
Chapter 14

Investigating the Long Memory Process
in Daily High School Attendance Data

Matthijs Koopmans

Complex dynamical systems research is motivated by a desire to understand how

systems maintain stability over the longer term, and how they transform them-

selves. To that end, the early cybernetic literature has maintained that the role of

time needs to be considered when trying to establish a causal connection between

outcomes and input conditions (Ashby, 1957; Wiener, 1961). While the causal

attribution of outcomes to changing input conditions is part and parcel of many

educational studies, there have been few attempts to deliberately model time when

establishing this causality (Koopmans, 2014a). The description of large samples of

sequentially organized data through time series analysis is quite common in many

other disciplines, such as cardiology (heart rates), meteorology (temperature, pre-

cipitation), and econometrics (mortgage rates, interest rates), and in fact, time series

can be found on an almost daily basis in newspapers such as the New York Times
and the Wall Street Journal.

Time series are useful whenever it needs to be estimated whether the passage of

time influences the causal mechanisms that predispose systems to behave in a certain

way. They have been used to study phenomena as diverse as irregular heartbeat

(Peng et al., 1993), blood cell perfusion in rat brains (Eke et al., 2000), seasonal

variability in the teen pregnancy rates in the state of Texas (Hamilton, Pollock,

Mitchell, Vincenzi, & West, 1997), and much more. In spite of the fact that the

conceptual foundations of this approach for education have been lucidly laid out

quite a long time ago (Glass, 1972), the use of time series in education has not

received as much attention as one might expect given the time dependency of many

of the processes of interest to the discipline: students learn over time, achievement

gaps get narrowed over time, and teachers manage time when they plan and execute

their lessons. This lack of attention to the time aspect reflects a tendency, particularly
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in applied research circles, to build studies around the prediction of educational

outcomes at the group level, rather than the underlying dynamics of educational

processes at the individual level (Koopmans, 2014a).

Cross-sectional methodologies rely on the tacit assumption that measurement

results obtained over a large sample of cases can be generalized across a large time

spectrum, as defined by the scope of the conclusions drawn from those measure-

ments. Does a “snapshot” standardized test result characterize stable achievement

levels over the scope of, say, an entire school year? The assumption that you can

generalize from cross-sectionally obtained group averages to the entire time spec-

trum for individual group members is known in the literature as the ergodic
assumption (Molenaar, 2004; Chap. 8). If this assumption cannot be taken for

granted, its verification becomes an empirical issue, requiring a detailed analysis

of individual cases. While Molenaar originally made this argument in the context of

psychological research, similar argument can be made for education, which, in

many ways relies on the same measurement practices for statistical inference, i.e.,

the measurement of behavioral constructs across groups of individuals (Kerlinger,

1977). An interesting question to contemplate for educational researchers is what

we can learn about systemic behavior and transformation thereof from the detailed

and statistically rigorous analysis of the contribution of time to behavior in indi-

vidual cases. Such understanding cannot be easily obtained through conventional

linear statistical techniques, which typically rely on the aggregation of the findings

across individuals for statistical inference (Neter, Wasserman, & Kutner, 1985).

The underlying assumption when using time-invariant measures is that the

systems under study are stable. This assumption of stability has also pervaded

the early dynamical literature that traditionally assumed that systems were in

principle in a state of equilibrium, except for the instability that accompanies a

transformation process (e.g., Lewin, 1947). The more recent literature on dynam-

ical processes has challenged this assumption and proposed that healthy systems

may often be in a state of disequilibrium (Bak, 1996; Goldstein, 1988), resulting in

an openness to transformation (Stadnitski, 2012b), whereas this proclivity may be

absent in systems that are stable in the sense that their behavior is highly predictable

based on past occurrences.

Moreover, systems may appear stable for long periods of time while the

endogenous process brings those systems to a critical state called self-organized
criticality (Bak, 1996). The prototypical example of self-organized criticality is the

sand pile model, which states that a continued supply of sand to a pile on a flat

surface causes occasional avalanches that reorganize the pile, ostensibly to reduce

the friction between the grains that result from the accumulation (Jensen, 1998).

The state of friction in a system where change is imminent is called self-organized

criticality or being “at the edge of chaos,” and it is seen as an indicator of systemic

complexity (Waldrop, 1992). One implication of the idea of self-organized criti-

cality is that there is a continuous relationship between the small ordinary events

that define the endogenous process in the system and the large cataclysmic events

that produce transformation in the system, requiring a single analytical framework

capturing both aspects.
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One important characteristic of self-organized criticality in systems is self-

similarity, also referred to as fractality, 1/f βnoise or pink noise. A well-known

example of self-similarity is the coastline of Norway, which on a small scale

replicates patterns that are also observed on a large scale (Feder, 1988), although

the scale at which they replicate is not constant. This independence of the patterns

observed on the scale at which they are observed is called scale invariance. When

measurements are conducted over time, patterns of variability can similarly repli-

cate themselves. Such self-similarity occurs when the same variability patterns are

observed within an undetermined variety of different time frames, suggesting an

alternating but unpredictable pattern of stability/instability.

Complexity and nonlinear dynamical system theories provide a rich array of

transformative scenarios, such as bifurcation and period doubling, sensitivity to

initial conditions, hysteresis, second-order change, coupled oscillators, and change

through self-organized criticality (Koopmans, 2009), and the search for empirical

manifestations of those scenarios requires the detailed analysis of sequentially

ordered observations in almost all instances. While time series is a common

statistical technique, its fine-tuning to specifically address transformative hypothe-

ses put forward in the dynamical literature is a relatively recent development. Two

aspects that have generated particular analytical interest are the use of time series

analysis to detect sensitivity to initial conditions and chaos (Kantz & Schreiber,

2004; Kaplan & Glass, 1995; Sprott, 2003), and the measurement of self-organized

criticality, fractality, and long memory processes (Beran, 1994). The analysis

presented here focuses on the latter of these two applications.

School Attendance as a Dynamical Process

Few educators would dispute that attending school is critical to successful educa-

tional outcomes, as it is a prerequisite to exposure to classroom instruction and the

learning opportunities it provides. In addition, school attendance is also a mediating

variable in the system of causal relationships that includes parental support, student

academic engagement, instructional effectiveness, and academic attainment

(Astone & McLanahan, 1991; Balfanz & Byrnes, 2012; Kemple, Segeritz, &

Stephenson, 2013; Kemple & Snipes, 2000; Roby, 2003). In spite of its apparent

importance, the analysis of school attendance has taken the backseat to outcomes

such as academic achievement, high school dropout, and college persistence behav-

ior, and to the extent that attendance data get reported, it is reported in aggregated

form, averaging daily attendance rates over weekly, monthly, or yearly periods (see,

e.g., National Center of Education Statistics, 2008), requiring us to assume that those

rates are stable over time. Reporting attendance aggregated across the time spectrum

results in significant information loss. A time-sensitive view of attendance may help

reveal how existing attendance rates impact future attendance over the immediate

and longer term, whether there are cyclical patterns to this impact, and what the

timing might be of the response of attendance rates to external events or conditions.
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An opportunity presented itself to conduct a statistically rigorous analysis of the

dynamical processes that may be manifest in educational time series when the

New York City Department of Education started recording and publishing the daily

attendance rates of all of its schools in 2004, and continued to do so up to the day of

this writing. The resulting data sets provide highly detailed information to estimate

about how attendance behavior is affected by the progression of time, how attendance

patterns differ fromone school to the next, and towhat extent transformative scenarios

such as the ones mentioned above play out over these attendance trajectories.

Most teachers and school administrators are probably well aware of the ebbs and

flows in the daily attendance in their classrooms and school buildings. In formal

research, these fluctuations get obfuscated by the aggregations that are seen as

necessary to summarize the data meaningfully. Hence, the findings of this research

do not connect effectively to local knowledge in the schools about daily attendance

(Koopmans, 2015). A related point is that applied research in education tends to

prefer the cross-sectional estimation of complex cause-and-effect relationships

instead of the estimation of the endogenous process through which those relation-

ships are generated (Sulis, 2012). As a result, the literature provides little guidance

about what to expect with regard to the short-range dependencies in daily atten-

dance rates, nor the correlations between observations over longer time periods.

The work discussed here aims to address this gap.

Using Time Series Analysis to Uncover Dynamical Patterns

The purpose of the analysis presented here is to uncover the dynamical patterns in

daily attendance rates, and illustrate why the estimation of those patterns may yield

relevant insights into attendance behavior at the school level. Data were obtained

from a total of seven schools and some data preparation was done to make the

information suitable for a time series analysis. Since such analyses do not permit

missing values, a nearest-neighbor imputationwas conducted in instances when daily

attendance was not recorded on three or fewer subsequent occasions in a given week.

If more than 3 days were missing from a given week, that week was removed in its

entirety from the series. Similarly, the summer and winter recess was not considered

and the last session before and first session after recess were connected as neighbors

to ensure the integrity of the dynamics of the temporal ordering of the information.

The two sections that follow will first describe how the estimation of short-range

error dependencies (autocorrelation) proceeds in a conventional autoregressive inte-

grated moving average (ARIMA) analysis (Box & Jenkins, 1970; Cryer & Chan,

2008). It is then shown how long-range patterns can be estimated through an extension

of this framework called autoregressive fractionally integrated moving average

(ARFIMA), a method introduced by Granger and Joyeux (1980) and Hosking

(1981) to model the slowly decaying autocorrelations that characterize the long-

term memory process. A third section describes the use of power spectral analysis,

a procedure used to convert time series plots into plots that show the periodicity of
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the data. This analytical procedure can be used to detect long-term fractal patterns

(Delignières, Torre, & Lemoine, 2005; Wagenmakers, Farrell, & Ratcliff, 2004).

The capability of the combined ARIMA/ARFIMA approach to address both

short- and long-range error dependencies within a single analytical framework

(Wagenmakers et al., 2004) makes the approach particularly attractive to analyze

daily attendance rates, and sets it apart from many other approaches to the detection

of fractality, such as power spectral density (PSD) analysis (Eke et al., 2000),

de-trended fluctuation (DFA) analysis (Peng et al., 1993), and rescaled range

(R/S) analysis (Hurst, 1965), none of which is particularly well suited to differen-

tiate short-range and long-range processes. Delignières et al. (2005) provide a lucid

overview of these and related approaches.

Like ARFIMA, Thornton and Gilden’s (2005) spectral likelihood classification

is designed to distinguish short-term from the long-term processes, but it

approaches the issue as an “either/or” proposition; that is, the short-term model

and the long-term model compete to provide the best fit to the data. As a result, this

approach does not enable the investigator to examine the contribution of long-range

processes to the variability in the trajectory over and above the contribution of the

short-range ones. Thornton and Gilden rightly argue that such as assessment is

unlikely to be of great theoretical interest when first-order dependencies (i.e.,

correlations between neighboring values on the trajectory) are at issue, but in the

context of the analysis of daily attendance patterns in high schools, the question is

pertinent whether the long-range modeling component needs to be supplemented by

seasonal estimators, i.e., short-range features that are of substantive importance to

the field such as the days of the school week. Our knowledge about seasonal

fluctuations in attendance may facilitate planning at the classroom, school building,

and policy level, and may help us better understand the interplay between exoge-

nous (e.g., parents, SES) and endogenous influences (i.e., school attendance rates in

the near and distant past). Such estimation may also enhance our understanding

about the extent to which the prediction of variability in daily attendance trajecto-

ries is relatively straightforward and to what extent it requires dealing with the

complexities in the system’s behavior. The ARFIMA approach is better equipped to

make these distinctions than approaches based on power spectra. However, the

particular strength of power spectral analyses compared to ARFIMA is that the

former procedure does not require any assumptions with regard to the distribution

of observations across the spectrum. Specifically, it can reliably estimate fractality

regardless of whether the original time series is stationary or not, whereas ARFIMA

requires stationary data (Stadnitski, 2012b; Wagenmakers et al., 2004), i.e., data

whose statistical properties are constant across the entire time spectrum.

Short-Range Dependencies

In this section, I’d like to discuss the estimation of short-range dependencies, a

statistical procedure that has been part and parcel of conducting time series analysis

for many decades now. Let us start with an example. Figure 14.1a shows the daily
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attendance for the entire academic year 2009–2010 in one New York City high

school (School 1), marking the days of the week (“R” represents Thursday). The

trajectory displays a somewhat drooping appearance with many outlying observa-

tions falling way below what would be the average of the series. It can also be seen

that there is an overrepresentation of Fs (Fridays) among those low-lying observa-

tions. The implication of this pattern would be that average daily attendance rates

aggregated across the time spectrum systematically overestimate attendance on

Friday and underestimate attendance on the other days of the week.

Figure 14.1b shows a trajectory of attendance increments, or first differences

(Yt� Yt�1) in that same school. It can be seen in that figure that in the course of the

school year, the differences between given observations and their immediately pre-

ceding neighbors become larger, resulting in increased variability, which is to say that

the trajectory shows heteroscedasticity across the time spectrum. This trend would go

unheeded if traditional central tendency and variability measures are used to charac-

terize these data, leaving us unaware of the increased turbulence in daily attendance as

the year progresses.

These examples illustrate very clearly why measures of central tendency and

variability are insufficient to characterize the distribution of daily attendance data,

as these measures ignore the skewness and the cycles in the first example, and they
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Fig. 14.1 (a) Daily attendance 2009–2010 in School 1 with the days of the week marked

(“R” represents Thursday, N¼ 183); (b) first difference Yt� Yt�1 of the attendance rates in

School 1 (attendance increments)
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ignore the increased variability over time in the second one. These examples also

indicate why conducting an ordinary least squares regression of daily attendance

rates on time yields a biased estimate of their relationship. The observations are not

independent, as shown in the first example, and the assumption of homoscedasticity

is violated in the second example. The failure of these traditional estimates to

handle characteristics that are typical of time-dependent data is part of what

motivates ARIMA, which is designed to distinguish two types of error dependency:

the autoregressive process (AR), and the moving average process (MA).

The AR model predicts the value of Yt as a linear combination of its own past

values, plus an error term that is presumed to be an independent identically

distributed random variable. The MA model predicts Yt in terms of accumulated

error disturbances, also called innovations. Appendix 1 explicates the ARMA

models formally. The investigator can control the number of lags that are used in

this prediction for each of these two modeling components. To ensure an unbiased

estimation of AR and MA processes, it is essential to verify the stationarity

assumption, i.e., the constancy of statistical properties of the data across the entire

trajectory. In case of non-stationarity, the first difference of the time series

(Yt� Yt�1) is typically used for the estimation. A process that requires such

differencing to estimate the ARMA components is called an integrated ARMA or

ARIMA process (Cryer & Chan, 2008).

There is a variety of ways to test for the stationarity of a time series. Themost well

known is the augmented Dickey-Fuller (ADF) test (Fuller, 1996), which regresses

the first difference of an observed time series on lag 1 or the original series, and on

the past k lags of the first difference of the series. It is then tested whether the beta

coefficient in the regression model associated with the lag 1 observation is different

from zero, using the parameters for the past k lags as covariates. Rejection of the null
hypothesis confirms stationarity of the series (Cryer & Chan, 2008). Thus, using

conventional notation, ARIMA ( p, d, q) defines the number of AR parameters p and
the number of MA parameters q included in the estimation process. The parameter

d refers to the order of differencing required, i.e., d¼ 0 for the stationary process,

and d¼ 1 for the use of the first difference of a non-stationary process.

Figure 14.2a, b shows simulated examples of a stationary and a non-stationary

time series for a sample of 180 observations. Figure 14.2c shows the first difference

of the trajectory in Fig. 14.2b, which results in stationarity. In the series shown in

Fig. 14.2a, c, it can be seen that the patterns of variability look pretty similar across

the series and that the mean of zero appropriately characterizes its central tendency.

This is clearly not the case for the trajectory shown in Fig. 14.2b, which character-

izes non-stationarity. This latter simulation shows what is known as a random walk
or Brownian motion, an unstable system with strongly correlated observations. The

results of the ADF test on these three trajectories are as follows: ADF¼�4.95,

p< 0.01; ADF¼�1.43, p> 0.01; and ADF¼�5.95, p< 0.01 for the series in

Fig. 14.2a, b, and c, respectively, using k¼ 4 as the lag order. These results confirm

the properties that these simulations were set out to show.

When estimating short-range effects across the time spectrum, it is often produc-

tive to inspect to the autocorrelation function plots to detect the patterns of
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dependency residing in the data. The use of these plots is illustrated in Fig. 14.3.

Three simulated trajectories (N¼ 180) are shown in the left panels and the

corresponding ACF plots are shown on the right. Figure 14.3a shows a simulated

trajectory without error dependencies (white noise). In this situation, knowing the

trajectory does not improve our ability to predict subsequent observations. The ACF

plot corresponding to this situation is shown on the right. The spikes in the plot

indicate the size of the autocorrelations at the lags indicated on the abscissa. The

dotted lines indicate the 95 % confidence interval. The plot shows that none of the

autocorrelations up to lag k¼ 30 are different from zero. The trajectory in Fig. 14.3b

shows the clustering of neighboring observations that comes with autocorrelation,

giving the trajectory in its entirety less of a random appearance than the one shown in

Fig. 14.3a. An autoregressive process was generated using an AR (1) model with

φ¼ 0.70, also with 180 observations. The ACF plot shows what a positive AR

(1) process typically looks like. The correlations at the first few lags are significantly

different from zero, but they rapidly recede to non-significance as the lag order
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increases. Figure 14.3c illustrates an MA (1) scenario at θ¼ 0.70. A different

clustering pattern can be observed in this latter series where consecutive observations

tend to alternate across the mean of zero, as is also indicated by the negative

autocorrelation shown in ACF plot for the first lag. Note also that, typical of the

moving average process, after the first spike, the autocorrelations immediately recede

to non-significance at subsequent lag values. The examples presented here can be

extended to include AR andMAprocesses at negative parameter values, multiple AR

(p) or MA (q) parameter values, and combined ARMA (p, q) estimates (see, e.g.,

Box & Jenkins, 1970; Cryer & Chan, 2008; Shumway & Stoffer, 2011).

Seasonal ARMA Processes

One of the advantages of the ARIMA/ARFIMA approach is that the number and

size of the lags included in the predictive models are fully up to the investigator, and
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Fig. 14.3 Three simulated time series (left panels) with corresponding ACF plots (right panels).
(a) White noise; (b) autoregression (φ¼ 0.70); (c) moving average (θ¼ 0.70). N¼ 180
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there may be substantive reasons to model predictions around particular lag sizes,

such as cycles denoting the days of the week or months in a year. For the analysis of

school attendance in particular, the 5 days of the week are of particular interest to

estimate whether daily attendance rates have a seasonal cycle. Consequently, over

and above the estimation of the impact of immediately neighboring values (i.e.,

attendance on the previous day or 2 days), as illustrated above, we would like to

estimate the impact of last week’s attendance rate. Does knowing the attendance

rate on a given day of the week improve our prediction of attendance on that same

day the following week? The trajectory shown in Fig. 14.1a illustrates the relevance

of this estimation. Appendix 1 shows the formal modeling features of the seasonal

ARMA model.

An empirical example of the weekly cycles is shown in Fig. 14.4a, which shows

the daily attendance trajectory for School 2 in the 2009–2010 school year, as well as

the ACF plot. While the cyclical dependencies may be difficult to detect in the time

series, the ACF plot brings them out very clearly as a pronounced spike at the fifth

lag. This ACF plot also points to the absence of short-range dependencies at other

lag values. Figure 14.4b shows the residuals of the ARIMA model that successfully

models the seasonal dependency at five lags (φ1¼ 0.90, θ1¼�0.71, and θ2¼ 0.16).

The trajectory on the left suggests randomness, and the ACF plot confirms that there

are no remaining short-range dependencies in the data. The extreme values shown

in Fig. 14.4a were modeled using an intervention analysis framework (Cryer &

Chan, 2008, see Koopmans, 2011 for further details about that aspect of the

analysis).
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Long-Range Dependencies

The estimation of long-range dependencies helps determine whether there is evi-

dence of self-organized criticality in the trajectories. Self-organized criticality

would indicate that, as in the sand pile experiments discussed above, there are

instances of critical instability and a repeating tension-release process in the face of

continued input. In the data discussed here, perhaps long episodes of required

attendance behavior create the need for incidental release, with a state of self-

organized criticality immediately preceding this release. In time-sensitive measure-

ments, indicators of self-organized criticality are the presence of self-similar

patterns, and strong autocorrelations over a wide time spectrum. An important

part of the data for long-range dependencies therefore is the detection of these

two patterns.

Self-similarity refers to the replication of certain patterns at various scales, i.e.,

patterns within patterns. These patterns do not replicate in a strictly deterministic

way. Rather, it is their general impression that remains the same (Beran, 1994).

Figure 14.5 shows an example of self-similarity in the daily attendance rates in one

school (School 3). The first panel (Fig. 14.5a) shows the daily attendance rate in that

school over a 7-year period, from the fall of 2004 through the spring of 2011.

Figure 14.5b shows those rates for one school year (2007), and Fig. 14.5c shows the

rates for the fall of 2007. Figure 14.5d shows the rates for a 22-day period within the

fall of 2007. Comparison of these four trajectories suggests self-similarity in the

following three ways. There appears to be a slight downward trend in Fig. 14.5a that

replicates itself at the smaller grid levels of Fig. 14.5b, c, and d. In addition, there
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are pronounced dips that surface more toward the end of the series. Furthermore, at

each level of description, variability appears to increase as the series progresses.

While this self-similar pattern is striking, not all features of the three trajectories

replicate across scales: the last few observations toward the end of the trajectories

show different variability patterns, and the lower dips do not necessarily occur at

the same relative position of the time window. In the face of these conflicting signs,

further statistical modeling is needed to empirically confirm the impression that

daily attendance trajectories are indeed self-similar. As with the estimation of

sensitivity to initial conditions, a large number of data points is needed to estimate

a process hypothesized to replicate itself over and over in a scale-invariant manner.

The conventional ARIMA model described above is highly suitable to esti-

mate such short-range dependencies, and a successfully fitted ARIMA model

results in randomly distributed residuals. However, ARIMA models are not well

suited for the detection and estimation of long-memory effects. The ARFIMA

model is specifically designed to analyze the long-term fractional process that

indicates self-similarity, by estimating the significance of the parameter

d (the differencing parameter) over and above that of the autoregressive and

moving average parameters. The use of ARFIMA to estimate long-range pro-

cesses presumes a stationary trajectory, however. In case of non-stationarity, the

investigator has the choice of analyzing the first (or second) difference, of

the series, or resorting to different estimation methods altogether to detect

fractality (Stadnitski, 2012a).

You may recall that in the short-term ARIMA ( p, d, q) model, the parameter d is
fixed to be zero if the trajectory is stationary, or d¼ 1 if it is non-stationary, in

which case the first difference Yt� Yt�1 is analyzed. The fractional part of the

ARFIMA ( p, d, q) process refers to the fact that the detection of self-similarity

through modeling of the long-range processes involves estimating fractions of

d falling between d¼ 0 and d¼ 1. Dealing with the stationary case, ARFIMA

also presumes that the differencing parameter d ranges from �0.5 to 0.5, with a

d¼ 0 indicating no error dependency (white noise). A positive differencing param-

eter indicates a long-range positive autocorrelation pattern, also known as persis-
tence. Conversely, a negative differencing parameter indicates a long-range

negative autocorrelation pattern, referred to as anti-persistence (Beran, 1994;

Stadnitski, 2012a; 2012b). Appendix 2 explicates ARFIMA formally.

A simulation with 1200 data points is shown in Fig. 14.6a, b to illustrate,

respectively, short-range dependency in a simulated autoregression (φ¼ 0.5) and

long-range dependency in a simulated fractal process (d¼ 0.35). The panels on the

left show the relative stability of the autoregressive process in Fig. 14.6a compared

to the more turbulent manifestation in Fig. 14.6b. The panels at the right of the

figure show the characteristics of the corresponding ACF plots. The spikes indicat-

ing the size of the autocorrelations quickly recede to non-significance as the lag size

increases in Fig. 14.6a, while in the plot in Fig. 14.6b the recession to

non-significance proceeds very slowly, indicating persistence.

Figure 14.7a shows the mean-centered attendance trajectory in School 2 (see

Fig. 14.5a for the original trajectory for this school), as well as the ACF plots at
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Fig. 14.6 Time series plot (left panels) and ACF plot (right panels) of (a) simulated

autoregression (N¼ 1200, d¼ 0; φ¼ 0.5) and (b) simulated fractality (N¼ 1200, d¼ 0.35)
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Fig. 14.7 Empirical data with short- and long-range dependencies (School 3); (a) attendance rates
(mean centered); (b) ACF at 31 lags; (c) ACF at 200 lags
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31 lags and at 200 lags (Fig. 14.7b and c, respectively). The short-term picture in

Fig. 14.7b shows a rapidly decaying autocorrelations at the first few lags, as well as

a seasonal cycle at the fifth lag that looks quite persistent. The longer term picture

shown in Fig. 14.7c shows the persistence of the seasonal dependency as well as

some evidence of nonseasonal persistence. Koopmans (2015) describes in greater

detail the ARFIMA modeling process through which it was determined that the

long-range dependencies made a statistically significant contribution to the vari-

ability in the data, even after modeling the short-range and seasonal processes in the

trajectory. This analytical process yielded a differencing parameter of d¼ 0.13,

indicating some degree of persistence over and above the short-range and seasonal

dependencies.

In addition to the differencing parameter d, several other parameters are often

used to characterize the dynamical process in time series data. One is the Hurst

exponent H, named after Harold E. Hurst, who developed the measure to charac-

terize the scaling dimension in such natural phenomena as water discharges, tree

rings, temperature, and precipitation. Hurst originally defined the parameter in

terms of the range R and standard deviation S of the measurement trajectories

within given time periods to assess how the observed variability depends on the

time ranges over which the measurements are taken. A linear correlation between

the time range and measurement variability indicates long-range dependencies

(Feder, 1988; Mandelbrot, 1997). Within the ARFIMA framework, the estimation

of H is based on the differencing parameter d as H¼ dþ 0.5. So then the interpre-

tation of the differencing parameter provided above translates into an interpretation

of the Hurst exponent as follows: H¼ 0.5 indicates white noise, H> 0.5 indicates

persistence, and H< 0.5 indicates anti-persistence. Hence, the scaling component

for School 3 equals H¼ 0.63, again indicating some persistence.

Power Spectral Density

To analyze fractal patterns in time series data, it is common practice to generate

power spectra to assist with the detection of self-similarity. The conversion of a

time series to a power spectrum involves a mathematical operation called Fourier

transform (Shumway & Stoffer, 2011), which re-expresses the trajectory of

observed measurements over time as a power versus frequency relationship as

follows (Mandelbrot & van Ness, 1968):

S fð Þ / 1=f β

In this function, f represents the frequency and S( f ) is the squared amplitude

corresponding to that frequency (Delignières et al., 2005). The amplitude, or

power, represents the magnitude of the variability in the cycles of dependency

between observations at different lag values. The frequency in the spectrum is a

relative frequency, which expresses the periodicity of the dependencies as f ¼ j
n
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with j¼ 0, 1, 2, . . ., (n�1)/2. Here, j represents the number of cycles and n the

number of time points in the series (Shumway & Stoffer, 2011). Thus, the relative

frequency ranges from
1

n
to

1

2
after the Fourier transform is carried out. Few

iterations j represent the long-term process and many iterations represent the short-

term (Eke et al., 2000), and the power or amplitude expresses the strength of the

dependency between the observations that constitute the cycle.

A power spectrum is produced by log-transforming the relative frequency as

well as the power of this function. A power spectral density plot is said to display a

power law if the relationship of the log power to the log relative frequency is linear

with a negative slope. Such a relationship would indicate that if one, for instance,

doubles the frequency, the power diminishes by the same rate regardless of the

frequency values chosen on the abscissa of the density plot. This feature indicates

the scale invariance that is one of the signature characteristics of self-similarity

(Eke et al., 2000). Generating power spectra is therefore of theoretical as well as

diagnostic interest in such cases. The parameter β in the power function above is

used to estimate the slope in this plot, assuming that the relationship is linear. This

latter proviso is an important reminder that a careful inspection of the power

spectrum is required to determine whether this assumption is actually met. For a

lucid discussion of the interpretation of linear and nonlinear patterns in power

spectra, see Wagenmakers et al. (2004).

A major advantage of power spectral density analysis over ARFIMA is its

capability of distinguishing fractality in stationary as well as non-stationary trajec-

tories, typically referred to as fractal Gaussian noise (fGn) and fractal Brownian

motion (fBm). As you may recall, ARFIMA requires stationarity in the data, and in

the absence thereof, differencing is used to make the data stationary. Some

researchers have argued that such a transformation effectively removes intrinsically

interesting features from the data, resulting in information loss (Granger & Joyeux,

1980). Comparison of Fig. 14.2b and c illustrates this point. The differencing

accomplished in Fig. 14.2c removes many interesting particularities from the data

trajectory, such as the lack of consistency of the behavior of the data from one time

period to the next in the original series. This feature, which could have major

substantive interest in the analyses at hand, completely disappears in the

differenced transformation shown in Fig. 14.2c.

The estimation of the Hurst coefficient H, on the basis of which the presence

of long-term dependencies is decided, requires a distinction between fGn and

fBm processes. Eke et al. (2000) describe how power spectral density analysis

can be used to that end. The criteria for deciding whether a given time series

belongs to the fBm or the fGn family are described as follows: if the slope of the

power spectrum based on an observed time series equals �1 < β̂ < 0:38, fGn

should be assumed when estimating H. If 1:04 < β̂ < 3, fBm should be assumed.

If 0:38 < β̂ < 1:04, the process is said to be unclassifiable in terms of fGn vs. fBn.

In the fGn case, the theoretical relationship between the Hurst exponent and the
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power exponent β is H¼ (βþ 1)/2; the power exponent can also be expressed as

twice the differencing parameter estimated in ARFIMA, i.e., β¼ 2d. As indicated
above, the Hurst exponent can be defined as H¼ dþ 0.5. In the fBm case, H¼
(β� 1)/2. In both fGn and fBm processes, an H of 0.5 marks the boundary between

persistence and anti-persistence (Stadnitski, 2012a, 2012b).

Figure 14.8a–c shows, respectively, what these power spectra would look like

for simulated trajectories of white noise (no memory), pink noise (long-range

memory), and Brownian motion (infinite memory). The ARFIMA simulation

routine was used to generate white noise at d¼ 0 (H¼ 0.5) and pink noise at

d¼ 0.35 (H¼ 0.85). Brownian motion was generated using phytools (Revell,

2012) with β¼ 2.0. In all three cases, the series were set to be 1500 observations

long with a random normal distribution. The fourth panel (Fig. 14.8d) shows the

power spectrum for School 3 (N¼ 1290 observations). The similarity between the

power spectra for School 3 and the simulated pink noise in Fig. 14.8b is clearly

discernible here, as are the differences between those two spectra on the one hand,

and the white noise and Brownian motion spectra on the other. These differences

can be appreciated both in terms of the steepness of the slopes and in terms of the

amount of variability left around the fitted lines. As expected, the power function

for white noise is flat; the slopes for the pink noise spectra fall well within Eke

et al.’ range for fGn, while the power spectrum for Brownian motion shows steeper

slope with a narrow range of variances throughout indicating infinite memory

(continued autocorrelation) in the entire trajectory.
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Fig. 14.8 Power spectra for (a) simulated white noise (β¼�0.21), (b) simulated pink noise

(β¼�0.57), (c) simulated Brownian motion (β¼�2.0), and (d) empirically observed daily

attendance rates in School 3 (β¼�0.55). The slopes for the simulated pink noise and Brownian

motion spectra and for the attendance rates for School 3 are different from zero ( p< 0.05)
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Discussion

Few would argue that time plays a role in daily classroom and school-building

activities, and the analysis of what the contingencies are that affect behavior in

those contexts is a highly relevant undertaking as it might tell us what the under-

lying processes are of the transformations that constitute learning (Vygotsky,

1978). However, in educational science, our models of causal attribution tend to

be cross-sectional, as we examine whether our instruction, leadership, policy, and

other interventions impact the educational outcomes of our student population.

These models are incomplete if the endogenous process is overlooked (Koopmans,

2014b). We need to know the behavior of interest over a larger time spectrum in

order to understand the system’s propensity toward transformation or toward

maintaining the status quo. Knowing these propensities is important to qualify

our causal attributions about educational effectiveness. Finding no relationship

between interventions and outcomes may indicate that the system is resistant to

change regardless of the (perceived) merits of the intervention in question. Like-

wise, it is possible that observed changes are not sustained in the long run in a

highly flexible system as it deals with ever-changing adaptive requirements without

sustaining the innovations whose effectiveness was demonstrated. We therefore

need to acquire more knowledge about the internal systemic processes and how

they behave over time because they reveal the system’s predisposition toward

change. Dynamical theories such as chaos theory and the theory of self-organized

criticality are particularly concerned with such systemic propensities.

This chapter addresses two interrelated issues. The first one is that when the

phenomena we study potentially have a temporal dimension, as may educational

variables do, the contribution of this time dimension to the variability in one’s
observations needs to be investigated in a fair amount of detail to provide some

meaningful answers about how endogenous processes contribute to the transforma-

tive process in education. Researchers may counter that longitudinal approaches

such as survival analysis, repeated measures analysis of variance, and growth

modeling can address this concern. However, these approaches differ from the

ones described here in that traditional longitudinal techniques do not provide the

degree of detail and resolution in the data that is required to estimate dynamical

processes such as cyclical trends, or processes pointing to complexity such as self-

organized criticality and sensitive dependence on initial conditions. The circum-

stances under which the time series approaches described are capable of capturing

such complexity are a point of some contention in the dynamical literature. Eke

et al. (2000) tested the reliability of fractality estimates using a time series of 217

(N¼ 131,072), a length that is unlikely to have any meaningful empirical referents

in education. Many researchers have proceeded with series of 29 or 210 deemed

sufficient for that purpose (Delignières et al., 2005; Stadnitski, 2012a). The chal-

lenge for nonlinear time series, in education as well as elsewhere, is the resource

intensiveness of collecting information at this level of detail.
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There is also a general point to be made about the cross-sectional use of central

tendency and variability measures to address questions of educational effective-

ness. The use of these measures presumes that the characteristics of interest are

stable over time and that the time factor therefore does not have to be measured (the

ergodic assumption, Molenaar, 2004). Given the dynamical nature of educational

processes, it does not seem likely that the ergodic assumption holds very often; yet

there are very few examples of the type fine-grained analyses that are needed to

examine quantitatively the influence of time on the variability in our observations.

This chapter illustrates one way of addressing this issue. Obviously, daily atten-

dance rates are not the only variable of interest in the educational context. Important

work to address the influence of time on educational outcomes and implementation

variables includes several of the chapters included in this volume (Garner &

Russell, Chap. 16; Pennings & Mainhard, Chap. 12; van Vondel, Steenbeek, van

Dijk, & van Geert, Chap. 11), although the estimation of fractality is not the focus

of that work.

The second concern addressed in this chapter is the fact that we know very little

about how time contributes to school-level daily attendance rates in particular. The

availability of a data repository covering more than a decade’s worth of data by now
has provided a unique opportunity to investigate the applicability of nonlinear time

series in education, and learn more about how such attendance rates behave over the

longer term. The analysis presented here indicates that in addition to the first-order

autoregressive and moving average parameters that enhance the reliability of our

descriptions, effective models incorporate seasonal estimators. Here, these estima-

tors indicate that the 5-day weekly cycle exercises considerable influence over the

patterns of variability found in the attendance trajectories. Practitioners may have

been able to tell us about the seasonality of the daily attendance in their school

buildings, but the formal research on high school attendance has traditionally had

remarkably little to say about those patterns.

Of particular interest in the context of complexity research are the patterns in

daily attendance that go over and above the seasonal influences noted above. The

estimation of fractality or self-organized criticality is of interest because it points to

complexity in the system as it adjusts to changing circumstances (Beran, 1994;

Stadnitski, 2012b). This may be the case for schools as well, where schools showing

fractality may have greater susceptibility to those influences whereas schools whose

attendance trajectories do not show fractality may be more immune to them

(Koopmans, 2015). Another aspect that is of importance to this discussion is the

presence of many extreme observations that are likely to be tied to specific

contingencies, such as snow days, upcoming vacations, and the irregularities

associated with the end of the school year (Koopmans, 2011). Figures 14.1a,

14.4a, and 14.5a in this chapter illustrate the prominence of these observations.

Irregularities of this kind are highly influential to the attendance trajectories, but

they can usually be explained in terms of specific external contingencies, whereas

the cyclical and long-range dependencies are often not as easy to account for.

Particularly in those cases where schools show evidence of self-organized critical-

ity or fractal patterns in the trajectories, the development of strong theories to
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explain those patterns becomes a pertinent issue, requiring investigator to collect

additional information about putative causal influences such as parental support,

teacher quality, and school responsiveness to student absences.

To develop strong causal theories about attendance behavior, in other words, it is

necessary to triangulate the quantitative characteristics of school-level daily atten-

dance trajectories with data from other sources to find out more about the factors

that produce irregularity in attendance behavior as well as what the determinants

are of self-organized criticality in the schools. Are small high schools to be more

likely or less likely to display self-organized criticality? Are schools serving

predominantly students from poor families more or less likely to show such

patterns? It is up to empirical research to address these questions to help us

understand better why given attendance rates are what they are, as well as to theory

to articulate the putative causal mechanisms.

In this context, it is also relevant to contemplate what it means to say that there is

self-organized criticality in the attendance trajectory for a given high school.

Figure 14.5 in this chapter illustrates what it looks like in one school. The patterns

shown there seem to suggest a fatigue dynamic, where initial cycles of high

attendance/low variability are followed by higher variability and then lower

peaks. This pattern appears to replicate in this trajectory in a scale-invariant

manner, which is to say that it occurs over large time frames (e.g., a 7-year period),

but also in much smaller time frames residing within those larger ones. The value of

attendance research from a complexity perspective is that, contrary to the seasonal

cycles that are easy to discern for school-building practitioners, these self-similar

patterns are much harder to detect let along confirm, while they nonetheless have

important implications for policy.

To estimate fractality, Wagenmakers et al. (2004) recommend a competitive

modeling approach, along the lines of a stepwise multiple regression, where the

statistical goodness-of-fit models including all the short-term estimators of interest

are compared to a model including all of those as well as a differencing parameter

estimate. Koopmans (2015) shows the applicability of this modeling strategy to

daily school attendance trajectories. The literature advises caution when concluding

self-organized criticality based on evidence of persistence in time series data,

because the possibility remains that the appearance of persistence may in fact

mimic a pattern of short-range dependencies (note that d is not lag specific in the

general ARFIMA formulation shown in Appendix 2). Therefore, a careful inspec-

tion of the plotted trajectories and ACF plots is always indicated, as well as the

triangulation of the statistical evidence from ARFIMA with other sources of

information that may provide a more substantive description of the dynamics

underlying long-range dependencies to help develop a strong causal theory to

explain the results of time series analyses.

In closing, I’d like to stress the merits of single-case designs to enhance our

understanding of educational processes, and the attendance data presented here are

meant to illustrate that point as well. We can learn from studying the particularities

of bounded individual systems and investigate in great detail the processes of self-

maintenance and transformation as they play out over a large time spectrum and in
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the interactions between individual agents within the system (students, teachers,

administrators, policy makers) and the larger systemic components (classrooms,

school buildings, districts, federal agencies) with which these agents interact in an

ongoing dynamical interrelationship. In educational science, a distinction is tradi-

tionally made between qualitative research, which tends to focus on the particular

and quantitative research, which is oriented toward the analysis of data for purposes

of statistical inference. The research presented here argues from a complexity angle

for the obsolescence of the idea that quantitative and qualitative research are

mutually exclusive empirical strategies. The richness of detail provided by the

single case uniquely allows for a rigorous quantitative assessment of the dynamical

underpinnings of behavior, as well as revealing its qualitative transformations.

Appendix 1: Short-Range Estimation Using ARIMA

The general model AR can be stated as

Yt ¼ ϕ1Yt�1 þ ϕ2Yt�2 þ � � � þ ϕpYt�p þ et

This model estimates Yt using p lags. The parameter ϕ estimates the influence of

past observations on the series at each given lag.

The MA model estimates Yt in terms of accumulated error disturbances, also

called innovations. Using q lags, this estimation can be written as follows:

Yt ¼ et � θ1et�1 � θ2et�2 � � � � � θqet�q

In this equation θ estimates the impact of each innovation on the series.

AR andMA processes can be captured in a single predictive model. For purposes

of clarity, we describe a predictive model that uses one lag only, i.e., p¼ 1 and

q¼ 1:

Yt ¼ ϕ1Yt�1 þ et � θ1et�1

A special case is the seasonal ARMA process, which estimates the dependencies in

terms of days of the week, months in a year, etc. The analysis presented here

focuses on the regularities as a cyclical weekly pattern with 5 days in the school

week. The model used to address this question can be formally written as

Yt ¼ ϕ1Yt�5 þ et � θ1et�5
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The autocorrelation function (ACF) at lag k is defined as

rk ¼
Xn

t¼kþ1

Yt � Y
� �

Yt�k � Y
� �

=
Xn

t¼1

Yt � Y
� �

for k ¼ 1, 2, . . .

Appendix 2: Long-Range Estimation Using ARFIMA

Some mathematical reorganization of the terms in the ARIMA model as stated in

Appendix 1 is required to describe what the estimation of the long-range influences

adds to the models that assess the short-range effects on attendance trajectories.

It is often conventional in time series notation to express ARMA processes in

terms of the so-called lag operator, or backshift operator, which is defined as

BYt ¼ Yt�1

In plain English, the backshift operator B shifts observations back one time unit to

construct a new series. The next lag over can be written as BBYt¼ Yt�2, or

B2Yt ¼ Yt�2

In terms of this operator, the ARIMA process described above is often written as

1þ φ1Bþ φ2B
2 þ � � � þ φpB

p
� �

Yt ¼ 1þ θ1Bþ θ2B
2 þ � � � þ θqB

q
� �

et

The left side of the equation represents the autoregression (AR) component; the

moving average (MA) component is on the right. The mathematical derivation of

this formulation, called the characteristic equation, from the equations above can

be found in Box and Jenkins (1970), Cryer and Chan (2008), and many other

standard time series texts. It is assumed in this model that remaining error is

randomly distributed, i.e.,

et t ¼ 1, 2, . . .ð Þ e N 0, σ2
� �

IID:

The ARFIMAmodel separates long-term dependencies from the short-term ones by

parameterizing d as a differencing estimate:

ð1þ φ1Bþ φ2B
2 þ � � � þ φpB

pÞð1�BÞdYt ¼ ð1þ θ1Bþ θ2B
2 þ � � � þ θqB

qÞet

It is assumed here that the trajectory is stationary and that �0.5< d< 0.5 (Beran,

1994; Sowell, 1992; Stadnitski, 2012b).
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