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    Chapter 7   
 Extrinsic Sensory Innervation of the Gut: 
Structure and Function                     

     Simon     Brookes     ,     Nan     Chen    ,     Adam     Humenick    ,     Nick     J.     Spencer    , 
and     Marcello     Costa   

         Extrinsic Afferents 30 Years Ago 

 It was known since the early 1800s that the  dorsal roots   largely contain sensory 
fi bres, whereas ventral roots are primarily motor. In fact, some visceral afferents had 
been shown to project in the ventral roots in the 1970s (Ryall and Piercey  1970 ; 
Clifton et al.  1976 ; Coggeshall and Ito  1977 ). The fi rst recordings of visceral affer-
ent neurons were from vagal afferents to the stomach by Iggo and Paintal in the 
early 1950s (Paintal  1954 ; Iggo  1955 ). Their recordings identifi ed a class of low- 
threshold,  tension-sensitive afferents   to the upper gut. A few years later, a distinct 
class of  mucosal  , chemosensitive vagal afferent fi bres to the stomach was identifi ed 
(Clarke and Davison  1978 ). This indicated that multiple functional classes of extrin-
sic visceral sensory fi bres might exist, each encoding different types of mechanical 
and chemical stimuli. Early recordings from mesenteric nerves indicated that the 
 spinal afferent   innervation of the gut contained sensory units with properties that 
differed from vagal afferents (Bessou and Perl  1966 ). Many of the high threshold 
spinal fi bres had branches associated with mesenteric arteries (Morrison  1973 ; 
Floyd and Morrison  1974 ). Further studies showed that these same fi bres were 
responsive to hypoxia (Longhurst and Dittman  1987 ) and to a wide range of mediators 
released during damage and infl ammation (Blackshaw and Gebhart  2002 ). Vagal 
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and spinal afferent neurons were directly compared in the opossum oesophagus 
(Sengupta et al.  1992 ), showing clear differences in mechanosensitive responses, 
with many vagal afferents being saturating mechanoreceptors, while splanchnic affer-
ents tended to have higher thresholds and a wider dynamic range (Sengupta  2000 ). 
A range of similar studies led to a widespread acceptance that spinal afferent pathways 
contain more neurons with nociceptor-like responses than vagal pathways (Berthoud 
et al.  2004 ; Beyak et al.  2006 ; Grundy et al.  2006 ; Brierley et al.  2012 ).  

    Classes of Visceral Afferents: The Last Three Decades 

 Studies in the last 30  y  ears have added considerably to our understanding of the 
structure-function relationship of extrinsic sensory nerves to the gut. Molecular bio-
logical techniques have driven a revolution in understanding of the ion channels, 
receptors, second messenger systems and genetics of sensory neurons. However, 
this review will be restricted to a few key papers that have improved our under-
standing of  struct  ure-function relationships, specifi cally.  

     Vagal and Sacral   Sensory Pathways 

 Anatomical studies in the early to mid 1990s, using tracers injected into the nodose 
ganglion, revealed both the morphology and extent of vagal afferent nerve endings 
in the gut wall (Berthoud et al.  1995 ,  1997 ; Fox et al.  2000 ). Systematic recordings 
showed that vagal mechanoreceptors are not all low threshold saturating fi bres: 
there are also wide dynamic range endings too, at least in the oesophagus (Yu et al. 
 2005 ). The chemosensory afferents in vagus nerve have been shown to be acti-
vated by release of mediators from entero-endocrine cells (Blackshaw and Grundy 
 1990 ; Eastwood et al.  1998 ). Different classes of spinal afferents can be distin-
guished by sensitivity to distension, mucosal stroking and strong compression 
(Lynn and Blackshaw  1999 ). During this period, it was shown that there are differ-
ences in the spinal afferents that innervate the rectum (via sacral/pelvic pathways) 
compared to the colon (via splanchnic pathways). For example, a large population 
of low threshold mechanoreceptors innervates the rectum: these are much sparser 
in the colon and splanchnic pathways (Lynn et al.  2003 ). Systematic studies 
extended these fi ndings, showing that there were signifi cant differences in both 
mechanosensitivity and chemosensitivity (Brierley et al.  2004 ,  2005 ) of spinal 
afferents in pelvic and splanchnic pathways to the mouse large intestine. The 
upper gut and the rectum both receive prominent parasympathetic efferent inner-
vation—from vagal and sacral pathways respectively. Similarly, both upper and 
lower gut are innervated by specialised afferents (from vagal and sacral ganglia) 
which include many low-threshold mechanoreceptors. These are strongly acti-
vated during normal physiology and presumably are responsible for vago-vagal 
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and sacral parasympathetic refl exes involved in gastric accommodation and defae-
catory behaviours respectively.  

    Vascular Afferents 

 One specifi c class of spinal afferents is particularly signifi cant: these are higher 
threshold sensory neurons that have endings closely associated with mesenteric 
 blood vessels   (Bessou and Perl  1966 ; Morrison  1973 ; Floyd and Morrison  1974 ). 
Immunohistochemical studies showed that these neurons (and many other 
nociceptor- like cells) have a distinct chemical coding, containing immunoreactivity 
for the neuropeptides CGRP and a tachykinin (Gibbins et al.  1985 ). This fi tted 
nicely with long-established fi nding that sensory  neurons   can cause peripheral vaso-
dilation (Bayliss  1901 ), via the release of CGRP (Kawasaki et al.  1988 ). Studies 
tracing the pathways of these “vascular afferents” showed that they are not restricted 
to mesenteric vessels—they also innervate intramural blood vessels, particularly in 
the submucosa (Song et al.  2009 ). Their endings on blood vessels are sensitive to 
distortion of the vessel (Humenick et al.  2015 ) and to distension of the gut wall; 
these neurons appear to function as medium-to-high threshold mechanonociceptors 
(Song et al.  2009 ). Furthermore, they often have multiple receptive fi elds, spread 
over several centimetres of bowel (Berthoud et al.  2001 ) with the same neuron 
innervating both intramural and extramural blood vessels (Song et al.  2009 ). This 
provides a fi rm anatomical foundation for the observation that large distensions of 
the bowel cause upstream vasodilation of mesenteric arteries via an  axon refl ex   
(Meehan and Kreulen  1992 ). These same vascular afferents are sensitive to a wide 
range of mediators released by infl ammation and by  cell damage  , thus they function 
as sophisticated polymodal nociceptors, alerting the central nervous system about 
actual or potential damage to the gut wall, while simultaneously triggering a protec-
tive hyperaemia. 

 In many organs, including the gut, populations of sensory fi bres exist that cannot 
be activated by conventional mechanical and/or chemical stimuli; these are so- 
called “silent afferents”. In the  gastrointestinal tract  , application of mediators asso-
ciated with damage and infl ammation acutely cause sensitisation of many visceral 
sensory neurons (Su and Gebhart  1998 ). In some cases “ silent afferents  ” then 
become mechanically sensitive (Feng and Gebhart  2011 ). Experimental colitis also 
induces chronic hypersensitivity of some classes of visceral afferents, which out-
lasts the period of infl ammation. These include vascular afferents with “serosal or 
 mesenteric  ” endings (Hughes et al.  2009 ). Specialised low threshold rectal afferents 
are not sensitised to the same degree (Lynn et al.  2008 ). There is also evidence that 
experimental infl ammation chronically activates “silent afferents” at least some of 
which are mechanically-insensitive vascular (“serosal”) afferents (Feng et al.  2012 ). 
Potentially, this may explain the hypersensitivity associated with infl ammatory con-
ditions of the bowel, since more nociceptors become capable of responding to 
mechanical stimuli and each nociceptor’s response is exaggerated. Low-level 
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infl ammatory mechanisms may occur in functional bowel disorders, including 
 Irritable Bowel Syndrome (IBS)      (Wahnschaffe et al.  2001 ; Tornblom et al.  2002 ; 
Barbara et al.  2004 ). Responses to infl ammatory mediators are likely to be impor-
tant in generating pain in these conditions.  

    Morphological Studies of Afferent Nerve Endings 

 Some of the work in our laboratory in the last 15 years has characterised structure- 
function relationships of extrinsic visceral afferent neurons. Using a combination 
of rapid anterograde tracing (Tassicker et al.  1999 ) and in vitro afferent recording, 
we have identifi ed the  structure   of some visceral afferent nerve endings and trans-
duction sites in the gut wall. Using these  techniques  , the low threshold vagal 
mechanosensors in the stomach and oesophagus were shown to correspond to 
“ intraganglionic laminar endings  ” in the upper gut (Zagorodnyuk and Brookes 
 2000 ; Zagorodnyuk et al.  2001 ). Comparable low threshold mechanoreceptors 
were also described in the guinea pig rectum and shown to have similar fl attened 
“intraganglionic laminar endings” in myenteric ganglia to those of vagal tension 
receptors (Lynn et al.  2003 ). Studies on the high threshold mechanonociceptors 
associated with mesenteric blood vessels characterised their endings as branching 
varicose axons on both extramural (mesenteric) arteries and on intramural arteries 
in the submucosa (Song et al.  2009 ). This study also showed that there are few 
sensory endings in either the serosal membrane or the mesenteric membranes 
(apart from those on blood vessels) indicating that the terms “ serosal  ” afferent and 
“ mesenteric afferent  ” are not anatomically accurate. We have also characterised 
the enteric viscerofugal neurons that project out the gut wall via the mesenteric 
nerves, where their action potentials can be recorded alongside extrinsic afferent 
fi bres (Cervero and Sharkey  1988 ). They project to sympathetic ganglia (Kuramoto 
and Furness  1989 ; Messenger and Furness  1993 ) and, in the distal colorectum, to 
the  spinal cord   (Doerffl er-Melly and Neuhuber  1988 ). Combining dye fi lling with 
recordings from mesenteric nerves, it was shown that action potentials of vis-
cerofugal neurons can be recorded from mesenteric nerves (Hibberd et al.  2012b ) 
and that the cell bodies of these neurons are mechanosensitive (Hibberd et al. 
 2012a ). They also receive synaptic drive from other enteric neurons (Hibberd et al. 
 2014 ). Other classes of extrinsic afferents have also been characterised using these 
techniques, including mechanoreceptors innervating the  internal anal sphincter   
(Lynn and Brookes  2011 ). 

 Overall, in the last 30 years, structural and functional studies of extrinsic sensory 
nerves that innervate the  gastrointestinal tract   have made considerable progress. 
Discrete classes of neurons that encode specifi c combinations of mechanical and 
chemical stimuli and transmit this information to the central nervous system. 
Whether these “labelled lines” of afferents synapse onto different classes of second 
order neurons in the  spinal cord   seems likely, but has not yet been systematically 
investigated. The presence of multiple classes of extrinsic sensory neurons undoubt-
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edly complicates analysis of sensory signalling from the gut. However, it also raises 
the possibility that specifi c classes of afferents may be targeted by future therapeu-
tics to modify common disorders of intestinal functions.     
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