defined on a domain of Rn and a result which shows that
a domain in R

n can be written as a union of nonoverlapping closed
cubes. (Proofs of these results can be found in Evans [EV] and Stein
[STE], respectively.)

Let D be a bounded open connected set of Rn (a domain) with
boundary ∂D and closure D.

Definition 1.71. Let k be a positive integer. We say that ∂D is of
class Ck if, for every point x ∈ ∂D, there is a homeomorphism φ of
a neighborhood U of x into R

n such that both φ and φ−1 have k
continuous derivatives with

ϕ (D ∩ U) ⊂ {(x1, . . . , xn) ∈ R
n : xn > 0}

and
ϕ (∂D ∩ U) ⊂ {(x1, . . . , xn) ∈ R

n : xn = 0} .
Theorem 1.72. Let D be a domain in R

n with ∂D of class C1. Let U
be any bounded open set such that D, the closure of D ⊂⊂ U (i.e., the
closure of D is a compact subset of U). Then there is a linear operator
E mapping functions on D to functions on R

n such that:

(1) The operator C maps W 1,p[D] continuously into W 1,p[Rn] for
all 1 ≤ p ≤ ∞.

(2) C(f) |D = f (e.g., E(·) is an extension operator).

(3) E(f)(x) = 0 for x ∈ U
c (e.g., E(f) has support inside U).

Theorem 1.73. Let D be a domain in R
n. Then D is the union of a

sequence of closed cubes {Dk} whose sides are parallel to the coordinate
axes and whose interiors are mutually disjoint.

Thus, if a function f is defined on a domain in R
n, by Theorem 1.72

it can be extended to the whole space. On the other hand, without
loss of generality, by Theorem 1.73, we can assume that the domain is
a cube with sides parallel to the coordinate axes.

Definition 1.74. If D is a domain in R
n, we define Wm,p

0 [D] to be the
closure of C∞

c (D) in Wm,p[D].

Remark 1.75. Thus, Wm,p
0 [D] contains those functions u ∈ Wm,p[D]

such that, for all |α| ≤ m− 1, Dαu = 0 on the boundary of D, ∂D.

We also note that, when p = 2 it is standard to use Hm(D) =

Wm,2(D) and Hm
0 (D) = Wm,2

0 (D).
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1.4. Tensor Products

Tensor products of Banach spaces are not a part of the normal graduate
program. This section is an introduction to the finite theory that is
background for the infinite tensor product theory in Chap. 6. At this
point, it is assumed that the reader has at least studied Chap. 4 or
is already familiar with the material from some other source.

Since tensor products of Banach spaces have a bad reputation,
we should at least comment on this “public relations problem.” This
reputation is due to questions and studies unrelated to partial differen-
tial equations, path integrals, stochastic processes, analysis (proper),
and the many possible applications in science and engineering. We
approach the subject from a more natural point of view, so that its
usefulness for these important and equally interesting areas will be
transparent.

1.4.1. Elementary Background. For those with no background in
tensor products, we begin with R

3, a space which is well known from
calculus (any finite dimension will do). There are a number of ways
to patch together two copies of R3 to obtain a new space. The first is
called the direct sum:

R
3 ⊕ R

3 = {(a1, a2, a3, b1, b2, b3) : (a1, a2, a3), (b1, b2, b3) ∈ R
3}.

It is clear that R3 ⊕ R
3 is isomorphic to R

6. There are also two ways
we can define a product on R

3; the first is the dot product[
b1 b2 b3

] ⎡
⎣ a1

a2
a3

⎤
⎦ =

3∑
i=1

biai,

which takes two vectors and produces a scalar. The other is the tensor
product ⎡

⎣ a1
a2
a3

⎤
⎦
[
b1 b2 b3

]
=

⎡
⎣ a1b1 a1b2 a1b3

a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

⎤
⎦ ,

which takes two vectors and produces a 3× 3 matrix. It is easy to see

that we can write the resulting matrix as a vector in R
9 = R

32 . Thus,
the tensor product of R3 with itself, written as R3 ⊗R

3, is isomorphic
to R

9.
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Implicit in our use of the dot product is the assumption that the
norm induced is the natural one generated by the dot product on R

3:

‖a− b‖
R3 =

√
(a− b) · (a− b) =

√√√√ 3∑
i=1

(ai − bi)
2.

However, there are a number of other norms possible on R
3 which are

not induced by a dot product. For example:

‖a− b‖p =

[
3∑

i=1

|ai − bi|p
]1/p

, 1 � p < ∞, p �= 2,

‖a− b‖∞ = max
1�i�3

|ai − bi|.
(1.3)

We will discuss this later. However, the case p = 2 is the standard one
because it is the only (unique) one generated by a dot product (even
in infinite dimensions). Let �p

(
R
3
)
represent R3 with the norm ‖ · ‖p.

It is easy to check that �p
(
R
3
)
is a Banach space for p �= 2 and that

�2
(
R
3
)
is a Hilbert space.

We know that R
3 ⊗ R

3 = R
9. The basic question is, how do we

define the norm, so that �p(R
3) ⊗ �p(R

3) = �p(R
9). It is known that,

on R
n, all norms are equivalent. That is, for any pair p, q, there exists

constants cp,q, Cp,q, such that, for any vector a,

cp,q‖a‖q � ‖a‖p � Cp,q‖a‖q.

Thus, we can define the dot product on R
9 and use the norm equiv-

alence to obtain all the others. However, in the infinite-dimensional
case (�p(R

∞)), this is no longer true and each of the norms in Eq. (1.3)
generates distinct Banach spaces.

Example 1.76. Let us see what the norm looks like for R
2 ⊗ R

2.
A direct computation shows that

a⊗ b =

[
a1
a2

] [
b1 b2

]

=

[
a1b1 a1b2
a2b1 a2b1

]
= [a1b1, a1b2, a2b1, a2b1] .
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and

‖a‖2‖b‖2

=

[
2∑

i=1

a2i

]1/2[ 2∑
k=1

b2k

]1/2
=

[(
2∑

i=1

a2i

)(
2∑

k=1

b2k

)]1/2

=
[
a21b

2
1 + a21b

2
2 + a22b

2
1 + a22b

2
2

]1/2
= ‖a⊗ b‖4.

(1.4)

This is a special property called the crossnorm (i.e., ‖a⊗ b‖4
= ‖a‖2‖b‖2).
1.4.2. General Background. We begin with a few concrete exam-
ples and ideas that reveal the landscape. Let f(x) ∈ C(Ω1), g(y) ∈
C(Ω2), where Ω1 and Ω2 are compact sets in R

n1 and R
n2 , respectively.

If we let F (x, y) = f(x)g(y), then F (x, y) ∈ C(Ω1 × Ω2). It is clear
that:

(1)
∂2

∂x∂y
F (x, y) =

[
d

dx
f(x)

] [
d

dy
g(y)

]
and

(2) ∫
Ω1×Ω2

F (x, y)dxdy =

∫
Ω1

f(x)dx

∫
Ω2

g(y)dy.

If we let S be the set of all finite sums, S = {Fm(x, y)}, m ∈ N, where

Fm(x, y) =
∑m

i=1
fi(x)gi(y), m ∈ N,

it is easy to see that S is dense in C(Ω1 × Ω2). We can now ask
the natural question; What norm should we use on S so that the
completion of S, S̄ = C(Ω1 × Ω2)? It is not hard to show that the
appropriate norm is

‖Fm‖∞ = sup
x∈Ω1

sup
y∈Ω2

∣∣∣∣∣
m∑
i=1

fi(x)gi(y)

∣∣∣∣∣ . (1.5)

On the other hand, we could replace Eq. (1.5) with

‖Fm‖p =
[∫

Ω2

∫
Ω1

∣∣∣∣∣
m∑
i=1

fi(x)gi(y)

∣∣∣∣∣
p

dxdy

]1/p
,

where 1 ≤ p ≤ ∞ and ask the same question. If we use this norm on
S, we clearly do not expect to get C(Ω1 × Ω2). The theory of tensor
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products of Banach spaces is designed to make the above precise and
reveal the nature of the resulting space.

1.4.3. Tensor Products of Hilbert Spaces. Tensor products of
Hilbert spaces are the easiest Banach spaces to study, because as noted
earlier, there exists only one norm that will make the result another
Hilbert space.

Let H1,H2,H3 be three Hilbert spaces over C. A mapping T :
H1 × H2 → H3 is said to be bilinear if for all a, b ∈ C and all x ∈
H1, y ∈ H2,

(1)
T (ax1 + bx2, y) = aT (x1, y) + bT (x2, y)

and

(2)

T (x, ay1 + by2) = acT (x, y1) + bcT (x, y2).

Definition 1.77. The complete tensor product of the Hilbert spaces
H1,H2 is a Hilbert spaceH3 and a bilinear mapping T : H1×H2 → H3,
such that

(1) The closed linear span of all the vectors T (x, y), x ∈ H1, y ∈
H2 is equal to H3.

(2) The inner product for H3 satisfies:

(T (x1, y1), T (x2, y2))3 = (x1, x2)1(y1, y2)2, (1.6)

for all pairs x1, x2 ∈ H1 and y1, y2 ∈ H2. We call the pair (H3, T )
the (complete) tensor product of H1 and H2. We denote the linear
span of the Hilbert spaces H1,H2 by H1⊗H2, replace H3 with H1⊗̂H2

and T (x, y) by x ⊗ y, which is the standard representation. If we let

x1 = x2, y1 = y2 in Eq. (1.6), it now reads ‖x⊗ y‖23 = ‖x‖21 ‖y‖22 or
‖x⊗ y‖3 = ‖x‖1 ‖y‖2. This is the crossnorm relationship we saw in
Eq. (1.4).

The tensor product x⊗ y is a bilinear mapping of H1×H2 to H1⊗̂H2,
we can also view it as a functional in the space B(H1,H2,C) =
B(H1,H2), of bilinear mappings on H1 × H2 to C. That is, from
Eq. (1.6),

(x1 ⊗ y1, x2 ⊗ y2)3 = (x1, x2)1(y1, y2)2.

We will use this interpretation later in the section to define the tensor
product of two Banach spaces.
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Theorem 1.78. If the family {φn} is a orthonormal basis for H1 and
the family {ψm} is a orthonormal basis for H2, the family {φn ⊗ ψm}
is a orthonormal basis for H3.

Proof. Since ‖φn ⊗ ψm‖3 = ‖φn‖1 ‖ψm‖2 = 1, they are normal. Fur-
thermore,

(φn ⊗ ψm, φi ⊗ ψj)3 = (φn, φi)1(ψm, ψj)2 = δn,iδm,j ,

so they are also orthogonal.

Thus, we are done if we can show that the closure of the linear
span of {φn ⊗ ψm} is all of H3. Let f ⊗ g ∈ H3, so that f ∈ H1 and
g ∈ H2. Then there exist unique families of constants {ai}, {bj} such
that: f =

∑∞
i=1 aiφi and g =

∑∞
j=1 bjψj . It is now easy to show that

f ⊗ g =
∑∞

i,j aibjφi ⊗ ψj . A little reflection will convince the reader

that every vector u ∈ H3 can be written as u =
∑∞

i,j aijφi ⊗ ψj , for

some (unique) constants {aij}, so that the family {φi ⊗ ψj} is a basis
for H3. �

1.5. Tensor Products of Banach Spaces

If B1 and B2 are two Banach spaces, the algebraic tensor product of
B1 and B2 is denoted by B1 ⊗B2, and every element φ ∈ B1 ⊗B2 may
be written as φ =

∑n
i=1 φ

i
1 ⊗ φi

2, where {φi
1} ∈ B1, {φi

2} ∈ B2 and n
is some nonnegative integer. We denote by B(B1,B2) = B(B1,B2,C),
the space of all continuous bilinear functionals on B1 × B2. If l is a
bilinear form on B1 × B2, it generates a natural linear functional l̂ on
B1 ⊗ B2 defined by evaluation:〈

ϕ⊗ ψ, l̂
〉
= l(ϕ, ψ), (ϕ, ψ) ∈ B1 × B2, l ∈ B (B1,B2) .

Also, 〈B1 ⊗ B2,B′
1 ⊗ B′

2〉 defines a (strong) dual system by:

〈ϕ⊗ ψ, ϕ∗ ⊗ ψ∗〉= 〈ϕ,ϕ∗〉 〈ψ, ψ∗〉 , (ϕ, ψ)∈B1×B2, (ϕ∗, ψ∗)∈B′
1×B′

2.

It follows that we can consider B1 ⊗ B2 as the space of continuous
bilinear functionals on B′

1×B′
2 (B1⊗B2 ⊂ B (B′

1,B′
2)), and B′

1⊗B′
2

as the space of continuous bilinear functionals on B1 × B2, so that
B′

1 ⊗ B′
2 ⊂ B (B1,B2).

For notation consistent with the field, when studying one of the
Lp-type spaces (with 1 ≤ p ≤ ∞), we will use Δp(·) in place of ‖·‖p.
Although there are many norms that may be defined on B1 ⊗B2 such
that the completion is a Banach space, we will always use the one that
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is natural for the spaces under consideration. This means that we will
restrict our attention to spaces of direct interest for analysis, applied
mathematics, mathematical physics, and probability theory. (Those
with interest in the general theory and other approaches should consult
the nice books by Defant and Floret [DOF] and Ryan [RA], along with
the references therein.)

Let Ai, i = 1, 2 be closed linear operators with domains Di ⊂ Bi,
Ai : Di ⊂ Bi → Bi, i = 1, 2. The mapping (φ1, φ2) → A1φ1 ⊗ A2φ2

is bilinear from D(A1)×D(A2) → B1 ⊗ B2. The corresponding linear
mapping of D(A1) ⊗D(A2) into B1 ⊗ B2 is denoted by A1 ⊗ A2, and
is called the tensor product of the operators A1 and A2.

Definition 1.79. Let α be a norm (written ‖ · ‖α) on B1 ⊗ B2.

(1) We say that α is a crossnorm if for φ1 ∈ B1, φ2 ∈ B2, we have
that:

α(φ1 ⊗ φ2) = ‖φ1 ⊗ φ2‖α = ‖φ1‖B1
‖φ2‖B2

. (1.7)

(2) The greatest crossnorm γ on B1 ⊗ B2 can be defined on the
unit ball in B (B1,B2). For φ =

∑n
i=1 φ

i
1 ⊗ φi

2 ∈ B1 ⊗ B2,

‖φ‖γ = sup
l∈B(B1,B2)

{
|〈φ, l〉| :

n∑
i=1

φi
1 ⊗ φi

2 =
m∑
k=1

ψi
1 ⊗ ψi

2

}
.

This norm is equivalent to:

‖φ‖γ = inf

{
m∑
k=1

∥∥ψi
1

∥∥
B1

∥∥ψi
2

∥∥
B2

:
n∑

i=1

φi
1 ⊗ φi

2 =
m∑
k=1

ψi
1 ⊗ ψi

2

}
.

(3) The least crossnorm λ is the norm induced on B1 ⊗ B2 by
the topology of bi-equicontinuous convergence in B (B′

1,B′
2).

That is, for φ ∈ B1 ⊗ B2 and (F1, F2) ∈ B′
1 × B′

2,

‖φ‖λ = sup
{|〈φ, F1 ⊗ F2〉| : ‖F1‖B′

1
� 1, ‖F2‖B′

2
� 1

}
. (1.8)

Remark 1.80. For the spaces we are interested in, the least crossnorm
λ = Δ∞, while the greatest crossnorm γ = Δ1.

Definition 1.81. Let α be a given crossnorm on B1 ⊗ B2. We say
that:

(1) The crossnorm α is a reasonable crossnorm if the dual norm
α′ induced by the dual of B1⊗αB2 is a crossnorm on B′

1⊗B′
2.
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(2) The crossnorm α is uniform relative to B1 and B2 if, for φ ∈
B1 ⊗ B2 and A1, A2 ∈ L[B1], L[B2] :

sup
‖φ‖α�1

‖(A1 ⊗A2)φ‖α � ‖A1‖B1
‖A2‖B2

. (1.9)

(3) If conditions (1) and (2) are satisfied, we say that the cross-
norm α is a relative tensor norm.

If α is reasonable, then the norm α′ on B′
1⊗B′

2 induced by (B1⊗α

B2)
′ is also reasonable. We denote by B1⊗̂αB2 the completion of B1 ⊗

B2 with respect to α, and by B′
1⊗̂α′B′

2 the completion of B′
1 ⊗ B′

2

with respect to α′. In general, B′
1⊗̂α′B′

2 can be identified with a closed
subspace of (B1⊗̂αB2)

′ (cf. Schatten [S], in Chap. 6).

Remark 1.82. Our definition of a relative uniform norm depends on
the spaces under consideration. This is a restriction of the conven-
tional definition, which is independent of the spaces, and is called a
uniform norm. We refer to Defant and Floret [DOF] for a complete
discussion of the standard case. They follow Grothendieck and replace
the notion of a uniform norm with the condition that α has the metric
approximation property. This, coupled with the first condition, leads
to the definition of a tensor norm.

We now give some examples of the norms and standard spaces of
interest. Let Ω be a compact domain in R

n and let C[Ω] be the set
of bounded continuous functions on Ω, let Lp[Ω,B(Ω),m] = Lp[Ω]
be the space of Lebesgue integrable functions on Ω that have finite Lp

norm, where m is a measure on Ω, and let B(Ω) be the Borel σ-algebra
generated by the open sets of Ω. For any Banach space B, it is easy

to see that C[Ω,B] = C[Ω]⊗̂λB.
Example 1.83. The following are elementary and most will be proved
later. We present them because they are what one would naturally
expect:

(1) Let B = C[Ω] as above, so that C[Ω]⊗̂λ
C[Ω] = C [Ω× Ω]. If

A1 = d/dx, A2 = d/dy, then

A1⊗̂λ
A2 = ∂2

/
∂x∂y = d/dx⊗̂λ

d/dy = (d/dx⊗̂λ
I)(I⊗̂λ

d/dy)

(see Ichinose [IC70], in Chap. 6).

(2) Let B3 = B4 = L1[Ω], then L1[Ω]⊗̂γ
L1[Ω] = L1 [Ω× Ω] (see

Dunford and Schatten [DSH], in Chap. 6).
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(3) Let B5 = B6 = Lp[Ω], then Lp[Ω]⊗̂ΔpLp[Ω] = Lp[Ω × Ω] for
1 � p < ∞ (see Schatten [S], in Chap. 6), where

Δp

(∑n

i=1
φi ⊗ ϕi

)
≡def

⎧
⎨
⎩
∫∫

Ω×Ω

∣∣∣
∑n

i=1
φi(x)⊗ ϕi(y)

∣∣∣
p

dxdy

⎫
⎬
⎭

1/p

. (1.10)

Remark 1.84. Note that Δ1 = γ, Δ∞ = λ, so that Δp is always a
tensor norm relative to Lp[Ω] (1 ≤ p ≤ ∞). It is easy to show that

L∞ [Ω] ⊗̂λ
L∞ [Ω] ⊂ L∞ [Ω× Ω] with the inclusion proper (see Dunford

and Schatten [DSH], in Chap. 6). [Similar results show that Δp is also a
tensor norm relative to the various Sobolev spacesWm,p[Ω] (see Adams
[A], in Chap. 6).] Finally, we can allow that Ω be a locally compact
group or complete separable metric space with minor adjustments.

1.5.1. Basic Results. In this section, we prove a number of basic
results (including some of those mentioned above) about the tensor
product of spaces in the Δp norm, 1 ≤ p ≤ ∞.

Theorem 1.85. If B1 and B2 are Banach spaces, then both γ = Δ1

and λ = Δ∞ provide norms on B1 ⊗ B2, with Δ∞(φ) ≤ Δ1(φ) for all
φ ∈ B1 ⊗ B2.

Proof. We prove that Δ1 is a norm and Δ∞(φ) ≤ Δ1(φ) for all φ ∈
B1 ⊗ B2. The proof that Δ∞ is a norm is left as an exercise.

It is clear that Δ1(aφ) = |a|Δ1(φ). To prove the triangle in-
equality, let ε > 0 be given and choose φ =

∑n
i=1 φ

i
1 ⊗ φi

2, ψ =∑m
i=1 ψ

i
1 ⊗ ψi

2, so that

n∑
i=1

∥∥φi
1

∥∥
B1

∥∥φi
2

∥∥
B2

� Δ1(φ) +
ε

2

and
m∑
i=1

∥∥ψi
1

∥∥
B1

∥∥ψi
2

∥∥
B2

� Δ1(ψ) +
ε

2
.

By definition, this implies that

Δ1(φ+ ψ) �
n∑

i=1

∥∥φi
1

∥∥
B1

∥∥φi
2

∥∥
B2

+
m∑
i=1

∥∥ψi
1

∥∥
B1

∥∥ψi
2

∥∥
B2

� Δ1(φ) + Δ1(ψ) + ε.

Since this is true for all ε > 0, Δ1(φ+ ψ) ≤ Δ1(φ) + Δ1(ψ).
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Suppose that Δ1(φ) = 0. Then, for each ε > 0, there exists a
representation φ =

∑n
i=1 φ

i
1 ⊗ φi

2 such that
∑n

i=1

∥∥φi
1

∥∥
B1

∥∥φi
2

∥∥
B2

≤ ε.

It follows that, for all (F1 ⊗ F2) ∈ B′
1 ⊗ B′

2,∣∣∣∣∣(F1 ⊗ F2)

(
n∑

i=1

φi
1 ⊗ φi

2

)∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
i=1

F1(φ
i
1)F2(φ

i
2)

∣∣∣∣∣ � ε ‖F1‖B′
1
‖F2‖B′

2
.

Since B′
1 ⊗ B′

2 is fundamental for B1 ⊗ B2, we must have φ = 0.

In order to show that Δ1(φ1⊗φ2) = ‖φ1‖B1
‖φ2‖B2

, first note that
Δ1(φ1 ⊗ φ2) ≤ ‖φ1‖B1

‖φ2‖B2
, so we need to only prove the opposite

relation. Let F1⊗F2 ∈ B′
1⊗B′

2 satisfy F1(φ1) = ‖φ1‖B1
and F2(φ2) =

‖φ2‖B1
(duality maps). Since∣∣∣∣∣(F1 ⊗ F2)

(
n∑

i=1

φi
1 ⊗ φi

2

)∣∣∣∣∣
�

n∑
i=1

∣∣(F1 ⊗ F2) (φ
i
1 ⊗ φi

2)
∣∣

=
n∑

i=1

∣∣F1(φ
i
1)F2(φ

i
2)
∣∣ � n∑

i=1

∥∥φi
1

∥∥
B1

∥∥φi
2

∥∥
B2
,

(1.11)

we see that |(F1 ⊗ F2)φ| � Δ1(φ), where φ =
∑n

i=1 φ
i
1 ⊗ φi

2. Thus,
(F1 ⊗ F2)(φ1 ⊗ φ2) = ‖φ1‖B1

‖φ2‖B2
≤ Δ1(φ1 ⊗ φ2).

From Eq. (1.11) we see that |(F1 ⊗ F2)φ| � Δ1(φ) for all φ ∈ B1 ⊗
B2. It follows from the definition of Δ∞ that Δ∞(φ) ≤ Δ1(φ). �

Let Ω be a domain in R
n, let μ be a measure on Ω, and let B be a

separable Banach space with a Schauder basis.

Theorem 1.86. The completion of L1[Ω, μ] ⊗ B with the Δ1 norm,

L1[Ω, μ]⊗̂Δ1B, is isometrically isomorphic to L1[Ω, μ;B], the space of
Bochner integrable functions on Ω with values in B.

Proof. Let J : L1[Ω, μ]×B → L1[Ω, μ;B], via (φ1, φb) → φ = φ1⊗φb.
By linearization, this induces a norm one mapping

J : L1[Ω, μ]⊗̂Δ1B → L1[Ω, μ;B].
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It follows that ‖Jφ‖1 ≤ Δ1(φ) for all φ ∈ L1[Ω, μ]⊗̂Δ1B. However,

if φ ∈ L1[Ω, μ;B] is a simple function, then φ =
∑n

k=1 χAk
φk
b and

Jφ =
∑n

k=1 χAk
⊗ φk

b . Thus,

Δ1(φ) ≤
n∑

k=1

μ(Ak)
∥∥∥φk

b

∥∥∥ = ‖Jφ‖1 .

It follows that Δ1(φ) = ‖Jφ‖1 for all simple functions. Since the
class S of simple functions is dense in L1[Ω, μ], we see that S ⊗ B
is dense in L1[Ω, μ]⊗̂Δ1B. Since the norm closure of the class of
Bochner integrable functions is all of L1[Ω, μ;B], we see that J is sur-
jective. Furthermore, since Δ1(φ) = ‖Jφ‖1 on S ⊗ B, the extension

to L1[Ω, μ]⊗̂Δ1B is both injective and isometric. Thus J is an isome-
try. �

Corollary 1.87. If Ω1, Ω2 are domains in R
n with measures μ1, μ2,

then

L1[Ω1, μ1]⊗̂Δ1L1[Ω2, μ2] = L1[Ω1 × Ω2, μ1 ⊗ μ2].

Definition 1.88. Let Ω1, Ω2 be compact domains in R
n, then

C(Ω1)⊗ C(Ω2) =: {φ(x, y) ∈ C(Ω1 × Ω2) | ∃n ∈ N,
{
φk
1(x)

}n

k=1
⊂ C(Ω1),

{
φk
2(y)

}n

k=1
⊂ C(Ω2) and φ(x, y) =

∑n

k=1
φk
1(x)φ

k
2(y)

}
.

(If Ω1 = R
n, Ω2 = R

m for some n, m, use the one point compactifica-
tion and the result still applies.)

This is why the notation (φ1 ⊗ φ2)(x, y) = φ1(x)φ2(y) is used to
denote products of functions of two variables (in this case). By the
Weierstrass Approximation Theorem, we see that C(Ω1) ⊗ C(Ω2) is
dense in C(Ω1 × Ω2).

Theorem 1.89. C(Ω1)⊗̂Δ∞
C(Ω2) = C(Ω1 × Ω2).

Theorem 1.90. Let B1, B2 be separable Banach spaces with a
Schauder basis.

(1) The norm α is a reasonable crossnorm on B1⊗B2 if and only
if

Δ∞(φ) ≤ α(φ) ≤ Δ1(φ) for all φ ∈ B1 ⊗ B2.

(2) If α is a reasonable crossnorm, then the norm α′ on B′
1⊗B′

2

induced by (B1 ⊗α B2)
′ is also a reasonable crossnorm.
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Proof. To begin, we let BB′
i
denote the unit ball in B′

i, i = 1, 2.

If α is a reasonable crossnorm on B1 ⊗ B2, then for any represen-
tation of φ =

∑n
i=1 φ

i
1 ⊗ φi

2 ∈ B1 ⊗ B2 we have

α(φ) �
n∑

i=1

α(φi
1 ⊗ φi

2) =
n∑

i=1

∥∥φi
1

∥∥
B1

∥∥φi
2

∥∥
B2
,

so that α(φ) ≤ Δ1(φ). To see that Δ∞(φ) ≤ α(φ), let F1 ⊗ F2 and
F =

∑n
i=1 F

i
1 ⊗ F i

2 be in B′
1 ⊗ B′

2. Then

Δ∞(φ)

= sup {|(F1 ⊗ F2)φ| : F1 ⊗ F2 ∈ BB′
1 ⊗ BB′

2}

� sup

{
|(F )φ| : F =

n∑
i=1

F i
1 ⊗ F i

2 ∈ BB′
1 ⊗ BB′

2

}
= α(φ).

On the other hand, if α is a norm on B1 ⊗ B2 with

Δ∞(φ) ≤ α(φ) ≤ Δ1(φ), for all φ ∈ B1 ⊗ B2,

then Δ∞(φ ⊗ ψ) = α(φ ⊗ ψ) = Δ1(φ ⊗ ψ), so that α is a crossnorm.
To see that α′ is a crossnorm on B′

1 ⊗ B′
2, use Δ∞ ≤ α ≤ Δ1 to get

that, for φ =
∑n

i=1 φ
i
1 ⊗ φi

2 ∈ B1 ⊗ B2,

‖F1‖B′
1
‖F2‖B′

2

= sup {|(F1 ⊗ F2)φ| : φ ∈ B1 ⊗ B2, Δ1(φ) � 1}
� α′(F1 ⊗ F2) = sup {|(F1 ⊗ F2)φ| : φ ∈ B1 ⊗ B2, α(φ) � 1}
� sup {|(F1 ⊗ F2)φ|| φ ∈ B1 ⊗ B2, Δ∞(φ) � 1} = ‖F1‖B′

1
‖F2‖B′

2
.

It follows that α′ is a reasonable crossnorm. �

We denote by B1⊗̂αB2 the completion of B1 ⊗ B2 with respect

to α, and by B′
1⊗̂α′B′

2 the completion of B′
1 ⊗ B′

2 with respect to

α′. In general, B′
1⊗̂α′B′

2 can be identified with a closed subspace of
(B1⊗̂αB2)

′ (cf. Schatten [S], in Chap. 6).

Theorem 1.91. If Ω is a domain in R
n and μ is a measure on B, then

Δp is a reasonable crossnorm on Lp[Ω,B(Ω), μ]⊗B =: Lp[Ω]⊗B, 1 ≤
p ≤ ∞, for any separable Banach space B, and Lp[Ω]⊗̂ΔpB = Lp[Ω;B]
for 1 ≤ p < ∞.

Proof. The proof for p = 1 was given in Theorem 6.8, so we need to
only consider the case for 1 < p ≤ ∞. Let J : Lp[Ω] ⊗ B → Lp[Ω;B]
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be defined by J [f ⊗ φ] = f(·)φ. This is clearly an injective mapping.
Let g =

∑n
k=1 fk ⊗ φi and define

Δp[g] =

[∫
Ω
‖g(ω)‖pB dμ(ω)

]1/p
.

It is clear that

Δp[f ⊗ φ] =

[∫
Ω
‖f(ω)φ‖pB dμ(ω)

]1/p
= ‖φ‖B ‖f‖p ,

so that Δp[·] is a crossnorm. To see that Δp[·] ≤ Δ1[·], note that

Δp[g]

=

[∫
Ω

∥∥∥∥∥
n∑

k=1

fk(ω)φk

∥∥∥∥∥
p

B
dμ(ω)

]1/p

�
[

n∑
k=1

‖φk‖pB
∫
Ω
|fk(ω)|p dμ(ω)

]1/p

�
n∑

k=1

‖φk‖B ‖fk‖p,

so that Δp[g] � Δ1[g]. To see that Δ∞[·] ≤ Δp[·], let F⊗Φ ∈ [Lp]′⊗B′

be in the respective unit balls (i.e., ‖F‖p′ � 1, ‖Φ‖B′ � 1, 1
p′ = 1− 1

p).

Then
|〈F ⊗ Φ, g〉|

=

∣∣∣∣
∫
Ω
F (ω) 〈Φ, g(ω)〉 dμ(ω)

∣∣∣∣
≤ sup

‖Φ‖�1, ‖F‖p′�1
|〈F ⊗ Φ, g〉| = Δ∞[g]

� ‖F‖p′
[∫

Ω
|〈Φ, g(ω)〉|p dμ(ω)

]1/p

� sup
‖Φ‖�1

[∫
Ω
|〈Φ, g(ω)〉|p dμ(ω)

]1/p
= Δp[g].

Thus, Δp[·] is a reasonable crossnorm on Lp[Ω]⊗B for any p, 1 ≤ p ≤
∞. If p < ∞, then the (equivalence class of) step functions

S(μ)⊗B =

{
n∑

k=1

χAk
⊗ φk : n ∈ N, μ(Ak) < ∞, φk ∈ B

}
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is dense in Lp[Ω;B]. This implies that Lp[Ω]⊗ B is dense in Lp[Ω;B].
It follows that

Lp[Ω]⊗̂ΔpB = Lp[Ω;B].

�

Corollary 1.92. Let (Ω1,B1, μ1) and (Ω2,B2, μ2) be σ-finite measure

spaces. Then Lp[Ω1 × Ω2, B1 ×B2, μ1 × μ2] = Lp[Ω1]⊗̂ΔpLp[Ω2] for
1 ≤ p < ∞, where B1 ×B2 is the σ-algebra generated by B1 and B2.

Let B1 and B2 be separable Banach spaces, and let A1 ∈ L[B1],
A2 ∈ L[B2].

Theorem 1.93. The operator A1 ⊗ A2 : B1 ⊗ B2 → B1 ⊗ B2 has an

unique extension to both B1⊗̂Δ1B2 and B1⊗̂Δ∞B2 as a bounded linear
operator and ∥∥A1⊗̂A2

∥∥ = ‖A1‖ ‖A2‖ .

Proof. We first prove it for Δ1. Let
∑n

i=1 φ
i
1 ⊗ φi

2 be a representation

for φ ∈ B1⊗̂Δ1B2. Then

Δ1[(A1 ⊗A2)φ] = Δ1

[
n∑

i=1

A1φ
i
1 ⊗A2φ

i
2

]
� ‖A1‖ ‖A2‖

n∑
i=1

∥∥∥φi
1

∥∥∥
B1

∥∥∥φi
2

∥∥∥
B2

,

so that Δ1[(A1 ⊗A2)φ] ≤ ‖A1‖ ‖A2‖Δ1[φ]. It follows that ‖A1 ⊗A2‖
≤ ‖A1‖ ‖A2‖. However, from (A1 ⊗ A2)(φ1 ⊗ φ2) = (A1φ1)⊗ (A2φ2),
we see that (using the crossnorm property of Δ1)

‖A1‖ ‖A2‖

= sup
‖(A1φ1)‖B1

‖(A2φ2)‖B2

‖φ1‖B1
‖φ2‖B2

= sup
‖(A1φ1 ⊗A2φ2)‖Δ1

‖φ1‖B1
‖φ2‖B2

= sup
‖(A1 ⊗A2) (φ1 ⊗ φ2)‖Δ1

‖(φ1 ⊗ φ2)‖Δ1

� ‖A1 ⊗A2‖ .

It follows that ‖A1 ⊗A2‖ = ‖A1‖ ‖A2‖. It is clear that this equality

holds for the unique extension A1⊗̂A2 of A1 ⊗A2 to all of B1⊗̂Δ1B2.
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To prove the result for Δ∞, let φ =
∑n

i=1 φ
i
1 ⊗ φi

2. Then

Δ∞[(A1 ⊗A2)φ]

= sup

{
n∑

i=1

F1(A1φ
i
1)F2(A2φ

i
2) : F1 ∈ B′

1, F2 ∈ B′
2; ‖F1‖ � 1, ‖F2‖ � 1

}

= sup

{
n∑

i=1

(A′
1F1)(φ

i
1)(A

′
2F2)(φ

i
2) : F1 ∈ B′

1, F2 ∈ B′
2; ‖F1‖ � 1, ‖F2‖ � 1

}

�
∥∥A′

1

∥∥ ∥∥A′
2

∥∥Δ∞[φ] = ‖A1‖ ‖A2‖Δ∞[φ].

Thus, A1 ⊗A2 has a bounded extension to B1⊗̂Δ∞B2. Now let ε > 0
and choose φ1 ∈ B1, φ2 ∈ B2 with ‖φ1‖B1

≤ 1, ‖φ2‖B2
≤ 1 and, such

that

‖A1φ1‖B1
� (1− ε) ‖A1‖B1

; ‖A2φ2‖B2
� (1− ε) ‖A2‖B2

.

Thus, Δ∞(φ1 ⊗ φ2) ≤ 1 and

‖A1φ1‖B1
‖A2φ2‖B2

= Δ∞[(A1 ⊗A2) (φ1 ⊗ φ2)] � (1− ε)2 ‖A1‖ ‖A2‖ .
Since ε is arbitrary, ‖A1 ⊗A2‖ = ‖A1‖ ‖A2‖. It follows that the same

is true for the unique extension A1⊗̂A2 of A1⊗A2 to all of B1⊗̂Δ∞B2.
�

From Theorem 1.93, we see that Δ1 and Δ∞ are uniform for all
Banach space couples (tensor norms). The following example shows
that, for 1 < p < ∞, we cannot expect Δp to be uniform for all Banach
space couples.

Let L2[R] and �1(R) have the standard definitions, and let F be
the Fourier transform on L2[R], which is an isometry, and let I1 be the
identity on �1(R). If B1 = L2(R), B2 = �1(R) and α = Δ2, we have

Δ2(
n∑

m=1

ϕm ⊗ ψm) ≡def

⎧⎨
⎩
∫ ∞

−∞

∥∥∥∥∥
n∑

m=1

ϕm(x)ψm(y)

∥∥∥∥∥
2

B2

dx

⎫⎬
⎭

1/2

.

Example 1.94. Set fn =
∑n

m=1 χ[m,m+1) ⊗ em, where χ[m,m+1)(x) is
the characteristic function of the interval [m,m + 1), and em is the
mth unit basis vector of �1(R). Then

Δ2(fn) =

⎧⎨
⎩
∫ ∞

−∞

∥∥∥∥∥
n∑

m=1

χ[m,m+1)(x)em

∥∥∥∥∥
2

l1

dx

⎫⎬
⎭

1/2

=
√
n.
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However, if we look at the norm of (F⊗ I1)fn, we get:

‖(F⊗ I1)fn‖Δ2

=

⎧⎨
⎩
∫ ∞

−∞

∥∥∥∥∥ 1√
2π

∫ ∞

−∞
e−ixy

[
n∑

m=1

χ[m,m+1](y)em

]
dy

∥∥∥∥∥
2

l1

dx

⎫⎬
⎭

1/2

= 1√
2π

⎧⎨
⎩
∫ ∞

−∞

∥∥∥∥∥ 1
x

[
n∑

m=1

{e[−i(m+1)x] − e[−imx]}em
]∥∥∥∥∥

2

l1

dx

⎫⎬
⎭

1/2

= 1√
2π

⎧⎨
⎩
∫ ∞

−∞
1
x2

[
n∑

m=1

∣∣∣e[−i(m+1)x] − e[−imx]
∣∣∣
]2

dx

⎫⎬
⎭

1/2

=
n√
2π

{∫ ∞

−∞

∣∣∣∣exp(−ix)− 1

x

∣∣∣∣
2

dx

}1/2

= n.

It follows that F⊗ I1 cannot extend to a bounded operator on L2[R]⊗̂Δ2

�1(R). Thus, Δ2 is not uniform with respect to L2[R] and �1(R), so
that Δ2 is not a tensor norm. However, it is a relative tensor norm
for the right space. To see this in the above case, replace �1(R) by
�2(R) and note that, if em is the mth unit basis vector of �2(R), then

fn ∈ L2[R]⊗̂Δ2 �2(R) and we have:

Δ2(fn) =

⎧⎨
⎩
∫ ∞

−∞

∥∥∥∥∥
n∑

m=1

χ[m,m+1)(x)em

∥∥∥∥∥
2

l2

dx

⎫⎬
⎭

1/2

=
√
n.

If we now look at the norm of (F⊗ I2)fn, we get (the expected result):

‖(F ⊗ I2)fn‖Δ2

=

⎧⎨
⎩
∫ ∞

−∞

∥∥∥∥∥ 1√
2π

∫ ∞

−∞
e−ixy

[
n∑

m=1

χ[m,m+1](y)em

]
dy

∥∥∥∥∥
2

l2

dx

⎫⎬
⎭

1/2

= 1√
2π

⎧⎨
⎩
∫ ∞

−∞

∥∥∥∥∥ 1
x

[
n∑

m=1

{e[−i(m+1)x] − e[−imx]}em
]∥∥∥∥∥

2

l2

dx

⎫⎬
⎭

1/2
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= 1√
2π

{∫ ∞

−∞
1
x2

n∑
m=1

∣∣∣e[−i(m+1)x] − e[−imx]
∣∣∣2dx

}1/2

=

√
n√
2π

{∫ ∞

−∞

∣∣∣∣exp(−ix)− 1

x

∣∣∣∣
2

dx

}1/2

=
√
n.

It follows that (F ⊗ I2) can be extended to a bounded operator on

L2[R]⊗̂Δ2 �2(R).

By a theorem of Kwapień [KP], in Chap. 6, B is isomorphic to a

Hilbert space if and only if (F⊗ IB) is continuous on L2[R]⊗̂Δ2B. The
point is that Δ2 is a relative tensor norm which is not a tensor norm.
On the other hand, if α is any tensor norm, F ⊗ I1 has an extension
to a bounded linear operator on L2[R]⊗̂α

l1(Z) (see [DOF, p. 147]).

We now show that Δp is uniform relative to the tensor product of
Lp spaces.

Theorem 1.95. Let (Ω1,B1, μ1) and (Ω2,B2, μ2) be σ-finite measure
spaces. Let A1 : Lp[Ω1] → Lp[Ω1] and A2 : Lp[Ω2] → Lp[Ω2]. Then,
for 1 < p < ∞, the operator

A1 ⊗A2 : L
p[Ω1]⊗Lp[Ω2] → Lp[Ω1]⊗Lp[Ω2]

has an unique extension to a bounded linear operator

A1⊗̂A2 : L
p[Ω1]⊗̂ΔpLp[Ω2] → Lp[Ω1 × Ω2],

and
∥∥A1⊗̂A2

∥∥ = ‖A1‖ ‖A2‖.

Proof. We first show that I1⊗A2 is bounded as an operator mapping
Lp[Ω1]⊗Lp[Ω2] → Lp[Ω1 × Ω2].

Let {φi
2} be a Schauder basis for Lp[Ω2] and, for 1 ≤ i ≤ n, n ∈ N,

let ψi
2 = A2φ

i
2. Then, for all scalars a1, . . . , an, we have∥∥∥∥∥

n∑
i=1

aiψ
i
2

∥∥∥∥∥
p

� ‖A2‖
∥∥∥∥∥

n∑
i=1

aiφ
i
2

∥∥∥∥∥
p

.

It follows that, for arbitrary functions a1(·), . . . , an(·) ∈ Lp[Ω1],∫
Ω2

∣∣∣∣∣
n∑

i=1

ai(x)ψ
i
2(y)

∣∣∣∣∣
p

μ2(dy) � ‖A2‖p
∫
Ω2

∣∣∣∣∣
n∑

i=1

ai(x)φ
i
2(y)

∣∣∣∣∣
p

μ2(dy).
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Integrating both sides with respect to μ1, we see that∫
Ω1

∫
Ω2

∣∣∣∣∣
n∑

i=1

ai(x)ψ
i
2(y)

∣∣∣∣∣
p

μ2(dy)μ1(dx)

� ‖A2‖p
∫
Ω1

∫
Ω2

∣∣∣∣∣
n∑

i=1

ai(x)φ
i
2(y)

∣∣∣∣∣
p

μ2(dy)μ1(dx).

(1.12)

Since μ1 and μ2 are σ-finite, we can use Fubini’s Theorem to get∫
Ω1

∫
Ω2

∣∣∣∣∣
n∑

i=1

ai(x)ψ
i
2(y)

∣∣∣∣∣
p

μ2(dy)μ1(dx)

=

∫
Ω2

∥∥∥∥∥
n∑

i=1

ai(·)ψi
2(y)

∥∥∥∥∥
p

p

μ2(dy).

(1.13)

If we set Φ(x) =
∣∣∑n

i=1 ai(x)ψ
i
2(·)

∣∣p , x ∈ Ω1, then∫
Ω2

∥∥∥∥∥
n∑

i=1

ai(·)ψi
2(y)

∥∥∥∥∥
p

p

μ2(dy)

=

∥∥∥∥
∫
Ω1

Φ(x)μ1(dx)

∥∥∥∥
p

p

�
∫
Ω1

‖Φ(x)‖pp μ1(dx).

(1.14)

If we combine Eqs. (6.8)–(6.10), we get∫
Ω2

∥∥∥∥∥
n∑

i=1

ai(·)ψi
2(y)

∥∥∥∥∥
p

p

μ2(dy) � ‖A2‖p
∫
Ω2

∥∥∥∥∥
n∑

i=1

ai(·)φi
2(y)

∥∥∥∥∥
p

p

μ2(dy).

It follows that ‖I1 ⊗A2‖ � ‖A2‖p.
Since ∣∣∣∣∣

n∑
i=1

ai(x)ψ
i
2(y)

∣∣∣∣∣ =
∣∣∣∣∣A2

[
n∑

i=1

ai(x)φ
i
2(y)

]∣∣∣∣∣
=

∣∣∣∣∣
(
(I1 ⊗A2)

[
n∑

i=1

ai ⊗ φi
2

])
(x, y)

∣∣∣∣∣ ,
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we see that∥∥∥∥∥
[
A2

(
n∑

i=1

ai(·)ψi
2(·)

)]∥∥∥∥∥
p

=

∥∥∥∥∥
n∑

i=1

ai ⊗A2φ
i
2

∥∥∥∥∥
Δp

=

∥∥∥∥∥
(
(I1 ⊗A2)

[
n∑

i=1

ai ⊗ φi
2

])∥∥∥∥∥
Δp

� ‖I1 ⊗A2‖
∥∥∥∥∥

n∑
i=1

ai ⊗ φi
2

∥∥∥∥∥
Δp

.

Thus we see that ‖I1 ⊗A2‖ = ‖A2‖.
The same proof (with minor adjustments) shows that (A1 ⊗ I2)

is also bounded as an operator mapping Lp[Ω1]⊗Lp[Ω2] → Lp[Ω1 ×
Ω2]. Since A1 ⊗ A2 = (I1 ⊗ A2)(A1 ⊗ I2), we see that ‖A1 ⊗A2‖ =
‖A1‖ ‖A2‖. �

Thus, we see that Δp is always a tensor norm relative to Lp[Ω]
(1 � p ≤ ∞).

Theorem 1.96. [Schatten [S], in Chap. 6] The norms λ, γ are tensor
norms on B1 ⊗ B2 and λ � γ. Furthermore, if α is any norm with
λ � α � γ, then α is a reasonable crossnorm which is a relative tensor
norm that need not be a tensor norm, and γ′ � α′ � λ′ (i.e., α′ is a
crossnorm on B′

1 ⊗ B′
2, and γ′ = λ, λ′ = γ).

Definition 1.97. A relative tensor norm α is said to be faithful if
the natural linear mapping of B1⊗̂αB2 into Ls (B′

1,B′
2), obtained by

extending the identity I1 ⊗ I2 on B1 ⊗ B2 ⊂ B1⊗̂λB2 by continuity to
the entire space B1⊗̂αB2, is one-to-one.

To say that α is faithful means that, if an element of B1⊗̂α B2

vanishes on B′
1 ⊗ B′

2, it is the zero function. For all of the above
spaces, the relative tensor norm is faithful. Indeed, it has been shown
by Gelbaum and Gil de Lamadrid [GG], in Chap. 6, that, if both B1

and B2 have Schauder bases and α is a relative tensor norm, then
B1⊗̂α B2 has a Schauder basis so that α is faithful. The following
result is due to Ichinose [IC70], in Chap. 6.

Theorem 1.98. Let A1 and A2 be closed densely defined linear oper-
ators on B1 and B2 respectively, and let α be a faithful relative tensor
norm. Unless one of the extended spectra σe(A1) and σe(A2) contains
0 while the other contains ∞,

(A1⊗̂α
I2)(I1⊗̂α

A2) = (I1⊗̂α
A2)(A1⊗̂α

I2) = A1⊗̂α
A2. (1.15)
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