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Catastrophe Theory: Methodology,
Epistemology, and Applications
in Learning Science

Dimitrios Stamovlasis

Introduction

Catastrophe theory is a mathematical theory that addresses discontinuities and

qualitative changes in dynamical systems. It states that in a complex dynamical

system changes could be smooth and linear, but that they could also be nonlinear,

and contrary to the common sense anticipation, they might be surprisingly large

even though the input is quite small. In reality, we observe that except human

constructions, straight lines do not exist in nature neither in social and human

experience. The assumption of linearity in social science research, in both qualita-

tive and quantitative approaches, has been a philosophical convention, since it is the

simplest one to examine, by the methodological tools available thus far. Moreover

it facilitated the cause-and-effect notion of classical reductionistic interpretations.

Catastrophe theory is acknowledged for its descriptive and interpretative modeling

power and its uniqueness to be the most applicable methodological approach that

infers nonlinearity from cross-sectional empirical data. This chapter begins with a

brief history of its mathematical foundation and continues with the presentation of

catastrophe theory in its deterministic and stochastic forms. Subsequently, all the

current statistical methodologies are presented and the epistemology associated

with catastrophe theory and nonlinear dynamics is extensively discussed. Finally,

applications within the neo-Piagetian framework and science education research

are presented.
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A Brief History of Catastrophe Theory

The history of catastrophe theory begins in the decade of 1880s, when the famous

French mathematician Henri Poincaré founded bifurcation theorywhile working on
a qualitative analysis of systems by means of nonlinear differential equations.

Poincaré was interested in answering questions concerning the structural stability

of the solar system. The main question was whether the planets would escape to

infinity or crash into each other if they experience an external shock. He found that

small perturbations would either leave the system relatively unchanged or would

cause it to move in a very different mode. This signified the onset of bifurcation

theory, which led to singularity theory, as a special case of which catastrophe

theory appeared decades later. A substantial contribution on the development of the

above mathematical theories is credited also to the Russian mathematician Vladi-

mir Arnol’d (1988, 1992). However, the basic notions and the formulation were

Poincaré’s work: Bifurcation theory considers a dynamical system described by

ordinary differential equations. Certain points where the first derivative equals zero

characterize equilibrium states. At a critical point, called a singularity, this set of
equilibria bifurcates into separate branches. Note that such critical points are the

degenerate ones and they are not associated extrema.1 This splitting is a bifurcation

of the degenerate equilibrium and since it concerns equilibrium solutions it makes

the connection between the singularity of mapping and structural stability (Morse,

1931). A crucial step in the history of catastrophe theory was the invention that

there were many types of such functions and two of them are stable in all their

forms; later they become known as the fold and the cusp catastrophe (Whitney,

1955). The discovery of these two types of structurally stable singularities for

differentiable mappings was the first element of catastrophe theory, even though

at that time the emerging theory was not referred with this name.

In 1950s René Thom, a French mathematician, working on structural stability

introduced the notion of transversality and stated the corresponding theorem in

order to describe the transverse intersection properties of smooth maps (Thom,

1956). According to Thom’s theorem any smooth map may be deformed by an

arbitrary small amount into a map that is transverse to a given sub-manifold.2 The

transversality theorem facilitated the classification of singularities or elementary

catastrophes and Thom (1972) managed to define seven types of singularities,

which can be described by up to six dimensions and named them as the “elemen-

tary” catastrophes. For systems with dimensionality greater than eleven,

1 In mathematics, a critical point of a differentiable function is a point where the derivative is zero

(or undefined). Degeneracy refers to a property of a case in which an element of a class of objects is

qualitatively different from the rest of the class belonging to a different, usually simpler, class. A

singular point is a degenerate one and is not associated with usual non-degenerate extrema,

maximum or minimum, where the first derivative is also zero.
2 Transversality in Thom’s theorem refers to a generic property of the maps according to which any

smooth map f: X! Y may be deformed by an arbitrary small amount into a map that is transverse

to a given Z � Y sub-manifold (Arnol’d, 1988).
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singularities were difficult to be classified, because, as it was shown later by

Arnol’d and his coworkers, the number of categories becomes infinite (Arnol’d,
Gusein-Zade, & Varchenko, 1985).

Thom specified the basic mathematical formulation of the elementary catastro-

phe theory considering the behavior of a deterministic dynamical system that is

described by n state variables yj and r control variables bi. A potential function is

assumed to be operating on this set of state and control variables so that for all yj the
first derivative is zero, while the set of points where the derivative equals zero

constitutes the equilibrium manifold. The first catastrophe which attracted attention

was the cusp catastrophe with a three-dimensional equilibrium surface described by

one state variable as a function of two control variables. The topology suggests that

when the control variables change, even slowly, the state variable adjusts quickly

on the equilibrium manifold. The topological characteristics of the response surface

of catastrophe model exhibit a number of features, such as hysteresis, bimodality,

inaccessibility, sudden jumps, and divergence, which are presented in the following

section.

While the formulation of catastrophe theory was being developed in the area of

mathematics, in 1960s and 1970s, a number of applications appeared in the

literature of economics, psychology, and other behavioral and social science (see

Poston & Stewart, 1978; Woodcock & Davis, 1978). Most of the very early

applications were with low-dimensional catastrophes, in the sense of having a

few predictors, and their onset brought up methodological and epistemological

considerations with a plethora of concerns. One fundamental question in a continu-

ing debate over catastrophe theory was the existence of system’s potential function.
A potential function posits a symmetry condition that all cross-partial derivatives

are equal, which again singularity theory does not require. Within the ongoing

discussion it seemed also that the mathematics of Arnol’d had departed from

Thom’s original formulation and this became a further controversy which appeared

in late 1970s. Another issue of debate that appeared during the early discussions

was the issue of time. Since singularity theory is about mappings, unfolding in

space, and it might not involve time at all, the question arises about whether

catastrophe theory has to involve the time dimension. Thom strongly associated

catastrophe theory with dynamical systems, where time might be explicit a dimen-

sion as well. Since years earlier, Thom had argued that an elementary catastrophe

form might be embedded in a larger system, which incorporates time as variable.

He stressed that the discussion concerns dynamical systems evolving in S� t space,
where S is the structural characteristics and t is time. If the larger system is

transversal to the catastrophe set in the enlarged space, then time could be control

variable; however the argument was a theoretical one and hard to demonstrate in

empirical applications. Moreover, some crucial details were brought up in the

discussion when considering transitions between stable states. These are associated

with the notion of discontinuity and led to various misconceptions and furthermore

to criticism (Zahler & Sussman, 1977). On this matter, two conventions regarding

the way that the system moves between multiple equilibria were stated: the Max-
well and the delay convention. Note that the choice of one or the other convention
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might exclude a range of applications (i.e., in real systems behavior). Thom (1972)

clearly fostered Maxwell convention from the beginning, but this later proved to be

a problem, mainly because it appeared to be a weak point concerning the definition

of catastrophe theory itself. The intense dispute on this issue led Zeeman to state

later “there is strictly speaking no ‘catastrophe theory, but then this is more or less
true for any non-axiomatic theory in mathematics that attempts to describe nature”
(Zeeman, 1974, p. 623). Obviously, until that period the foundation of catastrophe

theory at mathematical level was not a completed issue; nevertheless, active

researcher in other fields rather intuitively had acknowledged a merit to it.

Catastrophe theory started to become popular around 1970s and a plethora of

applications appeared in many fields of research, which however followed a rather

descriptive and qualitative approach. It seemed a fascinated premise that could aid to

understand unforeseen changes in nature and society. The unstable sociocultural

environment that existed during that period, with radical political movements,

facilitated its dissemination and appeal among mainly intellectuals (Rosser, 2007).

This explosion of popularity triggered criticism and counteractions against the

emerging theory, which, at that time, existed only in its deterministic version. A lot

of theoretical, epistemological, and ultimatelymethodological questions were raised.

Catastrophe theory faced a severe condemnationmainly by Kolata (1977), Zahler

and Sussman (1977), and Sussman and Zahler (1978a, 1978b). Their criticism was

centered on the mathematical formulation and indirectly on its epistemology, which

was unclear at that period. The most striking points of criticism referred to (1) the

descriptive and qualitative approaches that were implemented; (2) the incorrect

ways of quantification; (3) the existence of potential function; (4) the exclusion of

time as a control variable in many applications; (5) the limited set of possible

elementary catastrophes; and (6) the incorrect verification of global forms from

local estimates (i.e., any surface can be fit to a set of points). The criticizing group

also focused the disapproval on basic mathematical concepts associated with

nonlinear behavior. For example (7) they claim that no real discontinuous jumps

exist and cusp or fold model could be inferred with a few points. Extrapolation tells

nothing about predicted behavior and, due to observational error, any surface could

be arbitrarily close to a surface that Thom’s theorems examine; (8) they also

criticized Zeeman for incorrectly using the concept of genericity in his frontier

example; (9) the predictions based on catastrophe theory are not testable and are

unverified expectations, while many underlying hypotheses are often ambiguous;

(10) the cusp models used (e.g., Zeeman’s) were based on hypotheses carefully

chosen in order to facilitate it, and the critique was talking about “mystifying” terms.

Some of the points of criticism, such as those regarding the use of qualitative

methods, made sense, because the way bifurcation theory was founded by Poincaré

had a qualitative character. Quantitative deterministic models had been demonstrated

in physical sciences, but they seemed inappropriate for the social (soft) sciences.

Most points of criticism for inappropriate ways of model design and quantification

challenged mainly Zeeman’s work. Thom, who had already acknowledged

Whitney’s work on singularity theory, agreed to some extent with the criticism on

the qualitative character of catastrophe theory. Interestingly, on this issue, Thom
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appeared to bemore a theoretician and philosopher, rather than as a mathematician in

his responses towards defending the emerging theory. Thom wrote:

On the plane of philosophy properly speaking, of metaphysics, catastrophe theory cannot, to

be sure, supply any answer to the great problems which torment mankind. But it favors a

dialectical, Heraclitean view of the universe, of a world which is the continual theatre of the

battle between ‘logoi,’ between archetypes . . . Just as the hero of the Iliad could go against
the will of a God, such as Poseidon, only by invoking the power of an opposed divinity, such

as Athena, so shall we be able to restrain the action of an archetype only by opposing to it an

antagonistic archetype, in an ambiguous contest of uncertain outcome. Thom (1975, p. 384):

The above expresses Thom’s intention to demonstrate metaphorically his dia-
lectical view on uncertain outcomes upon the operation of two opponent processes

or actions. Similarily to Hegel’s dialectics, his position was that catastrophe theory

was the means to demonstrate how qualitative changes could emerge from quanti-

tative changes. Arnol’d referred to the “mysticism” of catastrophe theory showing

his disagreement on Thom’s “metaphysical” turn; however he admitted that “in
mathematics always there is an mysterious element: the astonishing concurrences
and ties between objects and theories, which at first glance seem far apart”
(Arnol’d, 1992, p. 103).

The consequences of the criticism were καταστρoφικε�ς (disastrous) for catas-

trophe theory. Research showed a declined interest in applying catastrophe theory,

and finally it became out of fashion for some years. Despite its temporary over-

throw, catastrophe theory came back restored and more rigorous in 1980s, due to

the work of Cobb (1978) in statistics, Oliva and Capdeville (1980) in economics,

and Guastello (1981) in psychology. They defended the emergent theory by

responding to the points of criticisms, while they made substantial contributions

to the development of methodology for application of catastrophe theory in social

sciences. With their pioneer work they maintained and showed that finally “the
baby was thrown out with the bathwater” (Oliva & Capdeville, 1980). For more

than a decade strong-minded scholars in various fields, who were convinced that

catastrophe theory could become a valuable asset in research for social sciences

(i.e., Cobb & Zacks, 1985; Cobb, Koppstein & Chen, 1983; Guastello, 2002;

Lorenz, 1989; Puu, 1981; Rosser, 1991), worked for its development. Strong and

clear responses to all points criticism were given also by van der Maas and

Molenaar (1992); Wagenmakers, Grasman, and Molenaar (2005); and

Wagenmakers, Molenaar, Grasman, Hartelman, and van der Maas (2005), while

catastrophe theory has gained its reputation among scientist. Presently, it has been

understood that the criticism was based mainly on confusions and conceptual

misunderstanding of core ideas of the new theory and the only weak point, at the

earliest times, which has now been overcome, was the lack of the proper statistical

methodology applied to real-world research.

The return of catastrophe theory ensued in late 1980s where it stayed in the stage

of social sciences with the development of its stochastic version, which permitted

testing research hypotheses related to discontinuous changes in empirical data.

Overviews of the theory and some applications across disciplines can be found in

Arnol’d (1992), Castrigiano and Hayes (2004), Gilmore (1981), Saunders (1980),

Poston and Stewart (1978), Thompson (1982), and Woodcock and Davis (1978).
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Catastrophe Theory

Deterministic Catastrophe Theory

Catastrophe theory based on the initial work of Thom (1956, 1972, 1983) and

Arnol’d (1988, 1992) is concerned with the classification of equilibrium behavior of

systems in the neighborhood of singularities. The mathematical foundation of

catastrophe theory includes the proof that the dynamics of systems in such singular

points can be locally modeled by seven elementary catastrophes, which implement

up to four independent variables. These elementary behaviors of systems in the

neighborhood of singularities depend only on the number of predictors, the control
factors. The seven elementary catastrophes are namely fold catastrophe, cusp
catastrophe, swallowtail catastrophe, butterfly catastrophe, elliptic umbilic catas-
trophe, hyperbolic umbilic catastrophe, and parabolic umbilic catastrophe. The
first four, known as cuspoids, have one behavioral axis while the last three have two

behavioral axes; the formers are the most common and pertinent to social science.

The fold, the cusp, the swallowtail, and the butterfly catastrophe have one, two,

three, and four control variables, respectively. Each catastrophe is associated with

a potential function in which the control parameters are represented as coefficients

(a, b, c, or d), while one state variable, y, describes the behavior of the system. The

behavior surface is the geometrical representation of all points where the first

derivative of the potential function is zero (Zeeman, 1976). The cuspoids, which

are the most applicable, are summarized in Table 9.1.

Deterministic catastrophe theory has been applied in physics and engineering for

modeling various phenomena, such as the propagation of stock waves, the mini-

mum area of surfaces, or nonlinear oscillations. Moreover interesting applications

have been developed for conceptual formulation of thermodynamics, scattering,

elasticity, and in the predictions of van der Waals equation in the transition between

the liquid and the gaseous phase of matter using a cusp catastrophe, where temper-

ature and pressure were implemented as two conflicting control factors, while

density is the behavioral variable (Gilmore, 1981; Poston & Stewart, 1978). On

the other hand, in social and human systems, where nonlinear effects and sudden

changes are ubiquitous, with the development of its stochastic form, the perspec-

tives for catastrophe theory became by far promising.

In order to attain a conceptual understanding of the core idea in catastrophe

theory models, consider an analogy from a physical system that is moving toward

an equilibrium state. The system in Fig. 9.1 comprises a hypothetical “one-dimen-

sional surface” on which a sphere is moving driven by gravitational forces. The

sphere represents the state of the system that can be at local minima or maxima,

which are the equilibrium states. The minimum is the stable state where the system

will stay or return when permutated by an external cause. The maximum is an

unstable state, that is, small perturbations cause system’s shift to another state. The
above qualitative behaviors of changing states can be characterized according to the

configuration of the corresponding positions, which are critical points, local
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maxima or minima, with first and/or second derivative equal to zero. Next, observ-

ing across the five representations (Fig. 9.1), it is demonstrated how the sphere

“jumps” from one position to another (local minimum) as the configuration of

surface changes gradually (Castrigiano & Hayes, 2004; Gilmore, 1981).

This behavior may be described mathematically by postulating that the state of

the system, y, will change over time t according to the equation

dy=dt ¼ �∂U y=að Þ=∂y ð9:1Þ

where U(y/a) is the potential function and a is a vector of the control variables

that affects the state of the system. The above equation characterizes a gradient
dynamical system, which is at an equilibrium state, if the Eq. (9.1) equals zero

(Feraro, 1978).

The equilibrium behavior of singular systems leads to multiple equilibria (mul-

timodal distributions); thus abrupt changes in behavior might be expected as the

system shifts from one equilibrium state to another. This “strange” behavior reflects

discontinuity in mathematical sense. The concept of discontinuity is a fundamental

issue in catastrophe theory and from the beginning it was a source of misconcep-

tions that induced the criticism mentioned in the first section.

Catastrophe models become extremely complex, and less applicable, when

number of the state and control parameters increase. However, the simplest and

the most eminent one, the cusp catastrophe has numerous applications, and it is the

best representation of the catastrophe theory models to be used also for didactic

purposes. The cusp model describes the discontinuous behavior of a state variable as

a function of just two independent variables. Considering that in traditional

approaches a large number of independent variables are usually implemented

when attempting to model changes, the choice of the cusp with merely two candi-

dates has certainly an advantage; this justifies the widespread use and the applica-

bility of the cusp catastrophe.

1= minimum
2= maximum

Change in parameter a

1 1 1 1

2

U(y, a)

1 1

Fig. 9.1 The sphere represents the state of the system and can be at local minima or maxima—the

equilibrium states. It is demonstrated how the sphere “jumps” from one position to another as the

configuration of surface changes gradually
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Cusp describes the behavior as a function of the two control variables: asym-

metry (a) and bifurcation (b). The potential function of the cusp catastrophe is

expressed by the deterministic equation

U y; a; bð Þ ¼ 1

4
y4 � 1

2
by2 � ay ð9:2Þ

The first derivative with respect to y is given by the equation

∂U y; a; bð Þ
∂y

¼ y3 � by� a ð9:3Þ

Setting ∂U y; a; bð Þ=∂y ¼ 0 gives rise to equilibrium function, which is geometri-

cally represented by the three-dimensional surface. Note that Eq. (9.3) is cubic, a

point with important consequences: small variation of the control variables can lead

to abrupt shifts or jumps in the behavior y. This is an exclusive characteristic of the
above function and the changes in the dependent variable are qualitatively different

from other cases such as those in models with quadratic terms, where small

continuous variation of independent variables is just accelerating y. Moreover,

the changes in the cusp function are different from any sudden changes implied

in a model, for instance, with a threshold function and also they are distinct from the

shifts in logistic type functions, such as Rasch models, and from Markov models as

well. Discontinuous changes in the cusp are sudden jumps occurring between

regions of a smooth surface. This is a very important mathematical feature linked

with primary epistemological issues related to nonlinearity. In real-world research,

these discontinuous changes might imply a qualitative change within the system

under investigation.

Further examination of the cusp model via its response surface reveals certain

unique qualitative features, known as the catastrophe flags, which could be used to

identify the presence of cusp catastrophe (Gilmore, 1981):

Bimodality: Refers to the probability distribution of the dependent variable,

where two distinctly different modes exist or two simultaneously present sates.

Hysteresis: Is the effect, where cases with the same values of the two controls,

asymmetry (a) and bifurcation (b), can be found in both distributional modes; that

is, they can exhibit two types of behavior corresponding to both behavioral

attractors; for a dynamical system hysteresis effect denotes memory for the path

through the phase space of the system, in the sense that some point or areas of the

system keep values from the preceded states.

Inaccessibility: The region on the response surface existing in between the two

behavioral modes. This area is inaccessible in the sense that the corresponding

behavior is unlikely to occur. The points within this area are pulled towards either

attractor.
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Divergence: Deviation from a linear relationship between the response and

predictors demonstrated by two diverging response gradients—deviating paths

towards the upper or the lower part of the surface.

Bifurcation point: The two divergent paths are joined at the bifurcation point at

which the behavior is ambiguous, and beyond this point the system enters the

bifurcation set, the area where discontinuous changes take place.

Sudden jumps: Abrupt changes between attractors, representing distinct behav-

ioral modes, occurred even with slight changes in the control variables.

Among the above, sudden jumps in the value of the state variable, hysteresis, and

bimodality are the most common flags constituting indicators for the presence of a

cusp catastrophe in empirical data (Figs. 9.2 and 9.3). The identification of such flags

encompasses a qualitative approach in evaluating the cusp as a model for data (see

also Gilmore, 1981; Stewart & Peregoy, 1983; van der Maas &Molenaar, 1992; van

der Maas, Kolstein, & van der Pligt, 2003).

Stochastic Catastrophe Theory

Catastrophe theory was developed initially for deterministic dynamical systems,

whose basic processes entail change towards states of extrema (maximum or

minimum), and it is perfectly applied to physical systems, e.g., to a pendulum

Fig. 9.2 Response surface of the cusp catastrophe model

150 D. Stamovlasis



moving towards states of minimum potential energy. Theoretically, at least, the

central idea seems to be applicable to human systems as well, by considering that

the underlying processes of any social system always attempt to optimize some kind

of “function,” e.g., to maximize support or to minimize conflict.

Thinking stochastically, and focusing on the differential equation (9.1) holding

for gradient dynamics, if the change in the dependent variable y is probabilistic

rather than deterministic, then there is a probability density function over the rate of

changes in y. On this idea Cobb (1978) set the basis for the development of

statistical catastrophe theory. He restated catastrophe models using stochastic

differential equations, where the assumed stochastic processes have stationary

probability density functions of topological interest, which are receptive to statis-

tical analysis.

The construction of stochastic catastrophe models starts by considering a deter-

ministic system controlled by smooth potential function U(y) and the relation (9.1)

dy=dt ¼ �∂U yð Þ=∂y

The singularities of U(y) are the points for which ∂U=∂y ¼ 0, while if they are

degenerate ones the relation ∂2
U=∂y2 ¼ 0 also holds. In order to get a stochastic

equation, a white noise term dw(t) is added, so the differential equation becomes

dy ¼ �∂U=∂yð Þdtþ ω yð Þdw tð Þ ð9:4Þ

The function w(t) corresponds to standard Wiener process (Brownian motion),

while the ω(y) modulates the intensity of the random input dw(t) (Cobb, 1978).
The increments of a Wiener process, w(tþΔt)�w(t), are normally distributed with

variance Δt. The function ω(y) determines the size of the variance of the noise and

is called the diffusion function, which could be set to be constant. It was shown that
the probability density function of the state variable y ultimately converges to a

stationary one. Placing an error term in equation, the model becomes stochastic and

the concept of persistence replaces the concept of stability in the deterministic one.

Moreover, distinction between and within subject variability is allowed; thus

Fig. 9.3 Schematic representations of bifurcation, hysteresis effects, and bimodality
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stochastic catastrophe models can provide the means for investigating systems

driven by underlying nonlinear processes (Cobb, 1978; Stewart & Peregoy, 1983).

Applying stochastic calculus and using Ito-Wright formulation finally a general

equation is derived, which expresses that any differential equation can be presented

as a probability density function pdf:

pdf yð Þ ¼ ξ � exp 2

ðx
�∂U=∂yð Þds=ε

� �
pdf yð Þ ¼ ξ � exp 2U yð Þ=ε½ � ð9:5Þ

where ε is the value of the variance function assuming to be constant and ξ is a

constant introduced to ensure unity density.

In Cobb’s stochastic catastrophe theory the derived stochastic differential equa-

tion is associated with a probability density that describes the distribution of the

system’s states in time. Thus, there is a unique relation between the potential

function and the pdf. The stable and unstable equilibria of the potential function

correspond to modes and antimodes of the pdf, respectively. A stochastic bifurca-

tion occurs when the number of modes and antimodes changes as the control

variables vary. By choosing a potential function one formulates the corresponding

model. For instance using the canonical potential function for cusp catastrophe

(Table 9.1) the corresponding probability density function is

pdf yð Þ ¼ ξexp �1

4
y4 þ 1

2
by2 þ ay

� �
ð9:6Þ

For empirical research, the next step was the development of statistical procedures

to make estimates for the parameters for a specified hypothetical model, given a

random sample of observations. Over the last decades various methods were

developed based on maximum likelihood or least square optimization methods,

so that given a set of empirical data, it becomes possible to test statistically

hypotheses concerning the existence of degenerate singularities within the data.

Statistical and Methodological Issues

In this section, some crucial issues that appeared during the development of the

stochastic catastrophe theory are highlighted, along with comments on the various

methodological approaches and solutions. It is important to realize that catastrophe

theory models, compared to the linear ones, are not easily workable and there are

difficulties in developing evaluation procedures due mainly to the probability

density functions, that is, the idiosyncrasy of the bimodality (or multimodality)

and the non-triviality of the error variance. In addition, there are some strictly
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mathematical impediments concerning the nonlinear diffeomorphic transformation

of the measurement, which however are not addressed here.3

From mathematical point of view the development of catastrophe theory

involved primarily understanding of the critical points, that is, to determine how

critical points behave via an, e.g., “equation of motion,” which actually does not

exist. Thus, the state of the system can be determined by fostering certain assump-

tions about the dynamics of the system (Gilmore, 1981, p 143). There are two

conventions associated with these underlying assumptions, theMaxwell convention
and the delay convention. The Maxwell convention considers that the system

immediately jumps to a new equilibrium area. The state of the system is determined

by the global minimum of the potential function. As the control parameters change,

the state remains at the minimum as long as the current minimum remains the global

minimum of the potential.When this minimum stops to be the global minimum, then

the system state jumps to a new global minimum. The delay convention assumes that

the system remains in the old equilibrium zone until the last possible point before it

passes to the new equilibrium area. The state of the system is determined by the local

minima of potentials. As the controls change, the state remains at the local minimum

as long as the minimum exists. When the current minimum disappears, then the

system’s state jumps to a new local one. For the stochastic catastrophe theory, the

above have crucial impact on the way the expected value of the bimodal distribution

is estimated and affect the computation of the error variance and scale. It is

recommended and worth trying to proceed with both conventions.

The various modeling techniques developed for testing catastrophe theory in

empirical data are based on different assumptions and statistical approaches. A

difference could be based on aforementioned conventions. Another difference lies
in the presumed nature of variables; that is, they could be considered as univariate

or multivariate. The univariates are measured directly as observable, while the

multivariates are treated as latent variables with multiple indicators. Differences

could also be based on the modeling formula, which could be the system’s potential
function or the derivative of the potential function.4 Different optimization

methods, such as the least squares or the maximum likelihood method, could also

be implemented. Accordingly, different statistical tests and indexes are used for

model evaluation; for example in the maximum likelihood method, BIC and AIC

3Another mathematical issue of concern is that the classification scheme of the systems developed

by Thom presupposes that the systems under consideration must be transformed to its canonical

form using diffeomorphism transformations. Thus, the invariance under diffeomorphic transfor-

mation should hold. For the deterministic case it does. The stochastic version as developed by

Cobb based on pdf is not invariant under nonlinear diffeomorphic transformation of the measure-

ment. Statistical problems related to diffeomorphic transformation have not been addressed, while

solution has been proposed for some cases, e.g., time series data (Wagenmakers, Molenaar et al.,

2005).
4 There are pros and cons to that choice, since as it has been pointed out that methods based on the

derivative of potential function might reward the presence of unstable equilibrium states, while

those based on the pdf might punish their presence, as these correspond to points in an area of the

density function of low probability that lies in between two high-probability states.
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criteria are implemented, while in least squares method the percent variance

explained (R2) is used as the effect size criterion for comparing a catastrophe

model with the linear competitors. Besides the above criteria, a nonlinear model

has to have all parameters statistically significant, while special attention should be

given to certain parameters, e.g., the bifurcation factor in the cusp model, which

plays a crucial role in the model specification and its interpretation. Practically

wise, the different methods and the corresponding calculations could be performed

either with popular software (e.g., IBM-SPSS, Statistica, Stata, SAS, Minitab) or

with more specialized ones (e.g., GEMCAT, cuspfit in R). Specific concerns about

the methodological choices, pros and cons, critiques, and debates could be found

elsewhere (e.g., Alexander, Herbert, DeShon, & Hanges, 1992; Guastello, 1992;

Guastello, 2011a, p. 275; van der Maas et al., 2003).

Finally, it is imperative to single out that the researcher be aware of the fact that in

catastrophe theory analyses, like in any other methodological approach and stochas-

tic procedure, assumptions and conventions always aremade, whichmight inevitably

limit the anticipated results and conclusions. Ergo, it is suggested that analyses might

be strengthened by a combination of methods. Encouraging, however, is that the

methodological assets of catastrophe theory nowadays support high-quality research,

and thus are promising for the advancement of theory and practice in educational

research, as it has been realized in other social sciences.Methodologically, when new

research endeavors are initiated, it is important that statistical procedures are not

merely applied to available data with a curve fitting philosophy, but rather, a research

design is followed in model specification, which is sourcing out from a deeper

understanding of the underlying mechanism and the dynamics of the system.

Sample Size and Research Design Philosophy

The sample size issue is in general an unexplored territory for nonlinear regression

modeling. It is related to statistical power, which is the odds of rejecting the null

hypothesis (Ho) given that it is actually false. Note that the issue arises from cases

with very large samples that result in statistical significance, while the effects are

very small. In the linear regime and for bivariate tests the statistical power analysis is

rather a straightforward procedure, whereas for multivariate analysis, e.g., multiple

regressions, the determination of sample size for a given power is a more compli-

catedmatter, since it depends on a number of factors, such as the intended effect size,

overall R2, the number of independent variables, the degree of correlation among

them, and assumptions on their equal or unequal weights. Therefore, a lot of

different procedures have been developed for determining the proper sample size.

For catastrophe theory models a concerned researcher has to rely on rubrics that

developed for linear models with the same number of variables. For example, for a

linear regression with three independent variables, medium effect, and intended

power of 0.80, 55 cases might be the sample size (Maxwell, 2000). Recently, a

Monte Carlo simulation-based method was reported, which was used to calculate

statistical power and sample size for Guastello’s polynomial regression cusp
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catastrophe model. A power curve is produced under different model specifications

(e.g., different error term) and then it was used to determine sample size required

for specified statistical power (Chen. Chen, Lin, Tang, Lio & Guo, 2014). Interest-

ingly, sample size varies with measurement error. For power 0.85 and σ¼ 1 the

sample size is 36 and becomes 100 for σ¼ 2. Thus, for this statistical approach, a

moderate sample size is adequate for cusp analysis. Moreover, as far as the

statistical significance is concerned for small samples, the results can be strength-

ened by implementing bootstrapping techniques (Stamovlasis, 2014a).

The sample size and the sampling adequacy in nonlinear analysis and modeling

have been an issue of debate for some time where the “myth of million data points”

has been untangled (Gregson & Guastello, 2005). A fundamental notion related to

the issue in question is the restriction of topological range, which concerns the full

ranges of data which the hypothesized dynamics are unfolding in. It is of paramount

importance that the available data should cover the proper spectrum of values in

order to capture the nonlinear effect associated with hypothesized model

(Guastello, 1995). Given that nonlinear phenomena are manifested along with

linear dependences, it is the researcher’s responsibility not to just seek for merely

a good curve fitting, but to also build first a theory-laden model, which satisfies

aspects of the anticipated behavior in the context of system’s dynamics.

Statistical Methods in Cusp Catastrophe Analysis

The contemporary stochastic catastrophe theory permits testing related hypotheses

and examining the type of catastrophe structure that a set of observational data

might possess. In this section, the cusp model analysis will be examined as the most

eminent and applicable to behavioral sciences. In practice, when analyzing data one

may start with the qualitative approach, seeking for catastrophe “flags,” such as

sudden jumps, hysteresis effects, and bimodality. For example, bimodality

increases at higher values of bifurcation variable and it can be observed using the

graphical representation showing the frequency distributions of the state variable at

different levels of the bifurcation. However, the quantitative approach, which

includes statistical procedures, merely, provides the sound evidence that the

model fits the observational data. A number of methods and techniques have

appeared in the literature based on different assumptions and statistical modeling.

Some of them are more established, popular, or applicable; it is worth presenting,

however, all the most contributing to development of the stochastic catastrophe

theory and its application to behavioral sciences.

Model with Probability Density Function

First, Cobb (1978, 1981) starting from stochastic differential equations demon-

strated that the cusp catastrophe can be represented by the cusp family of
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probability density function, such as the pdf in equation (9.6). The state variable is

corrected for location and scale, z¼ (y� λ)/σ, while it is assumed to be univariate,
but the control variables a and b, the asymmetry and the bifurcation factors,

respectively, are assumed to be multivariate (latent). The canonical parameters

a and b in the model depend on the two observed and measured control variables,

i.e., c1 and c2, and they are expressed with the equations

a ¼ a0 þ a1c1 þ a2c2 b ¼ β0 þ β1c1 þ β2c2

The cusp catastrophe fitting procedure then involves the estimation of the param-

eters α0, α1, α2, β0, β1, β2, λ, and σ using maximum likelihood method (Cobb &

Watson, 1980). A reliable computer program was developed for data analysis,

which later had undergone some computational improvements (see Hartelman,

van der Maas, & Molenaar, 1998) and it is free on the Web.

Based on the probability function a direct method has also been proposed for

fitting the cusp model using nonlinear regression with least square procedures

(Guastello, 2011b). The cusp model is compared with its linear alternatives and it

has to be superior in terms of R2. The method is easy to perform and the related

statistics can be carried out with a usual software.

The GEMCAT Methodology

Oliva and his coworkers (1987) developed the GEMCAT methodology, primarily

for cusp, but also for swallowtail and butterfly catastrophe. The mathematical

formalization for the cusp assumes that the response Z and the two controls,

asymmetry and bifurcation X and Y, are defined as latent variables, each measured

by a number of observables:

Z ¼
Xk
k¼1

γkZk X ¼
Xi

i¼1

aiXi Y ¼
Xj

j¼1

βjYj

The equation f Z;X; Yð Þ ¼ 1
4
Z4 � 1

2
YZ2 � XZ defines the cusp function and its first

derivative set equals to zero: Z3 � YZ � X ¼ 0. The estimation problem then is

stated as

min ai; βj; γk
� � ¼ Φ ¼ ε2

�� �� ¼
XN
1

�
Z3 � YZ � X

�
2 ð9:7Þ

where ε¼ error and the summation is over the N observations. Given a set of

empirical data for the response Z and the two controls, asymmetry X and bifurcation

Y, one may estimate the impact of coefficients (αi, βj, γk) that define the

corresponding latent variable, which minimize the function Φ. A modified control
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random search (CRS) algorithm was developed to estimate the desired parameters.

The procedure, which is an MLE method, is equivalent to finding the best cusp

catastrophe surface fitting to the empirical data. Analogous methodology and

similar optimizing algorithms are followed for the other of catastrophe models.

The GEMCAT program which is free on the Web provides a series of options, such

as constraints on the coefficients (αi, βj, γk), standard errors for the parameters, a

utility for testing competed nested models, chi-square statistics, standard likelihood

ratio tests, and AIC statistic for fitting indices. In the latest version of the method

(GEMCAT II, Lange, Oliva, & McDade, 2000), the technique was improved and

inference is based on resampling techniques (jackknife and nonparametric boot-

strap). The present program has been popular mainly among economic researchers.

Method of Difference Equations and Polynomial Regression Techniques

This model was developed by Guastello (1982, 1987, 2002, 2011), who followed a

different approach. Starting from the deterministic equation dz¼ (z3� yz� x) dt¼ 0

by setting dt¼ 1 and inserting beta coefficients one gets the statistical formula:

Δz ¼ z2 � z1 ¼ β1z1
3 þ β2yz1 þ β3xþ β0 þ ε ð9:8Þ

where ε is the error term. The polynomial regression technique approximates

Cobb’s stochastic form of Eq. (9.4) by a difference equation, which essentially

results in a polynomial regression equation. The above equation is used to model

the behavioral change z2� z1 between two points in time, Time 1 and Time 2, with
behavioral outcomes z1 and z2, respectively. The difference equation in this for-

malism is assumed to imply a differential equation. Practically the equation

implemented in data analysis contains often a quadratic term β4 z1
2, which serves

as a correction term associated with location, and it could be dropped if it is not

significant or if it does not improve the model (Guastello, 2002). Data analysis with

model includes testing the following alternative linear models:

Linear 1 Δz ¼ β1xþ β2yþ β0 ð9:9Þ
Linear 2 Δz ¼ β1xþ β2yþ β3xyþ β0 ð9:10Þ
Linear 3 z2 ¼ β1xþ β2yþ β3z1 þ β0 ð9:11Þ

z is the normalized behavioral variable, while x and y are the normalized asymmetry

and bifurcation, respectively. The normalization procedure involves transformation

of raw scores λ to z scores corrected for location and scale σs:

z ¼ λ� λminð Þ=σs ð9:12Þ

Location correction is made by setting the zero point at λmin, the minimum value of

λ, and the scale σs is the ordinary standard deviation of λ. The normalization is
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applied to the control variables as well. In some cases, the scale could represent the

variability around the modes rather than around the mean (Guastello, 2002). The

most competitive model is usually the pre-post linear model in Eq. (9.11).

In the above model the least square (OLS) method is used as optimization

procedure. The distribution of the dependent measure at Time 2 is expected to possess
larger variance and it might exhibit bimodality. In order to demonstrate that a cusp

catastrophe is the appropriate model to describe the outcome, its regression equation

should account for a larger percent of the variance (R2) in the dependent variable than

the linear models. In addition, both the cubic and the product terms in Eq. (9.8) must

have significant weights and/or the confidence intervals (95%CI) should not span the

zero point. The regression slopes, standard errors, t-tests, confidence intervals, and
model fit for the cusp and the control linear models should be reported.

When modeling nonlinear phenomena, the inclusion of a nonlinear function in

the model affects basic assumptions of standard measurement theory. In classical

psychometric theory a measurement Y consists of a true score, T, and error term e.
The percent unexplained variance is considered as error, while errors are assumed

to be normally distributed and uncorrelated to each other and to true scores (iid).
However, when a nonlinear function is included dependent errors (de) are expected
to appear in the residuals. It has been shown that such non-iid errors (residuals) are

indicative of nonlinear processes (Brock, Hseih, & Lebaron, 1990). The residual

analysis could suggest that this might be the case. In nonlinear dynamical processes

the score variance has four components:

σ2 zð Þ ¼ σ2 linearð Þ þ σ2 nonlinearð Þ þ σ2 deð Þ þ σ2 iidð Þ ð9:13Þ

The four components are the linear, the nonlinear, the dependent errors, and the iid.
A linear model treats the last three components as errors [(σ2(e)], while the

dependent errors are captured only by the proper and well-defined nonlinear

model and could increase the variance explained (Guastello, 2002).

The difference equation model is affected by the restrictions and disadvantages

of the OLS, e.g., under suboptimal condition the empirical coefficient may not be

significant, while the bivariate correlations are. In those cases a cross-validation

strategy is suggested by investigating collinearity effects among the control vari-

ables or other components of the model. Also, the order that the variables are

entered in the OLS procedure could make a difference. It is recommended that all

variables are entered simultaneously. In principle, the method considers the asym-

metry and bifurcation as observables; however combination of candidate variables

could be tested (e.g., Stamovlasis & Tsaparlis, 2012).

For enhanced generalization, bootstrap estimates have been recommended to

cross validate the significance of the beta coefficients and the overall fitness of the

model (Stamovlasis, 2014a). Note also that a large explained variance that might

appear in some cases due to high linear correlations is not adequate to ensure a

cusp structure. The fundamental components, such as the cubic term and espe-

cially the bifurcation term, have to be statistically significant (Guastello, 2011a,

pp. 276).
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The Cuspfit in R

Latest advances in catastrophe theory literature have presented methodological

improvement and sophisticated software supported the analyses. The cusp package

in R (Grasman, van der Maas, & Wagenmakers, 2009) combines the maximum

likelihood approach of Cobb and Watson (1980) and the subspace fitting method

proposed by Oliva et al. (1987).

The state-dependent variable y and the control variables of the cusp are consid-

ered as canonical variables, that is, they are smooth transformation of the actual

state and control variables of the system. If there are n measured dependent vari-

ables Y1, Y2, . . .,Yn, then y is a linear weighted sum of them:

y ¼ c0 þ c1Y1 þ c2Y2 þ � � � þ cnYn

Similarly the latent controls a and b are linear functions of the k measured inde-

pendent control variables X1, X2, . . .,Xk:

a ¼ a0 þ a1X1 þ a2X2 þ � � � þ akXk

b ¼ b0 þ b1X1 þ b2X2 þ � � � þ bkXk

The fitting routine in R package performs maximum likelihood estimation of all the

parameters in the above equations. The cusp program using one built-in optimiza-

tion routine minimizes the negative log-likelihood L for a given set of experimental

data, with respect to parameters, α0, α1, . . ., αk, b0, b1, . . ., bk, c0, c1, . . ., cn:

L ¼
Xn
i¼1

logΨi �
Xn
i¼1

�1

4
y4i þ

1

2
biy

2
i þ aiyi

� �
ð9:14Þ

In order to preserve stability and to control collinearity among predictors, standard-

ized data are used.5 A problem might arise from non-convergence of the optimiza-

tion algorithm, which is overcome by providing alternative starting values

(Grasman et al., 2009).

For statistical model fit evaluation, a number of diagnostic tools are provided.

One is the pseudo-R2 which is defined by the equation

pseudo R2 ¼ 1� ErrorVariance

Var yð Þ ð9:15Þ

5 The standardization is performed with QR decomposition, which is a mathematical procedure for

obtaining accurate matrix decomposition using the modified Gram Schmidt re-orthogonalization

method. It accounts for collinearity in the design matrix and the stability of the estimation

algorithm (Press, Teukolsky, Vetterling, & Flannery, 2007).
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The concept is analogous to the squared multiple correlation coefficient; however in

the cusp catastrophe model the pseudo-R2 is not the same as the measure of

explained variance. It can take negative value if the error variance exceeds the

variance of y, and for this reason it is not a reliable fit index. This is because the

error variance is nontrivial and it is calculated based on predictions of delay or

Maxwell rules. Recall that these estimation rules (conventions) are relevant to the

concept of discontinuity as it was discussed earlier. Thom had from the beginning

fostered theMaxwell convention, while in Cobb’s method the delay convention was
suggested. The cuspfit in R offers both conventions with the delay convention as the

default.

Additional criteria typically used for evaluating the model fit of the cusp

catastrophe are the following:

• The coefficients in the model should be statistically significant.

• Cusp model compared to the linear counterparts should be significantly better in

terms of its likelihood.

• Cusp model could also be compared to the logistic function below:

yi ¼
1

1þ e�ai=b
2
i

þ ei i ¼ 1, . . . , n

which does not possess degenerate critical points, but it can model steep changes

mimicking abrupt transitions similar to the cusp (Hartelman, 1997). Besides the

statistical part, however, it is important to note here that even though the logistic

function is co-examined as an alternative model, it is not associated with rigorous

theoretical interpretations as the cusp catastrophe (see the epistemology section).

• The use of AIC, AICc, and BIC for all alternative models should be in favor to

cusp model. Especially the BIC can be used to compute approximation of the

posterior odds for the cusp relative to the logistic curve, assuming equal prior

probabilities (Wagenmakers, van der Maas, & Molenaar, 2005).

When analyzing with the cuspfit in R a difficulty arises if there are two or more

dependent variables because in these cases the counterpart antagonistic linear

regression model is not uniquely defined. Additional limitations are the absence

of the alternative linear model with the interaction term and the lack of an effect

size index, such as the R2 in least square approach that could serve as a basis for

comparison.

The advantage of the cuspfit method is that it can implement control variables as

multivariate latent constructs and can be used in confirmatory analysis. When it is

used in an exploratory approach the independent variables should not be assigned

arbitrarily to the controls because the results might be very peculiar and

uninterpretable. In order to improve estimations and get better results, it is

recommended that before using the cuspfit, a factor analysis (e.g., PCA) should

be applied, in order to identify the sets of potential candidates for control

parameters.
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Theoretical and Epistemological Issues

The following epistemological discussion focuses on the cusp catastrophe and its

main features, which are fundamentally related to nonlinear dynamics. The cusp

model reveals the pattern of behavior as a function of the two control variables, the

asymmetry a and the bifurcation β, and it states that both linear and nonlinear

changes in behavioral variable are expected depending on the values of the two

controls.

The model interpretation via Fig. 9.2 suggests that at low values of β changes are

smooth and a linear relation can better describe the relationship between the asym-

metry and the response. At low values of a, changes occur over the lower mode and

are relatively small. At high values of a, changes occur around the upper mode and

are again small. At high values of β, however, changes are discontinuous and abrupt
shift can be observed between the two modes or behavioral attractors. At the control

surface we can observe the bifurcation set mapping in the unfolding of the surface in

two dimensions. The cusp bifurcation set induces two diverging response gradients,

which are joined at the cusp point. At the cusp point the behavior is ambiguous, while

the two diverging gradients represent varying degrees of probability that a point be in

the one or in the other behavioral mode (Guastello, 2002).

The three-dimensional response surface entails the geometry of behavior, which
explicates that for certain values of the asymmetry a and the bifurcation β, a point,
the bifurcation point, exists, beyond which the system enters the bifurcation set, the
area where discontinuous changes occur. Points within the area of inaccessibility
are unlikely to be observed, since they are pulled towards either behavioral attrac-

tor, and this is what introduces nonlinearity and uncertainty in the system, which, it

is said, enters the chaotic regime. This behavior is also depicted on the other

fundamental feature disclosed in the cusp structure, the hysteresis effect; that is,
cases with the same values on control variables could be found either in the upper or

the lower mode of the response surface.

The above geometry of behavior, which seems quite complicated to ordinary

linear thought, is obviously phenomenological; that is, it apparently does not

explain, but merely it describes the behavior. Thus, the crucial question, which

entails explanation, is what kind of mechanism might force the state of the system

to follow the response surface. This is a fundamental epistemological question to be

answered (Zeeman, 1977).

Catastrophe theory models in science involve dissipating systems or potential-

minimizing systems. The mathematical formalism using a potential function for a

mechanical system, e.g., Zeeman’s catastrophe machine, seems appropriate since

by nature it is expected to obey some sort of deterministic type natural law.

Epistemological questions arise, however, when attempting the application of

catastrophe theory to “soft” science dealing with human behavior and related

systems. Recall here that one of the points of criticism of catastrophe theory was

the existence of potential function, which seems to arbitrarily appear in order to

describe the sudden shifts in the system. The issue is related to argument originated
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from the confusion about the conception of discontinuous jumps (Zahler &

Sussman, 1977), which ignores the attractor notion, a fundamental concept in

nonlinear dynamics. The cusp model describes the shifts between stable states or

distinct modes of behavior (behavioral attractors). This behavioral change might

imply or be a qualitative change. This description is founded on the operation of a

potential function, which mathematically is the proper tool to model shifts between

attractors. The mathematical formalism of the cusp model assumes that the system

is controlled by a “potential” function with two stable equilibria (Poston & Stewart,

1978). This assumption, for behavioral sciences, is not as arbitrary as it seems to

be. Note that the assumption of linearity is also arbitrary, to the extent that there are

no reasons for the behavior to follow straight lines; however the assumption of

linearity being seemingly the simpler one is easier to accept.

Within complexity and nonlinear dynamics, epistemological arguments

concerning human systems are advocates to the existence of attractors and dissi-

pating mechanisms. One is that for human systems’ behavior, an optimization

process, analogous to energy dissipation or potential minimization process, can

be reasonably assumed. A psychological system for instance could be sought as

seeking to minimize cognitive dissonance, or to maximize the degree of adaptation

(Saari, 1977). The concept of energy minimum is closely related to and it is a

special case of the attractor concept, which by definition represents the stable state

of a system operating in a dynamical equilibrium. Moreover, attractors at the

psychological level can be assumed that originate from the brain functioning,

which operates as nonlinear dynamical system possessing multiple coexisting

attractors (Kelso, 1995; Freeman, 2000a, b; Freeman & Barrie, 2001). In addition,

theoretical models on brain functioning based on neuropsychological evidences

have provided mathematical description of its dynamics in perception and action,

using the language of nonlinear dynamics. According to Nicolis and Tsuda (1999),

brain functions as dissipative dynamical system, which is characterized by sensitive

dependence on the initial conditions and the control parameters. These are

manifested as chaotic behavior including bifurcations, braking symmetry, and

multiplicity of behaviors beyond an instability point. In compensation to

unpredictability due to the nonlinear character of the underlying process, the

following hold for the system: (1) the existence of multiple attractors possessing

invariant measures in the dynamical system governed by the interplay among the

order parameters and (2) drastic reduction of degrees of freedom in the vicinity of a

bifurcation and the emergence of essentially only a few dominant order parameters.

These parameters may subsequently interact in a nonlinear fashion, giving rise to

low-dimensional dissipative chaos. (3) Within such systems information is pro-

duced (Nicolis & Tsuda, 1999). The latter, the potential to produced information, is

a property of nonlinear dynamical processes and it will be seen again in a later

discussion on learning and creativity.

Answers to epistemological questions on phenomena, such as a bifurcation and

hysteresis effects (Fig. 9.3), the interpretation of which seems too complicated for

linear and reductionist ways of thought, are given by self-organization theory. The
important feature of complex dynamical systems is the emergent properties that
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appear through self-organization processes. A cusp catastrophe for instance, when

detected, is by virtue a state transition, and it is an emergent discontinuity. This

finding at the behavior level has important philosophical implications targeting to

ontological questions, since a bifurcation is the phenomenology of complex adap-

tive systems; it is in fact the signature of complexity and indicative of self-
organization mechanisms (Nicolis & Nicolis, 2007). The notion self-organization
has supported the development of the major scientific theories of nonlinear dynam-

ics: Prigogine’s non-equilibrium thermodynamics (Nicolis & Prigogine, 1977;

Prigogine, 1961), Haken’s synergetics (1983, 1990) and Thom’s catastrophe theory
(1975), even though they were grown with different rationales.

Self-organization can provide a causal interpretation of the bifurcations and

state transitions within a nonlinear dynamical system and it is the process that

occurs when a system is at a state of high entropy and far-from-equilibrium

condition (Prigogine & Stengers, 1984). The structure that is taken on, which is

an ordered state, allows the system to operate more efficiently and interestingly it

does not require any outside intervention; this is the notion of “order for free”
pointing out by Kauffman (1995, p. 17). Self-organization has been implemented

for physical and biological systems as an explanatory theory; however it could be

transferred to human system as well, for explaining emergent patterns observed in

psychological processes (Grigsby & Osuch, 2007; Hollis, Kloos, & van Orden,

2008). It has been fostered for a causal interpretation of Piaget’s theory of stepwise
cognitive development (Molenaar & Raijmakers, 2000) and for interpreting the

emergence of creativity (Stamovlasis, 2011).

A final point to be singled out is that the phenomenology of nonlinear systems is

due to self-organization mechanism and on the other hand to the operation of

coexisting attractors and the dynamics of the system. Bifurcation mechanism in a

physical system such as Zeeman’s catastrophe machine is nested in the operation of

a potential function and the dynamics of the system (Zeeman, 1976). Similarly,

when examining a cognitive or human system, its dynamic behavior is the forma-

tive cause of the ensuing bifurcation and the emergence of the new topological

pattern in the state space of the system.

Note also that in psychological and educational sciences, the processes under
examination regarding cognitive and human systems are more likely non-ergodic,
and the hypothesized underlying evolution equation that describes the system over

time is unknown. These two points are where catastrophe theory is filling the gap: it

concerns sudden changes and it exemplifies that for studying these state transitions

in a system, the evolution equation does not have to be known in advance; the

description and the explanation of local observed behaviors can be attained with a

small number of control parameters (Castrigiano & Hayes, 2004; Gilmore, 1981;

Poston & Stewart, 1978; Thom, 1972, 1975, 1983). The above are also in accor-

dance with primary postulates of nonlinear dynamical systems, where the principle

of dynamical minimalism is assumed; that is, complex behaviors can be produced

by simple rules and/or a few interacting variables. Thus, in constructing nonlinear

models it is always sought to identify the simplest realistic set of assumptions and
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variables that finally produce theories that provide the simplest explanation of

phenomena (Nowak, 2004; Vallacher & Nowak, 2009).

The above epistemological discussion concerns and applies to any process in

educational research. The application of catastrophe theory, as a part of the meta-

theoretical framework of nonlinear dynamics to a specific domain and discipline,

does not ignore, but it essentially requires a local theory, which can provide the

variables to implement as state and control factors.

Catastrophe Theory and Neo-Piagetian Premises
in Learning Sciences

The Piagetian and Neo-Piagetian Theories

A requisite local theory that could serve as the bridge between science education

research and nonlinear dynamics is the Piagetian and neo-Piagetian premises (Case,

1985; Pascual-Leone, 1970; Piaget, 1967; Piaget & Inhelder, 1969). They have

been exceptionally appealing to educational sciences and they are the first on which

catastrophe theory and nonlinear dynamics have been applied in a remarkable way.

At earlier times, catastrophe theory has been connected to Piagetian stagewise

development (Molenaar & Oppenheimer, 1985). A few interesting models had

been proposed with the implementation of some core Piagetian concepts, such as

the assimilation and accommodation processes, which were considered as controls

determining the abrupt shifts between developmental stages, while discontinuities

in the children responses in the vicinity of a transition from preoperational to

concrete operational thought have been shown (Preece, 1980; Saari, 1977). A few

decades ago, it has been pointed out that catastrophe theory analysis could embrace

the traditional methodological approaches concerning stagewise cognitive devel-

opment, and later the dynamic systems theory has been proposed as the unified

framework of development (van Geert, 1991; van der Maas & Molenaar, 1992; van

der Maas & Raijmakers, 2009).

The fundamental connection points between Piagetian and catastrophe theory

are the notion of equilibration as applied to the former and the concept of equilib-
rium to the latter. Both are expressed mathematically by setting the first derivative

of the dynamic system equation to zero. As it was pointed out in the epistemological

section of this chapter, the equilibrium is implied by an optimization process, which
is taking place within a dissipating system. This process allows the cognitive

system to choose its internal states so that it maximizes the degree of adaptation,

given the environmental inputs. Thus, from the beginning it was recognized that the

inherent compatibility with catastrophe theory holds also for the neo-Piagetian

theories, which can make available all the prerequisite psychological constructs

for a catastrophe model specification.
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The most representative within the neo-Piagetian premises is the theory of
constructive operators (TCO), founded by Pascual-Leone (1970, 1987) as an

account of individual differences in performance on mental tasks. According to

TCO, cognitive processes involve a variety of constructive operators, each of

which performs a specific function: the M-operator deals primarily with mental

capacity, the C-operator with content knowledge, the L-operator with logical

operations such as conservation and formal logic, the F-operator with field depen-

dence/independence, and so on. The development of psychometric tests operatio-

nalizing the above mental resources allowed an array of applications in learning and

educational sciences.

The merit of the neo-Piagetian framework as a scientific program with the

Lakatotian sense (Lakatos, 1974) has demonstrated by its continuing evolution

through the last decades (Pascual-Leone, 1970, 2000, 2013). Furthermore, it has

supported a considerable amount of research at the behavioral level which has

become the basis for further progress on theories of cognitive organization and

growth that has determinedly added to our understanding about the architecture and

function of mind (e.g., Demetriou, Efklides, & Platsidou, 1993; Demetriou &

Efklides, 1994).

The neo-Piagetian theories emphasize the importance of a match between

subject’s mental operators and certain characteristics of mental tasks, for instance,

the relation between M-operator and the mental demand of a task or between

F-operator and the existing misleading information or “noise” in the data. Based

on the above and given that numerous types of mental tasks or problems could be

designed, a considerable amount of research has been carried out in the area of

learning sciences, where individual differences associated with neo-Piagetian con-

structs have been shown to play a decisive role. The most known are the informa-

tion processing capacity (M-capacity), the field dependence/independence or

disembedding ability, the logical thinking (developmental level), and the conver-

gent and divergent thinking. Note also that the information processing models

(Baddeley, 1986) offer an analogue to M-capacity construct, the working-memory

capacity, which has been linked to the well-known working memory overload
hypothesis (Johnstone & El-Banna, 1986; Stamovlasis & Tsaparlis, 2001, 2005;

Tsaparlis & Angelopoulos, 2000). It has been shown that the effect of the above

variables is apparent in different types of mental tasks, such as algorithmic prob-

lems (Johnstone & Al-Naeme, 1991; Johnstone & El-Banna, 1986; Niaz, 1989),

non-algorithmic problem solving (Lawson, 1983; Niaz, de Nunez, & de Pineda,

2000; Tsaparlis, 2005; Tsaparlis & Angelopoulos, 2000), and conceptual under-

standing (Danili & Reid, 2006; Kypraios, Stamovlasis, & Papageorgiou, 2014;

Tsitsipis, Stamovlasis, & Papageorgiou, 2010, 2012; Stamovlasis, Tsistipis &

Papageorgiou, 2010). Moreover, it has been shown that the effect of these individ-

ual differences is present at different ages from elementary school to the upper

secondary education (Stamovlasis & Papageorgiou, 2012). Thus, the relationships

between these individual differences and performance in learning sciences are well

established, at least, in the linear regime.
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Nonlinear Dynamics and Learning Science

In this section, the development of the framework for the application of catastrophe

theory and nonlinear dynamics in science education is presented. It includes

findings of inductive and deductive endeavors and implications for theory and the

practice.

The first attention of nonlinear dynamical thinking to issues in science education

was on problem solving, the most intriguing areas where neo-Piagetian constructs

have been proved predictive variables. However, these effects have not been

consistently observed across topics and ad hoc explanations were given to various

contradictions, such as the unexpected failure of highly skilled students. On the

other hand, it was clear that success could not be attributed to merely one variable

and that some other individual differences interfere and cover up the effect of the

hypothetical main predictor (Johnstone & Al-Naeme, 1991; Tsaparlis &

Angelopoulos, 2000). The moderator role of some variables, e.g., field depen-

dence/independence on information processing capacity, was evident, but there

was lack of a comprehensible model that joins the synergetic role of these two

mental resources. A response to this inquiry was the proposition of a cusp catas-

trophe model with the two above variables as controls. The effect of the two

independent variables operationalizing two opponent processes is visualized as

force field dynamics, where the outcome cannot be merely estimated as their

weighted linear sum. Analysis of empirical data showed that for some cases the

cusp catastrophe model was superior to its linear alternatives explaining a large

portion of the variance of students’ performance in chemistry problem solving

(Stamovlasis, 2006). The above cusp structure, however, was not identified in

every type of problem-solving data. Nonlinear models are not always better; that

is, nonlinearity is not manifested everywhere.

The explanation to this was sought in the nature of mental processes and the

differences that might exist among various tasks. There was need for reasonable

justification, rooted, however, to fundamental theoretical premises. In science

teaching, there are two types of cognitive tasks: The first are known as exercises.
The students by applying a well-known solution path reach the answer successfully.

The algorithm has usually been practiced, while the subjects are not necessarily

aware about the strategy followed. On the other hand, there are “real” problems,
where students cannot apply a learned procedure and the challenge is to find the

solution path. Often it is said that those non-algorithmic problems require concep-

tual understanding and high-order cognitive skills (Tsaparlis & Zoller, 2003),

implying an effective synergy of mental resources (e.g., neo-Piagetian constructs).

Of course, in the school context all the above depend on what has been taught.

The answer to the question regarding nonlinearity manifested at the behavioral

level is hidden in the differences between the two above categories of cognitive

tasks; they correspond to two different processes, with distinct qualitative charac-

teristics that determine the observed behavioral outcomes. A note of statistical

interest is that the differences between the two types of problem solving are
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reflected in the empirical data and might become apparent in the briefing descrip-

tive statistics. In easy and algorithmic problem solving, students’ achievement

scores are more likely distributed normally around the mean and most of the

basic assumptions for linear modeling hold. A second statistical remark is that

practically, in everyday school evaluation, students’ scores conform to Gaussian

distribution because they have to; that is, following procrustean rationality, which
all the traditional evaluation theories propose, teachers and/or researchers tailor the

assessment tests, so that they purposely produce bell-shaped curves in order to

proceed with linear statistical analyses.

However, contrary to the ordinary thought, when exploring really challenging

tasks, achievement scores are not recorded as normally distributed around the

expected value, but deviation from normality, strong skewness, or even bimodality

is often observed. Frequently, observations in these asymmetric distributions con-

form to the inverse power law or the fractal distribution. These are indicative for

underlying dynamic processes where multiplicative rather than additive effects are

taking place (West & Deering, 1995). Bimodality quite often appears also in very

demanding tasks denoting bifurcation in a nonlinear process rather than the exis-

tence of two district subpopulations. In these cases, the implementation of conven-

tional linear approach is proved inadequate and a nonlinear model, e.g., the cusp,

arises then as a potential candidate. The reasons, however, for applying a nonlinear

model to these empirical data are not merely statistical, but primarily are relevant to

theoretical and philosophical issues. Algorithmic and non-algorithmic mental tasks

belong to different categories as far as the nature of the underlying process is

concerned. Algorithmic problem solving is a linear process, where predetermined

and learned steps are followed. Non-algorithmic problem solving is a process with

no predetermined scenario; each step is determined by the previous steps and there

isn’t a unique path to follow. The solution (if any) emerges from an iterative and

recursive process, which is nonlinear and dynamic in nature. In this type of

problems, nonlinearity at the behavioral level is more likely to be observed.

Methodologically wise, yet, exploring empirical data obtained from such processes

with linear models is an epistemological fallacy because the method is incompatible

with the nature of the phenomenon being investigated (Stamovlasis, 2010, 2014b).

Based on the above theoretical premise, deductive endeavors have further

supported the nonlinear hypothesis. A series of investigations have provided evi-

dences for nonlinearity by the application of catastrophe theory in empirical data

taken from science education research. Cusp catastrophe models explained stu-

dents’ achievement scores in chemistry and physics problem solving as a function

of neo-Piagetian constructs that operationalize mental resources associated with the

task execution. Those constructs were the information processing capacity (M-

capacity or working memory capacity), logical thinking, disembedding ability,

and divergent and/or convergent thinking. The dependent measure was the differ-

ence between the achievement scores in the prerequisite theoretical knowledge (z1)
and the problem-solving performance (z2), while the least square technique

(Guastello, 2002) was implemented. R2 values were higher in the cusp compared

to the linear alternatives. The nonlinear models were also supported by maximum
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likelihood estimates using cuspfit in R (Grasman et al., 2009), with fit criteria, such

as AIC, AICc, and BIC (Stamovlasis, 2014a). The cusp structures do not appear in

data originated from algorithmic problem solving and simple mental tasks. They

are learned predetermined procedures, where the solution is actually known and

nested in the algorithm. These are linear processes.

The crucial question for learning sciences is what the implications are. What

have these nonlinear endeavors offered to science education, in theory and prac-

tice? Have they just provided an additional support to neo-Piagetian theories with

new methodological tools? This is obviously true, but the main message is the

crucial epistemological issues that challenge the dominant paradigm in educational

research and practice.

In the epistemological section it was discussed that bifurcation and hysteresis

effects are the signature of complex adaptive systems (CAS) and self-organization
mechanisms. The findings via catastrophe theory models provide direct links to

self-organization theory, and connect the behavioral level in education sciences

with psychology and neuroscience, where the paradigm shift has already been

attained. Thus, the above empirical research signified the departure from the

mechanistic view of educational settings and set the framework for reconsidering,

under the new perspective, the epistemological assumptions and the methodolog-

ical issues in the existing local theories. It should be emphasized that the cusp

models cited above are not advocates to the reductionist view for the role of

individual differences and in general for any independent variables selected for

describing and predicting phenomena in education. On the contrary, what the cusp

models explicate is that given the protagonist role of decisive components in a

nonlinear process the outcome might be ambiguous, due to the dynamics of the

system and the sensitivity of the parameters.

Moreover, nonlinear dynamics and complexity challenge the conventional

notion of causality, emphasizing the emergent nature of the outcomes through

self-organization mechanism. The above concern the existing theories in educa-

tional sciences and in science education particularly, e.g., constructivism or con-
ceptual change theories, which totally ignore, at least at the methodological level,

the actual phenomena under investigation. Crucial debates and unanswered ques-

tions, such as those concerning the nature of conceptual change, could be resolved.

For instance, the question, whether conceptual change is an outcome of a linear

additive process modeled on the “architecture metaphor” or it is the outcome that

emerges from a nonlinear dynamical process, could be addressed by implementing

catastrophe theory. It is obvious that a new area of investigation opens that could

elucidate crucial disputes and incoherent theoretical perspectives.

Coming to practical implications, based on rational explanations of students’
failure, teaching strategies could be developed with the aid of the cusp response

surface as a qualitative/metaphorical guide for manipulation of variables; for

instance by reducing the “noise”-to-“signal” ratio one might induce “catastrophic

success” (avoiding failure) for field-dependent students (see Stamovlasis, 2006).

In addition, the identification of potential bifurcation variables in different cogni-

tive tasks is crucial in learning sciences because these variables are more sensitive
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to the parameters and induce nonlinearity, turbulence, and uncertainty in the out-

comes. For instance the moderating role of disembedding ability or logical thinking

deficiencies beyond a threshold value might have a severe impact, leading abruptly

to the overload phenomena (Stamovlasis & Tsaparlis, 2012). Catastrophe theory

models could be applicable also to other educational processes at different level of

complexity, e.g., at classroom or school level, where other variables, such as

motivation or performance climate, under certain conditions, could operate as

bifurcation variables for students’ academic behavior (e.g., Sideridis &

Stamovlasis, 2014; Sideridis, Stamovlasis, & Antoniou, 2015; Stamovlasis &

Sideridis, 2014). It fact, a plethora of variables, individual, collective or environ-

mental ones (Vygotsky, 1978), associated with educational process are potential

candidates to be tested in a nonlinear context.

The new paradigm of nonlinear dynamics and complexity encourages further

deductive endeavors and it signifies the departure from mechanistic views of the

cognitive and educational processes and specifically of learning. Returning to the

distinction between the two types of mental tasks, it was pointed out that the

execution of algorithms and memorizing procedures are linear processes, which

do not actually produce information (Nicolis, 1986, 1991). On the contrary, in real
problem solving, where the system proceeds step by step in an iterative and

recursive process without predetermined scenario, the solution emerges from the

course of a nonlinear dynamical process driven by self-organization mechanisms.

This theoretical remark affects obviously the definition of learning; algorithmic

problem solving, like raw or parrot learning, is not “learning” per se (Stamovlasis,

2011). Novices attain learning outcomes if they involved in cognitive tasks mim-

icking processes that are nonlinear and dynamical in nature: the processes that

produce information. Thus, educators and the scholars who develop curricula

should be aware about this significant knowledge and should act accordingly. In

science education the dominant and traditional instructing methodology stands on

the opposite thesis, and persists in teaching algorithms, contributing essentially

nothing to the issue of learning.6

It is noteworthy that most teaching practices have been developed on the

computer view for mind, and it is rather amazing that they are still active, even

though the theory has been proved flawed. The nonlinear dynamical nature of brain

functioning as complex adaptive system operating far from equilibrium is the

inherent property of mind that permits development that is not restricted by the

6A characteristic example is the plethora of problem-solving techniques taught in the Greek

education system (and perhaps elsewhere) focusing on how to succeed in examinations in

chemistry and physics, while students remain ignorant about the strategy followed or how to

turn the implicit into explicitly. Behind this educational policy are wrong theoretical premises, that

of computer metaphor for mind, and the hope that teaching problem solutions will enhance

students’ repertoire. This actually does not happen and rather it leads to functional fitness. The
computer metaphor as theory of mind, applied to education, has been catastrophic for a

novice’s mind.
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repertoire of the contributed components. This feature is a core element for

nonlinear theories in psychology and behavioral sciences addressing human devel-

opment, learning, and motor skill acquisition (e.g., Corrêa, Alegre, Freudenheim,

Santos, & Tani, 2012; Molenaar & Oppenheimer, 1985; van Geert, 1991). It is

relevant here to recall a debate and the criticism on Piaget’s constructivist theory of
stagewise cognitive development, around 1980s. Reductionist views (e.g., Fodor,

1980), refuting the nonlinear dynamical nature of human development, stated the

alternative with the notion of “nativism”, that is, certain features are “native” in the

brain at birth, thus setting strictly programmed limitations to learning and devel-

opment. The response to the criticism was decisive at that time, showing the

possibility of acquiring more powerful structures, by fostering the nonlinear

dynamical view of human development (Molenaar, 1986). That was merely a

theoretical conjecture, and at that period along with the “adventures” of catastrophe

theory and due to deficits in research methodology, the advancement of the new

ideas delayed for two decades. Today the nonlinear dynamics and complexity

framework returned in the scene with vigorous epistemological and methodological

assets, as the new paradigm, alternative to linear and reductionist view of cosmos.

Regarding educational issues in science teaching and in general the social and

academic behavior, nonlinear dynamics is also filling the gap between genetic and

environment dilemmas and offering a holistic view of reality that could amalgamate

Piagetian and Vygotskian interpretations to a unified theory.
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