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Preface

Two approaches to the mathematical foundations of relativistic quan-
tum theory began in the USA. Both evolved from the application
of quantum field methods to electron theory in the late 1940s by
Feynman, Schwinger, and Tomonaga (see [SC1]).

The first program is well known and was begun in the early 1950s
by Professor A.S. Wightman of Princeton University (1922–2013). Fol-
lowing a tradition inspired by Hilbert, the program was called ax-
iomatic field theory. It sought to provide rigorous justification for
the complicated and difficult method of renormalization successfully
employed by the physics community (see [SW] and [GJ]). Professor
Wightman is considered the founding father of modern mathematical
physics, but he also strongly influenced a number of other areas in
mathematics.

In 1982, Sokal notice some difficulties with the constructive ap-
proach to field theory (the concrete version of axiomatic field theory)
and conjectured that this approach may not work as expected in four
space-time dimensions (see [SO]). His conjecture was later verified by
Aizenman and Graham [AG] at Princeton and Fröhlich [FO] at ETS,
Zurich. These results have had a damping effect on research in this
direction.

In response to the work of Aizenman, Graham, and Fröhlich, a sec-
ond, less well-known program was initiated by the present authors at
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Howard University in 1986. We sought to understand the issues affect-
ing relativistic quantum theory based on a series of problems suggested
by Dirac, Dyson, Feynman, Schwinger, and other major architects of
quantum field theory. This book is an outgrowth of our investigations
into the mathematical issues facing any attempt to develop a reason-
able relativistic quantum theory. Our investigations into the physical
foundations are the subject of a future project. (However, those with
interest in this subject are directed to [GZ5] and [GMK, see Chap. 5]
for some partial results in this direction.)

In 1951, Richard Feynman published what became known as the
Feynman operator calculus. It served as the basis for his formula-
tion of quantum electrodynamics, for which he shared the Nobel Prize
in Physics with Schwinger and Tomonaga. Freeman Dyson intro-
duced this work to the mathematics and physics communities, provid-
ing Feynman’s theory both the physical and mathematical legitimacy.
Dyson also showed that the two competing formulations of quantum
electrodynamics were based on different representations of Heisen-
berg’s S-matrix. Using his understanding of both theories, Dyson
made fundamental improvements and simplifications. (It is suggested
by Schweber [SC1] that Dyson’s contribution is also worthy of the
Nobel Prize.)

Feynman’s basic idea was to first lay out space-time as one would
a photographic film. He then imagined the evolution of a physical sys-
tem appearing as a three-dimensional motion picture on this film; one
seeing more and more of the future as more and more of the film comes
into view (see [F]). This gives time its natural role in ordering the flow
of events as it does in our conscious view of reality. Feynman suggested
that time should serve this role in the manipulation of operator-valued
variables in quantum field theory, so that operators acting at different
times actually commute. He demonstrated that this approach made
it possible to write down and compute highly complicated expressions
in a fast and effective manner. In one case, he was able to perform a
calculation in one night that had previously taken over 6 months (see
[SC1]).

Feynman’s faith in his operator calculus is expressed at the end
of his book on path integrals (with Hibbs [FH]); he states: “Never-
theless, many of the results and formulations of path integrals can
be re-expressed by another mathematical system, a kind of ordered
operator calculus. In this form many of the results of the preceding



Preface vii

chapters find an analogous but more general representation . . . involv-
ing noncommuting variables.” Feynman is referring to [F], quoted
above.

To our knowledge, Fujiwara [FW] is the only physicist other then
Dyson who takes Feynman’s operator calculus seriously in the early
literature (1952). Fujiwara agreed with the ideas and results of Feyn-
man with respect to the operator calculus, but was critical of what
he called notational ambiguities, and introduced a slightly different
approach. “What is wanted, and what I have striven after, is a logical
well ordering of the main ideas concerning the operator calculus. The
present study is entirely free from ambiguities in Feynman’s notation,
which might obscure the fundamental concepts of the operator calcu-
lus and hamper the rigorous organization of the disentanglement tech-
nique.” Fujiwara’s main idea was that the Feynman program should
be implemented using a sheet of unit operators at every point except
at time t, where the true operator should be placed. He called the
exponential of such an operator an expansional to distinguish it from
the normal exponential so that, loosely speaking, disentanglement be-
comes the process of going from an expansional to an exponential.
(Araki [AK] formally investigated Fujiwara’s suggestion.) As will be
seen, Fujiwara’s fundamental insight is the centerfold of our approach
to the problem.

In our approach, the motivating research philosophy was that, the
correct mathematical foundation for the Feynman operator calculus
should in the least:

(1) Provide a transparent generalization and/or extension of cur-
rent mathematical theories without sacrificing the physically
intuitive and computationally useful methods of Feynman

(2) Provide a rigorous foundation for the general theory of path
integrals and its relationship to semigroups of operators and
partial differential equations

(3) Provide a direct approach to the mathematical study of time-
dependent evolution equations in both the finite and infinite-
dimensional setting

(4) Provide a better understanding of some of the major math-
ematical and physical problems affecting the foundations of
relativistic quantum theory
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This book is devoted to the mathematical development of the first
three items. We also briefly discuss a few interesting mathematical
points concerning item (4). (However, as noted earlier, a full discussion
of (4) is delayed to another venue.)

While no knowledge of quantum electrodynamics is required to un-
derstand the material in this book, at a few junctures, some physical
intuition and knowledge of elementary quantum mechanics would be
helpful. We assume a mathematical background equivalent to that
of a third year graduate student, which includes the standard courses
in advanced analysis, along with additional preparation in functional
analysis and partial differential equations. A course (or self-study)
based on the first volume of Reed and Simon [RS1, see Chap. 1] offers
a real advantage. An introduction to probability theory or undergrad-
uate background in physics or chemistry would also be valuable. In
practice, unless one has acquired a reasonable amount of mathematical
maturity, some of the material could be a little heavy going. (Mathe-
matical maturity means losing the fear of learning topics that are new
and/or at first appear difficult.) However, in order to make the transi-
tion as transparent as possible, for advanced topics we have provided
additional motivation and detail in many of the proofs.

We have three objectives. The first two, the Feynman opera-
tor calculus and path integrals and their relationship to the founda-
tions of relativistic quantum theory, occupy a major portion of the
book. Our third objective, infinite-dimensional analysis, provides the
purely mathematical background for the first two. We have also in-
cluded some closely related material that has independent interest. In
these cases, we also indicate and/or direct the interested reader to the
Appendix.

The book is organized in a progressive fashion with each chap-
ter building upon the previous ones. Almost all of the material in
Chaps. 2, 3, and 6–8 has not previously appeared in book form. In
addition, Chap. 5 is developed using a completely new approach to op-
erator theory on Banach spaces, which makes it almost as easy as the
Hilbert space theory.

Chapter 1 is given in two parts. Part I introduces some of the
background material, which is useful for review and reference. Basic
results and definitions from analysis, functional analysis, and Banach
space theory are included and should at least receive a glance before
proceeding.
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Part II is devoted to the presentation of a few advanced topics
which are not normally discussed in the first 2 years of a standard
graduate program, but are required for later chapters in the book. The
reader should at least review this part to identify unfamiliar topics, so
one may return when needed.

Chapter 2 is devoted to the foundations for analysis on spaces with
an infinite number of variables. Infinite dimensional analysis is inti-
mately related to the Feynman operator calculus and path integrals
and cannot be divorced from any complete study of the subject. Faced
directly, the first problem encountered is the need for a reasonable
version of Lebesgue measure for infinite-dimensional spaces. However,
research into the general problem of measure on infinite-dimensional
vector spaces has a long and varied past, with participants living in a
number of different countries, during times when scientific communi-
cation was constrained by war, isolation, and/or national competition.
These conditions have allowed quite a bit of misinformation and folk-
lore to grow up around the subject, so that even some experts have
a limited view of the subject. Yamasaki was the first to construct
a σ-finite version of Lebesgue measure on R

∞ in 1980 (see [YA1]),
and uniqueness has only been proved recently (2007) by Kirtadze and
Pantsulaia [KP2, see Chap. 6]. However, due to the nature of their
approach, the work of Yamasaki and Kirtadze and Pantsulaia is only
known to specialists in the field.

In Sect. 2.1 the Yamasaki version of Lebesgue measure for R
∞ is

constructed in a manner which is very close to the way one learns
measure theory in the standard analysis course. In Sect. 2.2, a ver-
sion of Lebesgue measure is constructed for every Banach space with
a Schauder basis (S-basis). In addition, a general approach to proba-
bility measures on Banach spaces is developed. The main result in this
direction is that every probability measure ν on B[R] with a density
induces a corresponding related family of probability measures {νnB}
on every Banach space B, with an S-basis, which is absolutely con-
tinuous with respect to Lebesgue measure. Under natural conditions,
the family converges to a unique measure νB. As particular exam-
ples, we prove the existence of universal versions of both the Gaussian
and Cauchy measures. Section 2.3 is devoted to measurable functions,
the Lebesgue integral, and the standard spaces of functions, contin-
uous, Lp, etc. Section 2.4 studies distributions on uniformly convex
Banach spaces. Section 2.5 introduces Schwartz space and the Fourier
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transform on uniformly convex Banach spaces. This allows us to ex-
tend the Pontryagin Duality Theorem to uniformly convex Banach
spaces in Sect. 2.6. In addition, we provide a direct solution to the
diffusion equation on Hilbert space as an interesting application of
our universal representation for Gaussian measure. Sections 2.4–2.6
are not required for a basic understanding of the Feynman operator
calculus and the theory of path integrals. However, there are natural
connections between these subjects. Thus, those with broader con-
cerns and/or interests in other applications will find the study both
rewarding and fruitful.

Chapter 3 introduces the Henstock–Kurzweil integral. This is the
easiest to learn and best known of those integrals that integrate non-
absolutely integrable functions and extend the Lebesgue integral. Sec-
tion 3.1 provides a fairly detailed account of the HK-integral and its
properties in the one-dimensional case and a brief discussion of the
n-dimensional case. Section 3.2 discusses a new class of Banach spaces
(KSp spaces) that are for nonabsolutely integrable functions as the Lp

spaces are for Lebesgue integrable functions. These spaces contain the
Lp spaces as continuous dense and compact embeddings. Section 3.3
covers some additional classes of Banach spaces associated with non-
absolutely integrable functions which may have future interest. First,
we define an important class of spaces SDp[Rn], 1 � p � ∞. These
spaces contain the test functions of Schwartz [SCH] D[Rn], as a dense
continuous embedding. In addition, they have the remarkable prop-
erty that for any multi-index α, ‖Dαu‖SD = ‖u‖SD, where D is the
distributional derivative. We call them the Jones strong distribution
Banach spaces. As an application, we obtain a nice a priori estimate for
the nonlinear term of the classical Navier–Stokes initial-value problem.
In Sect. 3.4, we introduce a class of spaces in honor of our deceased
colleague Woodford W. Zachary. These spaces all extend the class of
functions of bounded mean oscillation to include the HK-integrable
functions. (Sections 3.3 and 3.4 are not required for the rest of the
book.)

Chapter 4 is devoted to a fairly complete account of analysis and
operator theory on Hilbert space. The first part introduces the theory
of integration of operator-valued functions, and the second part gives
a first course in Hilbert space operator theory. The presentation is
standard, but an interesting extension of spectral theory is introduced
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based on the polar decomposition property of closed densely defined
linear operators.

Chapter 5 is devoted to operator theory on Banach spaces, with
major emphasis on semigroups of operators. Our approach is novel,
as it uses the theory of Chap. 4 in a unique manner, showing that the
theory on Banach spaces is much closer to the Hilbert space theory
then previously known. In the first section we show that, for uni-
formly convex Banach spaces with a Schauder basis, it is possible to
define the adjoint for every closed densely defined linear operator on
the space. (This result is extended to a larger class of spaces and op-
erators in the Appendix (Sect. 5.3).) We give a number of examples so
that one can see what the adjoint looks like in concrete cases. In the
second section, the adjoint is used to give a parallel treatment of semi-
groups of operators, which is very close to the Hilbert space theory.
In the Appendix (Sect. 5.3), in addition to an extension of the adjoint,
we extend the spectral theory and provide a complete version of the
Schatten classes of compact operators for uniformly convex Banach
spaces with a Schauder basis.

Chapter 6 develops infinite tensor product theory for Hilbert and
Banach spaces. The Banach space theory is a new subject, which of-
fers a number of advantages for analysis. Our approach generalizes
von Neumann’s infinite tensor product Hilbert space theory, so we
call them spaces of type v. We use infinite tensor products of Hilbert
and Banach spaces to construct the mathematical representation for
Feynman’s physical film. We also introduce the notion of an exchange
operator, which will prove important in Chaps. 7 and 8. (Infinite ten-
sor products of Banach spaces are also natural for the constructive
study of analysis in infinite-many variables. We have included a few
applications and possibilities in the Appendix (Sect. 6.7).)

In Chap. 7, we develop the Feynman operator theory on Hilbert
space, as a compromise for the two classes of potential users. Follow-
ing Fujiwara’s idea, we first define what we mean by time-ordering,
prove our fundamental theorem on the existence of time-ordered in-
tegrals, and extend the basic semigroup theory to the time-ordered
setting. This provides, among other results, a time-ordered version of
the Hille–Yosida Theorem. We construct time-ordered evolution oper-
ators and prove that they have all the expected properties. We define
what is meant by the phrase “asymptotic in the sense of Poincaré” for
operators. We then develop a general perturbation theory and use it to
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prove a generalized version of Dyson’s second conjecture for quantum
electrodynamics, namely, that all theories generated by semigroups are
asymptotic in the operator-valued sense of Poincaré. (Dyson conjec-
tured this result for unitary groups.)

In 1955, Hagg [HA, see Chap. 7] investigated the general condi-
tions which a relativistic quantum theory of interacting particles must
satisfy in order to be made mathematically rigorous. One of his ma-
jor conclusions was that the canonical commutation relations need
not have unique solutions and that the interaction representation in
sharp time does not exist. It has now been experimentally confirmed
that there is quantum interference in time (see Chap. 7, [HW]). Thus,
Hagg’s assumption of sharp time is not physically valid. In this sec-
tion, we modify Dyson’s theory to include an interaction representa-
tion which allows time interference of wave packets. Finally, we show
that the Fujiwara–Feynman approach to disentanglement can be im-
plemented in a direct manner. This approach also provides a nice
extension to the Trotter–Kato perturbation theory. In the last section
we develop a general approach to the mathematical foundations for
Feynman’s sum over paths, which is used in quantum theory.

Chapter 8 provides a few applications of the operator calculus.
We first develop a general theory for time-dependent parabolic and
hyperbolic evolution equations. We demonstrate that the operator
calculus allows us to unify methods and weaken domain requirements.

We then turn to the Feynman path integral. At this time, there
is an extensive literature on the development and application of path
integral methods in all aspects of physics, chemistry, mathematics,
and engineering, and it is impossible to provide a reasonable discus-
sion of these efforts. As a substitute, we provide references to some
of the important works on this subject and introduce a number of in-
teresting examples which are not covered in the literature. Our focus
is on the mathematical foundations. We first demonstrate that the
Kuelbs–Steadman space, KS2[R3], allows us to construct the elemen-
tary path integral in exactly the manner suggested by Feynman. Thus,
our approach does not encumber physical intuition or computational
efficiency. We further show that KS2[R3] is sufficient to provide a rig-
orous foundation for the Feynman formulation of quantum mechanics.

In order to further extend our theory, we introduce some results
due to Maslov and Shishmarev on hypoelliptic pseudodifferential op-
erators that allow us to construct a general class of path integrals
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generated by Hamiltonians, which are not perturbations of Laplacians
(see Shishmarev [SH]). We then use the results of Chap. 7 and our sum
over path theory to generalized and extend the well-known Feynman–
Kac Theorem. Our final result is independent of the space of contin-
uous functions, so that the question of the existence of measures is
more of a desire than a requirement. (The strong continuity of the
underlying semigroup ensures us that, whenever a measure exists, our
theory can be easily restricted to the space of continuous paths.) In
the last section, we provide a proof of the last remaining conjecture of
Dyson, concerning the cause for the ultraviolet divergency of quantum
electrodynamics.

Although our major focus is functional analysis and the Feynman
operator calculus, it is clear from the topics covered that the book has
much to offer for those with general research interests in both pure and
applied mathematics. The book can be used as a text for advanced
courses in analysis, functional analysis, operator theory, mathematical
physics, mathematical foundations of quantum theory, or special topic
seminars in these or related subjects.

Those with advanced training in quantum theory, who mainly work
on Hilbert spaces, could study the first part of Sect. 3.2 and the proof
of Theorem 3.25 in Chap. 3. A review of the first two subsections
of Chap. 6, Sect. 6.5.1 of Sect. 6.5, and Sect. 6.6 would be sufficient to
understand Chap. 7 and the main section on path integrals in Chap. 8.
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Chapter 1

Preliminary
Background

This chapter is composed of two parts: Basic Analysis and Intermedi-
ate Analysis.

The first part is a review of some of the basic background that is
required from the first 2 years of a standard program in mathematics.
There are program differences so that some areas may receive more
coverage while others receive less. Our purpose is to provide a reference
point for the reader and establish notation. In a few important cases,
we have provided proofs of major theorems. In other cases, we delayed
a proof when a more general result is proven in a later chapter.

In the second part of this chapter, we include some intermediate
to advanced material that is required later. In most cases, motivation
is given along with additional proof detail and specific references.

Part I: Basic Analysis

The first part of this chapter is devoted to a brief discussion of the
circle of ideas required for advanced parts of analysis and the basics
of operator theory. Those with a strong background in theoretical
chemistry or physics but little or no formal training in analysis will
find Reed and Simon (vol.1) to be an excellent copilot (see below).

1
© Springer International Publishing Switzerland 2016
T.L. Gill, W.W. Zachary, Functional Analysis and the Feynman
Operator Calculus, DOI 10.1007/978-3-319-27595-6 1



2 1. Preliminary Background

General references for this section are Dunford and Schwartz [DS],
Jones [J], Reed and Simon [RS], Royden [RO], and Rudin [RU].

1.1. Analysis

1.1.1. Sets. Let X be a nonempty set, let ∅ be the emptyset, and let
P(X) be the power set of X (i.e., the set of all subsets of X).

Definition 1.1. Let A,B,An ∈ P(X), n ∈ N, then

(1) Ac = {a ∈ X : a /∈ A}, the compliment of A.

(2) A\B = A ∩Bc.

(3) (De Morgan’s Laws)[ ∞⋃
k=1

Ak

]c
=

∞⋂
k=1

Ac
k,

[ ∞⋂
k=1

Ak

]c
=

∞⋃
k=1

Ac
k.

We define the lim inf and lim sup for sets by:

lim inf
n→∞ An =

∞⋃
n=1

∞⋂
k=n

Ak lim sup
n→∞

An =

∞⋂
n=1

∞⋃
k=n

Ak.

Theorem 1.2. Let {An} ⊂ P(X), n ∈ N, then the lim inf and lim sup
satisfy:

(1)

lim inf
n→∞ An ⊂ lim sup

n→∞
An.

(2)

lim sup
n→∞

An = {a : a ∈ Ak for infinitely many k}.

(3)

lim inf
n→∞ An = {a : a ∈ Ak for all but finitely many k}.

(4)

(lim sup
n→∞

An)
c = lim inf

n→∞ Ac
n.

(5) If An ⊃ An+1, then

lim inf
n→∞ An = lim sup

n→∞
An = lim

n→∞An =

∞⋂
k=1

Ak.
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(6) If An ⊂ An+1, then

lim inf
n→∞ An = lim sup

n→∞
An = lim

n→∞An =

∞⋃
k=1

Ak.

Definition 1.3. Let A,B ⊂ X. (We assume they are nonempty.)

(1) The cartesian product, denoted A×B, is defined by

A×B = {(a, b) : a ∈ A, b ∈ B}.
In general, A × B 	= B × A, so that the order matters. If
{Ak} is a countable collection of subsets of X, we define the
cartesian product by:

∞∏
k=1

Ak = {(a1, a2, . . .) : ak ∈ Ak}.

Definition 1.4. A map f : A → B (a function, or a transformation),
with domainD(f) ⊂ A and range R(f) ⊂ B is a subset f ⊂ A×B such
that, for each x ∈ A, there is one and only one y ∈ B, with (x, y) ∈ f .
We write y = f(x) and call f(A) = {f(x) : x ∈ A} ⊂ B, the image
of f and, call f−1(B) = {x : f(x) ∈ B} ⊂ A, the inverse image of B.
We say that f is one to one or injective, if for all x1 	= x2 ∈ A, we have
that y1 = f(x1) 	= y2 = f(x2) ∈ B. We say that f is onto or surjective
if, for each y ∈ B, there is a x ∈ A, with y = f(x).

1.1.2. Topology. We only consider Hausdorff spaces or spaces with
the Hausdorff topology (see below). For an elementary introduction
to topology, we recommend Mendelson [ME]. Dugundji [DU] is more
advanced, but is also worth consulting.

Definition 1.5. Let X be a nonempty set and let τ be a set of subsets
of X. We say that τ defines a Hausdorff topology on X, or that X is
Hausdorff, if

(1) X and ∅ ∈ τ .

(2) If O1, . . . , On is a finite collection of sets in τ , then
⋂n

i=1Oi∈τ .
(3) If Γ is a index set and, for each γ ∈ Γ, there is a set Oγ ∈ τ ,

then
⋃

γ∈Γ Oγ ∈ τ .

(4) If x, y ∈ X are any two distinct points, there are two disjoint
sets O1, O2 ∈ τ (i.e., O1 ∩ O2 = ∅), such that x ∈ O1 and
y ∈ O2.
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We call the collection τ the open sets of the topology for X. A set
N ∈ τ is called a neighborhood for each point x ∈ N , and the set τx ⊂ τ
of all neighborhoods for x is called a complete neighborhood basis for x.
Thus, any set O, containing x, also contains some neighborhood basis
set N(x) ∈ τx.

A set P is said to be closed if P c is open. It follows that, if Γ is
any index set and, for each γ ∈ Γ, there is a closed set Pγ ∈ τ , then
by De Morgan’s Law,

⋂
γ∈Γ Pγ is also closed. Thus, we can also define

the same topology τ , using closed sets.

Let M 	= ∅, be a subset of X.

(1) The interior of M , denoted int(M), is the union of all O ∈ τ
such that O ⊂ M . If x ∈ int(M), we say that x is an interior
point of M .

(2) The closure of M , which we denote by M , is the set of all
x ∈ X such that, for all N(x) ∈ τx, N(x) ∩M 	= ∅.

(3) We say that M is dense in X if M = X. If M is also count-
able, we say that X is separable.

If M and N are any two subsets of X, then M ∪N = M ∪ N and,
M = M if and only if M is closed.

We say that x0 ∈ X is a limit point of M ⊂ X, if x0 ∈ M\{x0} or
equivalently, for every N(x0) ∈ τx0 , there is a y ∈ N(x0) and y /∈ M .

Definition 1.6. Let (X1, τ1) and (X2, τ2) be two Hausdorff spaces.
A function f , withD(f) = X1 and R(f) ⊂ X2, is said to be continuous
at a point x ∈ X1 if, for each neighborhood basis set N [f(x)] ∈ τ2,x,
there is a neighborhood basis set N(x) ∈ τ1,x such that f [N(x)] ⊂
N [f(x)]. In terms of inverse images, this says that f−1{N [f(x)]} is
open in X1 for each N [f(x)] in X2. (A little reflection shows that the
above definition may be translated to the one we learned in elementary
calculus, using ε’s and δ’s, when X1 = X2 = R.) We say that f is
continuous on X1 if it is continuous at each point of X1.

The topological space (X, τ) is said to be connected if it is not the
disjoint union of two open sets. In a connected space X and ∅ are the
only two sets that are both open and closed.

If Γ is a index set, {Aγ : γ ∈ Γ} ⊂ X is called a cover of M ⊂ X,
if M ⊂ ⋃

γ∈Γ Aγ . If each Aγ ∈ τ , we call {Aγ : γ ∈ Γ} an open cover
of M . If in addition Γ is finite, we call it a finite open cover of M .
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We say that M is compact if, for every open cover {Aγ : γ ∈ Γ}, there
always exists a finite subset of Γ, γ1, . . . , γn such that M ⊂ ⋃n

k=1Aγk .

Definition 1.7. Let (X1, τ1) and (X2, τ2) be two topological spaces,
with X1 ∩X2 = ∅. The coproduct space (X, τ) = (X1, τ1) ⊕ (X2, τ2)
is the unique topological space, with the property that each open set
O ⊂ X is of the form O = O1 ∪O2, where O1 ∈ τ1 and O2 ∈ τ2.

(X, τ) is also known as the disjoint union space or direct sum space.
(If (X1, τ1) and (X2, τ2) are Hausdorff, then it is easy to see that (X, τ)
is Hausdorff.)

1.1.3. σ-Algebras.

Definition 1.8. Let A ⊂ P(X) be a collection of subsets of X 	= ∅.
We say that A is an algebra if the following holds:

(1) X, ∅ ∈ A and,

(2) If A,B ∈ A then Ac, Bc ∈ A and A ∪B ∈ A.
It is easy to verify that:

(3) A ∩B ∈ A and A \B ∈ A.

(4) If n is finite and {Ak} ⊂ A, 1 ≤ k ≤ n, then
n⋃

k=1

Ak ∈ A,
n⋂

k=1

Ak ∈ A.

Definition 1.9. Let A ⊂ P(X) be an algebra. We say that A is a
σ-algebra if

∞⋃
k=1

Ak ∈ A,

for any countable family of sets {Ak} ∈ A. It is also easy to see that
∞⋂
k=1

Ak ∈ A,

along with
lim inf
n→∞ An ∈ A

and
lim sup
n→∞

An ∈ A.

Definition 1.10. If Σ is a nonempty class of subsets ofX, the smallest
σ-algebra A, with Σ ⊂ A is called the σ-algebra generated by Σ and
is written A(Σ).
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Remark 1.11. Since Σ ⊂ P(X), there is at least one σ-algebra con-
taining Σ.

Lemma 1.12. If J is an index set and for each α ∈ J, Aα is σ-algebra,
then A =

⋂
α∈J Aα is a σ-algebra.

Definition 1.13. If A is a σ-algebra of subsets of a nonempty set X,
we call the couple (X,A) a measurable space.

Definition 1.14. If A is a σ-algebra of subsets of a nonempty set X,
we call a sequence {Ak} ⊂ A a partition of X if the sequence is disjoint
and

⋃∞
k=1Ak = X.

Definition 1.15. If X is a topological space and Σ is the class of open
sets of X, then A(Σ) = B(X) is called the Borel σ-algebra of X.

1.1.4. Measure Spaces.

Definition 1.16. Let X be a nonempty set. An outer measure ν∗ is
a function on P(X) → [0,∞], such that

(1) ν∗(∅) = 0.

(2) If B ⊂ A, then ν∗(B) ≤ ν∗(A).
(3) If A ⊂ ⋃∞

k=1Ak, then

ν∗(A) ≤
∞∑
k=1

ν∗(Ak).

If for each sequence of disjoint sets {Ak} ⊂ A,

ν

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

ν(Ak),

we say that ν is a measure. We also say that ν is σ-additive and call
the triple (X,A, ν) a measure space.

Definition 1.17. Let (X,A) be a measurable space and let ν(A) ∈ C,
the complex numbers, for each A ∈ A. We say that ν is a complex
measure if ν(∅) = 0 and for each disjoint countable union

⋃∞
k=1Ak of

sets in A, we have

ν

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

ν(Ak),

where the convergence on the right is absolute.
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Definition 1.18. Let (X,A, ν) a measure space.

(1) We say that ν is a finite measure if ν(X) < ∞.

(2) We say that ν is concentrated on a set A ∈ A, if A = U c and
U is the largest open set with the property that ν(U) = 0.
We also call A the support of ν.

(3) We say that ν is a regular measure if given A ∈ A, for each
ε > 0, there is a open set O and a closed set K such that:
K ⊂ A ⊂ O and ν(O \K) < ε.

(4) We say that ν is a σ-finite measure if there is a sequence
{Ak} ⊂ A, with

X =

∞⋃
k=1

Ak, and ν(Ak) < ∞.

(5) We say that ν is a Radon measure, if the set K in (3) can be
chosen as compact or the sequence {Ak} ⊂ A in (4) can be
chosen with each Ak is compact.

(6) We say that ν is a complete measure if A ∈ A, with B ⊂ A
and ν(A) = 0 then B ∈ A and ν(B) = 0.

(7) We say that ν is a probability measure if ν(X) = 1.

(8) We say that a complex measure ν is of bounded variation if

|ν| (X) = sup
∞∑
k=1

|ν(Ak)| < ∞,

where the supremum is taken over all partitions of X. We call
|ν| (X) the total variation of ν.

(9) We say that the complex measure ν is a signed measure if
both |ν|+ν and |ν|−ν are real valued. In this case, we define
the positive part and the negative part by: ν+ = 1

2(|ν| + ν)

and ν− = 1
2(|ν| − ν). We call this the Jordan Decomposition.

Theorem 1.19 (The Hahn Decomposition Theorem). Let ν be a
signed measure on (X,A). Then there exists a partition X1,X2 of
X such that, for every A ∈ A:

ν+(A) = ν(A ∩X1) and ν−(A) = −ν(A ∩X2).

Theorem 1.20 (The Jordan Decomposition Theorem). Let ν be a
signed measure on (X,A). If μ1 and μ2 are positive measures and
ν = μ1 − μ2, then ν+ ≤ μ1 and ν− ≤ μ2.
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Thus, the Jordan decomposition ν = ν+ − ν−, has the above
minimal property. If ν is complex, this decomposition becomes ν =
ν+1 − ν−1 + i(ν+2 − ν−2 ), for two positive measures, ν1 and ν2.

Definition 1.21. We say that X is an Abelian group if for each pair
x, y ∈ X, x⊕ y ∈ X and

(1) x⊕ y = y ⊕ x. (The Abelian property.)

(2) For all x, y, z ∈ X (x⊕ y)⊕ z = x⊕ (y ⊕ z).

(3) There is an element 0 ∈ X called the identity and x ⊕ 0 =
0⊕ x = 0, for all x ∈ X.

(4) For each y ∈ X, there is a unique element y− ∈ X, such that
y ⊕ y− = y− ⊕ y = 0.

(5) We say that Y is a subgroup of X if Y ⊂ X and for all
y1, y2 ∈ Y, y1 ⊕ y2 ∈ Y , satisfying conditions (1)–(4) above.

The real or complex numbers form an Abelian group with addition
(or multiplication if we exclude zero). The rational numbers (real or
complex) form a subgroup, with the same exception for multiplication.

When X is an Abelian group (with ⊕ = +) and (X,A, ν) is a
measure space, we say that T is an admissible translation invariance
group for (X,A, ν) if T is a subgroup of X and ν(A − t) = ν(A), for
all t ∈ T. If T = X, we say that ν is translation invariant on X.

1.1.5. Integral. Let (X,A, ν) a measure space.

Definition 1.22. Let f be a function on X, f : X → K, where
K = R or C.

(1) We say that f is measurable if f−1(B) ∈ A, for every set
B ∈ B[K], the Borel algebra on K. In this case, we say that
f ∈ M[X] or M, when X is understood.

(2) We say that two functions f and g are equal almost every-
where and write f(x) = g(x), ν-(a.e.), if they have the same
domain and ν{x : f(x) 	= g(x)} = 0. In general, a property
is said to hold ν-(a.e.) on X if the set of points where this
property fails has ν-measure zero.

Definition 1.23. A (nonnegative) simple function s is defined onX by

s(x) =

n∑
k=1

akχAk
(x),
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where the ak ∈ [0,∞) and the family of measurable sets {Ak} form a
(finite) partition of X (i.e., ν(Ai ∩ Aj) = 0, i 	= j and

⋃n
k=1Ak = X).

(By convention, if need be, we can always add a set An+1 to the
collection and define an+1 = 0 so that the union is always X.)

Lemma 1.24. If 0 ≤ f ∈ M, then there is a sequence of simple
functions {sn}, with sn ≤ sn+1 and sn → f (a.e.) at each point of X,
as n →∞.

Definition 1.25. If f : X → [0,∞] is a measurable function and
A ∈ B(X), we define the integral of f over A by:∫

A
f(x)dν = lim

n→∞

∫
A
sn (x) dν,

where {sn} is any increasing family of simple functions converging
to f(x).

Theorem 1.26. If f, g are nonnegative measurable functions and 0 ≤
c < ∞, we have:

(1)
∫
X f(x)dν(x) is independent of the family of simple functions
used;

(2) 0 ≤ ∫
X f(x)dν(x) ≤ ∞;

(3)
∫
X cf(x)dν(x) = c

∫
X f(x)dν(x);

(4)∫
X
[f(x) + g(x)]dν(x) =

∫
X
f(x)dν(x) +

∫
X
g(x)dν(x).

(5) If f ≤ g, then
∫
X f(x)dν(x) ≤ ∫

X g(x)dν(x).

Theorem 1.27 (Fatou’s Lemma). Let {fn} ⊂ M be a nonnegative
family of functions, then:∫

X

(
lim inf
n→∞ fn(x)

)
dν(x) ≤ lim inf

n→∞

∫
X
fn(x)dν(x).

Theorem 1.28 (Monotone Convergence Theorem). Let {fn} ⊂ M be
a nonnegative family of functions, with fn ≤ fn+1. Then:

lim
n→∞

∫
X
fn(x)dν(x) =

∫
B

(
lim
n→∞ fn(x)

)
dν(x).

Definition 1.29. If f ∈ M, we define∫
X
f(x)dν(x) =

∫
X
f+(x)dν(x) −

∫
X
f−(x)dν(x),
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where f+(x) = 1
2 (|f(x)|+ f(x)) and f−(x) = 1

2 (|f(x)| − f(x)).
We say that f is integrable whenever both integrals on the right are fi-
nite. The set of all integrable functions is denoted by L1[X,B(X), ν] =
L1[X].

Remark 1.30. As is carefully discussed in elementary analysis, the
functions in L1[X] are not uniquely defined. Following tradition, we let
L1[X] denote the set of equivalence classes of functions in L1[X] that
differ by a set of ν-measure zero. By a slight abuse, we will identify
an integrable function f as measurable (in L1[X]) and its equivalence
class in L1[X]. The same convention also applies to functions in Lp[X]
and will be used later without further comment.

Theorem 1.31 (Dominated Convergence Theorem). Let fn ∈ M[X,
ν], n ∈ N, g ∈ L1(X), with g ≥ 0 and |fn(x)| ≤ g(x), ν-(a.e.). If
limn→∞ fn(x) exists ν-(a.e.), then limn→∞ fn ∈ L1[X] and

lim
n→∞

∫
X
fn(x)dν(x) =

∫
X

(
lim
n→∞ fn(x)

)
dν(x).

1.2. Functional Analysis

In this section, we include a few basic background results from func-
tional analysis and Banach space theory. Detailed discussions can be
found in Dunford and Schwartz [DS], Hille and Phillips [HP], Lax [L1],
Reed and Simon [RS], Rudin [RU], or Yosida [YS].

1.2.1. Topological Vector Spaces.

Definition 1.32. A vector space X over C is an Abelian group under
addition that is closed under multiplication by elements of C. That is:

(1) For each x, y ∈ X, x+ y ∈ X.

(2) For all x, y, z ∈ X, x+y = y+x and (x+y)+z = x+(y+z).

(3) There is a unique element 0 ∈ X called zero and x + 0 =
0 + x = x for all x ∈ X.

(4) For all x ∈ X, there is a unique element −x ∈ X and x +
(−x) = (−x) + x = 0.

(5) For all x, y ∈ X and a, b ∈ C, ax ∈ X, 1x = x, (ab)x = a(bx)
and a(x+ y) = ax+ ay. We call b ∈ C a scalar.

If X is a vector space over C, a mapping ρ(·) : X → [0,∞) is a
seminorm on X if:



1.2. Functional Analysis 11

(1) For each x, y ∈ X, ρ(x) ≥ 0 and ρ(x+ y) ≤ ρ(x) + ρ(y).

(2) For each λ ∈ C and each x ∈ X, ρ(λx) = |λ| ρ(x).
Definition 1.33. Let V be a subset of X.

(1) We say that V is a convex subset of X if for each x, y ∈
V, αx+ (1− α)y ∈ V , for all α ∈ [0, 1].

(2) We say that V is an balanced subset of X if for each x ∈ V
and α ∈ C, with |α| ≤ 1, αx ∈ V .

(3) We say that V is an absolutely convex subset of X if it is both
convex and balanced.

(4) We say that V is a absorbent subset of X if for each x ∈
X, αx ∈ V , for some α > 0. Thus, every point in x ∈ X is in
αV for some positive α.

Definition 1.34. A locally convex topological vector space is a vector
space with its topology defined by a family of semi-norms {ργ}, where
γ is in some index set Γ. Given any x ∈ X, a base of ε-neighborhoods
about x is a set of the form VΓ0,ε(x), where Γ0 is a finite subset of Γ
and

VΓ,ε(x) = { y ∈ X : ργ(x− y) < ε, γ ∈ Γ }.
Definition 1.35. A locally convex topological vector space X is a
Fréchet space if it satisfies the following:

(1) X is a Hausdorff space.

(2) The neighborhood base about each x ∈ X is induced by a
countable number of seminorms (i.e., Γ is a countable set).

(3) X is a complete relative to the family of seminorms.

Theorem 1.36. The vector space X is a Fréchet space if and only if:

(1) X is a locally convex.

(2) There is a metric d : X×X → [0,∞) such that, for all x, y, z ∈
X, d(x+ z, y + z) = d(x, y).

(3) X is a complete relative to the metric d(·, ·).
Remark 1.37. If the index Γ for the family of semi-norms is count-
able, then we can define a metric d(x, y) by:

d(x, y) =

∞∑
n=1

1

2n
ρn(x− y)

1 + ρn(x− y)
.
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A sequence {xn} in a metric space X converges to a limit x ∈ X if and
only if limn→∞d (xn, x) = 0. In this case, by the triangle inequality

d (xn, xm) ≤ d (xn, x) + d (xm, x) .

We say that a sequence satisfies the Cauchy convergence condition, or
is a Cauchy sequence if

lim
m,n→∞ d (xn, xm) = 0.

A metric space is said to be complete if every Cauchy sequence con-
verges to a point in the space.

1.2.2. Separable Banach Spaces. Hilbert and Banach spaces are
discussed further in Chaps. 4 and 5. Let B be a vector space over
R or C. We say that B is separable if it contains a countable dense
subset.

Definition 1.38. A norm on a vector space B is a mapping ‖·‖B :
B → [0,∞], such that

(1) ‖x‖B = 0 if and only if x = 0.

(2) ‖ax‖B = |a| ‖x‖B for all x ∈ B and a ∈ C.

(3) ‖x+ y‖B ≤ ‖x‖B + ‖y‖B, for all x, y ∈ B.
(4) We say that B is uniformly convex if, for each ε > 0, there is

a δ = δ(ε) > 0 such that, for all x, y ∈ B with

max (‖x‖ , ‖y‖) � 1, ‖x− y‖ � ε ⇒ 1
2 ‖x+ y‖ � 1− δ.

The topology on B is generated by the metric defined by:

d(x, y) = ‖x− y‖B ,

so that {x : ‖x− y‖B < r} is an open ball about y of radius r.

The space B is complete if every Cauchy sequence in the above
norm converges to an element in B. A complete normed space is called
a Banach space.

Definition 1.39. Let B be a Banach space and let A be a transfor-
mation on B, with domain D(A) (i.e., A : D(A) ⊂ B → B).

(1) We say that A is a linear operator on B, if A(ax + by) =
aAx+ bAy, for all a, b ∈ C and all x, y ∈ D(A).

(2) We say that A is densely defined if D(A) is dense in B.
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(3) We say that A is a closed linear operator if and only if the
following condition is satisfied: {xn} ⊂ D(A), xn → x and
Axn → z always implies that x ∈ D(A) and z = Ax.

(4) We say that A is a bounded linear operator if and only if
D(A) = B and

sup
‖x‖B�1

‖Ax‖B < ∞.

In this case we define the norm of A, ‖A‖B, by the above
supremum.

1.2.2.1. Dual Spaces.

Definition 1.40. Let B be a Banach space.

(1) The dual space B′ is the set of all bounded linear operators
x∗ : B → C (called bounded linear functionals on B). The
norm of x∗ is defined by:

‖x∗‖B′ = sup
‖x‖B≤1

|x∗(x)| = sup
‖x‖B≤1

|〈x, x∗〉| .

With this norm B′ is a Banach space. We write B′ as B′
s and

call it the strong dual. The topology is known as the strong
topology.

(2) The weak and weak∗ topology are defined on B and B′

respectively in the following manner:
• A sequence {xn} ⊂ B is said to converge in the weak
topology to x ∈ B if and only if, for each bounded linear
functional y∗ ∈ B′,

lim
n→∞ y∗(xn) = y∗(x).

We also write w − limn→∞ xn = x.
• A sequence {x∗n} ⊂ B′ is said to converge in the weak∗

topology to x∗ ∈ B′ if and only if, for each y ∈ B,
lim
n→∞x∗n(y) = x∗(y).

We also write w∗ − limn→∞ x∗n = x∗.
(3) If B = B′′, we say that B is reflexive.

(4) A duality map J : B �→ B′ is a set

J (u) =
{
u∗ ∈ B′

∣∣∣u∗(u) = 〈u, u∗〉 = ‖u‖2 = ‖u∗‖2
}
, for all u ∈ B.
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Remark 1.41. The following remarks are important.

(1) In the definition, we used x∗ to represent an element in B′.
The notation used varies with the tradition of the particular
topical area. To the extent possible, we will try to be con-
sistent within topics studied and the tradition of the field so
that the reader will see some correspondence when consulting
references for different topics.

(2) It is easy to see that

|y∗(xn)− y∗(x)| ≤ ‖xn − x‖B ‖y∗‖B′

for all y∗ ∈ B, so that norm convergence in B always implies
weak convergence. It is also easy to see that

|x∗n(y)− x∗(y)| ≤ ‖x∗n − x∗‖B′ ‖y‖B ,

for all y ∈ B, so that norm convergence in B′ always implies
weak∗ convergence. However (in both cases), the reverse is
not true (see Lax [L1, p. 106]).

(3) It is known that every uniformly convex Banach space is re-
flexive. Furthermore, when B is uniformly convex, the duality
set J (u), is single valued and uniquely defined by u. How-
ever, if B is not uniformly convex, the duality set J (u) can
have the power of the continuum.

The following examples will help one see what is possible in con-
crete cases.

(1) If λn is Lebesgue measure on R
n, u ∈ Lp[Rn], 1 < p < ∞ and

q is such that 1
p + 1

q = 1, then

J (u)(x) = ‖u‖2−p
p |u(x)|p−2 u(x) = u∗ ∈ Lq

R
n],

and

〈u, u∗〉 = ‖u‖2−p
p

∫
Rn

|u(x)|p dλn(x) = ‖u‖2p = ‖u∗‖2q .

Thus, it is easy to see that (Lp[Rn])′′ = Lp[Rn], so that Lp[Rn]
is reflexive for 1 < p < ∞.

(2) The space L1[Rn] is not reflexive, for if u ∈ L1[Rn], then

J (u)(x) = {v ∈ L∞[Rn]| : v(x) ∈ {‖u‖1 sign[u(x)]}} ,
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where

sign [u(x)] =

⎧⎨
⎩

1, u(x) > 0,
−1, u(x) < 0,

[−1, 1], u(x) = 0.

It follows that J (u)(x) is uncountable for each u ∈ L1[Rn].

The transpose matrix on R
n or the transpose conjugate matrix on

C
n has its parallel for Banach spaces. In this case, they are known

as dual operators. They are also known as adjoint operators, but we
will reserve this term for a special class of operators on Banach spaces,
discussed in Chap. 5. We will also use adjoint for the same class defined
on Hilbert spaces in the next section and explain the distinction.

Definition 1.42. Let A : D(A) → B be a closed linear operator on
B with a dense domain D(A). The dual of A, A′ is defined on B′ as
follows. Its domain D(A′) is the set of all y∗ ∈ B′ for which there
exists an x∗ ∈ B′ such that

〈Ax, y∗〉 = 〈x, x∗〉 ,
for all x ∈ D(A); in this case we define A′y∗ = x∗.

A proof of the following theorem can be found in [HP] or [YS].

Theorem 1.43. Let A : D(A) → B be a closed linear operator on B
with a dense domain D(A).

(1) Then A′ : D(A′) → B′ is a closed linear operator on B′ and
its domain D(A′) is dense in B′.

(2) If, in addition, ‖A‖B < ∞, then D(A′) = B′ and ‖A′‖B′ =
‖A‖B.

1.2.2.2. Hilbert Space.

Definition 1.44. An inner product on B = H is a bilinear mapping
(·, ·)H : H×H → C, such that

(1) (x, x)H ≥ 0 and (x, x)H = 0 if and only if x = 0.

(2) (ax + by, z)H = a(x, z)H + b(y, z)H and (w, ax + by)H =
ac(w, x)H + bc(w, y)H.

If (·, ·)H is a inner product, it induces a norm on H by

‖x− y‖H =
√

(x− y, x− y)H.

If H is complete with this norm, we call it a Hilbert space.
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If (·, ·)H is the inner product on the Hilbert space H, then the same
Cauchy–Schwarz inequality from R

n still holds, |(x, y)H| ≤ ‖x‖H ‖y‖H.
The following polarization identity also holds for a general Hilbert

space:

(x, y)H = 1
4

(
‖x+ y‖2H − ‖x− y‖2H

)
,

if the field of H is R and

(x, y)H = 1
4

{(
‖x+ y‖2H − ‖x− y‖2H

)
+ i

(
‖x+ iy‖2H − ‖x− iy‖2H

)}
,

if the field of H is C.

Definition 1.45. Let A : D(A) → H be a closed linear operator on
H with a dense domain D(A). The adjoint of A, A∗ is defined on H
as follows. Its domain D(A∗) is the set of all y ∈ H for which there
exists an x ∈ H such that

(Ax, y)H = (x,A∗y)H.

We will always call A∗ the adjoint of A when it is defined on the
same space and A′, the dual of A when it is defined on the dual space.
In Chap. 5, we will see that the adjoint is also possible for a certain
class of Banach spaces, which include the uniformly convex ones.

Theorem 1.43 can be slightly modified to show that D(A∗) is dense
in H and, if ‖A‖H < ∞, then D(A∗) = H and ‖A∗‖H = ‖A‖H.

Recall that, two functions f, g ∈ H are orthogonal, if (f, g)H = 0
and they are orthonormal if in addition, ‖f‖H = ‖g‖H = 1. A set
{φn} ⊂ H is an orthonormal basis for H if they are orthonormal and
each x ∈ H can be written as x =

∑∞
k=1 akφk, for a unique family of

scalars {an} ⊂ C.

Definition 1.46. Let A be a linear operator defined on H.

(1) We say that A is a projection operator if A2x = Ax for all
x ∈ H.

(2) We say that A is the self-adjoint if D(A) = D(A∗) and Ax =
A∗x, for all x ∈ D(A).

(3) We say that a bounded linear operator A is the compact, if
for every bounded sequence {xn} ⊂ H, the sequence {Axn}
has a convergent subsequence.

(4) We say that a compact operator A is trace class if, for some
orthonormal basis {φn} of H, the trace of A, tr[A] is finite,
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where

tr[A] =

∞∑
n=1

(Aφn, φn).

It is easy to check that the trace (if it exists) is independent of the
basis used.

1.2.3. The Hahn–Banach Theorem.

Theorem 1.47. Let B be a Banach space over C and let p : B → R

be such that, for all x, y ∈ B
p(ax+ by) ≤ |a| p(x) + |a| p(y), whenever |a|+ |b| = 1. (1.1)

If L̄ is a linear functional defined on a subspace D ⊂ B, with ∣∣L̄(x)∣∣ ≤
p(x), for all x ∈ D, then L̄ can be extended to a linear functional L
on B such that |L(x)| ≤ p(x), x ∈ B and L(x) = L̄(x) on D.

Proof. We first assume that the field is R. Suppose that x ∈ B but
x /∈ D. Let E = (x,D) be the vector space spanned by x and D. If we
have an extension L of L̄ from D to E , it must satisfy

L (ax+ by) = λL(x) + L̄(y), y ∈ D.

and from (1.1), |a|+ |b| = 1 implies that

p(ax+ by) ≤ |a| p(x) + |b| p(y).
Suppose that y1, y2 ∈ D, a, b > 0, a+ b = 1. Then

aL̄(y1) + bL̄(y2) = L̄(ay1 + by2) � p[a(y1 − 1
ax) + b(y2 +

1
bx)]

� ap(y1 − 1
ax) + bp(y2 +

1
bx).

We see that for all y1, y2 ∈ D and all a, b > 0, a+ b = 1, we have

1
a

[−p[y1 − ax) + L̄(y1)
]
� 1

b

[
p(y2 + bx)− L̄(y2)

]
.

It now follows that we must be able to find a number c such that for
all a > 0,

sup
y∈D

1
a

[−p[y − ax) + L̄(y)
]
� c � inf

y∈D
1
a

[
p(y + ax)− L̄(y)

]
.

We can define L(x) = c. It is easy to check that L(x) ≤ p(x), for
all x ∈ E . We now appeal to Zorn’s Lemma (see Yosida [YS, p. 2]), to
show that L̄ can be extended to all of B, when the field is R.
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To extend our result to complex linear functionals, let L̄ be given
on D and define L′(x) = Re{L̄(x)}, so that it is a real linear functional
on D. Since

L′(ix) = Re{iL̄(x)} = −Im{L̄(x)},
we see that L̄(x) = L′(x) − iL′(ix). Furthermore, since L′ is real, it
has an extension L, to all of B such that L(x) ≤ p(x), for all x ∈ B.
We can now define F (x) = L(x) − iL(ix). It is easy to check that F
is a complex linear functional.

Since |a| = 1 implies that p(ax) = p(x), we can set θ = Arg{F (x)}.
If we now use the fact that Re{F} = L, we have

|F (x)| = e−iθF (x) = F (e−iθx) = L(e−iθx) � p(e−iθx) = p(x),

we are done. �

Theorem 1.48. Let M be a linear subspace of B. If x0 ∈ B, with
0 < c = d(M,x0), then there exists a bounded linear functional L(·)
defined on B such that

L(x0) = 1, ‖L‖B =
1

c
, L(x) = 0, for all x ∈ M.

Proof. Let M1 = (M,x0) be the subspace spanned by M and x0.
Thus, each point z ∈ M1 is of the form z = y+λx0, where y ∈ M and
λ ∈ C are uniquely determined by z. Define F (·) on B by F (y + λx0)
= λ. Clearly F is a bounded linear functional, and if λ 	= 0 then

‖y + λx0‖B =
∥∥∥y
λ
+ x0

∥∥∥
B
|λ| � c |λ| .

It follows that |F (z)| � 1
c ‖z‖B, so that ‖F‖B′ � 1

c . If {zn} ⊂
M, ‖x0 − zn‖ → c, then

1 = F (x0 − zn) � ‖q‖B ‖x0 − zn| B → c ‖F‖B .

Thus, ‖F‖B = 1
c . Thus, by Theorem 1.47 with L replacing F finishes

the proof. �

The following is a consequence of the last two results.

Theorem 1.49. If B is a Banach space, we have

(1) For any x ∈ B, x 	= 0, there exists a linear functional L ∈ B′

such that ‖L‖B′ = 1 and L(x) = ‖x‖B.
(2) If x 	= y, there exists a linear functional L ∈ B′ with L(x) 	=

L(y).
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(3) For x ∈ B,

‖x‖B = sup
L 	=0

|L(x)|
‖L‖B′

= sup
‖L‖=1

|L(x)| .

(4) If M is a subspace of B and x0 ∈ B, x0 /∈ M , then there exists
a linear functional L ∈ B′ such that L(x0) = 1 and L(x) = 0,
for all x ∈ M .

1.2.4. The Baire Category Theorem. In this section we intro-
duce Baire’s Theorem and some of its consequences. First we need a
definition.

Definition 1.50. Let B be a Banach space. A subset E ⊂ B is said
to be nowhere dense if its closure has empty interior. A set is said to
be meager (or of the first category) in B if it is a countable union of
nowhere dense sets. A set in B that is not meager (not of the first
category) in B is said to be nonmeager (of the second category) in B.
Theorem 1.51. (Baire’s Theorem) If B is a Banach space, then the
intersection of every countable collection of dense open subsets of B is
a dense set in B.

Proof. Let {U1, U2, U3, . . .} be any countable collection of dense open
subsets of B. If T0 is any ball in B of radius 1, choose a ball T1 of
radius 1

2 such that the closure of T1, T 1 ⊂ U1 ∩ T0. (Check that this
is possible.) Continue this process, so that at step n, we choose a ball
Tn of radius 1

n such that T n ⊂ Un ∩ Tn−1 and define K by:

K =

∞⋂
n=1

T n.

It is easy to see that the centers of our nested balls form a Cauchy
sequence that converges to a point in K, so that K is nonempty. Since
K ⊂ T0 and K ⊂ Tn for each n, we see that the intersection of T0 with
∞⋂
n=1

Un is nonempty. �

The following two lemmas are required for our proof of the Banach–
Steinhaus Theorem in the next section. The second lemma is true for
an arbitrary index set, but for our use the restriction of the index set
to R

+ is sufficient.
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Lemma 1.52. Let B be a Banach space. Suppose that {V1, V2, V3, . . .}
is a countable collection of closed subsets of B with int(Vn) = ∅. Then

V =
∞⋂
n=1

Vn = ∅.

Proof. Since V is meager and int(V ) ⊂ V , it follows that int(V ) is
meager. By Baire’s Theorem, we see that int(V ) = ∅. �

Lemma 1.53. Let B be a Banach space. Suppose that {ft}, t ∈ R
+ is

a pointwise bounded family of continuous real-valued functions on B.
Then the family is uniformly bounded on some nonempty open subset
of B.

Proof. Suppose that |ft(ϕ)| ≤ cϕ for all t ∈ R
+ and define

V t
n = {ϕ ∈ B | |ft(ϕ)| ≤ n} .

It is clear that V t
n is closed in B, since ft is continuous. Therefore the

set:

Vn =
∞⋂
n=1

{ϕ ∈ B | |ft(ϕ)| ≤ n} ,

defined for each n, is also closed in B. Since ft is pointwise bounded,
we have that B =

⋃∞
n=1 Vn. If int(Vm) = ∅ for all m, then from

Lemma 1.52,
⋃∞

n=1 Vn is meager. Since B is of the second category,
this is a contradiction. Therefore, int(Vm) 	= ∅ for some m. If we set
M = m and U = int(Vm), it follows that {f(t)}, t ∈ R

+ is uniformly
bounded on U . �

1.2.5. The Banach–Steinhaus Theorem. The next important re-
sult, known in the early literature as the Banach–Steinhaus Theorem,
is much better known now as the principle of uniform boundedness.

Theorem 1.54 (Uniform Boundedness Theorem). Let {T (t)} be a
family of continuous mappings on the Banach space B for t ∈ R

+. If
for each ϕ ∈ B, the family {‖T (t)ϕ‖B} is bounded for all t ∈ R

+, then
the {‖T (t)‖B} is a bounded family.

Proof. For each t ∈ R
+ define ft : B → R

+ by ft(ϕ) = ‖T (t)ϕ‖B.
Since the norm is continuous, we see that ft is also continuous. From
Lemma 1.53, there is a nonempty open set Vn0 ⊂ B and ft(ϕ) ≤ n0 for
all t ∈ R

+ and all ϕ ∈ Vn0 . Without loss of generality, we can assume
that U = {ϕ| ‖ϕ‖B < r} ⊂ Vn0 for some r > 0. It follows that, for
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ϕ0 ∈ U , ‖ft(ϕ+ rφ)‖B � n0 for all t ∈ R
+ and all φ with ‖φ‖B < 1.

This implies that

r‖T‖B = r sup
‖φ‖B�1

‖T (t)φ‖B = sup
‖φ‖B�1

‖T (t) [ϕ0 + rφ]− T (t)ϕ0‖B
� n0 + ‖T (t)ϕ0‖B < ∞.

�

The next result (the open mapping theorem) is one of the im-
portant theorems in functional analysis. It is used to prove the two
theorems that follow. The first of the two will be used in the next
section, while the second is fundamental for Chaps. 4 and 5.

Theorem 1.55 (Open Mapping Theorem). Let B1,B2 be two Banach
spaces and let A be a continuous linear surjective mapping of B1 → B2.
Then, whenever U is an open set in B1, A[U ] is an open set in B2.

Proof. It suffices to show that, for every open ball U about zero in
B1, A[U ] contains an open ball about zero in B2. Hence, fix U and
let {U0, U1, U2, . . .} be a sequence of open balls of radius r/2n, (n =
0, 1, 2, . . .), where r is chosen so that U0 ⊂ U . We are done if we can
prove that there is an open set W such that:

W ⊂ A(U1) ⊂ A(U),

where A(U1) is the closure of A(U1). Since U2−U2 ⊂ U1, we first need

to prove that W ⊂ A(U1). To do this, note that:

A(U1) ⊃ A(U2)−A(U2) ⊃ A(U2)−A(U2).

We will be done with this part of the proof if we show that the interior
of A(U2) is nonempty. But

A(B1) =
∞⋃

m=1

mA(U2),

since U2 is a ball centered at zero and A is a surjection. Therefore,
at least one of the mA(U2) is of the second category in B2. But, as
the mapping ϕ → mϕ is a homeomorphism of B2 onto B2, A(U2) is

nonmeager in B2. Therefore, there exists an open set W ⊂ A(U2).

To prove that A(U1) ⊂ A(U), let ϕ1 ∈ A(U1) be fixed, and observe
by the first part that(

ϕ1 −A(U2)
)⋂

A(U) 	= ∅.
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Thus, there is a y1 ∈ U1 with A(y1) ∈ ϕ1 − A(U2). Now, for any

n ≥ 1, A(Un) contains an open neighborhood of zero. Hence, assume

that ϕn ∈ A(Un) has been chosen with(
ϕn −A(Un+1)

)⋂
A(Un) 	= ∅.

This means there is a yn ∈ Un such that A(yn) ∈ ϕn −A(Un+1).

Set yn+1 = yn − A(ϕn). Then yn+1 ∈ A(Un+1) and we continue the
construction. It is easy to see that the sums ϕ1 + ϕ2 + ϕ3 + · · · + ϕn

form a convergent Cauchy sequence which converges to some ϕ ∈ B,
and ‖ϕ‖ < r. It follows that ϕ ∈ U and, as

m∑
n=1

A(ϕn) =

m∑
n=1

(yn − yn+1) = y1 − ym+1,

we see that ym+1 → 0 since A is continuous. Thus, y1 = A(ϕ1) ∈ A(U).

Since ϕ1 was arbitrary, we see that A(U1) ⊂ A(U). �

Theorem 1.56 (Inverse Mapping Theorem). Let B1,B2 be two Ba-
nach spaces and let A be a continuous bijective linear mapping of
B1 → B2. Then A−1 : B2 → B1 is continuous.

Proof. Since A is continuous, injective, and surjective, it is an open
mapping. As A−1 exists and, since A−1{A[O]} = O for all open sets,
A−1 is continuous. �

Theorem 1.57 (Closed Graph Theorem). Let B be a Banach space
and let A a closed linear operator on B. If D(A) = B, then A ∈ L[B].
Proof. By definition, G(A) is closed and is a Banach space in the norm
‖(ϕ,Aϕ)‖ = ‖ϕ‖B + ‖Aϕ‖B. Consider the two continuous mappings:

π1 : (ϕ,Aϕ) → ϕ, π2 : (ϕ,Aϕ) → Aϕ. Since π1 is a bijection, π−1
1 is

continuous so A = π2 ◦ π−1
1 is also continuous. �

Part II: Intermediate Analysis

In this second part of this chapter, we introduce a number of topics
that are rarely covered in the first 2 years of the standard graduate
programs. These topics will be used at a number of points in the book
and are collected here for reference as needed.
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S-Basis. In this section, we review a few results that belong to Banach
space theory proper. We provide a few proofs, but all the results can
be found in Carothers [CA]. Let B be a separable Banach space.

Definition 1.58. A sequence (xn) ∈ B is called a Schauder basis
(S-basis) for B if ‖xn‖B = 1 for all n and, for each f ∈ B, there is a
unique sequence (an) of scalars such that

x = lim
k→∞

k∑
n=1

anxn =
∞∑
n=1

anxn.

All spaces of interest in this book have an S-basis. However, it is
known that there are separable Banach spaces without an S-basis (see
Carothers [CA] or Diestel [DI]).

Example 1.59. Let B = �p, 1 < p < ∞, where

�p =

{
x = (x1, · · ·) :

∞∑
k=1

|xk|p < ∞
}
.

The set of vectors {ek}, where

ek =

(
0, 0, . . . ,

k
1, 0, . . .

)
,

form a norm-one S-basis for this space (see [CA]).

If Ω = [0, 1] and B = Lp[Ω], 1 < p < ∞, the family of vectors

{1, cos(2πt), sin(2πt) cos(4πt), sin(4πt), . . . }
is a norm-one S-basis for B (see [CA]).

It is easy to see that every Banach space with an S-basis is sepa-
rable. Let Pnx =

∑n
k=1 akxk and define a new norm on B by

�x�B = sup
n

‖Pnx‖B = sup
n

∥∥∥∥∥
n∑

k=1

akxk

∥∥∥∥∥
B
.

Example 1.60. Let Ω = [0, 1] and B = Lp[Ω] over the complex num-
bers. If x(t) ∈ B, define

ck =

∫ 1

0
e−2πiktx(t)dt, k = 0, ±1, ±2, . . .
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It is easy to see that,

�x�B = sup
n

∫ 1

0

∣∣∣∣∣
n∑

k=−n

cke
2πit

∣∣∣∣∣
2

dt

defines a norm on B.
Theorem 1.61. The norm �·�B, is an equivalent norm on B and

‖x‖B ≤ �x�B = sup
n

‖Pnx‖B .

Proof. Since limn Pnx → x, it is clear that �x�B is finite for all x ∈ B.
Since the identity map of (B,�·�B) → (B, |‖ · ‖|B) is continuous, by
the Inverse Mapping Theorem (Theorem 1.56), we are done if we can
show that this map has a continuous inverse. It suffices to show that
(B,�·�B) is complete (i.e., a Banach space).

For this, suppose that let (zk) be a Cauchy sequence in (B,�·�B).
Then (Pnzk) is a Cauchy sequence in (B,�·�B), since ‖Pnzi − Pnzj‖B
� �zi − zj�B, for all n (uniformly Cauchy). Thus, if yn = limk→∞Pnzk
then limk→∞ ‖Pnzk − yn‖B = 0, uniformly in n.

It now follows using the standard ε
3 argument that (yn) is a Cauchy

sequence in (B,�·�B). If y = limn→∞ yn in (B,�·�B), we are done if
we show that y = limk→∞ zk in (B,�·�B).

Since there is a unique sequence of scalars (ai) such that y =∑∞
i=1 aixi, we see that yn =

∑n
i=1 aixi, so that Pny = yn and

�zk − y�B = sup
n

‖Pnzk − yn‖B → 0 as k →∞.

�

Since, x ∈ B implies that ‖Pnx‖B < ∞ for all n, By the Uniform
Boundedness Theorem 1.54, we see that sup

n
‖Pn‖B < ∞.

Definition 1.62. The set {Pn} is called the natural family of projec-
tions associated with the S-basis {xn} and sup

n
‖Pn‖B = K is called

the basis constant of {xn}. In terms of the equivalent norm of the last
theorem, K = 1.

Definition 1.63. Let B be a Banach space with an S-basis and let
x∗n be the linear functional on B defined by x∗n(x) = an, where x =∑∞

k=1 akxk. Since x∗n(xm) = δmn, we say that the sequence of pairs
{x∗n, xn} are biorthogonal. We call the family {x∗n} the coordinate
functionals.
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Definition 1.64. We define the span of a set of vectors {xn}, in a
vector space B, written span({xn}), to be the set of all finite linear
combinations of subsets of {xn}. When B is a Banach space, we let
[xn] represent the closed subspace of B generated by span({xn}).

A proof of the next result can be found in Carothers (see [CA,
pp. 67–71]).

Theorem 1.65. If B is a reflexive Banach space and {xn} is an S-
basis for B, then {x∗n} is an S-basis for B′. Furthermore, the natural
embedding j : B → B′′ defined by x∗∗(y∗) = y∗(x) for all y∗ ∈ B′, is an
isometric isomorphism.

1.3. Distributions and Sobolev Spaces

References for this section are Strichartz [SZ], Yosida [YS], Leoni [GL],
Reed and Simon [RS], Rudin [RU1], and Evans [EV]. The purpose of
this section is to establish the basic ideas for use in Chaps. 2 and 3.
However, neither this section nor the material in Chaps. 2 and 3 is a
substitute for a complete introduction to the subject. Those with no
background should at least consult Strichartz [SZ].

1.3.1. The Test Functions and Distributions.

Definition 1.66. Let α = (α1, α2, . . . , αn) be a multi-index of non-
negative integers, with |α| = ∑n

k=1 αk. We define the operators Dα
n

and Dα,n by

Dα
n =

n∏
k=1

∂αk

∂xαk
Dα,n =

n∏
k=1

(
1

2πi

∂

∂xk

)αk

Let Cc(R
n) be the class of infinitely differentiable functions on R

n

with compact support and impose the natural locally convex topology
τ on Cc(R

n) to obtain D(Rn). A definition in terms of neighborhoods
can be found in Leoni [GL] (see also Yosida [YS] and Reed and Si-
mon [RS]).

Definition 1.67. A sequence {fm} converges to f ∈ D(Rn) with
respect to the compact sequential limit topology if and only if there
exists a compact set K ⊂ R

n, which contains the support of fm − f
for each m and Dα

nfm → Dα
nf uniformly on K, for every multi-index

α ∈ N
n.
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Let u ∈ C
1(Rn) and suppose that φ ∈ C

∞
c (Rn) has its support in

a ball Br, of radius r > 0. Integration by parts gives:∫
Rn

(φuyi)dλn =

∫
∂Br

(uφ)νidS−
∫
Rn

(uφyi)dλn, 1 ≤ i ≤ n,

where ν is the unit outward normal to Br. Since φ vanishes on the
∂Br, the above reduces to:∫

Rn

(φuyi) dλn = −
∫
Rn

(uφyi)dλn, 1 ≤ i ≤ n.

In the general case, for any u ∈ C
m[Rn] and any multi-index α =

(α1, . . . , αn), |α| =
∑n

α=1 αi = m, we have∫
Rn

φ(Dαu)dλn = (−1)m
∫
Rn

u(Dαφ)dλn. (1.2)

We now observe that the right-hand side of Eq. (1.2) makes sense,
even if Dαu does not exist according to our normal definition. This is
the basic idea behind the notion of a distributional derivative. Before
giving the formal definition, recall that a function u ∈ L1

loc[R
n] if it is

Lebesgue integrable on every compact subset of Rn.

Definition 1.68. If α is a multi-index and u, v ∈ L1
loc[R

n], we say

that v is the αth-weak (or distributional) partial derivative of u and
write Dαu = v provided that∫

Rn

u(Dαφ)dλn = (−1)|α|
∫
Rn

φv dλn

for all functions φ ∈ C
∞
c [Rn]. Thus, v is in the dual space D′[Rn]

of D[Rn].

The next result is easy.

Lemma 1.69. If a weak αth-partial derivative exists for u, then it is
unique λn-(a.e.).

Definition 1.70. If m ≥ 0 is fixed and 1 ≤ p ≤ ∞, we define the
Sobolev space Wm,p[Rn] to be the set of all locally integrable functions
u : R

n → R such that, for each multi-index α with |α| � m, Dαu
exists in the weak sense and belongs to Lp[Rn].
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Extensions and Decompositions. We need an extension theorem for
functions defined on a domain of Rn and a result which shows that
a domain in R

n can be written as a union of nonoverlapping closed
cubes. (Proofs of these results can be found in Evans [EV] and Stein
[STE], respectively.)

Let D be a bounded open connected set of Rn (a domain) with
boundary ∂D and closure D.

Definition 1.71. Let k be a positive integer. We say that ∂D is of
class Ck if, for every point x ∈ ∂D, there is a homeomorphism φ of
a neighborhood U of x into R

n such that both φ and φ−1 have k
continuous derivatives with

ϕ (D ∩ U) ⊂ {(x1, . . . , xn) ∈ R
n : xn > 0}

and
ϕ (∂D ∩ U) ⊂ {(x1, . . . , xn) ∈ R

n : xn = 0} .
Theorem 1.72. Let D be a domain in R

n with ∂D of class C1. Let U
be any bounded open set such that D, the closure of D ⊂⊂ U (i.e., the
closure of D is a compact subset of U). Then there is a linear operator
E mapping functions on D to functions on R

n such that:

(1) The operator C maps W 1,p[D] continuously into W 1,p[Rn] for
all 1 ≤ p ≤ ∞.

(2) C(f) |D = f (e.g., E(·) is an extension operator).

(3) E(f)(x) = 0 for x ∈ U
c (e.g., E(f) has support inside U).

Theorem 1.73. Let D be a domain in R
n. Then D is the union of a

sequence of closed cubes {Dk} whose sides are parallel to the coordinate
axes and whose interiors are mutually disjoint.

Thus, if a function f is defined on a domain in R
n, by Theorem 1.72

it can be extended to the whole space. On the other hand, without
loss of generality, by Theorem 1.73, we can assume that the domain is
a cube with sides parallel to the coordinate axes.

Definition 1.74. If D is a domain in R
n, we define Wm,p

0 [D] to be the
closure of C∞

c (D) in Wm,p[D].

Remark 1.75. Thus, Wm,p
0 [D] contains those functions u ∈ Wm,p[D]

such that, for all |α| ≤ m− 1, Dαu = 0 on the boundary of D, ∂D.

We also note that, when p = 2 it is standard to use Hm(D) =

Wm,2(D) and Hm
0 (D) = Wm,2

0 (D).
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1.4. Tensor Products

Tensor products of Banach spaces are not a part of the normal graduate
program. This section is an introduction to the finite theory that is
background for the infinite tensor product theory in Chap. 6. At this
point, it is assumed that the reader has at least studied Chap. 4 or
is already familiar with the material from some other source.

Since tensor products of Banach spaces have a bad reputation,
we should at least comment on this “public relations problem.” This
reputation is due to questions and studies unrelated to partial differen-
tial equations, path integrals, stochastic processes, analysis (proper),
and the many possible applications in science and engineering. We
approach the subject from a more natural point of view, so that its
usefulness for these important and equally interesting areas will be
transparent.

1.4.1. Elementary Background. For those with no background in
tensor products, we begin with R

3, a space which is well known from
calculus (any finite dimension will do). There are a number of ways
to patch together two copies of R3 to obtain a new space. The first is
called the direct sum:

R
3 ⊕ R

3 = {(a1, a2, a3, b1, b2, b3) : (a1, a2, a3), (b1, b2, b3) ∈ R
3}.

It is clear that R3 ⊕ R
3 is isomorphic to R

6. There are also two ways
we can define a product on R

3; the first is the dot product[
b1 b2 b3

] ⎡
⎣ a1

a2
a3

⎤
⎦ =

3∑
i=1

biai,

which takes two vectors and produces a scalar. The other is the tensor
product ⎡

⎣ a1
a2
a3

⎤
⎦
[
b1 b2 b3

]
=

⎡
⎣ a1b1 a1b2 a1b3

a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

⎤
⎦ ,

which takes two vectors and produces a 3× 3 matrix. It is easy to see

that we can write the resulting matrix as a vector in R
9 = R

32 . Thus,
the tensor product of R3 with itself, written as R3⊗R

3, is isomorphic
to R

9.
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Implicit in our use of the dot product is the assumption that the
norm induced is the natural one generated by the dot product on R

3:

‖a− b‖
R3 =

√
(a− b) · (a− b) =

√√√√ 3∑
i=1

(ai − bi)
2.

However, there are a number of other norms possible on R
3 which are

not induced by a dot product. For example:

‖a− b‖p =

[
3∑

i=1

|ai − bi|p
]1/p

, 1 � p < ∞, p 	= 2,

‖a− b‖∞ = max
1�i�3

|ai − bi|.
(1.3)

We will discuss this later. However, the case p = 2 is the standard one
because it is the only (unique) one generated by a dot product (even
in infinite dimensions). Let �p

(
R
3
)
represent R3 with the norm ‖ · ‖p.

It is easy to check that �p
(
R
3
)
is a Banach space for p 	= 2 and that

�2
(
R
3
)
is a Hilbert space.

We know that R
3 ⊗ R

3 = R
9. The basic question is, how do we

define the norm, so that �p(R
3) ⊗ �p(R

3) = �p(R
9). It is known that,

on R
n, all norms are equivalent. That is, for any pair p, q, there exists

constants cp,q, Cp,q, such that, for any vector a,

cp,q‖a‖q � ‖a‖p � Cp,q‖a‖q.

Thus, we can define the dot product on R
9 and use the norm equiv-

alence to obtain all the others. However, in the infinite-dimensional
case (�p(R

∞)), this is no longer true and each of the norms in Eq. (1.3)
generates distinct Banach spaces.

Example 1.76. Let us see what the norm looks like for R
2 ⊗ R

2.
A direct computation shows that

a⊗ b =

[
a1
a2

] [
b1 b2

]

=

[
a1b1 a1b2
a2b1 a2b1

]
= [a1b1, a1b2, a2b1, a2b1] .
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and

‖a‖2‖b‖2

=

[
2∑

i=1

a2i

]1/2[ 2∑
k=1

b2k

]1/2
=

[(
2∑

i=1

a2i

)(
2∑

k=1

b2k

)]1/2

=
[
a21b

2
1 + a21b

2
2 + a22b

2
1 + a22b

2
2

]1/2
= ‖a⊗ b‖4.

(1.4)

This is a special property called the crossnorm (i.e., ‖a⊗ b‖4
= ‖a‖2‖b‖2).
1.4.2. General Background. We begin with a few concrete exam-
ples and ideas that reveal the landscape. Let f(x) ∈ C(Ω1), g(y) ∈
C(Ω2), where Ω1 and Ω2 are compact sets in R

n1 and R
n2 , respectively.

If we let F (x, y) = f(x)g(y), then F (x, y) ∈ C(Ω1 × Ω2). It is clear
that:

(1)
∂2

∂x∂y
F (x, y) =

[
d

dx
f(x)

] [
d

dy
g(y)

]
and

(2) ∫
Ω1×Ω2

F (x, y)dxdy =

∫
Ω1

f(x)dx

∫
Ω2

g(y)dy.

If we let S be the set of all finite sums, S = {Fm(x, y)}, m ∈ N, where

Fm(x, y) =
∑m

i=1
fi(x)gi(y), m ∈ N,

it is easy to see that S is dense in C(Ω1 × Ω2). We can now ask
the natural question; What norm should we use on S so that the
completion of S, S̄ = C(Ω1 × Ω2)? It is not hard to show that the
appropriate norm is

‖Fm‖∞ = sup
x∈Ω1

sup
y∈Ω2

∣∣∣∣∣
m∑
i=1

fi(x)gi(y)

∣∣∣∣∣ . (1.5)

On the other hand, we could replace Eq. (1.5) with

‖Fm‖p =
[∫

Ω2

∫
Ω1

∣∣∣∣∣
m∑
i=1

fi(x)gi(y)

∣∣∣∣∣
p

dxdy

]1/p
,

where 1 ≤ p ≤ ∞ and ask the same question. If we use this norm on
S, we clearly do not expect to get C(Ω1 × Ω2). The theory of tensor
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products of Banach spaces is designed to make the above precise and
reveal the nature of the resulting space.

1.4.3. Tensor Products of Hilbert Spaces. Tensor products of
Hilbert spaces are the easiest Banach spaces to study, because as noted
earlier, there exists only one norm that will make the result another
Hilbert space.

Let H1,H2,H3 be three Hilbert spaces over C. A mapping T :
H1 × H2 → H3 is said to be bilinear if for all a, b ∈ C and all x ∈
H1, y ∈ H2,

(1)
T (ax1 + bx2, y) = aT (x1, y) + bT (x2, y)

and

(2)

T (x, ay1 + by2) = acT (x, y1) + bcT (x, y2).

Definition 1.77. The complete tensor product of the Hilbert spaces
H1,H2 is a Hilbert spaceH3 and a bilinear mapping T : H1×H2 →H3,
such that

(1) The closed linear span of all the vectors T (x, y), x ∈ H1, y ∈
H2 is equal to H3.

(2) The inner product for H3 satisfies:

(T (x1, y1), T (x2, y2))3 = (x1, x2)1(y1, y2)2, (1.6)

for all pairs x1, x2 ∈ H1 and y1, y2 ∈ H2. We call the pair (H3, T )
the (complete) tensor product of H1 and H2. We denote the linear
span of the Hilbert spaces H1,H2 by H1⊗H2, replace H3 with H1⊗̂H2

and T (x, y) by x ⊗ y, which is the standard representation. If we let

x1 = x2, y1 = y2 in Eq. (1.6), it now reads ‖x⊗ y‖23 = ‖x‖21 ‖y‖22 or
‖x⊗ y‖3 = ‖x‖1 ‖y‖2. This is the crossnorm relationship we saw in
Eq. (1.4).

The tensor product x⊗ y is a bilinear mapping of H1×H2 to H1⊗̂H2,
we can also view it as a functional in the space B(H1,H2,C) =
B(H1,H2), of bilinear mappings on H1 × H2 to C. That is, from
Eq. (1.6),

(x1 ⊗ y1, x2 ⊗ y2)3 = (x1, x2)1(y1, y2)2.

We will use this interpretation later in the section to define the tensor
product of two Banach spaces.
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Theorem 1.78. If the family {φn} is a orthonormal basis for H1 and
the family {ψm} is a orthonormal basis for H2, the family {φn ⊗ ψm}
is a orthonormal basis for H3.

Proof. Since ‖φn ⊗ ψm‖3 = ‖φn‖1 ‖ψm‖2 = 1, they are normal. Fur-
thermore,

(φn ⊗ ψm, φi ⊗ ψj)3 = (φn, φi)1(ψm, ψj)2 = δn,iδm,j ,

so they are also orthogonal.

Thus, we are done if we can show that the closure of the linear
span of {φn ⊗ ψm} is all of H3. Let f ⊗ g ∈ H3, so that f ∈ H1 and
g ∈ H2. Then there exist unique families of constants {ai}, {bj} such
that: f =

∑∞
i=1 aiφi and g =

∑∞
j=1 bjψj . It is now easy to show that

f ⊗ g =
∑∞

i,j aibjφi ⊗ ψj . A little reflection will convince the reader

that every vector u ∈ H3 can be written as u =
∑∞

i,j aijφi ⊗ ψj , for

some (unique) constants {aij}, so that the family {φi ⊗ ψj} is a basis
for H3. �

1.5. Tensor Products of Banach Spaces

If B1 and B2 are two Banach spaces, the algebraic tensor product of
B1 and B2 is denoted by B1 ⊗B2, and every element φ ∈ B1 ⊗B2 may
be written as φ =

∑n
i=1 φ

i
1 ⊗ φi

2, where {φi
1} ∈ B1, {φi

2} ∈ B2 and n
is some nonnegative integer. We denote by B(B1,B2) = B(B1,B2,C),
the space of all continuous bilinear functionals on B1 × B2. If l is a
bilinear form on B1 × B2, it generates a natural linear functional l̂ on
B1 ⊗ B2 defined by evaluation:〈

ϕ⊗ ψ, l̂
〉
= l(ϕ,ψ), (ϕ,ψ) ∈ B1 ×B2, l ∈ B (B1,B2) .

Also, 〈B1 ⊗ B2,B′
1 ⊗ B′

2〉 defines a (strong) dual system by:

〈ϕ⊗ ψ,ϕ∗ ⊗ ψ∗〉= 〈ϕ,ϕ∗〉 〈ψ,ψ∗〉 , (ϕ,ψ)∈B1×B2, (ϕ∗, ψ∗)∈B′
1×B′

2.

It follows that we can consider B1 ⊗ B2 as the space of continuous
bilinear functionals on B′

1×B′
2 (B1⊗B2 ⊂ B (B′

1,B′
2)), and B′

1⊗B′
2

as the space of continuous bilinear functionals on B1 × B2, so that
B′

1 ⊗ B′
2 ⊂ B (B1,B2).

For notation consistent with the field, when studying one of the
Lp-type spaces (with 1 ≤ p ≤ ∞), we will use Δp(·) in place of ‖·‖p.
Although there are many norms that may be defined on B1 ⊗B2 such
that the completion is a Banach space, we will always use the one that
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is natural for the spaces under consideration. This means that we will
restrict our attention to spaces of direct interest for analysis, applied
mathematics, mathematical physics, and probability theory. (Those
with interest in the general theory and other approaches should consult
the nice books by Defant and Floret [DOF] and Ryan [RA], along with
the references therein.)

Let Ai, i = 1, 2 be closed linear operators with domains Di ⊂ Bi,
Ai : Di ⊂ Bi → Bi, i = 1, 2. The mapping (φ1, φ2) → A1φ1 ⊗ A2φ2

is bilinear from D(A1)×D(A2) → B1 ⊗B2. The corresponding linear
mapping of D(A1)⊗D(A2) into B1 ⊗ B2 is denoted by A1 ⊗ A2, and
is called the tensor product of the operators A1 and A2.

Definition 1.79. Let α be a norm (written ‖ · ‖α) on B1 ⊗ B2.

(1) We say that α is a crossnorm if for φ1 ∈ B1, φ2 ∈ B2, we have
that:

α(φ1 ⊗ φ2) = ‖φ1 ⊗ φ2‖α = ‖φ1‖B1
‖φ2‖B2

. (1.7)

(2) The greatest crossnorm γ on B1 ⊗ B2 can be defined on the
unit ball in B (B1,B2). For φ =

∑n
i=1 φ

i
1 ⊗ φi

2 ∈ B1 ⊗ B2,

‖φ‖γ = sup
l∈B(B1,B2)

{
|〈φ, l〉| :

n∑
i=1

φi
1 ⊗ φi

2 =

m∑
k=1

ψi
1 ⊗ ψi

2

}
.

This norm is equivalent to:

‖φ‖γ = inf

{
m∑
k=1

∥∥ψi
1

∥∥
B1

∥∥ψi
2

∥∥
B2

:
n∑

i=1

φi
1 ⊗ φi

2 =
m∑
k=1

ψi
1 ⊗ ψi

2

}
.

(3) The least crossnorm λ is the norm induced on B1 ⊗ B2 by
the topology of bi-equicontinuous convergence in B (B′

1,B′
2).

That is, for φ ∈ B1 ⊗ B2 and (F1, F2) ∈ B′
1 × B′

2,

‖φ‖λ = sup
{|〈φ, F1 ⊗ F2〉| : ‖F1‖B′

1
� 1, ‖F2‖B′

2
� 1

}
. (1.8)

Remark 1.80. For the spaces we are interested in, the least crossnorm
λ = Δ∞, while the greatest crossnorm γ = Δ1.

Definition 1.81. Let α be a given crossnorm on B1 ⊗ B2. We say
that:

(1) The crossnorm α is a reasonable crossnorm if the dual norm
α′ induced by the dual of B1⊗αB2 is a crossnorm on B′

1⊗B′
2.
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(2) The crossnorm α is uniform relative to B1 and B2 if, for φ ∈
B1 ⊗ B2 and A1, A2 ∈ L[B1], L[B2] :

sup
‖φ‖α�1

‖(A1 ⊗A2)φ‖α � ‖A1‖B1
‖A2‖B2

. (1.9)

(3) If conditions (1) and (2) are satisfied, we say that the cross-
norm α is a relative tensor norm.

If α is reasonable, then the norm α′ on B′
1⊗B′

2 induced by (B1⊗α

B2)
′ is also reasonable. We denote by B1⊗̂αB2 the completion of B1⊗

B2 with respect to α, and by B′
1⊗̂α′B′

2 the completion of B′
1 ⊗ B′

2

with respect to α′. In general, B′
1⊗̂α′B′

2 can be identified with a closed
subspace of (B1⊗̂αB2)

′ (cf. Schatten [S], in Chap. 6).

Remark 1.82. Our definition of a relative uniform norm depends on
the spaces under consideration. This is a restriction of the conven-
tional definition, which is independent of the spaces, and is called a
uniform norm. We refer to Defant and Floret [DOF] for a complete
discussion of the standard case. They follow Grothendieck and replace
the notion of a uniform norm with the condition that α has the metric
approximation property. This, coupled with the first condition, leads
to the definition of a tensor norm.

We now give some examples of the norms and standard spaces of
interest. Let Ω be a compact domain in R

n and let C[Ω] be the set
of bounded continuous functions on Ω, let Lp[Ω,B(Ω),m] = Lp[Ω]
be the space of Lebesgue integrable functions on Ω that have finite Lp

norm, wherem is a measure on Ω, and let B(Ω) be the Borel σ-algebra
generated by the open sets of Ω. For any Banach space B, it is easy

to see that C[Ω,B] = C[Ω]⊗̂λB.
Example 1.83. The following are elementary and most will be proved
later. We present them because they are what one would naturally
expect:

(1) Let B = C[Ω] as above, so that C[Ω]⊗̂λ
C[Ω] = C [Ω× Ω]. If

A1 = d/dx, A2 = d/dy, then

A1⊗̂λ
A2 = ∂2

/
∂x∂y = d/dx⊗̂λ

d/dy = (d/dx⊗̂λ
I)(I⊗̂λ

d/dy)

(see Ichinose [IC70], in Chap. 6).

(2) Let B3 = B4 = L1[Ω], then L1[Ω]⊗̂γ
L1[Ω] = L1 [Ω× Ω] (see

Dunford and Schatten [DSH], in Chap. 6).
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(3) Let B5 = B6 = Lp[Ω], then Lp[Ω]⊗̂ΔpLp[Ω] = Lp[Ω × Ω] for
1 � p < ∞ (see Schatten [S], in Chap. 6), where

Δp

(∑n

i=1
φi ⊗ ϕi

)
≡def

⎧⎨
⎩
∫∫

Ω×Ω

∣∣∣
∑n

i=1
φi(x)⊗ ϕi(y)

∣∣∣
p

dxdy

⎫⎬
⎭

1/p

. (1.10)

Remark 1.84. Note that Δ1 = γ, Δ∞ = λ, so that Δp is always a
tensor norm relative to Lp[Ω] (1 ≤ p ≤ ∞). It is easy to show that

L∞ [Ω] ⊗̂λ
L∞ [Ω] ⊂ L∞ [Ω× Ω] with the inclusion proper (see Dunford

and Schatten [DSH], in Chap. 6). [Similar results show that Δp is also a
tensor norm relative to the various Sobolev spacesWm,p[Ω] (see Adams
[A], in Chap. 6).] Finally, we can allow that Ω be a locally compact
group or complete separable metric space with minor adjustments.

1.5.1. Basic Results. In this section, we prove a number of basic
results (including some of those mentioned above) about the tensor
product of spaces in the Δp norm, 1 ≤ p ≤ ∞.

Theorem 1.85. If B1 and B2 are Banach spaces, then both γ = Δ1

and λ = Δ∞ provide norms on B1 ⊗ B2, with Δ∞(φ) ≤ Δ1(φ) for all
φ ∈ B1 ⊗ B2.

Proof. We prove that Δ1 is a norm and Δ∞(φ) ≤ Δ1(φ) for all φ ∈
B1 ⊗ B2. The proof that Δ∞ is a norm is left as an exercise.

It is clear that Δ1(aφ) = |a|Δ1(φ). To prove the triangle in-
equality, let ε > 0 be given and choose φ =

∑n
i=1 φ

i
1 ⊗ φi

2, ψ =∑m
i=1 ψ

i
1 ⊗ ψi

2, so that

n∑
i=1

∥∥φi
1

∥∥
B1

∥∥φi
2

∥∥
B2

� Δ1(φ) +
ε

2

and
m∑
i=1

∥∥ψi
1

∥∥
B1

∥∥ψi
2

∥∥
B2

� Δ1(ψ) +
ε

2
.

By definition, this implies that

Δ1(φ+ ψ) �
n∑

i=1

∥∥φi
1

∥∥
B1

∥∥φi
2

∥∥
B2

+

m∑
i=1

∥∥ψi
1

∥∥
B1

∥∥ψi
2

∥∥
B2

� Δ1(φ) + Δ1(ψ) + ε.

Since this is true for all ε > 0, Δ1(φ+ ψ) ≤ Δ1(φ) + Δ1(ψ).
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Suppose that Δ1(φ) = 0. Then, for each ε > 0, there exists a
representation φ =

∑n
i=1 φ

i
1 ⊗ φi

2 such that
∑n

i=1

∥∥φi
1

∥∥
B1

∥∥φi
2

∥∥
B2

≤ ε.

It follows that, for all (F1 ⊗ F2) ∈ B′
1 ⊗B′

2,∣∣∣∣∣(F1 ⊗ F2)

(
n∑

i=1

φi
1 ⊗ φi

2

)∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
i=1

F1(φ
i
1)F2(φ

i
2)

∣∣∣∣∣ � ε ‖F1‖B′
1
‖F2‖B′

2
.

Since B′
1 ⊗ B′

2 is fundamental for B1 ⊗ B2, we must have φ = 0.

In order to show that Δ1(φ1⊗φ2) = ‖φ1‖B1
‖φ2‖B2

, first note that
Δ1(φ1 ⊗ φ2) ≤ ‖φ1‖B1

‖φ2‖B2
, so we need to only prove the opposite

relation. Let F1⊗F2 ∈ B′
1⊗B′

2 satisfy F1(φ1) = ‖φ1‖B1
and F2(φ2) =

‖φ2‖B1
(duality maps). Since∣∣∣∣∣(F1 ⊗ F2)

(
n∑

i=1

φi
1 ⊗ φi

2

)∣∣∣∣∣
�

n∑
i=1

∣∣(F1 ⊗ F2) (φ
i
1 ⊗ φi

2)
∣∣

=

n∑
i=1

∣∣F1(φ
i
1)F2(φ

i
2)
∣∣ � n∑

i=1

∥∥φi
1

∥∥
B1

∥∥φi
2

∥∥
B2
,

(1.11)

we see that |(F1 ⊗ F2)φ| � Δ1(φ), where φ =
∑n

i=1 φ
i
1 ⊗ φi

2. Thus,
(F1 ⊗ F2)(φ1 ⊗ φ2) = ‖φ1‖B1

‖φ2‖B2
≤ Δ1(φ1 ⊗ φ2).

From Eq. (1.11) we see that |(F1 ⊗ F2)φ| � Δ1(φ) for all φ ∈ B1 ⊗
B2. It follows from the definition of Δ∞ that Δ∞(φ) ≤ Δ1(φ). �

Let Ω be a domain in R
n, let μ be a measure on Ω, and let B be a

separable Banach space with a Schauder basis.

Theorem 1.86. The completion of L1[Ω, μ] ⊗ B with the Δ1 norm,

L1[Ω, μ]⊗̂Δ1B, is isometrically isomorphic to L1[Ω, μ;B], the space of
Bochner integrable functions on Ω with values in B.

Proof. Let J : L1[Ω, μ]×B → L1[Ω, μ;B], via (φ1, φb) → φ = φ1⊗φb.
By linearization, this induces a norm one mapping

J : L1[Ω, μ]⊗̂Δ1B → L1[Ω, μ;B].
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It follows that ‖Jφ‖1 ≤ Δ1(φ) for all φ ∈ L1[Ω, μ]⊗̂Δ1B. However,

if φ ∈ L1[Ω, μ;B] is a simple function, then φ =
∑n

k=1 χAk
φk
b and

Jφ =
∑n

k=1 χAk
⊗ φk

b . Thus,

Δ1(φ) ≤
n∑

k=1

μ(Ak)
∥∥∥φk

b

∥∥∥ = ‖Jφ‖1 .

It follows that Δ1(φ) = ‖Jφ‖1 for all simple functions. Since the
class S of simple functions is dense in L1[Ω, μ], we see that S ⊗ B
is dense in L1[Ω, μ]⊗̂Δ1B. Since the norm closure of the class of
Bochner integrable functions is all of L1[Ω, μ;B], we see that J is sur-
jective. Furthermore, since Δ1(φ) = ‖Jφ‖1 on S ⊗ B, the extension

to L1[Ω, μ]⊗̂Δ1B is both injective and isometric. Thus J is an isome-
try. �

Corollary 1.87. If Ω1, Ω2 are domains in R
n with measures μ1, μ2,

then

L1[Ω1, μ1]⊗̂Δ1L1[Ω2, μ2] = L1[Ω1 × Ω2, μ1 ⊗ μ2].

Definition 1.88. Let Ω1, Ω2 be compact domains in R
n, then

C(Ω1)⊗ C(Ω2) =: {φ(x, y) ∈ C(Ω1 ×Ω2) | ∃n ∈ N,
{
φk
1(x)

}n

k=1
⊂ C(Ω1),

{
φk
2(y)

}n

k=1
⊂ C(Ω2) and φ(x, y) =

∑n

k=1
φk
1(x)φ

k
2(y)

}
.

(If Ω1 = R
n, Ω2 = R

m for some n, m, use the one point compactifica-
tion and the result still applies.)

This is why the notation (φ1 ⊗ φ2)(x, y) = φ1(x)φ2(y) is used to
denote products of functions of two variables (in this case). By the
Weierstrass Approximation Theorem, we see that C(Ω1) ⊗ C(Ω2) is
dense in C(Ω1 × Ω2).

Theorem 1.89. C(Ω1)⊗̂Δ∞
C(Ω2) = C(Ω1 × Ω2).

Theorem 1.90. Let B1, B2 be separable Banach spaces with a
Schauder basis.

(1) The norm α is a reasonable crossnorm on B1⊗B2 if and only
if

Δ∞(φ) ≤ α(φ) ≤ Δ1(φ) for all φ ∈ B1 ⊗ B2.

(2) If α is a reasonable crossnorm, then the norm α′ on B′
1⊗B′

2

induced by (B1 ⊗α B2)
′ is also a reasonable crossnorm.
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Proof. To begin, we let BB′
i
denote the unit ball in B′

i, i = 1, 2.

If α is a reasonable crossnorm on B1 ⊗ B2, then for any represen-
tation of φ =

∑n
i=1 φ

i
1 ⊗ φi

2 ∈ B1 ⊗ B2 we have

α(φ) �
n∑

i=1

α(φi
1 ⊗ φi

2) =

n∑
i=1

∥∥φi
1

∥∥
B1

∥∥φi
2

∥∥
B2
,

so that α(φ) ≤ Δ1(φ). To see that Δ∞(φ) ≤ α(φ), let F1 ⊗ F2 and
F =

∑n
i=1 F

i
1 ⊗ F i

2 be in B′
1 ⊗ B′

2. Then

Δ∞(φ)

= sup {|(F1 ⊗ F2)φ| : F1 ⊗ F2 ∈ BB′
1
⊗ BB′

2
}

� sup

{
|(F )φ| : F =

n∑
i=1

F i
1 ⊗ F i

2 ∈ BB′
1 ⊗ BB′

2

}
= α(φ).

On the other hand, if α is a norm on B1 ⊗B2 with

Δ∞(φ) ≤ α(φ) ≤ Δ1(φ), for all φ ∈ B1 ⊗ B2,

then Δ∞(φ ⊗ ψ) = α(φ ⊗ ψ) = Δ1(φ ⊗ ψ), so that α is a crossnorm.
To see that α′ is a crossnorm on B′

1 ⊗ B′
2, use Δ∞ ≤ α ≤ Δ1 to get

that, for φ =
∑n

i=1 φ
i
1 ⊗ φi

2 ∈ B1 ⊗ B2,

‖F1‖B′
1
‖F2‖B′

2

= sup {|(F1 ⊗ F2)φ| : φ ∈ B1 ⊗B2, Δ1(φ) � 1}
� α′(F1 ⊗ F2) = sup {|(F1 ⊗ F2)φ| : φ ∈ B1 ⊗ B2, α(φ) � 1}
� sup {|(F1 ⊗ F2)φ|| φ ∈ B1 ⊗ B2, Δ∞(φ) � 1} = ‖F1‖B′

1
‖F2‖B′

2
.

It follows that α′ is a reasonable crossnorm. �

We denote by B1⊗̂αB2 the completion of B1 ⊗ B2 with respect

to α, and by B′
1⊗̂α′B′

2 the completion of B′
1 ⊗ B′

2 with respect to

α′. In general, B′
1⊗̂α′B′

2 can be identified with a closed subspace of
(B1⊗̂αB2)

′ (cf. Schatten [S], in Chap. 6).

Theorem 1.91. If Ω is a domain in R
n and μ is a measure on B, then

Δp is a reasonable crossnorm on Lp[Ω,B(Ω), μ]⊗B =: Lp[Ω]⊗B, 1 ≤
p ≤ ∞, for any separable Banach space B, and Lp[Ω]⊗̂ΔpB = Lp[Ω;B]
for 1 ≤ p < ∞.

Proof. The proof for p = 1 was given in Theorem 6.8, so we need to
only consider the case for 1 < p ≤ ∞. Let J : Lp[Ω] ⊗ B → Lp[Ω;B]
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be defined by J [f ⊗ φ] = f(·)φ. This is clearly an injective mapping.
Let g =

∑n
k=1 fk ⊗ φi and define

Δp[g] =

[∫
Ω
‖g(ω)‖pB dμ(ω)

]1/p
.

It is clear that

Δp[f ⊗ φ] =

[∫
Ω
‖f(ω)φ‖pB dμ(ω)

]1/p
= ‖φ‖B ‖f‖p ,

so that Δp[·] is a crossnorm. To see that Δp[·] ≤ Δ1[·], note that

Δp[g]

=

[∫
Ω

∥∥∥∥∥
n∑

k=1

fk(ω)φk

∥∥∥∥∥
p

B
dμ(ω)

]1/p

�
[

n∑
k=1

‖φk‖pB
∫
Ω
|fk(ω)|p dμ(ω)

]1/p

�
n∑

k=1

‖φk‖B ‖fk‖p,

so that Δp[g] � Δ1[g]. To see that Δ∞[·] ≤ Δp[·], let F⊗Φ ∈ [Lp]′⊗B′

be in the respective unit balls (i.e., ‖F‖p′ � 1, ‖Φ‖B′ � 1, 1
p′ = 1− 1

p).

Then
|〈F ⊗ Φ, g〉|

=

∣∣∣∣
∫
Ω
F (ω) 〈Φ, g(ω)〉 dμ(ω)

∣∣∣∣
≤ sup

‖Φ‖�1, ‖F‖p′�1
|〈F ⊗ Φ, g〉| = Δ∞[g]

� ‖F‖p′
[∫

Ω
|〈Φ, g(ω)〉|p dμ(ω)

]1/p

� sup
‖Φ‖�1

[∫
Ω
|〈Φ, g(ω)〉|p dμ(ω)

]1/p
= Δp[g].

Thus, Δp[·] is a reasonable crossnorm on Lp[Ω]⊗B for any p, 1 ≤ p ≤
∞. If p < ∞, then the (equivalence class of) step functions

S(μ)⊗B =

{
n∑

k=1

χAk
⊗ φk : n ∈ N, μ(Ak) < ∞, φk ∈ B

}
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is dense in Lp[Ω;B]. This implies that Lp[Ω]⊗ B is dense in Lp[Ω;B].
It follows that

Lp[Ω]⊗̂ΔpB = Lp[Ω;B].

�

Corollary 1.92. Let (Ω1,B1, μ1) and (Ω2,B2, μ2) be σ-finite measure

spaces. Then Lp[Ω1 × Ω2, B1 ×B2, μ1 × μ2] = Lp[Ω1]⊗̂ΔpLp[Ω2] for
1 ≤ p < ∞, where B1 ×B2 is the σ-algebra generated by B1 and B2.

Let B1 and B2 be separable Banach spaces, and let A1 ∈ L[B1],
A2 ∈ L[B2].

Theorem 1.93. The operator A1 ⊗ A2 : B1 ⊗ B2 → B1 ⊗ B2 has an

unique extension to both B1⊗̂Δ1B2 and B1⊗̂Δ∞B2 as a bounded linear
operator and ∥∥A1⊗̂A2

∥∥ = ‖A1‖ ‖A2‖ .

Proof. We first prove it for Δ1. Let
∑n

i=1 φ
i
1 ⊗ φi

2 be a representation

for φ ∈ B1⊗̂Δ1B2. Then

Δ1[(A1 ⊗ A2)φ] = Δ1

[
n∑

i=1

A1φ
i
1 ⊗A2φ

i
2

]
� ‖A1‖ ‖A2‖

n∑
i=1

∥∥∥φi
1

∥∥∥
B1

∥∥∥φi
2

∥∥∥
B2

,

so that Δ1[(A1 ⊗A2)φ] ≤ ‖A1‖ ‖A2‖Δ1[φ]. It follows that ‖A1 ⊗A2‖
≤ ‖A1‖ ‖A2‖. However, from (A1 ⊗A2)(φ1 ⊗ φ2) = (A1φ1) ⊗ (A2φ2),
we see that (using the crossnorm property of Δ1)

‖A1‖ ‖A2‖

= sup
‖(A1φ1)‖B1

‖(A2φ2)‖B2

‖φ1‖B1
‖φ2‖B2

= sup
‖(A1φ1 ⊗A2φ2)‖Δ1

‖φ1‖B1
‖φ2‖B2

= sup
‖(A1 ⊗A2) (φ1 ⊗ φ2)‖Δ1

‖(φ1 ⊗ φ2)‖Δ1

� ‖A1 ⊗A2‖ .

It follows that ‖A1 ⊗A2‖ = ‖A1‖ ‖A2‖. It is clear that this equality

holds for the unique extension A1⊗̂A2 of A1 ⊗A2 to all of B1⊗̂Δ1B2.
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To prove the result for Δ∞, let φ =
∑n

i=1 φ
i
1 ⊗ φi

2. Then

Δ∞[(A1 ⊗ A2)φ]

= sup

{
n∑

i=1

F1(A1φ
i
1)F2(A2φ

i
2) : F1 ∈ B′

1, F2 ∈ B′
2; ‖F1‖ � 1, ‖F2‖ � 1

}

= sup

{
n∑

i=1

(A′
1F1)(φ

i
1)(A

′
2F2)(φ

i
2) : F1 ∈ B′

1, F2 ∈ B′
2; ‖F1‖ � 1, ‖F2‖ � 1

}

�
∥∥A′

1

∥∥∥∥A′
2

∥∥Δ∞[φ] = ‖A1‖ ‖A2‖Δ∞[φ].

Thus, A1 ⊗A2 has a bounded extension to B1⊗̂Δ∞B2. Now let ε > 0
and choose φ1 ∈ B1, φ2 ∈ B2 with ‖φ1‖B1

≤ 1, ‖φ2‖B2
≤ 1 and, such

that

‖A1φ1‖B1
� (1− ε) ‖A1‖B1

; ‖A2φ2‖B2
� (1− ε) ‖A2‖B2

.

Thus, Δ∞(φ1 ⊗ φ2) ≤ 1 and

‖A1φ1‖B1
‖A2φ2‖B2

= Δ∞[(A1 ⊗A2) (φ1 ⊗ φ2)] � (1− ε)2 ‖A1‖ ‖A2‖ .
Since ε is arbitrary, ‖A1 ⊗A2‖ = ‖A1‖ ‖A2‖. It follows that the same

is true for the unique extension A1⊗̂A2 of A1⊗A2 to all of B1⊗̂Δ∞B2.
�

From Theorem 1.93, we see that Δ1 and Δ∞ are uniform for all
Banach space couples (tensor norms). The following example shows
that, for 1 < p < ∞, we cannot expect Δp to be uniform for all Banach
space couples.

Let L2[R] and �1(R) have the standard definitions, and let F be
the Fourier transform on L2[R], which is an isometry, and let I1 be the
identity on �1(R). If B1 = L2(R), B2 = �1(R) and α = Δ2, we have

Δ2(
n∑

m=1

ϕm ⊗ ψm) ≡def

⎧⎨
⎩
∫ ∞

−∞

∥∥∥∥∥
n∑

m=1

ϕm(x)ψm(y)

∥∥∥∥∥
2

B2

dx

⎫⎬
⎭

1/2

.

Example 1.94. Set fn =
∑n

m=1 χ[m,m+1) ⊗ em, where χ[m,m+1)(x) is
the characteristic function of the interval [m,m + 1), and em is the
mth unit basis vector of �1(R). Then

Δ2(fn) =

⎧⎨
⎩
∫ ∞

−∞

∥∥∥∥∥
n∑

m=1

χ[m,m+1)(x)em

∥∥∥∥∥
2

l1

dx

⎫⎬
⎭

1/2

=
√
n.
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However, if we look at the norm of (F⊗ I1)fn, we get:

‖(F⊗ I1)fn‖Δ2

=

⎧⎨
⎩
∫ ∞

−∞

∥∥∥∥∥ 1√
2π

∫ ∞

−∞
e−ixy

[
n∑

m=1

χ[m,m+1](y)em

]
dy

∥∥∥∥∥
2

l1

dx

⎫⎬
⎭

1/2

= 1√
2π

⎧⎨
⎩
∫ ∞

−∞

∥∥∥∥∥ 1
x

[
n∑

m=1

{e[−i(m+1)x] − e[−imx]}em
]∥∥∥∥∥

2

l1

dx

⎫⎬
⎭

1/2

= 1√
2π

⎧⎨
⎩
∫ ∞

−∞
1
x2

[
n∑

m=1

∣∣∣e[−i(m+1)x] − e[−imx]
∣∣∣
]2

dx

⎫⎬
⎭

1/2

=
n√
2π

{∫ ∞

−∞

∣∣∣∣exp(−ix)− 1

x

∣∣∣∣
2

dx

}1/2

= n.

It follows that F⊗ I1 cannot extend to a bounded operator on L2[R]⊗̂Δ2

�1(R). Thus, Δ2 is not uniform with respect to L2[R] and �1(R), so
that Δ2 is not a tensor norm. However, it is a relative tensor norm
for the right space. To see this in the above case, replace �1(R) by
�2(R) and note that, if em is the mth unit basis vector of �2(R), then

fn ∈ L2[R]⊗̂Δ2 �2(R) and we have:

Δ2(fn) =

⎧⎨
⎩
∫ ∞

−∞

∥∥∥∥∥
n∑

m=1

χ[m,m+1)(x)em

∥∥∥∥∥
2

l2

dx

⎫⎬
⎭

1/2

=
√
n.

If we now look at the norm of (F⊗ I2)fn, we get (the expected result):

‖(F ⊗ I2)fn‖Δ2

=

⎧⎨
⎩
∫ ∞

−∞

∥∥∥∥∥ 1√
2π

∫ ∞

−∞
e−ixy

[
n∑

m=1

χ[m,m+1](y)em

]
dy

∥∥∥∥∥
2

l2

dx

⎫⎬
⎭

1/2

= 1√
2π

⎧⎨
⎩
∫ ∞

−∞

∥∥∥∥∥ 1
x

[
n∑

m=1

{e[−i(m+1)x] − e[−imx]}em
]∥∥∥∥∥

2

l2

dx

⎫⎬
⎭

1/2
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= 1√
2π

{∫ ∞

−∞
1
x2

n∑
m=1

∣∣∣e[−i(m+1)x] − e[−imx]
∣∣∣2dx

}1/2

=

√
n√
2π

{∫ ∞

−∞

∣∣∣∣exp(−ix)− 1

x

∣∣∣∣
2

dx

}1/2

=
√
n.

It follows that (F ⊗ I2) can be extended to a bounded operator on

L2[R]⊗̂Δ2 �2(R).

By a theorem of Kwapień [KP], in Chap. 6, B is isomorphic to a

Hilbert space if and only if (F⊗ IB) is continuous on L2[R]⊗̂Δ2B. The
point is that Δ2 is a relative tensor norm which is not a tensor norm.
On the other hand, if α is any tensor norm, F ⊗ I1 has an extension
to a bounded linear operator on L2[R]⊗̂α

l1(Z) (see [DOF, p. 147]).

We now show that Δp is uniform relative to the tensor product of
Lp spaces.

Theorem 1.95. Let (Ω1,B1, μ1) and (Ω2,B2, μ2) be σ-finite measure
spaces. Let A1 : Lp[Ω1] → Lp[Ω1] and A2 : Lp[Ω2] → Lp[Ω2]. Then,
for 1 < p < ∞, the operator

A1 ⊗A2 : L
p[Ω1]⊗Lp[Ω2] → Lp[Ω1]⊗Lp[Ω2]

has an unique extension to a bounded linear operator

A1⊗̂A2 : L
p[Ω1]⊗̂ΔpLp[Ω2] → Lp[Ω1 × Ω2],

and
∥∥A1⊗̂A2

∥∥ = ‖A1‖ ‖A2‖.

Proof. We first show that I1⊗A2 is bounded as an operator mapping
Lp[Ω1]⊗Lp[Ω2] → Lp[Ω1 × Ω2].

Let {φi
2} be a Schauder basis for Lp[Ω2] and, for 1 ≤ i ≤ n, n ∈ N,

let ψi
2 = A2φ

i
2. Then, for all scalars a1, . . . , an, we have∥∥∥∥∥

n∑
i=1

aiψ
i
2

∥∥∥∥∥
p

� ‖A2‖
∥∥∥∥∥

n∑
i=1

aiφ
i
2

∥∥∥∥∥
p

.

It follows that, for arbitrary functions a1(·), . . . , an(·) ∈ Lp[Ω1],∫
Ω2

∣∣∣∣∣
n∑

i=1

ai(x)ψ
i
2(y)

∣∣∣∣∣
p

μ2(dy) � ‖A2‖p
∫
Ω2

∣∣∣∣∣
n∑

i=1

ai(x)φ
i
2(y)

∣∣∣∣∣
p

μ2(dy).
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Integrating both sides with respect to μ1, we see that∫
Ω1

∫
Ω2

∣∣∣∣∣
n∑

i=1

ai(x)ψ
i
2(y)

∣∣∣∣∣
p

μ2(dy)μ1(dx)

� ‖A2‖p
∫
Ω1

∫
Ω2

∣∣∣∣∣
n∑

i=1

ai(x)φ
i
2(y)

∣∣∣∣∣
p

μ2(dy)μ1(dx).

(1.12)

Since μ1 and μ2 are σ-finite, we can use Fubini’s Theorem to get∫
Ω1

∫
Ω2

∣∣∣∣∣
n∑

i=1

ai(x)ψ
i
2(y)

∣∣∣∣∣
p

μ2(dy)μ1(dx)

=

∫
Ω2

∥∥∥∥∥
n∑

i=1

ai(·)ψi
2(y)

∥∥∥∥∥
p

p

μ2(dy).

(1.13)

If we set Φ(x) =
∣∣∑n

i=1 ai(x)ψ
i
2(·)

∣∣p , x ∈ Ω1, then∫
Ω2

∥∥∥∥∥
n∑

i=1

ai(·)ψi
2(y)

∥∥∥∥∥
p

p

μ2(dy)

=

∥∥∥∥
∫
Ω1

Φ(x)μ1(dx)

∥∥∥∥
p

p

�
∫
Ω1

‖Φ(x)‖pp μ1(dx).

(1.14)

If we combine Eqs. (6.8)–(6.10), we get∫
Ω2

∥∥∥∥∥
n∑

i=1

ai(·)ψi
2(y)

∥∥∥∥∥
p

p

μ2(dy) � ‖A2‖p
∫
Ω2

∥∥∥∥∥
n∑

i=1

ai(·)φi
2(y)

∥∥∥∥∥
p

p

μ2(dy).

It follows that ‖I1 ⊗A2‖ � ‖A2‖p.
Since ∣∣∣∣∣

n∑
i=1

ai(x)ψ
i
2(y)

∣∣∣∣∣ =
∣∣∣∣∣A2

[
n∑

i=1

ai(x)φ
i
2(y)

]∣∣∣∣∣
=

∣∣∣∣∣
(
(I1 ⊗A2)

[
n∑

i=1

ai ⊗ φi
2

])
(x, y)

∣∣∣∣∣ ,
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we see that∥∥∥∥∥
[
A2

(
n∑

i=1

ai(·)ψi
2(·)

)]∥∥∥∥∥
p

=

∥∥∥∥∥
n∑

i=1

ai ⊗A2φ
i
2

∥∥∥∥∥
Δp

=

∥∥∥∥∥
(
(I1 ⊗A2)

[
n∑

i=1

ai ⊗ φi
2

])∥∥∥∥∥
Δp

� ‖I1 ⊗A2‖
∥∥∥∥∥

n∑
i=1

ai ⊗ φi
2

∥∥∥∥∥
Δp

.

Thus we see that ‖I1 ⊗A2‖ = ‖A2‖.
The same proof (with minor adjustments) shows that (A1 ⊗ I2)

is also bounded as an operator mapping Lp[Ω1]⊗Lp[Ω2] → Lp[Ω1 ×
Ω2]. Since A1 ⊗ A2 = (I1 ⊗ A2)(A1 ⊗ I2), we see that ‖A1 ⊗A2‖ =
‖A1‖ ‖A2‖. �

Thus, we see that Δp is always a tensor norm relative to Lp[Ω]
(1 � p ≤ ∞).

Theorem 1.96. [Schatten [S], in Chap. 6] The norms λ, γ are tensor
norms on B1 ⊗ B2 and λ � γ. Furthermore, if α is any norm with
λ � α � γ, then α is a reasonable crossnorm which is a relative tensor
norm that need not be a tensor norm, and γ′ � α′ � λ′ (i.e., α′ is a
crossnorm on B′

1 ⊗ B′
2, and γ′ = λ, λ′ = γ).

Definition 1.97. A relative tensor norm α is said to be faithful if
the natural linear mapping of B1⊗̂αB2 into Ls (B′

1,B′
2), obtained by

extending the identity I1 ⊗ I2 on B1 ⊗ B2 ⊂ B1⊗̂λB2 by continuity to
the entire space B1⊗̂αB2, is one-to-one.

To say that α is faithful means that, if an element of B1⊗̂α B2

vanishes on B′
1 ⊗ B′

2, it is the zero function. For all of the above
spaces, the relative tensor norm is faithful. Indeed, it has been shown
by Gelbaum and Gil de Lamadrid [GG], in Chap. 6, that, if both B1

and B2 have Schauder bases and α is a relative tensor norm, then
B1⊗̂α B2 has a Schauder basis so that α is faithful. The following
result is due to Ichinose [IC70], in Chap. 6.

Theorem 1.98. Let A1 and A2 be closed densely defined linear oper-
ators on B1 and B2 respectively, and let α be a faithful relative tensor
norm. Unless one of the extended spectra σe(A1) and σe(A2) contains
0 while the other contains ∞,

(A1⊗̂α
I2)(I1⊗̂α

A2) = (I1⊗̂α
A2)(A1⊗̂α

I2) = A1⊗̂α
A2. (1.15)
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Chapter 2

Integration
on Infinite-Dimensional
Spaces

This chapter is required for the foundations of infinite-dimensional
analysis. It is assumed that the reader is conversant with Lebesgue
measure on R

n, including the standard limit theorems, inequalities,
convolution, Fourier transform theory, and Fubini’s theorem. With
this in mind, we offer a parallel treatment on infinite-dimensional
spaces, with a theorem proof protocol. The proof of any theorem that
is the same as on R

n is omitted. We have also added a few interesting
topics, which are discussed more fully below. We do not include any
exercises, however, any serious question could lead to a research prob-
lem. (This statement applies to all chapters except Chaps. 1 and 4.)

This chapter is not required for the Feynman operator calculus
of Chap. 7, or for the general path integral theory of Chap. 8. How-
ever, one should continue reading at least to Theorem 2.7, in order to
understand the notation in Chap. 3.

In the first section we discuss the basic problem for Lebesgue mea-
sure on R

∞. After some historical background, we introduce a new
class of open sets for R∞. The induced topology is natural for Lebesgue
measure on R

∞. After constructing our measure λ∞, on R
∞, we show

49
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that its restriction to R
n is equivalent to n-dimensional Lebesgue mea-

sure for each n.

In the second section we construct the corresponding version of
Lebesgue measure for every Banach space with an S-basis. In addition,
we develop a general theory of probability measure for Banach spaces
with an S-basis. The interesting result in this direction is our proof
that every probability measure with a density, defined on the Borel
sets of R, induces a (closely related) family of probability measures
on every Banach space with an S-basis, that is absolutely continuous
with respect to Lebesgue measure.

In the third section we discuss integrable functions, Lp spaces,
product measures, convolutions, and integral inequalities. In the
fourth section, we develop a general theory of distributions on uni-
formly convex Banach spaces, while in the fifth section we construct
the Schwartz space and the Fourier transform on uniformly convex
Banach spaces. We then use the transform to extend the Pontryagin
duality theory to a new class of nonlocally compact groups. Finally, in
the last section, we provide a direct solution of the diffusion equation
on Hilbert space, as an application of our theory.

2.1. Lebesgue Measure on R
∞

Historically, the topology for R
∞ defines open sets to be the carte-

sian product of an arbitrary finite number of open sets in R, while
the remaining infinite number are copies of R (cylindrical sets). This
approach forces any possible measure to assign a finite value to each
open set. The success of Kolmogorov’s work on the foundations of
probability theory [KO] has since embedded this requirement into the
fabric of infinite dimensional analysis. Any attempt to construct a
reasonable version of Lebesgue measure using the above approach is
impossible.

2.1.1. Background. Historically, the first advance in understanding
the problem of measures on infinite dimensional spaces was made (in-
directly) in 1933 when Haar [HA] proved:

Theorem 2.1. If G is a locally compact abelian group, then there
exists a nonnegative regular translation invariant measure m (Haar
measure) on G (i.e., m(A + x) = m(A) for every x ∈ G and every
Borel set A in B[G]).
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This result stimulated the interest of von Neumann [VN1], who
proved that it is the only σ-finite left-invariant Borel measure on such
a group (uniqueness up to a multiplicative constant) and Weil [WE]
proved that:

Theorem 2.2. If G is a (separable) topological group and m is a
σ-finite left-translation invariant Borel measure on G, then it is always
possible to define an equivalent locally compact topology on G.

Since R
∞ is a complete separable nonlocally compact metric or

Polish group, this necessarily means that a σ-finite translation invari-
ant measure cannot be defined on R

∞. In 1946 Oxtoby [OX] began
the study of translation-invariant Borel measures on Polish groups. He
proved the following result attributed to Ulam:

Theorem 2.3. There always exists a left-invariant Borel measure on
any Polish group which assigns positive finite measure to at least one
set and vanishes on singletons. However, a σ-finite measure is possible
if and only if the group is locally compact.

In 1959 Sudakov [SU] explicitly proved that: If R∞ is regarded as a
linear topological space, then there does not exist a σ-finite translation-
invariant Borel measure for R

∞. Since then other studies have been
conducted on the subject. For additional information, the (relatively)
recent papers by Baker [BA1], [BA2] and by Vershik [V], [V1], [V2]
are especially recommended. The papers by Hill [HI] and Ritter and
Hewitt [RH] are also worth reading.

2.1.2. An Alternate Approach. On R
n, n < ∞, it is useful to

think of Lebesgue measure in terms of geometric objects. It is also
natural to expect that Lebesgue measure will leave geometric objects
invariant under translations and rotations, and to assume that rota-
tional and translational invariance is an intrinsic property of Lebesgue
measure. In many applications, rotational and translational invari-
ance plays no role at all, it is the σ-finite nature of Lebesgue mea-
sure that is critical. In addition to probability theory (stochastic pro-
cesses), another major motivation for the study of measure on infinite-
dimensional space is its importance for the foundations of statistical
mechanics and quantum theory. In physical systems translational in-
variance is intimately related to the total momentum and rotational
invariance is intimately related to the total angular momentum. (In
the precise language of groups, the total momentum is the generator of
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translational invariance and the total angular momentum is the gen-
erator of rotational invariance.) In both cases, these quantities must
be finite in order for a physical system to be well defined. This is im-
possible in infinite-dimensional space if we require full rotational and
translational invariance.

We take a different approach, using a basic requirement on any
mapping on Borel sets, which would serve as an acceptable version of

Lebesgue measure on R
∞. In particular, if I0 =

[−1
2 ,

1
2

]ℵ0 , then any
definition λ∞(·), of Lebesgue measure must satisfy λ∞ [I0] = 1. We
make this requirement the centerfold of our approach. Let B[Rn] be
the Borel σ-algebra for Rn and I = [−1

2 ,
1
2 ].

Definition 2.4. Let A ∈ B[Rn], n ∈ N. A set of the formAn = A×In,
In =

∏∞
i=n+1 I is called a nth-order box set.

Definition 2.5. Let An = A× In, Bn = B× In be nth-order box sets
in R

∞. We define:

(1) An ∪Bn = (A ∪B)× In,

(2) An ∩Bn = (A ∩B)× In, and

(3) Bc
n = Bc × In.

Definition 2.6. Let R
n
I = R

n × In and let B[Rn
I ] be the Borel

σ-algebra for Rn
I , where the topology for Rn

I is defined via the follow-
ing class of open sets:

On = {U × In :, U open in R
n} .

For any A ∈ B[Rn], we define λ∞(A) on R
n
I by:

λ∞(An) = λn(A)×
∞∏

i=n+1

λ1(I) = λn(A),

Theorem 2.7. λ∞(·) is a measure on B[Rn
I ], equivalent to n-dimen

sional Lebesgue measure on R
n.

Corollary 2.8. The measure λ∞(·) is both translationally and rota-
tionally invariant on (Rn

I ,B[Rn
I ]), for each n ∈ N.

Thus, we can construct a theory of Lebesgue measure on R
n
I that

completely parallels that on R
n. If we can extend λ∞(·) to B[R∞

I ], we
will obtain a measure with the following properties:

(1) R
n
I ∈ B(R∞

I ) for all n, so that λ∞(·) restricted to R
n
I is equiv-

alent to λn(·);
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(2) B[R∞
I ] has a large number of open sets of finite measure, a

property not shared by B[R∞] (with the standard topology
on R

∞); and

(3) λ∞(I0) = 1.

Thus, λ∞(·) would certainly qualify as the natural version of Lebesgue
measure on R

∞.

2.1.2.1. Definition of R∞
I . Recall that R∞ is the set of all sequences

x = (x1, x2, . . .), such that xi ∈ R. The standard metric for R
∞ is

defined by:

d(x,y) =
∑∞

n=1

1

2n
|xn − yn|

1 + |xn − yn| .

This metric makes R∞ a complete translation invariant metric space.

Since R
n
I ⊂ R

n+1
I , we have an increasing sequence so we define

R̂
∞
I by:

R̂
∞
I = lim

n→∞R
n
I =

∞⋃
k=1

R
k
I .

Let X1 = R̂
∞
I and let τ1 be the topology induced by the class of

open sets O:

O =

∞⋃
n=1

On =

∞⋃
n=1

{U × In : U open in R
n}.

Let X2 = R
∞ \ R̂∞

I and let τ2 be discrete topology on X2 induced by
the discrete metric such that, for x, y ∈ X2, x 	= y, d2(x, y) = 1 and
for x = y, d2(x, y) = 0.

Definition 2.9. We define (R∞
I , τ) to be the coproduct (X1, τ1) ⊕

(X2, τ2), of (X1, τ1) and (X2, τ2), so that every open set in (R∞
I , τ) is

the disjoint union of two open sets G1
⋃

G2, with G1 in (X1, τ1) and
G2 in (X2, τ2).

It follows that R
∞
I = R

∞ as sets, but not as topological spaces.
The following result shows that convergence in the τ -topology always
implies convergence via the R

∞-metric.

Theorem 2.10. Let x ∈ R
∞
I , and {y(k)} ⊂ R

∞
I . If {y(k)} converges

to x in the τ -topology, then y(k) converges to x in the R
∞-metric.

Proof. Denote x = (x1, x2, . . .), y
k = (y

(k)
1 , y

(k)
2 , . . .). If x ∈ X2, then

{y(k)} converges to x in the τ2 topology, and if 0 < ε < 1, there is
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N ∈ N such that d2(x, y
k) < ε for all k ≥ N ; hence xj = y

(k)
j for

j ∈ N, and d(x, yk) = 0 < ε.

If however x ∈ X1, then {y(k)} converges to x in the τ1 topology, and
x ∈ R

m
I for some m ∈ N. Choose N ∈ N so large that 1

N < ε
2 and

N > m. Now, since the set

UN =
(
x1 − ∈

4 , x1 +
∈
4

)× · · · × (
xN − ∈

4 , xN + ∈
4

)×
( ∞∏

i=N+1

[−1, 1]

)

is open in τ1, there is N1 ∈ N for which k ≥ N1 implies y(k) ∈ UN , so by

the above equation we have that y
(k)
j ∈ (xj − ε

4 , xj +
ε
4

)
, j = 1, . . . , N ,

and y
(k)
j ∈ [−1, 1] for j ≥ N + 1. It follows that

d(x, y(k)) =

N∑
j=1

|xj − yj|
2j
(
1 + |xj − y

(k)
j |) +

∞∑
j=N+1

|xj − yj|
2j
(
1 + |xj − y

(k)
j |)

<
ε

2

N∑
j=1

1

2j
+

∞∑
j=N+1

1

2j

<
ε

2
+

1

2N
<

ε

2
+

1

N
<

ε

2
+

ε

2
= ε.

Therefore y(k) converges to x in the R
∞-metric. �

2.1.2.2. Definition of B[R∞
I ]. In a similar manner, if B[Rn

I ] is the

Borel σ-algebra for R
n
I , then B[Rn

I ] ⊂ B[Rn+1
I ], so we can define

B̂[Rn
I ] by:

B̂[Rn
I ] = lim

n→∞B[Rn
I ] =

∞⋃
k=1

B[Rk
I ].

Let B[R∞
I ] be the smallest σ-algebra containing B̂[Rn

I ] ∪ P(R∞ \⋃∞
k=1R

k
I ), where P(·) is the power set. It is obvious that the class

B[R∞
I ] coincides with the Borel σ-algebra generated by the τ -topology

on R
∞
I . From our definition of B[R∞

I ], we see that B[R∞] ⊂ B[R∞
I ].

To see that they are equal, it suffices to show that Rn
I ∈ B[R∞]. If

O
(m)
i = R

i−1 × (−1
2 − 1

m , 12 +
1
m)×

∏
k>i

R,

then

Oi =
⋂
m∈N

O
(m)
i = R

i−1 × [−1
2 ,

1
2 ]×

∏
k>i

R.
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Finally, we have

R
n
I =

⋂
i>n

Oi.

2.1.3. The Extension of λ∞(·) to R
∞
I . We know that λ∞(·) is a

countably additive measure on B[Rn
I ] for each n ∈ N, but we cannot

say the same for B[R∞
I ]. In this section, we provide a (constructive)

extension of λ∞(·) to a countably additive measure on B[R∞
I ].

Let

Δ0 ={K × In ∈ B[Rn
I ] : n ∈ N, K ⊂ R

n, compact

andλ∞(K × In) < ∞},

Δ =

{
PN =

N⋃
i=1

Ki : N ∈ N; Ki ∈ Δ0 andλ∞ (Ki ∩Kj) = 0, i 	= j

}
.

Definition 2.11. If PN ∈ Δ, we define

λ∞(PN ) =

N∑
i=1

λ∞(Ki).

Since PN ∈ B[Rn
I ] for some n, and λ∞(·) is a measure on B[Rn

I ],
the next result follows:

Lemma 2.12. If PN1 , PN2 ∈ Δ then:

(1) If PN1 ⊂ PN2 , then λ∞(PN1) ≤ λ∞(PN2).

(2) If λ∞(PN1 ∩ PN2) = 0, then λ∞(PN1 ∪ PN2) = λ∞(PN2) +
λ∞(PN2).

Definition 2.13. If G ⊂ R
∞
I is any open set, we define:

λ∞(G) = lim
N→∞

sup {λ∞(PN ) : PN ∈ Δ, PN ⊂ G, } .

Theorem 2.14. If O is the class of open sets, we have:

(1) λ∞(R∞
I ) = ∞.

(2) If G1, G2 ∈ O, G1 ⊂ G2, then λ∞(G1) ≤ λ∞(G2).

(3) If {Gk} ⊂ O, then

λ∞(

∞⋃
k=1

Gk) ≤
∞∑
k=1

λ∞(Gk).
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(4) If the {Gk} ⊂ O and are disjoint, then

λ∞(
∞⋃
k=1

Gk) =
∞∑
k=1

λ∞(Gk).

Proof. The proof of (1) is standard. To prove (2), observe that

{PN ∈ Δ : PN ⊂ G1} ⊂
{
P ′
N ∈ Δ : P ′

N ⊂ G2

}
,

so that λ∞(G1) ≤ λ∞(G2). To prove (3), let PN ⊂ ⋃∞
k=1Gk, PN ∈ Δ.

Since PN is compact, there is a finite number of the Gk which cover
PN , so that PN ⊂ ⋃L

k=1Gk for some L ∈ N. Now, for each Gk, there is
a Pk ∈ Δ, Pk ⊂ Gk. Furthermore, as PN is arbitrary, we can assume
that PN ⊂ ⋃L

k=1 Pk. Since there is an n such that all Pk ∈ B(Rn
I ) and

λ∞ is a measure on R
n
I , we have that

λ∞(PN ) ≤
L∑

k=1

λ∞(PNk
),

so that

λ∞(PN ) ≤
L∑

k=1

λ∞(PNk
) �

L∑
k=1

λ∞(Gk) �
∞∑
k=1

λ∞(Gk).

It follows that

λ∞

( ∞⋃
k=1

Gk

)
≤

∞∑
k=1

λ∞(Gk).

If the Gk are disjoint, observe that if PN ⊂ P ′
M ,

λ∞(P ′
M ) ≥ λ∞(PN ) =

L∑
k=1

λ∞(PNk
).

It follows that

λ∞(

∞⋃
k=1

Gk) ≥
L∑

k=1

λ∞(Gk).

This is true for all L so that this, combined with (3), gives our result.
�

If F is an arbitrary compact set in B[R∞
I ], we define

λ∞(F ) = inf {λ∞(G) : F ⊂ G, G open} . (2.1)

Remark 2.15. At this point we see the power of B[R∞
I ]. Unlike

B[R∞], Eq. (2.1) is well defined for B[R∞
I ] because it has a sufficient

number of open sets of finite measure.
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2.1.3.1. Bounded Outer Measure.

Definition 2.16. Let A be an arbitrary set in R
∞
I .

(1) The outer measure of A is defined by:

λ∗
∞(A) = inf {λ∞(G) : A ⊂ G, G open} .

We let L0 be the class of all A with λ∗∞(A) < ∞.

(2) If A ∈ L0, we define the inner measure of A by

λ∞,(∗)(A) = sup {λ∞(F ) : F ⊂ A, F compact} .
(3) We say that A is a bounded measurable set if λ∗∞(A) =

λ∞,(∗)(A), and define the measure of A, λ∞(A), by λ∞(A) =
λ∗∞(A).

Theorem 2.17. Let A, B and {Ak} be arbitrary sets in R
∞
I with finite

outer measure.

(1) λ∞,(∗)(A) ≤ λ∗∞(A).

(2) If A ⊂ B then λ∗∞(A) ≤ λ∗∞(B) and λ∞,(∗)(A) ≤ λ∞,(∗)(B).

(3) λ∗∞(
⋃∞

k=1Ak) ≤
∑∞

k=1 λ
∗∞(Ak).

(4) If the {Ak} are disjoint, λ∞,(∗)(
⋃∞

k=1Ak) ≥
∑∞

k=1 λ∞,(∗)(Ak).

Proof. The proofs of (1) and (2) are straightforward. To prove (3), let
ε > 0 be given. Then, for each k, there exists an open set Gk such that
Ak ⊂ Gk and λ∞(Gk) < λ∗∞(Ak) + ε2−k. Since

⋃∞
k=1Ak ⊂ ⋃∞

k=1Gk,
we have

λ∗
∞

( ∞⋃
k=1

Ak

)
� λ∞

( ∞⋃
k=1

Gk

)

�
∞∑
k=1

λ∞ (Gk)

�
∞∑
k=1

[
λ∗
∞ (Ak) +

ε
2k

]

=

∞∑
k=1

λ∗
∞ (Ak) + ε.

Since ε is arbitrary, we are done.
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To prove (4), let F1, F2, . . . , FN be compact subsets of A1, A2, . . . ,
AN , respectively. Since the Ak are disjoint,

λ∞,(∗)

( ∞⋃
k=1

Ak

)
� λ∞

(
N⋃
k=1

Fk

)

=

N∑
k=1

λ∞ (Fk).

Thus,

λ∞,(∗)

( ∞⋃
k=1

Ak

)
≥

N∑
k=1

λ∞,(∗)(Ak).

Since N is arbitrary, we are done. �

The next two important theorems follow from the last one.

Theorem 2.18 (Regularity and Radon). If A has finite measure, then
for every ε > 0 there exist a compact set F and an open set G such
that F ⊂ A ⊂ G, with λ∞(G \ F ) < ε.

Proof. Let ε > 0 be given. Since A has finite measure, it follows from
our definitions of λ∞,(∗) and λ∗∞ that there is a compact set F ⊂ A
and an open set G ⊃ A such that

λ∞(G) < λ∗
∞(A) + ε

2 and λ∞(F ) > λ∞,(∗)(A)− ε
2 .

Since λ∞(G) = λ∞(F ) + λ∞(G \ F ), we have:

λ∞(G \ F ) = λ∞(G)− λ∞(F ) < (λ∞(A) + ε
2)− (λ∞(A)− ε

2) = ε.

�
Theorem 2.19 (Countable Additivity). If the family {Ak} consists of
disjoint sets with bounded measure and A =

⋃∞
k=1Ak, with λ∗∞(A) <

∞, then λ∞(A) =
∑∞

k=1 λ∞(Ak).

Proof. Since λ∗∞(A) < ∞, we have:

λ∗
∞(A) �

∞∑
k=1

λ∗
∞(Ak) =

∞∑
k=1

λ∞,(∗)(Ak) � λ∞,(∗)(A) � λ∗
∞(A).

It follows that λ∞(A) = λ∗∞(A) = λ∞,(∗)(A), so that

λ∞(A) = λ∞

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

λ∞(Ak).

�
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The following results also hold for nonfinite measures and justifies
our somewhat unorthodox approach.

Theorem 2.20. Let {An} be a countable family of sets with λ∞(An) <
∞ for all n.

(1) Then,

λ∞(lim inf
n→∞ An) � lim inf

n→∞ λ∞(An),

lim sup
n→∞

λ∞(An) � λ∞(lim sup
n→∞

An)

and

lim inf
n→∞ λ∞(An) � lim sup

n→∞
λ∞(An).

(2) (Borel–Cantelli Lemma) If

∞∑
n=1

λ∞(An) < ∞,

then

λ∞(lim sup
n→∞

An) = 0.

Proof. To prove (1), let

A = lim sup
n→∞

An;

i.e., if we let

Bk =

∞⋃
m=k

Am,

then

A =

∞⋂
k=1

Bk.

Now,
∞⋃

m=1

Am ⊇
∞⋃

m=2

Am ⊇
∞⋃

m=3

Am ⊇ · · · .

It follows that

λ∞(A) = lim
k→∞

λ∞

( ∞⋃
m=k

Am

)
.
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We also have λ∞ (
⋃∞

m=k Am) ≥ λ∞(Am) for all m ≥ k and k ∈ N.
Hence λ∞(A) ≥ lim supn→∞ λ∞(An). Therefore, it follows that

lim sup
n→∞

λ∞ (An) � λ∞
(
lim sup
n→∞

An

)
.

The other parts of the inequality follow the same lines.

To prove (2), we use the fact, proven above, that

lim sup
n→∞

λ∞(An) � λ∞(lim sup
n→∞

An).

It now follows that

λ∞(A) � λ∞(Bk) �
∞∑

m=k

λ∞(Am)

for all k ∈ N. Thus, we must have λ∞(lim supn→∞An) = 0. �

2.1.3.2. Unbounded Outer Measure.

Definition 2.21. Let A be an arbitrary set in R
∞
I . We say that

A is measurable if, for all bounded measurable sets M ∈ L0 (see
Definition 2.16), A ∩M ∈ L0. In this case, we define λ∞(A) by:

λ∞(A) = sup {λ∞(A ∩M) : M ⊂ L0} .
We let LI be the class of all measurable sets A.

Theorem 2.22. Let A and {Ak} be arbitrary sets in LI .

(1) If λ∗∞(A) < ∞, then A ∈ LI if and only if A ∈ L0. In this
case, λ∞(A) = λ∗∞(A).

(2) LI is closed under countable unions, countable intersections,
differences, and complements.

(3)

λ∞

( ∞⋃
k=1

Ak

)
≤

∞∑
k=1

λ∞(Ak).

(4) If {Ak} are disjoint,

λ∞

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

λ∞(Ak).

Proof. The proofs are the same as for the bounded measure case. �
Theorem 2.23. Let A be a LI-measurable set. Then there exists a
Borel set F and a set N with λ∞(N) = 0 such that A = F ∪N .
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We close this section with the following additional result.

Theorem 2.24. Let {Ak} be a family of measurable sets.

(1) If Ak ⊂ Ak+1 for all k, then λ∞(Ak) is a increasing function
of k and

λ∞

( ∞⋃
k=1

Ak

)
= lim

n→∞λ∞ (An) .

(2) If Ak+1 ⊂ Ak for all k and λ∞(A1) < ∞, then λ∞(Ak) is a
decreasing function of k and

λ∞

( ∞⋂
k=1

Ak

)
= lim

n→∞λ∞ (An) .

Proof. To prove (1), let A = limk→∞ Ak =
⋃∞

k=1Ak and use the fact
that

A = A1 ∪
[ ∞⋃
k=1

(Ak+1\Ak)

]
,

is a disjoint union, to get

λ∞ (A) = λ∞ (A1) +

∞∑
k=1

[λ∞ (Ak+1)− λ∞ (Ak)] = lim
n→∞λ∞ (An) .

To prove (2), we use a variation on the last approach, with

A1 = A ∪
[ ∞⋃
k=1

(Ak\Ak+1)

]
,

to get

λ∞(A1) = λ∞(A) +

∞∑
k=1

[λ∞(Ak)− λ∞(Ak+1)]

= λ∞(A) + λ∞(A1)− lim
n→∞λ∞(An).

�

Thus, our reasonable version of λ∞(·) is a complete regular count-
ably additive Radon measure on R

∞
I = R

∞. The construction is essen-
tially the same one would use to construct Lebesgue measure on R

n.
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2.1.4. Equivalent Definition of λ∞(·). We now consider an equiv-
alent definition of λ∞(·), that connects our definition with others and
is useful for our proof that λ∞(·) is σ-finite. The following theorem
provides a nice characterization of a measure.

Theorem 2.25. Let X be a nonempty set and let A be a σ-algebra
over X. A mapping μ : A→ [0,∞] is a measure on X if and only if

(1) μ(∅) = 0.

(2) If A,B ∈ A, and μ(A∩B) = 0, then μ(A∪B) = μ(A)+μ(B).

(3) If {Bn} ⊂ A and Bn ⊂ Bn+1, then

μ

( ∞⋃
k=1

Bk

)
= lim

n→∞μ (Bn) .

Proof. If μ is a measure, it is clear that the conditions are satisfied.
Thus, we need to only prove that these conditions are sufficient. Since
μ is nonnegative and finitely additive, it suffices to show that it is
countably additive. Let {An} ⊂ A be disjoint. From

n⋃
k=1

Ak ⊂
n+1⋃
k=1

Ak, and μ

(
n⋃

k=1

Ak

)
=

n∑
k=1

μ (Ak),

if we let

Bn =

n⋃
k=1

Ak,

we have Bn ⊂ Bn+1, so we can apply Theorem 2.24(1) to get

lim
n→∞μ (Bn) = μ

( ∞⋃
k=1

Bk

)
= μ

( ∞⋃
k=1

Ak

)

and

lim
n→∞μ (Bn) = lim

n→∞μ

(
n⋃

k=1

Ak

)
= lim

n→∞

n∑
k=1

μ (Ak) =

∞∑
k=1

μ (Ak).

Combining these two results proves the theorem. �

Definition 2.26. For each m ∈ N, we define a measure μm on
B[R∞

I ] by

μm(A) = λ∞(A ∩ R
m
I ), for each A ∈ B[R∞],

and set

μ(A) = lim
m→∞μm(A). (2.2)
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Theorem 2.27. The mapping μ : B[R∞
I ] → [0,∞] is a measure.

Proof. It is clear that the first two conditions of Theorem 2.25 are
satisfied, so we need to only check the last one. Let {Ak} be pairwise
disjoint family of sets in B[R∞

I ]. Since Ak ∩ Al = ∅ unless k = l,
we see that the same is true for Ak ∩R

m
I and Al ∩R

m
I . Fix N ∈ N and

use the distributive property for sets and condition (2) of Theorem 2.25
(finite additivity for disjoint sets) to get

λ∞

[(
N⋃
k=1

Ak

)
∩ R

m
I

]
=

N∑
k=1

λ∞ (Ak ∩ R
m
I ).

Since Ak∩Rm
I ⊂ Ak∩Rm+1

I , all the terms are increasing, and therefore,
by condition (3) of Theorem 2.25

μ

(
N⋃
k=1

Ak

)
= lim

m→∞μm

(
N⋃
k=1

Ak

)

=

N∑
k=1

lim
m→∞μm (Ak) =

N∑
k=1

μ (Ak).

Where the last equality follows from Eq. (2.2). If we now let N →∞,
we are done. �

Corollary 2.28. The completion of μ is equal to λ∞(·).
Proof. It is easy to see that they agree on B[Rn

I ], for all n. �

Remark 2.29. The above approach is easier, as it gets us a measure
quickly. On the other hand, by making B[Rn

I ] explicit, we see from the
last section that the study of Lebesgue measure on R

∞ is almost as easy
as the same study on R

n. This approach was discovered independently
by Gill and Zachary [GZ], in Chap. 8, in 2008. However, Theorem 2.27
and Corollary 2.28 (using a different approach) were first obtained by
Yamasaki [YA1] in 1980. Unaware of Yamasaki’s result, Kharazishvili
independently obtained the same result in 1984. In 1991 Kirtadze
and Pantsulaia [KP1] provided yet another approach leading to the
same result (see also Pantsulaia [PA]). Finally, in 2007, Kirtadze and
Pantsulaia [KP2] proved that if ν is the completion (Lebesgue ext-
ension) of μ, then ν is the unique (up to a multiplicative constant),
regular σ-finite measure on R

∞, with ν{[−1
2 ,

1
2 ]

ℵo} = 1, having �1 as
its maximal translation invariant group. Since it is known that every
σ-finite Borel measure on a Fréchet space is a Radon measure [BO],
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we see that ν is Radon. On the other hand, R∞
I is not a Fréchet space;

however, Theorem 2.18 shows that λ∞(·) is also a Radon measure.

The next two results follow from our new representation of λ∞(·).
First recall that, R

∞
I = X1 ⊕ X2, where X1 =

⋃∞
n=1R

n
I and X2 =

R
∞
I \ X1.

Theorem 2.30. λ∞ [R∞ \ (⋃∞
n=1R

n
I )] = λ∞ [R∞ \ X1] = 0.

Proof. Let μ̂n be the (Lebesgue) extension of μn to L[Rn
I ]. From Def-

inition 2.6, we have μn(A) = λ∞(A
⋂

R
n
I ) and μ (A) = limn→∞ μn (A),

for all A ∈ R
∞, so that

λ∞

[(
R
∞ \

∞⋃
k=1

R
k
I

)]
= lim

n→∞ μ̂n

[(
R
∞ \

∞⋃
k=1

R
k
I

)⋂
R
n
I

]
= 0.

�

It now follows from our definition of X1 that:

Corollary 2.31. λ∞(X2) = 0.

Theorem 2.32. There exists a family of sets {Ak} ⊂ B[R∞
I ] with

λ∞(Ak) < ∞, and a set N of measure zero such that:

R
∞
I =

( ∞⋃
k=1

Ak

)
∪N, (2.3)

so that λ∞(·) is σ-finite.

Proof. Since λ∞(·) is regular and concentrated on X1, we can set
N = X2. To show Eq. (2.3) holds, let {xk} be the set of vectors in R

∞

with rational coordinates and let Bk be the unit cube with center xk
so that λ∞(Bk) < ∞ for all k and

R
∞
I =

∞⋃
k=1

Bk.

Let Ak = Bk \X2. �
Remark 2.33. Theorem 2.32 shows that λ∞ is a σ-finite measure.
(This result is known to hold for finite Radon measures on Fréchet
spaces.) Since λ∞(X2) = 0, it is clear that the support of λ∞ is
contained in X1 =

⋃∞
n=1R

n
I . This result is a special case of a general

result due to Yamasaki [YA].

Theorem 2.34 (Yamasaki). The support of λ∞ is �∞.
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2.1.5. Translations. In this section we prove that �1 is the largest
(dense) group of admissible translations for R∞

I . This result was first
proven by Yamasaki [YA].

Let Tλ∞ be the largest group of admissible translations for R∞
I .

Theorem 2.35. If A ∈ B[R∞
I ] then λ∞(A− x) = λ∞(A) if and only

if Tλ∞ = �1.

Proof. Since λ∞(X2) = 0, it suffices to prove our result for A ⊂
B[X1]. If x = (xi) ∈ �1 is fixed, then there is an N1 such that, for all
n > N1, |xn| < 1

2 , so that x ∈ R
n
I , for all n > N1.

Since X1 =
⋃∞

m=1 R
m
I , there is N2 ∈ N such that, for all n > N2,

A ∈ B[Rn
I ]. Fix n > max{N1, N2} and let A = An ×

∏∞
k=n+1 I, where

An ∈ B[Rn
I ] and let Xn = (x1, x2, . . . , xn). Since λ∞ is translation

invariant on R
n
I ,

λ∞ [A− x] = λn [An −Xn] ·
∞∏

k=n+1

λ
{[−1

2 ,
1
2

] ∩ [−1
2 − xk,

1
2 − xk

]}

= λn [An] ·
∞∏

k=n+1

λ
{[−1

2 ,
1
2

] ∩ [−1
2 − xk,

1
2 − xk

]}

= λn [An] ·
∞∏

k=n+1

(1− |xk|),

Since x ∈ �1 and 0 < (1− |xk|) ≤ 1, we have

lim
n→∞

∞∏
k=n+1

(1− |xk|) = 1,

so that λ∞[A−x] = λ∞[A]. It follows that this is true for every x ∈ �1
and all A ∈ B[X1].

Now, suppose that y ∈ Tλ∞ , so that λ∞[A − y] = λ∞[A] for all
A ∈ B[X1]. Since B[Rn

I ] ⊂ B[X1] for all n, we must also have λ∞[A−
y] = λ∞[A] for all A ∈ B[Rn

I ]. In this case, with Yn = (y1, y2, . . . , yn),

λ∞ [A− y] = λn [An − Yn] ·
∞∏

k=n+1

λ
{[−1

2 ,
1
2

] ∩ [−1
2 − yk,

1
2 − yk

]}

= λn [An] ·
∞∏

k=n+1

(1− |yk|).
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This last result holds if A =
[−1

2 ,
1
2

]ℵ0 , so that An =
n∏

k=1

[−1
2 ,

1
2 ].

Thus, 1 = limn→∞
∞∏

k=n+1

(1− |yk|). It follows that
∑∞

k=1 |yk| < ∞, so

that y ∈ �1. �

2.2. Measure on Banach Spaces

Introduction. In this section, we explore the advantages of our con-
struction of λ∞(·) on R

∞
I as it relates to a measure theory for separable

Banach spaces.

2.2.1. Basis for a Banach Space. In what follows, B will denote a
Banach space with a Schauder basis (see Sect. 1.2 of Chap. 1). Recall
that.

Definition 2.36. A sequence (en) ∈ B is called a Schauder basis
(S-basis) for B if ‖en‖B = 1 and, for each x ∈ B, there is a unique
sequence (xn) of scalars such that

x = lim
k→∞

k∑
n=1

xnen =

∞∑
n=1

xnen.

We restrict ourselves to Banach spaces with an S-basis in this book
in order to avoid a pathology that never comes up in practice.

It is easy to see from the definition of a Schauder basis that, for
any sequence (xn) of scalars associated with a x ∈ B, limn→∞ xn = 0.

Let Jk =
[
− 1

2 ln(k+1) ,
1

2 ln(k+1)

]
and define

Jn =

∞∏
k=n+1

Jk, J =

∞∏
k=1

Jk.

Definition 2.37. Let {ek} be an S-basis for B and let x =
∑∞

n=1 xnen.
Recall that Pn(x) =

∑n
k=1 xkek and define Qnx = (x1, x2, . . . , xn).

(1) We define Bn
J by:

Bn
J = {Qn(x) : x ∈ B} × Jn,

with norm:

‖(xk)‖Bn
J
= max

1≤k≤n

∥∥∥∥∥
k∑

i=1

xiei

∥∥∥∥∥
B
= max

1≤k≤n
‖Pn(x)‖B .



2.2. Measure on Banach Spaces 67

(2) Since Bn
J ⊂ Bn+1

J , we set B∞
J =

⋃∞
n=1 Bn

J .

We define BJ by

BJ =

{
(x1,x2, . . .) :

∞∑
k=1

xkek ∈ B
}
⊂ B∞

J

and define a norm on BJ by

‖x‖BJ
= sup

n
‖Pn (x)‖B = �x �B .

Let B[B∞
J ] be the smallest σ-algebra containing B∞

J and define
B[BJ ] = B[B∞

J ] ∩ BJ . By Theorem 1.61 of Chap. 1, we know that,

� x�B = sup
n

∥∥∥∥∥
n∑

k=1

xkek

∥∥∥∥∥
B

(2.4)

is an equivalent norm on B. The following lemma shows that every
Banach space with an S-basis has a natural embedding in R

∞
I .

Lemma 2.38. When B carries the equivalent norm (2.4), the operator

T : (B,� · �B) → (BJ , || · ||BJ
),

defined by T (x) = (xk) is an isometric isomorphism from B onto BJ .

Definition 2.39. We call BJ the canonical representation of B in R
∞
I .

Definition 2.40. With B[BJ ] = BJ ∩B[B∞
J ], we define the σ-algebra

generated by B, and associated with B[BJ ] by:

BJ [B] =
{
T−1(A) | A ∈ B[BJ ]

}
=: T−1 {B [BJ ]} .

Remark 2.41. Since λ∞(An
J ) = 0, for An

J ∈ B[Bn
J ], with An

J compact,
we see that λ∞(Bn

J ) = 0, n ∈ N, so that λ∞(BJ) = 0 for every Banach
space with an S-basis. Thus, the restriction of λ∞ to BJ will not induce
a nontrivial measure on B. For this, we use a variation of a method
developed by Yamasaki [YA].

Definition 2.42. Define ν̄k, μ̄k on B ∈ B[R] by

ν̄k (B) =
λ (B)

λ (Jk)
, μ̄

k
(B) =

λ (B ∩ Jk)

λ (Jk)

and, for elementary sets B =
∏∞

k=1Bk, B ∈ B[Bn
J ], define ν̄nJ by:

ν̄nJ (B ) =

n∏
k=1

ν̄k (Bk )×
∞∏

k=n+1

μ̄k (Bk )
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Finally, we define νnJ to be the (Lebesgue) extension of ν̄nJ to all of Bn
J

and define νJ (B) = limn→∞ νnJ (B), for all B ∈ B[BJ ].

Theorem 2.43. The family of measures {νnJ } is increasing and, for
m < n, νnJ |Bm

J
= νmJ . Furthermore, νJ is σ-finite with its support

concentrated in B∞
J .

Proof. If B is an elementary set of B[Bn
J ], then

νnJ (B) =

m∏
k=1

νJ(Bk)×
n∏

k=m+1

νk(Bk)×
∞∏

k=n+1

μk(Bk)

and Bk = Jk for k > n, so that
∏∞

k=n+1 μk(Bk) = 1.

Since n > m, if we restrict to Bm
J , we see that νnJ |Bm

J
= νmJ . From

this, we also see that the family νnJ is increasing. Since νnJ is σ-finite
for all n, it follows that νJ is also. Thus, we only need to prove that
νJ is σ-additive. Suppose that {Ak} is a disjoint family of subsets of
B[BJ ]. Then, for each n

νnJ

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

νnJ (Ak).

Since the family νnJ is increasing with respect to n, we see that

νJ

( ∞⋃
k=1

Ak

)
= lim

n→∞ νnJ

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

lim
n→∞ νnJ (Ak) =

∞∑
k=1

νJ(Ak).

�

Definition 2.44. If B is a Banach space with an S-basis and A ∈
BJ [B], we define λB(A) = νJ [T (A)].

Remark 2.45. Our choice of the family {Jn} ensures that every
Banach space with an S-basis can be embedded in R

∞
I as a closed

subspace of B∞
J . It is clear that other families {J ′

n} will also produce
a (slightly) different version of Lebesgue measure on B. Thus, unlike
λ∞ on R

∞
I , λB is not unique. When the family {Jn} is used, we call

λB the canonical version of Lebesgue measure associated with B. (To
avoid confusion, the canonical version is the only one we will use in
the book.)
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2.3. Integrable Functions

In this section we discuss measurable functions for R
∞
I and for sep-

arable Banach spaces with an S-basis. We then define the Lebesgue
integral and extend the standard convergence and limit theorems to
our setting. We will be brief because the proofs are close to the same
ones for Rn.

2.3.1. Measurable Functions. Since BJ ⊂ R
∞
I , it suffices to discuss

functions on R
∞
I . Let x = (x1, x2, x3, . . . ) ∈ R

∞
I , let

In =

∞∏
k=n+1

[−1
2 ,

1
2

]
and let

hn(x) =

∞⊗
k=n+1

χI(xk),

where χI is the characteristic function for the interval I =
[−1

2 ,
1
2

]
.

Definition 2.46. Let Mn represent the class of measurable functions
on R

n. If x ∈ R
∞
I and fn ∈ Mn, let x̄ = (xi)

n
i=1, x̂ = (xi)

∞
i=n+1, define

f(x) = fn(x̄)⊗ hn(x̂) and let

Mn
I = {f(x) : f(x) = fn(x̄)⊗ hn(x̂), x ∈ R

∞
I } .

Definition 2.47. A function f : R
∞
I → R is said to be measur-

able and write f ∈ M, if there is a sequence {fn ∈ Mn
I } such that

limn→∞ fn(x) → f(x) λ∞-(a.e.).

This definition highlights our requirement that all functions on
infinite dimensional space must be constructively defined as finite dim-
ensional limits. The existence of functions satisfying Definition 2.47 is
not obvious, so we provide a proof below.

Theorem 2.48 (Existence). Suppose that f : R∞
I → (−∞,∞) and

f−1(A) ∈ B[R∞
I ] for all A ∈ B[R], then there exists a family of func-

tions {fn}, fn ∈ Mn
I , such that fn(x) → f(x), λ∞-(a.e.).

Proof. It suffices to prove the result for f ≥ 0. For x ∈ R
∞
I , x =

(xi)
∞
i=1 and, for each n ∈ N and k = 0, 1, 2, . . . , n2n, define

En,k =
{
(xi)

n2n

i=1 : k
2n < f(x) � (k+1)

2n

}
.
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With x̄ = (xi)
n2n
i=1 and x̂ = (xi)

∞
i=n2n+1, define fn(x) by:

fn(x) =
1

2n

n2n∑
k=0

kχEn,k
(x̄)⊗ hn′(x̂),

where n′ = n2n + 1. It is now easy to see that fn(x) converges to
f(x), λ∞-(a.e.). �

The following theorem shows that M inherits the vector lattice
structure of measurable functions on R

n, n ∈ N. The proof is almost
identical to the case for Mn, so we omit it. (Recall that for any
two functions, f, g, (f ∧ g)(x) = min{f(x), g(x)} and (f ∨ g)(x) =
max{f(x), g(x)}.)
Theorem 2.49. The space M is a vector lattice: if a ∈ R and let
f, g ∈ M, then

(1) af, |f | , fg and f + g are in M.

(2) f ∧ g, f ∨ g ∈ M.

(3) If {gn} ⊂ M, then

sup
n

gn, inf
n

gn, lim sup
n→∞

gn, and lim inf
n→∞ gn ∈ MI .

(4) If f ∈ M, and there is a set N with λ∞(N) = 0, such that
f(x) = g(x) for x ∈ R

∞
I \N , then g ∈ M.

(5) f = f+ − f−, where

f+ = |f |+f
2 , f− = |f |−f

2 ∈ M.

It is natural to ask if pointwise convergence of measurable functions
on compact sets is related to uniform convergence for λB(·) on B, in
the same way as it is for λn(·) on R

n. The following theorem shows
that the answer is yes for both λ∞(·) on R

∞ and λB(·) on B. The proof
is almost identical to that on R

n, so we omit it. The important point
is that both λ∞(·) and λB(·) are inner regular (i.e., every measurable
set of finite measure can be approximated by compact sets).

Theorem 2.50 (Egoroff’s Theorem). Let fn : BJ → R be measurable,
let A be a measurable set with 0 < λB[A] < ∞, and suppose that
fn → f , λB-(a.e.) on A. Then, for each ε > 0, there exists a compact
set Bε such that

(1) λB[A\Bε] < ε and

(2) fn → f uniformly on Bε.
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2.3.2. Integration on R
∞
I . In this section we provide a constructive

theory of integration on R
∞
I using the known properties of integration

on R
n
I . This approach has the advantage that all the standard the-

orems for Lebesgue measure apply. (The proofs are the same as for
integration on R

n.)

2.3.3. L1-Theory. Let L1[Rn
I ] be the class of integrable functions

on R
n
I . Since L1[Rn

I ] ⊂ L1[Rn+1
I ], we define L1[R̂∞

I ] =
⋃∞

n=1 L
1[Rn

I ].
We say that a measurable function f ∈ L1[R∞

I ], if there is a Cauchy-

sequence {fn} ⊂ L1[R̂∞
I ], such that limn→∞‖fn − f‖1 = 0.

Definition 2.51. If f ∈ L1[R∞
I ], we define the integral of f by:∫

R
∞
I

f(x)dλ∞(x) = lim
n→∞

∫
R
∞
I

fn(x)dλ∞(x).

Theorem 2.52. If f ∈ L1[R∞
I ], then the above integral exists.

Proof. The proof follows from the fact that the sequence in the defi-
nition of f is L1-Cauchy. �

Let Cc(R
n
I ) be the class of continuous functions on R

n
I which vanish

outside compact sets. We say that a measurable function f ∈ Cc(R
∞
I ),

if there is a Cauchy-sequence {fn} ⊂ ⋃∞
n=1Cc(R

n
I ) = Cc(R̂

∞
I ), such

that

lim
n→∞‖fn − f‖∞ = 0.

We define C0(R
∞
I ), the functions that vanish at ∞, in the same man-

ner.

Lemma 2.53. If f ∈ Cc(R
∞
I ) or C0(R

∞
I ), then f is continuous in the

supremum norm.

Proof. Let f(x) ∈ Cc(R
∞
I ) and let {xn : n ∈ N} be any sequence,

with xn ∈ R
n
I such that xn → x as n →∞.

Let ε > 0 is given. Since f ∈ Cc(R
∞
I ), there is a sequence of

functions {gn}, with gn ∈ Cc(R
n
I ), for each n such that, gn → f in the

supremum norm on Cc(R̂
∞
I ).

Since the support of f is contained in a compact set, we can choose
K1 such that, for k ≥ K1, |gk(xn)− f(xn)| < ε

3 . We can also choose
K2 such that, for k ≥ K2, |gk(x) − f(x)| < ε

3 . Let k = max{K1,K2}
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be fixed. Since gk ∈ Cc(R
k
I ), it is continuous. Thus, we can choose N

such that, for n ≥ N, |gk(xn)− gk(x)| < ε
3 . We now have:

|f(xn)− f(x)| ≤ |gk(xn)−f(xn)|+|gk(x)− gk(xn)|+|gk(x)−f(x)| < ε.

The same proof applies to C0(R
∞
I ) �

Theorem 2.54. Cc(R
∞
I ) is dense in L1[R∞

I ].

Proof. We prove this result in the standard manner, by reducing the
proof to positive simple functions and then to one characteristic func-
tion and finally using the approximation theorem to approximate a
measurable set which contains a closed set and is contained in an open
set. The details are left to the reader. �

In a similar fashion we can define the Lp spaces, 1 < p < ∞.

2.3.4. Integration on B. In this section, we discuss integration on
a Banach space B with an S-basis. Even if a reasonable theory of
Lebesgue measure exists on B, this is not sufficient to make it a useful
mathematical tool. In addition, all the theory developed for finite-
dimensional analysis, differential operators, Fourier transforms, etc.
are also required. Furthermore, applied researchers need operational
control over the convergence properties of these tools. In particular,
one must be able to approximate an infinite-dimensional problem as a
natural limit of the finite-dimensional case in a manner that lends itself
to computational implementation. This implies that a useful approach
also has a well-developed theory of convergence for infinite sums and
products. We will not be able to address all of these desired qualities
in this chapter. However, we begin with a few desired qualities for
such an integral:

(1) Since λ∞ restricted to B[Rn
I ] is equivalent to λn (and λB

restricted to B[Bn
J ] is equivalent to λn), we require that the

integral restricted to B[Rn
I ] or B[Bn

J ] be the integral on R
n.

(2) If f(x) ∈ M (the measurable functions on R
∞
I ), but f(x) /∈

Mn
I , for all n, then the integral, if it exists, must be the limit

of the integrals of the sequence of functions {fn(x)}, where
fn(x) ∈ Mn

I and fn(x) → f(x) λ∞-(a.e.).

When there is no chance for confusion, we will identify B with its
canonical representation BJ in R

∞
I and omit the subscript J .
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Definition 2.55. Let f : B → [0,∞] be a measurable function and let
λB be constructed using the family {Jk}. If {sn} ⊂ M is a increasing
family of nonnegative simple functions with sn ∈ Mn

I , for each n and
limn→∞ sn(x) = f(x), λB-(a.e.), we define the integral of f over B by:∫

B
f(x)dλB = lim

n→∞

∫
B

[
sn(x)

n∏
i=1

λ(Ji)

]
dλB(x).

Recall that, if g ∈ Mn
I , then g(x) = gn(x̄) ⊗ hn(x̂), where x̄ =

(x1, x2, . . . , xn), gn(x̄) ∈ Mn, x̂ = (xn+1, . . .) and hn(x̂) =
∏∞

k=n+1

χI(xk). From our definition of the integral, it is easy to see that, for
each fixed n∫

B

[
sn(x)

n∏
i=1

λ(Ji)

]
dλB(x) =

∫
Rn

snn(x̄)dλn(x̄).

Since the family of integrals is increasing, the limit always exists.

Theorem 2.56. If f : B → [0,∞] is a measurable function, then the
value of the integral

∫
B f(x)dλB(x) is independent of the sequence of

functions {fm ∈Mm
I } used to define it.

Proof. The proof is easy if
∫
B f dλB = ∞, so assume it is finite. Let

{fm} be a nonnegative increasing sequence for which fm ∈ Mm
I and

limm→∞ fm = f , λB-(a.e.) and let

β = sup

{∫
B

[
s

n∏
k=1

λ(Jk)

]
dλB : 0 ≤ s ≤ f, s ∈Mn

I

}
. (2.5)

Choose m1 ∈ N : m1 ≥ n and fm1 ≥ s. Since the integrals are
increasing, we have∫

B

[
s

n∏
k=1

λ(Jk)

]
dλB ≤

∫
B

[
fm1

m1∏
k=1

λ(Jk)

]
dλB

≤ lim
m→∞

∫
B

[
fm

m∏
k=1

λ(Jk)

]
dλB =

∫
B
f dλB.

Since the s is arbitrary, β ≤ ∫
B fdλB. Since

∫
B f dλB < ∞, let ε > 0,

and choose n0 ∈ N such that∫
B
fdλB −

∫
B

[
fn0

n0∏
k=1

λ(Jk)

]
dλB < ε,
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so that ∫
B
fdλB <

∫
B

[
fn0

n0∏
k=1

λ(Jk)

]
dλB + ε � β + ε.

Since this is true for all ε > 0,
∫
B fdλB ≤ β. It follows that

lim
m→∞

∫
B

[
fm

m∏
k=1

λ(Jk)

]
dλB

= sup
n

{∫
B

[
s

n∏
k=1

λ(Jk)

]
dλB : 0 � s � f, s ∈ Mn

I

}
,

so that the value of the integral does not depend on the sequence {fm}
chosen. �

Theorem 2.57. If f, g are nonnegative measurable functions and 0 ≤
c < ∞, we have:

(1) If f ≥ 0, then 0 ≤ ∫
B f(x)dλB(x) ≤ ∞;

(2)
∫
B cf(x)dλB(x) = c

∫
B f(x)dλB(x);

(3)∫
B
[f(x) + g(x)]dλB(x) =

∫
B
f(x)dλB(x) +

∫
B
g(x)dλB(x);

(4) If f ≤ g, then
∫
B f(x)dλB(x) ≤

∫
B g(x)dλB(x).

2.3.5. Probability Measures on B. If we replace our Lebesgue
measure λ∞, by the infinite product Gaussian measure μ∞, on R

∞
I ,

we obtain a countably additive probability measure, but μ∞(�2) = 0.
A discussion of this and related issues can be found in Dunford and
Schwartz [DS] (see p. 402). They show that, by using the standard pro-
jection method onto finite dimensional subspaces, to construct a prob-
ability measure directly on �2 leads to a rotationally invariant measure,
which is no longer countable additive. The resolution of this problem
led to the development of the Wiener measure [WSRM]. However,
another approach via Fourier transforms (or characteristic functions)
does allow one to induce a unique countable additive Gaussian mea-
sure on �2, which is the restriction of μ∞ (see De Prato [DP]). In this
section, we take a general approach to the construction of countable
additive probability measures on any Banach space B with an S-basis.
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Let ν be any probability measure on B[R], with density f . For
each n, each x ∈ Bn

J , and each A ∈ BJ [B], define fn
B(x) by:

fn
B(x) =

(
n⊗

k=1

f(xk)

)
⊗
( ∞⊗

k=n+1

χI(xk)

)

and define ν̄nJ on BJ [B] by:

ν̄nJ (A) =

∫
T (A)∩Bn

J

fn
B (x)dλB(x),

where T is the isometric isomorphism between B and BJ . Finally, let
νnJ to be the completion of ν̄nJ on BJ [B]. Clearly, each member of the
family {νnJ } defines a probability measure on B, which is absolutely
continuous with respect to λB. Furthermore, the restriction of νnJ to
Bm
J , m ≤ n, is a probability measure on R

m, which is absolutely
continuous with respect to λm.

If the sequence of functions {fn
B (·)} converges to a density fB(·),

then

νB(A) =
∫
T (A)

fB(x)dλB(x), A ∈ BJ [B],

is also a probability measure on B, which is absolutely continuous
with respect to λB. Our construction is general, but the existence of
a limit density is more delicate. Since our family of measures form an
inductive system on the family {Bn

J}, we can always apply the Daniell–
Kolmogorov Extension Theorem, to obtain a probability measure ν
on B∞

J (see [YA]). However, this measure need not be full on BJ ⊂
B∞
J , ν[BJ ] = 1. Even if it is full on BJ , it still need not be absolutely

continuous with respect to Lebesgue measure.

We consider two examples.

Example 2.58. The standard Gaussian measure on R is defined by:

dμ(x) =
1√
2π

exp

{
−|x|2

2

}
dλ1(x).

Let [
√
2π]y = x. Then dλ1(x) = [

√
2π]dλ1(y), so that dμ becomes:

dμ∗(y) = exp
{
−π |y|2

}
dλ1(y)

We call μ∗ the canonical representation of Gaussian measure μ.
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Let ν = μ∗ in our construction and let A ∈ BJ [B]. Then

νnB(A) =
∫
T (A)

dνnB(x)

=

∫
T (A)

e−π
∑n

k=1 |xk|2 ⊗
( ∞⊗

k=n+1

χI(xk)

)
dλB(x)

=

∫
An

e−π
∑n

k=1 |xk|2dλn(x̄),

where An = T (A) ∩ R
n and x̄ = (x1, . . . , xn). It follows that,

dνnB(x) = e−π
∑n

k=1 |xk|2 ⊗
( ∞⊗

k=n+1

χI(xk)

)
dλB(x)

or

dνnB(x) = e−π
∑n

k=1 |xk|2dλn(x̄)

on B[Bn
J ], for all n ∈ N. However, the sequence{

exp

{
−π

n∑
k=1

|xk|2
}
⊗
( ∞⊗

k=n+1

χI(xk)

)}

converges if and only if B is related to �p, 1 ≤ p ≤ 2, in the sense that∑∞
n=1 |xn|2 < ∞, for all x = (x1, x2, . . . ) ∈ BJ . In this case we can

write: dνB(x) = exp
{
−π

∑∞
k=1 |xk|2

}
dλB(x).

Definition 2.59. If ν = μ∗ we call νB(·) the universal representation
of Gaussian measure on B.
Example 2.60. If f(y) = 1

π
1

1+y2 is the density for the Cauchy dis-

tribution, make the change of variables y = πx. In this case, f(x) =
1

1+[πx]2
. If we set

fn
B(x) =

(
n⊗

k=1

f(xk)

)
⊗
( ∞⊗

k=n+1

χI(xk)

)
,

It is easy to check that for n > m,

|fn
B(x)− fm

B (x)| �
∣∣∣∣∣

m⊗
k=1

f(xk)

∣∣∣∣∣
n∑

k=m+1

|πxk|2 � π2
n∑

k=m+1

|xk|2.

It follows that fn
B (x) converges if and only if B is related to �p, 1 ≤

p ≤ 2, in the sense that
∑∞

n=1 |xn|2 < ∞, for all x = (x1, x2, . . . ) ∈ BJ .
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It is not hard to see that, for each probability measure ν defined
on B[R], with a density f(x), we can construct a corresponding family
of measures {νnJ } on {B[Bn

J ]}, which are absolutely continuous with
respect to λB.
2.3.5.1. Limit Theorems. In this section, we consider the standard
limit theorems of analysis. The proofs for R

∞
I are the same as for

R
n, so we only need proofs for B.

Theorem 2.61. (Fatou’s Lemma) Let {f i} ⊂ M be a nonnegative
family of functions, then:∫

B

(
lim inf
i→∞

f i(x)

)
dλB(x) ≤ lim inf

i→∞

∫
B
f i(x)dλB(x).

Proof. Let f(x) = lim inf i→∞ f i(x) and let {sn} is an increasing se-
quence of integrable simple functions with sn(x) → f(x), λB-(a.e.). By
definition of the integral on B, if ε > 0 is given, there is N = N(ε) ∈ N

such that, for all n > N ,∫
B
sn(x)

[
n∏

k=1

λ(Jk)

]
dλB(x)− ε �

∫
B
f(x)dλB(x)

�
∫
B
sn(x)

[
n∏

k=1

λ(Jk)

]
dλB(x) + ε.

For each i, let {sim} be an increasing sequence of integrable simple
functions such that

lim
m→∞ sim(x) = f i(x), λB − (a.e.).

By Fatou’s Lemma for Lebesgue measure on R
m,∫

B
sm(x)

[
m∏
k=1

λ(Jk)

]
dλB(x) � lim inf

i→∞

∫
B
sim(x)

[
m∏
k=1

λ(Jk)

]
dλB(x).

It follows that, for m > N ,∫
B
f(x)dλB(x) � lim inf

i→∞

∫
B
sim(x)

[
m∏
k=1

λ(Jk)

]
dλB(x) + ε.

Since the left-hand side is independent of m, we see that∫
B

(
lim inf
i→∞

f i(x)

)
dλB(x) ≤ lim inf

i→∞

∫
B
f i(x)dλB(x).

�
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Theorem 2.62 (Monotone Convergence Theorem). Let {fn} ⊂ M be
a nonnegative family of functions, with fn(x) ≤ fn+1(x). Then

lim
n→∞

∫
B
fn(x)dλB(x) =

∫
B

(
lim
n→∞ fn(x)

)
dλB(x).

Proof. Since fn(x) ≤ fn+1(x), the limit exists, which we denote by
f(x). Since fn(x) ↗ f(x), we can use Fatou’s Lemma to see that∫

B
f(x)dλB(x) =

∫
B

(
lim
n→∞ fn(x)

)
dλB(x)

=

∫
B

(
lim inf
n→∞ fn(x)

)
dλB(x)

≤ lim inf
n→∞

∫
B
fn(x)dλB(x)

= lim
n→∞

∫
B
fn(x)dλB(x).

On the other hand,

lim
n→∞

∫
B
fn(x)dλB(x) �

∫
B
f(x)dλB(x)

� sup
n

∫
B
fn(x)dλB(x)

= lim
n→∞

∫
B
fn(x)dλB(x).

so that

lim
n→∞

∫
B
fn(x)dλB(x) =

∫
B

(
lim
n→∞ fn(x)

)
dλB(x).

�
Definition 2.63. If f ∈ M, we define∫

B
f(x)dλB(x) =

∫
B
f+(x)dλB(x)−

∫
B
f−(x)dλB(x),

and say that f is integrable whenever both integrals on the right are
finite. The set of all integrable functions is denoted by L1[B,B[B], λB] =
L1[B].
Theorem 2.64 (Dominated Convergence Theorem). Let {g}, {fn} ⊂
M, with g ≥ 0, g ∈ L1(B) and |fn(x)| ≤ g(x), λB-(a.e.). If
limn→∞ fn(x) exists λB-(a.e.), then limn→∞ fn ∈ L1[B] and

lim
n→∞

∫
B
fn(x)dλB(x) =

∫
B

(
lim
n→∞ fn(x)

)
dλB(x).



2.3. Integrable Functions 79

Proof. Consider the nonnegative functions {g(x)+fn(x)}. By Fatou’s
Lemma, ∫

B
(g(x) + f(x))dλB(x)

� lim inf
n→∞

∫
B
(g(x) + fn(x))dλB(x)

=

∫
B
g(x)dλB(x) + lim inf

n→∞

∫
B
fn(x)dλB(x)

and so ∫
B
f(x)dλB(x) � lim inf

n→∞

∫
B
fn(x)dλB(x).

If we now use the nonnegative functions {g(x) − fn(x)}, we get:∫
B
(g(x) − f(x))dλB(x)

� lim inf
n→∞

∫
B
(g(x) − fn(x))dλB(x)

=

∫
B
g(x)dλB(x) + lim inf

n→∞

∫
B
−fn(x)dλB(x)

and so ∫
B
−f(x)dλB(x) � lim inf

n→∞

∫
B
−fn(x)dλB(x)

= − lim sup
n→∞

∫
B
fn(x)dλB(x)

If we put the two inequalities together, we have

lim sup
n→∞

∫
B
fn(x)dλB(x) �

∫
B
f(x)dλB(x) � lim inf

n→∞

∫
B
fn(x)dλB(x).

�

2.3.6. Lp Spaces. In this section, we will be brief because the results
are the same as those for R∞

I .

Definition 2.65. Let B be a Banach space with an S-basis, let Lp[B̂] =⋃∞
k=1 L

p[Bk], and let C0(B̂) =
⋃∞

n=1C0(Bn).

(1) We say that a measurable function f ∈ Lp[B] if there exists

a Cauchy sequence {fm} ⊂ Lp[B̂], such that

lim
m→∞

∫
B
|fm(x)− f(x)|pdλB(x) = 0.
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(2) We say that a measurable function f ∈ C0(B), the space of
continuous functions that vanish at infinity, if there exists a
Cauchy sequence {fm} ⊂ C0(B̂), such that

lim
m→∞ sup

x∈B
|fm(x)− f(x)| = 0.

Lemma 2.66. If f ∈ Cc(B) or C0(B), then f is continuous.

Theorem 2.67. Cc(B) is dense in Lp[B].
Theorem 2.68 (Lusin’s Theorem). Let f : B → R be measurable and
let A be a measurable set with 0 < λB[A] < ∞. Then, for each ε > 0,
there exists a compact set Kε such that

(1) λB[A \Kε] < ε and

(2) f |Kε is continuous.

Proof. Since f is measurable, let {sn} be a sequence of simple func-
tions, with sn(x) → f(x), λB-(a.e.). Since each sn is bounded on a
set of finite measure, sn ∈ L1[B]. By Egoroff’s Theorem, given ε > 0,
there is a compact set Kε such that λB[A \Kε] < ε and sn → f uni-
formly on Kε so that f ∈ L1[A]. Since the continuous functions with
compact support are dense in L1[A], we can replace the family {sn}
by a sequence of continuous functions {fn}, which converge uniformly
to f on Kε. Since a uniformly convergent sequence of continuous func-
tions on a compact set converges to a continuous function, we see that
f |Kε is continuous. �

We close this section with the Radon–Nikodym Theorem for Ba-
nach spaces. The proof follows that for Rn. (The important ingredient
is the σ-finite nature of λB.)

Let Ω be a subspace of B and (Ω,B) a measurable space, where
and B a Borel σ-algebra.

Definition 2.69. If μ, μ′ are any two measures on (Ω,B):

(1) We say that μ′ is singular with respect to μ and write it as
μ′⊥μ if, for each ε > 0, there exists a set X ∈ B such that
μ′(X) < ε and μ(Ω\X) < ε.

(2) We say that μ′ is absolutely continuous with respect to μ
and write it as μ′ � μ if, for each set X ∈ B such that, if
μ(X) = 0, then μ′(X) = 0.
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(3) If μ′ � μ and μ � μ′, we say that μ and μ′ are equivalent
and write μ′ ≈ μ.

Theorem 2.70. (Radon–Nikodym) If μ is a measure, which is ab-
solutely continuous with respect to λB, then there is a nonnegative
measurable function f such that, for each A ∈ B[B], we have

μ(A) =

∫
A
f(x)dλB(x). (2.6)

The function f is essentially unique, that is, if there is a measurable
function g satisfying Eq. (2.6), then f = g, λB-(a.e.). We write f =
dμ
dλB , λB-(a.e.).

2.3.7. Product Measures and Fubini’s Theorem. Let Ωi, i =
1, 2 be subspaces of B, with corresponding σ-algebras Bi = Ωi ∩B(B)
and measures mi = λB|Bi

, so that (Ωi,Bi,mi) , i = 1, 2 are measure
spaces.

Definition 2.71. We let B1 × B2 denote the smallest σ-algebra of
subsets of Ω1 × Ω2 which contains all sets of the form A1 × A2, with
A1 ∈ B1 and A2 ∈ B2.

Recall that λB is σ-finite, so that the same is true for m1 and m2.
Proofs of the following theorems may be found in Royden [RO].

Theorem 2.72. There is a unique measure m1⊗m2 defined on B1×
B2, such that

(m1 ⊗m2)(A1 ×A2) = m1(A1) ·m2(A2).

If the above is satisfied, we call m1 ⊗m2 the product measure of m1

and m2.

We can now define B1 × B2 measurable functions f(x, y) on
Ω1 × Ω2. The value of an integrable function f(x, y) on Ω1 × Ω2 is
denoted by∫∫

Ω1×Ω2

f(x, y)d(m1 ⊗m2)(x, y) or

∫∫
Ω1×Ω2

f(x, y)dm1(x)dm2(y).

Theorem 2.73 (The Fubini–Tonelli Theorem). A measurable func-
tion f(x, y) defined on Ω1 × Ω2 is integrable if and only if one of∫
Ω2

⎧⎨
⎩
∫
Ω1

|f(x, y)| dm1(x)

⎫⎬
⎭dm2(y) or

∫
Ω1

⎧⎨
⎩
∫
Ω2

|f(x, y)| dm2(y)

⎫⎬
⎭dm1(x),
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is finite, then∫∫
Ω1×Ω2

f(x, y)dm1(x)dm2(y) =

∫
Ω2

⎧⎨
⎩
∫
Ω1

f(x, y)dm1(x)

⎫⎬
⎭ dm2(y)

=

∫
Ω1

⎧⎨
⎩
∫
Ω2

f(x, y)dm2(y)

⎫⎬
⎭ dm1(x).

Furthermore,

(1) for almost all x the function fx defined by fx(y) = f(x, y) is
an integrable function on Ω2;

(2) for almost all y the function fy defined by fy(x) = f(x, y) is
an integrable function on Ω1;

(3)
∫
Ω2

f(x, y)dm2(y) is an integrable function on Ω1; and

(4)
∫
Ω1

f(x, y)dm1(x) is an integrable function on Ω2.

We need a slightly different version for later. Let Rj = R, for
each j ∈ N and set R

∞ =
∏∞

j=1Rj . Recall that, a slice through

z0 =
(
z01 , . . . zi, z

0
i+1, . . .

)
parallel to Ri in

∏∞
j=1Rj is the set:

S
(
z0; i

)
= Ri ×

∏{
z0k : k 	= i

} ⊂
∞∏
j=1

Rj .

Fix z0 ∈ R
∞, let Ω1 = S

(
z0; i

) ∩ B and let

Ω2 =
[{

z0i
}×∏

{zk ∈ R : k 	= i}
]
∩ B.

If we apply Theorem 2.73, we obtain the following result.

Corollary 2.74. With the above notation,∫
Ω1

∫
Ω2

f(zi, zi)dλΩ1(zi)dλΩ2(zi)=

∫
Ω2

⎧⎨
⎩
∫
Ω1

f(zi, zi)dλΩ1(zi)

⎫⎬
⎭ dλΩ2(zi)

=

∫
Ω1

⎧⎨
⎩
∫
Ω2

f(zi, zi)dλΩ2(zi)

⎫⎬
⎭ dλΩ1(zi) =

∫
B
f(z)dλB(z)

Furthermore,

(1) for almost all zi the function fzi defined by fzi(zi) = f(zi, zi),
is an integrable function on Ω2.
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(2) for almost all z the function fzi defined by fzi(zi) = f(zi, zi),
is an integrable function on Ω1.

(3)
∫
Ω2

f(zi, zi)dλΩ2(zi) is an integrable function on Ω1;

(4)
∫
Ω1

f(zi, zi))dλΩ1(zi) is an integrable function on Ω2.

2.3.8. Inequalities and Convolution. In this section we briefly
discuss the Holder and Minkowski inequalities for Lp[B], 1 ≤ p < ∞,
but they also hold for Lp[R∞]. The proofs are identical to those for
Lp[Rn], so they are omitted. We also discuss the convolution for func-
tions in L1[B], which will be used in Sect. 2.5.1, in the study of the
Fourier transform when B is a uniformly convex Banach space with an
S-basis.

Theorem 2.75. The (General) Hölder Inequality: Let pk ∈ (1,∞),

k = 1, . . . , N be such that,
∑N

k=1
1
pk

= 1. If fk ∈ Lpk [B] for each k,

then
∏N

k=1 fk ∈ L1[B] and
∣∣∣∣∣
∫
B

N∏
k=1

fk(x)dλB(x)

∣∣∣∣∣ �
N∏
k=1

‖fk‖pk .

Theorem 2.76 (The Minkowski Inequality). Let 1 ≤ p < ∞ and
f, g ∈ Lp[B]. Then f + g ∈ Lp[B] and

‖f + g‖p � ‖f‖p + ‖g‖p .

Definition 2.77. Let f, g ∈ M, the measurable functions on B. The
convolution, when it exists, is defined by

(f ∗ g) (x) =
∫
B
f(x− y)g(y)dλB(y).

Theorem 2.78. Let f, g ∈ L1[B], then (f ∗ g)(x) exists λB-(a.e.) and

‖f ∗ g‖1 � ‖f‖1 ‖g‖1 .

Proof. Since f, g ∈ L1[B], there are sequences {fn}, {gn}, ∈ L1[Bn]
such that fn → f (a.e) and gn → g, λB-(a.e.). Since each fn(x) and
gn(x) is in L1[Bn], we can apply Fubini’s Theorem to get
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∫
B
(fn ∗ gn) (x)dλB(x)

=

∫
B
dλB(x)

[∫
B
fn(y)gn(x− y)dλB(y)

]

=

∫
B
dλB(y)

[∫
B
fn(y)gn(x− y)dλB(x)

]

=

∫
B
fn(y)dλB(y)

∫
B
gn(x)dλB(x)

=

∫
B

[∫
B
fn(y)gn(x)dλB(y)

]
dλB(x).

It follows from the last equality that∫
B
(fn ∗ gn) (x)dλB(x) =

∫
B

[∫
B
fn(y)gn(x)dλB(y)

]
dλB(x).

Set c = supn ‖gn‖1 ‖fn‖1, hn(x) = max {|gn(x)| ‖fn‖1 , |fn(x)| ‖gn‖1}
and h(x) = max {|g(x)| ‖f‖1 , |f(x)| ‖g‖1}. We now have that,

|(f ∗ g)n (x)| � hn(x) � h(x), λB − (a.e.).

Since h(x) ∈ L1[B], the dominated conversion theorem shows that:∫
B
(f ∗ g) (x)dλB(x) = lim

n→∞

∫
B
(fn ∗ gn) (x)dλB(x)

and

‖f ∗ g‖1 � ‖f‖1 ‖g‖1 .

�

2.3.9. Young’s Theorem. In this section we establish a version of
Young’s Theorem for every separable Banach space with an S-basis:

Theorem 2.79. (Young) Let p, q, r ∈ [1,∞] with

1

r
=

1

p
+

1

q
− 1.

If f ∈ Lp[B] and g ∈ Lq[B], then the convolution of f and g, f ∗ g,
exists (a.s.), belongs to Lr[B] and

‖f ∗ g‖r � ‖f‖p ‖g‖q .
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Proof. First, fix n and assume that fn ∈ Lp[Bn] and gn ∈ Lq[Bn] are
nonnegative with ‖fn‖p = ‖gn‖q = 1. Let 1

q′ = 1− 1
q and 1

p′ = 1 − 1
p .

Now note that

1

r
+

1

q′
+

1

p′
=

1

r
+

(
1− 1

q

)
+

(
1− 1

p

)
= 1;

(
1− p

r

)
q′ = p

(
1

p
− 1

r

)
q′ = p

(
1− 1

q

)
q′ = p;

(
1− q

r

)
p′ = q

(
1

q
− 1

r

)
p′ = q

(
1− 1

p

)
p′ = q.

If we use Holder’s inequality (for three functions), we can write (fn ∗
gn)(x) as:

(fn ∗ gn) (x)

=

∫
B

[
f(y)p/rn g(x− y)q/rn

] [
f(y)1−p/r

n g(x− y)1−q/r
n

]
dλB(y)

�
[∫

B
f(y)png(x− y)qndλB(y)

]1/r [∫
B
f(y)(1−p/r)q′dλB(y)

]1/q′
[∫

B
g(x− y)(1−q/r)p′

n dλB(y)
]1/p′

.

This last inequality shows that

(fn ∗ gn) (x) �
[∫

B
f(y)png(x− y)qndλB(y)

]1/r
,

and so

(fn ∗ gn)r (x) �
[∫

B
f(y)png(x− y)qndλB(y)

]
.

Hence

(fn ∗ gn)r (x) � (fp
n ∗ gqn) (x).

From Theorem 2.79, we have ‖(fn ∗ gn)r‖1 � ‖fp
n‖1 ‖gqn‖1 = 1. Now

using the dominating convergence theorem, we get

‖(f ∗ g)r‖1 � ‖fp‖1 ‖gq‖1 = 1.

In the general case, we can write F (x) = f(x)/ ‖f‖p and G(x) =

g(x)/ ‖g‖q. �

In closing we note that Beckner [BE] and Brascamp–Lieb [BL] have
shown that on R

n we can write Young’s inequality as
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‖f ∗ g‖r � (Cp,q,r;n)
n ‖f‖p ‖g‖q ,

where Cp,q,r;n ≤ 1 is sharp. We conjecture that 1 is the sharp constant
for B.

2.4. Distributions on Uniformly Convex Banach Spaces

The foundations analysis is based on differentiation and integration.
Early in the history of analysis, it was realized that not all functions are
differentiable. Around the same time, developments in physics force-
fully suggested that information about the actual physical world al-
ways appears in the form of averages, or mean values and not as point-
wise defined values of functions, as was assumed in classical physics.
The theory of distribution attempts to solve this problem for both
analysis and physics, by imbedding classical functions into a larger
class of generalized functions. The basic idea is to replace pointwise
defined functions by their “mean value” in a certain sense, which is
described in this section. At this point, a review of Sect. 1.3 of Chap. 1
is recommended.

In this section, we briefly discuss distributions on uniformly convex
Banach spaces B, with an S-basis. We are brief, because proofs of the
main results for uniformly convex Banach spaces B (with an S-basis)
are direct adaptations of those for Rn. This section is a prelude to the
next on Schwartz spaces and Fourier transforms, which are important
for the general theory of path integrals, discussed in Chap. 8.

2.4.1. Preliminaries.

Definition 2.80. Let N∞
0 be the set of all multi-index infinite tuples

α = (α1, α2, . . . ), with αi ∈ N and all but a finite number of entries
are zero. We define the operators Dα and Dα by:

Dα =

∞∏
k=1

∂αk

∂xαk
i

, Dα =

∞∏
k=1

(
1

2πi

∂

∂xk

)αk

(The products are well defined, since each has only a finite number of
terms.)

Definition 2.81. Let B be a uniformly convex Banach space with an
S-basis. In this case, B′ is the dual space of B and the pairing 〈x, y〉 is
always well defined for x ∈ B and y ∈ B′.

(1) We recall that L1[B] is the L1-norm closure of L1[B̂] = ⋃∞
n=1

L1[Bn].
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(2) We say a function u ∈ L1
loc[B] if, for every compact set K ⊂ B,

u|K ∈ L1[B].
(3) We say that a sequence of functions {fm} ⊂ C

∞(Bn) con-
verges to a function f ∈ C

∞(Bn) if and only if, for all multi-
indices α, Dαf ∈ C(Bn) and, for x ∈ Bn and all N ∈ N,

lim sup
m→∞

[
sup
α

sup
‖x‖�N

|Dαf(x)−Dαfm(x)|
]
= 0.

(4) We say that a function f ∈ C
∞(B) if and only if there ex-

ists a sequence of functions {fm} ⊂ C
∞(B̂) = ⋃∞

n=1C
∞(Bn)

such that, for all multi-index infinite tuples α ∈ N0, D
αfm ∈

C
∞(B̂) and, for all x ∈ B and all N ∈ N,

lim sup
m→∞

[
sup
α

sup
‖x‖�N

|Dαf(x)−Dαfm(x)|
]
= 0.

Definition 2.82. We say that a measurable function f ∈ D(B) if

and only if there exists a sequence of functions {fm} ⊂ D(B̂) =⋃∞
n=1D(Bn) and a compact set K ⊂ B, which contains the support of

f − fm, for all m, and Dαfm → Dαf uniformly on K, for every multi-
index α ∈ N

∞
0 . We call the topology of D(B) the compact sequential

limit topology.

Definition 2.83. The set of all continuous linear functionals T ∈
D′(B), the dual space of D(B), is called the space of distributions
on B. A family of distributions {Ti} ⊂ D′(B) is said to converge to
T ∈ D′(B) if, for every φ ∈ D(B), the numbers Ti(φ) converge to T (φ).

The most important class of distributions are functions. For ex-
ample, if f ∈ L1

loc[B] and φ ∈ C
∞
c (B), we can use integration by parts

to define a generalized definition of the derivative of f by∫
B
Df(x)φ(x)dλB(x) = −

∫
B
f(x)Dφ(x)dλB(x).

In particular, if f(x) = H(x), the Heaveside function on B, x =
(x1, . . .),

H(x) =

{
1, xi ≥ 0, ∀i ∈ N,
0, ∃i ∈ N, ! xi < 0.
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then ∫
R

DH(x)φ(x)dλB(x) = −
∫
B
H(x)Dφ(x)dλB(x)

= φ(0) =

∫
B
δB(x)φ(x)dλB(x),

so that, in the generalized sense of distributions, DH(x) = δ(x), the
Dirac delta function on B.
Definition 2.84. If α is a multi-index and u, v ∈ L1

loc[B], we say that
v is the αth-weak (or distributional) partial derivative of u and write
Dαu = v provided that∫

B
u(Dαφ)dλB = (−1)|α|

∫
B
φv dλB

for all functions φ ∈ C
∞
c (B). Thus, v is in the dual space D′(B) of

D(B).
If u ∈ L1

loc[B] and φ ∈ D(B), then we can define Tu(·) by

Tu(φ) =

∫
B
uφdλB.

It is clearly a linear functional on D(B). If {φn} ⊂ D(B) and φn → φ
in D(B), with the support of φn−φ contained in a compact set K ⊂ B,
then

|Tu(φn)− Tu(φ)| =
∣∣∣∣
∫
B
u(x)[φn(x)− φ(x)]dλB(x)

∣∣∣∣
≤ sup

x∈K
|φn(x)− φ(x)|

∫
K
|u(x)|dλB(x).

Thus, by uniform convergence on K, we see that T is continuous, so
that T ∈ D′(B). Let

‖φ‖N = sup
x∈B

{|Dαφ(x)| : α ∈ N
∞
0 , |α| ≤ N}.

The proof of the following theorem is along the same lines as for D(Rn).

Theorem 2.85. Let D′(B) be the dual space of D(B).
(1) Every differential operator Dα, α ∈ N

∞
0 defines a bounded

linear operator on D(B).
(2) If T ∈ D′(B) and α ∈ N

∞
0 , then DαT ∈ D′(B) and

(DαT )(φ) = (−1)|α|T (Dαφ), φ ∈ D(B).
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(3) If |T (φ)| ≤ C ‖φ‖N for all φ ∈ D(K), for some compact set
K ⊂ B, then

|(DαT )(φ)| ≤ C ‖φ‖N+|α|
and DαDβT = DβDαT .

(4) If g = Dαf exists as a classical derivative and g ∈ L1
loc[B],

then Tg ∈ D′(B) and

(−1)|α|
∫
B
f(x)(Dαφ)dλB(x) =

∫
B
g(x)φ(x) dλB(x)

for all φ ∈ D(B).
(5) If f ∈ C

∞(B), T ∈ D′(B), then fT ∈ D′(B), with fT (φ) =
T (fφ) for all φ ∈ D(B) and

Dα(fT ) =
∑
β≤α

cαβ(D
α−βf)(DβT ).

Our decision to be brief and restricted because of our objectives
should not be interpreted to mean that the study of distributions on
uniformly convex Banach spaces is not an interesting and important
subject in its own right. For example, to our knowledge, the concept
of a weak solution to an initial value problem for a partial differential
equation in infinitely many variables has not been formulated. The
interested reader is encouraged to explore the many possible questions
and applications.

2.5. The Schwartz Space and Fourier Transform

On R
n the Fourier transform can be defined in a number of equivalent

ways. However, in the infinite dimensional case, there is only one
possibility. Let B be a uniformly convex Banach space with an S-basis.

First, we need to specify our conventions. Recall, that B is its
representation BJ ∈ R

∞. Also recall that any α ∈ N
∞
0 only has a

finite number of nonzero terms. If x = (x1, x2, . . .) ∈ B and α ∈
N
∞
0 , α = (α1, α2, . . .), we define x

α by xα =
∏∞

k=1 x
αk
k , a finite product

of real or complex numbers.

Definition 2.86. Let ex(y) = e2πi〈x,y〉 and let α ∈ N
∞
0 .

(1) If x ∈ B, we define

Dαex(y) = xαex(y), where xα =

∞∏
k=1

xαk
k .
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(2) If P (·) is a polynomial with complex coefficients and x ∈ B,
then

P (x) =
∑

cαx
α =

∑
cα

∞∏
k=1

xαk
k .

(3) We define P (D) and P (−D) by

P (D) =
∑

cαDα, P (−D) =
∑

(−1)|α|cαDα,

so that P (D)ex(y) = P (x)ex(y), for all x.

(4) We define τy on f(x) ∈ M (measurable functions on B), by
τyf(x) = f(x− y).

Definition 2.87. A function f ∈ C
∞(B) is called a Schwartz function,

or f ∈ S(B), if and only if, for all multi-indices α and β in N
∞
0 , the

seminorm ρα,β (f) is finite, where

ρα,β(f) = sup
x∈B

∣∣∣xαDβf(x)
∣∣∣ . (2.7)

Theorem 2.88. S(B) (respectively S(B′)) is a Fréchet space, which
is dense in C0(B).

Proof. We prove the result for S(B). If α, β ∈ N
∞
0 then the function:

d (f, g) =
∑
α,β

ρ(α,β) (f − g)

2|α|+|β| [1 + ρ(α,β) (f − g)
]

is a translation invariant metric on S(B). It is easy to see that S(B)
is locally convex and that the family of seminorms separate points,
so it suffices to prove that S(B) is complete. Let {fk} be a Cauchy
sequence in S(B). This means that

lim
m,n→∞ d (fm, fn) =

∑
α,β

ρ(α,β) (fm − fn)

2|α|+|β| [1 + ρ(α,β) (fm − fn)
] = 0,

if and only if limm,n→∞ ρ(α,β) (fm − fn) = 0, for every pair of multi-

indices (α, β) ∈ N
∞
0 ×N

∞
0 . Thus, the sequence of functions

{
xαDβfk

}
,

converge uniformly on B to a bounded function, say f(α,β), for each
pair (α, β) ∈ N

∞
0 × N

∞
0 . In particular, if (α, β) = (0, 0), then the

sequence of functions {fk}, converge uniformly on B to the bounded
function f(0,0). It follows from Eq. (2.7) that

f(α,β) (x) = xαDβf(0,0)(x)



2.5. The Schwartz Space and Fourier Transform 91

for all pairs (α, β) ∈ N
∞
0 × N

∞
0 , so that f(0,0) ∈ S(B) and S(B) is

complete. �

2.5.1. The Transform on Uniformly Convex Banach Spaces.
In this section we study the Fourier transform when B is a uniformly
convex Banach space with an S-basis. This is the natural framework if
one wants to remain close to the what is known on finite dimensional
Euclidean space. In the Appendix (Sect. 6.7) to Chap. 6, we offer a dif-
ferent definition of the Fourier transform, which applies to all Banach
spaces with an S-basis.

Definition 2.89. For each f ∈ L1[B,B[B], λB] we define F directly by:

[F(f)](y) = f̂(y) =

∫
B
exp{−2πi 〈x, y〉}f(x)dλB(x), (2.8)

where x ∈ B and y ∈ B′ and 〈x, y〉 is the pairing between B and B′.

The next theorem shows that the Fourier transform defined above
has all the properties we would expect from our understanding of the
same object on R

n.

Theorem 2.90. If f ∈ L1[B], then
(1) |f̂(y)| � ‖f‖1 for all y ∈ B′.

(2) f̂(y) is uniformly continuous in y ∈ B′ and ˆ‖f‖∞ � ‖f‖1.
(3) ∫

B
f(x)dλB(x) = f̂(0).

(4) (̂f ∗ g)(y) = f̂(y)ĝ(y).

Proof. The proof of (1) is clear. To prove (2), let {yn} be a sequence
in B′, yn → y, as n →∞. Then

∣∣∣f̂(y)−f̂(yn)
∣∣∣=
∣∣∣∣
∫
B
f(x) [exp{−2πi 〈x, y〉}− exp {−2πi 〈x, yn〉}] dλB(x)

∣∣∣∣
�
∫
B
|f(x)| |exp {−2πi 〈x, y − yn〉} − 1| dλB(x).
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Let ε > 0, be given and choose r > 0 such that
∫
‖x‖B>r |f(x)| dλB(x)

� ε
4 . Now,

∫
‖x‖B>r

|f(x)| |exp {−2πi 〈x, y − yn〉} − 1| dλB(x)

�
∫
‖x‖B>r

|f(x)| {|exp {−2πi 〈x, y − yn〉}|+ 1} dλB(x)

= 2

∫
‖x‖B>r

|f(x)| dλB(x).

It follows that

∣∣∣f̂(y)− f̂(yn)
∣∣∣ � ∫

‖x‖B�r
|f(x)|

∣∣∣e−2πi〈x,y−yn〉 − 1
∣∣∣ dλB(x)

+2

∫
‖x‖B>r

|f(x)| dλB(x)

� 2π ‖y − yn‖B′

∫
‖x‖B�r

|f(x)| ‖x‖B dλB(x)

+2

∫
‖x‖B>r

|f(x)| dλB(x)

� 2π ‖y − yn‖B′

∫
‖x‖B�r

|f(x)| ‖x‖B dλB(x) +
ε

2
.

If we set

δ = ε

[
4π

∫
‖x‖B�r

|f(x)| ‖x‖B dλB(x)

]−1

,

then, as soon as n is large enough (n > N , for someN), ‖y − yn‖B′ < δ,

then
∣∣∣f̂(y)− f̂(yn)

∣∣∣ < ε. Since δ does not depend on N , we see that f̂

is uniformly continuous.

The proof of (3) follows from the dominating convergence theorem.
To prove (4), we first use Theorem 2.78, to see that (f ∗ g)(x) exists
λB-(a.e.) and

‖f ∗ g‖1 � ‖f‖1 ‖g‖1 .
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We can now use

(f ∗ g) (x)e−2πi〈x,y〉

=

∫
B
f(z)g(x− z)e−2πi〈x,y〉dλB(z)

=

∫
B
f(z)e−2πi〈z,y〉g(x− z)e−2πi〈x−z,y〉dλB(z)

=
[(

fe−2πi〈y,x〉
)
∗
(
ge−2πi〈x,y〉

)]
(x),

to get our conclusion. �

In the case of measures, we can also define the Fourier transform:

Definition 2.91. Let M[B] be the space of finite measures on B,
with ‖μB‖ = |μB| (B) for μB ∈ M[B] and, where |μB| (B) is the total
variation. If μB ∈ M[B], we define the Fourier transform of μB, μ̂B, by

μ̂B(y) =
∫
B
e−2πi〈x,y〉dμB(x) = lim

n→∞

∫
Bn

e−2πi〈x,y〉ndμB(x),

where 〈x, y〉n is the pairing of Bn with B′n.

The proof of the next theorem is very close to same result for
functions.

Theorem 2.92. If μ ∈ M[B], then
(1) |μ̂(y)| � ‖μ‖ for all y ∈ B′.
(2) μ̂(y) is uniformly continuous and ‖μ̂‖∞ � ‖μ‖.
(3) ∫

B
dμB(x) = μ̂(0).

(4) (̂μ ∗ ν)(y) = μ̂(y)ν̂(y).

Theorem 2.93. Let f ∈ L1[B], then
(1) F(τzf)(y) = e−z(y)F(f)(y),

(2) τz[F(f)(y)] = F[ezf ](y).

(3) F : S(B) → S(B′), with

F[P (D)f ](z) = P (z)F[f ](z) and F[Pf ](z) = P (−D)F[f ](z).
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(4) The transformation F is a bijective linear continuous mapping
of S(B) → S(B′) and (inversion):

F−1 : S(B′) → S(B)
is also continuous.

(5) F : L1[B] → C0[B′].

Proof. For the proof of (1), we have:

F[τzf ] (y) =

∫
B
e−2πi〈x,y〉f(x− z)dλB(x) =

∫
B
e−2πi〈u+z,y〉f(u)dλB(u)

= e−2πi〈z,y〉
∫
B
e−2πi〈u,y〉f(u)dλB(u) = e−2πi〈z,y〉f̂(y) = e−z(y)F[f ] (y) .

The proof of (2) follows from:

τz [F (f) (y)] = f̂(y − z) =

∫
B
e−2πi〈x,y−z〉f(x)dλB(x)

=

∫
B
e2πi〈x,z〉e−2πi〈x,y〉f(x)dλB(x) =

∫
B
ez (x) e

−2πi〈x,y〉f(x)dλB(x)

= F[ezf ] (y) .

To prove (3), it is easy to see that if f(x) ∈ S(B) then P (D)f(x) ∈
S(B) and
{(P (D) f) ∗ ez} (x) = {f ∗ P (D) ez} (x)
= f ∗ P (z) ez = P (z) [f ∗ ez] (x) = P (z)

∫
B
e−2πi〈x−y,z〉f(x)dλB(x)

= P (z) e2πi〈y,z〉
∫
B
e−2πi〈x,z〉f(x)dλB(x) = P (z) e2πi〈y,z〉f̂(z).

If we set y = 0, we get the first part, F[P (D)f ](z) = P (z)F[f ](z). For
the second part, compute F[x1f ] and iterate, using induction to get
the general result.

For (4), let f(x) ∈ S(B), P (x) be a polynomial, use Leibniz formula
and the Closed Graph Theorem, to see that the transformations:

f(x) → P (x)f(x), f(x) → h(x)f(x), and f(x) → xαDβf(x)

are all continuous linear mappings of S(B) into S(B). Let Ŝ(B′) be

the set of all f̂(y) = F[f ](y), for f ∈ S(B). From (3), we see that

F[Pf ](y) and F[P (D)f ](y)

belong to Ŝ(B′). It is easy to see that F is injective, so we need to
show it is surjective.
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By the definition of S[B], we can find a sequence of functions {fn}
with fn ∈ S(Bn) ⊂ S(B) and fn → f , λB-(a.e.) as n → ∞. For what
follows, we recall that if νB is our Gaussian measure on B[Bn

J ], n ∈ N,
then (with (x̄) = (xi)

n
i=1, understood where appropriate),

dνB(x) =
{
e−π

∑n
k=1 |xk|2

}
dλn(x).

Furthermore, we see that:

ν̂Bn(y) =

∫
Rn

e−2πi〈x,y〉ne−π
∑n

k=1 |xk|2dλn(x) = e−π
∑n

k=1 |yk|2 ,

where 〈x, y〉n is the inner product on R
n. Fix n and apply Fubini’s

Theorem to the double integral∫
B′

∫
B
fn(x)e

−2π〈x,y〉ndνB(x)dλB′(y)

=

∫
B′

∫
B
fn(x)e

−2π〈x,y〉n
{
e−π

∑n
k=1 |xk|2 ⊗

( ∞⊗
k=n+1

χI(xk)

)}
×dλB(x)dλB′(y)

=

∫
B′
f̂n(y)

{
e−π

∑n
k=1 |yk|2 ⊗

( ∞⊗
k=n+1

χI(yk)

)}
dλB′(y)

=

∫
Rn

fn(x)e
−π

∑n
k=1 |xk|2dλn(x)

An easy calculation shows that, for each n and each α > 0, we have∫
Rn

f̂n(y)e
−π

∑n
k=1 | ykα |2dλn(y) =

∫
Rn

fn(
x
α)e

−π
∑n

k=1 |xk|2dλn(x)

Let α → ∞ to get

ν̂Bn(0)

∫
Rn

f̂n(y)dλn(y) = fn(0)

∫
Rn

e−π
∑n

k=1 |xk|2dλn(x).

Since ν̂Bn(0) =
∫
Rn e

−π
∑n

k=1 |xk|2dλn(x) = 1, it follows that

fn(0) =

∫
B′
f̂n(y)dλB′(y)

for all n. By definition of the integral, we have

f(0) =

∫
B′
f̂(y)dλB′(y).
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From here, we see that

f(x) = (τ−xf) (0) =

∫
B′
(̂τ−xf) (y) dλB′(y)

=

∫
B′
f̂ (y) e2πi〈x,y〉dλB′(y).

It follows that F is surjective, Ŝ(B′) = S(B′) and F−1 is continuous.
To prove (5), first note that S(B) is dense in L1[B], so that every
f ∈ L1[B] is the limit of a sequence {fn} in S(B). Since, for every

f ∈ S(B), f̂ ∈ S(B′) ⊂ C0(B′) and f̂n ∈ C0(B′), we are done. �

Corollary 2.94. Let B be a Banach space with an S-basis.

(1) If B is equivalent to �p, 1 ≤ p ≤ 2 and νB is the universal
representation of Gaussian measure on B, then ν̂B (y) does
not exist. However,

ν̂nB (y) = e−π
∑n

i=1 |yi|2 ⊗
( ∞⊗

i=n+1

χI(yi)

)
,

is well defined for every n ∈ N.

(2) If B is equivalent to �p, 2 < p < ∞ then the universal repre-
sentation of Gaussian measure νB does not exist on B. How-
ever, the universal representation of Gaussian measure

ν̂B (y) = e−π
∑∞

i=1 |yi|2 ,

does exist on B′.

Recall that gc(x) be the complex conjugate of g(x)

Theorem 2.95. The mapping F : S(B) → S(B′) extends to a contin-
uous linear isometry of U : L2[B] → L2[B′] satisfying the following:

(1)
∫
B f(x)gc(x)dλB(x) =

∫
B′ f̂(y)ĝ

c(y)dλB′(y).

(2)
∫
B |f(x)|2 dλB(x) =

∫
B′ |f̂(y)|2dλB′(y).

Proof. From the inversion property, we have that∫
B
f(x)gc(x)dλB(x) =

∫
B
gc(x)

{∫
B′
f̂(y)e2πi<x,y>dλB′(y)

}
dλB(x)

=

∫
B′
f̂(y)

{∫
B
gc(x)e2πi<x,y>dλB(x)

}
dλB′(y)
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The last term in parenthesis is the complex conjugate of ĝ(y), so we
have Parseval’s formula:∫

B
f(x)gc(x)dλB(x) =

∫
B′
f̂(y)ĝc(y)dλB∗(y). (2.9)

If we set g = f , we get our second result. Since S(B) is dense in L2[B]
and S(B′) is dense in L2[B′], we see from Eq. (2.8) that, relative to the

L2 metric, the mapping F, f :→ f̂ is a linear isometry of S(B) ⊂ L2[B]
onto S(B′) ⊂ L2[B′] (onto by inversion). It now follows that F has a
unique continuous extension U = F̄, U : L2[B] → L2[B′]. �

2.6. Application

In this section we explore two of the natural applications of results
from this chapter.

2.6.1. Pontryagin Duality. Let G be a locally compact abelian
(LCA) group (c.f., R

n). In this section, we follow the conventions
of group theory, so that the functional pairing between G and its dual
Ĝ is 〈x, x∗〉, where x ∈ G and x∗ ∈ Ĝ.

Recall the following theorem of Haar (Theorem 2.1).

Theorem 2.96. If G is an LCA group and B(G) is the Borel σ-algebra
of subsets of G, then there is a nonnegative regular translation invari-
ant measure m (Haar-measure), which is unique up to multiplication
by a constant.

Definition 2.97. A complex valued function α : G → C on an LCA
group is called a character on G provided that α is a homomorphism
and |α(g)| = 1 for all g ∈ G.

The set of all continuous characters of G defines a new group Ĝ,
called the dual group of G and (α1 + α2)(g) = α1(g) · α2(g). If we

define a map γ : G → ˆ̂
G, by γg(α) = α(g), then the following theorem

was first proven by Pontryagin (see [PO] or Rudin [RU1]):

Theorem 2.98 (Pontryagin Duality Theorem). If G is an LCA group,

then the mapping γ : G → ˆ̂
G is an isomorphism of topological groups.

Pontryagin Duality identifies those groups that are the character
groups of their character groups. If the group is not locally compact
there is no Haar measure. However Kaplan [KA1] has shown that
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the class of topological abelian groups for which the Pontryagin Du-
ality holds is closed under the operation of taking infinite products of
groups. This result immediately implies that this class is larger than
the class of locally compact abelian groups because the infinite prod-
uct of locally compact non-compact groups (for example, R∞ or B) is
not locally compact (see also [KA2]).

2.6.2. Uniformly Convex Banach Spaces. We want to show that
Pontryagin duality theory can be extended to all uniformly convex
Banach spaces with an S-basis. The next theorem is a recasting of
Theorem 2.90, (3) and (4).

Theorem 2.99. If B is a uniformly convex Banach space with an
S-basis, then B and B′ are duals as character groups (i.e., B′ = B̂).

Proof. From Theorem 2.90, if x∗ ∈ B′, we have:

[F(f)](x∗) = f̂(x∗) =
∫
B
exp{−2πi 〈x, x∗〉}f(x)dλB(x), (2.10)

where 〈x, x∗〉 is the pairing between B and B′. From the Plancherel
part of Theorem 2.95,

ˆ‖f‖22 = ‖f‖22 .
It follows that B and B′ are duals as character groups and

f(x) =

∫
B′
exp{2πi 〈x, x∗〉}f̂(x∗)dλB′(x∗).

�

Since Bn
J = BJ ∩ R

n
I , we can represent f̂n directly as a mapping

from L2[Bn
J , λB] → L2[B′n

J , λB′ ], by

[F(fn)](x
∗) = f̂n(x

∗) =
∫
B
exp{−2πi 〈x, x∗〉n}fn(x)dλB(x),

where 〈x, x∗〉n is the restricted pairing of x and x∗ to Bn
J and B′n

J

respectively.

If we define y(·) mapping B → C, by y(x) = exp{−2πi 〈y, x∗〉},
then y(x) is a character of B. Furthermore, it is easy to see that
(y1 + y2)(x) = y1(x) · y2(x). We now have the extension of the Pon-
tryagin Duality Theorem to all uniformly convex Banach spaces with
an S-basis.
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Theorem 2.100. If B is a uniformly convex Banach space with an

S-basis, then the mapping γx : B → ˆ̂B, defined by γx(y) = y(x), is an
isomorphism of topological groups.

In case B = H, is a Hilbert space, we can replace Eq. (2.10) by

f̂(x∗) = F[f ](x∗) =
∫
H
exp{−2πi 〈x, x∗〉H}f(x)dλH(x), (2.11)

so that H is self-dual (as expected), when we identify H with H′. From
Eq. (2.11), we also get the expected result that:

F
[
exp{−π ‖x‖2H}

]
(x∗) = exp{−π ‖x∗‖2H′}.

2.7. The Diffusion Equation

In order to see how the existence of λB impacts the theory of partial
differential equations, we show how to directly solve the initial value
problem for the diffusion equation in infinitely many variables.

First, for the diffusion equation on R
n we have (see Evans [EV]):

ut(x, t)− 1
2Δnu(x, t) = 0, u(x, 0) = φ0(x) ∈ C0(R

n).

It has a solution

u(x, t) = 1√
2πt

∫
Rn

exp
{
− |x−y|2

2t

}
φ0(y)dλn(y).

A proof of the following is the same as in [EV] (see Theorem 1, p. 47).

Theorem 2.101. Let φ0 ∈ C0(R
n) and let u(x, t) be as defined above.

Then

(1) u ∈ C
∞
0 (Rn, (0,∞)),

(2)

ut(x, t)− 1
2Δu(x, t) = 0, (x ∈ R

n, t > 0)

and for each y ∈ R
n,

(3)

lim
(x,t)→(x,0)

u(x, t) = φ0(x)

This is certainly a very nice result for an equation with only con-
tinuous initial data.
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2.7.1. Direct Representation in Hilbert Space. We now con-
sider our universal representation, which provides less smoothness for
the solution, but has the nice property that it does not depend on the
dimension of the space. Let y = x− z

√
2πt. In this case, we can write

the solution u(x, t) as:

u(x, t) =

∫
Rn

φ0

(
x−

√
2πt z

)
exp

{
−π |z|2n

}
dλn(z).

We know that

e−π‖z‖2n = e−π|z|2n ⊗
( ∞⊗

k=n+1

χI(zk)

)
.

It follows that∫
Rn
I

e−π‖z‖2ndλ∞(z) =

∫
Rn

e−π|z|2ndλn(z) ×
∞∏

k=n+1

∫
I
dλ(z)

=

∫
Rn

e−π|z|2ndλn(z) = 1.

We now observe that the equation for u(x, t) makes sense for any
separable Hilbert space H, so that:

u(x, t) =

∫
H
φ0

(
x−

√
2πt z

)
exp

{
−π ‖z‖2H

}
dλH(z). (2.12)

Theorem 2.102. If u(x, t) is defined by Eq. (2.12), it satisfies:

ut(x, t)− 1
2Δu(x, t) = 0, u(x, 0) = φ0(x) ∈ C

2
0(H) (2.13)

with

Δ =

∞∑
i=1

∂2

∂x2i
.

Proof. To see that Eq. (2.13) is satisfied, let yi = xi− zi
√
2πt, so that

∂

∂xi
=

∂

∂yi
,

∂

∂zi
= −

√
2πt

∂

∂yi
,

∂

∂t
=

∂yi
∂t

∂

∂yi
= −

√
π
2tz · ∇.

Now, let:

c1 = sup
x

|φ0| , c2 = sup
x

‖∇φ0‖ , c3 = sup
i,x

∣∣∣∣∂2φ0

∂x2i

∣∣∣∣ ,
c = max {c1, c2, c3} .
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so that ∣∣∣φ0

(
x− z

√
2πt

)
e−π‖z‖2H

∥∥∥ � ce−π‖z‖2H ,∣∣∣∣ ∂∂tφ0

(
x− z

√
2πt

)
e−π‖z‖2H

∣∣∣∣ � c ‖z‖H e−π‖z‖2H ,∣∣∣∣ ∂

∂xi
φ0

(
x− z

√
2πt

)
e−π‖z‖2H

∣∣∣∣ � ce−π‖z‖2H ,∣∣∣∣ ∂2

∂x2i
φ0

(
x− z

√
2πt

)
e−π‖z‖2H

∣∣∣∣ � ce−π‖z‖2H .

These bounds allow us to justify differentiating inside the integral. If
we let Ω1 = R, Ω2 = Hi and use Fubini’s theorem, we have:

∂2u(x, t)

∂x2i

=

∫
H

[
∂2

∂x2i
ϕ0(x− z

√
2πt)

]
e−π‖z‖2HdλH(z)

=

∫
Hi

e−π‖z‖2i
{∫ ∞

−∞

[
∂2

∂x2i
ϕ0(x− z

√
2πt)

]

× e−πz2i dλ(zi)

}
dλi

H(z)

and
∂u(x, t)

∂t

=

∞∑
i=1

{∫
H

[
∂yi
∂t

∂

∂yi
ϕ0(x− z

√
2πt)

]
e−π‖z‖2HdλH(z)

}

= −
√

π

2t

∞∑
i=1

{∫
Hi

e−π‖z‖2i
[∫ ∞

−∞
zi

(
∂

∂xi
ϕ0(x− z

√
2πt)

)

× e−πz2i dλ(zi)

]
dλi

H(z)

}

Thus, combining terms we have:

∂u(x, t)

∂t
− 1

2

∞∑
i=1

∂2u(x, t)

∂x2i

= −
√

π

2t

∞∑
i=1

{∫
Hi

e−π‖z‖2i
[∫ ∞

−∞
zi

(
∂

∂xi
ϕ0(x− z

√
2πt)

)

× e−πz2i dλ(zi)
]
dλi

H(z)

}
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−1

2

∞∑
i=1

{∫
Hi

e−π‖z‖2i
[∫ ∞

−∞

(
∂2

∂x2i
ϕ0(x− z

√
2πt)

)

× e−πz2i dλ(zi)

]
dλi

H(z)

}
.

If we integrate by parts in the inner integral above for each i, with

dα = −zie
−πz2i dλ(zi), α =

1

2π
e−πz2i ,

β =
∂φ0

∂xi
, dβ =

∂

∂zi

∂φ0

∂xi
dλ(zi)

=
∂yi
∂zi

∂

∂yi

∂φ0

∂xi
dλ(zi)

=
∂yi
∂zi

∂

∂xi

∂φ0

∂xi
dλ(zi)

=
∂yi
∂zi

∂2φ0

∂x2i
dλ(zi)

= −
√
2πt

∂2φ0

∂x2i
dλ(zi).

so that

−
√

π

2t

∫ ∞

−∞
zi
∂ϕ0

∂xi
e−πz2i dλ(zi)

=
1

2π

√
π

2t
e−πz2i

∂ϕ0

∂xi

∣∣∣∣
∞

−∞
+

1

2π

√
π

2t

∫ ∞

−∞

√
2πt

∂2ϕ0

∂x2i
e−πz2i dλ(zi)

=
1

2

∫ ∞

−∞

∂2ϕ0

∂x2i
e−πz2i dλ(zi).

Using this result, we see that

∂u(x, t)

∂t
− 1

2

∞∑
i=1

∂2u(x, t)

∂x2i
= 0.

From Eq. (2.12) and the dominating convergence theorem, it is clear
that

lim
(x,t)→(x,0)

u(x, t) = φ0(x)

�

Remark 2.103. It is easy to see that the same approach above also
applies to the Ornstein–Uhlenbech equation.
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It is more interesting to note that a restricted version of Theo-
rem 2.102 is true for every Banach space with an S-basis. The proof
is left to the interested reader. For a more general result, see the
Appendix (Sect. 6.7) of Chap. 6.

Theorem 2.104. Let B be a Banach space with an S-basis and let
φ0 ∈ C

2
0[B]. If we are given the equation:

ut(x, t) = Δu(x, t), u(x, 0) = φ0 (x) ∈ C
2
0 (B) , (2.14)

then there exist a family of functions {φn
0 (x)} ⊂ C

2
0[B] with each

φn
0 (x) ∈ C

2
0[Bn], such that

(1) the functions φn
0 (x) → φ0(x) and

(2) the second partials,
∂2φn

0

∂x2
i
→ ∂2φ0

∂x2
i
.

Furthermore, for each n ∈ N, the function

un(x, t) =

∫
Bn

φn
0

(
x−

√
2πtz

)
dνB(z)

=

∫
Bn

φn
0

(
x−

√
2πtz

)
e−π

∑n
i=1 |zi|2 ⊗ (⊗∞

i=n+1h(zi)
)
dλB(z)

=

∫
Rn

φn
0

(
x−

√
2πtz

)
e−π

∑n
i=1 |zi|2dλn(z)

(2.15)

solves the initial value problem:

unt (x, t)− 1
2Δnu

n(x, t) = 0, un(x, 0) = φn
0 (x).





References

[BA1] R. Baker, “Lebesgue measure” on R
∞. Proc. Am. Math. Soc.

113, 1023–1029 (1991)

[BA2] R. Baker, “Lebesgue measure” on R
∞, II. Proc. Am. Math.

Soc. 132, 2577–2591 (2004)

[BE] W. Beckner, Inequalities in Fourier analysis. Ann. Math.
102, 159–182 (1975)

[BL] H.J. Brascamp, E.H. Lieb, Best constants in Young’s in-
equality, its converse, and its generalization to more than
three functions. Adv. Math. 20, 151–173 (1976)

[BO] V.I. Bogachev, Differentiable Measures and the Malliavin
Calculus. Mathematical Surveys and Monographs, vol. 164
(American Mathematical Society, Providence, 2010)

[DP] G. Da Prato, Kolmogorov Equations for Stochastic PDEs.
Advanced Courses in Mathematics - CRM (Barcelona)
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Chapter 3

HK-Integral and
HK-Spaces

In this chapter we discuss the various integrals that integrate
nonabsolutely integrable functions and extend the Lebesgue inte-
gral. Our objective is the Henstock–Kurzweil integral (HK-integral).
It is the most well developed and the easiest to learn. We use it for the
Feynman operator calculus in Chap. 7 and the theory of path integrals
in Chap. 8. A second objective is a new class of separable Banach
spaces, KSp 1 ≤ p ≤ ∞, which include the HK-integrable functions
and contain the Lp spaces, 1 ≤ p ≤ ∞, as continuous dense and
compact embeddings. The Hilbert space KS2 is the natural for Feyn-
man’s (path integral) formulation of quantum mechanics, discussed in
Chap. 8.

In this chapter we will suppress the notation Rn
I , n ≥ 1 and assume

that I is understood. However, we will always use λ∞ for our measure.
This is to remind the reader that the results have direct extensions to
the infinite-dimensional case. The extensions will be accomplished in
Chap. 6, as a natural application of infinite tensor product Banach
space theory.

Summary. The first section provides a brief introduction to the
history of finitely additive measures and its place in analysis. Then
we introduce and discuss the most important integrals generated

109
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110 3. HK-Integral and HK-Spaces

by finitely additive measures that integrate nonabsolutely integrable
functions. We mainly focus on the HK-integral developed by Kurzweil
[KW] and Henstock [HS]. Loosely speaking, one uses a version of the
Riemann integral with the interior points chosen first, while the size
of the base rectangle around any interior point is determined by an
arbitrary positive function defined at that point. A fairly complete
discussion of the one-dimensional HK-integral is followed by a dis-
cussion of the general theory on R

n and a proof that the Lebesgue
integral is a special case. The general HK-integral can be found in
Henstock [HS], Tuo-Yeong [TY1], or Pfeffer (see [PF] and [PF1]).

We then turn to the construction and study of the main class of
Banach spaces used in the book, KSp 1 ≤ p ≤ ∞. These spaces are
natural for the HK-integrable functions and contain the Lp spaces,
1 ≤ p ≤ ∞, as continuous dense and compact embeddings.

We have also added a number of interesting topics that we hope
will attract a new generation of researchers to this new field of inquiry.
These topics are not required to understand (or use) the Feynman
operator calculus or path integrals, and can be omitted by those with
limited objectives. In the third section, we construct a very interesting
class of separable Banach spaces SDp[Rn]1 ≤ p ≤ ∞ which also con-
tain the nonabsolutely integrable functions. These spaces contain the
generalized Sobolev spaces and the test functions D[Rn], as dense con-
tinuous embeddings. In addition, they have the remarkable property
that, for any multi-index α, ‖Dαu‖SD = ‖u‖SD, where D is the distri-
butional derivative. For this reason, we call them strong distribution
Banach spaces. As an application, we obtain a priori bounds for the
important nonlinear term of the classical Navier–Stokes initial-value
problem. Finally, we introduce yet another family of spaces, which
include the HK-integrable functions and contain the space of functions
of bounded mean oscillation as a continuous dense embedding.

Background

The standard analysis course gives the distinct impression that the
Riemann integral is of limited value. In addition, one acquires an
unconscious but natural bias and unease concerning the use of finitely
additive set functions as a basis for integration theory. However, in
analysis proper finitely additive measures are not seen as unwanted
guests. In some cases finitely additive measures appear naturally and
have been advocated in others. As noted by Diestel and Uhl [DU],
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interest in these measures date back to the early works of Hildebrandt
[HI] and Fichtenholtz and Kantorovich [FK]. In this regard, we also
mention the important works of Alexandroff [AX], Bochner [BO1],
[BO2], Dunford and Schwartz [DS], and Yosida and Hewitt [YH]. In
response to the work of Leader on finitely additive measures [LE],
Diestel and Uhl stated “. . . one might be convinced that countable
additivity is more of a hinderance than help” (see [DU], p. 32).

In probability theory, Blackwell and Dubins, and Dubins and
Prikry (see [BD], [DUK], and [DU]) argue forcefully for the intrinsic
advantages in using finite additivity in the basic axioms of probabil-
ity theory. Their position is also supported by de Finetti’s [DFN]
penetrating analysis of the foundations of probability theory.

3.1. The HK-Integral

In this section, we develop the elementary HK-integral in one dimen-
sion. This will make it easy to obtain a sense of the differences relative
to the Lebesgue integral. The case for n > 1 will be discussed later.
For comparison, we first define the Riemann integral. (A very nice
elementary account of the HK-integral may be found in Bartle [BR],
while McShane [McS] uses this approach to give a nice elementary
account of the Lebesgue integral.)

3.1.1. One-Dimensional Riemann Integral.

Definition 3.1. Let [a, b] ⊂ R. The set P= {([ti−1, ti], τi) : 1 � i � n}
is called a tagged partition, where the τi ∈ [ti−1, ti] are called the tags.
We call P a tagged δ partition if, for 1 � i � n, ti − ti−1 < δ.

Definition 3.2. Let a tagged partition P= {([ti−1, ti], τi) : 1 � i � n}
be given. If f : [a, b] → R, we define the Riemann sum by (with
Δti = ti − ti−1)

# (f,P) =

n∑
i=1

f(τi)Δti.

We say that the number I ∈ R is the Riemann integral of f on the
interval [a, b] if for each ε > 0, there exists a δ > 0 such that, if P is a
tagged δ partition, ∣∣∣∣∣I −

n∑
i=1

f(τi)Δti

∣∣∣∣∣ < ε.



112 3. HK-Integral and HK-Spaces

3.1.2. One-Dimensional HK-Integral.

Definition 3.3. Let [a, b] ⊂ R, let δ(t) map [a, b] → (0,∞), we say
that the tagged partition P = {([ti−1, ti], τi) : 1 � i � n} is a HK-δ
partition if, for 1 � i � n, ti − ti−1 < δ(τi).

Remark 3.4. Gordon defines the phrase nearly everywhere (n.e.) to
mean “except for a countable set.”

Definition 3.5. The function f : [a, b] → R is said to have an
HK-integral if there is a number I such that, for each ε > 0, there
exists a function δ from [a, b] → (0,∞) such that, whenever P is a
HK-δ partition, then ∣∣∣∣∣

n∑
i=1

Δtif(τi)− I

∣∣∣∣∣ < ε.

In this case, we also write I = (HK)
∫ b
a f(t)dλ∞(t).

In the next two theorems, we see how the HK process extends
the Riemann integral and shows in what sense we can think of the
HK-integral as the reverse of the derivative. The first result assumes
that F : [a, b] → R is differentiable at each point, with f = F ′, while
the second only assumes that f = F ′ (n.e.) on [a, b].

Theorem 3.6. Let F : [a, b] → R be continuous. If F is differen-
tiable at each point of [a, b] and F ′(t) = f(t) on [a, b], then f(t) is
HK-integrable on [a, b] and

(HK)

∫ b

a
f(t)dλ∞(t) = F (b)− F (a).

Proof. Since f(t) = F ′(t) for t ∈ [a, b], given ε > 0 there exists
a function δε(t) such that, for each t ∈ [a, b], if s ∈ [a, b] and 0 <
|s− t| < δε(t), then

|[F (t)− F (s)]− (s− t)f(t)| ≤ ε |s− t| .
It follows that, if a ≤ s ≤ t ≤ r ≤ b and 0 < r − s ≤ δε(t),

|F (r)− F (s)− (r − s)f(t)|
� |F (r)− F (t)− (r − t)f(t)|+ |F (t)− F (s)− (t− s)f(t)|
� ε(r − t) + ε(t− s) = ε(r − s).
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Let P be a δε partition for [a, b]. Since F (b) − F (a) =
∑n

i=1 [F (ti)
−F (ti−1)], we have that∣∣∣∣∣F (b)− F (a)−

n∑
i=1

f(τi)Δti

∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=1

[F (ti)− F (ti−1)− f(τi)Δti]

∣∣∣∣∣
�

n∑
i=1

|[F (ti)− F (ti−1)− f(τi)Δti]|

�
n∑

i=1

εΔti = ε (b− a) .

Since ε was arbitrary, we see that the integral exists. �

The following refinement of Theorem 3.6 shows the power of rep-
lacing a constant with an arbitrary positive function.

Theorem 3.7. Let F : [a, b] → R be continuous. If F is differentiable
(n. e.) on [a, b] and F ′(t) = f(t) on (a, b), then f(t) is HK-integrable
on [a, b] and

(HK)

∫ b

a
f(t)dλ∞(t) = F (b)− F (a).

Proof. Since F (t) is continuous, let ε > 0 be given, then for each
t ∈ [a, b], there is a δ1(t) > 0, such that

|F (t)− F (s)| < ε

6
,

if s ∈ [a, b] ∩ (t− δ1(t), t+ δ1(t)).

Since F (t) is differentiable (n.e), there is a countable set N , such
that, for each t ∈ (a, b)N = [(a, b) ∩ N ]c, there exists a δ2(t) > 0 so
that ∣∣∣∣F ′(t)− F (u)− F (s)

u− s

∣∣∣∣ � ε

3(b− a)

when t ∈ [u, s] ⊆ (a, b)N ∩ (t− δ2(t), t+ δ2(t)).

Define δ3(t) by

δ3(t) = min
t∈(a,b)

{
δ1(t), δ2(t),

1
2(b− t), 12 (t− a)

}
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and let

δ(t) =

{
δ3(t), if t ∈ (a, b)N

ε
6(|f(b)|+|f(a)|+1) , if t = a ∨ b.

If P is a HK-δ partition then∣∣∣∣∣
n∑

i=1

{f(τi)Δti − (F (ti)− F (ti−1))}
∣∣∣∣∣

� |f(a)(t1−a)− (F (t1)−F (a))|+ |f(b)(b−tn−1)− (F (b)−F (tn−1))|

+

∣∣∣∣∣
n−1∑
i=2

{f(τi)Δti − (F (ti)− F (ti−1))}
∣∣∣∣∣

� [|f(a)|Δt1 + |F (t1)− F (a)|] + [|f(b)|Δtn + |F (b)− F (tn−1)|]

+

n−1∑
i=2

εΔti
3(b− a)

<
ε [|f(a)|+ |f(b)|]

6 [|f(a)|+ |f(b)|] + 1
+

ε

3
+

ε

3(b− a)

n−1∑
i=2

Δti < ε.

Since ε was arbitrary, f(t) is HK-integrable on [a, b] and

(HK)

∫ b

a
f(t)dλ∞(t) = F (b)− F (a).

�

Remark 3.8. Theorem 3.7 is still true if we only require f = F ′

(a.e.) but the proof is a little more involved (and we do not need the
result). However, neither Theorem 3.6 nor Theorem 3.7 is true for the
Lebesgue integral.

Example 3.9. The standard counter example is the continuous func-
tion F (t) on [0, 1], with F ′(0) = 0, F ′(t) = 2tsin(1/t2)−(2/t)cos(1/t2)
for irrational t ∈ (0, 1] and F ′(t) = 0 for rational t. Since F ′(t) ex-
ists (n.e) on [0, 1], it is easy to see that Theorem 3.7 is satisfied and
F (t) = t2sin(1/t2). It follows that

(HK)

∫ 1

0

(
2t sin

1

t2
− 2

1

t
cos

1

t2

)
dt =sin 1.

For another interesting example, let

F ′(t) =

{
2
t3
− 2 cos t

sin4t
if t ∈ (0, π2 ]

0 if t = 0.
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Then f(t) = F ′(t) is HK-integrable and

(HK)

∫ π
2

0
f(t)dt =

2

3
− 4

π2
.

The proofs of the following are close enough to the Riemann case
for the interested reader to fill in the details.

Theorem 3.10. Let f(t), g(t) be HK-integrable on [a, b] and c ∈ C,
then

(1) f(t) + g(t) is HK-integrable on [a, b] and

(HK)

∫ b

a
(f(t) + g(t)) dλ∞(t) = (HK)

∫ b

a
f(t)dλ∞(t) + (HK)

∫ b

a
g(t)dλ∞(t).

(2) cf(t) is HK-integrable and

(HK)

∫ b

a
cf(t)dλ∞(t) = c

{
(HK)

∫ b

a
f(t)dλ∞(t)

}
.

(3) If f(t) ≤ g(t), then

(HK)

∫ b

a
f(t)dλ∞(t) � (HK)

∫ b

a
g(t)dλ∞(t).

The next few results are true under the same conditions as for the
Lebesgue integral and some with more general conditions which are
not true for the Lebesgue integral. The interested reader can consult
Henstock [HS] for a proof in the general case.

Theorem 3.11. Let φ : [a, b] → R be differentiable at each t ∈ [a, b]
and suppose that F is differentiable on φ([a, b]). If f(u) = F ′(u) for
(n.e.) u ∈ φ([a, b]), then f has a HK-integral and:

HK

∫ b

a
(f ◦ φ) (t)φ′(t)dλ∞(t)

= (F ◦ φ) (t)|ba = F (t)|φ(b)φ(a) = HK

∫ φ(b)

φ(a)
f(u)dλ∞(u).

Proof. The proof is easy. Use the chain rule to see that

(F ◦ φ)′ (t) = (f ◦ φ) (t)φ′(t),

for all t ∈ [a, b]. If we apply Theorem 3.6 to both sides of the equation,
the result follows. �
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Let D([a, b]) be the set of all HK-integrable functions on [a, b]. The
following theorem provides another property of the HK-integral that
is not true for Riemann or the Lebesgue integral.

Theorem 3.12 (Hake’s Theorem). The function f ∈ D([a, b]) if and
only if f ∈ D([a, s]) for every s ∈ (a, b) and lims→b−

∫ s
a f(t)dλ∞(t)

exists. In this case, lims→b−
∫ s
a f(t)dλ∞(t) =

∫ b
a f(t)dλ∞(t).

Theorem 3.13. Let (fn)
∞
n=1 be a sequence of functions in D([a, b]).

The following holds.

(1) If fn → f uniformly λ∞-(a.e.), then f ∈ D([a, b]) and∫ b

a
f(t)dλ∞(t) = lim

n→∞

∫ b

a
fn(t)dλ∞(t).

(2) (Monotone Convergence) If fn(t) ≤ fn+1(t) λ∞-(a.e.) on
[a, b] and f(t) = limn→∞ fn(t). Then f ∈ D([a, b]) if and
only if

sup
n→∞

∫ b

a
fn(t)dλ∞(t) < ∞.

In this case,∫ b

a
f(t)dλ∞(t) = lim

n→∞

∫ b

a
fn(t)dλ∞(t).

(3) (Fatou’s Lemma) If fn(t) ≥ 0 for all n and lim infn→∞ fn(t) <
∞ λ∞-(a.e.). Then∫ b

a
lim inf
n→∞ fn(t)dλ∞(t) � lim inf

n→∞

∫ b

a
fn(t)dλ∞(t).

(4) (Dominated Convergence) If lim
n→∞ fn(t) = f(t), λ∞-(a.e.)

and there exists functions, g, h ∈ D([a, b]) such that

g(t) � fn(t) � h(t), λ∞ − (a.e.),

then f ∈ D([a, b]) and∫ b

a
f(t)dλ∞(t) = lim

n→∞

∫ b

a
fn(t)dλ∞(t).

The next theorem provides additional information about the rela-
tionship of the HK-integral relative to the Lebesgue. We will prove
(1) for Rn later in the section.
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Theorem 3.14. Let f(t) : [a, b] → R.

(1) If f(t) is Lebesgue integrable on [a, b], then it is HK-integrable

on [a, b] and HK-
∫ b
a f(t)dλ∞(t) =L-

∫ b
a f(t)dλ∞(t).

(2) If f(t) is HK-integrable and bounded on [a, b], then it is
Lebesgue integrable on [a, b].

(3) If f(t) is HK-integrable and nonnegative on [a, b], then it is
Lebesgue integrable on [a, b].

(4) If f(t) is HK-integrable on every measurable subset of [a, b],
then it is Lebesgue integrable on [a, b].

For later use, we note that one can define a norm on the class D(R)
of HK-integrable functions. Following Alexiewicz [AL], for f ∈ D(R),
we define ‖f‖D by

‖f‖D = sup
s

∣∣∣∣
∫ s

−∞
f(r)dλ∞(r)

∣∣∣∣ . (3.1)

General Theory. In this section, we discuss the various classical
integrals, which integrate nonabsolutely integrable functions, in order
to see how the HK-integral is related to other approaches. There are
two ways to define an integral. One can provide a descriptive definition
or an operational (or constructive) definition. A descriptive definition
describes the integral in relationship to its derivative without providing
any process for its construction. Complete proofs can be found in
Gordon [GOR], Tuo-Yeong [TY], [TY1], and Saks [SK]. The general
case can be found in Henstock [HS], or Pfeffer ([PF] and [PF1]).

The oscillation ω(F, [a, b]) of a function F on an interval [a, b] is
defined by:

ω (F, [a, b]) = sup {|F (x)− F (y)| : a � y < x � b} .
Definition 3.15. We define the weak variation, V (F,E), and the
strong variation, V∗(F,E), by:

V (F,E) = sup

{
n∑

i=1

|F (bi)− F (ai)|
}
,

V∗(F,E) = sup

{
n∑

i=1

ω (F, [ai, bi])

}
,

where the supremum is taken over all possible finite collections of
nonoverlapping intervals that have end points in E.



118 3. HK-Integral and HK-Spaces

(1) We say that F is of bounded variation on E, (BV), if
V (F,E) < ∞.

(2) We say that F is of restricted bounded variation on E, (BV∗),
if V∗(F,E) < ∞.

(3) We say that F is absolutely continuous on E, (AC), if for
each ε > 0, there exists a δ > 0 such that, for every collec-
tion {[ai, bi], 1 � i � n}, of nonoverlapping intervals with end
points in E and

∑n
i=1 (bi − ai) < δ, then

n∑
i=1

|F (bi)− F (ai)| < ε.

(4) We say that F is absolutely continuous on E in the restricted
sense, (AC)∗, if for each ε > 0, there exists a δ > 0 such
that, for every collection {[ai, bi], 1 � i � n}, of nonoverlap-
ping intervals with end points in E and

∑n
i=1 (bi − ai) < δ,

then
n∑

i=1

ω (F, [ai, bi]) < ε.

(5) We say that F is generalized absolutely continuous on E,
(ACG), if F |E is continuous and E is a countable union of
sets {Ei} such that F is (AC) on each Ei.

(6) We say that F is generalized absolutely continuous in the
restricted sense on E, (ACG)∗, if F |E is continuous and E
is a countable union of sets {Ei} such that F is (AC)∗ on
each Ei.

We recall that the set of functions of bounded variation on
[a, b], BV ([a, b]) is a Banach space with norm ‖h‖BV = ‖h‖∞ +
V (h, [a, b]).

Let C
k(E) denote the set of functions on E with k continuous

derivatives (we let C0(E) = C(E), the continuous functions on E).

Theorem 3.16. If E is a subset of [a, b], we have:

C
1(E) ⊂ AC(E) ⊂ ACG∗(E) ⊂ ACG(E) ⊂ C(E).

3.1.3. Descriptive Definitions. Let E be a measurable subset of R
and let λ∞(E) denote the Lebesgue measure of E.
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Definition 3.17. Let E be a measurable set and let c ∈ R.

(1) We say that c is a point of density for E if

dcE = lim
h→0+

λ∞ (E ∩ (c− h, c + h))

2h
= 1.

(2) We say that c is a point of dispersion for E if

dcE = lim
h→0+

λ∞ (E ∩ (c− h, c + h))

2h
= 0.

(3) We say that a function F : [a, b] → R is approximately con-
tinuous at c ∈ E ⊂ [a, b], if c is a point of density for E and
F |E is continuous at c.

(4) We say that a function F : [a, b] → R is approximately differ-
entiable at c ∈ E ⊂ [a, b], if c is a point of density for E and
F |E is differentiable at c. In this case, we write the derivative
as F ′

ap(c).

In the next theorem, we tie down the left end point for convenience.
(This theorem provides a descriptive definition of the most well known
of the possible integrals.) (For others, see Gordon [GOR] or Saks [SK].)

Theorem 3.18. Let F be a function defined on [a, b] with F (a) = 0,
then the following holds.

(1) If F is (AC) on [a, b], then F ′ exists (a.e) and, if F ′ is
Lebesgue integrable, then

∫ x
a F ′(y)dλ∞(y) = F (x).

(2) If F is (ACG∗) on [a, b], then F ′ exists (a.e) and∫ x
a F ′(y)dλ∞(y) = F (x) (as an HK, Perron, or restricted
Denjoy integral).

(3) If F is (ACG) on [a, b], then F ′
ap exists (a.e) and∫ x

a F ′
ap(y)dλ∞(y) = F (x) (as a wide sense Denjoy or Denjoy-

Khintchine integral).

Note the slight but important difference between (1) and (2). This
gives the qualitative distinction between the Lebesgue and the HK
(Perron or restricted Denjoy) integral. These latter integrals all differ
in their construction, with the HK being the simplest and the restricted
Denjoy the most complicated. This explains why the HK-integral has
become so popular in recent times.

3.1.3.1. n-Dimensional HK-Integral. There are a number of ways to
approach the process of recovering a function from its derivative in R

n,
which defines the HK-integral on Euclidean spaces. The approach of
Lee Tuo-Yeong is perfect for our purpose (see [TY] and [TY1]).



120 3. HK-Integral and HK-Spaces

All norms are equivalent on R
n; however, for the HK-integral the

maximal norm ‖x‖ = max
1�k�n

|xk| is natural. With this norm, the closed

ball B(x, r), is a cube centered at x with sides parallel to the coordinate
axis of length 2r. (It is a closed interval when n = 1.) If the closed
interval for side i about xi is [ai, bi], we represent B(x, r) as B(x, r) =
(J,x), where J =

∏n
i=1[ai, bi]. We will call J a closed interval in R

n.

Definition 3.19. If E is a compact ball in R
n, a partition P of E

is a collection {(Ji,xi) : xi ∈ Ji, 1 � i � m}, where J1,J2 . . . Jm are
nonoverlapping closed intervals (i.e., λ∞ [Ji ∩ Jj] = 0, i 	= j ) and⋃m

i=1 Ji = E.

Definition 3.20. If δ is a positive function on E, we say that P is a
HK-δ partition for E if for each i, Ji ⊂ B′ (xi, δ(xi)). The function δ
is called a gauge on E.

The next lemma shows that one can always find a HK-δ partition
for any compact set E ⊂ R

n. The proof is based on the Heine–Borel
Theorem from elementary analysis.

Lemma 3.21. Cousin’s Lemma If δ(·) is a positive function on E,
then a HK-δ partition exists for E.

Definition 3.22. A function f : E → R is said to be HK-integrable
on E, if there exists a number I such that for any ε > 0 there is a
gauge δ and HK-δ partition on E such that∣∣∣∣∣

m∑
i=1

f(xi)λ∞[Ji]− I

∣∣∣∣∣ < ε. (3.2)

In this case, we write

I = (HK)

∫
E
f(x)dλ∞(x).

We now show that the Lebesgue integral is a special case of the
HK-integral.

First we need the following, which gives an operational (or con-
structive) meaning to absolute continuity for functions on R

n.

Lemma 3.23. Let f ∈ L1[Rn]. If ε > 0, then there is a δ > 0 such
that, whenever E is a measurable set with λ∞[E] < δ,∣∣∣∣∣∣

∫
E

f(x)dλ∞(x)

∣∣∣∣∣∣ < ε.
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Proof. Let ε be given. Since f = f+− f−, it suffices to show that the
result is true for f > 0. In this case, there is a simple function s such
that 0 ≤ s ≤ f and∫

E

s(x)dλ∞(x) >

∫
E

f(x)dλ∞(x)− ε

2
.

Since f has a finite integral, there is a constant C with s ≤ C for all
x ∈ R

n. It follows that∫
E

f(x)dλ∞(x) =

∫
E

s(x)dλ∞(x) +

∫
E

(f(x)− s(x)) dλ∞(x)

�
∫
E

Cdλ∞(x) +

∫
E

f(x)dλ∞(x) −
∫
E

s(x)dλ∞(x) < Cλ∞(E) +
ε

2
.

Thus, if we set δ = ε
2C , we are done. �

Theorem 3.24. If E is a measurable subset of Rn and f : E → R

has a finite Lebesgue integral on E. Then it is HK-integrable on E
and given ε > 0, for each point x ∈ E there is an open set G(x)
containing x such that, whenever {B1, B2, . . . } is a family of nonover-
lapping closed sets contained in E such that λ∞(E \ ∪∞

k=1Bk) = 0 and
x1,x2, . . . satisfying

xk ∈ Bk ⊂ G(xk), then
∣∣∣∑n

i=1
f(xi)λ∞(Bi)− I

∣∣∣ < ε.

It follows that

(HK)

∫
E

f(x)dλ∞(x) = (L)

∫
E

f(x)dλ∞(x).

Proof. Since the Lebesgue integral is absolutely continuous, there is a
δ > 0 such that for all measurable sets A ⊂ E, λ∞(A) < δ implies that∫
A |f(x)| dλ∞(x) < ε

3 . Let ε
′ = ε

3(δ+λ∞(E)) and, for k = 0,±1,±2, . . . ,

let

Ek =
{
x
∣∣ (k − 1)ε′ < f(x) � kε′

}
.

For each k, choose an open set Gk ⊃ Ek such that

λ∞ (Gk \ Ek) <
1
3

δ

2|k|(|k|+ 1)
,
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and, with each x ∈ Ek, associate G(x) = Gk. Suppose {Bi} is a family
of nonoverlapping closed sets satisfying our condition. Let xi ∈ Ek(i),
so that Bi ⊂ Gk(i) and Bi \ Ek(i) ⊂ Gk(i) \ Ek(i). Then

∣∣∣∣∣
∑
i

f(xi)λ∞(Bi)− I

∣∣∣∣∣ =
∣∣∣∣∣∣
∑
i

∫
Bi

(f(xi)− f(x)) dλ∞(x)

∣∣∣∣∣∣
�
∑
i

∫
Bi

|(f(xi)− f(x))| dλ∞(x)

�
∑
i

∫
Bi∩Ek(i)

|(f(xi)− f(x))| dλ∞(x) +
∑
i

∫
Bi∩Ec

k(i)

|f(xi)| dλ∞(x)

+
∑
i

∫
Bi∩Ec

k(i)

|f(x)| dλ∞(x) = P +Q+R.

Thus, it suffices to show that each of the above terms is less
than ε

3 . For x ∈ Bi ∩ Ek(i), both f(x), & f(xi) lie in the open int-
erval ([k(i) − 1]ε′, k(i)ε′), so that

P =
∑
i

∫
Bi∩Ek(i)

|(f(xi)− f(x))| dλ∞(x)

�
∑
i

∫
Bi∩Ek(i)

ε′dλ∞(x) = ε′λ∞(E) <
ε

3
.

For Q, put those terms together that have a fixed value k, so that we
may write

Q =

∞∑
k=−∞

∑
k(i)=k

∫
Bi∩Ec

k(i)

|f(xi)| dλ∞(x)

�
∞∑

k=−∞

∑
k(i)=k

(|k|+ 1)ε′λ∞(Bi \ Ek)

�
∞∑

k=−∞
(|k|+ 1)ε′λ∞(Gk \ Ek) <

ε

3
.
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We can also write R as

R =
∑
i

∫
Bi∩Ec

k(i)

|f(x)| dλ∞(x)

=

∞∑
k=−∞

∑
k(i)=k

∫
Bi∩Ec

k(i)

|f(x)| dλ∞(x)

=

∫
A

|f(x)| dλ∞(x),

where A =
⋃∞

k=−∞
[⋃

k(i)=k(Bi \ Ek(i))
]
. Since, by assumption, the

sets Bi are nonoverlapping,

λ∞(A) =

∞∑
k=−∞

∑
k(i)=k

λ∞(Bi\Ek(i)) �
∞∑

k=−∞
λ∞(Bi\Ek) <

1
3

∞∑
k=−∞

δ

2|k|
= δ.

By absolute continuity of the integral and the definition of
δ, R < ε

3 . �

3.2. The HK-Type Banach Spaces

The most important factor preventing the widespread use of the
HK-integral has been the lack of a natural Banach space structure for
this class of functions (as is the case for the Lebesgue integral). The
purpose of this section is to introduce a class of Banach spaces that
have the correct properties. We focus on the first class (KSp Spaces)
because they are directly related to the Feynman operator calculus
and path integral. The other classes are briefly introduced because of
their potential for applications in other parts of analysis.

3.2.1. The Canonical KSp Spaces. Recall that the HK-integral is
equivalent to the (restricted) Denjoy integral. If we replace R by R

n

in Eq. (3.1), for f ∈ D(Rn), we have:

‖f‖D = sup
r>0

∣∣∣∣
∫
Br

f(x)dλ∞(x)

∣∣∣∣ < ∞, (3.3)

where Br is any closed cube of diagonal r centered at the origin in R
n

with sides parallel to the coordinate axes. (Note, this defines a norm
for both the restricted and wide sense Denjoy integrable functions.)

Now, fix n, and let Qn be the set {x = (x1, x2 · · · , xn) ∈ R
n} such

that xi is rational for each i. Since this is a countable dense set in R
n,
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we can arrange it as Qn =
{
x1,x2,x3, · · ·}. For each l and i, let Bl(x

i)

be the closed cube centered at xi, with sides parallel to the coordinate
axes and edge el =

1
2l
√
n
, l ∈ N. Now choose the natural order which

maps N×N bijectively to N:

{(1, 1), (2, 1), (1, 2), (1, 3), (2, 2), (3, 1), (3, 2), (2, 3), . . .}.
Let {Bk, k ∈ N} be the resulting set of (all) closed cubes {Bl(x

i)
|(l, i) ∈ N× N} centered at a point in Q

n and let Ek(x) be the char-
acteristic function of Bk, so that Ek(x) is in Lp[Rn] ∩ L∞[Rn] for
1 ≤ p < ∞. Define Fk( · ) on L1[Rn] by

Fk(f) =

∫
Rn

Ek(x)f(x)dλ∞(x). (3.4)

It is clear that Fk( · ) is a bounded linear functional on Lp[Rn] for
each k, ‖Fk‖ ≤ 1 and, if Fk(f) = 0 for all k, f = 0 so that {Fk}
is fundamental on Lp[Rn] for 1 ≤ p ≤ ∞ . Set tk = 2−k, so that∑∞

k=1 tk = 1 and define a measure dμ on R
n × R

n by:

dμ =

[ ∞∑
k=1

tkEk(x)Ek(y)
]
dλ∞(x)dλ∞(y).

We first construct our Hilbert space. Define an inner product ( · ) on
L1[Rn] by

(f, g) =

∫
Rn×Rn

f(x)g(y)cdμ

=

∞∑
k=1

tk

[∫
Rn

Ek(x)f(x)dλ∞(x)

] [∫
Rn

Ek(y)g(y)dλ∞(y)

]c
.

(3.5)

We call the completion of L1[Rn], with the above inner product, the
Kuelbs–Steadman space, KS2[Rn]. Steadman [ST] constructed this
space by adapting an approach developed by Kuelbs [KB] for other
purposes. Her interest was in showing that L1[Rn] can be densely
and continuously embedded in a Hilbert space which contains the
HK-integrable functions. To see that this is the case, let f ∈ D(Rn),
then:

‖f‖2KS2 =

∞∑
k=1

tk

∣∣∣∣
∫
Rn

Ek(x)f(x)dλ∞(x)

∣∣∣∣
2

� sup
k

∣∣∣∣
∫
Rn

Ek(x)f(x)dλ∞(x)

∣∣∣∣
2

� ‖f‖2D ,

so f ∈ KS2[Rn].
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Theorem 3.25. The space KS2[Rn] contains Lp[Rn] (for each p, 1 �
p � ∞) as dense subspaces.

Proof. By construction, we know that KS2[Rn] contains L1[Rn]
densely. Thus, we need to only show that Lq[Rn] ⊂ KS2[Rn] for
q 	= 1. Let f ∈ Lq[Rn] and q < ∞. Since |E(x)| = E(x) � 1 and
|E(x)|q � E(x), we have

‖f‖KS2 =

[ ∞∑
k=1

tk

∣∣∣∣
∫
Rn

Ek(x)f(x)dλ∞(x)

∣∣∣∣
2q
q

]1/2

�
[ ∞∑
k=1

tk

(∫
Rn

Ek(x) |f(x)|q dλ∞(x)

) 2
q

]1/2

� sup
k

(∫
Rn

Ek(x) |f(x)|q dλ∞(x)

) 1
q

� ‖f‖q .

Hence, f ∈ KS2[Rn]. For q = ∞, first note that vol(Bk)
2 ≤

[
1

2
√
n

]2n
,

so we have

‖f‖KS2 =

[ ∞∑
k=1

tk

∣∣∣∣
∫
Rn

Ek(x)f(x)dλ∞(x)

∣∣∣∣
2
]1/2

�
[[ ∞∑

k=1

tk[vol(Bk)]
2

]
[ess sup |f |]2

]1/2
�
[

1

2
√
n

]n
‖f‖∞ .

Thus f ∈ KS2[Rn], and L∞[Rn] ⊂ KS2[Rn]. �

The fact that L∞[Rn] ⊂ KS2[Rn], while KS2[Rn] is separable
makes it clear in a very forceful manner that separability is not an
inherited property. Before proceeding, we construct KSp[Rn].

To construct KSp[Rn] for all p, let f ∈ Lp[Rn] and define:

‖f‖KSp =

⎧⎨
⎩

{ ∞∑
k=1

tk
∣∣∫

Rn Ek(x)f(x)dλ∞(x)
∣∣p}1/p

, 1 � p < ∞,

supk�1

∣∣∫
Rn Ek(x)f(x)dλ∞(x)

∣∣ , p = ∞.

It is easy to see that ‖·‖KSp defines a norm on Lp[Rn]. If KSp[Rn] is
the completion of Lp[Rn] with respect to this norm, we have:

Theorem 3.26. For each q, 1 � q � ∞, KSp[Rn] ⊃ Lq[Rn] as dense
continuous embeddings.



126 3. HK-Integral and HK-Spaces

Proof. As in the previous theorem, by construction KSp[Rn] contains
Lp[Rn] densely, so we need to only show that KSp[Rn] ⊃ Lq[Rn] for
q 	= p. First, suppose that p < ∞. If f ∈ Lq[Rn] and q < ∞, we have

‖f‖KSp =

[ ∞∑
k=1

tk

∣∣∣∣
∫
Rn

Ek(x)f(x)dλ∞(x)

∣∣∣∣
qp
q

]1/p

�
[ ∞∑
k=1

tk

(∫
Rn

Ek(x) |f(x)|q dλ∞(x)

) p
q

]1/p

� sup
k

(∫
Rn

Ek(x) |f(x)|q dλ∞(x)

) 1
q

� ‖f‖q .

Hence, f ∈ KSp[Rn]. For q = ∞, we have

‖f‖KSp =

[ ∞∑
k=1

tk

∣∣∣∣
∫
Rn

Ek(x)f(x)dλ∞(x)

∣∣∣∣
p
]1/p

�
[[ ∞∑

k=1

tk[vol(Bk)]
p

]
[ess sup |f |]p

]1/p
� M ‖f‖∞ .

Thus f ∈ KSp[Rn], and L∞[Rn] ⊂ KSp[Rn]. The case p = ∞ is
obvious. �

Theorem 3.27. For KSp[Rn], 1 ≤ p ≤ ∞, we have:

(1) If fn → f weakly in Lp[Rn], then fn → f strongly in KSp[Rn]
(i.e., every weakly compact subset of Lp[Rn] is compact in
KSp[Rn]).

(2) If 1 < p < ∞, then KSp[Rn] is uniformly convex.

(3) If 1 < p < ∞ and p−1 + q−1 = 1, then the dual space of
KSp[Rn] is KSq[Rn].

(4) KS∞[Rn] ⊂ KSp[Rn], for 1 ≤ p < ∞.

Proof. The proof of (1) follows from the fact that if {fn} is any weakly
convergent sequence in Lp[Rn] with limit f , then∫

Rn

Ek(x) [fn(x)− f(x)] dλ∞(x) → 0

for each k. It follows that {fn} converges strongly to f in KSp[Rn].

The proof of (2) follows from a modification of the proof of the
Clarkson inequalities for lp norms (see [CL]).
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In order to prove (3), observe that, for p 	= 2, 1 < p < ∞, the
linear functional Lg, defined by

Lg(f)

= ‖g‖2−p
KSp

∞∑
k=1

tk

∣∣∣∣
∫
Rn

Ek(x)g(x)dλ∞(x)

∣∣∣∣
p−2

·
[∫

Rn

Ek(x)g(x)dλ∞(x)

]c ∫
Rn

Ek(y)f(y)dλ∞(y), f ∈ KSq,

is a duality map on KSq[Rn] for each nonzero g ∈ KSp[Rn]. We then
use the fact that KSp[Rn] is reflexive from (2). To prove (4), note
that f ∈ KS∞[Rn] implies that

∣∣∫
Rn Ek(x)f(x)dλ∞(x)

∣∣ is uniformly

bounded for all k. It follows that
∣∣∫

Rn Ek(x)f(x)dλ∞(x)
∣∣p is uniformly

bounded for each p, 1 ≤ p < ∞. It is now clear from the definition of
KS∞[Rn] that:

[ ∞∑
k=1

tk

∣∣∣∣
∫
Rn

Ek(x)f(x)dλ∞(x)

∣∣∣∣
p
]1/p

� M ‖f‖KS∞ < ∞.

�

Remark 3.28. There is flexibility in the choice of the family of posi-
tive numbers {tk},

∑∞
k=1 tk = 1. This is somewhat akin to the metric

used for R
∞. Recall that for any two points x, y ∈ R

∞, d(x, y) =∑∞
n=1

1
2n

|x−y|
1+|x−y| . The family of numbers { 1

2n } can be replaced by any

other sequence of positive numbers whose sum is one, without affecting
the topology.

There is also some ambiguity associated with the choice Q
n and

the order for N×N. (We have used simplicity to choose the order for
N×N.) The important fact is that, for any combination of orders, the
properties of KS2[Rn] are invariant.

We could replace the family of generating functions {Ek, k ∈ N} by
the Hermite functions on R

n. However, since the functions in KSp[Rn]
depend on the smoothness properties of the family {Ek, k ∈ N}, we
see that the definition of KSp[Rn] depends on our choice of the Ek.
We favor the present family because the Ek have compact support and
the weakest continuity properties.

We used the �p sequence space relationship to our norm to prove
(1) and (3). Recall that �1 ⊂ �p ⊂ �q ⊂ �∞, for 1 ≤ p < q ≤ ∞ (see
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Jones [J], p. 241). However, from (5), we see that the KSp spaces
cannot be viewed as special cases of the �p spaces.

We note that, since L1[Rn] ⊂ KSp[Rn] and KSp[Rn] is reflexive for
1 < p < ∞, the second dual

{
L1[Rn]

}∗∗
= M[Rn] ⊂ KSp[Rn]. Recall

that M[Rn] is the space of bounded finitely additive set functions
defined on the Borel sets B[Rn]. This space contains the Dirac delta
measure and free-particle Green’s function for the Feynman integral.

3.2.2. The Hilbert Space GS2[Rn]. We now turn to the construc-
tion of a second Hilbert space GS2[Rn], which is required for the exten-
sion of the Feynman operator calculus to non-reflexive Banach spaces.
This space is also the natural compliment to KS2[Rn] in a certain
general sense.

For every separable Banach space B that is dense in KS2[Rn],
we want to show that GS2[Rn] ⊂ B ⊂ KS2[Rn] as continuous dense
embeddings. We begin with a nice (and very useful) result due to
Lax [L]. Let the Banach space B be a dense continuous embedding
in a separable Hilbert space H, so that there is an M > 0 such that
‖x‖H � M‖x‖B, for all x ∈ B. In what follows, we assume that M = 1.

Theorem 3.29 (Lax). Let A ∈ L[B]. If A is self-adjoint on H (i.e.,
(Ax, y)H = (x,Ay)H ,∀x,y ∈ B), then A is bounded on H and ‖A‖H �
k ‖A‖B for some positive constant k.

Proof. Let x ∈ B and, without loss, we can assume that k = 1 and
‖x‖H = 1. Since A is self-adjoint,

‖Ax‖2H = (Ax,Ax) =
(
x,A2x

)
� ‖x‖H

∥∥A2x
∥∥
H =

∥∥A2x
∥∥
H .

Thus, we have ‖Ax‖4H �
∥∥A4x

∥∥
H, so it is easy to see that ‖Ax‖2nH �∥∥A2nx

∥∥
H for all n. It follows that:

‖Ax‖H � (
∥∥A2nx

∥∥
H)

1/2n � (
∥∥A2nx

∥∥
B)

1/2n

� (
∥∥A2n

∥∥
B)

1/2n(‖x‖B)1/2n � ‖A‖B (‖x‖B)1/2n.
Letting n →∞, we get that ‖Ax‖H � ‖A‖B for x in a dense set of the
unit ball of H. It follows that

‖A‖H = sup
‖x‖H�1

‖Ax‖H � ‖A‖B.

�
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For our second Hilbert space, fix B and define GS2
B[Rn] by:

GS2
B[R

n] =

{
u ∈ B

∣∣∣∣∣
∞∑
n=1

t−1
n |(u, En)2|2 < ∞

}
, with

(u, v)1 =
∑∞

n=1
t−1
n (u, En)2 (En, v)2 .

For convenience, let H1 = GS2
B[Rn] and KS2[Rn] = H2. for u ∈ B,

let T12u be defined by T12u =
∑∞

n=1 tn (u, En)2 En.
Theorem 3.30. The operator T12 is a positive trace class operator
on B with a bounded extension to H2. In addition, H1 ⊂ B ⊂ H2

(as continuous dense embeddings),
(
T
1/2
12 u, T

1/2
12 v

)
1
= (u, v)2 and(

T
−1/2
12 u, T

−1/2
12 v

)
2
= (u, v)1.

Proof. First, since terms of the form {uN =
∑N

k=1 t
−1
n (u, Ek)2 Ek :

u ∈ B} are dense in B, we see that H1 is dense in B. It follows that
H1 is also dense in H2.

For the operator T12, we see that B ⊂ H2 ⇒ (u, En)2 is defined for
all u ∈ B, so that T12 maps B → B and:

‖T12u‖2B ≤
[∑∞

n=1
t2n ‖En‖2B

] [∑∞
n=1

|(u, En)2|2
]
= M ‖u‖22 ≤ M ‖u‖2B .

Thus, T12 is a bounded operator on B. It is clearly trace class and,
since (T12u, u)2 =

∑∞
n=1 tn |(u, En)2|2 > 0, it is positive. From here,

it’s easy to see that T12 is self-adjoint on H2; so, by Theorem 3.24, it
has a bounded extension to H2.

An easy calculation now shows that
(
T
1/2
12 u, T

1/2
12 v

)
1
= (u, v)2

and
(
T
−1/2
12 u, T

−1/2
12 v

)
2
= (u, v)1.

Thus, we see that, given B dense in KS2[Rn], we can find a Hilbert
space GS2

B[R
n], with the property that:

GS2
B[R

n] ↪→ B ↪→ KS2[Rn] (as continuous dense embeddings).(3.6)

�

Remark 3.31. We call GS2
B[Rn] the Gross–Steadman space for B.

Historically, Gross [GR] first proved that every real separable Banach
space contains a separable Hilbert space as a dense embedding, and
that this space is the support of a Gaussian measure.
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3.2.3. Uniqueness. Our construction does not produce a unique rig-
ging for a given Banach space. To see this, let Ω be a bounded open
subset of Rn, and let C0(Ω) be the set of continuous functions on Ω,
which vanish on the boundary. Define H0[Ω] and H1

0 [Ω] by:

H0[Ω] =
{
u ∈ L2[Ω] : u = 0 on ∂Ω

}
H1

0 [Ω] = {u| ∇u ∈ H0[Ω], u = 0 on ∂Ω} .
The following example assumes some background in partial differential
equations, but shows that the Banach space C0(Ω) has (at least) two
pair of Hilbert spaces satisfying H1 ⊂ C0(Ω) ⊂ H2, as dense contin-
uous embeddings. It follows that our construction of a rigging is not
unique.

Example 3.32. The first pair is H1
0 [Ω] ⊂ C0(Ω) ⊂ H0[Ω]. In this

case, the norms for our respective Hilbert spaces are generated by the
following inner products:

〈u,J2v〉 = (u, v)2 =

∫
Ω
u(x)v(x)dλ∞

〈u,J1v〉 = (u, v)1 =

∫
Ω
∇u(x) · ∇v(x)dλ∞.

We can take J2 = I2 as the dual operator (for our dual bracket).
However, from

〈u,J1v〉 =
∫
Ω
∇u(x) · ∇v(x)dλ∞,

we must take J1 = [−Δ], with Dirichlet boundary conditions (see
Barbu [B], p. 4). It is not hard to show that the natural operator

relating the spaces must be T12 = [−Δ]−1, which is clearly positive
and self-adjoint.

With additional effort, one can even show that T12 is a trace class
operator on H1

0 [Ω], with a bounded extension to H0[Ω]. Furthermore,
as expected, we have (u, v)1 = (T−1

12 u, v)2 and (u, v)2 = (T12u, v)1.

For the second case, we follow a variation on the process used to
construct KS2. Let Qn

Ω = Q
n∩Ω and, for each k, let ek(x) = Ek(x)|Ω.

If we let

Fn(u) =

∫
Ω
en(x)u(x)dλ∞,
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then the set of functionals {Fn, n ∈ N} is fundamental on C0(Ω) (and
also L1

0[Ω]). Using tn = 1
2n , define an inner product on C0(Ω) by:

(u, v)2 =

∞∑
n=1

tnFn(u)F̄n(v)

=
∑∞

n=1
tn

∫
Ω

∫
Ω
en(x)ēn(y)u(x)v̄(y)dλ∞(x)dλ∞(y).

Letting H2 be the completion of C0(Ω) in the norm generated by the
inner product, we obtain our Hilbert space.

Since

‖u‖2 =
[ ∞∑
n=1

tn

∣∣∣∣
∫
Ω
en(x)u(x)dλ∞

∣∣∣∣
2
]1/2

,

just as with KS2, it is easy to show that H2 contains all of the Lp[Ω]
spaces, 1 ≤ p ≤ ∞ as continuous dense and compact embeddings.

Define operator T12 on C0[Ω] by:

T12u =

∞∑
n=1

tn (u, en)2 en.

Since C0[Ω] ⊂ H2, (u, en)2 is defined for all u ∈ C0[Ω]. Thus, T12

maps C0[Ω] → C0[Ω] and:

‖T12u‖20 ≤
[ ∞∑
n=1

t2n

] [∑∞
n=1

|(u, en)2|2
]
= M ‖u‖22 ≤ M ‖u‖20 .

Thus, T12 is a bounded operator on C0(Ω). Define H1 by:

H1 =

{
u ∈ C0(Ω)

∣∣∣∣∣
∞∑
n=1

1
tn
|(u, en)2|2 < ∞

}
,

(u, v)1 =
∞∑
n=1

1
tn

(u, en)2 (en, v)2 .

With the above inner product, H1 is a Hilbert space and, since terms of

the form {uN =
∑N

k=1
1
tn

(u, ek)2 ek : u ∈ C0[Ω]} are dense in C0(Ω),

we see that H1 is dense in C0(Ω). It follows that H1 is also dense
in H2. It is easy to see that T12 is a positive self-adjoint trace class
operator with respect to the H2 inner product so, using Lax’s Theorem,
T12 has a bounded extension to H2 and ‖T12‖2 ≤ ‖T12‖0. Finally, for
u, v ∈ H1, (u, v)1 = (T−1

12 u, v)2 and (u, v)2 = (T12u, v)1. It follows
that H1 is continuously embedded in H2, hence also in C0(Ω).
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3.3. Spaces of Sobolev Type

In many applications, it is convenient to formulate problems on one
of the standard Sobolev spaces Wm,p[Rn]. In this section our main
interest is in the Jones family of spaces, SDp, 1 ≤ p ≤ ∞. These
spaces contain the Kuelbs–Steadman spaces KSp[Rn] as well as the
Sobolev spaces Wm,p[Rn]. In addition, they contain the space D(Rn),
the test functions, all as a dense continuous embeddings. (In order to
closely parallel the conventional theory, we replace λ∞ with λn where
appropriate.)

3.3.1. The Jones Family of Spaces SDp, 1 ≤ p ≤ ∞. The theory
of distributions is based on the action of linear functionals on a space of
test functions. In the original approach of Schwartz [SC], both the test
functions and the linear functionals have a natural topological vector
space structure, which is not normable. For those interested in appli-
cations, this is an inconvenience, requiring additional study and effort.
Thus, in most applied contexts, the restricted class of Banach spaces
due to Sobolev has proved useful (see Leoni [GL]). In the last section,
we extended the Sobolev spaces to the nonabsolutely integrable case.
The purpose of this section is to introduce another class of Banach
spaces which contain the nonabsolutely integrable functions, but also
contains the Schwartz test function space as a dense and continuous
embedding. A related approach to the work in this section which also
leads to a Banach space structure is due to Talvila (see [TA1] and
[TA2]). We believe that these spaces will prove very important in the
future, so we repeat some construction details of the KSp-spaces.

3.3.2. The Jones Functions. In this section we develop the Jones
class of spaces, which also contains each of the spaces W k,p[Rn] 1 ≤
p ≤ ∞.

We begin with the construction of a special class of functions in
C
∞
c (Rn), but first we need the remarkable Jone’s functions.

Definition 3.33. For x ∈ R, 0 ≤ y < ∞ and 1 < a < ∞, define the
Jone’s functions g(x, y), h(x) by:

g(x, y) = exp
{−yaeiax

}
,

h(x) =

⎧⎪⎪⎨
⎪⎪⎩

∫ ∞

0
g(x, y)dy, x ∈ (− π

2a ,
π
2a)

0, otherwise.
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The following properties of g are easy to check:

(1)

∂g(x, y)

∂x
= −iayaeiaxg(x, y),

(2)

∂g(x, y)

∂y
= −aya−1eiaxg(x, y),

so that

iy
∂g(x, y)

∂y
=

∂g(x, y)

∂x
.

It is also easy to see that h(x) ∈ L1[− π
2a ,

π
2a ] and,

dh(x)

dx
=

∫ ∞

0

∂g(x, y)

∂x
dy =

∫ ∞

0
iy
∂g(x, y)

∂y
dy. (3.7)

Integration by parts in the last expression above shows that h′(x) =
−ih(x), so that h(x) = h(0)e−ix for x ∈ (− π

2a ,
π
2a). Since

h(0) =
∫∞
0 exp{−ya}dy, an additional integration by parts shows

that h(0) = Γ(1a + 1). For each k ∈ N let a = ak = π2k−1, h(x) =

hk(x), x ∈ (− 1
2k
, 1
2k
) and set εk = 1

2k+1 .

Let Q be the set of rational numbers in R and for each xi ∈ Q,
define

f i
k(x) = fk(x− xi) =

⎧⎨
⎩ ck exp

{
ε2k

|x−xi|2−ε2k

}
,

∣∣x− xi
∣∣ < εk,

0,
∣∣x− xi

∣∣ � εk,

where ck is the standard normalizing constant. It is clear that the
support, spt(f i

k) ⊂ [−εk, εk] = [− 1
2k+1 ,

1
2k+1 ] = Iik.

Now set χi
k(x) = (f i

k ∗hk)(x), so that spt(χi
k) ⊂ [− 1

2k+1 ,
1

2k+1 ]. For

x ∈ spt(χi
k), we can also write χi

k(x) = χk(x− xi) as:

χi
k(x) =

∫
Iik

fk
[(
x− xi

)− z
]
hk(z)dλn(z)

=

∫
Iik

hk
[(
x− xi

)− z
]
fk(z)dλn(z)

= e−i(x−xi)
∫
Iik

eizfk(z)dλn(z).
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Thus, if αk,i =
∫
Iik
eizf i

k(z)dλn(z), we can now define:

ξik(x) = α−1
k,iχ

i
k(−x) =

{
1
ne

i(x−xi), x ∈ Iik
0, x /∈ Iik,

so that
∣∣ξik(x)∣∣ < 1

n .

3.3.3. The Construction. To construct our space on R
n, let Qn be

the set of all vectors x in R
n, such that for each j, the component xj

is rational. Since this is a countable dense set in R
n, we can arrange

it as Qn =
{
x1,x2,x3, · · ·}. For each k and i, let Bk(x

i) be the closed

cube centered at xi with edge 1
2k

√
n
.

We choose the natural order which maps N× N bijectively to N:

{(1, 1), (2, 1), (1, 2), (1, 3), (2, 2), (3, 1), (3, 2), (2, 3), · · · }
and let {Bm, m ∈ N} be the set of closed cubes Bk(x

i) with (k, i) ∈
N× N and xi ∈ Q

n. For each x ∈ Bm, x = (x1, x2, . . . , xn), we define
Em(x) by :

Em(x) =
(
ξik(x1), ξ

i
k(x2) . . . ξ

i
k(xn)

)
with

|Em(x)| < 1, x ∈
∏n

j=1
Iik and Em(x) = 0, x /∈

∏n

j=1
Iik.

It is easy to see that Em(x) is in Lp[Rn]n = Lp[Rn] for 1 ≤ p ≤ ∞.
Define Fm( · ) on Lp[Rn] by

Fm(f) =

∫
Rn

Em(x) · f(x)dλn(x).

It is clear that Fm( · ) is a bounded linear functional on Lp[Rn] for
each m with ‖Fm‖ ≤ 1. Furthermore, if Fm(f) = 0 for all m, f = 0
so that {Fm} is a fundamental sequence of functionals on Lp[Rn] for
1 ≤ p ≤ ∞.

Set tm = 1
2m so that

∑∞
m=1 tm = 1 and define an inner product

( · ) on L1[Rn] by

(f, g)=
∑∞

m=1
tm

[∫
Rn

Em(x) · f(x)dλn(x)
][∫

Rn

Em(y) · g(y)dλn(y)
]c

.

The completion of L1[Rn] with the above inner product is a Hilbert
space, which we denote as SD2[Rn].
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Theorem 3.34. For each p, 1 � p � ∞, we have:

(1) The space SD2[Rn] ⊃ Lp[Rn] as a continuous, dense, and
compact embedding.

(2) The space SD2[Rn] ⊃ M[Rn], the space of finitely addi-
tive measures on R

n, as a continuous dense and compact
embedding.

Proof. Since SD2[Rn] contains L1[Rn] densely, to prove (1), we need
to only show that Lq[Rn] ⊂ SD2[Rn] for q 	= 1. Let f ∈ Lq[Rn] and
q < ∞. By construction, for every m, |Em(x)| < 1√

n
so that there is a

constant C = C(q), with |Em(x)|q � C|Em(x)|. It follows that:

‖f‖SD2 =

[∑∞
m=1

tm

∣∣∣∣
∫
Rn

Em(x)f(x)dλn(x)

∣∣∣∣
2q
q

]1/2

� C

[∑∞
m=1

tm

(∫
Rn

|Em(x)| |f(x)|q dλn(x)

) 2
q

]1/2

� C sup
m

(∫
Rn

|Em(x)| |f(x)|q dλn(x)

)1
q

� C ‖f‖q .

Hence, f ∈ SD2[Rn]. For q = ∞, first note that vol(Bm)2 ≤
[

1
2
√
n

]2n
,

so we have

‖f‖SD2 =

[∑∞
m=1

tm

∣∣∣∣
∫
Rn

Em(x)f(x)dλn(x)

∣∣∣∣
2
]1/2

�
[[∑∞

m=1
tm[vol(Bm)]2

]
[ess sup |f |]2

]1/2
�
[

1

2
√
n

]n
‖f‖∞ .

Thus f ∈ SD2[Rn], and L∞[Rn] ⊂ SD2[Rn]. To prove compactness,
suppose {fj} is any weakly convergent sequence in Lp[Rn], 1 ≤ p ≤ ∞
with limit f . Since Em ∈ Lq, 1/p+ 1/q = 1,∫

Rn

Em(x) · [fj(x)− f(x)] dλn(x) → 0

for each m. It follows that {fj} converges strongly to f in SD2[Rn].

To prove (2), we note that M[Rn] = L1[Rn]∗∗ ⊂ SD2[Rn]. �

Definition 3.35. We call SD2[Rn] the Jones strong distribution
Hilbert space on R

n.
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In order to justify our definition, let α be a multi-index of nonneg-

ative integers, α = (α1, α2, · · · αk), with |α| =∑k
j=1 αj . If D denotes

the standard partial differential operator, let

Dα = Dα1Dα2 · · ·Dαk .

Theorem 3.36. Let D[Rn] be C
∞
c (Rn) equipped with the standard loc-

ally convex topology (test functions).

(1) If φj → φ in D(Rn), then φj → φ in the norm topology of
SD2[Rn], so that D(Rn) ⊂ SD2[Rn] as a continuous dense
embedding.

(2) If T ∈ D′(Rn), then T ∈ SD2[Rn]
′
, so that D′(Rn) ⊂

SD2[Rn]
′
as a continuous dense embedding.

(3) For any f, g ∈ SD2[Rn] and any multi-index α, (Dαf, g)SD =
(−i)α(f, g)SD.

Proof. To prove (1), suppose that φj → φ in D(Rn). By definition,
there exists a compact set K ⊂ R

n, which is the support of φj −φ and
Dαφj converges to Dαφ uniformly on K for every multi-index α. Let
{EKl

} be the set of all El, with support Kl ⊂ K. If α is a multi-index,
we have:

lim
j→∞

‖Dαφj −Dαφ‖SD

= lim
j→∞

{ ∞∑
l=1

tKl

∣∣∣∣
∫
Rn

EKl
(x) · [Dαφj(x)−Dαφ(x)] dλn(x)

∣∣∣∣
2
}1/2

� M lim sup
j→∞,x∈K

|Dαφj(x)−Dαφ(x)| = 0.

Thus, since α is arbitrary, we see that D(Rn) ⊂ SD2[Rn] as a contin-
uous embedding. Since C

∞
c [Rn] is dense in L1[Rn], D(Rn) is dense in

SD2[Rn]. To prove (2) we note that, as D(Rn) is a dense locally convex
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subspace of SD2[Rn], by a corollary of the Hahn-Banach Theorem
every continuous linear functional, T defined on D(Rn), can be
extended to a continuous linear functional on SD2(Rn). By the Riesz
representation theorem, every continuous linear functional T defined
on SD2[Rn] is of the form T (f) = (f, g)SD, for some g ∈ SD2[Rn].

Thus, T ∈ SD2[Rn]
′
and, by the identification T ↔ g for each T

in D′(Rn), we can map D′(Rn) into SD2[Rn] as a continuous dense
embedding.

To prove (3), recall that each Em ∈ C
∞
c (Rn) so that, for any f ∈

SD2[Rn],∫
Rn

Em(x) ·Dαf(x)dλn(x) = (−1)|α|
∫
Rn

DαEm(x) · f(x)dλn(x).

An easy calculation shows that:

(−1)|α|
∫
Rn

DαEm(x) · f(x)dλn(x) = (−i)|α|
∫
Rn

Em(x) · f(x)dλn(x).

It now follows that, for any g ∈ SD2[Rn], (Dαf,g)SD2 = (−i)|α|

(f,g)SD2 . �

Remark 3.37. We note that it is easy to see thatW k,p[Rn] ⊂ SD2[Rn]
as a continuous dense embedding, for all k and all p.

3.3.3.1. Functions of Bounded Variation. The objective of this section
is to show that every HK-integrable function is in SD2[Rn]. To do this,
we need to discuss a certain class of functions of bounded variation. For
functions defined on R, the definition of bounded variation is unique.
However, for functions on R

n, n ≥ 2, there are a number of distinct
definitions.

The functions of bounded variation in the sense of Cesari are well
known to analysts working in partial differential equations and geo-
metric measure theory (see Leoni [GL]).

Definition 3.38. A function f ∈ L1[Rn] is said to be of bounded
variation in the sense of Cesari or f ∈ BVc[R

n], if f ∈ L1[Rn] and each
i, 1 ≤ i ≤ n, there exists a signed Radon measure μi, such that∫

Rn

f(x)
∂φ(x)

∂xi
dλn(x) = −

∫
Rn

φ(x)dμi(x),

for all φ ∈ C
∞
0 (Rn).
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The functions of bounded variation in the sense of Vitali [TY1]
are well known to applied mathematicians and engineers with interest
in error estimates associated with research in control theory, finan-
cial derivatives, high speed networks, robotics, and in the calculation
of certain integrals. (See, for example [KAA], [NI], [PT], or [PTR]
and references therein.) For the general definition, see Yeong ([TY1],
p. 175). We present a definition that is sufficient for continuously
differentiable functions.

Definition 3.39. A function f with continuous partials is said to be
of bounded variation in the sense of Vitali or f ∈ BVv[R

n] if for all
intervals (ai, bi), 1 ≤ i ≤ n,

V (f) =

∫ b1

a1

· · ·
∫ bn

an

∣∣∣∣ ∂nf(x)

∂x1∂x2 · · · ∂xn

∣∣∣∣ dλn(x) < ∞.

Definition 3.40. We define BVv,0[R
n] by:

BVv,0[R
n] = {f(x) ∈ BVv[R

n] : f(x) → 0, as xi → −∞},

where xi is any component of x.

The following two theorems may be found in [TY1]. (See p. 184
and 187, where the first is used to prove the second.) If [ai, bi] ⊂ R, we
define [a,b] ∈ R

n by [a,b] =
∏n

k=1 [ai, bi]. (The notation (RS) means
Riemann–Stieltjes.)

Theorem 3.41. Let f be HK-integrable on [a,b] and let g ∈ BVv,0[R
n],

then fg is HK-integrable and

(HK)

∫
[a,b]

f(x)g(x)dλn(x) = (RS)

∫
[a,b]

{
(HK)

∫
[a,x]

f(y)dλn(y)

}
dg(x)..

Theorem 3.42. Let f be HK-integrable on [a,b] and let g ∈ BVv,0[R
n],

then fg is HK-integrable and∣∣∣∣∣(HK)

∫
[a,b]

f(x)g(x)dλn(x)

∣∣∣∣∣ ≤ ‖f‖D V[a,b](g).

Lemma 3.43. The space HK[Rn], of all HK-integrable functions is
contained in SD2[Rn].
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Proof. Since each Em(x) is continuous and differentiable, Em(x) ∈
BVv,0[R

n], so that for f ∈ HK[Rn],

‖f‖2SD2 =
∑∞

m=1
tm

∣∣∣∣
∫
Rn

Em(x) · f(x)dx
∣∣∣∣
2

� sup
m

∣∣∣∣
∫
Rn

Em(x) · f(x)dx
∣∣∣∣
2

� ‖f‖2HK [sup
m

V (Em)]2 < ∞.

It follows that f ∈ SD2[Rn]. �

3.3.4. The General Case, SDp[Rn], 1 ≤ p ≤ ∞. To construct
SDp[Rn] for all p and for f ∈ Lp[Rn], define:

‖u‖SDp =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{ ∑
|α|�m

∞∑
k=1

tk
∣∣∫

Rn Ek(x)Dαu(x)dλn(x)
∣∣p}1/p

, 1 � p < ∞∑
|α|�m

sup
k�1

∣∣∫
Rn Ek(x)Dαu(x)dλn(x)

∣∣, p = ∞.

It is easy to see that ‖·‖SDp defines a norm on Lp[Rn]. If SDp[Rn] is
the completion of Lp[Rn] with respect to this norm, we have:

Theorem 3.44. For each q, 1 � q � ∞, SDp[Rn] ⊃ Lq[Rn] as dense
continuous embeddings.

Proof. As in the previous theorem, by construction SDp[Rn] contains
Lp[Rn] densely, so we need to only show that SDp[Rn] ⊃ Lq[Rn] for
q 	= p. First, suppose that p < ∞. If f ∈ Lq[Rn] and q < ∞, we have

‖f‖SDp =

[∑∞
m=1

tm

∣∣∣∣
∫
Rn

Em(x) · f(x)dλn(x)

∣∣∣∣
qp
q

]1/p

�
[∑∞

m=1
tm

(∫
Rn

|Em(x)|q |f(x)|q dλn(x)

) p
q

]1/p

� sup
m

(∫
Rn

|Em(x)|q |f(x)|q dλn(x)

) 1
q

� ‖f‖q .

Hence, f ∈ SDp[Rn]. For q = ∞, we have

‖f‖SDp =

[∑∞
m=1

tm

∣∣∣∣
∫
Rn

Em(x) · f(x)dλn(x)

∣∣∣∣
p]1/p

�
[[∑∞

m=1
tm[vol(Bm)]p

]
[ess sup |f |]p

]1/p
� M ‖f‖∞ .

Thus f ∈ SDp[Rn], and L∞[Rn] ⊂ SDp[Rn]. The case p = ∞ is
obvious. �
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Theorem 3.45. For SDp[Rn], 1 ≤ p ≤ ∞, we have:

(1) If p−1+ q−1 = 1, then the dual space of SDp[Rn] is SDq[Rn].

(2) The test function space D(Rn) is contained in SDp[Rn] as a
continuous dense embedding.

(3) If K is a weakly compact subset of Lp[Rn], it is a strongly
compact subset of SDp[Rn].

(4) The space SD∞[Rn] ⊂ SDp[Rn].

Remark 3.46. Reflection reveals that the spaces KSp[Rn] and
SDp[Rn] may be viewed as different poles for the same basic con-
struction. The spaces KSp[Rn] use a base composed of characteristic
functions of cubes; while spaces SDp[Rn] use the same cubes, but as
supports for functions in C

∞
c (Rn). In both cases, the largest cube has

volume
[

1
2
√
n

]n
. It is actually this property that makes it possible

for SDp[Rn] to contain the test function space D(Rn) as a continuous
dense embedding.

The above observation leads to the following theorem.

Theorem 3.47. The test function space D(Rn) is contained in
KSp[Rn], 1 ≤ p ≤ ∞ as a continuous dense embedding.

Proof. Since KS∞[Rn] ⊂ KSp[Rn], as a continuous dense embedding
for all p, it suffices to prove the result for KS∞[Rn].

Suppose that φj → φ in D(Rn). Thus, there exists a compact set
K ⊂ R

n, which is the support of φj − φ and Dαφj converges to Dαφ
uniformly on K for every multi-index α. Let {EKl

} be the set of all
El, with support Kl ⊂ K. If α is a multi-index, we have:

lim
j→∞

‖Dαφj −Dαφ‖KS∞

= lim
j→∞

sup
l

∣∣∣∣
∫
Rn

El(x) · [Dαφj(x)−Dαφ(x)] dλn(x)

∣∣∣∣
�
[

1

2
√
n

]n
lim
j→∞

sup
x∈K

|Dαφj(x)−Dαφ(x)| = 0.

Thus, since α is arbitrary, we see that D(Rn) ⊂ KS∞[Rn] as a contin-
uous embedding. �

3.3.5. Application. Let {L2[R3]}3 be the Hilbert space of square
integrable functions on R

3, let H[R3] be the completion of the set
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of functions in
{
u ∈ C

∞
0 (R3)3 | ∇ · u = 0

}
, which vanish at infinity

with respect to the inner product of {L2[R3]}3. The classical Navier–
Stokes initial-value problem (on R

3 and all T > 0) is to find a function
u : [0, T ]× R

3 → R
3 and p : [0, T ]× R

3 → R such that

∂tu+ (u · ∇)u− νΔu+∇p = f(t) in (0, T )× R
3,

∇ · u = 0 in (0, T )× R
3 (in the weak sense),

u(0,x) = u0(x) in R
3.

(3.8)

The equations describe the time evolution of the fluid velocity u(x, t)
and the pressure p of an incompressible viscous homogeneous New-
tonian fluid with constant viscosity coefficient ν in terms of a given
initial velocity u0(x) and given external body forces f(x, t).

Let P be the (Leray) orthogonal projection of {L2[R3]}3 onto H[R3]
and define the Stokes operator by: Au =: −PΔu, for u ∈ D(A) ⊂
H

2[R3], the domain of A. If we apply P to Eq. (3.8), with B(u,u) =
P(u · ∇)u, we can recast Eq. (3.8) into the standard form:

∂tu = −νAu−B(u,u) + Pf(t) in (0, T )× R
3,

u(0,x) = u0(x) in R
3,

(3.9)

where the orthogonal complement of H[R3] relative to {L2[R3]}3, {v :
v = ∇q, q ∈ H

1[R3]} is used to eliminate the pressure term (see Galdi
[GA] or [SY], [T1], [T2]).

Definition 3.48. We say that a velocity vector field in R
3 is reasonable

if for 0 ≤ t < ∞, there is a continuous function m(t) > 0, depending
only on t and a constant M0, which may depend on u0 and f , such
that

0 < m(t) � ‖u(t)‖
H
≤ M0.

The above definition formalizes the requirement that the fluid has
nonzero but bounded positive definite energy. However, this condition
still allows the velocity to approach zero at infinity in a weaker norm.

3.3.6. The Nonlinear Term: A Priori Estimates. The difficulty
in proving the existence and uniqueness of global-in-time strong solu-
tions for Eq. (3.9) is directly linked to the problem of getting good a
priori estimates for the nonlinear term B(u,u). Let Hsd be the closure
of H ∩ SD2[R3] in the SD2 norm.
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Theorem 3.49. If A is the Stokes operator and u(x, t) ∈ Hsd∩D(A)
is a reasonable vector field, then

〈νAu,u〉
Hsd

= 3ν ‖u‖2
Hsd

. (3.10)

For u(x, t) ∈ Hsd ∩ D(A) and t ∈ [0,∞), there exists a constant
M = M(u0, f)) > 0, such that∣∣∣〈B(u,u),u〉

Hsd

∣∣∣ ≤ M ‖u‖3
Hsd

. (3.11)

We also have that:

max{‖B(u,v)‖
Hsd

, ‖B(v,u)‖
Hsd

} � M ‖u‖
Hsd

‖v‖
Hsd

. (3.12)

Proof. From the definition of the inner product, for (3.10) we have

〈νAu,u〉
Hsd

= ν
∑∞

m=1
tm

[∫
R3

Em(x) ·Au(x)dλ3(x)

] [∫
R3

Em(y) · u(y)dλ3(y)

]c
.

Using the fact that u ∈ D(A), it follows that∫
R3

Em(y) · ∂2
yju(y)dλ3(y)

=

∫
R3

∂2
yjEm(y) · u(y)dλ3(y) = (i)2

∫
R3

Em(y) · u(y)dλ3(y).

Using this in the above equation and summing on j, we have (A =
−PΔ) ∫

R3

Em(y) ·Au(y)dλ3(y) = 3

∫
R3

Em(y) · u(y)dλ3(y).

It follows that

〈Au,u〉
Hsd

= 3
∑∞

m=1
tm

[∫
R3

Em(x) · u(x)dλ3(x)

] [∫
R3

Em(y) · u(y)dλ3(y)

]c
= 3 ‖u‖2

Hsd
.

This proves (3.11). To prove (3.12), let

b (u,v, Em) =

∫
R3

(u(x) · ∇v(x)) · Em(x)dλ3(x)

and define the vector I by I = [1, 1, 1]t. We start with integration by
parts and ∇ · u = 0, to get

b (u,v, Em) = −b (u, Em,v) = −i

∫
R3

(u(x) · I) (Em(x) · v(x)) dλ3(x).
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From the above equation, we have (m ↔ (k, i))

|b (u,v, Em)| �
√
3

∫
R3

|u(x)||v(x)|dλ3(x) sup
k

‖Em‖∞
� C1 ‖u‖H ‖v‖H .

We also have: ∣∣∣∣
∫
R3

w(x) · Em(x)dλ3(x)

∣∣∣∣ � C2 ‖w‖
H
.

If we combine the last two results, we get that:∣∣∣〈B(u,v),w〉
Hsd

∣∣∣
�

∞∑
m=1

tm |b (u,v, Em)|
∣∣∣∣
∫
R3

w(y) · Em(y)dλ3(y)

∣∣∣∣
� C ‖u‖

H
‖v‖

H
‖w‖

H
.

(3.13)

Since u,v,w are reasonable velocity vector fields, there is a constant
M depending on u0,v0,w0 and f , such that

C ‖u‖
H
‖v‖

H
‖w‖

H
≤ M ‖u‖

Hsd
‖v‖

Hsd
‖w‖

Hsd
.

If w = v = u, we have that:∣∣∣〈B(u,u),u〉
Hsd

∣∣∣ � M ‖u‖3
Hsd

.

This proves (3.11). The proof of (3.12) is a straightforward application
of (3.13). �

To compare our results, if u,v ∈ D(A), a typical bound in the H

norm for Eq. (3.12) can be found in Sell and You [SY] (see p. 366):

max {‖B(u,v)‖
H
, ‖B(v,u)‖

H
} � C0

∥∥∥A5/8u
∥∥∥
H

∥∥∥A5/8v
∥∥∥
H

.

3.3.7. Conclusion. In closing, one must have noticed the factor of 3
in Eq. (3.10). Our definition of ξik(x) can be changed to:

ξik(x) = α−1
k,iχ

i
k(−x) =

{
1
ne

i(x−xi)
3 , x ∈ Iik

0, x /∈ Iik,

in order to give us

〈νAu,u〉
Hsd

= ν ‖u‖2
Hsd

.

Thus, the space may be fine-tuned to fit the problem of interest.



144 3. HK-Integral and HK-Spaces

3.4. Zachary Spaces

In this section, we briefly discuss two other possible families of spaces
that naturally flow from the existence of a Banach space structure
for functions with a bounded integral. (We call these spaces Zachary
spaces.)

3.4.1. Zachary Functions of Bounded Mean Oscillation Zp[Rn],
1 ≤ p ≤ ∞. In this section, we extend the space of functions of
bounded mean oscillation.

Definition 3.50. Let f ∈ L1
loc[R

n] and let Q be a cube in R
n.

(1) We define the average of f over Q by

Avg
Q

f =
1

λn [Q]

∫
Q
f(y)dλn(y).

(2) We defined the sharp maximal function M#(f)(x), by

M#(f)(x) = sup
Q

1

λn [Q]

∫
Q

∣∣∣∣∣f(y)−Avg
Q

f

∣∣∣∣∣ dλn(y).

(3) If M#(f)(x) ∈ L∞[Rn], we say that f is of bounded mean
oscillation. More precisely, the space of functions of bounded
mean oscillation are defined by:

BMO[Rn] =
{
f ∈ L1

loc[R
n] : M#(f) ∈ L∞[Rn]

}
and

‖f‖BMO =
∥∥∥M#(f)

∥∥∥
L∞

.

We may also obtain an equivalent definition of BMO[Rn] using
balls, but for our purposes, cubes are natural (see Grafakos [GRA],
p. 546). We note that BMO[Rn] is not a Banach space and is not
separable.

Let {Ek(x)} be the family of generating functions for KS2[Rn] and
recall that they are the indicator functions for a family of cubes {Qk}
centered at each rational point in R

n. Let f ∈ L1
loc[R

n] and define
fak by

fak =
1

λn [Qk]

∫
Qk

f(y)dλn(y) =
1

λn [Qk]

∫
Rn

Ek(y)f(y)dλn(y).
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Definition 3.51. If p, 1 ≤ p < ∞ and tk = 2−k, we define ‖f‖Zp by

‖f‖Zp =

{ ∞∑
k=1

tk

∣∣∣∣ 1

λn [Qk]

∫
Qk

[f(y)− fak] dλn(y)

∣∣∣∣
p
}1/p

.

The set of functions for which ‖f‖Zp < ∞ is called the Zachary func-
tions of bounded mean oscillation and order p, 1 ≤ p < ∞. If p = ∞,
we say that f ∈ Z∞[Rn] if

‖f‖Z∞ = sup
k

∣∣∣∣ 1

λn [Qk]

∫
Qk

[f(y)− fak] dλn(y)

∣∣∣∣ < ∞.

The following theorem shows how the Zachary spaces are related
to the space of functions of Bounded mean oscillation BMO[Rn]. (We
omit proofs.)

Theorem 3.52. If Zp[Rn] is the class of Zachary functions of bounded
mean oscillation and order p, 1 ≤ p ≤ ∞, then Zp[Rn] is a linear space
and

(1) ‖λf‖Zp � |λ| ‖f‖Zp.

(2) ‖f + g‖Zp � ‖f‖Zp + ‖g‖Zp.

(3) ‖f‖Zp = 0,⇒ f = constant (a.s.).

(4) The space Z∞[Rn] ⊂ Zp[Rn], 1 ≤ p < ∞, as a dense contin-
uous embedding.

(5) The space BMO[Rn] ⊂ Z∞[Rn], as a dense continuous em-
bedding (i.e., ‖f‖Z∞ ≤ ‖f‖BMO).

If we consider functions that differ by a constant as equivalent, it
is easy to see that Zp[Rn] is a Banach space and Z2[Rn] is a Hilbert
space.

We now consider the Carleson measure characterization of
BMO[Rn] which will prove useful in construction another class of
Zachary spaces that are Banach spaces (see Grafakos [GRA], p. 540).
If u(x, t) is a solution of the heat equation:

ut −Δu = 0, u(x, 0) = f(x),

where f ∈ L1
loc[R

n], it can be shown that

‖f‖BMO = sup
x,r

{
1

λn [Q(x, r)]

∫
Q(x,r)

∫ r2

0
|∇u(y, t)|2 dtdλn(y)

}1/2

,
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where the gradient is in the weak sense. This also means that we can
define the norm in Zp[Rn] by

‖f‖Zp = sup
r

{ ∞∑
k=1

tk

∣∣∣∣∣ 1

λn [Qk]

∫
Qk

∫ r2

0
∇u(y, t)dtdλn(y)

∣∣∣∣∣
p}1/p

.

We define the class of functions BMO−1[Rn], as those for which:

‖f‖BMO−1 = sup
x,r

{
1

λn [Q(x, r)]

∫

Q(x,r)

∫ r2

0

|u(y, t)|2 dtdλn(y)

}1/2

< ∞.

It is known that BMO−1[Rn] is a Banach space in the above norm.

Definition 3.53. We say f ∈ Z−p[Rn], 1 ≤ p < ∞ if

‖f‖Z−p = sup
r

{ ∞∑
k=1

tk

∣∣∣∣∣ 1

λn [Qk]

∫
Qk

∫ r2

0
u(y, s)dsdλn(y)

∣∣∣∣∣
p}1/p

< ∞.

If p = ∞, we say that f ∈ Z−∞[Rn] if

‖f‖Z−∞ = sup
k, r

1

λn [Qk]

∣∣∣∣∣
∫
Qk

∫ r2

0
u(y, s)dsdλn(y)

∣∣∣∣∣ < ∞.

Theorem 3.54. For the class of spaces Z−p[Rn], we have:

(1) For each p, 1 ≤ p ≤ ∞ ,Z−p[Rn] is a Banach space.

(2) The space Z−∞[Rn] ⊂ Z−p[Rn], 1 ≤ p < ∞, as a dense
continuous embedding.

(3) The space BMO−1[Rn] ⊂ Z−∞[Rn], as a dense continuous
embedding, ‖f‖Z−∞ ≤ ‖f‖BMO−1.

Proof. The first two are obvious. To prove (3), if f ∈ BMO−1[Rn],
then

‖f‖Z−∞ = sup
k, r

1

λn [Qk]

∣∣∣∣∣
∫
Qk

∫ r2

0
u(y, s)dsdλn(y)

∣∣∣∣∣
= sup

k, r

1

λn [Qk]

∣∣∣∣∣
∫
Qk

∫ r2

0
u(y, s)dsdλn(y)

∣∣∣∣∣
2/2

� sup
x,r

1

λn [Q(x, r)]

{∫
Q(x,r)

∫ r2

0
|u(y, s)|2 dsdλn(y)

}1/2

= ‖f‖BMO−1 .

�
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Chapter 4

Analysis on Hilbert
Space

In this chapter we study operator theory on separable Hilbert spaces.
The first part is devoted to some important results on the integration
of operator-valued functions. Although some additional material has
also been included, the second part is a review of standard theory
of operators on Hilbert spaces. The only new material is a recent
new spectral representation for linear operators based on the polar
decomposition. All results and concepts that are independent of the
inner product apply to Banach spaces and will be used in the next
chapter without further comment.

4.1. Part I: Analysis on Hilbert Space

4.1.1. Integration of Operator-Valued Functions. In this sec-
tion, we discuss a few additional topics in integration theory. Our main
interest is the class of operator-valued functions f , defined on a mea-
sure space (Ω,B[Ω], λ), Ω ⊂ R with values in B = L[H]. We extend
the HK-integral in this setting and prove a version of the Riesz Rep-
resentation Theorem.

The major problem with integration for operator-valued func-
tions is that these functions need not have a Lebesgue (like) integral
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(see [HP], pp. 71–80). However, they always have a HK-integral.
To understand the problem, we need a few definitions.

Definition 4.1. The function f : Ω → B is said to be:

(1) almost surely separably valued (or essentially separably val-
ued) if there exists a subset N ⊂ Ω with λ(N) = 0 such that
f(Ω \N) ⊂ B is separable,

(2) countably valued if it assumes at most a countable number of
values in B, assuming each value 	= 0 on a measurable subset
of Ω, and

(3) strongly measurable if there exists a sequence {fn} of count-
ably valued functions converging (a.s.) to f .

(4) Bochner integrable if ‖f‖B is Lebesgue integrable.

(5) Gelfand–Pettis integrable if 〈f, h′〉B is Lebesgue integrable for
each h′ ∈ B′.

In order to constructively define the integral one must be able to
approximate it with simple functions in either the strong sense
(Bochner) or the weak sense (Gelfand–Pettis). However, each simple
function must be countably valued and strongly measurable in the first
case or countably valued and weakly measurable in the second. In the
case of current interest, B is not separable and a family of operator-
valued functions A : Ω → B need not be almost separable valued and
hence need not be strongly or weakly measurable. In this section, we
provide a useful extension of the HK-integral to operator-valued func-
tions on R, which does not suffer from the above limitations. Since
this version of the integral will be our main tool for the Feynman
operator calculus, we prove all except the elementary or well-known
results. (It should be noted that the theory developed does not depend
on the Hilbert space structure.)

Let [a, b] ⊂ R and, for each t ∈ [a, b], let A(t) ∈ L(H) be a given
family of operators.

Recall that, if δ(t) maps [a, b] → (0,∞), and P = {t0, τ1, t1, τ2, · · · ,
τn, tn}, where a = t0 � τ1 � t1 � · · · � τn � tn = b, we say it is a
HK-δ partition provided that, for 0 � i � n, ti − ti−1 < δ(τi).

Lemma 4.2. Let δ1(t) and δ2(t) map [a, b] → (0,∞), and suppose
that δ1(t) � δ2(t). Then, if P1 is a HK-δ1 partition, it is also a HK-δ2
partition.
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Definition 4.3. The family A(t), t ∈ [a, b], is said to have a (uniform)
HK-integral if there is an operator Q[a, b] in L(H) such that, for each
ε > 0, there exists a HK-δ partition such that∥∥∥∑n

i=1
ΔtiA(τi)−Q[a, b]

∥∥∥ < ε.

In this case, we write

Q[a, b] = (HK)

∫ b

a
A(t)dt.

Theorem 4.4. For t ∈ [a, b], suppose the operators A1(t) and A2(t)
both have HK-integrals, then so does their sum and

(HK)

∫ b

a
[A1(t) +A2(t)]dt = (HK)

∫ b

a
A1(t)dt+ (HK)

∫ b

a
A2(t)dt.

Theorem 4.5. Suppose {Ak(t) | k ∈ N} is a family of operator-valued
functions in L[H], converging uniformly to A(t) on [a, b], and Ak(t)
has a HK-integral Qk[a, b] for each k; then A(t) has a HK-integral
Q[a, b] and Qk[a, b] → Q[a, b] uniformly.

Theorem 4.6. Suppose A(t) is Bochner integrable on [a, b], then A(t)
has a HK-integral Q[a, b] and:

(B)

∫ b

a
A(t)dt = (HK)

∫ b

a
A(t)dt. (4.1)

Proof. First, let E be a measurable subset of [a, b] and assume that
A(t) = AχE(t), where χE(t) is the characteristic function of E. In
this case, we show that Q[a, b] = Aλ(E), where λ(E) is the Lebesgue
measure of E. Let ε > 0 be given and let D be a compact subset of E.
Let F ⊂ [a, b] be an open set containing E such that λ(F\D) < ε/‖A‖;
and define δ : [a, b] → (0,∞) such that:

δ(t) =

{
d(t, [a, b]\F ), t ∈ E
d(t,D), t ∈ [a, b]\E,

where d(x , y) = |x− y| is the distance function. Let P = {t0, τ1, t1, τ2,
· · · , τn, tn} be a HK-δ partition. If τi ∈ E for 1 � i � n, then
(ti−1, ti) ⊂ F so that∥∥∥∑n

i=1
ΔtiA(τi)−Aλ(F )

∥∥∥ = ‖A‖
[
λ(F )−

∑
τi∈E

Δti

]
. (4.2)
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On the other hand, if τi /∈ E then (ti−1, ti) ∩D = ∅ (empty set), then
it follows that:∥∥∥∑n

i=1
ΔtiA(τi)−Aλ(D)

∥∥∥ = ‖A‖
[∑

τi /∈E
Δti − λ(D)

]
. (4.3)

Combining Eqs. (4.2) and (4.3), we have that∥∥∥∑n

i=1
ΔtiA(τi)−Aλ(E)

∥∥∥ = ‖A‖
[∑

τi∈E
Δti − λ(E)

]
� ‖A‖ [λ(F )− λ(E)] � ‖A‖ [λ(F )− λ(D)] � ‖A‖λ(F\D) < ε.

Now suppose that A(t) =
∑∞

k=1AkχEk
(t). By definition, A(t) is

Bochner integrable if and only if ‖A(t)‖ is Lebesgue integrable with:

(B)

∫ b

a
A(t)dt =

∑∞
k=1

Akλ(Ek),

and (cf. Hille and Phillips [HP])

(L)

∫ b

a
‖A(t)‖dt =

∑∞
k=1

‖Ak‖λ(Ek).

As the partial sums converge uniformly by Theorem 4.5, Q[a, b] exists
and

Q[a, b] ≡ (HK)

∫ b

a
A(t)dt = (B)

∫ b

a
A(t)dt.

Now let A(t) be an arbitrary Bochner integrable operator-valued func-
tion in L(H), uniformly measurable and defined on [a, b]. By definition,
there exists a sequence {Ak(t)} of countably valued operator-valued
functions in L(H) which converges to A(t) in the uniform operator
topology such that:

lim
k→∞

(L)

∫ b

a
‖Ak(t)−A(t)‖ dt = 0,

and

(B)

∫ b

a
A(t)dt = lim

k→∞
(B)

∫ b

a
Ak(t)dt.

Since the Ak(t) are countably valued,

(HK)

∫ b

a
Ak(t)dt = (B)

∫ b

a
Ak(t)dt,

so

(B)

∫ b

a
A(t)dt = lim

k→∞
(HK)

∫ b

a
Ak(t)dt.
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We are done if we show that Q[a, b] exists. Since every L-integral is
a HK-integral, fk(t) = ‖Ak(t)−A(t)‖ has a HK-integral. This means

that lim
k→∞

(HK)
∫ b
a fk(t)dt = 0. Let ε > 0 and choose m so large that∥∥∥∥(B)

∫ b

a
A(t)dt− (HK)

∫ b

a
Am(t)dt

∥∥∥∥ < ε/4

and

(HK)

∫ b

a
fk(t)dt < ε/4.

Choose δ1 so that if {t0, τ1, t1, τ2, · · · , τn, tn} is a HK-δ1 partition, then∥∥∥∥(HK)

∫ b

a
Am(t)dt−

∑n

i=1
ΔtiAm(τi)

∥∥∥∥ < ε/4.

Now choose δ2 so that whenever {t0, τ1, t1, τ2, · · · , τn, tn} is a HK-δ2
partition, ∥∥∥∥(HK)

∫ b

a
fm(t)dt−

∑n

i=1
Δtifm(τi)

∥∥∥∥ < ε/4.

Set δ = δ1 ∧ δ2 so that by Lemma 4.2, {t0, τ1, t1, τ2, · · · , τn, tn} is a
HK-δ1 and HK-δ2 partition so that:∥∥∥∥∥(B)

∫ b

a

A(t)dt−
n∑

i=1

ΔtiA(τi)

∥∥∥∥∥ �
∥∥∥∥(B)

∫ b

a

A(t)dt− (HK)

∫ b

a

Am(t)dt

∥∥∥∥

+

∥∥∥∥(HK)

∫ b

a

Am(t)dt−
∑n

i=1
ΔtiAm(τi)

∥∥∥∥

+

∣∣∣∣(HK)

∫ b

a

fm(t)dt−
∑n

i=1
Δtifm(τi)

∣∣∣∣

+ (HK)

∫ b

a

fm(t)dt < ε.

�

Recall that a function g : [a, b] ⊂ R → H is of bounded variation
or BV, if

sup

∥∥∥∥∥
n∑

i=1

[g(bi)− g(ai)]

∥∥∥∥∥ ,
where the supremum is taken over all partitions P = {(a1, b1), . . . ,
(an, bn)} of nonoverlapping subintervals of [a, b]. In this case, we set

sup

∥∥∥∥∥
n∑

i=1

[g(bi)− g(ai)]

∥∥∥∥∥ = BV b
a (g).
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Theorem 4.7. Let g : [a, b] → H be of BV.

(1) If h is continuous on [a, b], then

I = HK

∫ b

a
h(s)dg(s)

exists.

(2) If in addition A is a closed densely defined linear operator on
H, g ∈ D(A) and Ag(s) = f(s) is of BV, then

AI = A

∫ b

a
h(s)dg(s) =

∫ b

a
h(s)df(s). (4.4)

Proof. Since h is continuous and g(s), f(s) is of BV, we need to only
prove the existence of a strong Riemann–Stieltjes integral.

To prove (1), define SPk
by:

SPk
=
∑
Pk

h(si) [g(bi)− g(ai)]

Since h is continuous, it is uniformly continuous so that, given ε > 0
there exists a δ > 0, such that |h(s)− h(t)| < ε whenever |s− t| < δ. If
P1, P2 are partitions such that maxi{bi−ai} = |P| < δ

2 , by a standard
application of the triangle inequality, we have that:

|JH (SP1 − SP2)| � 2εBV b
a {JH(g)},

for all linear functionals JH(·) ∈ H′. Now,

BV b
a {JH(g)} � BV b

a [#{JH(g)}] +BV b
a [&{JH(g)}]

� 4 sup
P

∣∣∣∣∣JH

{∑
i

[g(bi)− g(ai)]

}∣∣∣∣∣ ,
where the sup is over partitions of [a, b]. By definition, there is an M
such that BV b

a {JH(g)} ≤ M ‖JH‖. It follows that
‖SP1 − SP2‖ = sup

‖JH‖=1
|JH (SP1 − SP2)| � 2Mε,

so that the strong Riemann–Stieltjes integral exists.

To prove (2), for any P, ASP(h, g) = SP(h,Ag) because A is linear.
Since we know that

lim
|P|→0

SP(h, g) =

∫ b

a
h(s)dg(s)
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and Ag is BV. Applying the above for Ag gives us:

A lim
|P|→0

SP(h, g) = lim
|P|→0

SP(h,Ag) =

∫ b

a
h(s)dAg(s) =

∫ b

a
h(s)df(s).

Since A is closed,
∫ b
a h(s)dg(s) ∈ D(A) and Eq. (4.4) is satisfied. �

The next few results are required for a later section on spectral
theory. Let (Ω,B(Ω), μ) be a measure space, where Ω is a subset of
R
n
I and μ = λ∞ is Lebesgue measure on R

n
I . We would now like to

describe the dual space L∞(Ω,B(Ω), μ)∗, of L∞(Ω,B(Ω), μ) over C,
the complex numbers in a little more detail.

Theorem 4.8. If � ∈ L∞(Ω,B(Ω), μ)∗, there is a finitely additive
complex signed measure μ� of bounded total variation and absolutely
continuous with respect to μ, such that

�(φ) =

∫
Ω
φ(x)dμ�(x), φ ∈ L∞[Ω,B[Ω], μ],

so that L∞(Ω,B(Ω), μ)∗ = M(Ω,B(Ω), μ).

Proof. By the Jordan Decomposition Theorem, every complex mea-
sure μ can be written as ν = ν1 + ν2 + i(ν3 + ν4), where ν1, ν3 are
positive measures and ν1, ν4 are negative measures. Thus, it suffices
to prove the theorem when μ� is real. Let � ∈ L∞(Ω,B(Ω), μ)∗ and,
for each B ∈ B[Ω] set μ�(B) = �(IB), where IB is the characteristic
function of B. If B1, B2 ∈ B[Ω], B1∩B2 = ∅, then IB1+B2 = IB1+IB2

so that

�(IB1 + IB2) = �(IB1) + �(IB2) ⇒ μ� (B1 ∪B2) = μ� (B1) + μ� (B2) .

Since

sup
B∈B

|μ�(B)| = sup
B∈B

|�(IB)| � ‖�‖ ‖IB‖ < ∞,

we see that μ� is of bounded variation.

Let φ ∈ L∞(Ω,B(Ω), μ) be arbitrary. For any ε > 0, there is a
simple function sε such that

sε =
∑N

i=1
aiIBi , μ (Bi ∩Bj) = 0, i 	= j,

N⋃
i=1

Bi = Ω

and∥∥∥∥φ−
∑N

i=1
aiIBi

∥∥∥∥ < ε, so that

∥∥∥∥�(φ)−∑N

i=1
aiμ�(Bi)

∥∥∥∥ < ε ‖�‖ .
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It follows that

�(φ) =

∫
Ω
φ(x)dμ�(x), and ‖�‖ = sup

ess sup|φ|�1

∣∣∣∣
∫
Ω
φ(x)dμ�(x)

∣∣∣∣ .
Finally, since μ(B) = 0 implies that IB = 0 (a.e.), it follows that
μ�(B) = 0 so that μ� is absolutely continuous with respect to μ. �

From here, we see that L1(Ω,B(Ω), μ)∗∗ = M(Ω,B(Ω), μ) and,
the injection of L1(Ω,B(Ω), μ) → M(Ω,B(Ω), μ) is dense. Since
L1(Rn

I ,B(Rn
I ), μ) is Banach algebra under convolution, it is easy to

prove that

Corollary 4.9. M(Rn
I ,B(Rn

I ), μ) is Banach algebra under convolu-
tion.

Recall that if Ω is an open subset of Rn, then Cc(Ω) is the set of
all continuous functions defined on Ω that vanish outside a compact
set.

Corollary 4.10. If φ ∈ Cc(Ω), then for each � ∈ Cc(Ω)
∗, there is a

countably additive complex measure μ� such that.

�(φ) =

∫
Ω
φ(x)dμ�(x).

Proof. Since φ ∈ L∞[Ω,B[Ω], μ], we can represent �(φ) as

�(φ) =

∫
Ω
φ(x)dμ�(x),

with μ� finitely additive. As φ is continuous, we can extend μ� to
a countably additive measure. To see this, first, assume that μ� is
positive and follow the standard procedure used in Chap. 2 (or use the
Daniell method, see Royden [RO]). In the general case, by Jordan’s
decomposition Theorem, we can write μ� = μ+

�1
+ μ−

�2
+ i[μ+

�3
+ μ−

�4
],

where μ+
�i
, i = 1, 3 are the positive parts and μ−

�i
, i = 2, 4 are the

negative parts. �

Remark 4.11. When Ω has finite measure, the above result can be
extended to C0[Ω], the continuous functions that vanish at the bound-
ary, also known as the Riesz Representation Theorem (see Rudin [R1]).
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4.2. Part II: Operators on Hilbert Space

Introduction. The need and motivation to learn the basics of Hilbert
space operator theory is necessary for any student and/or researcher in
the physical sciences, applied mathematics, partial differential equa-
tions, or stochastic analysis. In this second part, we develop those
aspects that will be necessary for all of the later chapters. For those
with a limited background in operator theory and/or its applications,
we have included additional material in order to make the presentation
self-contained. We also include all proof details but the presentation is
rather terse, following a theorem proof protocol, so that consultation
of one of the standard references is recommended (i.e., [L1], [R], [RS],
[RS], or [YS]).

4.2.1. Basic Results. Let H be a Hilbert space and let V(H) the set
of linear contraction operators on H (i.e., ‖A‖H � 1). We denote
by L[H] the set of bounded linear operators on H and by C(H) the
set of closed densely defined linear operators on H. The graph of a
linear operator A is denoted by: G(A) = {(f,Af); f ∈ D(A)}, where
D(A) ⊂ H is the domain of A, and G(A) is its closure in the product
spaceH×H. We say that A is a closed linear operator if G(A) = G(A).
It is easy to show that this is equivalent to the statement that, for each
sequence {fn : n ∈ N} in D(A) with fn → f and Afn → f∗, we have
that f ∈ D(A) and Af = f∗.

Definition 4.12. The numerical range N (A) of an operator A, in
C(H), is defined by:

N (A) = {(Af, f) |f ∈ D(A), ‖f‖ = 1} .

The orthogonal complement M⊥ of a linear subspace M ⊂ H is
defined by:

M⊥ = {g ∈ H | (f, g)H = 0, ∀f ∈ M} .
If M is not closed then it is easy to see that [M⊥]⊥ is the closure, and
if it is closed H = M⊕M⊥.

Let H′ be the dual space of H and, for each g ∈ H, define Jg(f) =
(f, g).

Theorem 4.13. The mapping Jg(·) is a conjugate-linear isometry of
H onto H′.
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Proof. It is clear that for each fixed g, Jg(·) is a continuous linear
functional on H, so that Jg(·) ∈ H′. Furthermore, by the Schwarz
inequality, we have ‖Jg(f)‖H � ‖g‖H ‖f‖H and this implies that
‖Jg(·)‖H � ‖g‖H. On the other hand:

‖Jg(g)‖H = ‖g‖2H � ‖Jg(·)‖H ‖g‖H ⇒ ‖g‖H � ‖Jg(·)‖H .

Thus, we see that ‖g‖H = ‖Jg(·)‖H′ .

If L ∈ H′, let N be the null space of L. It is easy to see that
L 	= 0 ⇒ N 	= H, so that N⊥ 	= 0. Let f ∈ N⊥, with f 	= 0.
Without loss, we can assume that L(f) = 1. Let h ∈ H, and set
h′ = h − L̄(h)f (conjugate). It is easy to see that L(h′) = 0, so that

0 = (h′, f) = (h, f)− L(h) ‖f‖2H. Thus,

L(h) =
(h, f)

‖f‖2H
,

so that L = Jg, where g = f

‖f‖2H
. �

We will denote by J the mapping from H onto H′. The second part
of the above result is one version of the Riesz Representation Theorem.
The following related result will also be useful.

Theorem 4.14 (Lax–Milgram Theorem). Let B(f, g) be a conju-
gate bilinear functional on H × H such that there exists δ1, δ2 > 0,
with δ1 ‖f‖2 ≤ B(f, f) and |B(f, g)| ≤ δ2 ‖f‖ ‖g‖. Then there is
a positive linear operator T with a bounded inverse T−1, such that
(f, g) = B(f, Tg), ‖T‖ ≤ δ−1

1 and
∥∥T−1

∥∥ ≤ δ2 for all f, g ∈ H.

Proof. If D is the set of all h such that (f, g) = B(f, h), then D 	= ∅.
To see this, suppose B(f, h) = 0 for all f ∈ H, then 0 = B(h, h) ≥
δ1 ‖h‖2, so h = 0.

Since both (f, g) and B(f, g) are conjugate bilinear functionals,
there is a linear operator T, D(T ) = D, such that Tg = h. For h ∈ D,
we have

δ1 ‖Tg‖2 � B(Tg, Tg) = (Tg, g) � ‖y‖ ‖Tg‖ ,
so that T is bounded. To see that T is closed, let gn ∈ D, gn → g. since
T is continuous, {Tgn} is a Cauchy sequence, so that h = lim

n→∞Tgn.

Since Jf (·) = (f, ·) is continuous, lim
n→∞(f, gn) = (f, h). It follows that

lim
n→∞(f, gn) = B(f, h), so that h ∈ D and T (g) = h.
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Suppose that D 	= H, then there exists a 0 	= g0 ∈ H, g0 ∈ D⊥.
Let L(f) = B(f, g0), f ∈ H. It is clear that L(f) is continuous, since

|L(f)| = |B(f, g0)| � δ2 ‖f‖ ‖g0‖ .
It follows from Theorem 4.13 that there is a g∗0 , such that B(f, g0) =
(f, g∗0), for all f ∈ H. But then, g∗0 ∈ D, and Tg∗0 = g0. However,

δ1 ‖g0‖2 ≤ B(g0, g0) = (g0, g
∗
0) = 0, so that g0 = 0 contradicting our

assumption that g0 	= 0. It follows that D = H.

Since Tg = 0 ⇒ g = 0, we see that T is injective and T−1 exists.
By the same proof above, with T replaced by T−1, shows that it is
defined on all of H and∣∣(f, T−1g)

∣∣ = |B(f, g)| � δ2 ‖f‖ ‖g‖ ,
so that

∥∥T−1
∥∥ ≤ δ2. �

4.2.2. Resolvent and Spectrum.

Definition 4.15. Let A be any operator in C(H).

(1) The resolvent set, ρH(A), is the set of all complex numbers λ
such that (λI −A) has a bounded inverse on H.

(2) The complement of ρH(A), σH(A) is called the spectrum of
A. It is a disjoint union of three parts: the point, continuous,
and residual spectra.

(3) The point spectrum, σp
H(A), is the set of all complex numbers

λ such that (λI −A) has no inverse.

(4) The continuous spectrum, σc
H(A), is the set of all complex

numbers λ such that (λI − A) has an unbounded densely
defined inverse.

(5) The residual spectrum, σr
H(A), is the set of all complex num-

bers λ such that (λI − A) has an inverse that is not densely
defined.

The operator R(λ,A) = (λI − A)−1, when it exists, is called the
resolvent associated with A.

Definition 4.16. If A ∈ L[H], the spectral radius rA is defined by

rA = |σ(A)| = sup
λ∈σ(A)

|λ| .
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Example. Let H = L2[a, b], −∞ < a < b < ∞ and define:

(1) A1(u) = u′

(2) A2(u) = u′, u(a) = 0

(3) A3(u) = u′, u(b) = ku(a), k 	= 0 is constant.

(1) In the first case, u′ − λu = 0 always has a solution, u = ceλx,
c arbitrary. It follows that σH(A1) = C, the whole complex plane, so
that ρH(A1) = ∅.

(2) In the second case, it is easy to see that σH(A2) = ∅ so that
ρH(A2) = C and R(λ,A2)(y) = eλy

∫ y
a e−λxu(x)dx exists for all λ.

(3) In the third case, the point spectrum of A3,

σp
H(A3) = {λn =

1

(b− a)
[ln k + 2inπ], n ∈ ±N}

while the continuous spectrum σc
H(A) and the residual spectrum

σr
H(A) are both empty; and the resolvent set ρH(A) contains all

λ 	= λn.

Theorem 4.17. If A ∈ L[H], we have:

(1) The resolvent set ρ(A) is an open subset of C.

(2) The resolvent of A, R(λ,A) = (λI − A)−1 is an analytic
function on ρ(A).

(3) If λ, μ ∈ ρ(A), then (First Resolvent Identity)

R (λ,A)−R (μ,A) = (μ − λ)R (λ,A)R (μ,A) .

(4) The spectrum σ(A) is a nonempty compact subset of C and

rA = lim
n→∞ ‖An‖1/n .

Proof. To prove (1), let λ ∈ ρ(A) and suppose that L ∈ L[H], with
‖L‖ < ‖R(λ,A)‖, then R(λ,A)−L is invertible. To see this, note that
because∥∥∥∥ L

R(λ,A)

∥∥∥∥ < 1, ⇒ [I − L

R(λ,A)
]−1 =

∞∑
n=0

(
L

R(λ,A)

)n

.

If we choose L = hI with h small enough, it follows that ρ(A) is an
open subset in C.
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To prove (2), note that σ(A) is the compliment of ρ(A), so that it
is closed. By definition of R(λ,A), we see that the series

(λI −A)−1 =
1

λ

(
I − 1

λ
A

)−1

=
∞∑
n=0

Anλ−n−1 (4.5)

converges if
∥∥λ−1A

∥∥ < 1 (i.e., ‖A‖ < |λ|). It follows from this that
every λ ∈ σ(A) is bounded above by ‖A‖, so that σ(A) is compact.
Equation (4.5) is a Laurent expansion of R(λ,A) around ∞. If we
integrate R(λ,A) about any contour C = {z : |z| > ‖A‖}, using the
Cauchy integral Theorem, we get a nonzero value. On the other hand,
if R(λ,A) were analytic in all of C, the integral would be zero. It
follows that σ(A) is not empty.

To prove (3), start with the identity

(μI −A)− (λI −A) = (μ− λ)I

and multiply both sides by R (λ,A)R (μ,A).

For a proof of (4), look at the nth term of (4.5). Choose p < n
and write n = kp + r, 0 ≤ r < k, so that we can write this term as∣∣λ−(n+1)

∣∣ ∥∥Akp+r
∥∥ =

∣∣λ−(n+1)
∣∣ ∥∥Akp

∥∥ ‖Ar‖ �
∣∣λ−(n+1)

∣∣ ∥∥Ak
∥∥p ‖Ar‖. It

follows that∥∥∥∥∥
∞∑
n=0

Anλ−(n+1)

∥∥∥∥∥ �
∞∑
n=0

‖An‖
∣∣∣λ−(n+1)

∣∣∣
�

(
k−1∑
r=0

‖Ar‖
∣∣∣λ−(r+1)

∣∣∣
) ∞∑

k=p

(∥∥∥Ak
∥∥∥ ∣∣∣λ−k

∣∣∣)p

and the series converges absolutely if
∥∥Ak

∥∥ ∣∣λ−k
∣∣ < 1. It follows that

the series converges absolutely if
∥∥Ak

∥∥1/k < |λ|, so that

rA � lim inf
k→∞

∥∥∥Ak
∥∥∥1/k . (4.6)

If we now let ε > 0 be given and let C = {z : |z| = rA+ε} be a contour
in ρ(A) winding once around σ(A). In this case, it is easy to see that

1

2πi

∮
C
(λI −A)−1 λndλ = An. (4.7)

From here, we get that

‖An‖ � a (rA + ε)n+1 , a = sup
|λ|=rA+ε

‖R(λ,A)‖ .
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It follows that

‖An‖1/n � a1/n (rA + ε)1+1/n ⇒ lim sup
n→∞

‖An‖1/n � (rA + ε) .

Since this is true for arbitrary ε > 0, along with Eq. (4.6) proves that

rA = lim
n→∞ ‖An‖1/n . (4.8)

�

Using Eq. (4.7) and the linear nature of the resolvent, we have:

Theorem 4.18. If A ∈ L[H], we have:

(1) If f is an analytic function on an open set containing σ(A)
and C is a contour in ρ(A) winding once around σ(A), then
the mapping

f(A) =

∮
C
(λI −A)−1 f(λ)dλ (4.9)

is a homomorphism into L[H].

(2) σ[f(A)] = f(σ[A]).

Proof. It is clear that the map f → f(A) is linear and continuous.
To show that it is multiplicative, let f and g be analytic on some
open set O ⊃ σ(A). Let C1 and C2 be contours in O ∩ ρ(A) with C1
inside C2 having no point in common. That is, C2 winds once around
every point of C1 and C1 winds zero times around every point of C2.
From (4.9), we have

f(A)g(A) =

∮
C2

(λI −A)
−1

f(λ)dλ

∮
C1

(μI −A)
−1

g(μ)dμ

=

∫∫
©

C1∪C2

(λI − A)−1 (μI −A)−1 f(λ)g(μ)dλdμ

=

∫∫
©

C1∪C2

(λ− μ)
−1
[
(μI −A)

−1 − (λI −A)
−1
]
f(λ)g(μ)dλdμ

=

∮
C1

[∮
C2

(λ− μ)
−1

f(λ)dλ

]
(μI −A)

−1
g(μ)dμ

−
∮
C2

[∮
C1

(λ− μ)
−1

g(μ)dμ

]
(λI −A)

−1
f(λ)dλ

(4.10)

Since C2 winds once around every point of C1, the first integral above
is f(μ), by Cauchy’s integral theorem. On the other hand, since C1
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does not wind around any point in C2, the μ integration of the second
term above is zero, so that

f(A)g(A) =

∮
C2

(μI −A)−1 f(μ)g(μ)dμ.

To prove (2), suppose μ ∈ σ[f(A)] and μ 	= f(λ) for any λ ∈ σ(A).
Then f(λ) − μ is nonzero on σ(A), so that g(λ) = (f(λ) − μ)−1 is
analytic on an open set containing σ(A), so we can define g(A) by
Eq. (4.9). It follows from (f(λ)− μ)g(λ) = 1 that (f(A)− μI)g(A) =
I, so that g(A) = (f(A) − μI)−1. Thus, μ /∈ σ[f(A)]. This is a
contradiction, so that μ = f(λ) for some λ ∈ σ(A).

If μ = f(λ) for some λ ∈ σ(A), then the function

h(α) =
f(α)− f(λ)

α− λ

is analytic in an open set containing σ(A), so that h(A) is well defined
by Eq. (4.9). Since h(α)(α − λ) = f(α)− f(λ), we see that

(A− λI)h(A) = f(A)− f(λ).

Since λ ∈ σ(A), we see that (A− λI) is not invertible so that neither
is h(A). This shows that f(λ) ∈ σ[f(A)]. �

4.3. The Adjoint Operator

We now turn to a discussion of the adjoint of a linear operator A ∈
C[H], with dense domain D(A). For each f ∈ D(A), the relation
(Af, g) = (f, g′) uniquely determines g′ for each g (since D(A) is dense
in H).

Definition 4.19. The adjoint of A, A∗, is defined and uniquely de-
termined by the equation A∗g = g′.

(Note that A∗ is linear and closed whether A is closed or not.)

The relation between A and its adjoint A∗ can be simply expressed
in terms of graphs. We have (f,−A∗g) + (Af, g) = 0, which shows
that (Af, g) ∈ H × H is annihilated by (f,−A∗g) ∈ H × H. Con-
sequently, G(A)⊥G′(−A∗), where G′(−A∗) denotes the inverse graph
of −A∗, G′(−A∗) = {(f,−A∗g) |g ∈ D(A∗), f ∈ D(A)}. The inverse
graph G′(−A∗) is a closed subspace of H×H since A∗ is closed.

There is yet another way to express the relation between A and A∗.
Let J(·) denote the conjugate isomorphism between H and its dual
space H′, so that (J)(g) = Jg = (·, g). If A′ is the dual operator to A,
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defined on H′, it is not hard to see that A∗ = J−1A′J. It is this form
that will be used when we study operator theory on Banach spaces in
the next chapter.

If we restrict ourselves to L[H], we have:

Theorem 4.20. The mapping A → A∗ is an involution on L[H],
which means that:

(1) ‖A∗‖ = ‖A‖.
(2) ‖A∗A‖ = ‖A‖2.
(3) (A+B)∗ = A∗ +B∗.
(4) (aA)∗ = āA∗.
(5) (AB)∗ = B∗A∗.
(6) A∗∗ = A.

The verification of the above properties is an easy exercise and
defines L[H] as a C∗-algebra.

Definition 4.21. Let A be a closed densely defined linear operator
on H. We say that:

(1) A is self-adjoint if D(A) = D(A∗) and Af = A∗f for all
f ∈ D(A).

(2) A is normal if D(A) = D(A∗) and AA∗f = A∗Af for all
f ∈ D(A).

(3) A is unitary if A∗Af = AA∗f = f for all f ∈ H.

(4) A is a projection if A2f = Af for all f ∈ H.

(5) A is m-dissipative if, for each λ ∈ ρH(A), the range R(λI−A)
is equal to H and

Re(Af, f) ≤ 0, for f ∈ D(A).

(We also say that −A is m-accretive if A is m-dissipative.) The
next result is due to von Neumann [VN1].

Theorem 4.22 (von Neumann). Let H be a separable Hilbert space
and let A be a closed densely defined linear operator on H. Then A
has a well-defined adjoint A∗ defined on H such that the following
assertions are valid.

(1) A∗A � 0 is accretive (i.e., (A∗Af, f) ≥ 0 for f ∈ D(A)).

(2) (A∗A)∗ = A∗A.
(3) The operator λI +A∗A has a bounded inverse for all λ > 0.
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Proof. From our earlier discussion, it is clear that A∗ exists as a closed
densely defined linear operator on H. To prove (1), let f ∈ D(A).

Then, from 0 � ‖Af‖2H = (Af,Af)H = (f,A∗Af)H, we see that the
operator A∗A � 0.

To prove (2), note that (f,A∗Af)H = ((A∗A)∗f, f)H and
(Af,Af)H = (A∗Af, f)H, so that (A∗A)∗ = A∗A. Since D(A∗A) =
D[(A∗A)∗], we see that A∗A is self-adjoint.

To prove (3), observe that, G(A)⊥G′(−A∗), G(A) and G′(−A∗) are
complementary subspaces of H×H, so that G(A)⊕G′(−A∗) = H×H.
Thus, for λ > 0, any vector in H × H can be written in the form
(Ag, λg) + (f,−A∗f) for some g ∈ D(A), f ∈ D(A∗). In particular,
we choose vectors of the form (0, h) ∈ H ×H . In this case, we have:
h = λg−A∗f and 0 = Ag+ f . Thus, f = −Ag and h = (λI +A∗A)g.
Since h can be arbitrarily chosen in H, the range of (λI +A∗A) is the
whole space H. Thus, the inverse operator S = (λI + A∗A)−1 exists
and is determined by the equation Sh = g. It is linear and defined on
all of H, with

(Sh, h)H = (g, (λI +A∗A)g)H = ‖Ag‖2H + λ ‖g‖2H � 0. (4.11)

Since (4.11) is real-valued, it follows that S is symmetric. Furthermore,

Sh = 0 if and only if h = 0 and, since ‖Ag‖2H + λ ‖g‖2H � λ ‖g‖2H =

λ ‖Sh‖2H , we have that:

‖Sh‖2H = ‖g‖2H � (Sh, h)H � ‖h‖H ‖Sh‖H , (4.12)

so that ‖Sh‖H � ‖h‖H. Hence, S is a bounded linear (contraction)

operator and, from (4.12), we have that 0 � (Sh, h)H � ‖h‖2H. As an
exercise, it is easy to show that the spectrum of a bounded operator
is contained in the closure of its numerical range. From the above
result, we see that the spectrum of S lies on the real line between 0
and 1. Therefore, S is positive and, being bounded and symmetric, it
is self-adjoint. Thus, we see that S−1 = λI + A∗A is also self-adjoint
and densely defined (from which, it follows again that A∗A is positive,
self-adjoint and densely defined). �

Using properties of the resolvent, it is easy to show that condition
(3) is satisfied if R(I +A∗A) = H (range).

Definition 4.23. Let A be a closed densely defined linear operator
on H. A subspace D is said to be a core for A if D = G(A), the graph
of A (i.e., if the set of elements {g,Ag}, g ∈ D is dense in G(A)).



168 4. Analysis on Hilbert Space

The following theorem describes the relationship between A
and A∗.

Theorem 4.24. Let A ∈ L[H] then:

(1) The null space of A, N(A) = R(A∗)⊥.
(2) The null space of A∗, N(A∗) = R(A)⊥.
(3) R(A) is dense in H if and only if A∗ is injective.

(4) A is injective if and only if R(A∗) is dense in H.

Proof. The proof of (2) and (4) is similar to that of (1) and (3).

For (1), if f ∈ N(A), Af = 0, so that (Af, g) = 0 for all g ∈ H. It
follows that (f,A∗g) = 0, so that f ∈ R(A∗)⊥.

To prove (3), R(A) is dense in H if and only if R(A)⊥ = {0} (since
it is closed). Thus, as N(A∗) = R(A)⊥, N(A∗) = {0}, so that A∗ is
injective. The opposite direction is obvious. �

4.3.1. The Polar Decomposition of A. In this section, we focus
on the square root of an m-accretive operator and use it to derive an
important representation for linear operators on C(H). Recall from
Theorem 4.22 that for any closed densely defined linear operator A
on H, A∗A is m-accretive. In order to make our approach compatible
with that used in partial differential equations and semigroup theory,
we work with S = −A∗A, so that S is m-dissipative. Without loss,
we can assume that S is strictly negative (i.e., there is a δ > 0 and

(Sf, f) < −δ ‖x‖2 , f ∈ D(S)). Thus, for any α, with Re(α) >
0, (αI − S)−1 exists and∥∥∥(αI − S)−1

∥∥∥ � 1

Re(α) + δ
. (4.13)

Define the branch of α−1/2 so that Re(α−1/2) > 0, when Re(α) > 0.
(This branch is a one-valued function in the α-plane cut along the
negative real axis.) The half-plane {α : Re(α) > −δ} ⊂ ρ(S), so we
can choose a path C, which goes from +∞ → +∞ in ρ(S), turns
around the origin in the positive direction and is positive where C
touches the negative real axis. We define T by:

T =
1

2πi

∮
C
(αI − S)−1 α−1/2dα. (4.14)

The integral above is absolutely convergent from Eq. (4.13), and we
see that T ∈ L[H]. If we choose a second path C ′ as in Theorem 4.18
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[see Eq. (4.10)] and use the first resolvent identity (Theorem 4.17 (3))
on (αI − S)−1(ᾱI − S)−1, we have that

(T )2 =
1

2πi

∮
C
(αI − S)−1 α−1dα = (−S)−1. (4.15)

Now note that if Tf = 0, then (−S)−1f = 0, so that f = 0. It follows
that T is injective, so it is invertible.

Definition 4.25. We define |A| = [A∗A]1/2 = (−S)1/2 = T−1, so that

[A∗A]−1/2 = |A|−1 = T .

It is clear that both |A| and |A|−1 commute with [A∗A]. In order
to obtain the standard representation of |A| as a fractional power of a
closed densely defined linear operator, we reduce the path of C to the
union of the upper and lower edges of the real axis and use α−1/2 =
iλ−1/2, to obtain:

|A|−1/2 =
1

π

∫ ∞

0
(λI + [A∗A])−1 λ−1/2dλ. (4.16)

It is easy to see that |A| and [AA∗]1/2 = |A∗| are nonnegative densely
defined closed self-adjoint linear operators on H. In the general case,
when A is m-dissipative, Eq. (4.16) becomes (Re[λ] > 0)

(−A)−1/2f =
1

π

∫ ∞

0
λ−1/2 (λI −A)−1 fdλ. (4.17)

An equally important representation is obtained from Eq. (4.17) by
multiplying both sides by A to get, for f ∈ D(A),

(−A)1/2f =
1

π

∫ ∞

0
λ−1/2 (λI −A)−1Afdλ. (4.18)

In what follows, we let T = |A| and T̄ = |A∗|.
Theorem 4.26. If A ∈ C(H), then D(T ) = D(A) and:

(1) There exists an unique partial isometry U such that

A = UT = T̄U, A∗ = U∗T̄ = TU∗.

(2) We also have that T̄ = UTU∗ and T = U∗T̄U .

(3) If A is normal (i.e., A∗A = AA∗), then U |A| = |A|U and we
can take U to be unitary, UU∗ = U∗U = I.
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Proof. To prove (1) let f ∈ D(A), then

‖Af‖2 = (Af,Af) = (f,A∗Af) = (Tf, Tf) = ‖Tf‖2 .
This implies that D(T ) = D(A) and Tf → Af defines an isometric
map U of the range of T,R(T ), onto the range of A,R(A), such that
Af = UTf . The operator U can be extended to an isometric map
from the closure, R(T ) onto R(A) by continuity. If we define Ug = 0
for g ∈ R(T )⊥, we can extend U to L[H]. This defines U as an
unique partial isometry from R(T ) onto R(A), so that A = UT with
D(T ) = D(A). It is easy to see from Theorem 4.20 (5) that A∗ = TU∗

on D(A∗).
From A∗ = TU∗, we see that T = A∗U , so that

AA∗ = (UT )(TU∗) = UA∗AU∗ ⇒ AA∗U = UA∗A.

It follows that T̄U = UT = A and T = U∗T̄U . Using this last result
in A∗ = TU∗, we see that A∗ = (U∗T̄U)U∗ = U∗T̄ .

The proof of (2) follows from T = U∗T̄U , obtained above. To
prove (3), if A is normal, then T̄ = T , so that UT = TU . From here,
we see that U maps the range of A onto the range of A∗. Let M1 be
the closure of the range of T and let M2 = M⊥

1 , so that H = M1⊕M2.
It is easy to see that the null space of A, N(A) = N(A∗) = M2. Thus,
if we set U = I, the identity operator on M2, we can extend U to all
of H as a unitary operator. �

4.4. Compact Operators

It is fair to say that the inverse (or shifted inverse) of almost all closed
densely defined linear (differential) operators encountered in practice
are either compact or can be approximated by compact operators.
They are also very close to the operators (matrices) studied in elemen-
tary linear algebra. This section is devoted to a study of the relevant
results on compact operators. We will not use them directly in the
following chapters. However, they are just below the surface of all
that follows, and one should know as much as possible about them.

Definition 4.27. Let A ∈ L[H].

(1) We say that A is of finite rank if dim[R(A)] < ∞ (dimension
of the range) and call it the rank of A. We let FH be the set
of all operators of finite rank in L[H].
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(2) We say that A is compact if and only if for each bounded
sequence {gn} ⊂ H, {Agn} has is a convergent subsequence.
We let KH be the set of all compact operators in L[H].

Lemma 4.28. If BH is the unit ball in H, then the bounded linear
operator A is compact if and only if A(BH) has a compact closure.

Proof. If for each bounded sequence {gn} ⊂ H, {Agn} has is a con-
vergent subsequence, then A(BH) has a compact closure. On the other
hand, if A(BH) has a compact closure, let {gn} be a bounded sequence
in H. Then, the sequence {a−1gn} ⊂ BH, where a = supn ‖gn‖H, so
that a−1Agn has a convergent subsequence. It follows that the set
{Agn} has is a convergent subsequence. �

Lemma 4.29. Let M ⊂ H be a nonempty proper closed linear sub-
space. Then, given ε > 0, there exists a f ∈ M such that ‖f‖ = 1 and
1− ε ≤ dist(f,M).

Proof. Let g ∈ H \M , with 0 < d = dist(g,M) and choose f0 ∈ M
such that

d ≤ ‖g − f0‖ ≤ d

1− ε
, and set f =

g − f0
‖g − f0‖ .

Using this f , it follows that, for each h ∈ M ,

‖f − h‖ =

∥∥∥∥ g − f0
‖g − f0‖ − h

∥∥∥∥ � d

‖g − f0‖ � 1− ε,

since f0 + h ‖g − f0‖ ∈ M . �

Theorem 4.30. If the unit ball BH, of H is compact, then H is finite
dimensional.

Proof. If we assume that H is infinite dimensional, let Mn be a proper
increasing sequence of subspaces. By the above lemma, there exists a
sequence {fn}, with fn ∈ Mn, ‖fn‖ = 1 and 1

2 ≤ dist(fn,Mn−1). In

particular, if n 	= m, ‖fn − fm‖ ≥ 1
2 . It follows that the sequence {fn}

has no convergent subsequence, contradicting our assumption that BH
is compact. �

Lemma 4.31. Let D is a (countable) dense subset of H and let {Fn}
be a sequence of mappings on H such that, for f ∈ D the closure of
{Fn(f)} is compact. Then there is a subsequence {Fni}, that converges
for each f ∈ D.
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Proof. Let D = {fn} and, by the compactness of {Fn(f1)}, let
{Fn,1(f1)} be a convergent subsequence. Now, from {Fn,1}, find a
subsequence {Fn,2}, such that {Fn,2(f2)} converges. Continuing, we
obtain a subsequence {Fn,i} that converges at fi for each fi ∈ D. If
we let {Fn,n} be the diagonal subsequence, {Fn,n(fi)} converges for
all fi ∈ D, then we have our convergent subsequence. �

Theorem 4.32. For the set of all compact operators in KH ∈ L[H],
we have:

(1) KH is a closed subspace of L[H] in the operator norm.

(2) If A is compact and T ∈ L[H], then AT and TA are compact
operators, so that KH is an ideal in L[H].

(3) The operator A is compact if and only if A∗ is compact, so
that KH is a ∗ideal in L[H].

Proof. It is easy to see that KH is a linear subspace. To see that it
is closed, let An → A, so that ‖An −A‖ → 0. Let {fn} be a bounded
sequence in H. Following the procedure of Lemma 4.31, let {f1

n} be
a subsequence such that {A1f

1
n} converges. Continuing, we obtain a

sequence {fk
n} such that {Akf

k
n} converges for each k. Let gn = fn

n ,
so that {Akgn} converges for each fixed k. Let ε > 0 be given, let
M = sup ‖fn‖ and choose N1 such that, for k > N1, ‖Ak −A‖ < ε

4M .
Then chose N2 such that ‖Akgn −Akgm‖ < ε

2 for n > N1 and m > N2.
Then, for k, n, m > max{N1, N2},

‖Agn −Agm‖ � ‖(A−Ak) (gn − gm)‖+ ‖Ak (gn − gm)‖
� 2M ‖A−Ak‖+ ‖(gn − gm)‖ < ε.

It follows that the sequence {Agn} converges, so that A is compact.
Thus, KH is closed in the L[H] norm.

To prove (2), let A be compact and T ∈ L[H]. Let {fn} be a
bounded sequence in H and choose a subsequence {fni} such that
Afni converges. It is clear that TAfni also converges. For the other
case, {Tfn} is bounded, so we can choose a subsequence {Tfni} such
that ATfni converges.

To prove (3), let A = UT be the polar decomposition of A. Since
T = U∗A, T is compact and, since A∗ = TU∗, it follows from (2) that
A∗ is compact. �

Recall that a sequence {fn} is said to converge to f weakly (fn
w−→

f) if (fn, g)H → (f, g)H for all g ∈ H.
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Theorem 4.33. Let fn
w−→ f and let A be compact. Then ‖Afn −Af‖H

→ 0 as n →∞ (i.e., Afn → Af strongly).

Proof. By the Uniform Boundedness Theorem, the sequence {‖fn‖H}
is bounded (see Theorem 1.54). If gn = Afn, then (Afn, ξ) =

(fn, A
∗h) → (f,A∗h) for all h ∈ H. It follows that gn

w−→ γ = Af . If
the sequence {gn} does not converge in norm, then there is a L > 0
and a subsequence {hnk

} such that 0 < L ≤ ‖gnk
− g‖H. As the sub-

sequence {fnk
} is bounded and A is compact, {gnk

} has a subsequence

that converges to ḡ 	= g. This is a contradiction since gn
w−→ g. Thus,

Afn → Af in norm. �

Theorem 4.34. Every compact operator on H is the norm limit of a
sequence of operators of finite rank.

Proof. Let {fn} be a orthonormal basis for H and for each n, let
Mn be closed subspace the spanned by {f1, . . . fn} and let Pn be the
projection of H onto Mn. Define λn by:

λn = sup
f∈M⊥

n , ‖f‖=1

‖Af‖H .

It is clear that the sequence {λn} is decreasing and has a limit λ ≥ 0.
If λ 	= 0, then, for each n, let gn ∈ M⊥

n , ‖gn‖ = 1, with ‖Agn‖ ≥ 1
2λ.

Since gn
w−→ 0, by the last theorem Agn

s−→ 0. It follows that λ = 0
and An = APn is an operator of finite rank, with Anf → Af , for each
f ∈ H. �

Corollary 4.35. If {φn} is an orthonormal basis for H and A is
compact, then A has the representation:

A =
∞∑
n=1

Aφn(·, φn).

Proof. For any f ∈ H, we have

f =
∞∑
n=1

(f, φn)φn,

where convergence is in the H norm. It follows that

Af =

∞∑
n=1

(f, φn)Aφn.

�
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4.4.1. Fredholm Theory. In this section, we discuss the Fredholm
theory and related results for compact linear operators. We begin with
an interesting analytic result.

Theorem 4.36 (Analytic Fredholm Theorem). Let D be an open con-
nected domain in C, let f be a compact analytic operator-valued map
of D → L[H], and let h(z) = [1 − f(z)]−1, z ∈ D. In this case, only
one of the following is true:

(1) The function h(z) does not exist for any z ∈ D.

(2) There exists a discrete set E ⊂ D such that h(z) exist for all
z ∈ D \ E. In this case, h(z) is meromorphic in D (i.e., the
ratio of two holomorphic functions), analytic in D\E and the
residues at the poles of h(z) are of finite rank. Furthermore,
if z ∈ E, the equation f(z)φ = φ has nontrivial solutions.

Proof. Let z0 ∈ D and, choose r > 0 such that ‖f(z)− f(z0)‖ < 1
2 ,

when Dr = {z : |z − z0| < r}. Since f(z0) is compact, we can find an
operator A of finite rank such that ‖f(z0)−A‖ < 1

2 . It follows that
for z ∈ Dr, ‖f(z)−A‖ < 1. Thus,

∞∑
n=0

(f(z)−A)n = (I − f(z) +A)−1 = gA(z).

It follows that gA(z) is analytic and since A is of finite rank, by Corol-
lary 4.35, for any u ∈ H, we can write (with Aφn = ψn)

Au =

N∑
n=1

(u, φn)ψn,

where (φ1, φ2, . . . , φN ) is a finite set of orthogonal functions. Let
φn(z) = gA(z)

∗φn and define

g(z)u = A[gA(z)u] =
N∑

n=1

(gA(z)u, φn)ψn

=

N∑
n=1

(u, φn(z))ψn ⇒ g(z) =

N∑
n=1

( · , φn(z))ψn.

(4.19)

Now note that

(I − g(z)) (I +A− f(z)) = (I +A− f(z))− g(z) (I +A− f(z))

= (I +A− f(z))−A = (I − f(z)) .
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It follows that (I − f(z))−1 exists for z ∈ Dr if and only if (I − g(z))
has an inverse. Furthermore, f(z)φ = φ has a nontrivial solution if
and only if g(z)φ = φ has one.

If g(z)φ = φ, we see from Eq. (4.19) that

φ =
N∑
k=1

akψk =
N∑

n=1

(φ, φn(z))ψn.

It follows that

an =

N∑
m=1

(ψm, φn(z)) am. (4.20)

This is the standard homogeneous problem for N equations in N un-
knowns. Thus, Eq. (4.20) has a nontrivial solution if and only if

d(z) = det [δnm − (ψm, φn(z))] = 0.

Since φn(z) is an analytic function in Dr, we see that d(z) is also.
Thus, either Er = Dr or Er has a finite number of points in Dr, where
Er = {z : det[δnm − (ψm, φn(z))] = 0.

On the other hand, if z ∈ Dr \ Er, d(z) 	= 0 and, from elementary
linear algebra, [I − g(z)]−1 exists. Furthermore, the inhomogeneous
problem [I − g(z)]φ = ψ has a unique solution. Thus, [I − g(z)]−1

exists if and only if z /∈ Er.

Since D is connected, by analytic continuation we can extend f(z)
to all of D. We are done since [I − f(z)]−1 is meromorphic and the
residues at each pole are finite rank operators. �

If we set f(z) = zA in Theorem 4.36, we have:

Theorem 4.37 (The Fredholm Alternative). If A ∈ KH then either
the equation Aφ = φ has a nontrivial solution or [I −A]−1 ∈ L[H].

Theorem 4.38. For A ∈ L[H], we have:

(1) (The Riesz–Schauder Theorem) If A ∈ KH, then the spectrum
σ(A) is a discrete set of points in C with no limit point other
than 0. If 0 	= λ ∈ σ(A), then the eigenspace for λ is finite
dimensional (i.e., λ is an eigenvalue of finite multiplicity).

(2) (The Hilbert–Schmidt Theorem) If A ∈ KH is self-adjoint,
then the normalized eigenfunctions for A, {φn} form a com-
plete orthonormal basis for H, with Aφn = λnφn, and λn → 0,
as n → ∞.
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Proof. To prove (1), note that, since f(z) = zA is an entire
map of C → KH, it follows that the set Df = {z : f(z)ψ =
ψ has a nontrivial solution} is discrete, z = 0 /∈ Df and, if λ−1 /∈ Df ,
then (λ−A)−1 exists with

(λ−A)−1 =
1

λ
(I − 1

λ
A)−1.

Finite dimensionality of the eigenspace for λ follows from compactness.

To prove (2), first note that,∥∥A2
∥∥ = ‖A∗A‖ � ‖A∗‖ ‖A‖ = ‖A‖2

and

‖A‖2 = sup
‖ϕ‖=1

‖Aϕ‖2 = sup
‖ϕ‖=1

(ϕ,A∗Aϕ) � ‖A∗A‖ ,

so that
∥∥A2

∥∥ = ‖A‖2. By induction, we get that
∥∥A2n

∥∥ = ‖A‖2n, for
all n. It follows that the spectral radius of A is ‖A‖.

For each eigenvalue of A, choose an orthonormal basis for its
eigenspace (which is finite dimensional from (1)). Since eigenvectors
for distinct eigenvalues are orthogonal, the set of eigenvectors {φn} for
all λ is an orthonormal set. Let E be the Hilbert subspace spanned by
this family. Since A is self-adjoint, A is invariant on both E and E⊥. If
A1 is the restriction of A to E⊥, it is clearly self-adjoint and compact.
By (1), if there is a λ 	= 0 ∈ σ(A1), it is necessarily an eigenvalue of A1

and also of A. It follows that rA1 = 0, since all eigenvectors of A are
in E . Since rA1 = ‖A1‖, we see that A1 = 0, so that E⊥ = {0}. Since
Aφ = 0 implies that φ ∈ E , we see that E = H, so that the family
{φn} is complete. Furthermore, since σ(A) has no limit point except
possibly 0, we see that λn → 0. �

Theorem 4.39 (Canonical Form for Compact Operators). If A
be compact, then there exists two orthonormal families of functions
{φn}, {ψn}, that need not be complete, such that

Af =

∞∑
n=1

λn(f, φn)ψn.

Where {λn} are the eigenvalues of T = [A∗A]1/2 (called the singular
values of A).

Proof. First, note that T is compact and self-adjoint, so that by the
last theorem, H has a orthonormal basis consisting of its eigenvectors
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{φn}, with Tφn = λnφn, where the {λn} are the nonzero eigenvalues
of T . For f ∈ H, we have that

f =

∞∑
k=1

(f, φn)φn.

It follows that

Tf =

∞∑
k=1

λn (f, φn)φn.

Since A = UT , if we set ψn = Uφn, the family {ψn} is orthonormal
and,

Af =

∞∑
n=1

λn(f, φn)ψn.

Since U is a partial isometry, the family {ψn} need not be complete.
�

4.4.2. Trace Class Operators.

Definition 4.40. Let {φn}∞n=1 be an orthonormal basis for H. If A is
any positive linear operator, we define the trace of A, tr(A), by

tr(A) =

∞∑
n=1

(Aφn, φn),

whenever the sum converges.

Theorem 4.41. The number tr(A) is independent of the orthonormal
basis chosen and:

(1) If λ ≥ 0, then tr(λA) = λtr(A).

(2) tr(A+B) = tr(A) + tr(B).

(3) If U is a unitary operator, then tr(UAU−1) = tr(A).

(4) If 0 ≤ A ≤ B, then tr(A) ≤ tr(B).
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Proof. If {ψn}∞n=1 is any other basis, then

∞∑
k=1

(Aϕk, ϕk) =
∞∑
k=1

(
A1/2ϕk, A

1/2ϕk

)
=

∞∑
k=1

∥∥∥A1/2ϕk

∥∥∥2

=
∞∑
j=1

∞∑
k=1

∣∣∣(A1/2ϕk, ψj

)∣∣∣2

=
∞∑
j=1

∞∑
k=1

∣∣∣(ϕk, A
1/2ψj

)∣∣∣2 = ∞∑
j=1

∥∥∥A1/2ψj

∥∥∥2

=

∞∑
j=1

(Aψj , ψj).

The proofs of (1), (2), and (4) are easy. To prove (3), note that
U∗ = U−1 and {U∗ϕn}∞n=1 is also an orthonormal basis, so that

tr
(
UAU−1

)
=

∞∑
k=1

(UAU∗ϕk, ϕk) =

∞∑
k=1

(AU∗ϕk, U
∗ϕk)

=

∞∑
k=1

(Aψk, ψk) = tr (A) .

�

Definition 4.42. An operator A ∈ L[H] is called trace class if and
only if tr(|A|) < ∞. We denote the family of all trace class operators
by S1[H].

Let {λn} be the singular values of A, λn = (μn)
1/2, where {μn}

are the eigenvalues of A∗A.

Theorem 4.43. If A is compact, then A ∈ S1[H] if and only if∑∞
n=1 λn < ∞, where {λn} are the singular values of A. If A ∈ S1[H],

then A is compact.

Proof. First, if A ∈ S1[H] is compact, then |A| is also compact. Thus,
by Theorem 4.39, there exists an orthonormal family of functions {φn},
such that

|A| =
∞∑
n=1

λn(·, φn)φn,
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where {λn} are the eigenvalues of |A|. It follows that

tr(|A|) =
∞∑
n=1

(|A|φn, φn), |A| =
∞∑
k=1

λk (·, φk)φk ⇒

tr(|A|) =
∞∑
n=1

∞∑
k=1

λk (φk, φn) =

∞∑
n=1

λn.

Since tr(|A|) =∑∞
n=1 λn < ∞. This proves the first part.

To prove the second part, assume that A ∈ S1[H]. It follows that

|A|2 ∈ S1[H], so that tr(|A|2) < ∞. Since ‖Aφ‖ = ‖|A|φ‖, we have
that

tr(|A|2) =
∑∞

n=1

(
|A|2 φn, φn

)
=
∑∞

n=1
‖|A|φn‖2 < ∞,

for any orthonormal basis {φn}. For each n, let M be the span of
[φ1, . . . , φn] and let ψ ∈ M⊥, with ‖ψ‖ = 1. Since [φ1, . . . , φn, ψ] can
always be extended to an orthonormal basis, we have that

‖Aψ‖2 � tr(|A|2)−
∑n

k=1
‖Aφk‖2.

Thus,

sup
{
‖Aψ‖

∣∣∣ ψ ∈ [φ1, · · · , φn]
⊥ , ‖ψ‖ = 1

}
→ 0, n →∞,

so that
∑n

k=1 (·, φk)Aφk converges in norm to A. It follows that A is
compact. �

We leave the proof of the next theorem for the reader.

Theorem 4.44. The family of trace class operators S1[H], with the
norm of A defined by ‖A‖1 = tr(|A|), is a Banach space (subspace of
L[H]). Furthermore

(1) FH ⊂ S1[H] is dense.

(2) If B ∈ L[H] and A ∈ S1[H], then AB and BA ∈ S1[H].

(3) If A ∈ S1[H], then A∗ ∈ S1[H].

4.4.3. The Schatten Class.

Definition 4.45. For 1 ≤ p ≤ ∞, let

Sp[H] = {A ∈ KH :
∑∞

k=1
λp
k = tr(|A|p) < ∞}.
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The spaces Sp[H] are known as the Schatten class of compact oper-
ators. They are the noncommutative analog of the Lp spaces. Proofs
of the following can be found in Schatten [SC].

Theorem 4.46. The family of operators Sp[H] is a Banach space with

the norm of A defined by ‖A‖p = [tr(|A|p)]
1
p , 1 ≤ p < ∞. When

p = ∞, the norm of A defined by ‖A‖∞ = ‖A‖ (the operator norm of
L[H]). Furthermore

(1) FH ⊂ Sp[H], 1 ≤ p ≤ ∞, is dense.

(2) If B ∈ L[H] and A ∈ Sp[H], then AB and BA ∈ Sp[H] (i.e.,
it is a two-sided ideal).

(3) If A ∈ Sp[H], then A∗ ∈ Sp[H](i.e., it is a two-sided ∗-ideal).

(4) If 1 < p < ∞, then Sp[H] is reflexive and its dual space is

Sq[H], where 1
p + 1

q = 1.

(5) The dual space of S1[H] is S∞[H] = KH.

In case p = 2, S2[H] is also known as the Hilbert–Schmidt class
of operators. Since the nonzero singular values of A, A∗ and |A| are
identical, we have

‖A‖1 = ‖A∗‖1 = ‖|A|‖1 =
∥∥∥|A|1/2∥∥∥2

2
.

Theorem 4.47. We can define an inner product on S2[H] by 〈A,B〉 =
tr(A∗B). In addition, we have that:

(1) S1[H] ⊂ S2[H] and ‖A‖2 ≤ ‖A‖1.
(2) If A,B ∈ S2[H], then AB ∈ S1[H] and ‖AB‖1 ≤ ‖A‖2 ‖B‖2.
(3) If T ∈ S1[H], then there exists A,B ∈ S2[H], with T = AB.

4.5. Spectral Theory

In this section we provide an elementary version of the spectral theo-
rem. Our objective is to provide a simple proof that, in a well-defined
sense, every bounded linear operator on H has a spectral type repre-
sentation.

To begin, recall that a projection P is a bounded linear operator
on H with P 2 = P .
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Theorem 4.48. If P is a projection on H, then the following are
equivalent:

(1) P is self-adjoint, P = P ∗

(2) P is normal, PP ∗ = P ∗P
(3) R(P ) = N(P )⊥

(4) (Pf, f) = ‖Pf‖2, for all f ∈ H

Proof. Clearly, (1) ⇒ (2). To show that (2) ⇒ (3), since P is normal,

(P ∗Pf, f) = (PP ∗f, f) ⇔ (Pf, Pf) = (P ∗f, P ∗f) ⇔
N(P ) = N(P ∗) = R(P )⊥.

Since N(P ) is closed, N(P )⊥ = R(P ) and H = N(P )⊕R(P ).

To show that (3) ⇒ (4), for each f ∈ H we can write f = f1 + f2,
with f1 ∈ N(P ), f2 ∈ R(P ) and (f1, f2) = 0. It follows that Pf = f2
and

(Pf, f) = (f2, f1 + f2) = (f2, f2) = ‖f2‖2 = ‖Pf‖2 .

To see that (4) ⇒ (1), note that (Pf, f) = ‖Pf‖2 ⇒ (f, P ∗f) =

‖P ∗f‖2 and (f, P ∗f) = (f1 + f2, f2) = (f2, f2) = (Pf, f), so that

‖P ∗f‖2 = ‖Pf‖2. �

Definition 4.49. Let (Ω,B[Ω], μ) be a measure space, with Ω ⊂ C.
A resolution of the identity on B[Ω] is a mapping of E : B[Ω] → C[H]
such that, for each B ∈ B[Ω], E(B) is a self-adjoint projection with
the following properties:

(1) E(∅) = 0, E(Ω) = 1.

(2) E(B ∩B′) = E(B)E(B′).
(3) B ∩B′ = ∅ ⇒ E(B ∪B′) = E(B) + E(B′).
(4) For each f, g ∈ D(E), the set function Ef,g(B) = (E(B)f, g)

is a regular (complex) Borel measure on B[Ω].

From Theorem 4.48, we have the following results:

Theorem 4.50. Let E is a resolution of the identity on (Ω,B[Ω], μ),
then:

(1) For each B ∈ B[Ω] and f ∈ H, we have,

Ef,f (B) = (E(B)f, f)H = (E2(B)f, f)H = ‖E(B)f‖2H .
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It follows that each Ef,f (·) is a positive measure on B[Ω] and,

since E(Ω) = 1, its total variation Ef,f (Ω) = ‖Ef,f‖ = ‖f‖2.
(2) E(B′)E(B) = E(B′)E(B).

(3) B ∩B′ = ∅ ⇒ R[E(B)]⊥R[E(B′)].
(4) Ef,g(·) is finitely additive.

We need the following result on convergence of orthogonal vectors.

Lemma 4.51. Let {φn} be a pairwise sequence of orthogonal vec-
tors in H. The sequence converges weakly if and only if it converges
strongly.

Proof. It is clear that strong convergence implies weak convergence,
so we need to only prove the other direction. Suppose that

JN (ψ) =
N∑
k=1

(ψ,ϕk)

converges as N → ∞ for every ψ ∈ H, then the family JN (·) is
bounded, by the Uniform Boundedness Theorem. Since

‖JN (·)‖ =

∥∥∥∥∥
N∑
k=1

ϕk

∥∥∥∥∥ =

{
N∑
k=1

‖ϕk‖2
}1/2

,

we see that the family {φn} converges strongly. �

Theorem 4.52. Let E is a resolution of the identity on (Ω,B[Ω], μ).

(1) If f ∈ H, then for each B ∈ B[Ω], B → E(B)f is an H-
valued measure (countably additive) on B[Ω].

(2) If E(Bk) = 0 for all k and B =
⋃∞

k=1Bk, then E(B) = 0.

Proof. To prove (1), suppose {Bn} is a pairwise sequence of disjoint
sets in B[Ω]. This implies that Bn ∩ Bm = ∅, when m 	= n, so that
E(Bn∩Bm)f = E(Bn)fE(Bm)f = 0. Thus, the family {E(Bn)f} are
orthogonal to each other. From the above lemma, we have that(

E

[ ∞⋃
k=1

Bk

]
f, g

)
=

∞∑
k=1

(E(Bk)f, g),

and the series converges in the norm of H.
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To prove (2), if E(Bn) = 0 for each n, then Ef,f (Bn) = 0. If we
set B =

⋃∞
k=1Bk, then Ef,f (B) = 0. However,

‖E(B)f‖2 = Ef,f (B),

so that E(B) = 0. �

4.5.1. Spectral Theorem for Self-adjoint Operators.

4.5.1.1. The Bounded Case. Let A ∈ L[H], with spectrum σ(A).

Theorem 4.53. If f is a continuous function on σ(A), the map f →
f(A) is an isometric isomorphism and:

(1) (f+g)(A)=f(A)+g(A), (fg)(A)=f(A)g(A).

(2)

‖f(A)‖ = sup
λ∈σ(A)

|f(λ)| (4.21)

(3) If A is self-adjoint and f is real-valued, then f(A) is also
self-adjoint and σ[f(A)] = f(σ[A]).

Proof. From Theorem 4.18, we see that since (1) holds for polynomi-
als, it also holds for the uniform limit of polynomials.

For (2), since f(A) is the uniform limit of pn(A), where {pn(A)}
is a family of polynomials. It follows that

‖f(A)‖ = lim
n→∞ sup

λ∈σ(A)
|pn(λ)| .

To prove (3), if A is self-adjoint and f is real-valued, then
(f(A)φ,ψ) = (φ, f(A)ψ). The second part follows from Theo-
rem 4.18(2). �

Let A be self-adjoint, φ,ψ ∈ H and define a linear functional �φ,ψ
on H by

�φ,ψ(f) = (f(A)φ,ψ) .

Since f is continuous, by Corollary 4.10 there is a unique complex
measure μφ,ψ such that

�φ,ψ(f) = (f(A)φ,ψ) =

∫
σ(A)

f(λ)dμφ,ψ(λ). (4.22)

Theorem 4.54. If μφ,ψ is the measure defined by (4.22), then

(1) μφ,ψ is conjugate bilinear in φ,ψ (i.e., μψ,φ = μ̄φ,ψ).

(2) The measures μφ,φ are nonnegative.
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(3) The total variation of μφ,ψ, BVσ(A)(μφ,ψ) ≤ ‖φ‖ ‖ψ‖.

Proof. The proofs of (1) and (2) are easy, while (3) follows from the
boundedness of � and the Schwartz inequality. �

If A is self-adjoint and Ω = σ(A), from Theorem 4.50 we see that,
for each B ∈ B(Ω), μφ,ψ(B) is a bounded conjugate bilinear form.
From the Lax–Milgram Theorem, there is a bounded operator-valued
function E(B), such that

μφ,ψ(B) = (E(B)φ,ψ).

The following properties may be easily checked:

Theorem 4.55. For each B ∈ B(Ω), we have

(1) E(B) is self-adjoint, E(B)∗ = E(B).

(2) ‖E(B)‖ ≤ 1

(3) For each B ∈ B(Ω), AE(B) = E(B)A.

(4) E(∅) = 0, E(σ(A)) = 1.

(5) If B1 ∩ B2 = ∅, then E[B1 ∪ B2] = E[B1] + E[B2] and
R(B1)⊥R(B2).

(6) E[B1]E[B2] = E[B2]E[B1].

(7) Each E(B) is a orthogonal projection-value measure.

From Theorems 4.54, 4.55, and Eq. (4.22), we see that:

φ =

∫
σ(A)

dE(λ)φ and Aφ =

∫
σ(A)

λdE(λ)φ. (4.23)

The second term of Eq. (4.23) is the spectral representation for a
bounded self-adjoint linear operator.

4.5.2. Bounded Deformed Spectral Measure. In this section we
take a slightly different approach to the spectral question by noting
that any bounded linear operator can be represented as a partial isom-
etry times a self-adjoint operator.

Definition 4.56. Let E be a spectral measure. If U is a partial
isometry, we call EU = UE the deformed spectral measure associated
with U .

We now have the following interesting result.
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Theorem 4.57. If A ∈ L[H], then there is a partial isometry U and
a deformed spectral measure EU such that

Aφ =

∫ rT

0
λdEU (λ)φ, (4.24)

where T = [A∗A]1/2.

Proof. By the polar decomposition, we can write A = UT , where U
is a partial isometry and T = [A∗A]1/2 is the nonnegative and self-
adjoint. This means that σ(T ) ⊂ [0, rT ]. It follows that, for each
φ ∈ H, we can represent Tφ as

Tφ =

∫ rT

0
λdE(λ)φ.

Since E(λ)φ is a positive vector-valued function of bounded variation
and U is a partial isometry, EU (λ)φ = UE(λ)φ is of bounded variation,
with V ar(EUφ,R) ≤ V ar(Eφ,R). Thus, by Theorem 4.7, we have

Aφ = UTφ =

∫ rT

0
λdUE(λ)φ =

∫ rT

0
λdEU (λ)φ.

�

Remark 4.58. Let A be self-adjoint, with its spectrum on the nega-
tive real axis. In this case, the standard spectral theorem gives us:

A =

∫ 0

−rA

λdE(λ). (4.25)

However, the deformed spectral theorem gives

A =

∫ rA

0
λdEU (λ). (4.26)

Note that the actual spectrum is not in the interval [0, rA]. Thus,
even for self-adjoint operators, the deformed spectral theorem provides
a distinct representation. Furthermore, the region of integration is
always on the real axis, even if the actual spectrum is in the complex
plane.

4.5.2.1. The Unbounded Case. We now relax the condition that A ∈
L[H] and allow A to be unbounded. In this case, we need a few
additional results.

Theorem 4.59. Let A be any self-adjoint operator in C[H]. If λ ∈ C,
with Im(λ) 	= 0, then
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(1) The resolvent R(λ,A) exists and for each f ∈ D(A),

‖(λI −A) f‖ � |Im(λ)| ‖f‖ .
(2) The spectrum of A, σ(A) ⊂ R, R(λ,A) is normal with

R(λ,A)∗ = R(λ̄, A) and

‖R(λ,A)‖ � 1

|Im(λ)| .

(3) If −A is positive then for each λ > 0, R(λ,A) is self-adjoint
and

‖R(λ,A)‖ � 1

λ
.

(4) If −A is positive, then for λ > 0 and each f ∈ D(A),

lim
λ→∞

AλR(λ,A)f = Af.

(5) If −A is positive, then for 0 < λ < ∞, the operator

Aλ = AλR(λ,A)

is bounded and self-adjoint.

Proof. To prove (1), if f ∈ D(A) = D(λI −A), we have

‖(λI −A) f‖2 = ((λI −A) f, (λI −A) f)

= (Im(λ)f, Im(λ)f) + ((Re(λ)I −A) f, (Re(λ)I −A) f)

� (Im(λ)f, Im(λ)f) = ‖Im(λ)f‖2 = |Im(λ)|2 ‖f‖2 .
To prove (2), it follows from (1) that for Im(λ) 	= 0 we have

‖R(λ,A)‖ � |Im(λ)|−1 .

Since A = A∗ is closed and densely defined, we see that (λI − A) is
closed and densely defined. From (1) we see that R(λ,A) is bounded
and that (λI −A) is injective. Thus,

N((λI −A)) = {0} = N((λI −A)∗).

Since (λI −A)∗ =
(
λ̄I −A

)
and Im(λ̄) 	= 0, we see that λ, λ̄ ∈ ρ(A).

It is clear that R(λ,A) is normal, R(λ,A)∗ = R(λ̄, A), and σ(A) ⊂ R.

The proof of (3) is like that of (1). If −A is positive and λ > 0,
then

‖(λI −A) f‖2 = (λf, λf) + (−Af,−Af) � |λ|2 ‖f‖2 .
It follows that

∥∥∥(λI −A)−1
∥∥∥ ≤ λ−1.
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We prove (4) in two parts. First, if 0 < λ ∈ ρ(A) and f ∈ D(A)
we have

R(λ,A) (λI −A) f = f ⇒
λR(λ,A)f − f = R(λ,A)Af ⇒
‖λR(λ,A)f − f‖ � ‖R(λ,A)‖ ‖Af‖ � λ−1 ‖Af‖

This last term converges to zero as λ →∞, so that

lim
λ→∞

λR(λ,A)f = f.

Since D(A) is dense, the convergence holds for all f ∈ H.

For the second part, we see from the last result that

lim
λ→∞

λAR(λ,A)f = lim
λ→∞

λR(λ,A)Af = Af,

whenever f ∈ D(A).

To prove (5), we note that for −A ≥ 0 and fixed 0 < λ < ∞, we
have

Aλ = λAR(λ,A) = λ2R(λ,A) − λI.

From here, we see that Aλ is self-adjoint and ‖Aλ‖ � 2λ. �

Let A ∈ C[H] be a self-adjoint operator and, without lost, we
assume that −A nonnegative, so that its spectrum σ(A) ⊂ R

−.

Theorem 4.60. There exists a unique regular countably additive
projection-valued spectral measure E(Ω) defined on the Borel sets of
R, vanishing on the compliment of the spectrum of A such that, for
each φ ∈ D(A), we have:

(1) D(A) also satisfies

D(A) =

{
φ ∈ H |

∫ 0

−∞
λ2 (dE(λ)φ, φ)H < ∞

}
and

(2)

Aφ =

∫ 0

−∞
λdE(λ)φ, for φ ∈ D(A).

(3) If g(·) is a complex-valued Borel function defined (a.e.) on
R, then g(A) ∈ C[H] and, for φ ∈ D(g(A)) = Dg(A),

g(A)φ =

∫ 0

−∞
g(λ)dE(λ)φ,
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where

Dg(A) =

{
φ ∈ H |

∫
σ(A)

|g(λ)|2 (dE(λ)φ, φ)H < ∞
}

and g(A∗) = ḡ(A).

Proof. From Theorem 4.60, we see that Aμ is a bounded self-adjoint
operator, for all μ > 0. Thus, by Theorems 4.54, and 4.55, there is
a self-adjoint projection-valued measure Eμ(·), which vanishes on R

+

such that

Aμφ =

∫ 0

−∞
λdEμ(λ)φ.

If we let μ = n, we see that (Anφ, φ) → (Aφ, φ) for every φ ∈ D(A).
Thus, ∫ 0

−∞
λ (dEn(λ)φ, φ) →

∫ 0

−∞
λ (dE(λ)φ, φ).

Where, for φ ∈ D(A) and each B ∈ B(R−), (E(B)φ, φ) is a measure.
Furthermore, from(

E2(λ)φ, φ
)
= lim

n→∞
(
E2

n(λ)φ, φ
)
= lim

n→∞ (En(λ)φ, φ) = (E(λ)φ, φ) ,

we see that E(·) is a projection. Since both An and A are self-adjoint,
we see that E(·) is also. The properties of E(·) now follows from those
of En(·) with Theorems 4.50 and 4.53. Thus, E(·) is a projection-value
measure on B(R−) and

Aφ =

∫ 0

−∞
λdE(λ)φ, for all φ ∈ D(A).

Since
∥∥∥∥
∫ 0

−∞
λdE(λ)φ

∥∥∥∥
2

= ‖Aφ‖2 = (Aφ,Aφ) =
(
A2φ, φ

)
=

∫ 0

−∞
λ2d (E(λ)φ,φ) ,

we see that D(A) can also be represented as

D(A) =

{
φ

∣∣∣∣
∫ 0

−∞
λ2 (dE(λ)φ, φ) < ∞

}
.

For (3), let g(λ) be a complex-valued Borel function defined almost
everywhere on R

−. Let

gn(λ) =

{
g(λ), |g(λ)| � n
0 |g(λ)| > n,
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set

D[g(A)] =
{
φ
∣∣∣ lim
n→∞ gn(A)φ exists

}
and

lim
n→∞ gn(A)φ = g(A)φ.

If Bn = {λ : g(λ) ≤ n}, then for φ ∈ D[g(A)],

‖g(A)φ‖2 = lim
n→∞

∫
Bn

|g(λ)|2 (dE(λ)φ, φ) =

∫ 0

−∞
|g(λ)|2 (dE(λ)φ, φ).

�

The proof of our next result now follows from the polar decompo-
sition and Theorem 4.61(1) Corollary 4.10.

Theorem 4.61. If A ∈ C[H], there exists a unique regular countably
additive projection-valued deformed spectral measure EU (·) defined on
the Borel sets of R+, vanishing on the compliment of the spectrum of
A such that, for each φ ∈ D(A), we have:

(1) D(A) also satisfies

D(A) =

{
φ ∈ H |

∫ ∞

0
λ2 (dEU (λ)φ, φ)H < ∞

}

and

(2)

Aφ =

∫ ∞

0
λdEU (λ)φ, for φ ∈ D(A).

Proof. To prove (1), write A = UT , where U is the unique partial

isometry and T = [A∗A]1/2. By Theorem 4.61, there is a positive
spectral measure E(·) such that, for each x ∈ D(A) = D(T ):

Tφ =

∫ ∞

0
λdE(λ)φ. (4.27)

Since E(λ)φ is a positive vector-valued function of bounded variation
and U is a partial isometry, EU (λ)φ = UE(λ)φ is of bounded variation,
with V ar(EUφ,R) ≤ V ar(Eφ,R). Thus, by Theorem 4.8,

U

∫ ∞

0
λdE(λ)φ =

∫ ∞

0
λdUE(λ)φ.
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Since Aφ = UTφ, if we set EU (λ)φ = UE(λ)φ, we have from
Eq. (4.27),

Aφ =

∫ ∞

0
λdEU (λ)φ. (4.28)

�

Remark 4.62. In general, Ug(T ) 	= g(UT ), so that a similar result
for g(A) with A ∈ C[H] and A = UT does not hold. For example, if
we look at g(A) = A2, we see that g(T ) = T 2, while

Ug(T ) = UT 2 = AT 	= A2
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Chapter 5

Operators on Banach
Space

The Feynman operator calculus and the Feynman path integral
develop naturally on Hilbert space. In this chapter we develop the
theory of semigroups of operators, which is the central tool for both.
In order to extend the theory to other areas of interest, we begin
with a new approach to operator theory on Banach spaces. We first
show that the structure of the bounded linear operators on Banach
space with an S-basis is much closer to that for the same operators
on Hilbert space. We will exploit this new relationship to transfer
the theory of semigroups of operators developed for Hilbert spaces to
Banach spaces. The results are complete for uniformly convex Banach
spaces, so we restrict our presentation to that case, with one excep-
tion. In the Appendix (Sect. 5.3), we show that all of the results in
Chap. 4 have natural analogues for uniformly convex Banach spaces.

5.1. Preliminaries

Let B be a uniformly convex Banach space with an S-basis. Let C[B]
be the set of closed densely defined linear operators and let L[B] be
the set of bounded linear operators on B.
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194 5. Operators on Banach Space

Definition 5.1. A duality map J : B �→ B′ is a set

J (u) =
{
u∗ ∈ B′

∣∣∣〈u, u∗〉 = ‖u‖2B = ‖u∗‖2B′

}
, ∀u ∈ B.

Example 5.2. Let Ω be a bounded open subset of R
n, n ∈ N. If

u ∈ Lp[Ω] = B, 1 < p < ∞, then

J (u)(x) = ‖u‖2−p
p |u(x)|p−2 u(x) = u∗ ∈ Lq[Ω], 1

p +
1
q = 1. (5.1)

Furthermore,

〈u, u∗〉 = ‖u‖2−p
p

∫
Ω
|u(x)|p dλn(x) = ‖u‖2p = ‖u∗‖2q

It can be shown that Lp[Ω] is uniformly convex and that u∗ = J (u)
is uniquely defined for each u ∈ B. Thus, if {un} is an S-basis for
Lp[Ω], then the family vectors {u∗n} is an S-basis for Lq[Ω] = (Lp[Ω])′.
The relationship between u and u∗ is nonlinear [see Eq. (5.1)]. In
the next section we prove the remarkable result that there is another
representation of B′, with u∗ = JB(u) linear, for each u ∈ B. (However,
u∗ is no longer a duality mapping.)

5.1.1. The Natural Hilbert Space for a Uniformly Convex
Banach Space. We follow the same ideas used in Chap. 3 to embed
L2 in KS2. However, we take a restricted approach that applies to all
uniformly convex Banach spaces with an S-basis. Fix B and let {En}
be an S-basis for B. For each n, let tn = 2−n and for each En, let E∗

n

be the corresponding dual vector in B′. For each pair of functions u, v
on B, define an inner product by:

(u, v) =
∞∑
n=1

tn 〈E∗
n, u〉 〈E∗

n, v〉.

we let H be the completion of B in the induced norm. It is clear that
B ⊂ H densely and

‖u‖H =

[ ∞∑
n=1

tn|〈E∗
n, u〉|2

]1/2

� sup
n

|〈E∗
n, u〉|

� sup
‖E∗‖B′�1

|〈E∗, u〉| = ‖u‖B,

(5.2)

so that the embedding is both dense and continuous. It is clear that
H is unique up to a change of S-basis.
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Definition 5.3. If B be a Banach space, we say that B′ has a Hilbert
space representation if there exists a Hilbert space H, with B ⊂ H as
a continuous dense embedding and for each u∗ ∈ B′, u∗ = (·, u)H for
some u ∈ B.
Theorem 5.4. If B be a uniformly convex Banach space with an
S-basis, then B′ has a Hilbert space representation.

Proof. Let H be the natural Hilbert space for B and let J be the
natural linear mapping from H → H′, defined by

〈v,J(u)〉 = (v, u)H, for all u, v ∈ H.

It is easy to see that J is bijective and J∗ = J. First, we note that
the restriction of J to B, JB, maps B to a unique subset of linear
functionals {JB(u), u ∈ B} and, JB(u+ v) = JB(u) + JB(v), for each
u, v ∈ B. We are done if we can prove that {JB(u), u ∈ B} = B′. For
this, it suffices to show that JB(u) is bounded for each u ∈ B. Since B
is dense in H, from equation (5.2) we have:

‖JB(u)‖B′ = sup
v∈B

〈v,JB(u)〉
‖v‖B

� sup
v∈B

〈v,JB(u)〉
‖v‖H

= ‖u‖H � ‖u‖B.

Thus, {JB(u), u ∈ B} ⊂ B′. Since B is uniformly convex, there
is a (unique) one-to-one relationship between B and B′, so that
{JB(u), u ∈ B} = B′. �

5.1.2. Construction of the Adjoint on B. We can now show that
if B′ has a Hilbert space representation, then each closed densely linear
operator on B has a natural adjoint defined on B.
Theorem 5.5. Let B be a uniformly convex Banach space with an
S-basis. If C[B] denotes the closed densely linear operators on B and
L[B] denotes the bounded linear operators, then every A ∈ C[B] has
a well-defined adjoint A∗ ∈ C[B]. Furthermore, if A ∈ L[B], then
A∗ ∈ L[B] with:

(1) (aA)∗ = āA∗,
(2) A∗∗ = A,

(3) (A∗ +B∗) = A∗ +B∗

(4) (AB)∗ = B∗A∗ and

(5) ‖A∗A‖B ≤ ‖A‖2B.
Thus, L[B] is a ∗algebra.
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Proof. Let J be the natural linear mapping from H → H′ and let
JB be the restriction of J to B. If A ∈ C[B], then A′JB : B′ → B′.
Since A′ is closed and densely defined, it follows that J−1

B A′JB : B →
B is a closed and densely defined linear operator. We define A∗ =
[J−1

B A′JB] ∈ C[B]. If A ∈ L[B], A∗ = J−1
B A′JB is defined on all of B.

By the Closed Graph Theorem, A∗ ∈ L[B]. The proofs of (1)–(3) are
straightforward. To prove (4),

(BA)∗ = J−1
B (BA)′JB = J−1

B A′B′JB
=
[
J−1
B A′JB

] [
J−1
B B′JB

]
= A∗B∗.

(5.3)

If we replace B by A∗ in Eq. (5.3), noting that A∗∗ = A, we also see
that (A∗A)∗ = A∗A. To prove (5), we first see that:

〈A∗Av,JB(u)〉 = (A∗Av, u)H = (v,A∗Au)H,

so that A∗A is symmetric. Thus, by Lax’s Theorem, A∗A has a
bounded extension to H and ‖A∗A‖H � k ‖A∗A‖B, where k is a posi-
tive constant. We also have that

‖A∗A‖B � ‖A∗‖B‖A‖B � ‖A‖2B . (5.4)

It follows that ‖A∗A‖B ≤ ‖A‖2B. If equality holds in (5.4), for all
A ∈ L[B], then it is a C∗-algebra. This is true if and only if B is a
Hilbert space. Thus, in general the inequality in (5.4) is strict. �

5.1.2.1. Example: Differential Operators. Let A be a closed
densely defined linear operator defined on Lp[Rn], 1 < p < ∞, and let
A′ be the dual defined on Lq[Rn], 1

p + 1
q = 1. It is easy to show that

if A′ is densely defined on Lp[Rn], it has a closed extension to Lp[Rn]
(without using H2 = KS2[Rn]).

Example 5.6. Let A be a second order differential operator on Lp[Rn]
of the form

A =

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
i,j=1

xibij(x)
∂

∂xj
,

where a(x) = [[aij(x)]] and b(x) = [[bij(x)]] are matrix-valued functions
in C

∞
c [Rn × R

n] (infinitely differentiable functions with compact sup-
port). We also assume that for all x ∈ R

n det [[aij(x)]] > ε and the
imaginary part of the eigenvalues of b(x) are bounded above by −ε,
for some ε > 0. Note, since we don’t require a or b to be symmetric,
A 	= A′.
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It is well known that C
∞
c [Rn] ⊂ Lp[Rn] ∩ Lq[Rn] for all 1 < p ≤

q < ∞. Furthermore, since A′ is invariant on C
∞
c [Rn],

A′ : C∞
c [Rn] ⊂ Lp [Rn] → C

∞
c [Rn] ⊂ Lp [Rn] .

It follows that A′ has a closed extension to Lp[Rn]. (In this case, we
do not need H2 directly, we can identify J2 with the identity on H2

and A∗ with A′.)

Remark 5.7. For a general A, which is closed and densely defined on
Lp[Rn], we know that it is densely defined on KS2[Rn]. Thus, it has
a well-defined adjoint A∗ on KS2[Rn]. By Theorem 5.5, we can take
the restriction of A∗ from KS2[Rn] to obtain our adjoint on Lp[Rn].

5.1.2.2. Example: Integral Operators. In one dimension, the
Hilbert transform can be defined on L2[R] via its Fourier transform:

Ĥ(f) = −i sgnx f̂ .

It can also be defined directly as principal-value integral:

(Hf)(x) = lim
ε→0

1

π

∫
|x−y|�ε

f(y)

x− y
dy.

For a proof of the following results see Grafakos [GRA, Chap. 4].

Theorem 5.8. The Hilbert transform on L2[R] satisfies:

(1) H is an isometry, ‖H(f)‖2 = ‖f‖2 and H∗ = −H.

(2) For f ∈ Lp[R], 1 < p < ∞, there exists a constant Cp > 0
such that,

‖H(f)‖p ≤ Cp‖f‖p. (5.5)

The next result is technically obvious, but conceptually nontrivial.

Corollary 5.9. The adjoint of H, H∗ defines a bounded linear oper-
ator on Lp[R] for 1 < p < ∞, and H∗ satisfies Eq. (5.5) for the same
constant Cp.

The Riesz transform, R, is the n-dimensional analogue of the
Hilbert transform and its jth component is defined for f ∈ Lp[Rn],
1 < p < ∞, by:

Rj(f) = cn lim
ε→0

∫
|y−x|�ε

yj − xj

|y − x|n+1 f(y)dy, cn =
Γ
(
N+1
2

)
π(n+1)/2

.
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Definition 5.10. Let Ω be defined on the unit sphere Sn−1 in Rn.

(1) The function Ω(x) is said to be homogeneous of degree n if
Ω(tx) = tnΩ(x).

(2) The function Ω(x) is said to have the cancellation property if∫
Sn−1

Ω(y)dσ(y) = 0, where dσ is the induced

Lebesgue measure on Sn−1.

(3) The function Ω(x) is said to have the Dini-type condition if

sup
|x−y|�δ

|x|=|y|=1

|Ω(x)− Ω(y)| � ω(δ) ⇒
∫ 1

0

ω(δ)dδ

δ
< ∞.

A proof of the following theorem can be found in Stein [STE]
(see p. 39).

Theorem 5.11. Suppose that Ω is homogeneous of degree 0, satisfying
both the cancellation property and the Dini-type condition. If f ∈
Lp[Rn], 1 < p < ∞ and

Tε(f)(x) =

∫
|y−x|�ε

Ω(y − x)

|y − x|n f(y)dy.

Then

(1) There exists a constant Ap, independent of both f and ε such
that

‖Tε(f)‖p � Ap‖f‖p.
(2) Furthermore, lim

ε→0
Tε(f) = T (f) exists in the Lp norm and

‖T (f)‖p � Ap‖f‖p. (5.6)

Treating Tε(f) as a special case of the Henstock–Kurzweil integral,
conditions (1) and (2) are automatically satisfied and we can write the
integral as

T (f)(x) =

∫
Rn

Ω(y − x)

|y − x|n f(y)dy.

For g ∈ Lq, 1
p +

1
q = 1, we have 〈T (f), g〉 = 〈f, T ∗(g)〉. Using Fubini’s

Theorem for the Henstock–Kurzweil integral (see [HS]), we have that

Corollary 5.12. The adjoint of T, T ∗ = −T is defined on Lp and
satisfies Eq. (5.6)
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It is easy to see that the Riesz transform is a special case of the
above theorem and corollary.

Another closely related integral operator is the Riesz potential,
Iα(f)(x) = (−Δ)−α/2f(x), 0 < α < n, is defined on Lp[Rn], 1 < p <
∞, by (see Stein [STE], p. 117):

Iα(f)(x) = γ−1(α)

∫
Rn

f(y)dy

|x− y|n−α , and γ(α) = 2απ
n
2

Γ(α2 )

Γ(n−α
2 )

.

Since the kernel is symmetric, application of Fubini’s Theorem shows
that the adjoint I∗α = Iα is also defined on Lp[Rn]. Since (−Δ)−1 is
not bounded, we cannot obtain Lp bounds for Iα(f)(x). However, if
1/q = 1/p − α/n, we have the following (see Stein [STE], p. 119)

Theorem 5.13. If f ∈ Lp[Rn] and 0 < α < n, 1 < p < q < ∞, 1/q =
1/p − α/n, then the integral defining Iα(f) converges absolutely for
almost all x. Furthermore, there is a constant Ap,q, such that

‖Iα(f)‖q � Ap,q‖f‖p. (5.7)

5.1.3. Extension of the Adjoint. In this section we discuss an
extension of the adjoint for a Banach space B, which need not be uni-
formly convex. If B is not uniformly convex, Theorem 5.5 no longer
holds and we need H1. The next theorem shows that, for A bounded,
we can always define a reasonable version of the adjoint A∗, which has
many of the essential properties that we find for a Hilbert space.

Theorem 5.14. Let A be a bounded linear operator on B. Then A
has a well-defined adjoint A∗ defined on B such that:

(1) the operator A∗A ≥ 0 (accretive),

(2) (A∗A)∗ = A∗A (naturally self-adjoint), and

(3) I +A∗A has a bounded inverse.

Proof. For i = 1, 2, let Ji : Hi → H′
i. As in Theorem 5.5, J∗

i = Ji.
Now, let A1 = A|H1

: H1 →H2, and A′
1 : H′

2 →H′
1.

It follows that A′
1J2 : H2 → H′

1 and J−1
1 A′

1J2 : H2 → H1 ⊂ B so

that, if we define A∗ = [J−1
1 A′

1J2]B, then A∗ : B → B (i.e., A∗ ∈ L[B]).
To prove (1), let g ∈ B, then (A∗Ag, g)H2

≥ 0 for all g ∈ B. Hence
〈A∗Ag, g∗〉 ≥ 0 for all g∗ ∈ J(g) (the duality map of g), so that A∗A
is accretive.



200 5. Operators on Banach Space

To prove (2), we have for g ∈ H1,

(A∗A)∗g = ({J−1
1 [{[J−1

1 A′
1J2]|BA}1]′J2}|B)g

= ({J−1
1 [{A′

1[J2A1J
−1
1 ]|B}]J2}|B)g

= A∗Ag.

It follows that the same result holds on all of B.
The proof of (3), that I +A∗A is invertible, follows the same lines

as in von Neumann’s theorem. �

Since A∗A is self-adjoint on B (in the sense of (2) above), it is
natural to expect that the same is true on H2. However, this need
not be the case. To obtain a simple counterexample, recall that, in
standard notation, the simplest class of bounded linear operators on
B is B ⊗ B′, in the sense that:

B ⊗ B′ : B → B, by Au = (b⊗ lb′(·))u =
〈
b′, u

〉
b.

Thus, if lb′(·) ∈ B′\H′
2, then J2{J−1

1 [(A1)
′]J2|B(u)} is not in H′

2, so
that A∗A is not defined as an operator on all of H2 and thus cannot
have a bounded extension.

We now provide the correct extension of Lax’s Theorem.

Theorem 5.15. Let A be a bounded linear operator on B. If B′ ⊂ H2,
then A has a bounded extension to L[H2], with ‖A‖H2

≤ k ‖A‖B (for
some positive k).

Proof. We first note that if g, h ∈ B, then J−1
1 J2(g) = g and (A′

1)
′h =

Ah. Now let T = A∗A, then

(Tg, h)H2
= 〈Tg,J2(h)〉

= 〈A∗Ag,J2(h)〉 =
〈
J−1
1 A′

1J2(Ag),J2(h)
〉

=
〈
A′

1J2(Ag), h
〉
=
〈
J2(Ag), (A

′
1)

′h
〉

= 〈Ag,J2(Ah)〉 =
〈
g, (A′

1)J2(Ah)
〉

=
〈
J−1
1 J2(g), (A

′
1)J2(Ah)

〉
=
〈
J2(g),J

−1
1 (A′

1)J2(Ah)
〉

= (g, Th)H2

We can now apply Lax’s Theorem to see that, for some k, ‖T‖H2
=

‖A‖2H2
≤ k2 ‖A‖2B. �



5.2. Semigroups of Operators 201

Remark 5.16. Thus, the algebra L[B] also has a ∗operation for all
Banach spaces with an S-basis and B′ ⊂ H2. However, if B is not
uniformly convex and A 	= B, B′ then, unless

(AB |H1 )
′ = (B |H1 )

′ (A |H1 )
′ , (AB)∗ 	= A∗B∗.

A natural question is “which Banach spaces with an S-basis have
the property that, B′ ⊂ H2”? This question has no general answer.
However, if B is one of the following classical Banach spaces and H2 =
KS2[Rn], then B′ ⊂ H2 (H1 = GS2[Rn]). A few of the spaces below
are not separable (do not have an S-basis).

(1) Cb[R
n], the bounded continuous functions on R

n.

(2) Cu[R
n], the bounded uniformly continuous functions on R

n.

(3) C
k
0 [R

n], the continuous functions on R
n, with k derivatives

that vanish at infinity.

(4) Lp[Rn], 1 ≤ p ≤ ∞, the Lebesgue integrable functions on R
n

of order p.

(5) M[Rn], the space of finitely additive set functions (measures)
on R

n.

We note that both Cb[R
n] and L∞[Rn] are nonseparable Banach

spaces, with the same dual space M[Rn] ⊂ KS2[Rn] and, the dual
space of Cu[R

n], C
′
u[R

n] ⊂ M[Rn] ⊂ KS2[Rn]. In each case, we can
use Theorem 5.15.

5.2. Semigroups of Operators

Introduction. Semigroups of operators form the basis for both the
Feynman operator calculus and path integral theory of Chaps. 7 and 8.
We have restricted our presentation to those aspects that are abso-
lutely necessary and should even be reviewed those with some training
in the subject. We provide all of the basic results along with proofs,
for those without prior background.

The theory of semigroups of operators is a fairly mature field of
study, which has continued to attract the interest of those in analy-
sis, probability theory, partial differential equations, dynamical sys-
tems, and quantum theory, in addition to the many areas of applied
mathematics. This continued interest is expected because of the sim-
ple (conceptual) framework provided, the robustness of the techni-
cal methodology, and the wealth of problems and new applications.
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Those interested in the finer details are encouraged to seek out the
wealth of interesting material by consulting some of the major works
in the field. See the standards by Hille and Phillips [HP], Yosida [YS],
Kato [K], Pazy [PZ], Goldstein [GS] and the recent ones by Engel and
Nagel [EN] and Vrabie [VR]. The book by Vrabie [VR] offers a number
of new and interesting applications.

We develop most of the theory for a fixed separable Hilbert spaceH
over C and will assume when convenient that H = KS2[Rn]. However,
we begin with the general theory on a Banach space B.
Definition 5.17. A family of linear operators {S(t), 0 ≤ t < ∞} (not
necessarily bounded), defined on D ⊂ B, is a semigroup if

(1) S(t+s)f = S(t)S(s)f for f ∈ D, the domain of the semigroup.

(2) The semigroup is said to be strongly continuous if lim
τ→0

S(t+

τ)f = S(t)f for all f ∈ D, t > 0.

(3) It is said to be a C0-semigroup if it is strongly continuous,
S(0) = I, D = B and lim

t→0
S(t)f = f for all f ∈ B.

(4) S(t) is a C0-contraction semigroup if ‖S(t)‖B � 1.

(5) S(t) is a C0-unitary group if S∗(t) exists and S(t)S(t)∗ =
S(t)∗S(t) = I, and ‖S(t)‖B = 1.

Definition 5.18. For a C0-semigroup S(t), the linear operator A
defined by

D(A) =

{
f ∈ B

∣∣∣∣limt↓0 1
t [S(t)f − f ] exists

}
and

Af = lim
t↓0

1
t [S(t)f − f ] =

d+S(t)f

dt

∣∣∣∣
t=0

for f ∈ D(A)

is the infinitesimal generator of the semigroup S(t) and D(A) is the
domain of A.

Lemma 5.19. Let S(t) be a C0-semigroup. Then there exist constants
ω ≥ 0 and M ≥ 1 such that:

‖S(t)‖H � Meωt, for 0 � t < ∞.

Proof. If ‖S(t)‖B is not bounded in any interval 0 ≤ t ≤ m, m > 0,
then there is a nonnegative sequence tn such that limn→∞ tn = 0 and
‖S(tn)‖B � n. By the uniform boundedness theorem it follows that, for
some f, S(t)f is unbounded. But then S(t) is not strongly continuous



5.2. Semigroups of Operators 203

(see (3) above). Thus ‖S(t)‖B � M for 0 ≤ t ≤ m. From ‖S(0)‖B = 1
and M � 1, we can choose ω = m−1logM . Let t ≥ 0 be given, then
t = nm+ δ, where 0 ≤ δ < m, so, by the semigroup property of S(t),
we have:

‖S(t)‖B = ‖S(δ)S(m)n‖H � Mn+1 � MM t/m = Meωt.

�

Theorem 5.20. Let S(t) be a C0 contraction semigroup and let A be
its infinitesimal generator. Then

(1) For all f ∈ B, we have

lim
h→0

1
h

∫ t+h

t
S(u)fdu = S(t)f.

(2) For all f ∈ B, ∫ t
0 S(u)fdu ∈ D(A) and,

A

∫ t

0
S(u)fdu = S(t)f − f.

(3) For all f ∈ D(A),

d

dt
S(t)f = AS(t)f = S(t)Af.

(4) For all f ∈ D(A),

S(t)f − S(u)f =

∫ t

u
AS(τ)fdτ =

∫ t

u
S(τ)Afdτ.

(5) A is closed and D(A) = B.
(6) The resolvent set ρ(A) of A contains R+ and, for every λ > 0,

‖R(λ,A)‖B � 1

λ
.

Proof. The proof of (1) follows from the strong continuity of S(t).
To prove (2), let f ∈ B and suppose that h > 0. Then

S(h) − I

h

∫ t

0
S(u)fdu = 1

h

∫ t

0
(S(u+ h)f − S(u)f)du

= 1
h

∫ t+h

t
S(u)fdu− 1

h

∫ h

0
S(u)fdu
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and, as h ↘ 0, the right-hand side tends to S(t)f − f . To prove (3),
if f ∈ D(A) and h > 0, we have

S(h) − I

h
S(t)f = S(t)

(
S(h) − I

h

)
f

h→0−−−→ S(t)Af.

It follows that S(t)f ∈ D(A) and S(t)Af = AS(t)f . This also means
that

d+

dt
S(t)f = AS(t)f = S(t)Af.

To complete our proof, we need to show that, for t > 0, the left-hand
derivative exists and is equal to S(t)Af . To prove this, note that

lim
h↘0

[
S(t)f − S(t− h)f

h
− S(t)Af

]

= lim
h↘0

S(t− h)

(
S(h)f − f

h
−Af

)
+ lim

h↘0
(S(t− h)Af − S(t)Af) .

We are done since the limit of both terms on the right is zero. To prove
(4), we need to only look at the integral of d

dtS(t)f = AS(t)f =

S(t)Af . To prove (5), for each f ∈ B set fh = 1
h

∫ h
0 S(u)fdu. By

(2), fh ∈ D(A) and, by (1), fh → f , so that D(A) = B. To prove that
A is closed, let fn ∈ D(A), fn → f and Afn → g (as n → ∞). From
(4), we have that

S(t)fn − fn =

∫ t

0
S(u)Afndu → S(t)f − f =

∫ t

0
S(u)Agdu.

If we divide the last integral by t and let t ↘ 0, we see from (1) that
f ∈ D(A) and Af = g. The proof of (6) requires a little additional
work. If f ∈ H and λ > 0, define a bounded linear operator R(λ,A)
by (the Laplace transform of S(t)):

R(λ,A)f =

∫ ∞

0
e−λtS(t)fdt.

Since the function t → S(t)f is continuous and uniformly bounded,
the integral exists and provides a well-defined linear operator with

‖R(λ,A)f‖B �
∫ ∞

0
e−λt ‖S(t)f‖B dt � 1

λ ‖f‖B .

For h > 0,

S(h) − I

h
R(λ,A)f = 1

h

∫ ∞

0

e−λt (S(t− h)f − S(t)f)

=
e−λh − 1

h

(∫ ∞

0

e−λtS(t)fdt

)
− e−λh

h

∫ h

0

e−λtS(t)fdt →
h↘0

λR(λ,A)f − f.
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Thus, we see that, for every λ > 0 and f ∈ B, R(λ,A)f ∈ D(A) and
AR(λ,A)f = λR(λ,A)f − f ⇒ (λI − A)R(λ,A)f = f . We also have
that, for f ∈ D(A),

R(λ,A)Af =

∫ ∞

0
e−λtS(t)Afdt =

∫ ∞

0
e−λtAS(t)fdt

= A

[∫ ∞

0
e−λtS(t)fdt

]
= AR(λ,A)f.

It now follows that R(λ,A)(λI −A)f = f for each f ∈ D(A), so that
R(λ,A) is the inverse of (λI −A) for all λ > 0 and

‖R(λ,A)f‖B � 1
λ ‖f‖B .

�

Lemma 5.21. Suppose that R(λ,A) = (λI−A)−1, where A is a linear
operator such that:

(1) A is closed and D(A) = B.
(2) The resolvent set ρ(A) of A contains R+ and, for every λ > 0,

‖R(λ,A)‖B � 1/λ.

Then lim
λ→∞

λR(λ,A)f = f for all f ∈ B.

Proof. For each f ∈ D(A), we have that

‖λR(λ,A)f − f‖B = ‖AR(λ,A)f‖B = ‖R(λ,A)Af‖B � 1
λ
‖Af‖B

λ→∞−−−−→ 0.

Since D(A) is dense and ‖λR(λ,A)‖B � 1, as λ →∞, λR(λ,A)f → f
for each f ∈ B. �

5.2.1. Hilbert Space. We now look at the case when B = H is a
Hilbert space.

Definition 5.22. For each λ > 0, we define the Yosida approximator
by: Aλ = λAR(λ,A) = λ2R(λ,A)− λI.

The next result is due to Yosida and applies to generators of
strongly continuous semigroups defined on [0,∞). We will prove a
generalized version of the theorem, which applies to strongly continu-
ous semigroups (0,∞).

Theorem 5.23. (Yosida) Let A be a closed linear operator with

D(A) = H. If the resolvent set ρ(A) of A contains R+ and, for every
λ > 0, ‖R(λ,A)‖H � λ−1. Then
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(1) lim
λ→∞

Aλf = Af for f ∈ D(A).

(2) Aλ is a bounded generator of a contraction semigroup and,
for each f ∈ H, λ, μ > 0, we have:∥∥etAλf − etAμf

∥∥
H � t ‖Aλf −Aμf‖H .

If all we know is that A is the generator of a strongly continuous
semigroup S(t) = exp(tA) for t > 0, the above result is not enough.
Unfortunately, for general strongly continuous semigroups, A may not
have a bounded resolvent. The following (artificial example) shows
what can (and will) happen in some real cases.

Example 5.24. Let H = H0(R
n) be the Hilbert space (over R) of

functions mapping R
n to itself, which vanish at infinity. Consider the

Cauchy problem:

d

dt
u(x, t) = a |x|u(x, t), u(x, 0) = f(x),

where a =
∏n

i=1 sign(xi). Let S(t)f(x) = eta|x| f(x), where x =
[x1, · · · , xn]t. It is easy to see that S(t) is a semigroup on H with gener-
ator A such that Af(x) = a |x| f(x). It follows that u(x, t) = S(t)f(x)
solves the above initial-value problem. If we compute the resolvent, we
get that:

R(λ,A)f(x) =

∫ ∞

0
e−λt exp{−t |x|}f(x)dt = 1

λ− a |x| f(x).

It is clear that the spectrum of A is the real line, so that R(λ,A) is an
unbounded operator for all real λ. However, it can be checked that the
bounded linear operator

Aλ = aλ|x|/[λ+ |x|]
converges strongly to A (on D(A)) as λ →∞, and

lim
λ→0

Sλ(t)f(x) = S(t)f(x).

As an application of the polar decomposition, the next result shows
that the Yosida approach can be generalized in such a way as to give
a contractive approximator for all strongly continuous semigroups of
operators on H.

For any closed densely defined linear operator A on H, let
T = −[A∗A]1/2, T̄ = −[AA∗]1/2. Since T (T̄ ) is m-dissipative, it
generates a contraction semigroup. We can now write A as A = V T ,
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where V = −U is the unique partial isometry of Chap. 4. Define Aλ by
Aλ = λAR(λ, T ). Note that Aλ = λUTR(λ, T ) = λ2UR(λ, T ) − λU
and, although A does not commute withR(λ, T ), we have λAR(λ, T ) =
λR(λ, T̄ )A.

Theorem 5.25. (Generalized Yosida) Let A be a closed densely
defined linear operator on H. Then

(1) Aλ = λAR(λ, T ) is a bounded linear operator and limλ→∞Aλf
= Af , for all f ∈ D(A),

(2) exp[tAλ] is a bounded contraction for t > 0, and

(3) if S(t) = exp[tA] is defined on D, D(A) ⊂ D, then for t >
0, f ∈ D, limλ→∞ ‖exp[tAλ]f − exp[tA]f‖H = 0.

Proof. To prove (1), let f ∈ D(A). Now use the fact that

lim
λ→∞

λR(λ, T̄ )f = f

and Aλf = λR(λ, T̄ )Af . To prove (2), use

Aλ = λ2UR(λ, T )− λU

with ‖λR(λ, T )‖H = 1, and ‖U‖H = 1 to get that

‖exp[tλ2UR(λ, T )− tλU ]‖H ≤ exp[−tλ‖U‖H] exp[tλ‖U‖H‖λR(λ, T )‖H] ≤ 1.

To prove (3), let t > 0 and f ∈ D(A). Then

‖ exp [tA]f − exp [tAλ]f‖H = ‖
∫ t

0

d

ds
[e(t−s)AλesA]fds‖H

≤
∫ t

0
‖[e(t−s)Aλ(A−Aλ)e

sAf ]‖H

≤
∫ t

0
‖[(A −Aλ)e

sAf ]‖Hds.

Now use

‖[Aλe
sAf ]‖H = ‖[λR(λ, T̄ )esAAf ]‖H ≤ ‖[esAAf ]‖H,

to get

‖[(A−Aλ)e
sAf ]‖H ≤ 2‖[esAAf ]‖H.

Since ‖[esAAf ]‖H is continuous, by the bounded convergence theorem
we have

lim
λ→∞

‖exp[tA]f − exp[tAλ]f‖H ≤
∫ t

0
lim
λ→∞

‖[(A −Aλ)e
sAf ]‖Hds = 0.
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Thus, S(t)f exists and the convergence is uniform on bounded intervals
for t > 0 and all f ∈ D(A). Since D(A) is dense in D, S(t) can be
extended to all of D. �

Remark 5.26. The first result (1) provides an independent proof that
every closed densely defined linear operator on a Hilbert space is of
first Baire class (may be approximated by bounded linear operators
on its domain).

We now turn to the main theorem for semigroups of linear
operators.

Theorem 5.27. (Hille–Yosida Theorem) A linear operator A is
the generator of a C0-semigroup of contractions S(t), t ≥ 0, if
and only if A is closed, densely defined, R

+ ⊂ ρ(A) and, for every
λ > 0, ‖R(λ,A)‖H ≤ λ−1.

Proof. The necessity is shown in Theorem 5.23. To prove sufficiency,
from Theorem 5.25, we see that, if A is closed and densely defined,
with

‖R(λ,A)‖H ≤ 1

λ
for λ > 0, then, for μ > 0 we have
∥∥∥etAλf − etAμf

∥∥∥
H

� t ‖Aλf −Aμf‖H ≤ t ‖Aλf − Af‖H + t ‖Af − Aμf‖H .

It follows that for f ∈ D(A), etAλf converges as λ → ∞ and the
convergence is uniform on bounded intervals. Since

∥∥etAλf
∥∥
H ≤ 1, it

follows that etAλf → S(t) for every f ∈ H. It is clear that S(t) is
a semigroup and that

∥∥etA∥∥H ≤ 1, with S(0) = 1. Thus, S(t) is a
C0-semigroup, since it is strongly continuous. Finally,

etAλf − f =

∫ t

0
esAλAλfds →

∫ t

0
esAAfds = etAf − f,

so that A is the generator. �

5.2.2. Lumer–Phillips Theory. We now discuss the characteriza-
tion of an infinitesimal generator of a C0-semigroup of contractions,
due to Lumer and Phillips [LP].

Definition 5.28. Let A be a linear operator on H. A is said to be
dissipative if

Re 〈Af, f〉 � 0 for all f ∈ D(A).
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Theorem 5.29. (Lumer–Phillips) Let A be a linear operator on H;
then

(1) A is dissipative if and only if

‖(λI −A) f‖H � λ ‖f‖H for all f ∈ D(A) and all λ > 0.

(2) If D(A) is dense in H and there is a λ0 such that Ran(λ0I −
A) = H, then A is the generator of a C0 semigroup of con-
tractions.

(3) If A is the generator of a C0 semigroup of contractions on H,
then Ran(λI −A) = H for all λ > 0 and A is dissipative.

Remark 5.30. We note that (2) implies that A is m-dissipative,
while (3) asserts that every generator of a contraction semigroup is
m-dissipative.

Proof. To prove (1), let A be dissipative, f ∈ D(A) and λ > 0. If
Re 〈Af, f〉 ≤ 0 then:

‖(λI −A) f‖ ‖Hf‖ ≥ |〈(λI −A) f, f〉| ≥ Re 〈(λI −A) f, f〉 ≥ λ ‖f‖2H .

It follows that ‖(λI −A) f‖H ≥ λ ‖f‖H. Conversely, assume that
λ ‖f‖H ≤ ‖(λI −A) f‖H for f ∈ D(A) and all λ > 0. If we square
both sides, an easy calculation shows that

‖Af‖2H − 2λRe 〈Af, f〉 ≥ 0.

Since this is true for all λ > 0, we see that Re 〈Af, f〉 ≤ 0. To prove
(2), note that since A is dissipative we can use (1) for λ > 0 to get that
‖(λI −A) f‖H � λ ‖f‖H for all f ∈ D(A). Since Ran(λ0I − A) = H,
with λ = λ0, it follows that (λ0I −A)−1 is a bounded linear operator.
But this means that it is a closed operator, so that (λ0I−A) and hence
A is also a closed operator. Now note that if Ran(λI − A) = H for
every λ > 0, then (0,∞) ⊂ ρ(λ) and ‖R(λ,A)‖H ≤ λ−1. It will then
follow by Theorem 5.27 (Hille–Yosida) that A is the generator of a C0

contraction semigroup. Thus, we need to show that Ran(λI−A) = H
for every λ > 0. Let

Λ = {λ : 0 < λ < ∞} and Ran(λI −A) = H.

If λ ∈ Λ, λ ∈ ρ(λ). As ρ(λ) is an open set, there is a nonempty
neighborhood of λ ⊂ ρ(λ). It follows that the intersection of this
neighborhood with R is in Λ, so that Λ is an open set. If λn ∈ Λ, λn →
λ > 0, then, for every g ∈ H, there exists a fn ∈ D(A) such that

λnfn −Afn = g. (5.8)
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Since A is dissipative, we have that ‖fn‖H ≤ λ−1
n ‖g‖H ≤ C for some

C > 0. We also have that:

λm ‖fn − fm‖H ≤ ‖λm (fn − fm)−A (fn − fm)‖H
= |λn − λm| ‖fn‖H ≤ C |λn − λm| ,

so that {fn} is a Cauchy sequence. If we let fn → f , we see from (5.5)
that Afn → λf − g. As A is closed, f ∈ D(A) and λf − Af = g.
It follows that Ran(λI −A) = H and λ ∈ Λ so that Λ is also closed in
(0,∞). Since λ0 ∈ Λ, we see that Λ 	= ∅ and therefore Λ = (0,∞).

To prove (3), we first observe that if A is the generator of a C0

contraction semigroup S(t) on H, then it is closed and densely de-
fined. Furthermore, by Theorem 5.27 (Hille–Yosida), (0,∞) ⊂ ρ(A)
and Ran(λI −A) = H for all λ > 0. If f ∈ D(A) then

|〈S(t)f, f〉| � ‖S(t)f‖H ‖f‖H � ‖f‖2H
so that

Re 〈S(t)f − f, f〉 = Re 〈S(t)f, f〉 − ‖f‖2H ≤ 0.

If we divide the above equation by t > 0 and let t ↓ 0, we get that:

Re 〈Af, f〉 � 0,

so that A is dissipative. �

The next result follows from the Lumer–Phillips Theorem (see
Remark 5.30).

Theorem 5.31. Suppose A is a densely defined m-dissipative opera-
tor. Then A is the generator of a C0 semigroup S(t) of contraction
operators on H.

Theorem 5.32. If A is closed and densely defined on H, with both A
and A∗ dissipative, then A is m-dissipative.

Proof. It suffices show that Ran(I −A) = H. Since A is both closed
and dissipative, Ran(I − A) is closed in H. If Ran(I − A) 	= H
then there is a nonzero g ∈ H such that (f −Af, g) = 0 for all

f ∈ D(A). This implies that (g, g −A∗g) = ‖g‖2 − (g,A∗g) = 0,
so that g −A∗g = 0. Since A∗ is dissipative, from part (1) of Theo-
rem 5.29 (Lumer–Phillips), we must have that g = 0. But this is a
contradiction since we assumed that g 	= 0. �

We now consider an important class of operators which generates
C0-contractions. The next result is due to Vrabie [VR].
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Theorem 5.33. Suppose −A is a closed densely defined positive self-
adjoint operator. Then A is the generator of a C0-contraction semi-
group S(t). Furthermore, if f ∈ H and h(t) = S(t)f , then the problem:

h′(t) = Ah(t), h(0) = f, (5.9)

has an unique solution

h ∈ D(A) ∩ C
1((0,∞);H)

and

‖Ah(t)‖H ≤ 1
2t‖f‖H.

Proof. First, since −A is a positive, self-adjoint, closed, and densely
defined linear operator on H, it follows that both A and A∗ = A are
dissipative. Hence, by Theorem 5.29, A is m-dissipative so that A gen-
erates a C0-contraction semigroup and for Re(λ) > 0, ‖R(λ, T )‖H ≤

1
Re(λ) .

It is clear that both S(t) and A determine each other uniquely on
D(A), so that, at least for f ∈ D(A), the solution to (5.6) is unique.
If f ∈ D(A2), we see that, since (h′′(t), h′(t)) = (Ah′(t), h′(t)), the
problem

h′′(t) = Ah′(t), h(0) = f,

has an unique solution. Thus, with (h′′(t), h′(t)) = (Ah′(t), h′(t)) and,
for 0 ≤ s ≤ t, we have

1

2

∥∥h′(t)∥∥2H − 1

2

∥∥h′(s)∥∥2H =

∫ t

s
(Ah′(τ), h′(τ))dτ ≤ 0

(since A is dissipative). This shows that ‖h′(t)‖H is a nonincreasing
function. Furthermore,

d

dt
‖h(t)‖2H = 2(Ah(t), h(t)) (5.10)

and

d

dt
(Ah(t), h(t)) = 2(Ah(t), Ah(t)) = 2

∥∥h′(t)∥∥2H ≥ 0. (5.11)

It follows that (Ah(t), h(t)) is nondecreasing. If we integrate Eq. (5.7)
from 0 → t, we have:

‖h(t)‖2H − ‖f‖2H = 2

∫ t

0

(Ah(τ ), h′(τ ))dτ ≤ 2t(Ah(t), h(t)),

⇒ −t(Ah(t), h(t)) ≤ −
∫ t

0

(Ah(τ ), h′(τ ))dτ = −1

2

∥∥h′(t)∥∥2H +
1

2
‖f‖2H ≤ 1

2
‖f‖2H .
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Now recall that ‖h′(t)‖H is a nonincreasing function and integrate
equation (5.8) from 0 → t to get

(Ah(t), h(t)) − (Af, f) = 2

∫ t

0

∥∥h′(τ)∥∥2H dτ ≥ 2t
∥∥h′(t)∥∥2H .

Since (Ah(t), h(t)) ≤ 0, we see that 2t ‖h′(t)‖2H ≤ (−Af, f). If we now
multiply both sides of Eq. (5.7) by t and integrate, we see that

2t2
∥∥h′(t)∥∥2H ≤

∫ t

0
τ(Ah(τ), h′(τ))dτ =

∫ t

0
τ
d

dτ
(Ah(τ), h(τ))dτ

= t(Ah(t), h(t)) −
∫ t

0
τ(Ah(τ), h(τ))dτ .

Since t(Ah(t), h(t)) ≤ 0, we see from the inequality above and Eq. (5.7)

that 4t2 ‖Ah(t)‖2H ≤ ‖f‖2H so that

‖Ah(t)‖H ≤ ‖f‖H
2t

. �

The next result shows that we can recover the semigroup as the
inverse Laplace transform of the resolvent. It will be important for
our study of analytic semigroups in the next section.

Theorem 5.34. Let A be a closed densely defined dissipative linear
operator on H satisfying:

(1) For some 0 < δ < π/2,

ρ(A) ⊃ Σδ = {λ : |arg λ| < π/2 + δ} ∪ {0}.
(2) The resolvent of A satisfies ‖R(λ ,A)‖ � 1/|λ|, for each

λ ∈ Σδ, with λ 	= 0.

Then A is the generator of a C0-contraction semigroup S(t), which
can be represented as:

S(t) =
1

2πi

∫
Γ
eλtR(λ,A)dλ, (5.12)

where Γ is a smooth curve in Σδ going from ∞e−iθ →∞eiθ, for π/2 <
θ < π/2+δ and the integral converges in the uniform topology for t > 0.

Proof. Let

Z(t) =
1

2πi

∫
Γ
eμtR(μ,A)dμ. (5.13)

Since ‖R(μ ,A)‖ � 1/|μ|, we see from the definition of Σδ that, for t >
0, this integral converges in the uniform norm. In order to see that Z(t)
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is a semigroup, suppose that Z(s) also has the above representation,
with another slightly shifted path Γ′ inside Σδ. Then

Z(s)Z(t) =

(
1

2πi

)2 ∫
Γ′

∫
Γ
eμtR(μ,A)eμ

′tR(μ′, A)dμdμ′

=

(
1

2πi

)2 [∫
Γ′
eμ

′sR(μ′, A)dμ′
∫
Γ
eμt(μ− μ′)−1dμ

−
∫
Γ
eμtR(μ,A)dμ

∫
Γ′
eμ

′s(μ− μ′)−1dμ′
]
,

where we have used the resolvent equation, R(μ′, A)R(μ,A) = (μ −
μ′)−1R(μ′, A) − R(μ,A), in the second line. If we now use the fact
that: ∫

Γ′
eμ

′s(μ − μ′)−1dμ′ = 2πieμs &

∫
Γ′
eμt(μ − μ′)−1dμ = 0,

we get that

Z(s)Z(t) =
1

2πi

∫
Γ
eμ(t+s)R(μ,A)dμ = Z(t+ s).

Since the resolvent uniquely determines the semigroup, we are done
if we can show that R(λ,A) is the resolvent of Z(t). To do this,
use the fact that R(λ,A) is analytic in Σδ, so that we can shift the
path of integration to a new path Γt, still inside Σδ. We choose Γt =
Γ1 ∪ Γ2 ∪ Γ3, where Γ1 = {re−iθ : t−1 ≤ r < ∞}, Γ2 = {t−1eiφ : −θ ≤
φ ≤ θ} and Γ3 = {reiθ : t−1 ≤ r < ∞} without changing the value of
the integral. In this case, for the path Γ3, we have∥∥∥∥ 1

2πi

∫
Γ3

eμtR(μ,A)dμ

∥∥∥∥
H
� 1

2π

∫ ∞

t−1

e−rt sin(θ−π/2)r−1dr

=
1

2π

∫ ∞

sin(θ−π/2)
e−ss−1ds � C1.

For the path Γ2, we see that∥∥∥∥ 1

2πi

∫
Γ2

eμtR(μ,A)dμ

∥∥∥∥
H
� 1

2π

∫ θ

−θ
ecos(φ)dφ � C2.

The estimate for Γ1 is like that of Γ3. This shows that Z(t) is bounded
by some constant K for 0 < t < ∞. Now, if we multiply Eq. (5.10)
by e−λt and integrate from 0 to T , using Fubini’s Theorem along with
the residue theorem, we have
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∫ T

0
e−λtZ(t)dt =

1

2πi

∫ T

0
e−λt

[∫
Γ
eμtR(μ,A)dμ

]
dt

=
1

2πi

∫
Γ

[∫ T

0
e(μ−λ)tdt

]
R(μ,A)dμ =

1

2πi

∫
Γ

(
e(μ−λ)T − 1

)
μ− λ

R(μ,A)dμ

= R(λ,A) +
1

2πi

∫
Γ
e(μ−λ)T R(μ,A)

μ− λ
dμ.

However, on Γ,∥∥∥∥ 1

2πi

∫
Γ
e(μ−λ)T R(μ,A)

μ− λ
dμ

∥∥∥∥ � e−λT

∫
Γ

d |μ|
|μ| |μ− λ| → 0, T →∞.

Thus, if we take the limit in our equation, we get∫ ∞

0
e−λtZ(t)dt = R(λ,A).

Since for Re(λ) > 0, 1
|λ| ≤ 1

Re(λ) , we see that Z(t) = S(t) is a contrac-

tion semigroup. �

5.2.3. Analytic Semigroups. Let Δ = {w ∈ C : θ1 < argw <
θ2, θ1 < 0 < θ2}. For each w ∈ Δ, let S(w) be a bounded linear
operator on H.

Definition 5.35. The family S(w) is said to be an analytic semigroup
on H, for w ∈ Δ, if

(1) S(w)f is an analytic function of w ∈ Δ for each f in H,

(2) S(0) = I and limw→0 S(w)f = f for every f ∈ H,

(3) S(w1 + w2) = S(w1)S(w2) for w1, w2 ∈ Δ.

Theorem 5.36. Let S(t) be a C0-contraction semigroup and let A be
the generator of S(t), with 0 ∈ ρ(A). Suppose A satisfies:

(1) For 0 < δ < π/2,

ρ(A) ⊃ Σδ = {λ : |arg λ| < π/2 + δ} ∪ {0}.
(2) ‖R(λ ,A)‖ � M/|λ| for each λ ∈ Σδ, with λ 	= 0.

Then the following are equivalent:

(1) S(t) is differentiable for t > 0 and there is a constant C such
that

‖AS(t)‖H ≤ C

t
for t > 0.
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(2) For t > 0 and |z − t| � Kt for some constant K, the series

S(z + t) = S(t) +
∑∞

n=1
(zn/n!)S(n)(t)

converges uniformly in the above interval.

(3) S(t) can be extended to a C0-analytic semigroup S(z), for
z ∈ Δ̄δ′ , with Δ̄δ′ = {z : |arg z| � δ′ < δ}.

Proof. From Eq. (5.9), S(t) = (1/2πi)
∫
Γ e

λtR(λ,A)dλ, where Γ is a

smooth curve in Σδ composed of two rays ρeiθ and ρe−iθ, 0 < ρ < ∞
and π/2 < θ < π/2 + δ and Γ is oriented so that Im(λ) increases
along Γ. The integral converges in the uniform topology for t > 0.
If we differentiate it formally, we see that:

S′(t) =
1

2πi

∫
Γ
λeλtR(λ,A)dλ.

However, this integral converges in H for all t > 0, since∥∥S′(t)
∥∥ � (1/π)

∫ ∞

0
e−ρ cos θtdρ =

1

πt cos θ
=

(
1

π cos θ

)
1

t
. (5.14)

Thus, the formal differentiation is justified for t > 0 and

‖AS(t)‖H ≤ C

t
, where C =

1

π cos θ
.

We now prove that S(t) has derivatives of any order, by induction.
From above, we know it is true for k = 1. Suppose that it is true for
k = n and t � s, then

S(n)(t) = (AS(t/n))n = S(t− s) (AS(s/n))n . (5.15)

If we differentiate Eq. (5.12) with respect to t we have

S(n+1)(t) = (AS(t/n))n = AS(t− s) (AS(s/n))n .

Now set s = nt/(n+ 1) to get S(n+1)(t) = [AS(t/(n + 1)]n+1, so that
S(t) has derivatives of all orders. If we use this result in Eq. (5.11),
and the fact that n!en � nn, we get that:

1

n!

∥∥∥S(n)(t)
∥∥∥ �

(
Ce

t

)n

.

Now, consider the power series

S(z) = S(t) +
∑∞

n=1

S(n)(t)

n!
(z − t)n.

The series converges uniformly in L[H] for |z − t| � Kt, where K =
k/eC, 0 < k < 1. Thus, S(z) is analytic in Δ = {z : |arg z| <
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arctanK} and hence extends S(t). It is easy to check that S(z) is a
C0-contraction semigroup in any closed subsector Δ̄ε = {z : |arg z| �
arctanM − ε} of Δ. �

5.2.4. Perturbation Theory. One of the major concerns for the
theory of semigroups of operators is to identify conditions under which
the sum of two generators is a generator (when properly understood).
We restrict our attention to generators of analytic contraction semi-
groups. (In practice, by the use of an equivalent norm and a shift in
the spectrum, most semigroups of interest can be reduced to contrac-
tions.) The next result shows when the sum of generators of analytic
contraction semigroups generate an analytic contraction semigroup.

Theorem 5.37. Let A0 be an m-dissipative generator of an analytic
C0-semigroup and let A1 be closed on H, with D(A1) ⊇ D(A0). Sup-
pose and there are positive constants 0 ≤ α < 1, β ≥ 0 such that

‖A1ϕ‖ � α ‖A0ϕ‖+ β ‖ϕ‖ , ϕ ∈ D(A0). (5.16)

Then A = A0+A1, with domain D(A) = D(A1), generates an analytic
C0 semigroup.

Remark 5.38. We note that, by the Closed Graph Theorem, it suf-
fices to assume that A1 is dissipative and D(A1) ⊇ D(A0) in order to
find constants 0 ≤ α < 1, β ≥ 0 satisfying Eq. (5.13).

Proof. To prove our result, first use the fact that A0 generates an
analytic C0-semigroup to find a sector Σ in the complex plane, with
ρ(A0) ⊃ Σ (Σ = {λ : |arg λ| < π/2 + δ′}, for some δ′ > 0), and for

λ ∈ Σ, ‖R(λ :, A0)‖H � |λ|−1. From (5.13), A1R(λ ,A0) is a bounded
operator and:

‖A1R(λ ,A0)ϕ‖H � α ‖A0R(λ ,A0)ϕ‖H + β ‖R(λ ,A0)ϕ‖H
� α ‖[R(λ ,A0)− I]ϕ‖H + β |λ|−1 ‖ϕ‖H
� 2α ‖ϕ‖H + β |λ|−1 ‖ϕ‖H .

Thus, if we set α = 1/4 and |λ| > 2β, we have ‖A1R(λ ,A0)‖H < 1
and it follows that the operator I − A1R(λ ,A0) is invertible. Now it
is easy to see that:

(λI − (A0 +A1))
−1 = R(λ , A0) (I −A1R(λ , A0))

−1 . (5.17)
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Using |λ| > 2β, with |arg λ| < π/2 + δ′′ for some δ′′ > 0, and the fact
that A0 and A1 are m-dissipative generators, we get from (5.14) that

‖R(λ , A0 +A1)‖B � |λ|−1 .

Thus, A generates a C0-analytic semigroup. Finally, we note that if
Re(λ) > 0, then 1

|λ| ≤ 1
Re(λ) , so that A also generates a C0-contraction

semigroup. �

Corollary 5.39. Let A0 be the generator of an analytic C0-semigroup
and suppose that A1 is bounded. Then A0 +A1 is the generator of an
analytic C0-semigroup on H.

Corollary 5.40. Let A, A1 be generators of C0-contraction semi-
groups on H and assume that A1 is bounded. Then A + A1 is the
generator of a C0-contraction semigroup S(t).

Theorem 5.25 shows that all closed densely defined linear opera-
tors on H may be approximated by bounded generators of contraction
semigroups. This leads to the following result, which shall prove quite
useful later.

Theorem 5.41. Let A0, A1 and A0+A1 be generators of contraction
semigroups on H, with a common dense domain. Then:

lim
λ→∞

exp {(A0 +A1,λ) t}ϕ = exp {(A0 +A1) t}ϕ for t > 0.

Proof. The proof is standard. Set A = A0 + A1, & Aλ = A0 + A1,λ;
then, for ϕ ∈ D(A0) ∩D(A1):

∥∥(etAλ − etA
)
ϕ
∥∥
H =

∥∥∥∥
∫ 1

0

d

ds

[
etsAλet(1−s)A

]
ϕds

∥∥∥∥
H

=

∥∥∥∥t
∫ 1

0

[
etsAλAλe

t(1−s)A − etsAλAet(1−s)A
]
ϕds

∥∥∥∥
H

=

∥∥∥∥t
∫ 1

0

[
etsAλ (Aλ −A) et(1−s)A

]
ϕds

∥∥∥∥
H

� tsups≥0

∥∥∥(Aλ −A) et(1−s)Aϕ
∥∥∥

H
= t

∥∥∥(A1,λ −A1) e
t(1−s̄)Aϕ

∥∥∥
H
,

where s̄ is the point in [0, 1] where the sup is attained. The limit
of this last term is clearly zero. (Note that Aλ need not commute
with A.) �
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We reserve our proof of the next result until Chap. 7 (see [K1]).
There, we will use it to provide a very general version of the Feynman–
Kac formula.

Theorem 5.42. Trotter–Kato product formula Suppose that A0, A1

and A=A0 +A1 are generators of C0-contraction semigroups T0(t),
T1(t) and T (t) on H. Then, for ϕ ∈ H, we have

lim
n→∞ {T0(

t
n)T1(

t
n)}nϕ = T (t)ϕ.

5.2.5. Semigroups on Banach Spaces. The purpose of this section
is to show that the Hilbert space theory is sufficient for the theory
on separable Banach spaces. We assume that “B is rigged,” so that
H1 ⊂ B ⊂ H2 as continuous dense embeddings.

Theorem 5.43. Suppose that A generates a C0-contraction semigroup
T (t), on B and B′ ⊂ H2 then:

(1) A has a closed densely defined extension Ā to H2, which is
also the generator of a C0-contraction semigroup.

(2) ρ(Ā) = ρ(A) and σ(Ā) = σ(A).

(3) The adjoint of Ā, Ā∗, restricted to B, is the adjoint A∗ of A,
that is:

– the operator A∗A � 0,
– (A∗A)∗ = A∗A and
– I +A∗A has a bounded inverse.

Proof. Part I
Let T (t) be the C0-contraction semigroup generated by A. By Theo-
rem 5.15, T (t) has a bounded extension T̄ (t) to H2.

We prove that T̄ (t) is a C0-semigroup. (The fact that it is a con-
traction semigroup will follow later.) It is clear that T̄ (t) has the semi-
group property. To prove that it is strongly continuous, use the fact
that B is dense in H2 so that, for each g ∈ H2, there is a sequence
{gn} in B converging to g. We then have:

lim
t→0

∥∥T̄ (t)g − g
∥∥
2
� lim

t→0

{∥∥T̄ (t)g − T̄ (t)gn
∥∥
2
+
∥∥T̄ (t)gn − gn

∥∥
2

}
+ ‖gn − g‖2

� k ‖g − gn‖2 + lim
t→0

∥∥T̄ (t)gn − gn
∥∥
2
+ ‖gn − g‖2

= (k + 1) ‖g − gn‖2 + lim
t→0

‖T (t)gn − gn‖2 = (k + 1) ‖g − gn‖2 ,

where we have used the fact that T̄ (t)gn = T (t)gn for gn ∈ B, and k
is the constant in Theorem 5.15. It is clear that we can make the last
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term on the right as small as we like by choosing n large enough, so
that T̄ (t) is a C0-semigroup.

To prove (2), note that if Ā is the extension of A, and λI−Ā has an
inverse, then λI−A also has one, so ρ(Ā) ⊂ ρ(A) and Ran(λI−A)B ⊂
Ran(λI − Ā)H2 ⊂ Ran(λI −A)H2

for any λ ∈ C. For the other
direction, since A generates a C0-contraction semigroup, ρ(A) 	= ∅.
Thus, if λ ∈ ρ(A), then (λI − A)−1 is a continuous mapping from
Ran(λI−A) onto D(A) and Ran(λI−A) is dense in B. Let g ∈ D(Ā),

so that (g, Āg) ∈ Ĝ(A), the closure of the graph ofA inH2. Thus, there
exists a sequence {gn} ⊂ D(A) such that ‖g − gn‖G = ‖g − gn‖H2

+∥∥Āg − Āgn
∥∥
H2

→ 0 as n → ∞. Since Āgn = Agn, it follows that

(λI − Ā)g = limn→∞(λI − A)gn. However, by the boundedness of
(λI −A)−1 on Ran(λI −A), we have that, for some δ > 0,∥∥(λI − Ā)g

∥∥
H2

= lim
n→∞ ‖(λI −A)gn‖H2

≥ lim
n→∞ δ ‖gn‖H2

= δ ‖g‖H2
.

It follows that λI − Ā has a bounded inverse and since D(A) ⊂ D(Ā)
implies that Ran(λI−A) ⊂ Ran(λI − Ā), we see that Ran(λI − Ā) is
dense in H2 so that λ ∈ ρ(Ā) and hence ρ(A) ⊂ ρ(Ā). It follows that
ρ(A) = ρ(Ā) and necessarily, σ(A) = σ(Ā).

Since A generates a C0-contraction semigroup, it is m-dissipative.
From the Lumer–Phillips Theorem, we have that Ran(λI − A) = B
for λ > 0. It follows that Ā is m-dissipative and Ran(λI − Ā) = H2.
Thus, T̄ (t) is a C0-contraction semigroup.

We now observe that the same proof applies to T̄ ∗(t), so that Ā∗

is also the generator of a C0-contraction semigroup on H2.

Clearly Ā∗ is the adjoint of Ā so that, from von Neumann’s The-
orem, Ā∗Ā has the expected properties. D̄ = D(Ā∗Ā) is a core for Ā
(i.e., the set of elements {g, Āg} is dense in the graph, G[Ā], of Ā for
g ∈ D̄). From here, we see that the restriction A∗ of Ā∗ to B is the
generator of a C0-contraction semigroup and D = D(A∗A) is a core
for A. The proof of (3) for A∗A now follows. �

Remark 5.44. Theorem 5.43 shows that all C0-contraction semi-
groups defined on B have the same properties as its extension to H2.
Thus, if B is reflexive or B′ ⊂ H2, then all the theorems on H2 apply
to B.

The next result implies that the generalized Yosida Approximation
Theorem applies to C0-semigroups on B
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Theorem 5.45. Let A ∈ C[B] be the generator of a C0-contraction
semigroup. Then there exists an m-accretive operator T and a partial
isometry W such that A = WT and D(A) = D(T ).

Proof. The fact that B′ ⊂ H2 ensures that A
∗A is a closed self-adjoint

operator on B by Theorem 5.40. Furthermore, both A and A∗ have
closed densely defined extensions Ā and Ā∗ to H2. Thus, the op-
erator T̂ = [Ā∗Ā]1/2 is a well-defined m-accretive self-adjoint linear
operator on H2, Ā = W̄ T̄ for some partial isometry W̄ defined on H2,
and D(Ā) = D(T̄ ). Our proof is complete when we notice that the
restriction of Ā to B is A and T̄ 2 restricted to B is A∗A, so that the
restriction of W̄ to B is well defined and must be a partial isometry.
The equality of the domains is obvious. �

With respect to our definition of natural self-adjointness, the fol-
lowing related definition is due to Palmer [PL], where the operator is
called symmetric. This is essentially the same as a Hermitian operator
as defined by Lumer [LU].

Definition 5.46. A closed densely defined linear operator A on B is
called self-conjugate if both iA and −iA are dissipative.

Theorem 5.47. (Vidav–Palmer) A linear operator A, defined on B,
is self-conjugate if and only if iA and −iA are generators of isometric
semigroups.

Theorem 5.48. The operator A, defined on B, is self-conjugate if and
only if it is naturally self-adjoint.

Proof. Let Ā and Ā∗ be the closed densely defined extensions of A
and A∗ to H2. On H2, Ā is naturally self-adjoint if and only if iĀ
generates a unitary group, if and only if it is self-conjugate. Thus,
both definitions coincide onH2. It follows that the restrictions coincide
on B. �

Additional discussion of the adjoint for operators on Banach spaces
can be found in the Appendix (Sect. 5.3).

5.3. Appendix

The appendix is devoted to a number of topics that are not directly
related to our main direction, but have independent interest for func-
tional analysis and operator theory. We first discuss the existence of
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an adjoint for spaces that are not uniformly convex. We then apply
our results in subsequent sections to show that the spectral theory
that is natural for Hilbert spaces and the Schatten theory of compact
operators can also be partially extended to Banach spaces.

5.4. The Adjoint in the General Case

In this section we continue our discussion of the adjoint for an operator
on Banach space with an S-basis B, which is not uniformly convex.

5.4.1. The General Case for Unbounded A. A Banach space is
said to have the approximation property if every compact operator
is the limit of operators of finite rank. It is known that every clas-
sical Banach space has the approximation property. However, it is
also known that there are separable Banach spaces without the ap-
proximation property (see Diestel [DI]). Theorem 5.15 tells us that

if B′ ⊂ H2, then L[B] ⊂ L[H2] as a continuous embedding. (It’s not
hard to show that if B has the approximation property, the embedding
is dense.)

Let A ∈ C[B], the closed densely defined linear operators on B.
By definition, A is of Baire class one if it can be approximated by a
sequence, {An}, of bounded linear operators. In this case, it is natural
to define A∗= s-limA∗

n (see below). However, if B is not uniformly
convex there may be operators A ∈ C[B] that are not of Baire class
one, so that it is not reasonable to expect Theorem 5.11 to hold for all
of C[B]. First, we note that every uniformly convex Banach space is
reflexive. In order to understand the problem, we need the following:

Definition 5.49. A Banach space B is said to be:

(1) quasi-reflexive if dim {B′′/B} < ∞, and

(2) nonquasi-reflexive if dim {B′′/B} = ∞.

A theorem by Vinokurov et al. [VPP] shows that, for every
nonquasi-reflexive Banach space B (for example, C[0; 1] or L1[Rn], n ∈
N), there is at least one closed densely defined linear operator A, which
is not of Baire class one. It can even be arranged so that A−1 is a
bounded linear injective operator (with a dense range). This means,
in particular, that there does not exist a sequence of bounded linear
operators An ∈ L[B] such that, for g ∈ D(A), Ang → Ag, as n → ∞.
The following result shows that whenever B′ ⊂ H2, every operator of
Baire class one has an adjoint.
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Theorem 5.50. If A ∈ C[B] and B′ ⊂ H2, then A is in the first Baire
class if and only if it has an adjoint A∗ ∈ C[B].

Proof. Let H1 ⊂ B ⊂ H2 and suppose that A has an adjoint
A∗ ∈ C[B]. Let T = [A∗A]1/2, T̄ = [AA∗]1/2. Since T is m-accretive
and naturally self-adjoint, for all α > 0, I + αT has a bounded inverse
S(α) = (I + αT )−1. It is easy to see that AS(α) is bounded and, for
g ∈ D(A), AS(α)g = S̄(α)Ag = (I + αT̄ )−1Ag. Using this result, we
have:

lim
α→0+

AS(α)g = lim
α→0+

S̄(α)Ag = Ag, for g ∈ D(A).

It follows that A is in the first Baire class.

To prove the converse suppose that A ∈ C[B] is of first Baire class.
If {An} is a sequence of bounded linear operators with Ang → Ag, for
all g ∈ D(A), then each An has an adjoint A∗

n. Since B′ ⊂ H2, each
AnA

∗
n has a bounded extension Ān Ā

∗
n to H2. Furthermore, since A

is densely defined, it has a closed densely defined extension Ā on H2.
Let Ā∗ be the adjoint of Ā. Then, for all g ∈ D(A), h ∈ B, we have:

lim
n→∞ (Ang, h)H2

= lim
n→∞ (g,A∗

nh)H2
= (Ag, h)H2

=
(
Āg, h

)
H2

From here, we see that A∗ = limn→∞A∗
n is a densely defined linear

operator. If we let D(A∗) ⊂ B be the dense set, then for h ∈ D(A∗)

lim
n→∞ (g,A∗

nh)H2
= lim

n→∞ (g,A∗h)H2
=
(
g, Ā∗h

)
H2

,

so that A∗ is the restriction of Ā∗ to B. �

Corollary 5.51. If A ∈ C[B] is in the first Baire class and B′ ⊂ H2,

then A = WT , where W is a partial isometry and T = [A∗A]1/2.

5.4.1.1. The Adjoint Is Not Unique. In this section we show that
if A is defined on a fixed Banach space B, then two different Hilbert
space riggings can produce two different adjoints for A.

Recall that a regular σ-finite measure on the σ-algebra of Borel
sets of a Hausdorff topological space is called a Radon measure, and
a function u is of bounded variation on Ω, or u ∈ BV [Ω], if u ∈ L1[Ω]
and there is a Radon vector measure Du such that∫

Ω
u(x)∇φ(x)dx = −

∫
Ω
φ(x)Du(x),
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for all functions φ ∈ C
∞
c [Ω,Rn], the R

n-valued infinitely differentiable

functions on Ω with compact support. It is easy to see that W 1,1
0 [Ω] ⊂

BV [Ω]. (In this case, we can show that Du(x) = ∇u(x)dx.)

Let us return to the two pair of Hibert spaces H1
0 [Ω] ⊂ C0[Ω] ⊂

H0[Ω] and H1[Ω] ⊂ C0[Ω] ⊂ H2[Ω] of Example 3.32 in Chap. 3.

Let A = [−Δ] be defined on C0[Ω], with domain:

Dc(A) = {Δu ∈ C0[Ω] |u = 0 on ∂Ω} .
It is easy to see that A extends to a self-adjoint operator on H0[Ω],
with domain

D2(A)= {Δu ∈ H0[Ω] |u=0 on ∂Ω and, ∇u is absolutely continuous} .
To begin, we first compute the adjoint A∗, of A directly as an operator
on C0[Ω]. The dual space of C0[Ω] is C

∗
0[Ω] = rca[Ω], the space of

regular countable additive measures on Ω.

It follows from

〈Au, v〉 = −
∫
Ω
Δu(x)v(x)dx,

that

〈u,A∗v〉 = −
∫
Ω
u(x)Δv(x)dx

and

Dc(A
∗) = {u : Δu ∈ BV [Ω] | u = 0 on ∂Ω} ,

so that Dc(A) ⊂ Dc(A
∗) (proper). Thus, if we restrict A∗ to Dc(A) it

becomes a self-adjoint operator on C0[Ω] without the rigging.

We now investigate the adjoint obtained from use of the first rig-
ging, H1

0 [Ω] ⊂ C0[Ω] ⊂ H0[Ω] (see Barbu [B], p. 4). In this case,
J1 = [−Δ] and J2 = I2, the identity operator on H0[Ω], so that

A∗
1 = J−1

1 A′
1J2,= I2.

In the second rigging, H1[Ω] ⊂ C0[Ω] ⊂ H2[Ω], constructed in
Example 3.10 in Chap. 3, we have

A∗
2 = J−1

1 A′
1J2.

In this case,

J1(v) =
∑∞

n=1
t−1
n (en, v)2( ·, en)2, J2(v) =

∑∞
n=1

tnF̄n(v)Fn( · )

and

(en, v)2 =
∑∞

k=1
tkF̄k(v)Fk(en) =tnF̄n(v),
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so that J1(v) =
∑∞

n=1 F̄n(v)( ·, en)2. However,
( · , en)2 =

∑∞
k=1

tkF̄k(en)Fk( · ) =tnFn( · ), so that J1 = J2.

It follows that J2(A
∗
2u) = J2(Au), so that A∗

2 = A = [−Δ], with the
same domains.

It follows that the natural adjoint obtained on C0[Ω] coincides with
the adjoint constructed from our special rigging. On the other hand,
we also see that different riggings can give distinct adjoints. (It is clear
that the requirements of Theorem 5.5 are satisfied by both adjoints.)

Definition 5.52. We say that H1 and H2 is an adjoint canonical pair
for B if H1 ⊂ B ⊂ H2 as continuous dense embeddings and B′ ⊂ H2.
In this case, when A ∈ C[B], A∗ is called the canonical adjoint.

5.4.2. Operators on B.
Definition 5.53. Let B have an S-basis, U be bounded, A ∈ C[B] and
let U , V be subspaces of B. Then:

(1) A is said to be naturally self-adjoint if D(A) = D(A∗) and
A = A∗.

(2) A is said to be normal if D(A) = D(A∗) and AA∗ = A∗A.
(3) U is unitary if UU∗ = U∗U = I.

(4) The subspace U is ⊥ to V if, for each v ∈ V and ∀u ∈
U , 〈v, J(u)〉 = 0 and, for each u ∈ U and ∀v ∈ V, 〈u, J(v)〉 =
0 (J(u) respectively J(v) may be multivalued).

The last definition is transparent since, for example,

〈v, J(u)〉 = 0 ⇔ 〈v, J2(u)〉 = (v, u)2 = 0 ∀v ∈ V.
Thus, orthogonal subspaces in H2 induce orthogonal subspaces in B.
Theorem 5.54. (Gram–Schmidt) For each fixed basis {ϕi, 1 � i <
∞} of B, there is at least one set of dual functionals {Si} such that
{{ψi}, {Si}, 1 � i < ∞} is a biorthonormal set of vectors for B, (i.e.,
〈ψi, Sj〉 = δij).

Proof. Since each ϕi is in H2, we can construct an orthogonal set of
vectors {φi, 1 � i < ∞} in H2 by the standard Gram–Schmidt pro-

cess. Set ψi = φi/‖φi‖B, choose Ŝi ∈ J(ψi)/‖ψi‖2H and restrict it to the
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subspace Mi = [ψi] ⊂ B. For each i, let M⊥
i be the subspace spanned

by {ψj , i 	= j}. Now use the Hahn–Banach Theorem to extend Ŝi

to Si, defined on all of B, with Si = 0 on M⊥
i (see Theorem 1.47).

From here, it is easy to check that {{ψi}, {Si}, 1 � i < ∞} is a
biorthonormal set. If B is reflexive, the family {Si} is unique. �

We close this section with the following observation about the use
of H2 = KS2, when B is one of the classical spaces. Let A be any
closed densely defined positive naturally self-adjoint linear operator on
B with a discrete positive spectrum {λi}. In this case, −A generates
a C0-contraction semigroup, so that it can be extended to H2 with

the same properties. If we compute the ratio
〈Aψ,Sψ〉
〈ψ,Sψ〉 in B, it will be

“close” to the value of
(Āψ,ψ)H2
(ψ,ψ)H2

in H2. On the other hand, note that

we can use the min-max theorem on H2 to compute the eigenvalues
and eigenfunctions of A via Ā exactly on H2. Thus, in this sense, the
min-max theorem holds on B.

5.5. The Spectral Theorem

5.5.1. Background. Dunford and Schwartz define a spectral opera-
tor as one that has a spectral family similar to that defined in The-
orem 5.29 of Chap. 4, for self-adjoint operators. (A spectral opera-
tor is an operator with countably additive spectral measure on the
Borel sets of the complex plane.) Strauss and Trunk [STT] define a
bounded linear operator A, on a Hilbert space H, to be spectralizable
if there exists a nonconstant polynomial p such that the operator p(A)
is a scalar spectral operator (has a representation as in Eq. (4.27) in
Chap. 4). Another interesting line of attack is represented in the book
of Colojoară and Foiaş [CF], where they study the class of generalized
spectral operators. Here, one is not opposed to allowing the spectral
resolution to exist in a generalized sense, so as to include operators
with spectral singularities.

The following theorem was proven by Helffer and Sjöstrand [HSJ]
(see Proposition 7.2):

Theorem 5.55. Let g ∈ C∞0 [R] and let ĝ ∈ C∞0 [C] be an extension of

g, with ∂ĝ
∂ẑ = 0 on R. If A is a self-adjoint operator on H, then

g(A) = − 1

π

∫∫
C

∂ĝ

∂z̄
(z −A)−1 dxdy.
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This defines a functional calculus. Davies [DA] showed that the
above formula can be used to define a functional calculus on Banach
spaces for a closed densely defined linear operator A, provided ρ(A)∩
R = ∅. In this program the objective is to construct a functional
calculus pre-supposing that the operator of concern has a reasonable
resolvent.

5.5.1.1. Problem. The basic problem that causes additional difficulty
is the fact that many bounded linear operators are of the form A =
B + N , where B is normal and N is nilpotent (i.e., there is a k ∈ N,
such that Nk+1 = 0, Nk 	= 0). In this case, A does not have a rep-
resentation with a standard spectral measure. On the other hand,
T = [N∗N ]1/2 is a self-adjoint operator, and there is a unique partial
isometry W such that N = WT . If E( · ) is the spectral measure as-
sociated with T , then WE(Ω)x is not a spectral measure, but it is a
measure of bounded variation. This idea was used in Chap. 4 (Theo-
rem 4.57) to provide an alternate approach to the spectral theory. In
this section, we consider the same possibly for operators on Banach
spaces.

To begin, we note that in either of the Strauss and Trunk [STT],
Helffer and Sjöstrand [HSJ], or Davies [DA] theory, the operator A is
in Baire class one. Thus, A has an adjoint, so that, by Corollary 5.51
A = WT , where W is a partial isometry and T is a nonnegative self-
adjoint linear operator.

5.5.2. Scalar Case.

Theorem 5.56. If B′ ⊂ H2 and A ∈ C[B] is an operator of Baire
class one, then there exists a unique vector-valued function Fx(λ) of
bounded variation such that, for each x ∈ D(A), we have:

(1) D(A) also satisfies

D(A) =

{
x ∈ B |

∫
|σ(A)|

λ2 〈dFx(λ), x
∗〉 < ∞

}

for each x∗ ∈ J(x) and

(2) Ax = lim
n→∞

∫ n

0
λdFx(λ), for all x ∈ D(A).

Proof. Let A = WT , where W is the unique partial isometry and
T = [A∗A]1/2. Let T̄ be the extension of T to H2. It follows that there
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is a unique spectral measure Ē(Ω) such that for each x ∈ D(T̄ ):

T̄ x = lim
n→∞

∫ n

0
λdĒ(dλ)x. (5.18)

Furthermore, Ē(λ)x is a vector-valued function of bounded variation
and, if W̄ is the extension of W, W̄ Ēx(λ) is of bounded variation,
with V ar(W̄ Ēx,R) ≤ V ar(Ēx,R). If we set F̄x(λ) = W̄ Ēx(λ), for
each interval (a, b) ⊂ [0,∞),{

W̄

∫ b

a
λdĒx(λ)

}
=

∫ b

a
λdF̄x(λ).

Since Āx = W̄ T̄x and the restriction of Ā to B is A, we have, for all
x ∈ D(A),

Ax = lim
n→∞

∫ n

0
λdFx(λ). (5.19)

This proves (2). The proof of (1) follows from (1) in Theorem 4.61 of
Chap. 4 and the definition of x∗. �

5.5.3. General Case. In this section, we assume that for each i, 1 ≤
i ≤ n, n ∈ N, Bi = B is a fixed separable Banach space. We set
B = ×n

i=1Bi, and represent a vector x ∈ B by xt = [x1, x2, · · · , xn].
An operator A = [Aij ] ∈ C[B] is defined whenever Aij : B → B, is in
C[B].

If B′ ⊂ H2 and Aij is of Baire class one, then by Theorem 5.54,

there exists a unique vector-valued function F ij
x (λ) of bounded varia-

tion such that, for each x ∈ D(Aij), we have:

(1) D(Aij) also satisfies

D(Aij) =

{
x ∈ B |

∫ ∞

0
λ2
〈
dF ij

x (λ), x∗
〉
B < ∞

}

for all x∗ ∈ J(x) and

(2)

Aijx = lim
n→∞

∫ n

0
λdF ij

x (λ), for all x ∈ D(Aij).

If we let dF(λ) = [dF ij(λ)], then we can represent A by:

Ax = lim
n→∞

∫ n

0
λdF(λ)x, for all x ∈ D(A).



228 5. Operators on Banach Space

5.6. Schatten Classes on Banach Spaces

In this section, we show how our approach allows us to provide a nat-
ural definition for the Schatten class of operators on B. Here, we as-
sume that the reader has at least read the section concerning compact
operators on Hilbert spaces in Chap. 4.

5.6.1. Background: Compact Operators on Banach Spaces.
Let K(B) be the class of compact operators on B and let F(B) be
the set of operators of finite rank. Recall that, for separable Banach
spaces, K(B) is an ideal that need not be the maximal ideal in L[B].
If M(B) is the set of weakly compact operators and N(B) is the set
of operators that map weakly convergent sequences into strongly con-
vergent sequences, it is known that both are closed two-sided ideals
in the operator norm, and, in general, F(B) ⊂ K(B) ⊂ M(B) and
F(B) ⊂ K(B) ⊂ N(B) (see part I of Dunford and Schwartz [DS],
p. 553). For reflexive Banach spaces, K(B) = N(B) and M(B)=L[B].
For the space of continuous functions C[Ω] on a compact Hausdorff
space Ω, Grothendieck [GO] has shown that M(B)=N(B). On the
other hand, it was shown in part I of Dunford and Schwartz [DS] that
for a positive measure space, (Ω,Σ, μ), on L1 (Ω,Σ, μ) , M(B) ⊂ N(B).

5.6.2. Uniformly Convex Spaces. We assume that B is uniformly
convex, with an S-basis. In operator theoretic language, the interpre-
tation of our S-basis assumption is that the compact operators on B
have the approximation property, namely that every compact operator
can be approximated by operators of finite rank. In this section, we
will show that, for the class of uniformly convex Banach spaces with an
S-basis, L[B] almost has the same structure as that of L[H], when H
is a Hilbert space. The difference being that L[B] is not a C∗-algebra
(i.e., ‖A∗A‖ = ‖A‖2, for all A ∈ L[B]).

In what follows, we fix H2. Let A be a compact operator on B
and let Ā be its extension to H2. For each compact operator Ā on H2,
there exists an orthonormal set of functions {ϕ̄n |n � 1} such that

Ā =
∑∞

n=1
μn(Ā) (· , ϕ̄n)2 Ū ϕ̄n.

Where the μn are the eigenvalues of [Ā∗Ā]1/2 =
∣∣Ā∣∣, counted by mul-

tiplicity and in decreasing order, and Ū is the partial isometry asso-
ciated with the polar decomposition of Ā = Ū

∣∣Ā∣∣. Without loss, we
can assume that the set of functions {ϕ̄n |n � 1} is contained in B
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and {ϕn |n � 1} is normalized version in B. If Sp[H2] is the Schatten
Class of order p in L[H2], it is well known that if Ā ∈ Sp[H2], its norm
can be represented as:

∥∥Ā∥∥H2

p
=
{
Tr
[
Ā∗Ā

]p/2}1/p
=

{ ∞∑
n=1

(
Ā∗Āϕ̄n, ϕ̄n

)p/2
H2

}1/p

=

{ ∞∑
n=1

∣∣μn

(
Ā
)∣∣p}1/p

.

Definition 5.57. We represent the Schatten Class of order p in
L[B] by:

Sp[B] = Sp[H2] |B .

Since Ā is the extension of A ∈ Sp[B], we can define A on B by

A =
∑∞

n=1
μn(A) 〈· , ϕ∗

n〉Uϕn,

where ϕ∗
n is the unique dual map in B′ associated with ϕn and U is

the restriction of Ū to B. The corresponding norm of A on Sp[B] is
defined by:

‖A‖B
p
=
{∑∞

n=1
〈A∗Aϕn, ϕ

∗
n〉p/2

}1/p
.

Theorem 5.58. Let A ∈ Sp[B], then ‖A‖B
p
=
∥∥Ā∥∥H2

p
.

Proof. It is clear that {ϕn |n � 1} is a set of eigenfunctions for A∗A
on B. Furthermore, by Theorem 5.11, A∗A is naturally self-adjoint
and, since every compact operator generates a C0-semigroup, by The-
orem 5.40, the spectrum of A∗A is unchanged by its extension to H2.
It follows that A∗Aϕn = |μn(A)|2 ϕn, so that

〈A∗Aϕn, ϕ
∗
n〉 = |μn|2 〈ϕn, ϕ

∗
n〉 = |μn(A)|2 ,

and

‖A‖B
p
=
{∑∞

n=1
〈A∗Aϕn, ϕ

∗
n〉p/2

}1/p

=
{∑∞

n=1
|μn(A)|p

}1/p

=
∥∥Ā∥∥H2

p
.

�
It is clear that all of the theory of operator ideals on Hilbert

spaces extend to uniformly convex Banach spaces with an S-basis in a
straightforward way. We state a few of the more important results to
give a sense of the power provided by the existence of adjoints. The
first result extends theorems due to Weyl [WY], Horn [HO], Lalesco
[LE] and Lidskii [LI]. The proofs are all straightforward, for a given
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A extend it to H2, use the Hilbert space result and then restrict back
to B.
Theorem 5.59. Let A ∈ K(B), the set of compact operators on B,
and let {λn} be the eigenvalues of A counted up to algebraic multiplic-
ity. If Φ is a mapping on [0,∞] which is nonnegative and monotone
increasing, then we have:

(1) (Weyl)∑∞
n=1

Φ (|λn(A)|) �
∑∞

n=1
Φ (μn(A))

and

(2) (Horn) If A1, A2 ∈ K(B)∑∞
n=1

Φ (|λn(A1A2)|) �
∑∞

n=1
Φ (μn(A1)μn(A2)).

In case A ∈ S1(B), we have:

(3) (Lalesco) ∑∞
n=1

|λn(A)| �
∑∞

n=1
μn(A)

and

(4) (Lidskii) ∑∞
n=1

λn(A) = Tr(A).

Simon [SI1] provides a very nice approach to infinite determinants
and trace class operators on separable Hilbert spaces. He gives a com-
parative historical analysis of Fredholm theory, obtaining a new proof
of Lidskii’s Theorem as a side benefit and some new insights. A review
of his paper shows that much of it can be directly extended to operator
theory on separable reflexive Banach spaces.

5.6.3. Discussion. On a Hilbert space H, the Schatten classes Sp(H)
are the only ideals in K(H), and S1(H) is minimal. In a general Banach
space, this is far from true. A complete history of the subject can be
found in the recent book by Pietsch [PI1] (see also Retherford [RE],
for a nice review). We limit this discussion to a few major topics in
the subject. First, Grothendieck [GO] defined an important class of
nuclear operators as follows:

Definition 5.60. If A ∈ F(B) (the operators of finite rank), define
the ideal N1(B) by:

N1(B) = {A ∈ F(B) | N1(A) < ∞} ,
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where

N1(A) = glb
{∑m

n=1
‖fn‖ ‖φn‖

∣∣∣fn ∈ B′, φn ∈ B, A =
∑m

n=1
φn 〈· , fn〉

}
and the greatest lower bound is over all possible representations for A.

Grothendieck showed that N1(B) is the completion of the finite
rank operators and is a Banach space with norm N1(·). It is also a
two-sided ideal in K(B). It is easy to show that:

Corollary 5.61. M(B),N(B) and N1(B) are two-sided *ideals.

In order to compensate for the (apparent) lack of an adjoint for
Banach spaces, Pietsch [PI2], [PI3] defined a number of classes of op-
erator ideals for a given B. Of particular importance for our discussion
is the class Cp(B), defined by

Cp(B) =
{
A ∈ K(B)

∣∣∣Cp(A) =
∑∞

i=1
[si(A)]

p < ∞
}
,

where the singular numbers sn(A) are defined by:

sn(A) = inf {‖A−K‖B | rank of K � n} .
Pietsch has shown that C1(B) ⊂ N1(B), while Johnson et al. [JKMR]
have shown that for each A ∈ C1(B),

∑∞
n=1 |λn(A)| < ∞. On the other

hand, Grothendieck [GO] has provided an example of an operator A in
N1(L

∞[0, 1]) with
∑∞

n=1 |λn(A)| = ∞ (see Simon [SI], p. 118). Thus,
it follows that, in general, the containment is strict. It is known that if
C1(B) = N1(B), then B is isomorphic to a Hilbert space (see Johnson
et al.). It is clear from the above discussion that:

Corollary 5.62. Cp(B) is a two-sided *ideal in K(B), and S1(B) ⊂
N1(B).

For a given Banach space, it is not clear how the spaces Cp(B) of
Pietsch relate to our Schatten Classes Sp(B) (clearly Sp(B) ⊆ Cp(B)).
Thus, one question is that of the equality of Sp(B) and Cp(B). (We
suspect that S1(B) = C1(B).)
Remark 5.63. In closing, we should point out that if B is not uni-
formly convex, then for a given φ ∈ B the set J(φ) ∈ B′ can be multi-
valued and there is no unique way to define Sp(B) (i.e., to choose
φ∗ ∈ J(φ)). If B′ is strictly convex, J(φ) ∈ B′ is uniquely defined
(single-valued), so that all of our results still hold. However, to our
knowledge, all known examples Banach spaces with B′ strictly convex
are uniformly convex.
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Conclusion. The most interesting aspect of this section is the obser-
vation that the dual space of a Banach space can have more than one
representation. It is well known that a given Banach space B can have
many equivalent norms that generate the same topology. However,
the geometric properties of the space depend on the norm used. We
have shown that the properties of the linear operators on B depend
on the family of linear functionals used to represent the dual space B′.
This approach offers an interesting tool for a closer study of the struc-
ture of bounded linear operators on B.
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Chapter 6

Spaces of von
Neumann Type

This chapter develops the mathematical foundations for the
time-evolution of a physical systems as a three-dimensional motion
picture (time-ordering). Our objective is to construct the mathemat-
ical version of a physical film on which space-time events can evolve.
We first construct the film using infinite tensor products of Hilbert
spaces, which is natural for physics. Although von Neumann [VN2]
did not develop his theory for our purpose, it will be clear that it is
natural for our approach. This film, as a Hilbert space, will be used as
the ambient space in Chap. 7 for the Feynman (time-ordered) operator
calculus. In order to make the theory available for applications beyond
physics, we extend von Neumann’s method to construct infinite tensor
products of Banach spaces. (This approach makes it easy to transfer
the operator calculus to the Banach space setting.) We assume that
the reader has read Sect. 1.4 of Chap. 1. This section provides a fairly
complete introduction to the finite tensor product theory for both
Hilbert and Banach spaces.

Summary. In the first section, we begin with a study of continuous
tensor products of Hilbert spaces. Since von Neumann’s approach is
central to our theory and this subject is not discussed in the standard
analysis/functional analysis programs, we provide a fairly complete

237
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exposition. In the second section, we use von Neumann’s approach
to construct continuous tensor products of Banach spaces. After a
few examples in the third section, we discuss operators on continuous
tensor products of Banach spaces in the fourth section. In the fifth
section we construct our mathematical version of a physical film or
Feynman–Dyson space, which is the primary motivation for this chap-
ter. In the last section we define a special operator, called the exchange
operator, which will be used in the proof of a generalized version of
the Feynman–Kac formula and the interaction representation in the
next chapter.

The Appendix (Sect. 6.7) is devoted to a few important appli-
cations to infinite dimensional analysis. Here, we discuss a general
approach to the Fourier transform, which applies to all Banach spaces
with an S-basis. We then discuss infinite sums and products of
unbounded operators and use our results to provide a constructive
approach to a number of operators in infinitely many variables.

6.1. Infinite Tensor Product Hilbert Spaces

Let I = [a, b], 0 ≤ a < b ≤ ∞, and, in order to avoid trivialities, we
always assume that, in any product, all terms are nonzero.

Definition 6.1. If {zν} is a sequence of complex numbers indexed
by ν ∈ I,

(1) We say that the product
∏

ν∈I zν is convergent with limit z
if, for every ε > 0, there is a finite set J(ε) such that, for all
finite sets J ⊂ I, with J(ε) ⊂ J , we have

∣∣∏
ν∈J zν − z

∣∣ < ε.

(2) We say that the product
∏

ν∈I zν is quasi-convergent if∏
ν∈I |zν | is convergent. (If the product is quasi-convergent,

but not convergent, we assign it the value zero.)

Since I is not countable, we note that

0 <
∣∣∣∏

ν∈I zν
∣∣∣ < ∞ if and only if

∑
ν∈I |1− zν | < ∞.

Thus, it follows that convergence implies that at most a countable
number of the zν 	= 1.

Let Hν = H be a fixed Hilbert space for each ν ∈ I and, for {φν} ∈∏
ν∈I Hν , let ΔI be those sequences {φν} such that

∑
ν∈I |‖ϕν‖ν − 1|

< ∞. Define a functional on ΔI by

Φ(ψ) =
∑n

k=1

∏
ν∈I

〈
ϕk
ν , ψν

〉
ν
,
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where ψ = {ψν}, {ϕk
ν} ∈ ΔI , for 1 ≤ k ≤ n. It is easy to see that this

functional is linear in each component. Denote Φ by

Φ =
∑n

k=1
⊗ν∈Iϕk

ν .

Define the algebraic tensor product, ⊗ν∈IHν , by

⊗ν∈IHν =
{∑n

k=1
⊗ν∈Iϕk

ν

∣∣∣{ϕk
ν} ∈ ΔI , 1 ≤ k ≤ n, n ∈ N

}
.

We define a linear functional on ⊗ν∈IHν by(∑n

k=1
⊗ν∈Iϕk

ν ,
∑m

l=1
⊗ν∈Iψl

ν

)
⊗
=
∑m

l=1

∑n

k=1

∏
ν∈I

〈
ϕk
ν , ψ

l
ν

〉
ν
.

Lemma 6.2. The functional (·,·)⊗ is a well-defined mapping on
⊗ν∈IHν.

Proof. It suffices to show that, if Φ = 0, then (Φ,Ψ)⊗ = 0. If Φ =∑n
k=1⊗ν∈Iϕk

ν and Ψ =
∑m

l=1⊗ν∈Iψl
ν , then, with ψl = {ψl

ν},
(Φ,Ψ)⊗ =

∑m

l=1

∑n

k=1

∏
ν∈I

〈
ϕk
ν , ψ

l
ν

〉
ν
=
∑m

l=1
Φ(ψl) = 0.

�

Before continuing our discussion of the above functional, we first
need to look a little more closely at the structure of the algebraic tensor
product space, ⊗ν∈IHν .

Definition 6.3. Let φ = ⊗
ν∈I

φν and ψ = ⊗
ν∈I

ψν be in ⊗ν∈IHν .

(1) We say that φ is strongly equivalent to ψ (φ ≡s ψ) if and only
if
∑
ν∈I

|1− 〈φν , ψν〉ν | < ∞ .

(2) We say that φ is weakly equivalent to ψ (φ ≡w ψ) if and only
if
∑
ν∈I

|1− |〈φν , ψν〉ν | | < ∞.

Lemma 6.4. We have φ ≡w ψ if and only if there exist zν , | zν | = 1,
such that ⊗

ν∈I
zνφν ≡s ⊗

ν∈I
ψν .

Proof. Suppose that ⊗
ν∈I

zνφν ≡s ⊗
ν∈I

ψν . Then we have:

∑
ν∈I

∣∣1− ∣∣〈φν , ψν〉ν
∣∣∣∣ =

∑
ν∈I

∣∣1− ∣∣〈zνφν , ψν〉ν
∣∣∣∣ �

∑
ν∈I

∣∣1− 〈zνφν , ψν〉ν
∣∣ < ∞.
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If φ ≡w ψ, set

zν = |〈φν , ψν〉ν |/〈φν , ψν〉ν
for 〈φν , ψν〉ν 	= 0, and set zν = 1 otherwise. It follows that∑

ν∈I
|1− 〈zνφν , ψν〉ν | =

∑
ν∈I

|1− |〈φν , ψν〉ν || < ∞,

so that ⊗
ν∈I

zνφν ≡s ⊗
ν∈I

ψν . �

Theorem 6.5. The relations defined above are equivalence rela-
tions on ⊗ν∈IHν, which decomposes ⊗ν∈IHν into disjoint equivalence
classes.

Proof. Suppose ⊗
ν∈I

φν ≡s ⊗
ν∈I

ψν . First note that the relation is

clearly reflexive. Thus, we need to only prove that it is symmetric and
transitive. To prove that the first relation is symmetric, observe that

|1− 〈ψν , φν〉ν | =
∣∣∣1− 〈φν , ψν〉ν

∣∣∣ = ∣∣∣[1− 〈φν , ψν〉ν ]
∣∣∣ = |1− 〈φν , ψν〉ν | .

To show that it is transitive, without loss, we can assume that ‖ψν‖ν =
‖φν‖ν = 1. It is then easy to see that, if ⊗

ν∈I
φν ≡s ⊗

ν∈I
ψν and

⊗
ν∈I

ψν ≡s ⊗
ν∈I

ρν , then

1− 〈φν , ρν〉ν = [1− 〈φν , ψν〉ν ] + [1− 〈ψν , ρν〉ν ] + 〈φν − ψν , ψν − ρν〉ν .
Now 〈φν − ψν , φν − ψν〉ν = 2 [1− Re 〈φν , ψν〉ν ] � 2 |1− 〈φν , ψν〉ν |, so
that

∑
ν
‖φν − ψν‖2

ν
< ∞ and, by the same observation,

∑
ν
‖ψν−

ρν‖2

ν
< ∞. It now follows from Schwartz’s inequality that

∑
ν
‖φν − ψν‖ν

‖ψν − ρν‖ν < ∞. Thus we have that∑
ν∈I

|1− 〈φν , ρν〉ν |

≤
∑
ν∈I

|1− 〈φν , ψν〉ν |+
∑
ν∈I

|1− 〈ψν , ρν〉ν |

+
∑
ν∈I

‖φν − ψν‖ν ‖ψν − ρν‖ν < ∞.

This proves the first case. The proof of the second case (weak equiva-
lence) now follows from the above lemma. �
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Theorem 6.6. Let ⊗ν∈Iϕν be in ⊗ν∈IHν. Then:

(1) The product
∏

ν∈I ‖ϕν‖ν converges if and only if
∏

ν∈I ‖ϕν‖2ν
converges.

(2) If
∏

ν∈I ‖ϕν‖ν and
∏

ν∈I ‖ψν‖ν converge, then
∏

ν∈I 〈ϕν , ψν〉ν
is quasi-convergent.

(3) If
∏

ν∈I 〈ϕν , ψν〉ν is quasi-convergent, then there exist com-
plex numbers {zν}, |zν | = 1, such that

∏
ν∈I 〈zνϕν , ψν〉ν con-

verges.

Proof. For the first case, convergence of either term implies that
{‖ϕν‖ν , ν ∈ I} has a finite upper bound M > 0. Hence

∣∣1− ‖ϕν‖ν
∣∣ � ∣∣1 + ‖ϕν‖ν

∣∣ ∣∣1− ‖ϕν‖ν
∣∣ = ∣∣1− ‖ϕν‖2ν

∣∣ � (1 +M)
∣∣1− ‖ϕν‖ν

∣∣ .

To prove (2), note that if J ⊂ I is any finite subset,

0 �
∣∣∣∣∣
∏
ν∈J

〈ϕν , ψν〉ν
∣∣∣∣∣ �

∏
ν∈J

‖ϕν‖ν
∏
ν∈J

‖ψν‖ν < ∞.

Therefore, 0 �
∣∣∏

ν∈I 〈ϕν , ψν〉ν
∣∣ < ∞ so that

∏
ν∈I 〈ϕν , ψν〉ν is quasi-

convergent and, if 0 <
∣∣∏

ν∈I 〈ϕν , ψν〉ν
∣∣ < ∞, it is convergent. The

proof of (3) now follows directly from the above lemma. �

Definition 6.7. For ϕ = ⊗
ν∈I

ϕν ∈ ⊗ν∈IHν , we define H2⊗(ϕ) to be

the closed subspace generated by the span of all ψ ≡s ϕ and we call it
the strong partial tensor product space generated by the vector ϕ.

Theorem 6.8. For the partial tensor product spaces, we have the
following:

(1) If ψν 	= ϕν occurs for at most a finite number of ν, then
ψ = ⊗

ν∈I
ψν ≡s ϕ = ⊗

ν∈I
ϕν .

(2) The space H2⊗(ϕ) is the closure of the linear span of ψ =
⊗
ν∈I

ψν such that ψν 	= ϕν occurs for at most a finite number

of ν.

(3) If Φ = ⊗ν∈Iϕν and Ψ = ⊗ν∈Iψν are in different equivalence
classes of ⊗ν∈IHν, then (Φ,Ψ)⊗ =

∏
ν∈I 〈ϕν , ψν〉ν = 0.

(4) H2⊗(ϕ)w = ⊕
ψ≡wφ

[H2⊗(ψ)s
]
.
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Proof. To prove (1), let J be the finite set of ν for which ψν 	= ϕν .
Then

∑
ν∈I

|1− 〈ϕν , ψν〉ν |

=
∑
ν∈J

|1− 〈ϕν , ψν〉ν |+
∑

ν∈I\J
|1− 〈ϕν , ϕν〉ν |

� c+
∑
ν∈I

∣∣∣1− ‖ϕν‖2ν
∣∣∣ < ∞,

so that ⊗
ν∈I

ψν ≡ ⊗
ν∈I

ϕν .

To prove (2), let H2⊗(ϕ)# be the closure of the linear span of all
ψ = ⊗ν∈Iψν such that ψν 	= ϕν occurs for at most a finite number
of ν. There is no loss in assuming that ‖ϕν‖ν = 1 for all ν ∈ I. It is

clear from (1) that H2⊗(ϕ)# ⊆ H2⊗(ϕ). Thus, we are done if we can

show that H2⊗(ϕ)# ⊇ H2⊗(ϕ). For any vector ψ = ⊗ν∈Iψν in H2⊗(ϕ),
ϕ ≡ ψ so that

∑
ν∈I

|1− 〈ϕν , ψν〉ν | < ∞. If ‖ψ‖2⊗ = 0 then ψ ∈ H2⊗(ϕ)#,

so we can assume that ‖ψ‖2⊗ 	= 0. This implies that ‖ψν‖ν 	= 0 for all
ν ∈ I and 0 	=∏

ν∈I(1/‖ψν‖ν) < ∞; hence, by scaling if necessary, we
may also assume that ‖ψν‖ν = 1 for all ν ∈ I. Let 0 < ε < 1 be given,

and choose δ so that 0 <
√
2δe < ε (e is the base for the natural log).

Since
∑
ν∈I

|1− 〈ϕν , ψν〉ν | < ∞, there is a finite set of distinct values

J = {ν1, · · · , νn} such that
∑

ν∈I−J

|1− 〈ϕν , ψν〉ν | < δ . Since, for any

finite set of numbers z1, · · · , zn, it is easy to see that

∣∣∣∣∣
n∏

k=1

zk − 1

∣∣∣∣∣ =
∣∣∣∣∣

n∏
k=1

[1 + (zk − 1)]− 1

∣∣∣∣∣ ≤
(

n∏
k=1

e|zk−1| − 1

)
,

we have that

∣∣∣∣∣∣
∏

ν∈I\J
〈ϕν , ψν〉ν − 1

∣∣∣∣∣∣ ≤
⎛
⎝exp

⎧⎨
⎩
∑

ν∈I\J
|〈ϕν , ψν〉ν − 1|

⎫⎬
⎭− 1

⎞
⎠ ≤ eδ − 1 ≤ eδ.
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Now, define φν = ψν if ν ∈ J, and φν = ϕν if ν ∈ I\J , and set φJ =
⊗ν∈Iφν so that φJ ∈ H2⊗(ϕ)# and

‖ψ − φJ‖2⊗

= 2− 2Re

[∏
ν∈J

〈ϕν , ψν〉ν ·
∏

ν∈I−J

〈ϕν , ψν〉ν
]

= 2− 2Re

[∏
ν∈I

‖ψν‖2ν ·
∏

ν∈I−J

〈ϕν , ψν〉ν
]

= 2Re

[
1−

∏
ν∈I−J

〈ϕν , ψν〉ν
]
� 2eδ < ε2.

Since ε is arbitrary, ψ is in the closure of H2⊗(ϕ)#, so H2⊗(ϕ)# =
H2⊗(ϕ).

To prove (3), first note that if
∏

ν∈I ‖ϕν‖ν and
∏

ν∈I ‖ψν‖ν con-
verge, then, for any finite subset J ⊂ I,

0 ≤
∣∣∣∣∣
∏
ν∈J

〈ϕν , ψν〉ν
∣∣∣∣∣ ≤

∏
ν∈J

‖ϕν‖ν
∏
ν∈J

‖ψν‖ν < ∞.

Therefore, 0 ≤ ∣∣∏
ν∈I 〈ϕν , ψν〉ν

∣∣ =
∣∣(Φ,Ψ)⊗

∣∣ < ∞ so that
∏

ν∈I
〈ϕν , ψν〉ν is convergent or zero. If 0 <

∣∣(Φ,Ψ)⊗
∣∣ < ∞, then∑

ν∈I
|1− 〈φν , ψν〉ν | < ∞ and, by definition, Φ and Ψ are in the same

equivalence class, so we must have
∣∣(Φ,Ψ)⊗

∣∣ = 0. The proof of (4)
follows from the definition of weakly equivalent spaces. �

Theorem 6.9. (Φ,Ψ)⊗ is a conjugate bilinear positive definite func-
tional.

Proof. The first part is trivial. To prove that it is positive definite, let
Φ =

∑n
k=1⊗ν∈Iϕk

ν , and assume that the vectors ⊗ν∈Iϕk
ν , 1 ≤ k ≤ n are

in distinct equivalence classes. This means that, with Φk = ⊗ν∈Iϕk
ν ,

we have
(Φ,Φ)⊗

=
(∑n

k=1
Φk,

∑n

k=1
Φk

)
⊗

=
∑n

k=1

∑n

j=1
(Φk,Φj)⊗

=
∑n

k=1
(Φk,Φk)⊗.



244 6. Spaces of von Neumann Type

Note that, from Theorem 6.8 (3), k 	= j implies (Φk,Φj)⊗ = 0. Thus,

it suffices to assume that ⊗ν∈Iϕk
ν , 1 ≤ k ≤ n, are all in the same

equivalence class. In this case, we have that

(Φ,Φ)⊗ =
∑n

k=1

∑n

j=1

∏
ν∈I

〈
ϕk
ν , ϕ

j
ν

〉
ν
,

where each product is convergent. It follows that the above will be
positive definite if we can show that, for all possible finite sets J =
{ν1, ν2 · · · , νm},m ∈ N,∑n

k=1

∑n

j=1

∏
ν∈J

〈
ϕk
ν , ϕ

j
ν

〉
ν
≥ 0.

This is equivalent to showing that the above defines a positive definite
functional on ⊗ν∈JHν , which follows from the standard result for finite
tensor products of Hilbert spaces (see Reed and Simon [RS]). �

Definition 6.10. We define H2⊗ = ⊗̂ν∈IHν to be the completion of
the linear space ⊗ν∈IHν , relative to the inner product (·,·)⊗.

6.2. Infinite Tensor Product Banach Spaces

In this section, we construct infinite tensor product Banach spaces
extending the methods of von Neumann [VN2] used in the last section.
We call them spaces of von Neumann type in order to distinguish them
from a number of other varieties that have been under consideration
at various times (see, for example, Guichardet [GU] and Pantsulaia
[PA]). For each t ∈ I, let Bt be a Banach space with an S-basis. We
assume that for each t, Ht with inner product ( · )t is the canonical
Hilbert space constructed from Bt as in Chap. 5, with Bt ⊂ Ht as a
continuous dense embedding.

Using the family {Ht, t ∈ I}, construct the continuous tensor
product Hilbert space H2⊗ of von Neumann. All vectors φ = ⊗

t∈I
φt

under consideration will be either convergent or quasi-convergent.
By convention, unless we explicitly say otherwise, φ is convergent. Let
Δ be the set:

Δ =

{
{φt}

∣∣∣∣∣ 0 	=
∥∥∥∥⊗
t∈I

φt

∥∥∥∥
H2

⊗

< ∞,
∑

t∈I
∣∣1− ‖φt‖Bt

∣∣ < ∞
}

(6.1)
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and define ⊗
t∈I

Bt by:

⊗
t∈I

Bt =

{
φ =

n∑
i=1

⊗
t∈I

φi
t

∣∣∣∣∣ { φi
t} ∈ Δ, i = 1, · · · , n

}
.

From the definition of ⊗
t∈I

ϕt ∈ ⊗
t∈I

Bt, we see that the following are well

defined:

‖φ‖γ = inf

{
m∑
k=1

∏
t∈I

∥∥∥ψk
t

∥∥∥
Bt

∣∣∣∣∣
n∑

i=1

⊗
t∈I

φi
t =

m∑
k=1

⊗
t∈I

ψk
t

}
,

and

‖φ‖λ = sup

{
m∑

k=1

∏
t∈I

∣∣∣
〈
φi
t, Ft

〉∣∣∣
∣∣∣∣∣ Ft ∈ B∗

t , ‖Ft‖B∗
t
� 1, for all t ∈ I

}

= sup
∏

t∈I ‖Ft‖B∗
t
�1

{
m∑

k=1

∏
t∈I

∣∣∣
〈
φi
t, Ft

〉∣∣∣
∣∣∣∣∣ Ft ∈ B∗

t , for all t ∈ I

}
.

Theorem 6.11. For all φ ∈ ⊗
t∈I

Bt, we have:

(1) ‖ · ‖λ and ‖ · ‖γ define norms on ⊗
t∈I

Bt with ‖φ‖2 � ‖φ‖λ
� ‖φ‖γ .

(2) If φ = ⊗
t∈I

φt, then ‖φ‖λ = ‖φ‖γ =
∏

t∈I ‖φt‖B (i.e.,

‖ · ‖λ and ‖ · ‖γ are crossnorms).

Proof. It is easy to check that ‖ · ‖λ and ‖ · ‖γ are norms on ⊗
t∈I

Bt.

By construction, ‖φ‖2 � ‖φ‖λ and ‖φ‖2 � ‖φ‖γ . Since
∣∣〈φi

t , Ft〉
∣∣ �∥∥φi

t

∥∥
Bt

for all t ∈ I, we have that λ(φ) � γ(φ). Now, it is easy to see

that if φ = ⊗
t∈I

φt, then ‖φ‖λ = ‖φ‖γ =
∏

t∈I ‖φt‖B.
The completions of ⊗

t∈I
Bt with respect to ‖‖λ and ‖‖γ define the

spaces ⊗̂λ

t∈I
Bt ⊂ ⊗̂γ

t∈I
Bt. We can also construct ⊗̂α

t∈I
Bt so that ⊗̂λ

t∈I
Bt ⊂

⊗̂α

t∈I
Bt ⊂ ⊗̂γ

t∈I
Bt for all crossnorms α with λ � α � γ. For a fixed α, we

write Bα⊗ = ⊗̂α

t∈I
Bt. �

Definition 6.12. We call spaces constructed as above, Banach spaces
of von Neumann type.
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Definition 6.13. Suppose F = ⊗t∈IFt ∈ ⊗t∈IB∗
t , and φ =

n∑
i=1

⊗
t∈I

φi
t ∈ ⊗α

t∈I
Bt; set

α∗ (F ) = ‖F‖α∗ = sup
φ

{
n∑

i=1

∏
t∈I

∣∣〈φi
t, Ft

〉∣∣
α (φ)

}
.

We call α∗ the dual norm of α.

Theorem 6.14. Assume that λ � α � γ, then:

(1) γ∗ � α∗ � λ∗, and each α∗ is a crossnorm,

(2) λ and γ are uniform.

Proof. To prove (1), let F = ⊗t∈IFt ∈ ⊗t∈IB∗
t . Then, since:

1∥∥∑n
k=1⊗t∈Iφk

t

∥∥
α

� 1∥∥∑n
k=1⊗t∈Iφk

t

∥∥
λ

,

by definition of ‖⊗t∈IFt‖α∗, we have

‖⊗t∈IFt‖α∗ = sup
∑n

k=1 ⊗t∈Iφ
k
t 	=0

∣∣∑n
k=1

∏
t∈I

〈
φk
t , Fν

〉∣∣∥∥∑n
k=1⊗t∈Iφk

t

∥∥
α

� sup
∑n

k=1 ⊗t∈Iφ
k
t 	=0

∣∣∑n
k=1

∏
t∈I

〈
φk
t , Ft

〉∣∣∥∥∑n
k=1⊗t∈Iφk

t

∥∥
λ

= ‖⊗t∈IFt‖λ∗ ,

so that, for λ � α � γ, we have γ∗ � α∗ � λ∗ (γ∗ = λ, λ∗ = γ on the
dual spaces). On the other hand, we have

‖⊗t∈IFt‖α∗ ‖⊗t∈Iφt‖α �
∣∣∣∣∣
∏
t∈I

〈φt , Ft〉
∣∣∣∣∣ , which implies

‖⊗t∈IFt‖α∗
∏
t∈I

‖φt‖t �
∣∣∣∣∣
∏
t∈I

〈φt , Ft〉
∣∣∣∣∣ . Thus, we have

‖⊗t∈IFt‖α∗ � sup
⊗t∈Iφt

∣∣∣∣∣
∏
t∈I

〈φt , Ft〉
‖φt‖t

∣∣∣∣∣ =
∏
t∈I

‖Ft‖B∗ ,

so that ‖⊗t∈IFt‖α∗ �
∏

t∈I ‖Ft‖B∗. Since it is easy to see that
‖⊗t∈IFt‖α∗ �

∏
t∈I ‖Ft‖B∗, it follows that ‖⊗t∈IFt‖α∗ =

∏
t∈I ‖Ft‖B∗.

Hence, α∗ is a crossnorm for γ∗ � α∗ � λ∗. To prove (2), let
Tt : Bt → Bt be a bounded linear operator for each t ∈ I such
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that
∏

t∈I ‖Tt‖Bt
< ∞. Let T ∗

t be the dual of Tt and suppose
F = ⊗t∈IFt ∈ ⊗t∈IB∗

t for λ∗. We then have∣∣∣(⊗t∈IFt)
∑n

k=1
⊗t∈ITtφ

k
t

∣∣∣ = ∣∣∣(⊗t∈IT ∗
t (Ft))

∑n

k=1
⊗t∈Iφk

t

∣∣∣
� ‖⊗t∈IT ∗

t (Ft)‖λ∗
∥∥∥∑n

k=1
⊗t∈Iφk

t

∥∥∥
λ

�
( ∏

t∈I
‖Ft‖B∗

)(∏
t∈I

‖Tt‖B
)∥∥∥∑n

k=1
⊗t∈Iφk

t

∥∥∥
λ
.

Since ‖⊗t∈IFt‖λ∗ =
∏

t∈I ‖Ft‖B∗, we must have:∥∥∥∑n

k=1
⊗t∈ITtφ

k
t

∥∥∥
λ
�

(∏
t∈I

‖Tt‖B
)∥∥∥∑n

k=1
⊗t∈Iφk

t

∥∥∥
λ
,

so that λ is uniform. To see that γ is also uniform, note that the same
proof for λ applies to γ by symmetry (λ∗ = γ) so that∥∥∥∑n

k=1
⊗t∈ITtφ

k
t

∥∥∥
γ
�
( ∏

t∈I
‖Tt‖B

)∥∥∥∑n

k=1
⊗t∈Iφk

t

∥∥∥
γ
.

�

6.2.1. Partial Tensor Product Spaces of Type v. In this section,
we construct a class of subspaces that are induced by equivalence rela-
tions on Bα⊗. The motivation and the construction are the same as the
von Neumann’s decomposition of the infinite tensor product Hilbert
space into orthogonal subspaces of the last section. We assume that
Bt ⊂ Ht has an S-basis. Since every φ′ ∈ H′

t induces a linear func-
tional on Bt, for each φ ∈ Bt, we see that H′

t ⊂ B′
t. It is clear that

H′
t is a continuous embedding in B′

t (which may not be dense), so that
‖(·, φ)‖B′

t
≤ ‖(·, φ)‖H′

t
= ‖φ‖Ht

. Define φ∗
t by

φ∗
t = (· , φt)t

(
‖φt‖2Bt

‖φt‖2Ht

)
.

It is easy to see that 〈φt, φ
∗
t 〉 = ‖φ‖2Bt

. If B is uniformly convex, φ∗
t is

unique. However, if Bt is not uniformly convex, the set of mappings for
a given φt ∈ Bt could be uncountable. In this case, we assume a (fixed)
choice has been made. The functional φ∗

t is called the Steadman map
on Bt associated with Ht. (It is not a duality map.)

Definition 6.15. Let φ = ⊗
t∈I

φt and let ψ = ⊗
t∈I

ψt be in Bα⊗ for

λ � α � γ.
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(1) We say that φ is strongly equivalent to ψ, and write φ ≡s ψ,
if and only if∑
t∈I

|1− 〈φt, ψ
∗
t 〉t| < ∞, and

∑
t∈I

|1− 〈ψt, φ
∗
t 〉t| < ∞.

(2) We say that φ is weakly equivalent to ψ, and write φ ≡w ψ,
if and only if both∑

t∈I
|1− |〈φt, ψ

∗
t 〉t| | < ∞, and

∑
t∈I

|1− |〈ψt, φ
∗
t 〉t| | < ∞.

Theorem 6.16. We have φ ≡w ψ if and only if there exist zt, | zt | = 1,
such that ⊗

t∈I
ztφt ≡s ⊗

t∈I
ψt and ⊗

t∈I
z̄tψt ≡s ⊗

t∈I
φt.

Proof. Suppose that ⊗
t∈I

ztφt ≡s ⊗
t∈I

ψt and ⊗
t∈I

z̄tψt ≡s ⊗
t∈I

φt. Then we

have:∑
t∈I

∣∣1− ∣∣〈φt, ψ
∗
t 〉t
∣∣∣∣ =

∑
t∈I

∣∣1− ∣∣〈ztφt, ψ
∗
t 〉t
∣∣∣∣ �

∑
t∈I

∣∣1− 〈ztφt, ψ
∗
t 〉t
∣∣ < ∞, and

∑
t∈I

|1− |〈ψt, φ
∗
t 〉t|| =

∑
t∈I

|1− |〈z̄tψt, φ
∗
t 〉t|| �

∑
t∈I

|1− 〈z̄tψt, φ
∗
t 〉t| < ∞.

If φ ≡w ψ, set zt = |〈φt, ψ
∗
t 〉t|/〈φt, ψ

∗
t 〉t for 〈φt, ψ

∗
t 〉t 	= 0, and set

zt = 1 otherwise. Now

zt = |〈φt, ψ
∗
t 〉t|/〈φt, ψ

∗
t 〉t =

∣∣〈ψt, φ
∗
t 〉t
∣∣/〈ψt, φ

∗
t 〉t

follows from the definition of the Steadman map. Thus,∑
t∈I

|1− 〈ztφt, ψ
∗
t 〉t| =

∑
t∈I

|1− |〈φt, ψ
∗
t 〉t|| < ∞ and

∑
t∈I

|1− 〈z̄tψt, φ
∗
t 〉t| =

∑
t∈I

|1− |〈ψt, φ
∗
t 〉t|| < ∞,

so that ⊗
t∈I

ztφt ≡s ⊗
t∈I

ψt and ⊗
t∈I

z̄tψt ≡s ⊗
t∈I

φt. �

In the proof of the next theorem, we appeal to the Gram–Schmidt
process on Bt. It is actually proven in the Appendix (Sect. 5.3) of
Chap. 5. However, the reader who has not reviewed that section can
use the fact that Bt ⊂ Ht as a continuous dense embedding apply the
Gram–Schmidt process on Ht and restrict back to Bt. (We drop the t
index on B in what follows.)

Theorem 6.17. The relations defined above are equivalence relations
on Bα⊗.
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Proof. First note that the relations are clearly symmetric and reflex-
ive, so we need to only show that they are transitive. Suppose that
⊗
t∈I

φt ≡s ⊗
t∈I

ψt and ⊗
t∈I

ψt ≡s ⊗
t∈I

ρt, then we know that

∏
t∈I

‖φt‖B < ∞,
∏
t∈I

‖ψt‖B < ∞,
∏
t∈I

‖ρt‖B < ∞ and

∑
t∈I

|1− 〈φt, ψ
∗
t 〉t| < ∞,

∑
t∈I

|1− 〈ψt, φ
∗
t 〉t| < ∞,

so that
∑
t∈I

|1− 〈ρt, ψ∗
t 〉t| < ∞ and

∑
t∈I

|1− 〈ψt, ρ
∗
t 〉t| < ∞. We need to

show that
∑
t∈I

|1− 〈φt, ρ
∗
t 〉t| < ∞ and

∑
t∈I

|1− 〈ρt, φ∗
t 〉t| < ∞. We prove

the first case,
∑
t∈I

|1− 〈φt, ρ
∗
t 〉t| < ∞, as the second is similar. Fix t,

and set ‖φt‖B = 1 + η, ‖ψt‖B = 1 + θ, ‖ρt‖B = 1 + ζ and 〈φt, ψ
∗
t 〉t =

1 + x, 〈ψt, ρ
∗
t 〉t = 1 + λ. It follows that

max{|η| , |θ| , |ζ| , |x| , |λ|} � C

for some constant C (independent of t ). Without loss, we also assume
that, except for a finite number of t, |θ| � 1

2 (i.e., |1− ‖ψt‖B| � 1
2).

Using the Gram–Schmidt process in B, write ψt, φt and ρt, as:

ψt = a11u, ψ∗
t = ā11u

∗,

〈ψt, ψ
∗
t 〉 = ‖ψt‖2B = |a11|2 = (1 + θ)2,

φt = a21u + a22v, φ∗
t = ā21u

∗ + ā22v
∗,

〈φt, φ
∗
t 〉 = ‖φt‖2B = |a21|2 + |a22|2 = (1 + η)2,

ρt = a31u + a32v + a33w, ρ∗t = ā31u
∗ + ā32v

∗ + ā33w
∗,

〈ρt, ρ∗t 〉 = ‖ρt‖2B = |a31|2 + |a32|2 + |a33|2 = (1 + ζ)2,

〈φt, ψ
∗
t 〉 = a21ā11 = 1 + x,

〈ψt, ρ
∗
t 〉 = a11ā31 = 1 + λ.

Now,

|1− 〈φt, ρ
∗
t 〉t|

= |1− (a21ā31 + a22ā32)|
=
∣∣∣(a21ā11)(a11ā31) |a11|−2 − 1 + a22ā32

∣∣∣
�
∣∣∣(a21ā11)(a11ā31) |a11|−2 − 1

∣∣∣+ |a22ā32|
�
∣∣(1 + |x|)(1 + |λ|)(1 − |θ|)−2 − 1

∣∣+ |a22ā32| . (A)
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Looking at the first part of the last inequality and using |θ| � 1
2 , we

see that∣∣(1 + |x|)(1 + |λ|)(1− |θ|)−2 − 1
∣∣

=
{
(1 + 1

2 |λ|) |x|+ (1 + 1
2 |x|) |λ|+ (2− |θ|) |θ|} (1− |θ|)−2

�
{
(1 + 1

2C) |x|+ (1 + 1
2C) |λ|+ 2 |θ|} (1/2)−2

� D′ {|x|+ |λ|+ |θ|}
� D′ {|η|+ |θ|+ |ζ|+ |x|+ |λ|} ,

where D′ is a constant, independent of t. For the last part (of the last
inequality in A), we have:

|a22|2 =
{|a21|2 + |a22|2

}− |a21ā11|2 |a11|−2 � (1 + |η|)2 − (1− |x|)2(1 + |θ|)−2

� D′′ {|η|+ |θ|+ |ζ|+ |x|+ |λ|} , (B)

and
|a32|2

�
{
|a31|2 + |a32|2 + |a33|2

}
− |a11ā31|2 |a11|−2

� (1 + |ζ|)2 − (1− |λ|)2(1 + |θ|)−2

� D′′′ {|η|+ |θ|+ |ζ|+ |x|+ |λ|} . (C)

Combining terms, we have that:
∣∣1− 〈φt, ρ

∗
t 〉t
∣∣

� D {|η|+ |θ|+ |ζ|+ |x|+ |λ|}
= D

{∣∣1− ‖φt‖B
∣∣+ ∣∣1− ‖ψt‖B

∣∣+ ∣∣1− ‖ρt‖B
∣∣+ ∣∣1− 〈φt, ψ

∗
t 〉t
∣∣+ ∣∣1− 〈ψt, ρ

∗
t 〉t
∣∣} .

Since the constant D is independent of all but a finite number of t,
our proof is complete. The proof of weak equivalence now follows from
Theorem 6.16. �

Remark 6.18. We note that a proof of the same result for a Hilbert
space in the last theorem only required ten lines.

Definition 6.19. Let ϕ = ⊗
t∈I

ϕt ∈ Bα⊗.

(1) We define Bα⊗(ϕ)s to be the closed subspace generated by the
span of all ψ ≡s ϕ and we call it the strong partial tensor
product space of type v generated by the vector ϕ.

(2) We define Bα⊗(ϕ)w to be the closed subspace generated by
the span of all ψ ≡w ϕ and we call it the weak partial tensor
product space of type v generated by the vector ϕ.
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Theorem 6.20. With ϕ, ψ ∈ Bα⊗:

(1) The product
∏

t∈I ‖ϕt‖B converges if and only if
∏

t∈I ‖ϕt‖2B
converges.

(2) If
∏

t∈I ‖ϕt‖B and
∏

t∈I ‖ψt‖B converge, then
∏

t∈I 〈ϕt, ψ
∗
t 〉t ,

and
∏

t∈I 〈ψt, ϕ
∗
t 〉t are quasi-convergent.

(3) If
∏

t∈I 〈ϕt, ψ
∗
t 〉t and

∏
t∈I 〈ψt, ϕ

∗
t 〉t are quasi-convergent, then

there exist complex numbers {zt}, with |zt | = 1, such that∏
t∈I 〈ztϕt, ψ

∗
t 〉t , and

∏
t∈I 〈z̄tψt, ϕ

∗
t 〉t both converge.

(4) If ϕ = ⊗t∈Iϕt and ψ = ⊗t∈Iψt are in different equivalence
classes of Bα⊗, then

∏
t∈I 〈ϕt, ψ

∗
t 〉t = 0 and

∏
t∈I 〈ψt, ϕ

∗
t 〉t = 0.

Proof. For the first case, convergence of either term implies that
{‖ϕt‖B , t ∈ I} is bounded by some M > 0. Hence,

∣∣1− ‖ϕt‖B
∣∣ � ∣∣1 + ‖ϕt‖B

∣∣ ∣∣1− ‖ϕt‖B
∣∣ = ∣∣1− ‖ϕt‖2B

∣∣ � (1 +M)
∣∣1− ‖ϕt‖B

∣∣ .

To prove 2, note that if J ⊂ I is any finite subset, we have

0 �
∣∣∣∣∣
∏
t∈J

〈ϕt, ψ
∗
t 〉t
∣∣∣∣∣ �

∏
t∈J

‖ϕt‖B
∏
t∈J

‖ψt‖B < ∞.

Therefore, 0 �
∣∣∏

t∈I 〈ϕt, ψ
∗
t 〉t
∣∣ < ∞, so that

∏
t∈I 〈ϕt, ψ

∗
t 〉t is quasi-

convergent, and if 0 <
∣∣∏

t∈I 〈ϕt, ψ
∗
t 〉t
∣∣ < ∞, it is even convergent.

The proof of 3 follows from Theorem 6.16.

To prove 4, note that if 0 < |〈ϕ,ψ∗〉| , |〈ψ,ϕ∗〉| < ∞, then ϕ
and ψ are in the same equivalence class, so the only possibilities
are |〈ϕ,ψ∗〉| , |〈ψ,ϕ∗〉| = 0 or ∞. Thus, it suffices to show that
|〈ϕ,ψ∗〉| , |〈ψ,ϕ∗〉| 	= ∞, and this fact follows from 2. �

We now consider the relationship between Bα⊗(ϕ)s and H2⊗(ϕ)s.
Since ‖ϕt‖2B

/
‖ϕt‖2H � 1, we have that |〈ψt, ϕ

∗
t 〉t| =

∣∣∣(ψt, ϕt)2,t

∣∣∣(
‖ϕt‖2B

/
‖ϕt‖2H

)
�

∣∣∣(ψt, ϕt)2,t

∣∣∣. Set ‖ϕt‖2B
/
‖ϕt‖2H = at and

‖ψt‖2B
/
‖ψt‖2H = bt.

Theorem 6.21. Suppose
∏

t∈I 〈ψt, ϕ
∗
t 〉t and

∏
t∈I 〈ϕt, ψ

∗
t 〉t both con-

verge.

(1) Then
∏

t∈I (ϕt, ψt)2,t < ∞ (converges) if and only if both∏
t∈I at and

∏
t∈I bt converge.
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(2) If
∏

t∈I at and
∏

t∈I bt converge, then ⊗
t∈I

ϕt ≡s
H ⊗

t∈I
ψt implies

⊗
t∈I

ϕt ≡s
B ⊗

t∈I
ψt, so that Bα⊗(ϕ)s ⊂ H2⊗(ϕ)s as a continuous

dense embedding.

Proof. To prove 1, let J ⊂ I be finite. Then
{∏

t∈J at
}∏

t∈J (ψt, ϕt)2,t
=
∏

t∈J 〈ψt, ϕ
∗
t 〉t ,

{∏
t∈J bt

}∏
t∈J (ϕt, ψt)2,t =

∏
t∈J 〈ϕt, ψ

∗
t 〉t. It is

clear that since both at � 1 and bt � 1, convergence of either term on
the left implies convergence of the other term. Thus,

∏
t∈I (ϕt, ψt)2,t

converges if and only if
∏

t∈I at and
∏

t∈I bt converge. The proof of 2
follows from the definition of strong equivalence in both cases. �

The next result is implicit in the above proof.

Corollary 6.22. If
∏

t∈I 〈ψt, ϕ
∗
t 〉t and

∏
t∈I 〈ϕt, ψ

∗
t 〉t converge, then

either both
∏

t∈I at and
∏

t∈I bt converge or they both diverge.

Theorem 6.23. Let ψ = ⊗
t∈I

ψt and ϕ = ⊗
t∈I

ϕt be vectors in Bα⊗.

(1) If ψt 	= ϕt occurs for at most a finite number of t, then ψ =
⊗
t∈I

ψt ≡s ϕ = ⊗
t∈I

ϕt.

(2) The space Bα⊗(ϕ)s is the closure of the linear span of ψ =
⊗
t∈I

ψt such that ψt 	= ϕt occurs for at most a finite number

of t.

(3) Bα⊗(ϕ)w = ⊕
ψ≡wϕ

[Bα⊗(ψ)s
]
.

Proof. To prove 1, let J be the finite set of t for which ψt 	= ϕt. Then∑
t∈I

|1− 〈ϕt, ψ
∗
t 〉t| =

∑
t∈J

|1− 〈ϕt, ψ
∗
t 〉t|+

∑
t∈I\J

|1− 〈ϕt, ϕ
∗
t 〉t|

� c+
∑
t∈I

∣∣∣1− ‖ϕt‖2t
∣∣∣ < ∞.

To prove 2, let Bα⊗(ϕ)# be the closure of the linear span of all
ψ = ⊗

t∈I
ψt such that ψt 	= ϕt occurs for at most a finite number of

t and, without loss, we can assume that ‖ϕt‖t = 1. It is clear from

1 that Bα⊗(ϕ)# ⊆ Bα⊗(ϕ)s, so that we are done if we can show that

Bα⊗(ϕ)# ⊇ Bα⊗(ϕ)s. For any vector ψ = ⊗
t∈I

ψt in Bα⊗(ϕ)s, ϕ ≡s ψ

so that
∑
t∈I

|1− 〈ϕt, ψ
∗
t 〉t| < ∞. If ‖ψ‖α⊗ = 0 then ψ ∈ Bα⊗(ϕ)#, so
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we can assume that ‖ψ‖2⊗ 	= 0. This implies that ‖ψt‖t 	= 0 for all
t ∈ I and 0 	= ∏

t∈I (1/‖ψt‖t) < ∞. Hence, by scaling if necessary,
we may also assume that ‖ψt‖t = 1 for all t ∈ I. Let 0 < ε < 1

be given, and choose δ so that 0 <
√
2δe < ε (e is the base for the

natural log). Since
∑
t∈I

|1− 〈ϕt, ψ
∗
t 〉t| < ∞ and

∑
t∈I

|1− 〈ψt, ϕ
∗
t 〉t| < ∞,

there is a finite set of distinct values J = {t1, · · · , tn} such that∑
t∈I\J

|1− 〈ϕt, ψ
∗
t 〉t| < δ and

∑
t∈I\J

|1− 〈ψt, ϕ
∗
t 〉t| < δ. Since, for any

finite number of complex numbers z1, · · · , zn, it is easy to see that
|∏n

k=1 zk − 1| = |∏n
k=1 [1 + (zk − 1)]− 1| �

(∏n
k=1 e

|zk−1| − 1
)
, we

have that∣∣∣∣∣∣
∏

t∈I\J
〈ϕt, ψ

∗
t 〉t − 1

∣∣∣∣∣∣ �
⎛
⎝exp{

∑
t∈I\J

|〈ϕt, ψ
∗
t 〉t − 1|} − 1

⎞
⎠ � eδ − 1 � eδ

and∣∣∣∣∣∣
∏

t∈I\J
〈ψt, ϕ

∗
t 〉t − 1

∣∣∣∣∣∣ �
⎛
⎝exp{

∑
t∈I\J

|〈ψt, ϕ
∗
t 〉t − 1|} − 1

⎞
⎠ � eδ − 1 � eδ.

Now, define

φt =

{
ψt, t ∈ J
ϕt, t ∈ I\J,

and set φJ = ⊗t∈Iφt so that φJ ∈ Bα⊗(ϕ)#. Assume that
∣∣‖ψ∗‖⊗−

‖φ∗
J‖⊗

∣∣∣ 	= 0. In this case, we have

‖ψ − φJ‖⊗
∣∣‖ψ∗‖⊗ − ‖φ∗

J‖⊗
∣∣ � |〈ψ − φJ , ψ

∗ − φ∗
J 〉|

=

∣∣∣∣∣
∏
t∈I

‖ψt‖2t +
∏
t∈I

‖φt‖2t −
∏
t∈I

〈ψt, φ
∗
t 〉t −

∏
t∈I

〈φt, ψ
∗
t 〉t
∣∣∣∣∣

=

∣∣∣∣∣∣2−
∏
t∈J

〈ψt, φ
∗
t 〉t

∏
t∈I\J

〈ψt, φ
∗
t 〉t −

∏
t∈J

〈φt, ψ
∗
t 〉t

∏
t∈I\J

〈φt, ψ
∗
t 〉t

∣∣∣∣∣∣
=

∣∣∣∣∣∣
⎛
⎝1−

∏
t∈I\J

〈ψt, φ
∗
t 〉t

⎞
⎠+

⎛
⎝1−

∏
t∈I\J

〈φt, ψ
∗
t 〉t

⎞
⎠
∣∣∣∣∣∣ � 2eδ < ε2.

If
∣∣∣‖ψ∗‖⊗ − ‖φ∗

J‖⊗
∣∣∣ = 0, choose α > 0 such that

α ‖ψ − φJ‖⊗ ≤ |〈ψ − φJ , ψ
∗ − φ∗

J〉| .
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In either case, since ε is arbitrary, ψ is in the closure of Bα⊗(ϕ)#, so
that Bα⊗(ϕ)# = Bα⊗(ϕ)s. The proof of 3 follows from Theorem 6.20
(4) and the definition of weakly equivalent spaces. �

In the next few sections that follow, we prove all theorems for
Banach spaces. In some cases the same proof for a Hilbert space is
easier and is left as an exercise (see [GZ1]).

6.2.2. Biorthogonal System for Bα⊗(ϕ)s. We now construct a
biorthogonal system for each Bα⊗(ϕ)s. Let Γ be an index set with the
dimension of Bt and let {etγ , (etγ)

∗, γ ∈ Γ} be a biorthogonal system

for Bt. Let et0 be a fixed unit vector in Bt and set E = ⊗t∈Iet0. Let
F be the set of all functions f : I → Γ ∪ {0} such that f(t) = 0
for all but a finite number of t. Let F (f) be the image of f ∈ F
(i.e., F (f) = {f(t), t ∈ I}), and set EF (f) = ⊗t∈Iet,f(t), where

f(t) = 0 implies et,0 = et0 and f(t) = γ implies et,γ = etγ . Let
E∗

F (f) = ⊗t∈Ie∗t,f(t).

Theorem 6.24. With the above notation, we have:

(1) The set {EF (f), E∗
F (f), f ∈ F} is a biorthogonal system for

Bα⊗(E)s.

(2) If I is countable, then Bα⊗(E)s is separable.

Proof. To prove 1, note that E ∈ {EF (f), f ∈ F} and each EF (f)

is a unit vector. Also, we have EF (f) ≡s E and
〈
EF (f), E

∗
F (g)

〉
=〈

EF (g), E
∗
F (f)

〉
=

∏
t∈I

〈
et,f(t), e

∗
t,g(t)

〉
= 0 unless f(t) = g(t) for

all t. Hence, the family {EF (f), f ∈ F} is an orthonormal sys-

tem for Bα⊗(E)s. Let Bα⊗(E)# be the completion of the linear span

of the family {EF (f), f ∈ F}. Clearly, Bα⊗(E)# ⊆ Bα⊗(E)s so we

only need to prove that Bα⊗(E)s ⊂ Bα⊗(E)#. By Theorem 6.23(2.),

it suffices to prove that Bα⊗(E)# contains the closure of the set of
all ϕ = ⊗t∈Iϕt such that ϕt 	= et0 occurs for only a finite number
of t. Let ϕ = ⊗t∈Iϕt be any such vector, and let J = {t1, · · · , tn}
be the finite set of distinct values of t for which ϕt 	= et0 occurs.
Since {etγ , γ ∈ Γ} is a basis for Bt, for each ti there exist constants

ati,γ such that
∑

γ∈Γ ati,γe
ti
γ = ϕti for 1 � i � n. Let ε > 0 be

given. Then, for each ti there exists a finite subset Ni ⊂ Γ such

that
∥∥∥ϕti −

∑
γ∈Ni

ati,γe
ti
γ

∥∥∥
⊗
< 1

n(ε
/‖ϕ‖⊗). Let N = (N1, · · ·Nn) and
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set ϕNi
ti

=
∑

γ∈Ni
ati,γe

ti
γ so that ϕN = ⊗ti∈Jϕ

Ni
ti

⊗ (⊗t∈I\Jet0) and

ϕ = ⊗ti∈Jϕti ⊗ (⊗t∈I\Jet0). It follows that:∥∥ϕ− ϕN
∥∥
⊗

=
∥∥∥[⊗ti∈Jϕti −⊗ti∈Jϕ

Ni
ti

]
⊗ (⊗t∈I\Jet0)

∥∥∥
⊗

=
∥∥∥⊗ti∈Jϕti −⊗ti∈Jϕ

Ni
ti

∥∥∥
⊗
.

We can rewrite this as:∥∥∥⊗ti∈Jϕti −⊗ti∈Jϕ
Ni
ti

∥∥∥
⊗

= ‖ϕt1 ⊗ ϕt2 · · · ⊗ ϕtn − ϕN1
t1

⊗ ϕt2 · · · ⊗ ϕtn

+ ϕN1
t1

⊗ ϕt2 · · · ⊗ ϕtn − ϕN1
t1

⊗ ϕN2
t2

· · · ⊗ ϕtn

...

+ ϕN1
t1 ⊗ ϕN2

t2 · · · ⊗ ϕ
Nn−1
tn−1

⊗ ϕtn − ϕN1
t1 ⊗ ϕN2

t2 · · · ⊗ ϕNn
tn

∥∥∥
⊗

�
∑n

i=1

∥∥∥ϕti − ϕNi
ti

∥∥∥
⊗
‖ϕ‖⊗ � ε.

Now, as the tensor product is multilinear and continuous in any finite
number of variables, we have:

ϕN

= ⊗ti∈Jϕ
Ni
ti

⊗ (⊗t∈I\Je
t
0) = ⊗ϕN1

t1
⊗ ϕN2

t2
· · · ⊗ ϕNn

tn ⊗ (⊗t∈I\Je
t
0)

=

[ ∑
γ1∈N1

at1,γ1e
t1
γ1

]
⊗
[ ∑
γ2∈N2

at2,γ2e
t2
γ2

]
· · · ⊗

[ ∑
γn∈Nn

atn,γne
tn
γn

]
⊗ (⊗t∈I\Je

t
0)

=
∑

γ1∈N1···γn∈Nn

at1,γ1at2,γ2 · · · atn,γn

[
et1γ1 ⊗ et2γ2 · · · ⊗ etnγn ⊗ (⊗t∈I\Je

t
0)
]
.

It is now clear that, by the definition of F, for each fixed set of indices
γ1, γ2, · · · γn there exists a function f : I → Γ ∪ {0} such that
f(ti) = γi for ti ∈ J and f(t) = 0 for t ∈ I\J . Since each Ni is finite,
N = (N1, · · ·Nn) is also finite, so that only a finite number of functions
are needed. It follows that ϕN is in Bα⊗(E)#, so that ϕ is a limit point

and Bα⊗(E)# = Bα⊗(E)s.

To prove 2, note that if each Bt is separable, the collection of
basis sets in Γ is countable. It follows that if I is countable then F is
countable, so that the set of basis vectors of Bα⊗(E)s is countable and
Bα⊗(E)s is separable. �
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Theorem 6.25. Suppose that ‖φt‖B = 1 for all t, so that ‖φ‖α⊗ = 1.

If {zt, t ∈ I, |zt| = 1} is quasi-convergent (but not convergent) and
ψ = ⊗

t∈I
ztφt, then Bα⊗(φ)s⊥ Bα⊗(ψ)s.

Proof. It is clear that ‖ψ‖α⊗ = 1, so let φ∗
t be the Steadman represen-

tation for φt, and ψ∗
t be the Steadman representation for ψt. It follows

that

〈φ, φ∗〉α⊗ = 〈ψ,ψ∗〉α⊗ = 1

with

〈ψ, φ∗〉α⊗ =
∏
t∈I

zt ‖φt‖2B =
∏
t∈I

zt = 0

and 〈φ,ψ∗〉α⊗ = 0, by symmetry, so that φ ⊥ ψ. This implies that
the set Γ of all linear combinations of vectors η = ⊗

t∈I
ηt with ηt 	= φt

occurring for only a finite number of t satisfies Γ⊥ ψ. Since Γ is dense
in Bα⊗(φ)s, we have that Bα⊗(φ)s⊥ Bα⊗(ψ)s. �

6.3. Examples

von Neumann described the decomposition of H2⊗ into strong and
weak partial tensor product spaces as like a quantum mechanical split-
ting up. In this section we look at a few examples of strong and weak
partial tensor product spaces. Let N be a countable set and, for each
n ∈ N , let (Xn, Bn, mn) be a measure space, where Xn is a com-
plete separable metric space, Bn is the Borel σ-algebra generated by
the open sets of Xn, and mn is a probability measure on Xn. For
1 ≤ p < ∞, let Lp[Xn, Bn, mn] = Lp[Xn] be the set of complex-
valued functions f(x) in Xn such that |f(x)|p is integrable with respect
to mn. If Δp is the natural tensor product norm for Lp spaces, then,

for any pair Xm and Xn, L
p[Xm] ⊗̂Δp Lp[Xn] = Lp[Xm ×Xn].

Let φn ∈ Lp[Xn] with ‖φn‖Lp[Xn]
= 1 and, with φ = ⊗n∈Nφn, con-

struct the strong tensor product space L
Δp

⊗ [φ]s. Let X =
∏

n∈N Xn

and B = ⊗̂n∈NBn (the smallest σ-algebra containing
∏

n∈N Bn). Re-
call that a tame function in Lp[X] is any function f ∈ Lp[X] which
only depends on a finite number of variables. The next theorem was
first proven by Guichardet [GU] for p = 2.
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Theorem 6.26. L
Δp

⊗ [φ]s ∼= Lp[X].

Proof. Let JM = {n1, · · · nM} ⊂ N , (where M is finite but ar-
bitrary), let f(xn1 , · · · xnM

) be a tame function in Lp[X], and define

f̃(xn1 , · · · xnM
)=f(xn1 , · · · xnM

)⊗(⊗n∈N\JMφn) so that f̃(xn1 , · · · xnM
)

∈ L
Δp

⊗ [φ]s. Define a function Λ : Lp[X] → L
Δp

⊗ [φ]s by Λ(f) = f̃ .
It is easy to check that Λ is well defined and it is easy to see
that: (1) Λ(af1 + bf2) = aΛ(f1) + bΛ(f2) (Λ is a linear map-
ping); (2) ‖Λ(f)‖Δp

= ‖f‖Lp[X] (Λ is an isometric mapping); and

(3) Λ(f1) = Λ(f2) ⇒ f1 = f2 (Λ is a one-to-one mapping). Since

the set of tame functions is dense in Lp[X] and the set of all f̃ is

dense in L
Δp

⊗ [φ]s, it follows that, for any f in Lp[X], we can define
Λ(f) = limk→∞Λ(fk), where {fk} is any sequence of tame functions
converging to f . Since Δp is a faithful norm, the extension to Lp[X] is
one-to-one, so that Λ defines an isometric isomorphism of Lp[X] onto

L
Δp

⊗ [φ]s. �
Remark 6.27. Now observe that this theorem is true if each Xn =

R and each mn = λ (Lebesgue measure). In this case, L
Δp

⊗ [φ]s ∼=
Lp[R∞,B(R∞), λ̂∞], where λ̂∞ is some (unknown) version of Lebesgue
measure on R

∞. It was this observation that led to the work in Chap. 2
(see [GPZ]).

In the next example B is not separable but is continuously em-
bedded in KS2, which is separable, so we can construct Bα⊗. For each
i ∈ I, let Cb[Xi] be the space of bounded continuous functions on Xi.

It is straightforward to construct C
Δ∞⊗ = ⊗̂Δ∞

i∈I
Cb[Xi]. If φi ∈ Cb[Xi],

with ‖φi‖C[Xi]
= 1 and φ = ⊗i∈Iφi, we can construct CΔ∞⊗ [φ]s. With

X =
∏

i∈I Xi, the next result is proved as in Theorem 6.26.

Theorem 6.28. C
Δ∞⊗ [φ]s ∼= Cb[X].

Definition 6.29. Let h(x) = ⊗∞
n=1hn(xn), where hn(xn) = χI(xn)

and I = [−1
2 ,

1
2 ]. We call L

Δp

⊗ [h]s the canonical representation of
Lp[R∞

I ,B(R∞
I ), λ∞].

It is clear that there is an uncountable number of families of func-
tions {gn}, ‖gn‖p = 1 from which we can construct a representation

of Lp[R∞
I ,B(R∞

I ), λ∞]. From Theorem 6.20, we see that each such
representation will either be equivalent or orthogonal to our canoni-
cal one.
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Definition 6.30. Let B be a Banach space with an S-basis. We define
Lp[B] by:

Lp[B](h) � {f(x) ∈ Lp[R∞
I ](h) : supp(f) ⊂ B} ,

while replacing λ∞ with λB. (Recall that λ∞[B] = 0.)

6.3.1. KSp[B]. Let {en} be a c.o.b for KS2[R], let x = (x1, x2, . . . ) ∈
B, and define ein = en(xi). Let ei0 = hi(xi) and define f : N → N

be any function such that f(n) = 0 for all but a finite number of n,
(e.f.n). For each such f , let F (f) = {f(n) : n ∈ N)} and define

EF (f) =
∞⊗
i=1

ei,f(i) :

{
f(i) = 0 ⇒ ei,f(i) = ei0
f(i) = n ⇒ ei,f(i) = ein

.

Theorem 6.31. The set {EF (f) : f(n) = 0, (e.f.n)} is a c.o.b for

KS2[R∞](h).

Definition 6.32. We define KS2 [B] (h) by
KS2 [B] (h) = {

f ∈ KS2 [R∞
I ] (h) : supp(f) ⊂ B} ,

while replacing λ∞ with λB.

6.4. Operators

In this section, we restrict our discussion to bounded linear opera-
tors. In the Appendix, we discuss an interesting class of unbounded
linear operators and their relationship to differential equations in infin-
itely many variables. (In the next section, we study those unbounded
operators related to our main objective.)

A vector of the form φ = ⊗t∈Iφt, ‖φt‖ = 1 for each t is called a
basic vector in Bα⊗. We say an operator A : Bα⊗ → Bα⊗ is reducible if
the restriction of A to Bα⊗[φ] is invariant for every basic vector φ. For
a particular φ, we say that A is reduced on Bα⊗[φ].

6.4.1. Bounded Operators on Bα⊗. In this section we investigate
the class of bounded operators on Bα⊗ and their relationship to those
on each Bt. Let L[Bα⊗] be the set of bounded operators on Bα⊗. For
each fixed t0 ∈ I and At0 ∈ L(Bt0), define A(t0) ∈ L(Bα⊗) by:

A(t0)(

N∑
k=1

⊗t∈Iϕk
t ) =

N∑
k=1

At0ϕ
k
t0 ⊗ (⊗t	=t0ϕ

k
t )
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for
∑N

k=1⊗t∈Iϕk
t in Bα⊗ and N finite but arbitrary. Extending to all

of Bα⊗ produces an isometric isomorphism of L[Bt0 ] into L[Bα⊗], which
we denote by L[B(t0)], so that the relationship L[Bt] ↔ L[B(t)] is
an isometric isomorphism of algebras. Let L#[Bα⊗] be the uniform
closure of the algebra generated by {L[B(t)], t ∈ I}. It is clear that
L#[Bα⊗] ⊂ L[Bα⊗]. It is known that the inclusion becomes equality if

and only if I is finite. On the other hand, L#[Bα⊗] clearly consists
of all operators on Bα⊗ that are generated directly from the family
{L[B(t)], t ∈ I} by algebraic and topological processes. Thus, since
L[Bα⊗] \ L#[Bα⊗] is nonempty when I is infinite, we expect L[Bα⊗] to
contain operators distinct from those of L#[Bα⊗]. For an example, let
t ∈ N and define Un and U by:

Un = exp{(−1)ni}, and U = ⊗̂Un = exp{
∞∑
n=1

(−1)ni}.

It is easy to see that U is unitary and is not reduced on any strong
partial tensor product subspace. (It is easy to see that it is always
reduced on every weak partial tensor product subspace.) Thus, U ∈
L[Bα⊗] \ L#[Bα⊗].

Let Si(t), i = 1, 2 be C0-contraction semigroups with generators
Ai defined on H, so that ‖Si(t)‖H � 1. Define operators S1(t) =
S1(t)⊗̂I2, S2(t) = I1⊗̂S2(t) and S(t) = S1(t)⊗̂S2(t) on H⊗̂H. The
proof of the next result is easy.

Theorem 6.33. The operators S(t), Si(t) , i = 1, 2 are C0-contraction

semigroups with generators A = A1⊗̂I2 + I1⊗̂A2, A1 = A1⊗̂I2,
A2 = I1⊗̂A2, and S(t) = S1(t)S2(t) = S2(t)S1(t).

Let Si(t), 1 � i � n be a family of C0-contraction semigroups with
generators Ai defined on H.

Corollary 6.34. S(t) = ⊗̂n
i=1Si(t) is a C0-contraction semigroup

on ⊗̂n
i=1H and the closure of A1⊗̂I2⊗̂ · · · ⊗̂In + I1⊗̂A2⊗̂ · · · ⊗̂In +

· · · I1⊗̂I2⊗̂ · · · ⊗̂An is the generator A of S(t).

Returning to our general discussion, let Ps
ϕ denote the projec-

tion from Bα⊗ onto Bα⊗(ϕ)s, and let Pw
ϕ denote the projection from Bα⊗

onto Bα⊗(ϕ)w.
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Theorem 6.35. If T ∈ L#(Bα⊗), then Ps
ϕT = TPs

ϕ and Pw
ϕT = TPw

ϕ .

Proof. The weak case follows from the strong case, so we prove that
Ps

ϕT = TPs
ϕ. Since vectors of the form Φ =

∑L
i=1⊗t∈Iϕi

t, with ϕi
t =

ϕt for all but a finite number of t, are dense in Bα⊗(ϕ)s; it suffices to

show that TΦ ∈ Bα⊗(ϕ)s. Now, T ∈ L#(Bα⊗) implies that there exists
a sequence of operators Tn such that ‖T−Tn‖α⊗ → 0 as n → ∞,

where each Tn is of the form: Tn =
∑Nn

k=1 a
n
kT

n
k , with ank a complex

scalar, Nn < ∞, and each T n
k = ⊗̂t∈JkT

n
kt⊗̂t∈I\JkIt for some finite set

of t-values Jk. Hence,

TnΦ =
∑L

i=1

∑Nn

k=1
ank ⊗t∈Jk T

n
k,tϕ

i
t ⊗t∈I\Jk ϕ

i
t.

Now, it is easy to see that, for each i, ⊗t∈JkT
n
k,tϕ

i
t⊗t∈I\Jkϕ

i
t ≡s ⊗t∈Iϕt.

It follows that TnΦ ∈ Bα⊗(ϕ)s for each n, so that Tn ∈ L[Bα⊗(ϕ)s]. As
L[Bα⊗(ϕ)s] is a norm closed algebra, T ∈ L[Bα⊗(ϕ)s] and it follows that
Ps

ϕT = TPs
ϕ. �

Let zt ∈ C, |zt| = 1, and define U [z] by: U [z]⊗t∈I ϕt = ⊗t∈Iztϕt.

Theorem 6.36. The operator U [z] has a unique unitary extension to
Bα⊗, which we also denote by U [z], such that:

(1) U [z] : Bα⊗(ϕ)w → Bα⊗(ϕ)w, so that Pw
ϕU [z] = U [z]Pw

ϕ .

(2) If
∏

t∈I zt is quasi-convergent but not convergent, then U [z] :
Bα⊗(ϕ)s → Bα⊗(η)s, for some η ∈ Bα⊗(ϕ)w with ϕ⊥η.

(3) U [z] : Bα⊗(ϕ)s → Bα⊗(ϕ)s if and only if
∏

t∈I zt converges and
U [z] = (

∏
t∈I zt)I⊗. This implies that Ps

ϕU [z] = U [z]Ps
ϕ.

Proof. For (1), let ψ =
∑N

k=1⊗t∈Iψk
t , where ⊗t∈Iψk

t ≡w ⊗t∈Iϕt, N
is arbitrary and 1 � k � N . Then

U∗[z]U [z]ψ =
N∑
k=1

⊗t∈Iz∗t ztψ
k
t = ψ = U [z]U∗[z]ψ.

It is clear that U [z] is a unitary operator, and since ψ of the above form
are dense, U [z] extends to a unitary operator on Bα⊗. By definition,

N∑
k=1

⊗t∈Iztψk
t ∈ Bα

⊗(ϕ)
w if

N∑
k=1

⊗t∈Iψk
t ∈ Bα

⊗(ϕ)
w,

so that U [z] : Bα⊗(ϕ)w → Bα⊗(ϕ)w and Pw
ϕU [z] = U [z]Pw

ϕ . To prove

(2), use Theorem 6.20 to note that
∏

t∈I zt = 0 and ⊗t∈Iψk
t ≡s ⊗t∈Iϕt
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implies that ⊗t∈Iztψk
t ∈ Bα⊗(η)s with Bα⊗(η)s⊥Bα⊗(ϕ)s. To prove (3),

note that, if 0 <
∣∣∏

t∈I zt
∣∣ < ∞, then U [z] = [(

∏
t∈I zt)I⊗], so that

U [z] : Bα⊗(ϕ)s → Bα⊗(ϕ)s. Now suppose that U [z] : Bα⊗(ϕ)s →
Bα⊗(ϕ)s, then ⊗t∈Iztψk

t ≡s ⊗t∈Iϕt and so
∏

t∈I zt must converge.
Therefore, U [z]ψ = [(

∏
t∈I zt)I⊗]ψ and Ps

ϕU [z] = U [z]Ps
ϕ.

It is easy to see that, for each fixed t ∈ I and any A(t) ∈ L[B(t)],
A(t) commutes with any Ps

ϕ, P
w
ϕ or U [z], where ϕ and z are arbitrary.

�

Theorem 6.37. Every T ∈ L#[Bα⊗] commutes with all Ps
ϕ, Pw

ϕ and

U [z], where ϕ and z are arbitrary. (In particular, every T ∈ L#[Bα⊗]
is reducible on Bα⊗(ϕ) for all ϕ ∈ Bα⊗.)

Proof. Let L be the set of all Ps
ϕ, P

w
ϕ or U [z], with ϕ and z arbitrary.

From the above observation, we see that all A(t) ∈ L[B(t)], t ∈ I
commutes with L and hence belongs to its commutator L′. Since L′ is
a closed algebra, this implies that L#[Bα⊗] ⊆ L′ so that all T ∈ L#[Bα⊗]
commute with L. �

6.5. The Film

In the world view suggested by Feynman, physical reality is laid out as
a three-dimensional motion picture in which we become aware of the
future as more and more of the film comes into view. In this section, we
construct a mathematical version of Feynman’s film for both Hilbert
and Banach spaces.

6.5.1. Hilbert Film. We first consider separable Hilbert spaces. Let
{ei | i ∈ N} be a complete orthonormal basis for H and, for each t ∈ I
and i ∈ N, let ei,t = ei and set Ei = ⊗t∈I ei,t. The Hilbert space

Ĥ generated by the family of vectors {Ei, i ∈ N} is isometrically
isomorphic to H via the mapping ei ↔ Ei. (For later use, it should
be noted that any vector in H of the form ϕ =

∑∞
k=1 akek has the

corresponding representation in Ĥ as ϕ̂ =
∑∞

k=1 akEk.) We cannot

use Ĥ to construct our operator calculus because it is not invariant for

any reasonable class of operators. However, Ĥ is very close to what
we need.

Definition 6.38. A film, FD2
⊗, is the smallest subspace of H2⊗ con-

taining Ĥ, which is an invariant subspace for L#[H2⊗]. We call FD2
⊗

the Feynman–Dyson space (FD-space) over H.
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In order to construct our space, for each i, let FD2
i = H2⊗(Ei) be

the strong partial tensor product space generated by the vector Ei.
It is clear that FD2

i is the smallest space in H2⊗ containing Ei that

is invariant under L#[H2⊗]. If we let FD2
⊗ =

∞⊕
i=1

FD2
i , we obtain our

film, a Hilbert (space) bundle over I = [a, b]. It is not a separable
space, but the fiber at each time-slice is isomorphic to H.

6.5.2. Banach Film. Let {ei, (ei)∗ | i ∈ N} be a complete biorthonor-
mal system for B. (Recall that B has an S-basis.) For each t ∈ I and
i ∈ N, let ei,t = ei, let Ei = ⊗t∈I ei,t, and set E∗

i = ⊗t∈I(ei,t)∗.
As before, the Banach space B̂ generated by the family of vectors
{Ei, i ∈ N} is isometrically isomorphic to B.
Definition 6.39. A film, FDα

⊗, is the smallest subspace of Bα⊗ con-

taining B̂, which is an invariant subspace for L#[Bα⊗]. We call FDα
⊗

the Feynman–Dyson space (FD-space) over B.

If we let FDi
α = Bα⊗(Ei) be the partial tensor product space gen-

erated by the vector Ei, then it is clear that FDα
i is the smallest space

in Bα⊗ which contains the vector Ei. We now set FDα
⊗ =

∞⊕
i=1

FDα
i .

6.6. Exchange Operator

We now assume that I = [a, b] ⊂ R and L#[Bα⊗] is the uniform closure
of the algebra generated by {L[B(t)], t ∈ I}.
Definition 6.40. An exchange operator E[t, t′] on L#[Bα⊗] is a linear
map defined for pairs t, t′ such that:

(1) E[t, t′] : L[B(t)] → L[B(t′)], (isometric isomorphism),

(2) E[s, t′]E[t, s] = E[t, t′],
(3) E[t, t′]E[t′, t] = I,

(4) for s 	= t, t′, E[t, t′]A(s) = A(s), for all A(s) ∈ L[B(s)].

The exchange operator acts to exchange the time positions of a
pair of operators in a more complicated expression.

Theorem 6.41 (Existence). There exists an exchange operator for
L#[Bα⊗].
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Proof. Define a map C[t, t′] : Bα⊗ → Bα⊗ (comparison operator) by
its action on elementary vectors:

C[t, t′]⊗s∈I φs = (⊗a�s<t′φs)⊗ φt ⊗ (⊗t′<s<tφs)⊗ φt′ ⊗ (⊗t<s�bφs),

for all φ = ⊗s∈Iφs ∈ Bα⊗. Clearly, C[t, t′] extends to an isomet-

ric isomorphism of Bα⊗. For U ∈ L#[Bα⊗], we define E[t, t′]U =
C[t, t′]UC[t′, t]. It is easy to check that E[ · , · ] satisfies all the re-
quirements for an exchange operator. �
Example 6.42. Let U = ⊗t∈IUt, so that the action of E[t, t′]U on
elementary vectors satisfies:

E[t, t′]U
(
⊗
t∈I

φt

)
= C[t, t′]UC[t′, t]

(
⊗
t∈I

φt

)

= C[t, t′]U
{(

⊗
a�s<t′

φs

)
⊗ φt ⊗

(
⊗

t′<s<t
φs

)
⊗ φt′ ⊗

(
⊗

t<s�b
φs

)}

= C[t, t′]
{(

⊗
a�s<t′

Usφs

)
⊗ Ut′φt ⊗

(
⊗

t′<s<t
Usφs

)
⊗ Utφt′ ⊗

(
⊗

t<s�b
Usφs

)}

=

{(
⊗

a�s<t′
Usφs

)
⊗ Utφt′ ⊗

(
⊗

t′<s<t
Usφs

)
⊗ Ut′φt ⊗

(
⊗

t<s�b
Usφs

)}
.

6.7. Appendix

The study of infinite tensor products of Banach spaces is an impor-
tant but neglected area. It offers a natural arena for the constructive,
but general study of analysis in infinitely many variables, including
partial differential equations and path integrals. In this appendix, we
introduce a few topics that have independent interest.

6.7.1. The Fourier Transform Again. In Chap. 2, we defined the
Fourier transform as a mapping from a uniformly convex Banach space
to its dual space. This approach exploits the strong relationship be-
tween a uniformly convex Banach space and a Hilbert space at the
expense of a restricted Fourier transform.

In addition to the definition in Chap. 2, it is also possible to define
the Fourier transform, F, as a mapping on L1[Rn

I ] to C0[R
n
I ] for all n

as one fixed linear operator that extends to a definition on L1[R∞
I ].

To do this requires a closer look at our Banach spaces defined on R
∞
I .

Recall that I = [−1
2 ,

1
2 ], x̄ = (xk)

n
k=1, x̂ = (xk)

∞
k=n+1 and hn(x̂) =

⊗∞
k=n+1χI(xk) with I = [−1

2 ,
1
2 ]. The measurable functions on R

n
I , Mn

I

are defined by fn(x) = fn
n (x̄) ⊗ hn(x̂), where fn

n (x̄) is measurable on
R
n, so that Mn

I is a partial tensor product subspace generated by the
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unit vector h(x) = h0(x̂). From this, we see that all of the spaces of
functions considered in Chap. 2 are also partial tensor product spaces
generated by h(x). In this section we show how the replacement of
L1[Rn

I ], C0[R
n
I ] by L1[Rn

I ](h), C0[R
n
I ](h) allows us to offer a different

approach to the Fourier transform.

We define F(fn)(x), mapping L1[Rn
I ](h) into C0[R

n
I ](ĥ) by

F(fn)(x) = ⊗n
k=1Fk(fn)⊗∞

k=n+1 ĥn(x̂), (6.2)

where the product of Sinc functions ĥn(x̂) =
[
⊗n

k=n+1
sin(πyk)

πyk

]
is the

Fourier transform of the product
∏∞

k=n+1 I of the interval I.

Theorem 6.43. The operator F extends to a bounded linear mapping

of L1[R∞
I ](h) into C0[R

∞
I ](ĥ).

Proof. Since

lim
n→∞L1[Rn

I ](h) =

∞⋃
n=1

L1[Rn
I ](h) = L1[R′∞

I ](h)

and L1[R∞
I ](h) is the closure of L1[R′∞

I ](h) in the L1-norm = Δ1,
it follows that F is a bounded linear mapping of L1[R′∞

I ](h) into

C0[R
∞
I ](ĥ).

Suppose that {fn} ⊂ L1[R′∞
I ](h), converges to f ∈ L1[R∞

I ](h).
Since the sequence is Cauchy, ‖fn − fm‖1 → 0 as m, n → ∞, it
follows that

|F (fn(x)− fm(x))| �
∫
R∞
I

|fn(y) − fm(y)| dλ∞(y) = ‖fn − fm‖1 .

Thus, |F (fn(x)− fm(x))| is also a Cauchy sequence in C0[R
∞
I ](ĥ).

Since L1[R′∞
I ](h) is dense in L1[R∞

I ](h), it follows that F has a bounded

extension, mapping L1[R∞
I ](h) into C0[R

∞
I ](ĥ). �

Corollary 6.44. The operator F extends to a bounded linear mapping
of L1[B](h) into C0[B](ĥ).

Just as for L2, the Fourier transform is an isometric isomorphism
from KS2[Rn] onto KS2[Rn].

Corollary 6.45. The operator F is an isometric isomorphism of

KS2[R∞
I ](h) onto KS2[R∞

I ](ĥ) and an isometric isomorphism

of KS2[B](h) onto KS2[B](ĥ).
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Thus, unlike the theory in Chap. 2, the natural interpretation is
that the Fourier transform induces a Pontryagin duality like theory
that does not depend on the group structure of R∞

I , (or B) but depends
on the pairing of different function spaces. This approach is direct,
constructive, and applies to all separable Banach spaces (with an S-
basis). Thus, the group structure of the underlying measure space
plays no role.

6.7.2. Unbounded Operators on Bα⊗. In this section, we assume
that I is countable. For each i ∈ I, let Ai be a closed densely defined
linear operator on Bi, with domain D(Ai), and let Ai be its extension

to Bα⊗, with domain D(Ai) ⊃ D̃(Ai) = D(Ai) ⊗ (⊗k 	=iBk). The next
theorem follows directly from the definition of the tensor product of
semigroups and the fact that α is a faithful relative tensor norm.

Theorem 6.46. Let Ai, 1 � i � n be generators of a family of
C0-semigroups Si(t) on Bi with ‖Si(t)‖Bi

� Mie
ωit. Then Sn(t) =

⊗̂α
i=1,nSi(t), defined on ⊗̂α

i=1,nBi, has a unique extension (also denoted

by Sn(t)) to all of Bα⊗, such that for all vectors
∑K

k=1⊗i∈Iϕk
i with

ϕk
l ∈ D(Al), 1 � l � n, the infinitesimal generator for Sn(t) satisfies:

An

[
K∑
k=1

⊗i∈Iϕk
i

]
=

n∑
l=1

K∑
k=1

Alϕ
k
l (⊗i 	=l

i∈Iϕ
k
i ).

Definition 6.47. Let {Ai}, i ∈ I be a family of closed densely defined
linear operators on Bi and let ϕi ∈ D(Ai) (respectively ψi ∈ D(Ai)),
with ‖ϕi‖B = 1 (respectively ‖ψi‖B = 1), for all i ∈ I.

(1) We say that ϕ = ⊗i∈Iϕi is a strong convergence sum (scs)-
vector for the family {Ai} if lim

n→∞
∑n

k=1Akϕ =
∑∞

k=1Akϕk

(⊗i 	=k
i∈I ϕi) exists.

(2) We say that ψ = ⊗i∈Iψi is a strong convergence prod-
uct (scp)-vector for the family {Ai} if lim

n→∞
∏n

k=1Akψ =

⊗i∈IAiψi exists.

Let Dϕ be the linear span of {χ = ⊗i∈Iχi, χi ∈ D(Ai)}, with
χi = ϕi (and let Dη be the linear span of {η = ⊗i∈Iηi, ηi ∈ D(Ai)},
with ηi = ψi) for all i > L, where L is arbitrary but finite. Clearly,
Dϕ is dense in Bα⊗(ϕ)s (Dη is dense in Bα⊗(ψ)s). If there is a possible
chance for confusion, we let As, respectively Ap, denote the closure
of
∑∞

k=1Ak on Bα⊗(ϕ)s (respectively
∏∞

k=1Ak on Bα⊗(ψ)s). It follows
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that Bα⊗(ϕ)s (respectively Bα⊗(ψ)s) are natural spaces for the study of
infinite sums or products of unbounded operators. The notion of a
strong convergence sum vector first appeared in Reed [RE].

Definition 6.48. We call Bα⊗(ϕ)s a RS-space (respectively a RP-
space Bα⊗(ψ)s) for the family {Ai}.

Let {Uk(t)} be a set of unitary groups on {Hk}. It is easy to see
that U(t) = ⊗̂∞

k=1Uk(t) is a unitary group on H2⊗. However, it need
not be reduced on any partial tensor product subspace. The following
results are due to Streit [ST] and Reed [RE], as indicated.

Theorem 6.49 (Streit). Suppose {Ak} is a set of self-adjoint lin-
ear operators on the space H2⊗(ϕ)s, with corresponding unitary groups

{Uk(t)}. If U(t) = ⊗̂∞
k=1Uk(t), then Ps

ϕU(t) = U(t)Ps
ϕ (i.e., U(t) is

reduced on H2⊗(ϕ)s) and U(t) is a strongly continuous unitary group

on H2⊗(ϕ)s if and only if, for each c > 0, the following three conditions
are satisfied:

(1)
∑∞

k=1 |〈AkEk[−c, c]ϕk , ϕk〉| < ∞,

(2)
∑∞

k=1

∣∣〈A2
kEk[−c, c]ϕk, ϕk

〉∣∣ < ∞,

(3)
∑∞

k=1 |〈(Ik − Ek[−c, c])ϕk , ϕk〉| < ∞,

where Ek[−c, c] are the spectral projectors of Ak and, in this case,
U(t) = s− limn→∞ ⊗̂n

k=1Uk(t).

Corollary 6.50. Conditions 1–3 are satisfied if and only if there exists
a strong convergence vector ϕ = ⊗∞

k=1ϕk for the family {Ak} such that
ϕk ∈ D(Ak) and∑∞

k=1
|〈Akϕk, ϕk〉| < ∞,

∑∞
k=1

‖Akϕk‖2 < ∞.

Theorem 6.51 (Reed). U(t) is reduced on H2⊗(ϕ)s and U(t) is a
strongly continuous unitary group on H2⊗(ϕ)s if and only if ϕ =
⊗∞

k=1ϕk is a strong convergence vector for the family {Ak} and∑∞
k=1 |〈Akϕk, ϕk〉| < ∞. If each Ak is positive, the statement is

true without the absolute value in the above. In either case, A, the
closure of

∑∞
k=1Ak, is the generator of U(t).

The next result strengthens and extends Reed’s theorem to con-
traction semigroups on Banach spaces (e.g., the positivity requirement
above can be dropped).
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Theorem 6.52. Let {Sk(t)} be a family of strongly continuous con-
traction semigroups with generators {Ak} defined on {Bk}, and let
ϕ = ⊗∞

k=1ϕk be a strong convergence vector for the family {Ak}. Then

S(t) = ⊗̂∞
k=1Sk(t) is reduced on Bα⊗(ϕ)s and is a strongly continuous

contraction semigroup. If S(t) = ⊗̂∞
k=1Sk(t) is reduced on Bα⊗(ϕ)s and

is a strongly continuous contraction semigroup on Bα⊗(ϕ)s, then there
exists a strong convergence vector ψ = ⊗∞

k=1ψk ∈ Bα⊗(ϕ)s for the family
{Ak}.

Proof. Let ϕ = ⊗∞
k=1ϕk be a strong convergence vector for the fam-

ily {Ak}. Without loss, we can assume that ‖ϕk‖ = 1. Let Sn(t) =
⊗̂n

k=1Sk(t)⊗̂(⊗∞
k=n+1Ik) and observe that Sn(t) is a contraction semi-

group on Bα⊗(ϕ)s for all finite n. Furthermore, its generator is the

closure of An =
∑n

k=1Ak, where Ak = Ak⊗̂(⊗∞
i 	=kIi). If n and m are

arbitrary, then

[Sn(t)− Sm(t)]ϕ =

∫ 1

0

d

dλ
{Sn[λt]Sm[(1− λ)t]}ϕdλ

= t

∫ 1

0
Sn[λt]Sm[(1− λ)t] [An −Am]ϕdλ,

where we have used the fact that if two semigroups commute, then
their corresponding generators also commute. It follows that:

‖[Sn(t)− Sm(t)]ϕ‖ � t ‖[An −Am]ϕ‖ .
Since ϕ = ⊗∞

k=1ϕk is a strong convergence vector for the family
{Ak}, it follows that s - limn→∞ Sn(t) = S(t) exists on a dense set
in Bα⊗(ϕ)s. As ‖S(t)‖ � limn→∞ ‖Sn(t)‖ < ∞, we see that S(t) is
bounded. To see that it must be a contraction, choose n so large that
‖[Sn(t)− S(t)]ϕ‖⊗ < ε ‖ϕ‖⊗. It follows that

‖S(t)ϕ‖⊗ � ‖Sn(t)ϕ‖⊗ + ‖[Sn(t)− S(t)]ϕ‖⊗ < ‖ϕ‖⊗ (1 + ε).

Thus, S(t) is a contraction operator on Bα⊗(ϕ)s. It is easy to check
that it is a C0-semigroup.

Now suppose that S(t) = ⊗̂∞
k=1Sk(t) is a strongly continuous con-

traction semigroup which is reduced on Bα⊗(ϕ)s. It follows that the
generator A of S(t) is m-dissipative, and hence defined on a dense
domain D(A) in Bα⊗(ϕ)s with S′(t)ψ = S(t)Aψ = AS(t)ψ for all ψ ∈
D(A). Since any such ψ is of the form ψ =

∑∞
l=1 ψ

l =
∑∞

l=1⊗∞
k=1ψ

l
k,

where ψl = ⊗∞
k=1ψ

l
k is in D(A). A simple computation shows that

Aψl =
∑∞

k=1Akψ
l, so that any ψl is a strong convergence vector for

the family {Ak}. �
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It is easy to see that, in the second part of the theorem, we cannot
require that ϕ = ⊗∞

k=1ϕk itself be a strong convergence vector for the
family {Ak} since it need not be in the domain of A. For example,
ϕ1 /∈ D(A1), while ϕk ∈ D(Ak), k 	= 1.

Example 6.53. Let Ai be the generator of a C0-contraction semi-
group Ti(t) on C0[Xi] for each i ∈ I, and assume that Ti(t) has the
representation:

Ti(t)ϕi(x) =

∫
Xi

Ki[x, t;y, 0]ϕi(y)dmi(y).

Where mi is an associated measure and Ki[x, t; z, s] is a kernel func-
tion which satisfies∫

Xi

Ki[x, t; z, s]Ki[z, s;y, 0]dmi(z) = Ki[x, t+ s;y, 0].

Let ϕi ∈ ker{Ai}, with ‖ϕi‖Xi
= 1 for each i ∈ I, and note that

ϕi ∈ ker{Ai} ⇒ Ti(t)ϕi = ϕi. With ϕ = ⊗i∈Iϕi, construct C
λ⊗[ϕ]s. It

follows that, for any ψ =
∑m

j=1⊗i∈Iψ
j
i with ψj

i ∈ D(Ai) and ψj
i = ϕi

for all but a finite number of i for each j, we have that the operator

Anψ =
∑n

k=1
Akψ =

∑n

k=1

∑m

j=1
Akψ

j
k ⊗i 	=k (⊗i∈Iψ

j
i )

is finite and well defined on a dense set D in C
λ⊗[ϕ]s and hence has a

closure, which we also denote by An.

From Theorems 6.33 and 6.52, we have:

Theorem 6.54. For each n, An is the generator of a C0-contraction
semigroup Tn(t) on C

λ⊗[ϕ]s and

(1) s − limn→∞An = A has a closure which generates a C0-
contraction semigroup T(t),

(2) s− limn→∞Tn(t) = T(t),

(3) for all F (x) ∈ C0[X],

T(t)F (x) =

∫
X
K[x, t ; Dy, 0]F (y),

where x = (x1, x2, · · · ), y = (y1, y2, · · · ), and

K [x, t : Dy, 0] =
∞⊗
i=1

Ki [xi, t : yi, 0] dmi (yi) .
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Example 6.55. Let {mi} be a family of probability measures on RI ,
and let m be the induced version of the family on R

∞
I . Let φi =

aixi ∈ Lp[RI ,mi], with 0 <
∏

i∈I |ai| < ∞, ‖φi‖pRI
= 1 and construct

L
Δp

⊗ [φ]s ∼= Lp[R∞
I ,m]. Let {δi(xi)} be a family of functions such that∑∞

i=1 ‖aiδi‖p < ∞ and define Ai =
1
2σii(xi)

∂2

∂x2
i
− δi(xi)

∂
∂xi

, where 0 <

σii(xi). Since ∂φi

∂xi
= Diφi = ai and Δiφi =

∂2φi

∂x2
i
= 0, it is easy to see

that φi ∈ D(Ai) for each i. It follows that φ = ⊗∞
i=1φi ∈ Lp[R∞

I ,m] is a
strong convergence vector for the family {Ai} and a strong convergence
product vector for the family {Di}.
Theorem 6.56. With the conventions as above:

(1) The closure of the operator A =
∑∞

i=1[
1
2σii(xi)

∂2

∂x2
i
−δi(xi)

∂
∂xi

]

is a densely defined generator of a contraction semigroup on
Lp[R∞

I ,m].

(2) The closure of D = ∂∞
∂x1∂x2··· is a densely defined linear oper-

ator on Lp[R∞
I ,m].

Remark 6.57. Theorem 6.56 can easily be shown to apply to any
Banach space with an S-basis, with minor changes. Compare this
with Theorem 2.102 of Chap. 2.

Discussion

The following special cases have appeared in the literature:

(1) If, in our definition of A, we set δ(xi) = 0 and σii(xi) = 2,
we get the natural infinite dimensional Laplacian:

A = Δ∞ =
∑∞

i=1
∂2
/
∂x2i .

(2) If δ(xi) = −bixi and σii(xi) = 1, we get the nonterminating
diffusion generator in infinitely many variables (also known
as the Ornstein–Uhlenbeck operator):

A = 1
2Δ∞ −Bx · ∇∞ = 1

2

∑∞
i=1

∂2
/
∂x2i −

∑∞
i=1

bixi∂/∂xi.

(3) If δ(xi) =
−xi
c2 and σii(xi) = 2, we get the infinite dimensional

Laplacian of Umemura [UM]:

A =
∞∑
i=1

(
∂2

∂x2i
− xi

c2
∂

∂xi

)
.

Berezanskii and Kondratyev [BK, pp. 520–521] have also discussed op-
erators analogous to (2) and (3).
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Open Problem

In this section, we identify an interesting problem that we believe is
worthy of further study.

From our definition of Δ:

Δ =
{
{φν} | 0 	= ‖⊗ν∈Iφν‖H2⊗

, &
∑

ν∈I |1− ‖φν‖B| < ∞
}
,

we see that every nonzero basic vector in Bα⊗ is nonzero in H2⊗. This
raises an important question, but we first need a little background.

Recall that
(
L1[Xi]

)∗∗
= M[Xi], where M[Xi] is the set of

bounded, regular, complex-valued measures on Xi that are absolutely
continuous with respect to mi (see below). We define the (total)
variation of μ in M[Xi] by:

|μ| (Xi) = sup
ess. sup |h(x)|�1

∣∣∣∣
∫
Xi

h(x)dμ(x)

∣∣∣∣ .
The sup is over h ∈ L∞[Xi], and | · | is the induced norm on M[Xi].
Since M[Xi] is a separable Banach space, construct H1

i ⊂ M[Xi]
⊂ H2

i .

Definition 6.58. If μ, μ′ are any two measures in M:

(1) We say that μ′ is singular with respect to μ and write it as
μ′⊥μ if, for each ε > 0, there exists a set Ω ⊂ Xi such that
μ′(Ω) < ε and μ(Xi) \Ω) < ε.

(2) We say that μ′ is absolutely continuous with respect to μ
and write it as μ′ � μ if, for each set Ω ⊂ Xi such that
μ(Ω) = 0, ⇒ μ′(Ω) = 0.

(3) If μ′ � μ and μ � μ′, we say that μ and μ′ are equivalent
and write it as μ′ ≈ μ.

If we define the square root of a complex function using the prin-
cipal branch, in the third case, by the Radon–Nikodym theorem there
exist (unique) measurable complex-valued functions p′(x), p(x) such
that p′(x) = dμ′(x)/dμ(x)c, and p(x) = dμ(x)/dμ′(x)c, where ac is the
complex conjugate of a. If we set

Hi(μ, μ
′) =

∫
Xi

√
dμ(x)

√
dμ′(x)c =

∫
Xi

√(
dμ(x)

/
dμ′(x)c

)
dμ′(x)c

=

∫
Xi

√(
dμ′(x)c

/
dμ(x)

)
dμ(x) =

∫
Xi

√
(dμ(x)/dλ)

(
dμ′(x)c

/
dλ
)
dλ,
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we obtain a complex version of the Hellinger integral, which defines
a complex inner product, where λ is any positive measure with μ �
λ and μ′ � λ (for example, λ = mi ∨ 1

2 |μ+ μ′|). In this case,
Hi(μ, μ

′)c = Hi(μ
′, μ) and μ′ ≈ μ ⇒ Hi (μ, μ

′) 	= 0. It is easy to

see that Hi(μ, μ) � ([|μ|]1/2)2(Xi) = ‖μ‖i, so, without loss, we can
assume that Hi(μ, μ

′) = (μ, μ′)2i is the inner product for our Hilbert
space H2i.

If γ is the natural tensor norm for the space of measures, so that
M[Xi] ⊗̂γ M[Xj ] = M[Xi ×Xj ], we can construct ⊗̂γ

i∈N
Mi = Mγ

⊗ so

that H1⊗ ⊂ Mγ
⊗ ⊂ H2⊗. For each λi, μi ∈ Mi, let λ∗

i , μ∗
i be the

Steadman duality maps, where 〈μi, λ
∗
i 〉i = (μi, λi)2i

(
‖λi‖2M

/
‖λi‖2H2

)
and 〈λi, μ

∗
i 〉i = (λi, μi)2i

(
‖μi‖2M

/
‖μi‖2H2

)
. We now have the following

problem:

(I) Is it true that for μ = ⊗i∈Nμi, λ = ⊗i∈Nλi in Mγ
⊗ with

μi ≈ λi for each i ∈ N, we have that μ ≡s λ ⇔ μ ≈ λ (so
that μ ∈ Mγ

⊗(λ)s) and μ⊥λ ⇔ μ /∈ Mγ
⊗(λ)s?

von Neumann [VN2] first mentioned this problem, in a restricted
sense, in relation to the decomposition ofH2⊗ into orthogonal subspaces
and the theory of probability measures on infinite product spaces.
(Note that his incomplete direct product is our partial tensor prod-
uct.) He stated that: “Another application of our theory could be
made to the theory of measures in infinite product spaces, which is
the basis for the modern theory of probabilities. Here a certain incom-
plete direct product of H2⊗ is fundamental.”

Ten years later, Kakutani [KA], in Chap. 5, published his now fa-
mous paper on the equivalence and orthogonality of infinite product
measures. In the second paragraph of the introduction to his paper,
Kakutani states: “In particular, the introduction of the inner product
and isometric embedding of M(Ω,B,m) (set of all probability mea-
sures on (Ω,B,m)) into a general Euclidean space (Hilbert space),
as well as the indication of the relationship of this paper with earlier
works of E. Hellinger, are due to Professor J. von Neumann.”

The space M(Ω,B,m) is not a Banach space, but each element
has norm 1 in the space of measures and the embedding Hilbert space.
In our case:

H2
⊗ (μ) ⊃ Mγ

⊗ (μ) ⊃ Mγ
⊗ (μ) .
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If Mγ
⊗ (μ) contains an orthonormal basis for H2⊗ (μ), for every μ, we

would have a positive answer to (I).

If the answer to (I) is true, this would explain the appearance of
this phenomenon in general and would provide insight into the causes
for the failure of certain expected/desired properties of (probability)
measures on infinite dimensional spaces. These failures could then be
directly linked to the breaking up of the infinite tensor product spaces
into orthogonal subspaces as described by Theorem 6.20.
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Chapter 7

The Feynman Operator
Calculus

Introduction

In response to the importance of time-ordering in relating the Feynman
and Schwinger–Tomonaga theories, Segal [SG], in Chap. 6, suggested
that the provision of (real) mathematical meaning for time-ordering is
one of the major problems in the foundations for QED.

A number of investigators have attempted to solve this problem
using (formal methods of) functional analysis and operator algebras.
Miranker and Weiss [MW] showed how the ordering process could be
done (in a restricted manner) using the theory of Banach algebras.
Nelson [N] also used Banach algebras to develop a theory of “oper-
ants” as an alternate (formal) approach. Araki [AK], motivated by
the work of Fujiwara [FW], used yet another formal approach to the
problem. Other workers include Maslov [M, in Chap. 8], who used the
idea of a T-product as an approach to formally order the operators
and developed an operational theory. An idea that is closest to that
of Feynman and the one discussed in this chapter was developed by
Johnson and Lapidus in a series of papers. Their work can be found
in the recent book on the subject [JL] in Chap. 8.
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A major difficulty with each approach (other than [JL] in Chap. 8)
is the problem of disentanglement, the method proposed by Feynman
to relate his results to conventional analysis. Johnson and Lapidus
develop a general ordering approach via a probability measure on the
parameter space. This approach is also constructive and offers a dif-
ferent perspective on possible frameworks for disentanglement in the
Feynman program.

Summary. In this chapter, we first explain what the Feynman–
Fujiwara notion of time-ordering means in operational terms. Then
we construct the time-ordered integral and extend a few important
theorems of semigroup theory to the time-ordered setting.

A general perturbation theory is developed and use it to prove that
all theories generated by semigroups are asymptotic in the operator-
valued sense of Poincaré. As an application, we prove Dyson’s con-
jecture that the perturbation expansion of QED is asymptotic. This
also enables us to develop a general theory for the interaction repre-
sentation of relativistic quantum theory. We then provide a rigorous
development of the disentanglement method suggested by Feynman
and Fujiwara to relate his theory to the traditional approach. As an
application of this result, we prove that the Trotter–Kato theory is a
special case. Finally, we show that the theory can be reformulated as
a physically motivated sum over paths.

The operator algebra L#[H2⊗] of the last chapter allows us to give
a constructive definition of the formal idea of time-ordering, using the
natural order of the interval I = [a, b] ⊂ R. In particular, for one
operator A(t) ∈ L[H], A(t) ∈ L#[H2⊗] becomes:

A(t) =

(
⊗

b�s>t
Is

)
⊗A(t)⊗

(
⊗

t>s�a
Is

)
,

where Is is the identity operator at time s. It follows that the true
operator A(t) only acts at time t, while at all other times in [a, b], A(t)
is the identity operator. This is the exact implementation of Fujiwara’s
suggestion for the mathematical modeling of Feynman’s formal idea.

If we have a family {A(t), t ∈ I} ⊂ L(H), then the operators
{A(t), t ∈ I} ⊂ L#(H2⊗) commute when acting at different times. For
example, if t > τ , then
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A(t)A(τ) =

(
⊗

b�s>t
Is

)
⊗A(t)⊗

(
⊗

t>s�τ
Is

)
⊗A(τ) ⊗

(
⊗

τ>s�a
Is

)
= A(τ)A(t).

Thus, our approach is constructive in that we use a sheet of unit
operators at every point except at time t, where the true operator is
placed, so that operators acting at different times actually commute.
A major purpose of this chapter is to show that, using the Feynman–
Dyson space, FD2

⊗, we can lift all of the analysis and operator theory
to the time-ordered setting.

In Sect. 7.2 we prove our fundamental theorem showing the
existence of time-ordered integrals. This allows us to extend basic
semigroup theory to the time-ordered setting, providing, among other
results, a time-ordered version of the Hille–Yosida Theorem. In
Sect. 7.3 we construct time-ordered evolution operators and prove
that they have all the expected properties.

In Sect. 7.4 we provide a precise definition of the term “asymptotic
in the sense of Poincaré” for operator-valued functions. We develop a
general perturbation theory for time-ordered evolution equations and
prove that all theories generated by evolution operators are asymp-
totic in the operator-valued sense of Poincaré. It is now known from
experiment that Hagg’s Theorem on the nonexistence of the interac-
tion representation in sharp time does not apply, since there is some
time overlap of wave packets. As an application, we give a general-
ization of the Dyson expansion and provide a general theory for the
interaction representation used in relativistic quantum theory, when
any time overlap of wave packets is allowed.

7.1. Time-Ordered Operators

7.1.1. Integrals and Generation Theorems. The following nota-
tion will be used at various points of this section, so we record the
meanings here for reference. (The t value referred to is in our fixed
interval I.)

(1) (e.f.o) means: “except for at most one t value”;

(2) (e.f.f) means: “except for an at most finite number of t
values”; and

(3) (e.f.c) means: “except for an at most countable number of t
values.”
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We assume that, for each t ∈ I, A(t) generates a C0-semigroup
on H. Define St(τ) by:

St(τ) = ⊗̂s∈[b,t)Is ⊗ (exp{τA(t)})⊗ (⊗s∈(t,a]Is
)
. (7.1)

We want to briefly investigate the relationship between St(τ) =
exp{τA(t)} and St(τ) = exp{τA(t)}. By Theorem 6.33 of Chap. 6,
we know that St(τ) is a C0-semigroup for t ∈ I if and only if St(τ) is
one also. For additional insight, we need a dense core for the family
{A(t) |t ∈ I}, so let D̄ = ⊗

t∈I
D(A(t)) and set D0 = D̄∩FD2

⊗. Since D̄

is dense in H2⊗, it follows that D0 is dense in FD2
⊗. Using our basis, if

Φ,Ψ ∈ D0, Φ =
∑

i

∑
F (f) a

i
F (f)E

i
F (f), Ψ =

∑
i

∑
F (g) b

i
F (g)E

i
F (g); then,

as exp{τA(t)} is invariant on FDi
2 for each i, we have

〈exp{τA(t)}Φ,Ψ〉 =
∑

i

∑
F (f)

∑
F (g)

aiF (f)b̄
i
F (g)

〈
exp{τA(t)}Ei

F (f), E
i
F (g)

〉
,

and〈
exp{τA(t)}Ei

F (f), E
i
F (g)

〉
=
∏
s�=t

〈
eis,f(s), e

i
s,g(s)

〉〈
exp{τA(t)}eit,f(t), eit,g(t)

〉

=
〈
exp{τA(t)}eit,f(t), eit,f(t)

〉
(e.f.o),

=
〈
exp{τA(t)}ei, ei

〉
(e.f.f.) implies

〈exp{τA(t)}Φ,Ψ〉 =
∑

i

∑
F (f)

aiF (f)b̄
i
F (f)

〈
exp{τA(t)}ei, ei〉(e.f.c).

Thus, by working on FD2
⊗, we obtain a simple direct relationship

between the conventional and time-ordered version of a semigroup.

We now consider the general case. Let Az(t) = zA(t)R(z,A(t)),
where R(z,A(t)) is the resolvent of A(t).

By Theorem 5.23 of Chap. 5 (Yosida approximator), Az(t) gen-
erates a uniformly bounded semigroup and lim

z→∞Az(t)φ = A(t)φ for

φ ∈ D(A(t)).

Theorem 7.1. The operator Az(t) satisfies

(1) A(t)Az(t)Φ = Āz(t)A(t)Φ, Φ ∈ D0, Az(t) generates a uni-
formly bounded contraction semigroup on FD2

⊗ for each t,
and lim

z→∞Az(t)Φ = A(t)Φ, Φ ∈ D0.

(2) For each n, each set τ1, · · · , τn ∈ I and each set a1, · · · , an,
ai � 0;

∑n
i=1 aiA(τi) generates a C0-semigroup on FD2

⊗.
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Proof. The proof of (1) follows from properties of the Yosida approx-
imator and the relationship between A(t) and A(t). It is an easy
computation to check that (2) follows from Theorem 6.33 of Chap. 6,
with S(t) =

∏n
i=1 Sτi(ait). �

We now assume that A(t), t ∈ I, is weakly continuous and that
D(A(t)) is dense in H. It follows that this family has a weak KH-

integral Q[a, b] =
∫ b
a A(t)dt ∈ C(H) (the closed densely defined linear

operators on H). Furthermore, it is not difficult to see that Az(t), t ∈
I, is also weakly continuous and hence the family {Az(t) | t ∈ I } ⊂
L(H) has a weak HK-integral Qz[a, b] =

∫ b
a Az(t)dt ∈ L(H).

Let Pn be a sequence of HK-partitions for δn(t) : [a, b] → (0,∞)
with δn+1(t) ≤ δn(t) and limn→∞ δn(t) = 0, so that the mesh
μn = μ(Pn) → 0 as n → ∞. Set Qz,n =

∑n
l=1Az(t̄l)Δtl, Qz,m =∑m

q=1Az(s̄q)Δsq; Qz,n =
∑n

l=1Az(t̄l)Δtl, Qz,m =
∑m

q=1Az(s̄q)Δsq;
and ΔQz = Qz,n − Qz,m, ΔQz = Qz,n −Qz,m. Let Φ,Ψ ∈ D0; Φ =∑J

i Φ
i =

∑J
i

∑K
F (f) a

i
F (f)E

i
F (f), Ψ =

∑L
i Ψi =

∑L
i

∑M
F (g) b

i
F (g)E

i
F (g).

Then we have:

Theorem 7.2 (Fundamental Theorem for Time-Ordered Integrals).

(1) The family {Az(t) | t ∈ I } has a weak KH-integral and

〈ΔQzΦ,Ψ〉 =
∑J

i

∑K

F (f)
aiF (f)b̄

i
F (f)

〈
ΔQze

i, ei
〉
(e.f.c). (7.2)

(2) If, in addition, for each i
n∑
k,

Δtk
∥∥Az(sk)e

i − 〈
Az(sk)e

i, ei
〉
ei
∥∥2 � Mμδ−1

n , (7.3)

where M is a constant, μn is the mesh of Pn, and 0 <
δ < 1, then the family {Az(t) | t ∈ I } has a strong integral,

Qz[t, a] =
∫ t
a Az(s)ds.

(3) The linear operator Qz[t, a] generates a uniformly continuous
C0-contraction semigroup.

Remark 7.3. In general, the family {Az(t) | t ∈ I } need not have a
Bochner or Pettis integral. (However, if it has one, our condition (7.3)
is automatically satisfied.)

Proof. To prove (1), note that

〈ΔQzΦ,Ψ〉 =
∑

i

∑
F (f)

∑
F (g)

aiF (f)b̄
i
F (g)

〈
ΔQzE

i
F (f), E

i
F (g)

〉
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(we omit the upper limit). Now

〈
ΔQzE

i
F (f), E

i
F (g)

〉
=

n∑
l=1

Δtl
∏
t �=t̄l

〈
eit,f(t), e

i
t,g(t)

〉〈
Az(t̄l)e

i
t̄l,f(t̄l)

, eit̄l,g(t̄l)

〉

−
m∑

q=1

Δsq
∏
t �=s̄q

〈
eit,f(t), e

i
t,g(t)

〉〈
Az(s̄q)e

i
s̄q,f(s̄q), e

i
s̄q,g(s̄q)

〉

=

n∑
l=1

Δtl

〈
Az(t̄l)e

i
t̄l,f(t̄l)

, eit̄l,f(t̄l)

〉

−
m∑

q=1

Δsq

〈
Az(s̄q)e

i
s̄q,f(s̄q), e

i
s̄q,f(s̄q)

〉
=
〈
ΔQze

i, ei
〉

(e.f.f).

This gives (7.2) and shows that the family {Az(t) | t ∈ I } has a weak
HK-integral if and only if the family {Az(t) | t ∈ I } has one.

To see that condition (7.3) makes Qz a strong limit, let Φ ∈ D0.
Then

〈Qz,nΦ,Qz,nΦ〉 =
J∑
i

K∑
F (f),F (g)

aiF (f)ā
i
F (g)

(
n∑

k=1

n∑
m=1

ΔtkΔtm

〈
Az(sk)E

i
F (f), Az(sm)Ei

F (g)

〉)

=

J∑
i

K∑
F (f)

∣∣∣aiF (f)

∣∣∣2

×
⎛
⎝ n∑

k �=m

ΔtkΔtm

〈
Az(sk)e

i
skf(sk), e

i
skf(sk)

〉〈
eismf(sm), Az(sm)eismf(sm)

〉⎞⎠

+

J∑
i

K∑
F (f)

∣∣∣aiF (f)

∣∣∣2
⎛
⎝ n∑

k �=m

(Δtk)
2
〈
Az(sk)e

i
skf(sk), Az(sk)e

i
skf(sk)

〉⎞⎠ .

This can be rewritten as

‖Qz,nΦ‖2⊗ =
∑J

i

∑K

F (f)

∣∣∣aiF (f)

∣∣∣2 {∣∣〈Qz,ne
i, ei

〉∣∣2
+
∑n

k=1
(Δtk)

2
(∥∥Az(sk)e

i
∥∥2 − ∣∣〈Az(sk)e

i, ei
〉∣∣2)} (e.f.c).

(7.4)

First note that:∥∥Az(sk)e
i
∥∥2 − ∣∣〈Az(sk)e

i, ei
〉∣∣2 = ∥∥Az(sk)e

i − 〈
Az(sk)e

i, ei
〉
ei
∥∥2 ,
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so that the last term in (7.4) can be written as∑n

k=1
(Δtk)

2
(∥∥Az(sk)e

i
∥∥2 − ∣∣〈Az(sk)e

i, ei
〉∣∣2)

=
∑n

k=1
(Δtk)

2
∥∥Az(sk)e

i − 〈
Az(sk)e

i, ei
〉
ei
∥∥2 � μδ

nM.

We can now use the above result in (7.4) to get

‖Qz,nΦ‖2⊗ �
∑J

i

∑K

F (f)

∣∣∣aiF (f)

∣∣∣2 ∣∣〈Qz,ne
i, ei

〉∣∣2 + μδ
nM (e.f.c).

Thus, Qz,n[t, a] converges strongly to Qz[t, a] on FD2
⊗. To show that

Qz[t, a] generates an uniformly continuous contraction semigroup, it
suffices to show that Qz[t, a] is dissipative. For any Φ in FD2

⊗,

〈Qz[t, a]Φ,Φ〉 =
J∑
i

K∑
F (f)

∣∣∣aiF (f)

∣∣∣2 〈Qze
i, ei

〉
(e.f.c)

and, for each n, we have

Re
〈
Qz[t, a]e

i, ei
〉
= Re

〈
Qz,n[t, a]e

i, ei
〉
+Re

〈
[Qz[t, a]−Qz,n[t, a]] e

i, ei
〉

� Re
〈
[Qz[t, a]−Qz,n[t, a]] e

i, ei
〉
,

since Qz,n[t, a] is dissipative. Letting n → ∞ implies that Re〈
Qz[t, a]e

i, ei
〉

� 0, so that Re 〈Qz[t, a]Φ,Φ〉 � 0. Thus, Qz[t, a]

is a bounded dissipative linear operator on FD2
⊗, which completes our

proof. �

We can also prove Theorem 7.2 for the family {A(t) | t ∈ I }. The
same proof goes through, but now we restrict to D0 = ⊗

t∈I
D(A(t)) ∩

FD2
⊗. In this case (7.3) becomes:

n∑
k=1

Δtk
∥∥A(sk)ei − 〈

A(sk)e
i, ei

〉
ei
∥∥2 � Mμδ−1

n . (7.5)

From Eq. (7.4), we have the following important result: (set
K∑

F (f)

∣∣∣aiF (f)

∣∣∣2 = ∣∣bi∣∣2)
‖Qz[t, a]Φ‖2⊗ =

J∑
i

∣∣bi∣∣2 ∣∣〈Qze
i, ei

〉∣∣2 (e.f.c). (7.6)

The representation (7.6) makes it easy to prove the next theorem.
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Theorem 7.4. With the conditions of Theorem 7.2, we have:

(1) Qz[t, s] +Qz[s, a] = Qz[t, a] (e.f.c),

(2) s - lim
h→0

Qz [t+h,a]−Qz[t,a]
h = s - lim

h→0

Qz [t+h,t]
h = Az(t) (e.f.c),

(3) s - lim
h→0

Qz[t+ h, t] = 0 (a.f.c),

(4) s - lim
h→0

exp {τQz[t+ h, t]} = I⊗ (e.f.c),τ � 0.

Proof. In each case, it suffices to prove the result for Φ ∈ D0. To
prove (1), use

‖[Qz[t, s] +Qz[s, a]] Φ‖2⊗ =
∑J

i

∣∣bi∣∣2 ∣∣〈[Qz[t, s] +Qz[s, a]] e
i, ei

〉∣∣2
=
∑J

i

∣∣bi∣∣2 ∣∣〈Qz[t, a]e
i, ei

〉∣∣2 = ‖Qz[t, a]Φ‖2⊗ (e.f.c).

To prove (2), use (1) to get that Qz[t + h, a] −Qz[t, a] = Qz[t+ h, t]
(e.f.c.), so that

lim
h→0

∥∥∥∥Qz[t+ h, t]

h
Φ

∥∥∥∥
2

⊗

=

J∑
i

∣∣bi∣∣2 lim
h→0

∣∣∣∣
〈
Qz[t+ h, t]

h
ei, ei

〉∣∣∣∣
2

= ‖Az(t)Φ‖2⊗ (e.f.c.).

The proof of (3) follows from (2) and the proof of (4) follows from (3).
�

The results of the previous theorem are expected if Qz[t, a] is an
integral in the conventional sense. The important point is that a weak
integral on the base space along with (7.3) gives a strong integral on
FD2

⊗ (note that, by (2) of the last theorem, we also get strong dif-
ferentiability). This clearly shows that our constructive approach to
time-ordering has more to offer than providing a representation space
to allow time to act as a place-keeper for operators in a product. It
should be observed that, in all results up to now, we have only used
the assumption that the family A(t), t ∈ I is weakly continuous, gen-
erates a contraction semigroup and satisfies Eq. (7.5). In what follows,
we shall find it convenient to use the fact that each A(t) generates
a C0-contraction semigroup if, for each t, both A(t) and A∗(t) are
dissipative. (This is an easier condition to check in practice.)
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Theorem 7.5. With the above assumptions, we have that lim
z→∞

〈Qz[t, a]φ,ψ〉 = 〈Q[t, a]φ,ψ〉 exists for all φ ∈ D[Q], ψ ∈ D[Q∗].
Furthermore:

(1) the operator Q[t, a] generates a C0-contraction semigroup
on H,

(2) for Φ ∈ D0,

lim
z→∞Qz[t, a]Φ = Q[t, a]Φ,

and

(3) the operator Q[t, a] generates a C0-contraction semigroup
on FD2

⊗,

(4) Q[t, s]Φ +Q[s, a]Φ = Q[t, a]Φ (e.f.c.),

(5)

lim
h→0

[(Q[t + h, a]−Q[t, a])/h] Φ = lim
h→0

[(Q[t + h, t])/h] Φ = A(t)Φ (e.f.c.),

(6) lim
h→0

Q[t+ h, t]Φ = 0 (e.f.c.), and

(7) lim
h→0

exp {τQ[t+ h, t]}Φ = Φ (e.f.c.),τ � 0.

Proof. Since Az(t), A(t) are weakly continuous and Az(t)
s−→ A(t) for

each t ∈ I, given ε > 0 we can choose Z such that, if z > Z, then

sup
s∈[a,b]

|〈[A(s)−Az(s)]ϕ , ψ〉| < ε/3(b− a).

By uniform (weak) continuity, if s, s′ ∈ [a, b] we can also choose η such
that, if |s− s′| < η,

sup
z>0

∣∣〈[Az(s)−Az(s
′)
]
ϕ , ψ

〉∣∣ < ε/3(b− a)

and ∣∣〈[A(s)−A(s′)
]
ϕ , ψ

〉∣∣ < ε/3(b− a).

Now choose δ(t) : [a, b] → (0,∞) so that, for any HK-partition P
for δ, we have that μn < η, where μn is the mesh of the partition. If
Qz,n =

∑n
j=1Az(τj)Δtj and Qn =

∑n
j=1A(τj)Δtj, we have
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|〈[Qz[t, a]−Q[t, a]]ϕ , ψ〉| � |〈[Qn[t, a]−Q[t, a]]ϕ , ψ〉|
+ |〈[Qz,n[t, a]−Qz[t, a]]ϕ , ψ〉|+ |〈[Qn[t, a]−Qz,n[t, a]]ϕ , ψ〉|

�
∑n

j=1

∫ tj

tj−1

|〈[A(τj)−A(τ)]ϕ , ψ〉| dτ

+
∑n

j=1

∫ tj

tj−1

|〈[Az(τj)−Az(τ)]ϕ , ψ〉| dτ

+
∑n

j=1

∫ tj

tj−1

|〈[A(τj)−Az(τj)]ϕ , ψ〉| dτ <
ε

3
+

ε

3
+

ε

3
= ε.

This proves that lim
z→∞ 〈Qz[t, a]φ,ψ〉 = 〈Q[t, a]φ,ψ〉. To prove (1), first

note that Q[t, a] is closable and use

Re 〈Q[t, a]φ, φ〉 = Re 〈Qz[t, a]φ, φ〉+Re 〈[Q[t, a]−Qz[t, a]]φ, φ〉
� Re 〈[Q[t, a]−Qz[t, a]]φ, φ〉 ,

and let z → ∞ to show that Q[t, a] is dissipative. Then do likewise
for 〈φ,Q∗[t, a]φ〉 to show that the same is true for Q∗[t, a] to complete
the proof. It is important to note that although Q[t, a] generates a
contraction semigroup on H, exp{Q[t, a]} does not solve the original
initial-value problem [see Eq. (7.7) below].

To prove (2), use (7.6) in the form

‖[Qz [t, a]−Qz′ [t, a]] Φ‖2⊗ =

J∑
i

∣∣∣bi∣∣∣2 ∣∣∣〈[Qz[t, a]−Qz′ [t, a]] ei, ei
〉∣∣∣2 . (7.7)

This proves that Qz[t, a]
s−→ Q[t, a]. Since Q[t, a] is densely defined, it

is closable. The same method as above shows that it is m-dissipative.
Proofs of the other results follow directly from the same results of
Theorem 7.4. �

In closing this section, we note that all the results go through for
FDα

⊗. The clearest way to see this is to extend the family A(t), t ∈ I,

to FD2
⊗, use the theorems of this section, and restrict back to FDα

⊗.

7.1.2. General Case. We now relax the contraction condition and
assume that A(t), t ∈ I generates a C0-semigroup onH. We can always
shift the spectrum (if necessary) so that ‖exp{τA(t)}‖ � M(t). We
assume that supJ

∏
i∈J ‖exp{τA(ti)}‖ � M , where the sup is over all

finite subsets J ⊂ I. We remark that if we renorm H with an equiva-
lent norm; for each t, we can reduce the general case to contractions.
(However, the effort does not appear to merit the additional work.)
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Theorem 7.6. Suppose that A(t), t ∈ I, generates a C0-semigroup,
satisfies (7.3) and has a weak HK-integral, Q[t, a], on a dense set
D in H. Then the family A(t), t ∈ I has a strong HK-integral,
Q[t, a], which generates a C0-semigroup on FD2

⊗ (for each t ∈ I) and
‖exp{Q[t, a]}‖⊗ � M .

Proof. It is clear from part (2) of Theorem 7.5 that Qn[t, a] =∑n
i=1A(τi)Δti generates a C0-semigroup on FD2

⊗ and
‖exp{Qn[t, a]}‖⊗ � M . If Φ ∈ D0, let Pm, Pn be arbitrary
HK-partitions for δm, δn (of order m and n respectively) and set
δ(s) = δm(s) ∧ δn(s). Since any HK-partition for δ is one for δm and
δn, we have that

‖[exp{τQn[t, a]} − exp{τQm[t, a]}] Φ‖⊗
=

∥∥∥∥
∫ τ

0

d

ds
[exp{(τ − s)Qn[t, a]}exp{sQm[t, a]}]Φds

∥∥∥∥
⊗

�
∫ τ

0

‖[exp{(τ − s)Qn[t, a]} (Qn[t, a]−Qm[t, a]) exp{sQm[t, a]}Φ]‖⊗

� M

∫ τ

0

‖(Qn[t, a]−Qm[t, a]) Φ‖⊗ds
� Mτ ‖[Qn[t, a]−Q[t, a]] Φ‖⊗ +Mτ ‖[Q[t, a]−Qm[t, a]] Φ‖⊗ .

The existence of the weak HK-integral, Q[t, a], on H satisfying

Eq. (7.3) implies that Qn[t, a]
s−→ Q[t, a], so that exp{τQn[t, a]}Φ

converges as n → ∞ for each fixed t ∈ I; and the convergence is
uniform on bounded τ intervals. As ‖exp{Qn[t, a]}‖⊗ � M , we have

lim
n→∞ exp{τQn[t, a]}Φ = St(τ)Φ, Φ ∈ FD2

⊗.

The limit is again uniform on bounded τ intervals. It is easy to see
that the limit St(τ) satisfies the semigroup property, St(0) = I, and
‖St(τ)‖⊗ � M . Furthermore, as the uniform limit of continuous func-
tions, we see that τ → St(τ)Φ is continuous for τ � 0. We are done
if we show that Q[t, a] is the generator of St(τ). For Φ ∈ D0, we have
that

St(τ)Φ− Φ = lim
n→∞ exp{τQn[t, a]}Φ − Φ

= lim
n→∞

∫ τ

0
exp{sQn[t, a]}Qn[t, a]Φds =

∫ τ

0
St(τ)Q[t, a]Φds.

Our result follows from the uniqueness of the generator, so that St(τ) =
exp{τQ[t, a]}. �
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The next result is the time-ordered version of the Hille–Yosida
Theorem. We assume that the family A(t), t ∈ I is closed and densely
defined.

Theorem 7.7. The family A(t), t ∈ I has a strong HK-integral,
Q[t, a], which generates a C0-contraction semigroup on FD2

⊗ if and
only if ρ(A(t)) ⊃ (0,∞), ‖R (λ : A(t))‖ < 1/λ for λ > 0; A(t), t ∈ I,
satisfies (7.3) and has a densely defined weak HK-integral Q[t, a] on H.

Proof. In the first direction, supposeQ[t, a] generates a C0-contraction

semigroup on FD2
⊗. Then Qn[t, a]Φ

s−→ Q[t, a]Φ for each Φ ∈ D0 and
each t ∈ I. Since Q[t, a] has a densely defined strong HK-integral,
it follows from (7.5) that Q[t, a] must have a densely defined weak
HK-integral. Since Qn[t, a] generates a C0-contraction semigroup
for each HK-partition of order n, it follows that A(t) must gener-
ate a C0-contraction semigroup for each t ∈ I. From Eq. (7.1) and
the discussion that follows, we see that A(t) must also generate a
C0-contraction semigroup for each t ∈ I. From the conventional
Hille–Yosida theorem, the resolvent condition follows.

In the reverse direction, the conventional Hille–Yosida theorem
along with the first part of Theorem 7.5 shows that Q[t, a] generates
a C0-contraction semigroup for each t ∈ I. From Theorem 7.6, we see
that for HK-partition of order n, Qn[t, a] generates a C0-contraction
semigroup. Furthermore, Qn[t, a]Φ → Q[t, a]Φ for each Φ ∈ D0 and
Q[t, a] generates a C0-contraction semigroup on FD2

⊗. �

The other generation theorems have a corresponding formulation
in terms of time-ordered integrals.

7.2. Time-Ordered Evolutions

As Q[t, a] and Qz[t, a] generate (uniformly bounded) C0-semigroups,
we can set U[t, a] = exp{Q[t, a]}, Uz [t, a] = exp{Qz[t, a]}. They are
C0-evolution operators and the following theorem generalizes a result
due to Hille and Phillips [HP].

Theorem 7.8. For each n, and Φ ∈ D
[
(Q[t, a])n+1

]
, we have: (w is

positive and Uw[t, a] = exp {wQ[t, a]})
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Uw[t, a]Φ =

⎧⎨
⎩I⊗ +

n∑
k=1

(wQ[t, a])
k

k!
+

1

n!

w∫
0

(w − ξ)nQ[t, a]n+1Uξ[t, a]dξ

⎫⎬
⎭Φ.

Proof. The proof is easy. Start with

[Uw
z [t, a]Φ− I⊗] Φ =

w∫
0

Qz[t, a]U
ξ
z [t, a]dξΦ

and use integration by parts to get that

[Uw
z [t, a]Φ − I⊗] Φ = wQz[t, a]Φ +

w∫
0

(w − ξ) [Qz[t, a]]
2Uξ

z[t, a]dξΦ.

It is clear how to get the nth term. Finally, let z → ∞ to get the
result. �

Theorem 7.9. If a < t < b,

(1) lim
z→∞Uz [t, a]Φ = U[t, a]Φ, Φ ∈ FD2

⊗.

(2)

∂

∂t
Uz[t, a]Φ = Az(t)Uz[t, a]Φ = Uz[t, a]Az(t)Φ,

with Φ ∈ FD2
⊗, and

(3)

∂

∂t
U[t, a]Φ = A(t)U[t, a]Φ = U[t, a]A(t)Φ, Φ ∈ D(Q[b, a]) ⊃ D0.

Proof. To prove (1), use the fact that Az(t) and A(t) commute, along
with

U[t, a]Φ−Uz[t, a]Φ =

∫ 1

0
(d/ds)

(
esQ[t,a]e(1−s)Qz [t,a]

)
Φds

=

∫ 1

0
s
(
esQ[t,a]e(1−s)Qz[t,a]

)
(Q[t, a]−Qz[t, a]) Φds,

so that

lim
z→0

‖U[t, a]Φ−Uz[t, a]Φ‖ � M lim
z→0

‖Q[t, a]Φ−Qz[t, a]Φ‖ = 0.

To prove (2), use

Uz[t+ h, a]−Uz[t, a] = Uz [t, a] (Uz [t+ h, t]− I) = (Uz[t+ h, t]− I)Uz [t, a],
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so that

(Uz [t+ h, a]−Uz[t, a])/h = Uz [t, a] [(Uz[t+ h, t]− I)/h] .

Now set Φt
z = Uz[t, a]Φ and use Theorem 7.8 with n = 1 and w = 1

to get:

Uz[t+ h, t]Φt
z =

⎧⎨
⎩I⊗ +Qz [t+ h, t] +

1∫
0

(1− ξ)Uξ
z[t+ h, t]Qz [t+ h, t]2dξ

⎫⎬
⎭Φt

z ,

so

(Uz[t+ h, t]− I)

h
Φt
z −Az(t)Φ

t
z =

Qz[t+ h, t]

h
Φt
z −Az(t)Φ

t
z

+

1∫
0

(1− ξ)Uξ
z [t+ h, t]

Qz[t+ h, t]

h

2

Φt
zdξ.

It follows that∥∥∥∥(Uz[t+ h, t]− I)

h
Φt
z −Az(t)Φ

t
z

∥∥∥∥
⊗
�
∥∥∥∥Qz[t+ h, t]

h
Φt
z −Az(t)Φ

t
z

∥∥∥∥
⊗

+
1

2

∥∥∥∥∥Qz[t+ h, t]

h

2

Φt
z

∥∥∥∥∥
⊗
.

The result now follows from Theorem 7.4, (2) and (3). To prove (3),
note that Az(t)Φ = A(t) {zR(z,A(t))}Φ = {zR(z,A(t))}A(t)Φ, so
that {zR(z,A(t))} commutes with U[t, a] and A(t). It is now easy to
show that

‖Az(t)Uz[t, a]Φ−Az′(t)Uz′ [t, a]Φ‖
� ‖Uz[t, a] (Az(t)−Az′(t))Φ‖+

∥∥z′R(z′,A(t)) [Uz [t, a]Φ−Uz′ [t, a]]A(t)Φ
∥∥

� M ‖(Az(t)−Az′(t))Φ‖+M ‖[Uz[t, a]Φ−Uz′ [t, a]]A(t)Φ‖ → 0, z, z′ → ∞,

so that, for Φ ∈ D(Q[b, a]),

Az(t)Uz[t, a]Φ → A(t)U[t, a]Φ =
∂

∂t
U[t, a]Φ.

�

Since, as noted earlier, exp{Q[t, a]} does not solve the initial-value
problem, we restate the last part of the last theorem to emphasize the
importance of this result, and the power of the constructive Feynman
theory.
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Theorem 7.10. If a < t < b,

∂

∂t
U[t, a]Φ = A(t)U[t, a]Φ = U[t, a]A(t)Φ, Φ ∈ D0 ⊂ D(Q[b, a]).

7.3. Perturbation Theory

In this section, we prove a few results without attempting to be exhaus-
tive. Because of Theorem 5.41, the general problem of perturbation
theory can always be reduced to that of the strong limit of the bounded
case.

Assume that, for each t ∈ I, A0(t) is the generator of a C0-
semigroup on H and that A1(t) is closed and densely defined. The
(generalized) sum of A0(t) and A1(t), in its various forms, whenever
it is defined (with dense domain), is denoted by A(t) = A0(t)⊕A1(t)
(see Kato [KA], and Pazy [PZ]). Let An

1 (t) = nA1(t)R(n, T1(t))
be the (generalized) Yosida approximator for A1(t), where T1(t) =

− [A∗
1(t)A1(t)]

1/2 and set An(t) = A0(t) + An
1 (t). The first result fol-

lows from Theorem 5.34.

Theorem 7.11. For each n, A0(t)+An
1 (t) (respectively A0(t)+An

1 (t))
is the generator of a C0-semigroup on H (respectively FD2

⊗) and:

(1) If, for each t ∈ I, A0(t) generates an analytic or contraction
C0-semigroup, then so does An(t) and An(t).

(2) If, for each t ∈ I, A(t) = A0(t) +A1(t) generates an analytic
or contraction C0-semigroup, then so does A(t) = A0(t) +
A1(t) and exp{τAn(t)} → exp{τA(t)} for τ � 0.

We now assume that A0(t) and A1(t) are weakly continuous gen-
erators of C0-semigroups for each t ∈ I, and that Eq. (7.3) is satisfied.
Then, with the same notation, we have:

Theorem 7.12. If, for each t ∈ I, A(t) = A0(t)⊕A1(t) generates an
analytic or contraction semigroup, then Q[t, a] generates an analytic
or contraction semigroup and exp{Qn[t, a]} → exp{Q[t, a]}.
Theorem 7.13. Suppose that A0(t) and A1(t) are weakly continuous
generators of C0-contraction semigroups for each t ∈ I with common
dense domains, satisfying Eq. (7.3). If Q0[t, a] and Q1[t, a] are the
corresponding time-ordered generators of contraction semigroups, then

Q[t, a] = Q0[t, a]⊕Q1[t, a] (a, s),

is the generator of a contraction semigroup on FD2
⊗.
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Proof. Let Qn,1[t, a] be the Yosida approximator for Q1[t, a]. It fol-
lows that,

Qn[t, a] = Q0[t, a] +Qn,1[t, a]

is the generator of a C0-contraction semigroup for each n. Further-
more, for any m, n ∈ N and Φ ∈ D0,

‖[exp{τQn[t, a]} − exp{τQm[t, a]}] Φ‖⊗
=

∥∥∥∥
∫ τ

0

d

ds
[exp{(τ − s)Qn[t, a]} exp{sQm[t, a]}]Φds

∥∥∥∥
⊗

≤
∫ τ

0
‖[exp{(τ − s)Qn[t, a]} exp{sQm[t, a]} (Qn[t, a]−Qm[t, a]) Φ]‖⊗

≤
∫ τ

0
‖(Qn[t, a]−Qm[t, a]) Φ‖⊗ds −→ 0, n →∞.

Thus, exp{τQn[t, a]}Φ converges as n → ∞ for each fixed t ∈ I;
and the convergence is uniform on bounded τ intervals. As
‖exp{Qn[t, a]}‖⊗ � 1, we have

lim
n→∞ exp{τQn[t, a]}Φ = St(τ)Φ, Φ ∈ FD2

⊗.

The limit is again uniform on bounded τ intervals. It is easy to see
that the limit St(τ) satisfies the semigroup property, St(0) = I, and
‖St(τ)‖⊗ � 1, so that St(τ) is a C0-contraction semigroup. Fur-
thermore, as the uniform limit of continuous functions, we see that
τ → St(τ)Φ is continuous for τ � 0. We are done if we show that
Q[t, a] is the generator of St(τ). For Φ ∈ D0, we have that

St(τ)Φ − Φ = lim
n→∞ exp{τQn[t, a]}Φ −Φ

= lim
n→∞

∫ τ

0
exp{sQn[t, a]}Qn[t, a]Φds =

∫ τ

0
St(τ)Q[t, a]Φds, (a.s).

Our result now follows from the uniqueness of the generator, so that
Q[t, a] generates a C0-contraction semigroup. �

7.4. Interaction Representation

Within the framework of axiomatic field theory, an important theorem
of Haag shows that the interaction representation in sharp time does
not exist in a rigorous sense (see [HA]). Haag’s theorem shows that
the equal time commutation relations for the canonical variables of an
interacting field are equivalent to those of a free field. Streater and
Wightman point out that “. . .What is even more likely in physically
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interesting quantum field theories is that equal-time commutation re-
lations will make no sense at all; the field might not be an operator
unless smeared in time as well as space.”

In this section, we first show that, if one assumes (as Haag did)
that operators act in sharp time, then the interaction representation
does not exist (see [SW], p. 168). Recent experiments show that there
is quantum interference in time for the wave function of a particle (see
Horwitz [HW] and references therein). We also show that if there is
time smearing, the interaction representation is well defined.

Let us assume that A0(t) and A1(t) are weakly continuous gen-
erators of C0-unitary groups for each t ∈ I, A(t) = A0(t) ⊕ A1(t) is
densely defined and Eq. (7.3) is satisfied. Define Un[t, a], U0[t, a] and
Ū0[t, a] by:

Un[t, a] = exp{(−i/�)

t∫
a

[A0(s) +An
1 (s)]ds},

U0[t, a] = exp{(−i/�)

t∫
a

A0(s)ds},

Ū0[t, a] = exp{(−i/�)

t∫
a

E[t, s]A0(s)ds},

where E[t, s] is our exchange operator.

In the first case, using U0[t, a], the interaction representation for
An

1 (t) is given by:

An
I (t) = U0[a, t]An

1 (t)U0[t, a] = An
1 (t)(a.s.)

as An
1 (t) commutes with U0[a, t] in sharp time. Thus, the interaction

representation does not exist. In the last case, we have

An
I (t) = Ū0[a, t]An

1 (t)Ū0[t, a],

and the terms do not commute. If we set Ψn(t) = Ū0[a, t]Un[t, a]Φ,
we have

∂

∂t
Ψn(t) =

i

�
Ū0[a, t]A0(t)Un[t, a]Φ− i

�
Ū0[a, t] [A0(t) +An

1 (t)]Un[t, a]Φ

so that
∂

∂t
Ψn(t) = − i

�
{Ū0[a, t]An

1 (t)Ū0[t, a]}Ū0[a, t]Un[t, a]Φ

and i�
∂

∂t
Ψn(t) = An

I (t)Ψn(t), Ψn(a) = Φ.

With the stated conditions, we have
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Theorem 7.14. If Q1[t, a] =
∫ t
a A1(s)ds generates a C0-unitary group

on H, then the time-ordered integral QI[t, a] =
∫ t
a AI(s)ds, where

AI(t) = Ū0[a, t]A1(t)Ū0[t, a] generates a C0 unitary group on FD2
⊗,

and

exp{(−i/�)Qn
I [t, a]} → exp{(−i/�)QI[t, a]},

where Qn
I [t, a] =

∫ t
a An

I (s)ds, and:

i�
∂

∂t
Ψ(t) = AI(t)Ψ(t), Ψ(a) = Φ.

Proof. The result follows from an application of Theorem 7.10. �

7.5. Disentanglement

In this section, we relate our results to the conventional approach,
where the order of operators is determined by their position on paper.
This section is the method of disentanglement as suggested by Feyn-
man and Fujiwara to relate his theory to the standard theory. As an
application, we extend the Trotter–Kato Theorem.

Since any closed densely defined generator of a C0-semigroup may
be replaced by its Yosida approximator, we can restrict our study to
bounded linear operators. We first need to establish some notation.
If {A(t), t ∈ I} denotes an arbitrary family of operators in L[H], the
operator

∏
t∈I A(t), when defined, is understood in its natural order:∏

b�t�aA(t). Let L[FD2
⊗] ⊂ L#[H2⊗] be the class of bounded lin-

ear operators on FD2
⊗. It is easy to see that every operator A ∈

L[FD2
⊗], which depends on a countable number of elements in I, may

be written as:

A =
∑∞

i=1
ai

ni∏
k=1

Ai(tk),

where

Ai(tk) ∈ L[H(tk)], k = 1, 2, · · · , ni, ni ∈ N.

Definition 7.15. The disentanglement morphism, dT [ · ], is a mapping
from L[FD2

⊗] to L[H], such that:

dT [A] = dT

[∑∞
i=1

ai

ni∏
k=1

Ai(tk)

]
=
∑∞

i=1
ai

∏
ni�k�1

Ai(tk).
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Theorem 7.16. The map dT [ · ] is a well-defined surjective bounded
linear mapping from L[FD2

⊗] to L[H], which is not injective, but

dT [ · ]|L[H(t)] = T−t
θ , where Tt

θ ◦T−t
θ = T−t

θ ◦Tt
θ = I.

Proof. With the stated convention, it is easy to see that dT [ · ] is a
well-defined bounded, surjective linear mapping. To see that it is not
injective, note that dT [E[t, s]A(s)] = dT [A(s)], while E[t, s]A(s) ∈
L[H(t)] and A(s) ∈ L[H(s)], so that these operators are not equal
when t 	= s. To see that dT [ · ]|L[H(t)] = T−t

θ , we need only show that

dT [ · ] is injective when restricted to L[H(t)]. If A(t), B(t) ∈ L[H(t)]
and dT [A(t)] = dT [B(t)], then A(t) = B(t), by definition of dT [ · ], so
that A(t) = B(t) by definition of L[H(t)]. �

Definition 7.17. A Fujiwara–Feynman algebra (FF -algebra) over
L[H], for the parameter set I, is the quadruple

({
Tt

θ, t ∈ I
}
, L[H],

dT [ · ], L[FD2
⊗]
)
.

We now show that the FF -algebra is universal for time-ordering
in the following sense.

Theorem 7.18. Let {A(t) | t ∈ I} ∈ L[H] be any family of operators.
Then the following conditions hold:

(1) The time-ordered operator A(t) ∈ L[H(t)] and dT [A(t)] =
A(t), t ∈ I.

(2) For any family {tj | 1 � j � n, n ∈ N} , tj ∈ I (distinct), the

map
∞×
n=1

(A(tn), A(tn−1), · · · , A(t1)) →
∑∞

n=1 an
∏

n�j�1
A(tj)

from
∞×
n=1

{
n×

j=1
L[H]

}
→ L[H] has a unique factorization through

L[FD2
⊗],

so that
∑∞

n=1 an
∏

n�j�1
A(tj) ∈ L[H] corresponds to

∑∞
n=1 an

n∏
j=1

A(tj).

Proof. A(t) = Tt
θ[A(t)] and dT [A(t)] = A(t) gives (1).

To prove (2), note that

Θ :
∞×
n=1

{
n×

j=1
L[H]

}
→ ∞×

n=1

{
n×

j=1
L[H(tj)]

}
,
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defined by

Θ

[
∞×

n=1
(A(tn), A(tn−1), · · · , A(t1))

]
=

∞×
n=1

(A(tn), A(tn−1), · · · , A(t1)) ,

is bijective and the mapping

∞×
n=1

(A(tn), A(tn−1), · · · , A(t1)) →
∑∞

n=1
an

n∏
j=1

A(tj)

factors though the tensor algebra ⊕∞
n=1

{
⊗n

j=1L[H(tj)]
}

via the uni-

versal property of that object (see Hu [HU], p. 19). We now note that

⊕∞
n=1

{
⊗n

j=1L[H(tj)]
}
⊂ L[FD2

⊗]. In diagram form we have:

∞×
n=1

(A(tn), · · · , A(t1)) ∈
∞×

n=1

{
n×

j=1
L[H]

}
f−→ ∑∞

n=1 an
∏

n�j�1

A(tj) ∈ L[H]

Θ ↓ ↑ dT

∞×
n=1

(A(tn), · · · , A(t1)) ∈
∞×

n=1

{
n×

j=1
L[H(tj)]

}
f⊗−−→ ∑∞

n=1 an
n∏

j=1

A(tj ) ∈ L[FD2
⊗]

so that dT ◦ f⊗ ◦Θ = f . �

Example 7.19. If A,B ∈ L[H] and s < t, then A(t)B(s) = B(s)A(t)
and dT [B(s)A(t)] = AB while dT [B(s)A(t)− B(t)A(s)] = AB −BA.

Example 7.20. Let A(t) = Tt
θ[A], B(t) = Tt

θ[B], with I = [0, 1],
where A, B are the operators in the last example. Then

n∑
k=1

Δtk
∥∥A(sk)ei − 〈

A(sk)e
i, ei

〉
ei
∥∥2 = (b− a)

∥∥Aei − 〈
Aei, ei

〉
ei
∥∥2 ,

n∑
k=1

Δtk
∥∥B(sk)e

i − 〈
B(sk)e

i, ei
〉
ei
∥∥2 = (b− a)

∥∥Bei − 〈
Bei, ei

〉
ei
∥∥2 ,

so that the operators are strongly continuous. Hence,
∫ 1
0 A(s)ds,∫ 1

0 B(s)ds both exist as strong integrals and

e
∫ 1
0
[A(s)+B(s)]ds = exp{

∫ 1

0
A(s)ds} exp{

∫ 1

0
B(s)ds} (a.s). (7.8)
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Expanding the right-hand side, we obtain:

exp{
∫ 1

0

A(s)ds} exp{
∫ 1

0

B(s′)ds′} = exp{
∫ 1

0

A(s)ds}
∑∞

n=0

[∫ 1
0 B(s′)ds′

]n
n!

= exp{
∫ 1

0

A(s)ds}+ exp{
∫ 1

0

A(s)ds}
∫ 1

0

B(s′)ds′

+ 1
2 exp{

∫ 1

0

A(s)ds}
∫ 1

0

B(s′)ds′
∫ 1

0

B(s′′)ds′′ + · · ·

= exp{
∫ 1

0

A(s)ds}+
∫ 1

0

exp{
∫ 1

0

A(s)ds}B(s′)ds′

+ 1
2

∫ 1

0

∫ 1

0

exp{
∫ 1

0

A(s)ds}B(s′)B(s′′)ds′ds′′ + · · · .

Restricting to the second term, we have

e
∫ 1
0
[A(s)+B(s)]ds = exp{

∫ 1

0
A(s)ds}

+

∫ 1

0
exp{

∫ s′

0
A(s)ds}B(s′) exp{

∫ 1

s′
A(s)ds}ds′ + · · · .

Thus, to second order, we have:

exp{A+ B} = dT

[
exp{

∫ 1

0

[A(s) + B(s)]ds}
]

= dT

[
exp{

∫ 1

0

A(s)ds}
]
+ dT

[∫ 1

0

exp{
∫ 1

s′
A(s)ds}B(s′) exp{

∫ s′

0

A(s)ds}ds′
]
+ · · ·

= exp{A}+

∫ 1

0

exp{(1 − s)A}B exp{sA}ds+ · · · .

This last example was given by Feynman [F].

At this point, we should revisit the Trotter–Kato product theo-
rem, mentioned in Chap. 5 (see Goldstein [GS], p. 44 and references
therein).

Theorem 7.21. (Trotter) Suppose A0, A1 and A0 +A1 generate C0-
contraction semigroups S(t), T (t), U(t) on H. Then

lim
n→∞

{
S
(
t
n

)
T
(
t
n

)}n
= U(t).

Remark 7.22. There are cases in which the above limit exists without
the assumption that A0 + A1 generates a C0-contraction semigroup.
In fact, it is possible for the limit to exist while D(A0)∩D(A1) = {0}.
Goldstein [GS] calls the generator C of such a semigroup a generalized
or Lie sum and writes it C = A0⊕LA1(see page 57). Kato [KA1]
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proves that the limit can exist for an arbitrary pair of self-adjoint
contraction semigroups. The fundamental question is: What are the
general conditions that makes this possible?

Theorem 7.23 (Generalized Trotter–Kato). Suppose A, B and C =
A⊕LB generate C0-contraction semigroups S(t), T (t) and U(t) on H.
Then

dT

[
exp{

∫ t

0

[A(s) + B(s)] ds}
]
= lim
n→∞ dT

[∏n

j=1
exp{ t

n (A( jtn ) + B( jt
′
n
n ))}

]
= lim

n→∞ dT
[∏n

1
exp{ t

n (A( jtn )} exp{B( jt
′
n
n ))}

]
= exp{t(A⊕L B)},

where t′n = t(1− 1
1010 e

−(n+1)2).

7.6. The Second Dyson Conjecture

In [DY], Freeman Dyson analyzed the renormalized perturbation exp-
ansion for quantum electrodynamics and made four conjectures. His
second conjecture suggested that the series expansion actually div-
erges. He concluded that we could at best hope that it is asymptotic.
His arguments were based on unconvincing physical considerations and
no precise (mathematical) formulation of the problem was possible at
that time. However, the calculations of Hurst [HR], Thirring [TH],
Peterman [PE], and Jaffe [JA] for specific models all supported Dyson’s
contention that the renormalized perturbation series may well diverge.
In 1996 [DY1] (pp. 13–16), Dyson’s views on the perturbation series
and renormalization are reiterated: “. . . in spite of all the successes of
the new physics, the two questions that defeated me in 1951 remain
unsolved.” Here, he is referring to the question of mathematical con-
sistency for the whole renormalization program, and the ability to rel-
iably calculate nuclear processes in quantum chromodynamics. (For
other details and references to additional works, see Schweber [SC],
Wightman [W], and Zinn-Justin [ZJ].) A satisfactory (mathematical)
foundation for quantum field theory is still an open problem. (Many
in the mathematics and physics community have become silent on this
question.)

In this section we use the Feynman operator calculus to resolve
Dyson’s second conjecture under conditions that apply to any theory
which does not make a radical departure from basic quantum theory
(i.e., unitary solution operators). It also applies to the renormalized



7.6. The Second Dyson Conjecture 297

expansions in some areas of condensed matter physics where the solu-
tion operators are contraction semigroups. We begin with an operator
version of the notion of asymptotic expansion, as used in ordinary
differential equations (see Coddington and Levinson [CL]).

Definition 7.24. The evolution operator Uw[t, a] = exp {wQ[t, a]} is
said to be asymptotic in the sense of Poincaré if, for each n and each

Φa ∈ D
[
(Q[t, a])n+1

]
, we have

lim
w→0

w−(n+1)

{
Uw[t, a]−

n∑
k=1

(wQ[t, a])k

k!

}
Φa =

Q[t, a]n+1

(n+ 1)!
Φa. (7.9)

This is our (unbounded) operator version of an asymptotic expansion
in the classical sense.

Theorem 7.25. Suppose that Q[t, a] generates a contraction
C0-semigroup on FD2

⊗ for each t ∈ I. Then:

(1) The operator Uw[t, a] = exp {wQ[t, a]} is asymptotic in the
sense of Poincaré.

(2) For each n and each Φa ∈ D
[
(Q[t, a])n+1

]
, we have

Φ(t) = Φa +

n∑
k=1

wk

t∫
a

ds1

s1∫
a

ds2 · · ·
sk−1∫
a

dskA(s1) · · · A(sk)Φa

+

w∫
0

(w − ξ)ndξ

t∫
a

ds1

s1∫
a

ds2 · · ·
sn∫
a

dsn+1A(s1) · · · A(sn+1)U
ξ[sn+1, a]Φa,

(7.10)

where Φ(t) = Uw[t, a]Φa.

Remark 7.26. The above case includes all generators of C0-unitary
groups. Thus, the theorem provides a precise formulation and proof
of Dyson’s second conjecture: that in general, we can only expect
the expansion to be asymptotic. Actually, we prove more since we
provide the remainder term, which makes the perturbation expansion
(mathematically) exact for all n. However, in actual practice, the
expansion may be useless. For example, if bound states are present,
all important information resides in the remainder term for every n.
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Proof. From Theorem 7.8, we have

Uw[t, a]Φ=

⎧⎨
⎩

n∑
k=0

(wQ[t, a])k

k!
+

1

n!

w∫
0

(w − ξ)nQ[t, a]n+1Uξ[t, a]dξ

⎫⎬
⎭Φ,

so that

w−(n+1)

{
Uw[t, a]Φa −

n∑
k=0

(wQ[t, a])k

k!
Φa

}
=

(n+ 1)

(n+ 1)!
w−(n+1)

w∫
0

(w − ξ)ndξUξ [t, a]Q[t, a]n+1Φa.

Replace the right-hand side by

I =
(n+ 1)

(n+ 1)!
w−(n+1)

w∫
0

(w − ξ)ndξ
{
Uξ

z[t, a] +
[
Uξ[t, a]−Uξ

z [t, a]
]}

Q[t, a]n+1Φa

= I1,z + I2,z ,

where

I1,z =
(n+ 1)

(n+ 1)!
w−(n+1)

w∫
0

(w − ξ)ndξUξ
z [t, a]Q[t, a]n+1Φa,

and

I2,z =
(n+ 1)

(n+ 1)!
w−(n+1)

w∫
0

(w − ξ)ndξ
[
Uξ [t, a]−Uξ

z[t, a]
]
Q[t, a]n+1Φa.

Since Uξ[t, a] −Uξ
z[t, a] → 0, we see that limz→∞ I2,z = 0. Let ε > 0

be given and choose Z such that z > Z ⇒ ‖I2,z‖ < ε. Now, use

Uξ
z[t, a] = I⊗ +

∑∞
k=1

ξkQk
z [t, a]

k!

for the first term to get that

I1,z =
(n+ 1)

(n+ 1)!
w−(n+1)

w∫
0

(w − ξ)ndξ

{
I⊗ +

∑∞
k=1

ξkQk
z [t, a]

k!

}
Q[t, a]n+1Φa.
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If we compute the elementary integrals, we get

I1,z =
1

(n+ 1)!
Q[t, a]n+1Φa

+
∑∞

k = 1

1

k!n!

{∑n

l=1

(
n
l

)
wk

(n+ k + 1− l)

}
Qk

z [t, a]Q[t, a]n+1Φa.

Then∥∥∥∥I− 1

(n+ 1)!
Q[t, a]n+1Φa

∥∥∥∥ <

∥∥∥∥∑∞
k = 1

1

k!n!

{∑n

l=1

(
n

l

)
wk

(n+ k + 1− l)

}
Qk

z [t, a]Q[t, a]n+1Φa

∥∥∥∥+ ε.

Now let w → 0 to get∥∥∥∥I− 1

(n+ 1)!
Q[t, a]n+1Φa

∥∥∥∥ < ε.

Since ε is arbitrary, U[t, a] = exp {Q[t, a]} is asymptotic in the sense
of Poincaré.

To prove (7.10), let Φa ∈ D
[
(Q[t, a])n+1

]
for each k � n + 1, and

use the fact that (Dollard and Friedman [DF])

(Qz[t, a])
k Φa =

⎛
⎝ t∫

a

Az(s)ds

⎞
⎠

k

Φa

= (k!)

t∫
a

ds1

s1∫
a

ds2 · · ·
sk−1∫
a

dsnAz(s1)Az(s2) · · · Az(sk)Φa.

(7.11)

Letting z →∞ gives the result. �

There are special cases in which the perturbation series may actu-
ally converge to the solution. From Theorems 5.33 and 5.36 (1), we
know that if A0(t) is a nonnegative self-adjoint operator on H, then
exp{−τA0(t)} is an analytic C0-contraction semigroup for Re τ > 0.

Theorem 7.27. Let Q0[t, a] =
t∫
a
A0(s)ds and Q1[t, a] =

t∫
a
A1(s)ds be

nonnegative self-adjoint generators of analytic C0-contraction semi-
groups for t ∈ (a, b]. Suppose D(Q1[t, a]) ⊇ D(Q0[t, a]) and there are
positive constants α, β such that

‖Q1[t, a]Φ‖⊗ � α ‖Q0[t, a]Φ‖⊗ + β ‖Φ‖⊗ , Φ ∈ D(Q0[t, a]). (7.12)
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(1) Then Q[t, a]=Q0[t, a]+Q1[t, a] and AI(t)=Ū0[a, t]A1(t)
Ū0[t, a] both generate analytic C0-contraction semigroups.

(2) For each k and each Φa ∈ D
[
(QI[t, a])

k+1
]
, we have that

Uw
I [t, a]Φa = Φa +

k∑
l=1

wl

t∫

a

ds1

s1∫

a

ds2 · · ·
sk−1∫

a

dskAI(s1)AI(s2) · · · AI(sk)Φa

+

w∫

0

(w − ξ)kdξ

t∫

a

ds1

s1∫

a

ds2 · · ·
sk∫

a

dsk+1AI(s1)AI(s2) · · · AI(sk+1)U
ξ
I [sk+1, a]Φa.

(3) If Φa ∈ ∩k�1D
[
(QI[t, a])

k
]
and, w small enough, we have

Uw
I [t, a]Φa = Φa +

∞∑
k=1

wl

t∫
a

ds1

s1∫
a

ds2 · · ·
sk−1∫
a

dskAI(s1)AI(s2) · · · AI(sk)Φa.

Proof. The proof of (1) is almost the same as in Theorem 5.34, so we
provide an outline. As there, use the fact that Q0[t, a] generates an
analytic C0-contraction semigroup to find a sector Σ in the complex
plane, with ρ(Q0[t, a]) ⊃ Σ (Σ = {λ : |arg λ| < π/2 + δ′}, for some
δ′ > 0), and for λ ∈ Σ,

‖R(λ : Q0[t, a])‖⊗ � |λ|−1 .

From (5.14), Q1[t, a]R(λ : Q0[t, a]) is a bounded operator and:

‖Q1[t, a]R(λ : Q0[t, a])Φ‖⊗
� α ‖Q0[t, a]R(λ : Q0[t, a])Φ‖⊗ + β ‖R(λ : Q0[t, a])Φ‖⊗
� α ‖[R(λ : Q0[t, a])− I] Φ‖⊗ + β |λ|−1 ‖Φ‖⊗
� 2α ‖Φ‖⊗ + β |λ|−1 ‖Φ‖⊗ .

Thus, if we set α = 1/4 and |λ| > 2β, we have

‖Q1[t, a]R(λ : Q0[t, a])‖⊗ < 1,

and it follows that the operator

I−Q1[t, a]R(λ : Q0[t, a])

is invertible. Now it is easy to see that:

(λI− (Q0[t, a] +Q1[t, a]))
−1 = R(λ : Q0[t, a]) (I−Q1[t, a]R(λ : Q0[t, a]))

−1 .
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It follows that, using |λ| > 2β, with |arg λ| < π/2+δ′′ for some δ′′ > 0,
and the fact that Q0[t, a] and Q1[t, a] are nonnegative generators, we
get that

‖R(λ : Q0[t, a] +Q1[t, a])‖⊗ � |λ|−1 .

Thus Q0[t, a] + Q1[t, a] generates an analytic C0-contraction semi-
group. The proof of (2) follows from Theorem 7.25. Finally, if w
is such that |argw| � δ′ < δ and |w − a| � Ca for some constant C,
(3) follows from Theorem 5.33 (2). �

There are also cases where the series may diverge, but still respond
to some summability method. This phenomenon is well known in clas-
sical analysis. In field theory, things can be much more complicated.
The book by Glimm and Jaffe [GJ] has a good discussion.

7.7. Foundations for the Feynman Worldview

As discussed earlier, Feynman took a holistic view of physical reality
in his development of quantum electrodynamics. He suggested that we
view a physical event as occurring on a film which exposes more and
more of the outcome as the film unfolds. The purpose of this section
is to develop the mathematical framework for a theory of physical
measurement on a three-dimensional motion picture.

We would like to begin by investigating what is actually known
about our view of the micro-world. The objective is to provide the
background for a number of physically motivated postulates that will
allow us to develop our theory. This will also make it possible to relate
the Feynman operator calculus to the idea of a sum over all paths for
a system moving from one space-time point to another.

In spite of the enormous successes of the physical sciences in the
last 100 years, our information and understanding of the micro-world
is still rather meager. In the macro-world we are quite comfortable
with the view that physical systems evolve continuously in time and
our results justify this view. Indeed, the success of continuum physics
is the basis for a large part of the technical advances in the twentieth
century. On the other hand, the same view is also held at the micro-
level and, in this case, our position is not very secure. The ability to
measure physical events continuously in time at the micro-level must
be considered a belief which, although convenient, has no basis in
reality.
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In order to establish perspective, let us consider a satisfactory and
well-justified theory, Brownian motion. This theory lies at the inter-
face between the macro- and the micro-worlds. The careful presenta-
tions of this theory make a distinction between the mathematical and
the physical foundations of Brownian motion and that distinction is
important for our discussion.

When Einstein [EI] began his investigation of the physical issues
associated with this phenomenon, he could only assume that physical
information about the state of a Brownian particle (position, velocity,
etc.) could be known in time intervals that were large compared with
the mean time between molecular collisions. It is known that, under
normal physical conditions, a Brownian particle receives about 1021

collisions per second. To gain perspective, the attosecond is 10−18 s,
the time it takes light to travel the length of three hydrogen atoms and
12 as is the shortest measured time interval (as of 2010). It follows that
Brownian particle receives about 1000 collisions per attosecond, so that
we are (as yet) unable to see one collision of a Brownian particle. The
smallest known (physical) time is the Planck time defined as:

tp �
√

�G
c5

, 5.39106(32) × 10−44 s

where � is Planck’s constant, G is the gravitational constant, and c is
the speed of light. This is approximately 10−26 as, a time interval that
is far from our ability to measure.

For reasons of simplification, Einstein set the mean time between
collisions at zero and obtained the diffusion equation in terms of known
physical constants. This allowed him to predict the coefficient of vis-
cosity of the fluid from the diffusion constant, which was later veri-
fied by experiment (providing proof that atoms existed). Wiener con-
ducted the first rigorous analysis of Einstein’s theory, providing the
mathematical theory of Brownian particle and the important Wiener
measure. He showed that Einstein’s simplification corresponds to the
assumption that the ratio of the mass of the particle to the friction of
the fluid is zero in the limit (see Wiener et al. [WI]).

Physically the Einstein model was not completely satisfactory since
it led to problems of unbounded path length and nondifferentiability at
all points. The first problem is physically impossible while the second
is physically unreasonable. Of course, this idealization has turned out
to be quite satisfactory in areas where the information required need
not be very detail, such as large parts of physics, chemistry, biological,
and engineering sciences. Ornstein and Uhlenbeck [OU] constructed a
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model that provides the Einstein view asymptotically, but, in small-
time regions, is equivalent to the assumption that the particle travels a
linear path between collisions. This model provides finite path length
and differentiability. (The theory was later made mathematically rig-
orous by Doob [DO].) What we do know is that the very nature of
the liquid state implies collective behavior among the molecules. This
means that we do not know what path the particle travels between col-
lisions. However, since the tools and methods of analysis require some
form of continuity, some such (in between observation) assumptions
must be made.

Theoretical science is necessarily constrained in attempts to con-
struct mathematical representations of certain restricted portions of
physical reality. Simplicity forces one to restrict models to the mini-
mum number of variables, relationships, constraints, etc., which give a
satisfactory account of known experimental results and possibly allow
for the prediction of heretofore unknown consequences. One important
outcome of this approach has been to implicitly eliminate all reference
to the background within which all physical systems evolve. In the
micro-world, such an action can never be completely justified. We
propose to replace the use of mathematical coordinate systems, R3, by
“physical coordinate systems,” R

3
p in order to (partially) remedy this

problem. We assume that R3
p(t) is attached to an observer (including

measuring devices) and is envisioned as R3 plus all background effects,
either local or distant, which affect the observer’s ability to obtain
precise (ideal) experimental information about the physical world at
time t. This in turn affects the observer’s ability to construct precise
(ideal) representations and make precise predictions about the micro-
world. More specifically, we consider the evolution of some micro-
system on the interval I = [a, b]. Physically this evolution manifests
itself as a curve on X, where∏

t∈I
R
3
p(t) = X.

Thus, true physical events occur on X, where actual experimental inf-
ormation is modified by fluctuations in R

3
p(t), and by the interaction

of the micro-system with any measuring equipment. Based on the
success of our models, we know that such small changes are in the noise
and have no effect on our understanding of macro-systems. However,
there is no reason to believe that these fluctuations will not effect
micro-systems. Let Xo represent the observer’s space of obtainable
information.
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In terms of our theoretical representations, we are forced to model
physical systems in terms of functions, amplitudes, and/or operator-
valued distributions, etc. Thus, there are three spaces, the actual phys-
ical space of evolution for the micro-system X, the observer’s space of
obtainable information concerning this evolution, Xo, and the theoreti-
cal representation or mathematical model space of the physical system
that is used to explain the observer’s experimental information. The
lack of distinction between these three spaces seems to be the cause
for some of the confusion and lack of clarity. For example, it may be
perfectly correct to assume that a particle travels a continuous path on
X. However, the assumption that Xo includes infinitesimal space-time
knowledge of this path is not true. This leads to our first postulate

Postulate (1): Physical reality is a continuous process in time.

We thus take this view, fully recognizing that experiment does not
provide continuous information about physical reality, and that there
is no reason to believe that our mathematical representations (models)
contain precise information about the continuous space-time behavior
of physical processes.

Before continuing, it will be helpful to have a particular physical
picture in mind. For this purpose, we take this picture to be a pho-
tograph showing the track left by a π-meson in a bubble chamber,
π+ → μ+ + ν (Fig. 7.1).

Figure 7.1. Ideal picture of the reaction π+ → μ+ + ν
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We further assume that the orientation of our photograph is such
that the π-meson enters on the left at time t = 0 and the tracks left by
the μ-meson disappear on the right at time t = T , where T is of the
order of 10−3-s, the time exposure for photographic film. Although
the neutrino does not appear in the photograph, we also include a
track for it.

We have drawn the photograph as if we continuously see the par-
ticles in the picture. However, experiment only provides us individual
bubbles, which do not necessarily overlap, from which we must extract
physical information. A more accurate (though still unrealistic) depic-
tion is given in Fig. 7.2.

Figure 7.2. More accurate picture of the reaction π+ → μ+ + ν

Let us assume that we have magnified a portion of our photograph
to the extent that we may distinguish the individual bubbles created
by the π-meson as it passes through the chamber. In Fig. 7.3, we
present a simplified model of adjacent bubbles.

Postulate (2): We assume that the center of each bubble represents
the average knowable effect of the particle in a symmetric time
interval about the center.

By average knowable effect, we mean the average of the physical
observables. In Fig. 7.3, we consider the existence of a bubble at
time τj to be caused by the average of the physical observables over
the time interval [tj−1, tj ] , where tj−1 = (1/2)[τj−1 + τj] and tj =
(1/2)[τj +τj+1]. This postulate requires some justification. In general,
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τjτj−1 τj+1 τj+2

Figure 7.3. Highly magnified view of a portion showing individ-
ual bubbles

the resolution of the film and the relaxation time for distinct bubbles
in the chamber vapor are limited. This means that if the π-meson
creates two bubbles that are closely spaced in time, the bubbles may
coalesce and appear as one. If this does not occur, it is still possible
that the film will record the event as one bubble because of its inability
to resolve events in such small time intervals. Let us now recognize
that we are dealing with one photograph so that, in order to obtain all
available information, we must analyze a large number of photographs
of the same reaction obtained under similar conditions (pre-prepared
states). It is clear that the number of bubbles and the time placement
of the bubbles will vary (independently of each other) from photograph
to photograph. Let λ−1 denote the average time for the appearance of
a bubble in the film.

Postulate (3): We assume that the number of bubbles in any film is
a random variable.

Postulate (4): We assume that, given that n bubbles have
appeared on a film, the time positions of the centers of the bubbles
are uniformly distributed.

Postulate (5): We assume that N(t), the number of bubbles up to
time t in a given film is a Poisson-distributed random variable with
parameter λ.
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To motivate Postulate 5, recall that τj is the time center of the
j-th bubble and λ−1 is the average (experimentally determined) time
between bubbles. The following results can be found in Ross [RO].

Theorem 7.28. The random variables Δτj = τj − τj−1 (τ0 = 0)
are independent identically distributed random variables of exponential
type with mean λ−1, for 1 ≤ j ≤ n.

The arrival times τ1, τ2, · · · , τn are not independent, but their den-
sity function can be computed from

Prob [τ1, · · · , τn]
= Prob [τ1]Prob [τ2|τ1] · · ·Prob [τn|τ1, · · · , τn−1] .

(7.13)

We now use the above theorem to conclude that, for k ≥ 1,

Prob [τk|τ1, τ2, · · · , τk−1] = Prob [τk|τk−1] . (7.14)

We don’t know this conditional probability. However, the natural
assumption is that, given that n bubbles appear, they are equally
(uniformly) distributed on the interval. We can now construct what
we call the experimental evolution operator. Assume that the condi-
tions for the fundamental theorem are satisfied and that the family
{τ1, τ2, · · · , τn} represents the time positions of the centers of n bub-
bles in our film of Fig. 7.3.

We now follow physical tradition and replace A(t) by H(t). Set
a = 0 and define QE[τ1, τ2, · · · , τn] by

QE[τ1, τ2, · · · , τn] =
n∑

j=1

∫ tj

tj−1

E[τj , s]H(s)ds. (7.15)

Here, t0 = τ0 = 0, tj = (1/2)[τj + τj+1], 1 ≤ j ≤ n and E[τj , s]
is the exchange operator. The effect of the exchange operator is to
concentrate all information contained in [tj−1, tj ] at τj. This is how we
implement our postulate that the known physical event of the bubble
at time τj is due to an average of physical effects over [tj−1, tj] with
information concentrated at τj. We can rewrite QE [τ1, τ2, · · · , τn] as

QE[τ1, τ2, · · · , τn] =
n∑

j=1

Δtj

[
1

Δtj

∫ tj

tj−1

E[τj , s]H(s)ds

]
.
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Thus, we indeed have an average as required by Postulate 5. The
evolution operator is given by

U [τ1, τ2, · · · , τn] = exp

⎧⎨
⎩

n∑
j=1

Δtj

[
1

Δtj

∫ tj

tj−1

E[τj , s]H(s)ds

]⎫⎬
⎭ .

For Φ ∈ FD2
⊗, we define the function U[N(t), 0]Φ by:

U[N(t), 0]Φ = U
[
τ1, τ2, · · · , τN(t)

]
Φ. (7.16)

The function U[N(t), 0]Φ is an FD2
⊗ random variable which represents

the distribution of the number of bubbles that may appear on our film
up to time t. In order to relate U[N(t), 0]Φ to actual experimental
results, we must compute its expected value. Using Postulates 3, 4,
and 5, we have

Ūλ[t, 0]Φ = E {U[N(t), 0]Φ}

=
∞∑
n=0

E {U[N(t), 0]Φ | N(t) = n}Pr ob[N(t) = n],
(7.17)

E {U[N(t), 0]Φ | N(t) = n}

=

∫ t

0

dτ1
t−0

∫ t

0

dτ2
t−τ1

· · ·
∫ t

0

dτn
t−τn−1

U[τn, · · · τ1]Φ = Ūn[t, 0]Φ,
(7.18)

and

Pr ob[N(t) = n] = (λt)n

n! exp{−λt}. (7.19)

The integral in Eq. (7.18) acts to distribute uniformly the time posi-
tions τj over the successive intervals [t, τj−1], 1 ≤ j ≤ n, given that
τj−1 has been determined. This is a natural result given our lack of
knowledge. The integral in Eq. (7.18) is of theoretical value, but is not
easy to compute. Since we are only interested in what happens when
λ → ∞, and as the mean number of bubbles in the film at time t is
λt, we can take τj = jt

n , 1 � j � n, Δtj = t
n (for each n). We can

now replace Ūn[t, 0]Φ by Un[t, 0]Φ; and, with this understanding, we
continue to use τj, so that

Un[t, 0]Φ = exp

⎧⎨
⎩

n∑
j=1

∫ tj

tj−1

E[τj, s]H(s)ds

⎫⎬
⎭Φ.
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We define our experimental evolution operator Uλ[t, 0]Φ by

Uλ[t, 0]Φ =
∞∑
n=0

(λt)n

n!
exp{−λt}Un[t, 0]Φ. (7.20)

We now have the following result, which is a consequence of the fact
that Borel summability is regular.

Theorem 7.29. Assume that the conditions for our fundamental
theorem are satisfied. Then

lim
λ→∞

Ūλ[t, 0]Φ = lim
λ→∞

Uλ[t, 0]Φ = U[t, 0]Φ. (7.21)

Since λ → ∞ ⇒ λ−1 → 0, this means that the average time
between bubbles is zero (in the limit) so that we get a continuous
path. It should be observed that this continuous path arises from ave-
raging the sum over an infinite number of (discrete) paths. (However,
from Postulate 1 we assume that the true paths are continuous.) The
first term in (7.20) corresponds to the path of a π-meson that created
no bubbles (i.e., the photograph is blank). This event has probabil-
ity exp{−λt} (which approaches zero as λ → ∞). The n-th term
corresponds to the path of a π-meson that created n bubbles (with

probability (λt)n

n! exp{−λt}) etc.
In closing, observe that the ideas of this section are very general

and actually independent of the example we used as a pictorial help.
We will apply the theory developed here in the next chapter to prove
the final remaining conjecture of Dyson concerning QED.
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Chapter 8

Applications of the
Feynman Calculus

Introduction

This chapter is devoted to a few applications of the Feynman operator
calculus. We first consider the theory of linear evolution equations and
provide a unified approach to a class of time-dependent parabolic and
hyperbolic equations.

We then show that KS2[R3] allows us to construct the elementary
path integral in the manner intended by Feynman. We also use the
sum over paths theory of the last chapter along with time-ordering to
extend the Feynman path integral to a very general setting. We then
prove an extended version of the Feynman–Kac theorem. Finally, we
prove the last remaining Dyson conjecture concerning the foundations
for quantum electrodynamics.

8.1. Evolution Equations

As our first application, we provide a unified approach to a class
of time-dependent parabolic and hyperbolic evolution equations.
We restrict ourselves to first and second order initial-value problems

315
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u̇(t) = A(t)u(t), u(0) = u0, or v̈(t) = B2(t)v(t), v(0) = v1 and
˙v(0) = v2. In each case, we assume that A(t), B(t) generates a

C0-semigroup for each t ∈ I.

For second order equations, let

u(t) =

(
v(t)
v̇(t)

)
, u0 =

(
v1
v2

)
, A(t) =

(
0 I

B2(t) 0

)
.

We now define a norm on X = H×H by∥∥∥∥
(

f
g

)∥∥∥∥
X
= ‖f‖H + ‖g‖H.

This makes X a Hilbert space. It follows that the second order equa-
tion on H becomes the first order equation on X : u̇(t) = A(t)u(t),
u(0) = u0. Thus, it suffices to study first order equations. For addi-
tional details on this approach, see Yosida [YS] or Goldstein [GS].

In order to prove existence and uniqueness for the initial-value
(Cauchy) problem a number of conditions are imposed (see Pazy [PZ],
in Chap. 7). The important assumption for the time-ordered theory
is a weak continuity condition. (In the following, let H be a Hilbert
space.)

8.2. Parabolic Equations

In the abstract parabolic problem, it is assumed that, on H, the family
A(t), t ∈ I, satisfies:

(1) For each t ∈ I, A(t) is densely defined, R(λ; A(t)) exists in
a sector Σ = Σ(φ + π/2) for some φ, 0 < φ < π/2 and a
constant φ independent of t, such that

‖R(λ; A(t))‖ ≤ 1/|λ| for λ ∈ Σ, t ∈ I.

(2) The function A−1(t) is continuously differentiable on I.

(3) There are constants C1 > 0 and ρ : 0 < ρ < 1, such that, for
each λ ∈ Σ and every t ∈ I, we have

‖DtR(λ; A(t))‖ ≤ C1/|λ|1−ρ.

(4) The function DA−1(t) is Holder continuous in H and there
are positive constants C2, α such that∥∥DA−1(t)−DA−1(s)

∥∥ ≤ C2 |t− s|α , s, t ∈ I.
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The first condition states that A(t) generates an analytic contraction
semigroup for each t ∈ I. The four conditions are required to prove
the following theorem.

Theorem 8.1. Let the family A(t), t ∈ I, have a common dense
domain and satisfy assumptions (1)–(4). Then the problem

∂u(t)

∂t
= A(t)u(t), u(a) = ua,

has a unique solution u(t) = V (t, s)ua, for t, s ∈ I. Furthermore,

(1) V (t, s) is strongly continuous on I and continuously differen-
tiable (in the norm of H) with respect to both s and t ∈ I,

(2) V (t, s)H ⊂ D(A(t)),

(3) A(t)V (t, s) and V (t, s)A(s) are bounded,

(4) DtV (t, s) = A(t)V (t, s), DsV (t, s) = −V (t, s)A(s), and

(5) for t, s ∈ I,

‖DtV (t, s)‖ ≤ C/(t− s), ‖DsV (t, s)‖ ≤ C/(t− s).

In the proof of this result takes seven pages plus five pages of
preparatory work (see page 397). (In Pazy [PZ], in Chap. 7, the proof
takes 17 pages.)

Example 8.2. Let the family of operators A(t), t ∈ I = [0, 1], be
defined on H = L2(0, 1) by:

A(t)u(x) = − 1

(t− x)2
u(x).

It is easy to see that each A(t) is self-adjoint and (A(t)u, u) ≤ −‖u‖2H
for u ∈ D(A(t)). It follows that the spectrum of A(t), σ(A(t)) ⊂
(−∞,−1], for t ∈ [0, 1]. The first condition is satisfied for any φ ∈
(0, π/2), while the second condition is clear and makes the fourth con-
dition obvious. For λ /∈ (−∞,−1], we have

R(λ; A(t))u(x) =
(t− x)2

λ(t− x)2 + 1
u(x),

so that

‖R(λ; A(t))u(x)‖2H =

∫ 1

0

(t− x)4

[λ(t− x)2 + 1]2
u2(x)dx ≤ 1

|λ|2 ‖u‖
2
H .
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It is now clear that each A(t) generates a contraction semigroup and

DtR(λ; A(t))u(x) =
2(t− x)

[λ(t− x)2 + 1]2
u(x).

From here, an easy estimation shows that, for λ ∈ Σ,

‖DtR(λ; A(t))‖H ≤ C

|λ|1/2
,

so that the third condition follows. The theorem would follow if there
was a common dense domain. However, it is not hard to see that⋂

t∈I D(A(t)) = {0}.
We now notice that

(A(t)−A(s))A(τ)−1 =

[
(τ − x)2

(s− x)
+

(τ − x)2

(t− x)

]
(s− t),

so that, for some constants C > 0, 0 < β ≤ 1, we have∥∥(A(t)−A(s))A(τ)−1
∥∥ � C |t− s|β (a.s) for all t, s, τ ∈ [0, 1].

It follows that the family A(t), t ∈ [0, 1], is strongly continuous and
hence satisfies (7.3). Thus, the time-ordered integral exists and gener-
ates a contraction semigroup. It is now an exercise to prove that the
semigroup is also analytic in the same sector, Σ.

Returning to the abstract parabolic problem, the conditions used
by Pazy [PZ], in Chap. 7, make it easy to see that the A(t), t ∈ I, is
strongly continuous in general:

(1) For each t ∈ I, A(t) generates an analytic C0-semigroup with
domains D(A(t)) = D independent of t.

(2) For each t ∈ I, R(λ,A(t)) exists for all λ such that Reλ � 0,
and there is an M > 0 such that:

‖R(λ,A(t))‖ � M/[|λ|+ 1].

(3) There exist constants L and 0 < α � 1 such that∥∥(A(t)−A(s))A(τ)−1
∥∥ � L |t− s|α for all t, s, τ ∈ I.

From (3), for ϕ ∈ D, we have

‖[A(t)−A(s)]ϕ‖ =
∥∥[(A(t)−A(s))A−1(τ)

]
A(τ)ϕ

∥∥
�
∥∥(A(t)−A(s))A−1(τ)

∥∥ ‖A(τ)ϕ‖ � L |t− s|α ‖A(τ)ϕ‖ .
Thus, the family A(t), t ∈ I, is strongly continuous on D. For com-
parison with the time-ordered approach, we have:
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Theorem 8.3. Let the family A(t), t ∈ I be weakly continuous on H
satisfying:

(1) For any complete orthonormal basis {ei}, for H and any parti-
tion Pn, of I with mesh μ, there is a number δ, with 0 < δ < 1
such that:

n∑
k=1

Δtk
∥∥A(sk)ei − 〈

A(sk)e
i, ei

〉
ei
∥∥2 � Cμδ−1

n (8.1)

(2) For each t ∈ I, A(t) generates an analytic C0-semigroup with
dense domains D(A(t)) = D(t) ⊂ H.

(3) For each t ∈ I, R(λ,A(t)) exists for all λ such that Reλ � 0,
and there is an M(t) > 0, t ∈ I such that:

‖R(λ,A(t))‖ � M(t)/[|λ|+ 1],

with supt∈I M(t) < ∞.

Then, for each φ ∈ H the time-ordered family A(t), t ∈ I has a strong
Riemann integral on D0 = ⊗t∈ID(t) ∩ H2⊗(Φ), which generates an
analytic C0-semigroup on H2⊗(Φ), where Φ = ⊗t∈Iφt, φt = φ for all
t ∈ I.

Remark 8.4. The left-hand side of Eq. (8.1) could diverge as μ → 0,
but remains finite if the family A(t), t ∈ I is strongly continuous. If
the family A(t), t ∈ I is not strongly continuous, Eq. (8.1) ensures
that weak continuity on H is sufficient in order for the time-ordered
family A(t), t ∈ I to have a strong Riemann integral on H2⊗(Φ), for
each Φ. (We do not require a common dense domain.)

8.3. Hyperbolic Equations

In the abstract approach to hyperbolic evolution equations, it is as-
sumed that:

(1) For each t ∈ I, A(t) generates a C0-semigroup.

(2) For each t ∈ I, A(t) is stable with constants (M, 0) and the
resolvent set ρ(A(t)) ⊃ (0,∞), t ∈ I, such that:∥∥∥∥∥∥

k∏
j=1

exp{τjA(tj)}
∥∥∥∥∥∥ � M.
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(3) There exists a Hilbert space Y densely and continuously em-
bedded in H such that, for each t ∈ I, D(A(t)) ⊃ Y and
A(t) ∈ L[Y,H] (i.e., A(t) is bounded as a mapping from
Y → H), and the function g(t) = ‖A(t)‖Y→H is continuous.

(4) The space Y is an invariant subspace for each semigroup
St(τ) = exp{τA(t)} and St(τ) is a stable C0-semigroup on
Y with the same stability constants.

This case is not as easily analyzed as the parabolic case, so we need
the following:

Lemma 8.5. Suppose conditions (3) and (4) above are satisfied with
‖ϕ‖H � ‖ϕ‖Y . Then the family A(t), t ∈ I, is strongly continuous on
H (a.e.) for t ∈ I.

Proof. Let ε > 0 be given and, without loss, assume that ‖ϕ‖H � 1.
Set c = ‖ϕ‖Y

/‖ϕ‖H, so that 1 � c < ∞. Now

‖[A(t+ h)−A(t)]ϕ‖H �
{‖[A(t+ h)−A(t)]ϕ‖H

/‖ϕ‖Y} [‖ϕ‖Y/‖ϕ‖H]
� c ‖A(t+ h)−A(t)‖Y→H .

Choose δ > 0 such that |h| < δ implies ‖A(t+ h)−A(t)‖Y→H < ε/c,
which completes the proof. �

Remark 8.6. The important point of this section is that once we
know that A(t) generates a semigroup for each t, the only other condi-
tions required are that the family {A(t) : t ∈ I} is weakly continuous
and satisfies the growth condition (8.1). However, when the family
{A(t) : t ∈ I} is strongly continuous, the growth condition (8.1) is
automatically satisfied.

8.4. Path Integrals I: Elementary Theory

Introduction

In this and the next section, we will obtain a general theory for path
integrals in exactly the manner envisioned by Feynman. Our approach
is distinct from the methods of functional integration, so we do not
discuss that subject directly. However, since functional integration
represents an important approach to path integrals, a few brief re-
marks are in order. The methods of functional differentiation and
integration were major tools for the Schwinger program in quantum
electrodynamics, which was developed in parallel with the Feynman
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theory (see [DY], in Chap. 7). Thus, these methods were not developed
for the study of path integrals. However, historically, path integrals
have been studied from the functional integration point of view, and
many authors have sought to restrict consideration to the space of con-
tinuous functions or related function spaces in their definition of the
path integral. The best known example is undoubtedly the Wiener in-
tegral [WSRM]. However, from the time-ordering point of view, such
a restriction is not natural nor desirable. Thus, our approach does not
depend on formulations with countably additive measures. In fact, we
take the view that integration theory, as contrasted with measure the-
ory, is the appropriate vehicle for path integrals. Indeed, as shown in
[GZ1], there is a one-to-one mapping between path integrals and semi-
groups of operators that have a kernel representation. In this case, the
semigroup operation generates the reproducing property of the kernel.

In their recent (2000) review of functional integration, Cartier and
DeWitt-Morette [CDM1] discuss three of the most fruitful and impor-
tant applications of functional integration to the construction of path
integrals. In 1995, the Journal of Mathematical Physics devoted a
special issue to this subject, Vol. 36, No. 5 (edited by Cartier and
DeWitt-Morette). Thus, those with interest in the functional integra-
tion approach will find ample material in the above references (see also
the book [CDM2]). Both the review and book are excellent on many
levels, in addition to the historical information that could only come
from one with first-hand information on the evolution of the subject.

8.4.1. Summary. In this section, we restrict our discussion to kernel
representations for an interesting class of solutions to partial differen-
tial equations. In each case, a path integral representation is fairly
straightforward.

We begin with the path integral as first introduced by Feynman
[FY1]. The purpose is to show that the simplicity of his original ap-
proach becomes possible when the problem is considered on KS2[R3].

Recall that, in elementary quantum theory, the (simplest) problem
to solve in R

3 is:

i�
∂ψ(x, t)

∂t
− �

2

2m
Δψ(x, t) = 0, ψ(x, s) = δ(x − y), (8.2)
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with solution

ψ(x, t) = K [x, t; y, s] =

[
2πi�(t − s)

m

]−3/2

exp

[
im

2�

|x− y|2
(t− s)

]
.

In his formulation of quantum theory, Feynman wrote the solution to
Eq. (8.2) as

K [x, t; y, s] = ∫x(t)=x
x(s)=y Dx(τ) exp

{
im
2� ∫ ts

∣∣dx
dt

∣∣2 dτ} , (8.3)

where

∫x(t)=x
x(s)=y Dx(τ ) exp

{
im
2�

∫ t
s

∣∣dx
dt

∣∣2 dτ
}
=:

lim
N→∞

[
m

2πi�ε(N)

]3N/2

∫
R3

N∏
j=1

dxj exp

{
i
�

N∑
j=1

[
m

2ε(N)
(xj − xj−1)

2
]}

,
(8.4)

with ε(N) = (t− s)/N .

Equation (8.4) represents an attempt to define an integral on the
space of continuous paths with values in R

3 (i.e., C
(
[s, t] : R

3
)
). This

approach has a number of well-known mathematical problems:

• The kernel K [x, t; y, s] and δ(x) are not in L2[R3], the
standard space for quantum theory.

• The kernelK [x, t; y, s] cannot be used to define a measure.

Notwithstanding these problems, the physics community has con-
tinued to make progress using this integral and have consistently ob-
tained correct answers, which have been verified whenever independent
(rigorous) methods were possible.

In response, the mathematics community has developed a large
variety of indirect methods to justify the integral. The recent book
by Johnson and Lapidus [JL] discusses many important contributions
from the literature.

If we want to retain the approach used by Feynman, the problems
identified above must be faced directly. Thus, the natural question
is: Does there exist a separable Hilbert space containing K [x, t; y, s]
and δ(x)? A positive answer is required if the limit in Eq. (8.4) is
to make sense. If we also want a space that allows us to include
the Feynman, Heisenberg, and Schrödinger representations, we must
require that the convolution and Fourier transform exist on the space
as bounded linear operators. This requirement is necessary, since the
convolution operator is needed for the path integral and the position
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and momentum operators, x,p, are canonically conjugate variables
(i.e., Fourier transform pairs).

8.4.2. Background. The properties of KS2[Rn] derived in Chap. 3
suggest that it is a perfect choice for the Feynman formulation. It
is easy to see that both the position and momentum operators have
closed, densely defined extensions to KS2[Rn]. A full theory requires
that the Fourier transform, F, and the convolution operator C (as
bounded linear operators) have extensions KS2[Rn] in order to ensure
that both the Schrödinger and Heisenberg theories have faithful repre-
sentations on KS2[Rn]. For this, we restate Theorem 5.15 as it applies
to KS2[Rn].

Theorem 8.7. Let A be a bounded linear operator on a Banach space
B ⊂ KS2. If B′ ⊂ KS2, then A has a bounded extension to L[KS2],
with ‖A‖KS2 ≤ k ‖A‖B with k constant.

We can now use Theorem 8.7 to prove that F and C, the Fourier
(transform) operator and the convolution operator respectively, de-
fined on L1[Rn], have bounded extensions to KS2[Rn].

Theorem 8.8. Both F and C extend to bounded linear operators on
KS2[Rn].

Proof. To prove our result, first note that C0[R
n], the bounded contin-

uous functions onRn which vanish at infinity, is contained inKS2[Rn].
Now F is a bounded linear operator from L1[Rn] to C0[R

n], so we can
consider it as a bounded linear operator from L1[Rn] toKS2[Rn]. Since
L1[Rn] is dense in KS2[Rn] and L∞[Rn] ⊂ KS2[Rn], by Theorem 8.7,
F extends to a bounded linear operator on KS2[Rn].

To prove that C has a bounded extension, fix g in L1[Rn] and define
Cg on L1[Rn] by:

Cg(f)(x) =

∫
g(y)f(x − y)dy.

Once again, since Cg is bounded on L1[Rn] and L1[Rn] is dense in
KS2[Rn], by Theorem 8.7 it extends to a bounded linear operator on
KS2[Rn]. Now use the fact that convolution is commutative to get
that Cf is a bounded linear operator on L1[Rn] for all f ∈ KS2[Rn].
Another application of Theorem 8.7 completes the proof. �
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We now return to M[Rn], the space of bounded finitely addi-
tive measures on R

n, that are absolutely continuous with respect to
Lebesgue measure.

Definition 8.9. A uniformly bounded sequence {μk} ⊂ M[Rn] is said

to converge weakly to μ (μn
w−→ μ), if, for every bounded uniformly

continuous function h(x),∫
Rn

h(x)dμn →
∫
Rn

h(x)dμ.

Theorem 8.10. If μn
w−→ μ in M[Rn], then μn

s−→ μ (strongly) in
KSp[Rn].

Proof. Since the characteristic function of a closed cube is a bounded
uniformly continuous function, μn

w−→ μ in M[Rn] implies that∫
Rn

Em(x)dμn →
∫
Rn

Em(x)dμ

for each m, so that limn→∞ ‖μn − μ‖KSp = 0. �

A little reflection gives:

Theorem 8.11. The space KS2[Rn] is a commutative Banach algebra
with unit.

Since KS2[Rn] contains the space of measures, it follows that all
the approximating sequences for the Dirac measure converge strongly
to it in the KS2[Rn] topology. For example, [sin(λ · x)/(λ · x)] ∈
KS2[Rn] and converges strongly to δ(x). On the other hand, the

function e−2πiz(x−y) ∈ KS2[Rn], so we can define the delta function
directly:

δ(x − y) =

∫
Rn

e−2πiz(x−y)dλn(z),

as an HK-integral.

It is easy to see that the Feynman kernel [FH], defined by (with
m = 1 and � = 1):

Kf [t,x ; s,B] =

∫
B
(2πi(t− s))−n/2 exp{i|x− y|2

/
2(t− s)}dy,

is in KS2[Rn] and ‖Kf [t,x ; s,B]‖KS � 1, while ‖Kf [t,x ; s,B]‖M = ∞
(the variation norm). Furthermore,

Kf [t,x ; s,B] =

∫
Rn

Kf [t,x ; τ, dz]Kf [τ, z ; s,B], (HK-integral).
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Remark 8.12. It is not hard to show that Kf [t,x ; s,B] generates a
finitely additive set function defined on the algebra of sets B, such
that EB(|y|) is of bounded variation in the |y| variable.
Definition 8.13. LetPk = {t0, τ1, t1, τ2, · · · , τk, tk} be a HK-partition
of the interval [0, t] for each k, with limk→∞ μk = 0 (mesh). Set
Δtj = tj − tj−1, τ0 = 0 and, for ψ ∈ KS2[Rn], define

∫ x(τ)=x(t)

x(τ)=x(0)

Kf [Dλx(τ )] = e−λt

[[λt]]∑
k=0

(λt)k

k!

{
k∏

j=1

∫

Rn

Kf [tj ,x(τj) ; tj−1, dx(τj−1)]

}
,

and
∫ x(τ)=x(t)

x(τ)=x(0)
Kf [Dx(τ )]ψ[x(0)] = lim

λ→∞

∫ x(τ)=x(t)

x(τ)=x(0)
Kf [Dλx(τ )]ψ[x(0)]

= lim
λ→∞

e−λt
[[λt]]∑
k=0

(λt)k

k!

⎧⎨
⎩

k∏
j=1

∫

Rn

Kf [tj ,x(τj) ; tj−1, dx(τj−1)]ψ[x(0)]

⎫⎬
⎭,

(8.5)

whenever the limit exists.

It is easy to see that the limit exists in KS2[Rn], whenever we have
a reproducing kernel.

Theorem 8.14. The function ψ(x) ≡ 1 ∈ KS2[Rn] and
∫ x(τ)=x(t)

x(τ)=y(s)

Kf [Dx(τ)]ψ[y(s)] = Kf [t,x ; s,y] = 1√
[2πi(t−s)]n

exp{i|x− y|2/2(t − s)}.

The above result is what Feynman was trying to obtain (in this
simple case).

8.5. Examples and Extensions

In this section, we provide a few interesting examples. Those with
broader interest should consult the references below.

Independent of the mathematical theory, the practical develop-
ment and use of path integral methods has proceeded at a continuous
rate. At this time, it would be impossible to give a survey of the many
different types of path integrals and the problems that they have been
used to solve. It would be a separate task to provide a reasonable
set of references on the subject. However, the following books are sug-
gested for both the material they cover and the references contained in
them: Albeverio and H∅egh-Krohn [AH], Cartier and Dewitt-Morette
[CDM2], Feynman and Hibbs [FH], Grosche and Steiner [GS], and
Kleniert [KL].
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8.5.1. The Diffusion Problem. For our first example, let H =

L2[R3, dμ], where dμ = e−π|x|2dλ3(x). The form is nonstandard, but
has advantages as discussed in Chap. 2. Consider the problem:

∂

∂t
u(t,x) = Δu(t,x)− x · ∇u(x, t), u(0,x) = u0(x).

This is the Ornstein–Uhlenbeck equation, with solution (T (t)u0)(x) =
u(t,x), where:

(T (t)u0)(x) =
1√

[(1− e−t)]3

∫

R3

exp

⎧⎪⎨
⎪⎩
−π

(
e−t/2x− y

)2

(1− e−t)

⎫⎪⎬
⎪⎭

u0(y)dλ3(y).

The operator T (t) is a (analytic) contraction semigroup, with genera-
tor D2 = Δ− x · ∇. It follows that the kernel is given by

Kf [t,x ; 0, dy] =
1√

[(1− e−t)]3
exp

{
−π

(
e−t/2x− y

)2
(1− e−t)

}
dλ3(y).

By Theorem 8.7 T (t) can be extended to KS2(R3), as a C0-contraction
semigroup. It now follows that

u(t,x) =

x(τ)=x(t)∫
x(τ)=y(0)

Kf [Dx(τ)]u[y(0)].

For a more interesting example, let B be a nondegenerate 3 × 3 ma-
trix with eigenvalues λ such that Re(λ) < 0, with Q strictly positive
definite and set

Qt =

∫ t

0
esBQesB

∗
ds.

In this case, H = L2[R3, dμ], with

μ(dx) =
1√

(detQ∞
exp

{−π
〈
Q−1

∞ x,x
〉}

dλ3(x),

and we consider the problem:

∂

∂t
u(t,x) = Δu(t,x)−Bx · ∇u(x, t), u(0,x) = u0(x).

This is also a version of the Ornstein–Uhlenbeck equation. (However,
since we don’t assume that B is symmetric, A = Δ−Bx · ∇ need not
be self-adjoint.) The explicit solution is generated by the contraction
semigroup (T (t), where:

(T (t)u0(x) =
1√

detQt

∫

R3

exp
{
−π

〈
Q−1

t

(
etBx− y

)
, etBx− y

〉}
u0(y)dλ3(y).
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It follows that

Kf [t,x ; 0, dy] =
1√

detQt
exp

{−π
〈
Q−1

t

(
etBx− y

)
, etBx− y

〉}
dλ3(y).

For this equation, we can also replace R
3 by a separable Hilbert space

H and λ3 by cylindrical Gaussian measure μ. In this case, B is a
symmetric bounded linear operator with spectrum σ(B) < 0 and 0 <
Q∞ < ∞ is strictly positive definite. Those with interest in this subject
can consult Lorenzi and Bertoldi [LB] for the finite-dimensional case
and De Prato [DP] for Hilbert space. In either case, the path integral
representation is defined on KS2[R3] or KS2[H].

8.5.2. Wave Equation. For this example, write the standard wave
equation as

∂2ψ

∂t2
− Ic2Δψ =

1

�2

[
i�

∂

∂t
+ β

√
−c2�2Δ

] [
−i�

∂

∂t
+ β

√
−c2�2Δ

]
ψ = 0.

In electromagnetic theory, we only see the wave equation on the left
and assume that I = 1. On the right, the β matrix can be of any
finite order. Thus, the above equation introduces a rather interesting
relationship between quantum theory and the classical wave equation,
namely the massless square root equation for any spin. In order to
solve this equation, we follow Lieb and Loss [LL], in Chap. 3, and use
imaginary time to get:

ψ(x, t) =
itβ

π2
lim
ε→0

∫
R3

ψ0(y)dy[
|x− y|2 − t2

]2
+ ε2

= U(t)ψ0(x), (8.6)

where ψ0(x) is the given initial data at time t = 0. The convergence
factor is necessary for the integral representation because of the light
cone problem (in the Lebesgue sense). This is not necessary if we
interpret it in the Henstock–Kurzweil sense. We could also compute
the solution directly by using the fact that the square root operator
is a self-adjoint generator of a unitary group. However, extra work
would still be required to obtain the integral representation.

We can now use (8.6) to provide a new representation for the
solution of the wave equation. Assume that ψ(x, t) |t=0 = ψ0(x)

and ψ̇(x, t) |t=0 = ψ̇0(x) are given (smooth) initial data. Let A =

β
√−c2�2Δ and ϕ(x, t) = (−i�∂t +A)ψ(x, t). It follows from this

that

ϕ(x, 0) = ϕ0 = i�ψ̇0(x) +Aψ0(x).
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We must now solve:

(i�∂t +A)ϕ(x, t) = 0, ϕ(x, 0) = ϕ0.

The solution to this problem is easily seen to be (8.6), with t replaced
by −t, so that ϕ(x, t) = U(−t)ϕ0. Using this result, we can now get
our new representation. The solution to the wave equation has been
reduced to solving:

(−i�∂t +A)ψ(x, t) = U(−t)ϕ0.

Using the method of variation of constants, we have: (see Sell and You
[SY], p. 7).

ψ(x, t) = U(t)ψ0 +

∫ t

0
U(t− s)U(−s)ϕ0(x)ds.

Combining terms, we have:

ψ(x, t) = U(t)ψ0 +

∫ t

0
U(t− 2s)ϕ0(x)ds. (8.7)

It is now easy to check that ψ(x, 0) = ψ0(x) and that ψ̇(x, 0) = ψ̇0(x).
We can now use Eq. (8.6) to obtain the explicit representation for a
general solution to the wave equation:

ψ(x, t) = − itβ

π2
lim
ε→0

∫
R3

ψ0(y)dy[
|x− y|2 − t2

]2
+ ε2

+

∫ t

0

⎧⎪⎨
⎪⎩

i(t− 2s)β

π2
lim
ε→0

∫
R3

ϕ0(y)dy[
|x− y|2 − (t− 2s)2

]2
+ ε2

⎫⎪⎬
⎪⎭ ds.

(8.8)

We have only worked in R
3. For n arbitrary, the only change (other

than initial data) is the kernel. In the general case, we must replace
Eq. (8.6) by

ψ(x, t) =
itβΓ

[
n+1
2

]
π(n+1)/2

lim
ε→0

∫
Rn

ψ0(y)dy[
|x− y|2 − t2

] (n+1)
2

+ ε2
.

Thus, the method is quite general. Recall that the standard approach
is based on the method of spherical means (see Evans [EV]). This
approach requires different computations depending on the dimension
(even or odd). It follows that our approach has some advantages. The
path integral representation is straightforward.
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8.5.3. The Square-Root Klein–Gordon Equation. The fourth
example is taken from [GZ4] and provides another example that is not
directly related to a Gaussian kernel. It is shown that if the vector
potential A is constant, μ = mc/�, and β is the standard beta matrix,
(I,O : O,−I), then the solution to the equation for a spin 1/2 particle
in square-root form,

i�∂ψ(x, t)/∂t =

{
β

√
c2
(
p− e

cA
)2

+m2c4
}
ψ(x, t), ψ(x, 0) = ψ0(x),

is given by:

ψ(x, t) = U[t, 0]ψ0(x) =

∫
R3

exp

{
ie

2�c
(x− y) ·A

}
Kf [x, t ; y, 0]ψ0(y)dy,

where

Kf [x, t ; y, 0] =
ctμ2β

4π

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−H
(1)
2

[
μ(c2t2−||x−y ||2)1/2

]

[c2t2−||x−y ||2] , ct < −‖x− y‖ ,
−2iK2

[
μ(||x−y ||2−c2t2)

1/2
]

π[||x−y ||2−c2t2] , c |t| < ‖x− y‖ ,
H

(2)
2

[
μ(c2t2−||x−y ||2)1/2

]

[c2t2−||x−y ||2] , ct > ‖x− y‖ .
The function K2( · ) is a modified Bessel function of the third kind of

second order, while H
(1)
2 , H

(2)
2 are the Hankel functions (see Grad-

shteyn and Ryzhik [GRRZ]). Thus, we have a kernel that is far from
standard. To our knowledge, this representation is new.

8.5.4. Semigroups, Kernels, and Pseudodifferential Opera-
tors. In this section, we investigate the general question of the ex-
istence of relations of the form:

U(t)φ(x) =

∫
Rn

K(x, t : y,0)φ0(y)dy, (8.9)

between a semigroup of operators U(t), t ∈ R and a kernel K. We
observe that if a kernel exists, then the semigroup property automat-
ically induces the reproducing property of the kernel and vice versa.
Equation (8.9) also leads to a discussion of the close relationship be-
tween kernels and the theory of pseudodifferential operators. In this
section we show how to associate a reproducing kernel with a large
class of semigroups U(t). A more detail discussion of pseudodifferen-
tial operators can be found in Treves [TR], Kumano-go [KG], Taylor
[TA], Cordes [CO], or Shubin [SHB].
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Pseudodifferential operators are a natural extension of linear par-
tial differential operators and interest in them grew out of the study
of singular integral operators like the one induce by the square-root
operator. The basic idea is that the use of pseudodifferential operators
allows one to convert the theory of partial differential equations into
an algebraic theory for the characteristic polynomials, or symbols, of
the differential operators by means of Fourier transforms.

We begin our study with the definition of hypoelliptic pseudodif-
ferential operators of class Sm

ρ, δ and investigate their basic properties.
As noted above, we confine our discussion to Euclidean spaces, Rn,
and only consider those parts that pertain to the construction of ker-
nel representations. (Readers interested in more general treatments
can consult the cited references.)

Definition 8.15. Recall that a complex-valued function f defined on
R
n is a Schwartz function (f ∈ S(Rn) or S) if, for all multi-indices α

and β, there exist positive constants Cα,β such that

sup
x∈Rn

∣∣∣xα∂βf(x)
∣∣∣ = Cα,β < ∞.

In what follows, R
n
x denotes n-dimensional space in the x vari-

able. For continuity with the literature, we keep the standard notation,
where one works on the tangent space of a differential manifold.

Definition 8.16. Let p(x, η) be a C∞ function on R
n
x × R

n
η .

(1) We say that p(x, η) is a symbol of class Sm
ρ,δ (n ∈ N, 0 ≤ δ ≤

ρ ≤ 1, δ < 1) if, for any multi-indices α, β, there exists a
constant Cα,β such that∣∣∣p(α)(β)(x, η)

∣∣∣ = Cα,β 〈η〉m+δ|β|−ρ|α| ,

where

p
(α)
(β)(x, η) = ∂α

ηD
β
xp(x, η), 〈η〉 =

√
1 + ‖η‖2, |α| =

∑n

i=1
αi,

∂α
η = ∂α1

η1 · · · ∂αn
ηn , Dβ

x = Dβ1
x1
· · ·Dβn

xn
and Dxj

= −i
∂

∂xj
.

Also, we set

S−∞
ρ,δ =

∞⋂
m=1

Sm
ρ,δ and S∞

ρ,δ =

∞⋃
m=1

Sm
ρ,δ.
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(2) A linear operator P : S(Rn
x) → S(Rn

x) is said to be a pseu-
dodifferential operator with symbol p(x, η) of class Sm

ρ,δ if, for

u ∈ S(Rn
x), we can write Pu(x) as

Pu(x) =

∫
Rn

eπix·ηp(x, η)û(η)dη,

where

û(η) = F(u)(η) =

∫
Rn

e−πix·ηu(x)dx

is the Fourier transform of u(x).

Whenever m ≤ m′, ρ′ ≤ ρ, δ ≤ δ′, for any ρ and δ, we have
Sm(= Sm

1,0) ⊂ Sm
ρ,δ ⊂ Sm′

ρ′,δ′ . It follows that

∞⋂
m=1

Sm
ρ,δ =

∞⋂
m=1

Sm
1,0,

so that S−∞ =
⋂∞

m=1 S
m
ρ,δ. For p(x, η) ∈ Sm

ρ,δ we define the family of

seminorms |p|(m)
l , l = 0, 1, . . . by

|p|(m)
l = max

|α+β|=l
sup

R
n
x×R

n
η

{∣∣∣p(α)(β)(x, η)
∣∣∣ 〈η〉(m+δ|β|−ρ|α|)

}
.

Then Sm
ρ,δ is a Fréchet space with these seminorms, and we have, for

any p(x, η) ∈ Sm
ρ,δ:∣∣∣p(α)(β)(x, η)

∣∣∣ � |p|(m)
|α+β| 〈η〉(m+δ|β|−ρ|α|) .

We say that a set B ⊂ Sm
ρ,δ is bounded in Sm

ρ,δ if sup
p∈B

{
|p|(m)

l

}
< ∞.

For p(x, η) ∈ Sm
ρ,δ we can represent Pu(x), u ∈ S(Rn), in terms of

oscillatory integrals. These are integrals of the form:

Af(x) =

∫
Rn

eπis(x,η)a(x, η)f̂ (η)dη,

where s(x, η) is called the phase function and a(x, η) is called the am-
plitude function. These functions were first introduced by Lax [LX1]
and used to construct asymptotic solutions of hyperbolic differential
equations. (In the hands of Hörmander [HO], this later led to the
(related) theory of Fourier integral operators.)

We are interested in a restricted class of these integrals.
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Definition 8.17. We say that a C∞ function a(ζ,y), (ζ,y) ∈ R
2n
ζ,y =

R
n
ζ × R

n
y belongs to the class Am

δ,τ (m ∈ N, 0 ≤ δ < 1, 0 ≤ τ) if, for
any multi-indices α, β, there exists a positive constant Cα,β such that∣∣∣∂α

ζ ∂
β
ya(ζ,y)

∣∣∣ � Cα,β 〈ζ〉(m+δ|β|) 〈y〉τ , l = |α+ β| .
We set

A =
⋃

0�δ<1

∞⋃
m=−∞

⋃
0�τ

Am
δ,τ .

Then we have

Theorem 8.18. For a(ζ,y) ∈ Am
δ,τ , we define the seminorms |a|l , l =

0, 1, . . . , by

|a|l = max
|α+β|�l

sup
ζ,y

{∣∣∣∂α
ζ ∂

β
ya(ζ,y)

∣∣∣ 〈ζ〉−(m+δ|β|) 〈y〉τ
}
.

(1) Then Am
δ,τ is a Frechet space and for a(ζ,y) ∈ Am

δ,τ we have∣∣∣∂α
ζ ∂

β
ya(ζ,y)

∣∣∣ � |a|l 〈ζ〉(m+δ|β|) 〈y〉τ , l = |α+ β| .

(2) If a, a1, a2 ∈ A, then ∂α
η ∂

β
ya, a1 + a2, a1a2 ∈ A.

Definition 8.19. We say that B ⊂ A is a bounded subset of A if there
exists Am

δ,τ such that

B ⊂ Am
δ,τ and sup

a∈B
{|a|l} < ∞

for l ∈ {0} ∪N.

Definition 8.20. For a(ζ,y) ∈ A, we define the oscillatory integral
Os(e

−πiyη̇a) =: Os by

Os = lim
ε→0

∫∫
R2n

e−πiy·ηχ(εη, εy)a(η,y)dydη,

where χ(η,y) ∈ S(R2n
η,y) and χ(0, 0) = 1.

It is shown in Kumano-go ([KG], p. 47) that Os is well defined and
independent of the choice of χ(η,y) ∈ S(R2n

η,y) satisfying χ(0, 0) = 1.

We note that when a(η,y) ∈ L1(R2n
η,y), the Lebesgue dominated con-

vergence theorem shows that Os coincides with the Lebesgue integral∫∫
e−πiy·ηa(η,y)dydη.
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A fundamental question is: under what general conditions can we
expect a given (time-independent) generator of a semigroup to have
an associated kernel? Here, we discuss a class of general conditions for
unitary groups. It will be clear that the results of this section carry
over to semigroups with minor changes.

Let A(x, p) denote a k × k matrix operator [Aij(x, p)], i, j =
1, 2, · · · , k, whose components are pseudodifferential operators with
symbols aij(x, η) ∈ C

∞(Rn×Rn), and we have, for any multi-indices
α and β, ∣∣∣a(α)ij(β)(x,η)

∣∣∣ � Cαβ(1 + |η|)m−ξ|α|+δ|β|, (8.10)

where

a
(α)
ij(β)(x,η) = ∂αpβaij(x,η),

with ∂l = ∂/∂ηl, and pl = (1/i)(∂/∂xl). The multi-indices are defined
in the usual manner by α = (α1, · · · , αn) for integers αj ≥ 0, and |α| =∑n

j=1 αj, with similar definitions for β. The notation for derivatives

is ∂α = ∂α1
1 · · · ∂αn

n and pβ = pβ1
1 · · · pβn

n . Here, m, β, and δ are
real numbers satisfying 0 ≤ δ < ξ. Equation (8.10) states that each
aij(x, η) belongs to the symbol class Sm

ξ,δ (see [SH]).

Let a(x,η) = [aij(x,η)] be the matrix-valued symbol for A(x,η),
and let λ1(x,η) · · ·λk(x,η) be its eigenvalues. If | · | is the norm in the
space of k × k matrices, we assume that the following conditions are
satisfied by a(x,η). For 0 < c0 < |η| and x ∈ R

n we have

(1)
∣∣∣a(α)(β)(x,η)

∣∣∣ ≤ Cαβ |a(x,η)| (1 + |η)|)−ξ|α|+δ|β| (hypoelliptic-
ity),

(2) λ0(x,η) = max
1�j�k

Reλj(x,η) < 0,

(3) |a(x,η)|
|λ0(x,η)| = O

[
(1 + |η|)(ξ−δ)/(2k−ε)

]
, ε > 0.

We assume that A(x,p) is a self-adjoint generator of an unitary group
U(t, 0), so that

U(t, 0)ψ0(x) = exp[(i/�)tA(x,p)]ψ0(x) = ψ(x, t)

solves the Cauchy problem

(i/�)∂ψ(x, t)/∂t = A(x,p)ψ(x, t), ψ(x, t) = ψ0(x). (8.11)
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Definition 8.21. We say that Q(x, t,η, 0) is a symbol for the Cauchy
problem (8.11) if ψ(x, t) has a representation of the form

ψ(x, t) =

∫
Rn

eπi(x,η)Q(x, t,η, 0)ψ̂0(η)dη. (8.12)

It is sufficient that ψ0 belongs to the Schwartz space S(Rn), which
is contained in the domain of A(x,p), in order that (8.12) makes sense.

Following Shishmarev [SH], and using the theory of Fourier integral
operators, we can define an operator-valued kernel for U(t, 0) by

K(x, t ; y, 0) =

∫
Rn

eπi(x−y,η)Q(x, t,η, 0)dη,

so that

ψ(x, t) = U(t, 0)ψ0(x) =

∫
Rn

K(x, t ; y, 0)ψ0(y)dy. (8.13)

The following results are due to Shishmarev [SH].

Theorem 8.22. If A(x,p) is a self-adjoint generator of a strongly
continuous unitary group with domain D, S(Rn) ⊂ D in L2(Rn), such
that conditions (1)–(3) are satisfied, then there exists precisely one
symbol Q(x, t,η, 0) for the Cauchy problem (8.11).

Theorem 8.23. If we replace condition (3) in Theorem 8.22 by the
stronger condition

(3′) |a(x,η)|
|λ0(x,η)| = O

[
(1 + |η|)(ξ−δ)/(3k−1−ε)

]
, ε > 0, |η| > c0,

then the symbol Q(x, t,η, 0) of the Cauchy problem (8.11) has the as-
ymptotic behavior near t = 0:

Q(x, t,η, 0) = exp[−(i/�)ta(x,η)] + o(1),

uniformly for x, y ∈ R
n.

Now, using Theorem 8.23 we see that, under the stronger condition
(3′), the kernel K(x, t ; y, 0) satisfies

K(x, t;y, 0) =

∫
Rn

exp[πi(x− y,η)− (i/�)ta(x,η)]dη

+

∫
Rn

exp[πi(x− y,η)]o(1)dη.

From the extension theory of Chap. 5, we see that A(x,p) has a self-
adjoint extension to KS2(Rn), which also generates a unitary group.
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This means that we can construct a path integral in the same (iden-
tical) way as was done for the free-particle propagator (i.e., for all
Hamiltonians with symbols in Sm

α,δ). Furthermore, it follows that the
same comment applies to any Hamiltonian that has a kernel repre-
sentation, independent of its symbol class. This partially proves a
conjecture made in [GZ3], to the effect that there is a kernel for every
“physically generated” semigroup.

8.6. Path Integrals II: Time-Ordered Theory

If we want to consider perturbations of the Hamiltonians with various
potentials, the normal analytical problems arise. In this case, we must
resort to the limited number of Trotter–Kato type results that may
apply on KS2(Rn). The general question is, “Under what conditions
can we expect a path integral to exist?”

8.6.1. Time-Ordered Path Integrals. The results of the last sec-
tion have direct extensions to time-dependent Hamiltonians, but the
operators need not commute. Thus, in order to construct general path
integrals, we must use the full power of the time-ordered operator
theory in Chap. 7. In this section, we show that the path integral
is a special case of the time-ordered operator theory as suggested by
Feynman and automatically leads to a generalization and extension of
Feynman–Kac theory.

Before proceeding, we should briefly pause for a few words about
progress on the development of the Feynman–Kac theory as it relates
to nonautonomous systems, evolution processes or time-dependent
propagators and their relationship to path integrals and quantum field
theory. The major developments in these areas along with many in-
teresting applications can be found in the relatively recent books by:
Jefferies [JE], Lorinczi [LO], Gulishashvili and Van Casteren [GC], and
Del Moral [MO].

Let U [t, a] be an evolution operator on KS2(R3), with time-
dependent generator A(t), which has a kernel K[x(t), t ; x(s), s]
such that:

K [x(t), t; x(s), s] =

∫
R3

K [x(t), t; dx(τ), τ ]K [x(τ), τ ; x(s), s] ,

U [t, s]ϕ(s) =

∫
R3

K [x(t), t; dx(s), s]ϕ(s).
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Now let U[t,s] be the corresponding time-ordered version defined on
FD2

⊗ ⊂ H2⊗, with kernel Kf [x(t), t; x(s), s]. Since U[t,τ ]U[τ ,s] =
U[t,s], we have:

Kf [x(t), t; x(s), s] =

∫
R3

Kf [x(t), t; dx(τ), τ ]Kf [x(τ), τ ; x(s), s] .

From our sum over paths representation for U[t, s], we have:

U[t, s]Φ(s) = lim
λ→∞

Uλ[t, s]Φ(s)

= limλ→∞ e−λ(t−s)
∞∑
k=0

[λ (t− s)]k

k!
Uk[t, s]Φ(s),

where

Uk[t, s]Φ(s) = exp

⎧⎨
⎩(−i/�)

k∑
j=1

∫ tj

tj−1

E[(j/λ), τ ]A(τ)dτ

⎫⎬
⎭Φ(s).

As in Sect. 8.1, we define Kf [Dλx(τ)] by:∫ x(τ)=x(t)

x(τ)=x(s)

Kf [Dλx(τ)]

=: e−λ(t−s)
n∑

k=0

[λ(t− s)]
k

k!

⎧⎨
⎩

k∏
j=1

∫
R3

Kf [tj ,x(tj) ; dx(tj−1), tj−1]|(j/λ)
⎫⎬
⎭,

where n = [|λ(t−s)|], the greatest integer in λ(t−s), and |(j/λ) denotes
that the integration is performed in the time-slot (j/λ).

Definition 8.24. We define the Feynman path integral associated
with U[t, s] by:

U[t, s]Φ(s) =

∫ x(τ)=x(t)

x(τ)=x(s)

Kf [Dx(τ)]Φ(s) = lim
λ→∞

∫ x(τ)=x(t)

x(τ)=x(s)

Kf [Dλx(τ)]Φ(s).

Theorem 8.25. For the time-ordered theory, whenever a kernel exists,
we have that:

lim
λ→∞

Uλ[t, s]Φ(s) = U[t, s]Φ(s) =

∫ x(τ)=x(t)

x(τ)=x(s)
Kf [Dλx(τ)]Φ[x(s)],

and the limit is independent of the space of continuous functions.

Let us assume that A0(t) and A1(t) are strongly continuous gen-
erators of C0-contraction semigroups, with a common dense domain
D(t), for each t ∈ E = [a, b], and let A1,ρ(t) = ρA1(t)R(ρ,A1(t)) be



8.6. Path Integrals II: Time-Ordered Theory 337

the Yosida approximator for the time-ordered version of A1(t), with
dense domain D = FD2

⊗ ∩ ⊗t∈ID(t). Define Uρ[t, a] and U0[t, a] by:

Uρ[t, a] = exp{(−i/�)

t∫
a

[A0(s) +A1,ρ(s)]ds},

U0[t, a] = exp{(−i/�)

t∫
a

A0(s)ds}.

Since A1,ρ(s) is bounded, A0(s) + A1,ρ(s) is a generator of a C0-
contraction semigroup for s ∈ E and finite ρ. Now assume thatU0[t, a]
has an associated kernel, so that U0[t, a] =

∫
R3[t,s] Kf [Dx(τ);x(a)]. We

now have the following general result, which is independent of the space
of continuous functions.

Theorem 8.26. (Feynman–Kac)* If A0(s)⊕A1(s) is a generator of
a C0-contraction semigroup, then

lim
ρ→∞Uρ[t, a]Φ(a) = U[t, a]Φ(a)

=

∫ x(τ)=x(t)

x(τ)=x(a)
Kf [Dx(τ)] exp{(−i/�)

τ∫
a

A1(s)ds]}Φ[x(a)].

Proof. The fact that Uρ[t, a]Φ(a) → U[t, a]Φ(a) is clear. To prove
that

U[t, a]Φ(a) =

∫ x(τ)=x(t)

x(τ)=x(a)
Kf [Dx(τ)] exp{(−i/�)

∫ t

a
A1(s)ds}Φ(a),

first note that, since the time-ordered integral exists and we are only
interested in the limit, we can write for each k

Uρ
k [t, a]Φ(a)

= exp

{
(−i/�)

∑k

j=1

∫ tj

tj−1

[
E[τj, s]A0(s) +E[τ ′j, s]A1,ρ(s)

]
ds

}
Φ(a),
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where τj and τ ′j are distinct points in the interval (tj−1, tj). Thus, we

can also write Uρ
k [t, a]Φ(a) as

Uρ
k[t, a]

= exp

⎧⎨
⎩−i

�

k∑
j=1

∫ tj

tj−1

E[τj , s]A0(s)ds

⎫⎬
⎭ exp

⎧⎨
⎩−i

�

k∑
j=1

∫ tj

tj−1

E[τ ′j , s]A1,ρ(s)ds

⎫⎬
⎭

=
k∏

j=1

exp

{
−i
�

∫ tj

tj−1

E[τj , s]A0(s)ds

}
exp

⎧⎨
⎩−i

�

k∑
j=1

∫ tj

tj−1

E[τ ′j , s]A1,ρ(s)ds

⎫⎬
⎭

=

k∏
j=1

∫
R3

Kf [tj ,x(tj) ; tj−1, dx(tj−1)]exp

⎧⎨
⎩−i

�

k∑
j=1

∫ tj

tj−1

E[τ ′j , s]A1,ρ(s)ds

⎫⎬
⎭ .

If we put this in our experimental evolution operator Uρ
λ[t, a]Φ(a) and

compute the limit, we have:

Uρ[t, a]Φ(a)

=

∫ x(τ)=x(t)

x(τ)=x(a)
Kf [Dx(τ)] exp

{
(−i/�)

∫ t

a
A1,ρ(s)ds

}
Φ(a).

Since the limit as ρ →∞ on the left exists, it defines the limit on the
right. �

8.6.2. Examples. In this section, we pause to discuss a few exam-
ples. Theorem 8.26 is somewhat abstract, so it may not be clear as
to its application. Our first example is a direct application of this
theorem, which covers all of nonrelativistic quantum theory (i.e., the
Feynman formulation of quantum theory).

Let. be the Laplacian on Rn and let V be any potential such that
A = (−�

2/2). + V generates an unitary group. Then the problem:

(i�)∂ψ(x, t)/∂t = Aψ(x, t), ψ(x, 0) = ψ0(x),

has a solution with a Feynman–Kac representation.

Our second example is more specific and is due to Albeverio and
Mazzucchi [AM]. Their paper provides an excellent view of the power
of the approach first introduced by Albeverio and H∅egh-Krohn [AH].
Let C be a completely symmetric positive definite fourth-order co-
variant tensor on R

n, let Ω be a symmetric positive definite n × n
matrix, and let λ be a nonnegative constant. It is known [RS1] that
the operator

Ā = −�
2

2 Δ+ 1
2xΩ

2x+ λC[x,x,x,x]
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is a densely defined self-adjoint generator of an unitary group on
L2[Rn]. Using a substantial amount of elegant analysis, Albeverio and
Mazzucchi [AM] prove that Ā has a path integral representation as the
analytic continuation (in the parameter λ) of an infinite dimensional
generalized oscillatory integral.

Our approach to the same problem is both simple and direct using
the results of the previous sections. First, since Ā = Ā∗ is densely
defined on L2[Rn], Ā has a closed densely defined self-adjoint ex-
tension A to KS2[Rn], which generates a unitary group. If we set

V = 1
2xΩ

2x+λC[x,x,x,x] and Vρ = V (I+ρV 2)−1/2, ρ > 0, it is easy
to see that Vρ is a bounded self-adjoint operator which converges to V
onD(V ). (This follows from the fact that a bounded (self-adjoint) per-
turbation of an unbounded self-adjoint operator is self-adjoint.) Now,

since −�
2

2 Δ generates a unitary group, Aρ = −�
2

2 Δ+Vρ also generates
one and converges to A on D(A). Let

A(τ) = ( ⊗̂
t�s>τ

Is)⊗A⊗ ( ⊗
τ>s�0

Is),

then A(t) generates a unitary group for each t and Aρ(t) converges

to A(t) on D[A(t)] ⊂ FD2
⊗. We can now apply Theorem 8.26 to get

that:

U[t, a]Φ

=

∫ x(τ)=x(t)

x(τ)=x(a)
Kf [Dx(τ)] exp{−(i/�)

∫ τ

a
V (s)ds}Φ

= lim
ρ→0

∫ x(τ)=x(t)

x(τ)=x(a)
Kf [Dx(τ)] exp{−(i/�)

∫ τ

a
Vρ(s)ds}Φ.

Under additional assumptions, Albeverio and Mazzucchi are able to
prove Borel summability of the solution in power series of the coupling
constant. With Theorem 7.25 of Chap. 7, we get the Dyson expansion
to any order with remainder.

8.7. Dyson’s First Conjecture

This section is the last one in the book for two reasons. First, our
original objective, leading to most of the work in the book, was to
provide an answer this conjecture. The second reason is that this
section does not provide any additional mathematics. It essentially
gives a physical reinterpretation of the mathematics developed earlier.
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At the end of his second paper on the relationship between the
Feynman and Schwinger–Tomonaga theories, Dyson explored the dif-
ference between the divergent Hamiltonian formalism that one must
begin with and the finite S-matrix that results from renormalization
(see [DY2]). He takes the view that it is a contrast between a real
observer and a fictitious (ideal) observer. The real observer can only
determine particle positions with limited accuracy and always gets fi-
nite results from his measurements. Dyson then suggests that “. . . The
ideal observer, however, using nonatomic apparatus whose location in
space and time is known with infinite precision, is imagined to be able
to disentangle a single field from its interactions with others, and to
measure the interaction. In conformity with the Heisenberg uncer-
tainty principle, it can perhaps be considered a physical consequence
of the infinitely precise knowledge of (particle) location allowed to the
ideal observer, that the value obtained when he measures (the interac-
tion) is infinite.” He goes on to remark that if his analysis is correct,
the problem of divergences is attributable to an idealized concept of
measurability. The purpose of this section is to develop the conceptual
and technical framework that will allow us to discuss this conjecture.

8.7.1. The S-Matrix. The objective of this section is to provide
a formulation of the S-matrix that will allow us to investigate the
mathematical sense in which we can believe Dyson’s conjecture.

In order to explore this idea, we work in the interaction representa-
tion with obvious notation. Replace the interval [t, 0] by [T,−T ], H(t)
by −i

�
HI(t), and our experimental evolution operator Uλ[T,−T ]Φ by

the experimental scattering operator (or S-matrix) Sλ[T,−T ]Φ, where

Sλ[T,−T ]Φ =

∞∑
n=0

(2λT )n

n!
exp [−2λT ]Sn[T,−T ]Φ, (8.14)

Sn[T,−T ]Φ = exp

⎧⎨
⎩−i

�

n∑
j=1

∫ tj

tj−1

E[τj, s]HI(s)ds

⎫⎬
⎭Φ, (8.15)

and HI(t) =
∫
R3 HI(x(t), t)dx(t) is the interaction energy. We now

give a physical interpretation of our formalism. Rewrite Eq. (8.14) as

Sλ[T,−T ]Φ

=

∞∑
n=0

(2λT )n

n!
exp

⎧⎨
⎩−i

�

n∑
j=1

∫ tj

tj−1

[E[τj , s]HI(s)− iλ�I⊗] ds

⎫⎬
⎭Φ.

(8.16)
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In this form, it is clear that the term −iλ�I⊗ has a physical inter-
pretation as the absorption of photon energy of amount λ� in each
subinterval [tj−1, tj] (cf. Mott and Massey [MM]). When we compute
the limit, we get the standard S-matrix (on [T,−T ]). It follows that
we must add an infinite amount of photon energy to the mathematical
description of the experimental picture (at each point in time) in or-
der to obtain the standard scattering operator. This is the ultraviolet
divergence and shows explicitly that the transition from the experi-
mental to the ideal scattering operator requires that we illuminate the
particle throughout its entire path. Thus, it appears that we have,
indeed, violated the uncertainty relation. This is further supported if
we look at the form of the standard S-matrix:

S[T,−T ]Φ = exp

{
(−i/�)

∫ T

−T
HI(s)ds

}
Φ (8.17)

and note that the differential ds in the exponent implies perfect in-
finitesimal time knowledge at each point, strongly suggesting that the
energy should be totally undetermined. If violation of the Heisenberg
uncertainty relation is the cause for the ultraviolet divergence, then as
it is a variance relation, it will not appear in first order (perturbation)
but should show up in all higher-order terms. On the other hand, if
we eliminate the divergent terms in second order, we would expect
our method to prevent them from appearing in any higher order term
of the expansion. The fact that this is precisely the case in quantum
electrodynamics is a clear verification of Dyson’s conjecture.

If we allow T to become infinite, we once again introduce an infinite
amount of energy into the mathematical description of the experimen-
tal picture, as this is also equivalent to precise time knowledge (at
infinity). Of course, this is the well-known infrared divergence and
can be eliminated by keeping T finite (see Dahmen et al. [DA]) or
introducing a small mass for the photon (see Feynman [FY3]). If we
hold λ fixed while letting T become infinite, the experimental S-matrix
takes the form:

Sλ[∞,−∞]Φ = exp

⎧⎨
⎩(−i/�)

∞∑
j=1

∫ tj

tj−1

E[τj , s]HI(s)ds

⎫⎬
⎭Φ,

∞⋃
j=1

[tj−1, tj ] = (−∞,∞) , & Δtj = λ−1.

(8.18)
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This form is interesting since it shows how a minimal time elim-
inates the ultraviolet divergence. Of course, this is not unexpected,
and has been known at least since Heisenberg [HE] introduced his
fundamental length as a way around the divergences. This was a
prelude to the various lattice approximation methods. The review
by Lee [LE] is interesting in this regard. In closing this section, we
record our exact expansion for the S-matrix to any finite order. Let

Hk = HI(s1) · · ·HI(sk) and let Φ ∈ D
[
(Q[∞,−∞])n+1

]
, we have

S[∞,−∞]Φ(−∞) =
n∑

k=0

(−i
�

)k ∞∫
−∞

ds1 · · ·
sk−1∫
−∞

dskHkΦ

+
(−i

�

)n+1

1∫
0

(1− ξ)ndξ

∞∫
−∞

ds1 · · ·
sn∫

−∞
dsn+1Hn+1S

ξ[sn+1,−∞]Φ.

(8.19)

It follows that (in a theoretical sense) we can consider the standard
S-matrix expansion to be exact, when truncated at any order, by
adding the last term of Eq. (8.19) to give the remainder. This result
also means that whenever we can construct an exact nonperturba-
tive solution, it always implies the existence of a perturbative solution
valid to any order. However, in general, only in particular cases can
we know if the series at some n (without the remainder) approximates
the solution.

In this section we have provided a precise formulation and proof
of Dyson’s conjecture that the ultraviolet divergence is caused by a
violation of the Heisenberg uncertainty relation at each point in time.

In closing, since the time of Dyson’s original work, a large amount
of progress has been made in understanding the mathematical and
physical foundations of relativistic quantum theory. (For a brief dis-
cussion including references for further reading, see Gill and Zachary
[GZ] and [GZ1].) However, many of the problems encountered by the
earlier workers are still with us in one form or another.
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Fréchet space, 11, 63, 64, 90, 335
Fredholm alternative, 177
Friedman, C.N., 303
Fubini, 81
Fujiwara, D., 279, 280, 296, 297
Fujiwara–Feynman algebra, 297
Fujiwara, I., 279, 280
Functional calculus, 228

G
Galdi, G.P., 141
Gauge, 120
Gelbaum, B.R., 45
Gelfand–Pettis integral, 154
Generalized Yosida, 209, 221, 293
Gil de Lamadrid, J., 45
Glimm, J., 305
Golden, M., xiii
Goldstein, J.A., 204, 299, 320
Gordon, R.A., 112, 117, 119, 333
Gradshteyn, I.S., 333

Grafakos, L., 144, 145, 199
Gram–Schmidt process, 226, 252,

253
Graph, 22, 94, 161, 167, 169, 198,

218, 221
Gravitational constant, 306
Green’s function, 128

Grosche and Steiner (GS), 329
Gross, L., 129
Gross–Steadman space, 129
Grothendieck, A., 34, 230, 232, 233
Group, 8, 10, 35, 50, 51, 63, 65, 97,

204, 213, 220, 222, 269–272,
296, 305, 331, 337, 338, 342

Guichardet, A., 248, 260
Gulishashvili and Van Casteren

(GC), 339

H
Hagg’s theorem, 281
Hahn–Banach, 17–19, 137, 227
Hahn decomposition, 7
Hake’s theorem, 116
Hausdorff, 3–5, 11, 224, 230
Heisenberg, W., 326, 327, 344–346
Helffer, B., 227, 228

Hellinger integral, 275
Henstock–Kurzweil integral

(HK-integral), 109–146,
153–155, 157, 283, 284, 289,
290, 328

Henstock, R., 109, 110, 115, 117, 200
Hibbs, A.R., 316, 329
Hilbert film, 265
Hilbert–Schmidt class, 182
Hilbert–Schmidt theorem, 177



350 Index

Hilbert space, 15, 16, 29, 31, 43, 50,
99, 100, 109, 124, 128–129, 131,
135, 140, 153–192, 195–198,
201, 204, 207, 208, 210, 220,
227, 230, 232, 233, 241, 242,
248, 258, 265, 267, 275, 320,
324, 326, 331

Hildebrandt, T.H., 111
Hille, E., 10, 156, 204, 210–212, 281,

290
Hille–Yosida theorem, 210, 281, 290

m-accretive, 168, 170, 212, 224
m-dissipative, 168, 170, 171, 208,

211–213, 218, 219, 221, 271, 288
Hindman, N., xiii
Hk-δ partition, 283, 287, 289, 290,

329
HK-integral. See Henstock–Kurzweil

integral (HK-integral)
Holder continuous, 320
Holder inequality, 85
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Poincaré, H., 280, 281, 301, 303



352 Index

Polar decomposition
m-accretive, 168, 170, 171, 222,

224
m-dissipative, 168, 170, 171, 208,

211–213, 218, 219, 271, 288
Polish group, 51
Pontryagin duality, 97, 98, 269
Pontryagin, L., 50, 97, 98, 269
Prikry, K., 111
Probability measure, 7, 50, 74–79,

260, 273, 275, 280
Product measure, 50, 81–83
Projection operator, 16, 141, 168,

175, 182, 183, 186–190, 263
Pseudo differential operators, 333,

334, 337

Q
Quantum electrodynamics, 300, 305,

319
Quantum field, 295, 300, 339
Quantum mechanics, 109
Quasi-convergent, 242, 245, 248,

255, 260, 264
Quasi-reflexive, 223

R
Radon measure, 7, 61, 63, 137, 224
Radon–Nikodym theorm, 80, 81, 274
Reasonable velocity vector field, 143
Reed, M., 2, 10, 25, 248, 270
Reed, M.C., 270
Reflexive space, 128, 182, 230, 232,

244
Relativistic quantum theory, 280,

281, 342, 346
Residual spectrum, 163, 164
Resolution of identity, 183
Resolvent set, 163–166, 169, 171,

188, 205, 207, 208, 214, 215,
228, 282, 290, 323

Restricted bounded variation
strong variation, 117
weak variation, 117

Retherford, J.R., 232
Riemann–Stieltjes integral, 158
Riesz potential, 201
Riesz representation theorem, 160,

162

Riesz–Schauder theorem, 177
Riesz transform, 199, 201
Ritter and Hewitt, 51
Ross, S.M., 311
Royden, H.L., 2, 81, 160
Rudin, W., 2, 10, 25, 97, 160
Ryan, R., 33
Ryzhik, I.M., 333

S
Saks, S., 117, 119
S-basis, 24–26, 50, 66–69, 74, 79, 84,

86, 89, 91, 96, 98, 99, 103,
195–197, 203, 223, 226, 230,
231, 242, 248, 251, 262, 266, 273

Schatten class, 181–182, 230, 231
Schatten, R., 34, 35, 38, 45, 181,

182, 223, 230–233, 279
Schauder basis, 23, 36, 37, 43, 45, 66
Schwartz, J.T., 2, 10, 74, 86, 89–96,

111, 132, 186, 227, 230, 334, 338
Schwartz space, 50, 86, 89–97, 338
Schweber, S.S., 300
Schwinger program, 279, 324, 344
Schwinger theory, 279, 324, 344
SDp spaces, 132, 139, 140
Second category, 19–21
Second Dyson conjecture, 300–305
Segal, R., 34, 35, 181, 182, 223,

230–234, 279
Self-adjoint, 16, 128, 130, 131, 168,

169, 171, 177, 178, 183,
185–190, 201, 202, 213, 222,
224–228, 231, 270, 300, 303,
321, 330, 331, 337, 338, 343

Self-conjugate, 222
Sell and you, 143, 332
Semigroups of operators, 195,

203–222
Separable space, 12, 23, 35–38, 40,

84, 100, 109, 110, 128, 129, 153,
168, 204, 220, 223, 229, 232,
260, 265, 269, 326, 331

Sets, 2–6, 19, 22, 30, 34, 49, 50, 52,
53, 55–61, 63, 64, 67, 70, 71, 81,
118, 121–124, 128, 184, 189,
191, 227, 242, 248, 259, 260, 329

Sharp maximal function, 144
Shishmarev, I.A., 338



Index 353

Shubin, M.A., 333
σ−algebra, 5, 6, 34, 40, 52, 54, 62,

67, 80, 81, 97, 224, 260
σ−finite, 7, 40, 43, 44, 51, 62–64, 68,

80, 81, 224
Signed measure, 7, 159

Simon, B., 1, 2, 10, 25, 232, 233, 248
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