
Chapter 13

Nonlinear Dynamical Interaction Patterns
in Collaborative Groups: Discourse Analysis
with Orbital Decomposition

Dimitrios Stamovlasis

Introduction

Literature on learning-in-groups research, in all areas of education, frequently

makes use of the term group dynamics to refer to a hypothetical dynamical process

taking place when individuals are interacting within a group setting. This is not

surprising because most researchers acknowledge the inherent dynamical character

of human and social experience, expanding from the microlevel processes of mind

functioning to the macro-level processes of collective and social life. Paradoxically,

most of the research endeavors in this area have been carried out in the traditional

way, ignoring the time aspect and any reference to dynamics is considered merely

at a metaphorical level.

Nevertheless, focusing on some ontological aspects of group functioning one

may recognize that the dynamics is more than a metaphor and acknowledge that a

different methodological framework is needed for a profounder investigation.

Considering the interactions among group members working towards a common

goal that requires collective action, it is observed that individuals adapt their

behavior according to other’s actions. They respond and add iteratively to the

ongoing process, the results of which cannot be reduced to the behaviors of

individual group members. Interactions among participants give rise to an outcome

that is not explicably understood as resulting merely from the individual actions,

because it emerges from a complex dynamical process and it can be understood

only in an evolutionary context. Thus, group interaction processes cannot be

effectively studied with conventional linear approaches which are incompatible

with the nature of the underlying phenomena.
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This chapter presents and exemplifies the application of nonlinear dynamics and

complexity framework to the study of learning-in-groups studies focusing on

science education. A discourse analysis is carried out by orbital decomposition
analysis (ODA), a method designed for data that comprise categorical time series.

In the beginning, a short reference to cooperative learning literature in science

education is made. The section that follows discusses theoretical issues, such as the

ontological characteristics of verbal interaction processes, and it reveals the

nonlinear nature of the discourse taking place in a cooperative learning setting.

Subsequently, fundamental theoretical concepts, such as entropy, self-organization,
and inverse power law distribution, are explained in relation to discourse analysis;

also, methodological assets of nonlinear dynamics and complexity, such as Shan-
non entropy, topological entropy, dimensionality, and Lyapunov exponent, are
presented along with the basics of ODA. Results from experimental data and

their interpretation are presented analytically in the following section, while a

final discussion on methodological and epistemological issues along with implica-

tions for educational theory, practice, and research is provided.

Learning-In-Groups in Science Education

Educational sciences, in order to explain research findings and to guide practice,

have fostered various psychological theories, such as Piaget’s (1973) cognitive

developmental theory, which focuses on the personal construction of knowledge;

Vygotsky’s (1978) theory, which emphasizes the social aspect of knowledge

construction; and behavioral learning theories of Bandura (1977).

Learning-in-groups has traditionally been considered as an effective teaching

approach and it belongs to cooperative learning methods, a generic group of

educational procedures. In these settings, learners work together in small groups to

accomplish shared goals, e.g., to understand a given topic or problem and arrive at a

solution (e.g., Johnson & Johnson, 1991; Johnson, Johnson, & Maruyama, 1983;

Lazarowitz & Hertz-Lazarowitz, 1998). These educational processes are relevant to

Vygotsky’s ideas emphasizing the construction of knowledge as social process.

Within the social environment, the learner or novice negotiates the meaning of the

matter to be learned with others, who could be either experts (e.g., a teacher) or

peers. The process of negotiation results in a cognitive gain that is substantially

higher than the anticipated achievement by one’s own abilities. This learning

environmental support is the zone of proximal development, which is modified and

expanded when students interact within a learning-in-group setting. Relevant to

social learning perspective is the situation learning theory, which emphasizes a local

process depending on situational characteristics and being temporarily decoupled

from individual differences. Situational characteristics include the means, the rules,

and the setting climate that determine the function of the group under particular

circumstances. It is imperative to mention here that specially for science education,

which could be characterized by a synthesis of linguistic, mathematical/symbolic,

and visual representations, (Lemke, 1998, 1999; Lynch & Woolgar, 1990), the role
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of language is crucial. This justifies why researchers attempt to understand learning

outcomes by focusing on discourse analyses.

Typically, group interaction studies in learning science are designs which

include recording and analyzing discourse material with the aim to identify dom-

inant interactions and to correlate them with achievement. The data consists of

verbal interactions occurring among members of small group of students who

elaborate explanations about physical or chemical phenomena, and work together

towards understanding the relative scientific concepts. The effectiveness of small-

group process in learning has been studied as a function of various independent

variables, such as the type and difficulty of the task or prior experience (Appleton,

1997; Bowen, 2000; Lazarowitz & Hertz-Lazarowitz, 1998; Lazarowitz, Hertz-

Lazarowitz, & Baird, 1994; Shachar & Fischer, 2004; Zady, Portes, & Ochs, 2002),

where it has been established that classroom interactions are correlated with

students’ performance; that is, enhanced learning outcomes are observed in group

processes where certain types of interactions occur more frequently (Kempa &

Ayob, 1991, 1995; Stamovlasis, Dimos, & Tsaparlis, 2006; Zady et al., 2002).

Research has been facilitated by recognizing various roles for the groupmembers,

which have been introduced for analytical convenience when doing empirical work,

such as the learner or the learner facilitator. A member could also be a leader or a
follower. The leader is someone who continuously takes the initiative to provide an

idea or to develop an argument and leads in a way the unfolding discussion, while the

follower is someone who merely responds to other’s initiatives. Each individual

engaged in the discourse interactions might play one or more roles successively.

Some roles could be assigned in the group from the start, e.g., the leader; they might

also appear or emerge during the course of interactions. In the latter case, these roles

are rather correlatedwith some individual differences (Hall et al., 1988; Horn, Collier,

Oxford, Bond, & Dansereau, 1998; O’Donnell, Dansereau, & Rocklin, 1991).

For instance, a student with high cognitive skills and verbal ability attains the learning

material faster and can provide support to his/her peers acting as a facilitator or

leader. Inmost group settingsmembers are encouraged to take initiatives to contribute

to the process; however, not surprisingly, some members only demonstrate

active participation and leadership. In science education, the active participation is

encouraged and essentially it is presumed for effective outcomes; however, a con-

siderable amount of silent learning is taking place as well (Stamovlasis et al., 2006).

Research in science education has shown that the effectiveness of an interaction

process in a group setting depends on a number of factors, some of which are

individual differences of the group members, previous training, the nature of the

task, and the interactive process itself (Johnson, Johnson, Ortiz, & Stanne, 1991;

Johnson, Johnson, Stanne, & Garibaldi, 1990; Webb, 1989, 1991). On the other

hand, properties which can characterize quantitatively and qualitatively the dis-

course are referred as the features of interactions and concern the type of informa-

tion exchanged during group sessions. For example these could be of cognitive type

or interpersonal interactions of social type. Some of the features may concern the

group functioning as a whole, e.g., the climate which concerns explicit or tacit

affective communication and/or the cooperativeness among members. These are
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characteristics, which in a structured session could be manipulated by the instructor

in order to optimize the outcomes. The factors and the features of interactions are

typically subjected to measurement and comprise the foremost independent vari-

ables in learning-in-group research. It has been pointed out that small-group

processes contribute to productivity and to the development of higher order cogni-

tive skills, provided that interactions with the appropriate features are developed

(Noddings, 1989; Taggar, 2001; Vygotsky, 1978). Thus, the temporal patterns of

verbal exchange developed in an evolutionary context, ceteris paribus, are the

determinants ensuring learning and productivity.

A Note on Methodological Issues

Even though learning-in-groups has become a widely used instructional procedure at

all levels of education and in all subject areas, and its effectiveness is well established,

there are still theoretical and methodological issues that warrant for further examina-

tion. There is lack of a unified theoretical framework that could embrace all associated

with learning-in-groups phenomena and provide a comprehensive description and

explanation in terms of specific mechanisms underlying the interaction processes. In

general, group research in behavioral sciences seems to be fragmented regarding the

theoretical premise. There is a multiplicity of theoretical approaches and methodolo-

gies, which focus on different aspects and lead to a variety of perspectives, e.g.,

communication, psychoanalytic, social, developmental, or functional perspective

(see Wheelan, 2005). Yet, no attempts have been made to formulate a unified theory.

The theoretical issues, however, are interrelated with the methodological ones. A

sophisticated theory needs a robust methodology to be developed, and on the other

hand, an effective methodology requires a coherent and intelligible theory to be

founded on, while the epistemological issues are by far crucial. Regarding the

present inquiry, putative dynamical processes put forward by the theory are in

need of a methodology that is specifically tailored to measure those processes. To

this end, nonlinear dynamics and complexity appear to be more than a distinct

alternative perspective. There are substantial contributions at theoretical level that

approach a general theory of group functioning (e.g., Arrow, McGrath, & Berdahl,

2000), and also research methodology assets and tools for extensive applications

(e.g., Guastello, 1998, 2009, 2011; Guastello & Bond, 2007).

Returning to science education, research objectives and methodologies followed

in collaborative group settings have been diverse and linked to the theoretical

perspectives adopted by the researchers. Typically, when investigating the effec-

tiveness of a relevant learning procedure, the quasi experimental design has been the

dominant one in quantitative research. This, however, is a “black-box” approach,

which possesses a series of disadvantages. It has not provided essential understand-

ing about the underlying processes, while it has been severely criticized for scant-

iness on core issues, such as establishing causality (Koopmans, 2014a, 2014b).

A large body of research focusing on group-learning approach belongs to the

perspective known as process-product-studies of peer interactions (e.g., Stamovlasis
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et al., 2006; Teasley, 1995; Webb, Troper, & Fall, 1995). In these studies, peer

interactions are coded, analyzed statistically, and finally linked to group performance

and learning outcomes. The coding schemes could be either predetermined or the

categories/codes could be assigned inductively during the actual coding procedure.

The latter approach to coding is considered to be grounded in the data and it takes into

account the context in which the discourse occurs. Furthermore, the distinction

between content frames and interaction frames has been introduced, focusing on

how students bring their frame of reference to the interaction situation and how these

frames are jointly negotiated and developed (e.g., Barnes & Todd, 1995).

In most studies, the attention has been focused on specific features of the

interactions, measured at the nominal level, representing events/categories that

occur successively and form patterns unfolding in time. In science education

research these patterns have been characterized as interpretative or exploratory

modes of interaction and on the basis of their frequencies they were shown to be

indicative of certain quality features of the discourse. Certain patterns have been

found to be the most effective and constructive in critical engagements, including

argumentation and hypothesis testing (Mercer, 1996).

Other researchers have attempted to follow more process-oriented methods to

group interactions, which are seen as socially and situationally developed in

students’ discourse (e.g., Kumpulainen & Mutanen, 1999). By concentrating on

individual and group functioning, these methods aimed to highlight the situated

dynamics of peer interactions and learning-in-groups. Data analysis, which was

focused on three dimensions, the language function of verbal exchange, the cogni-

tive interactions, and the social process, revealed stimulating interaction patterns,

where, nonetheless, the time aspect was rather implicit in the analytical framework.

The notion of dynamics, even though was evoked through microanalysis of inter-

actions and the concepts and tools utilized, was the traditional linear means.

Moreover, while traditional methodologies applied to discourse analysis have

yielded interesting findings, they have not been mathematically formalized to the

extent that they can be meaningfully associated with a certain theoretical frame-

work. This chapter seeks to address this gap by presenting ODA, a novel approach

to the study of peer-interaction processes in educational settings; it adds to theo-

retical and epistemological development of the situated learning perspective, and

sets the framework for the application of nonlinear dynamics and complexity to

learning-in-groups methodology in science education.

Theoretical Issues

Discourse as a Nonlinear Dynamical System

A group of individuals, e.g., students working together and interacting with each

other, form a system that possesses dynamical characteristics. Before developing

any mathematical formalism on group interactions, it is imperative to attempt a
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narrative portrayal of the processes and their dynamical features in a physical

language. This may seem trivial; however it provides an understanding of how

the elementary actions or events are linked to the behavior outcomes at a higher

level of complexity and contributes to the formation of macro-characteristics of a

given discourse.

When students with a shared goal interact amongst themselves attempting, e.g.,

to solve a problem, to gain a common understanding, or to reach a consensus about

an issue, collective action simultaneously or successively is required. In these

processes, the group members adapt their behavior according to the actions of

others. In discourse, verbal interactions are taking place as the participants are

exchanging information, and in order to scrutinize it, one may have to track verbal

exchanges and reveal their qualitative features that are patterns of sequential events

unfolding over time. Of course, the focus is on the emerging interactions at the

group level, whereas the individual dynamics unfolding in each one’s mind are

usually ignored; however, they are present at a lower level of complexity and a

reference to them should be made when describing behavior at that level.

Within a single person, the cognitive and affective states and the goal-directed

actions as well might evolve independently from external causes. The intrinsic
dynamics of each individual is central to the characterization of his/her actions

(Vallacher, Van Geert, & Nowak, 2015). Actions realized in time also have their

own dynamics, and they typically have a hierarchical structure spanning in various

time scales. Time scale is a fundamental notion in nonlinear dynamics and refers to

the length of time during which an event occurs or develops; for example it could

happen in the period of a few seconds or in the period of hours or days. Elementary

actions being organized accordingly give rise to action at higher level, which could

result in a qualitative change in the course of time (e.g., a decision to intervene or

refrain from intervening in an ongoing discourse). The intrinsic dynamics are

fundamental in understanding the dynamics of human experience overall, and

human behavior at social level in particular (Vallacher & Nowak, 2007, 2009).

Coordination of individuals’ actions over time is a necessary condition in social

interactions and collective behavior. At social level, research has showed that

coordination dynamics are central to human behavior, and they include lower

level actions such as speech and movement (e.g., Kelso, 1995), and synchronization

phenomena at macro-social level, such as norms and public opinions (e.g., Nowak,

Szamrej, & Latané, 1990; Vallacher & Nowak, 2006). Studying interpersonal

dynamics of lower level action suggests that the coordination interplay exhibits

features of nonlinearly coupled oscillatory processes, where the temporal pattern

might include in-phase and anti-phase forms. These notions refer to synchroniza-

tion effects of engaged vs. disengaged interacting parts, respectively, while phe-

nomena such as hysteresis could also be present; the latter denotes the time-based

lag between input and output and it is encompassed among the fundamental

characteristics of nonlinear dynamical processes (Kelso, 1995).

Returning to the discourse analysis, the process where the elementary actions

give rise to macrostructure of temporal communication patterns, coordination

dynamics are decisive for the process evolution and coherence. In a cooperative
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learning setting, temporal coordination dynamics of internal states such as feeling,

mood, and dispositions also occur, and are rather the prerequisites to the coordina-

tion of actions within the group. The coordination dynamics in a discourse include

temporal patterns of in-phase and anti-phase forms of synchronization such as

competition/cooperation or agreement/disagreement; that is, they encompass the

complementary opposites that function in self-organized fashion and shape the

evolving information flow (Kelso & Engstrøm, 2006).

The observable traces of the coordination interplay in a discourse are sequence of
utterances/categories unfolding in time that convey information about the evolving

scenario, which however cannot be reduced to the individual’s dynamics of lower

level action. In such sequence, each step is a function of the previous steps and the

trajectory in time possesses characteristics that may resemble to nonlinear or even

chaotic time series; this implies sensitive dependence on the initial conditions and on

the parameters shaping the unfolding discourse. A different order of utterances, a

different pattern, induces different dynamics and it might yield to a different out-

come. A leader in the group often imposes his/her thesis to their peers, the process,

then, might be halted, and the discourse comes to conclusion; however the process

goes on if the intrinsic dynamics of another individual allows an action that intervenes

with an objection and/or different proposition. The peer’s intervention feeds back the
process, which continues in an unpredictable way since the present state depends on

the previous one and the evolving scenario becomes history dependent; multiple

scenarios are likely to emerge. The discourse evolution is not determined by certain

features or properties of the interacting elements (group members), but it seems to be

self-regulated by the coordinated actions of the participating agents.

Therefore, both the initial conditions and the evolution of the process do play a

role. In the language of nonlinear dynamics, it is said that the trajectory of the process

follows a complex pattern, which on the course of time might possess thresholds,

bifurcations, and/or attractors. If the coordination pattern does not converge to a

certain point of consensus (an attractor), it might be trapped to a limit-cycle attractors

that characterize a system evolving in time, being unable to shift towards a desirable

conclusion (for the attractor concept see also Chap. 9 in this volume).

The self-regulation mentioned above implies that the system is not driven by an

external cause, but it shapes its own dynamics via self-organizationmechanisms. The

irreducibility of the system’s behavior as a whole (discourse in the group) to that of its
elementary components (members’ actions) can define the discourse process as a

complex adaptive system (CAS). The ontology of such system requires the episte-

mological shift towards the new science of nonlinear dynamics and complexity.

Discourse and Self-Organization

Having provided a theoretical description of discourse interactions, an epistemo-

logical step towards the regime of nonlinear dynamics and complexity has been

made. Further investigation on the discourse interaction process and under this
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meta-theoretical framework requires the application of the relevant mathematical

formalism and for this some core concepts are elucidated next. Relevant to the

present inquiry are the notions of entropy, self-organization, and fractal distribu-
tion. General introduction to nonlinear dynamics and complexity theory can be

found in Nicolis and Nicolis (2007), while relevant comprehensive outlines for

psychology and life sciences could be found in Guastello, Koopmans, and Pincus

(2009). In educational research literature, besides the present volume, relevant

introductions have been sporadically reported in a number of papers (e.g.,

Koopmans, 2014a; Stamovlasis, 2006, 2011).

Within nonlinear dynamics and complexity theory, a significant descriptor of a

system’s state is its entropy. The concept of entropy originates from classical

thermodynamics. Its statistical definition was developed by Ludwig Boltzmann in

the 1870s. Entropy was introduced in social science applications with the develop-

ment of Information Theory by Claude E. Shannon in 1948. In general, entropy

stands for disorder (-order) or uncertainty and in the complex system sciences it

appears as a significant variable associated with the information needed to describe

the system, and thus it is related to system’s complexity. Basic formalism of the

entropy concept and its applications could be found in Nicolis and Prigogine (1989)

and Nicolis and Nicolis (2007). A related entropy measure is information entropy,
or Shannon entropy (HS), which concerns a system or a set of categories with

unequal odds of occurrence (see next section).

Self-organization concerns the corresponding theory which focuses on the study
of open systems that operate at far-from equilibrium conditions, exchanging infor-

mation, energy, or matter with their environments. Such systems, known as CAS,

are self-regulated through complex feedback mechanisms, so that they can tune

their dynamics and their own evolutionary characteristics, thus being adaptive to

their environment (Nicolis & Prigogine, 1989; Prigogine & Stengers, 1984).

Self-organization means that the system is driven neither by any external

intervention or control nor by any internal “demon” or a homunculus-like agent.

It is the complex feedback processes, the temporal microscale fluctuations, and the

underlying dynamics that determine the system’s evolution. Under certain condi-

tions, a discourse might exhibit such self-organizing behavior, when coordination

among individuals leads to the organization of verbal interaction into dynamic

patterns that emerge as a global structure from the local elementary actions with no

predetermined scenario.

One characteristic property of a self-organization process is that the output

variables or other measured quantities do not follow a Gaussian—normal distribu-

tion as it happens with independent measurements. There is a high degree of

dependency among observations, which obey the inverse power law (iPL), a

distribution that mathematically is expressed by the equation

S fð Þ / f�β ð13:1Þ

where S is the size of an event (object or attribution) and f is the frequency of the

event (object or attribution). The iPL is also called fractal distribution. The iPL in
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the case of event time series suggests that a large number of small events are

expected, while exponentially very fewer large events occur. The exponent β can be
calculated as the slope of the distribution curve at the log-log scale; it is called the

fractal dimension and it is a measure of the system’s complexity. Values 1< β< 2

denote dynamical characteristics (Schroeder, 1991; West & Deering, 1995). Higher

values of β, that is steeper curves, denote that there are more small events, while

lower values corresponding to relatively flat curves denote more large-scale events.

Note that in discourse and group interaction phenomena, lower fractal dimensions

are associated with greater structure or coherence (Guastello, 2005; Pincus &

Guastello, 2005).

If a system’s distributional characteristics exhibit fractal structure, then the

underlying process evolves through a series of discontinuous shifts, a state that

manifests itself as an iPL distribution, and/or through more global transformations

as the system is being adjusted between different degrees of relative chaos (disor-

der) and order. In the language of nonlinear dynamics and complexity the above

denote that the system is working at the dynamic regime, being at the edge of chaos
(EOC) (Waldrop, 1992). Systems at the EOC demonstrate high capability of

adaptation without annihilation or stagnation. Such properties of adaptive behavior

are observed in complex adaptive systems across the sciences. Related examples

are the distribution of total acts in social interaction systems initiated based on rank

(Bales, 1999), the in-degree distributions in Web (Broder et al., 2000), and the

distribution of verbal turn-taking interaction in family therapy sessions (Pincus &

Guastello, 2005), to mention a few.

Returning to the current study and the discourse analysis, if the process under

investigation is driven indeed by self-organization mechanisms, then the informa-

tion flow or the evolving exchange of utterances within the group are expected to

conform to the above type of temporal fractal structure as evidenced by the

existence of an iPL distribution in the magnitude of recurrence of the various

patterns.

Method

Experimental Settings, Data Collection, and Measurements

A common practice in science education involves small groups working together in

order to carry out a task, such as physics or chemistry problem solving, explaining

phenomena, elaborating and understanding science concepts, or even experimen-

tation aiming to develop practical skills. The results presented in a following

section are derived from experimental settings with groups of three members

aimed to investigate how students’ verbal interactions evolved during a discourse

segment, when developing explanations of physical phenomena and the relevant

concepts, such as gravity, velocity, and acceleration. The subjects were secondary
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school students in tenth grade, taking compulsory classes in the sciences.

The assignment of the groups was based on two criteria: academic achievement

and performance in a psychometric test of developmental level (Lawson’s test,

1978), so that the group synthesis preserved heterogeneity within each group and

thus equivalence. The design included pre- and posttest (which are not used here)

and in addition a group test, which was an evaluation test on questions that had to be
answered after negotiation and consensus, at the end of the session. This was a

measure of the group performance, reflecting the amount of learning emerged from

the discourse. Group performance was measured and recorded as a three-level

ordinal variable: high performance (successful), intermediate (partial success)

performance, and low performance (failed). No specific time limit was imposed

on these sessions, which however had by design two important features: First, these

tasks were relatively novel to the students; this was chosen in order to pose an

intellectual challenge to the students and allow emerging phenomena, e.g., brain

storming. Second, the groups were unstructured in terms of role taking and they

were let to function spontaneously, allowing so the manifestation of pronounced

dynamic effects. Students’ verbal interactions through their negotiations in all

groups were audiotaped and transcribed.

After the coding procedure and the identification of verbal interactions, a

variable named group activity was defined to measure the total contributions or

actions occurred during the interaction process. Ordinarily, the group activity is

measured by the number of utterances brought up in the discussion and it has been

correlated with high performance (Kempa & Ayob, 1991, 1995; Stamovlasis et al.,

2006). It has been acknowledged however that not only the number of contributions

enriches the discourse and enhances the probability of an ultimately successful

outcome, but the multiplicity and variety of utterances as well. To this end, within

the present methodology information entropy (HS) is proposed as a measure of the

group activity, because it has two advantages. First, HS is a theoretically suitable

measure to reflect the degree of novelty in terms of new categories and/or new

patterns. Second, it is a concept of complexity theory and thus it can be

co-examined along with other nonlinear measures (see next section).

Coding Procedure: The Key of Inquiry

The first and crucial step in a discourse analysis is the coding procedure. Spoken

conversations produce utterances which can be coded according to the theoretical

framework of interest and create a series of events/categories unfolding in time. It

should be emphasized that the coding procedure does not necessarily implement

predetermined categories; the categories/codes could be inductively emerged from

the coding procedure, e.g., see qualitative approaches (Denzin & Lincoln, 2005).

Thus, the coding procedure is not different from a typical one followed in tradi-

tional inquiries. ODA focuses on the ensued symbolic sequences and analyzes them

accordingly. The categorical time series analysis could be applied with various
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methodological approaches of data collection and coding procedures, depending on

the research questions or hypotheses posted. The coded data resemble the following

stings of symbols:

AABBBDCAABAEAABBBEAABAEAABBBABABABEED. . ..

where A, B, D, or E are coded utterances. An utterance is defined as a simple,

complete or incomplete phrase or a chain of phrases, which possess recognizable

and interpretable elements of communication. When the interaction process

involves written messages, e.g., in e-mail communications, the interacting agents

have the opportunity to express much more ideas and greater variety of utterances

can be recorded, and the coding scheme becomes richer. Note that the content of the

coded utterances is not related to dynamics; it is the pattern structure that is

associated with the dynamical characteristics. Also in ODA discrete event

sequences are recorded regardless of the length of time required to complete the

event or the time that elapses between the events. Time length is an interesting

feature, which deserves a special focus in the time series analysis; however, it is not

examined in this chapter.

A discourse could be coded with category systems of various forms simulta-

neously and analyzed accordingly with ODA. In Table 13.1, examples of coding

systems are presented. Coding systems I and II include codes of two types of

interactions, cognitive and social-interpersonal interactions, respectively. Another

simple coding scheme might assign a symbol to each participant, so that the turn-

taking pattern can be followed and recorded. Different coding schemes facilitate

different hypothesis testing of theoretical or practical interest. For instance, it might

be desirable to compare the level of cognitive activity to the level of social interac-

tion process evolving simultaneously through a given discourse. Another interesting

example of coding scheme might include categories characterizing language func-

tion, such as “informative,” “evaluative,” and “affectional,” (e.g., Kumpulainen &

Mutanen, 1999). In the latter case the application of ODA may serve testing

hypotheses concerning the evolution of discourse at linguistic level and determining

potential relationships between language functions and discourse outcomes.

Coding procedures are fundamental parts of the analysis since the results

concern the theoretical premise that is behind the coding scheme and drive the

Table 13.1 Example categorization systems

Coding system I Coding system II

Cognitive interactions Interpersonal interactions

R¼ Reflection on the problem Y¼ Expressing approval

E¼ Explanation with a physical law N¼ Expressing disagreement

H¼ Hypothesis D¼ Expressing doubt

A¼ Argument A¼ Asking for approval

T¼ Thesis H¼ Asking for help

S¼ Skeptical G¼ Providing guidance or help

C¼ Recall a physical law
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hypotheses posted. It is also possible to include multiple categorical variables in

ODA (Pincus, 2001; Pincus, Fox, Perez, Turner, & McGee, 2008). A complex

coding that includes multiple categorical variables applied to an educational setting

is depicted in Table 13.2. A three-digit code for each utterance includes the

following: the first for the speaker, the second for the type of cognitive category,

and the third digit evaluates the content correctness at an ordinal scale. Moreover, in

a multiple coding scheme, certain individual difference might also be coded and

their role in the peer interaction process could be examined.

Finally, after a set of mutually exclusive and exhaustive categories have been

derived their reliability should be established by two or more raters. Cohen’s Kappa
statistic could be used for measuring inter-rater reliability. Typically, values above

0.65 are considered satisfactory.

Symbolic Dynamic Analysis with Orbital Decomposition
Method

ODA is based on symbolic dynamics and it is specially designed for the analysis of

time series with data measured at the nominal level (Guastello, 2000; Guastello,

Hyde, & Odak, 1998). The basic idea of ODA originates from a methodological

approach involving calculations of entropy with scale variables, applied primarily

to a physical system when characterizing an experimental strange attractor with

periodic orbits (Lathrop & Kostelich, 1989). In these systems periodic orbits

presuppose basins of attraction, and thus if more basins exist, the more chaotic

the motion becomes (Newhouse, Ruell, & Takens, 1978). Analogously, in an

interaction process of verbal exchange, the concept proximal recurrences of a

Table 13.2 Coding scheme with cognitive utterances and participants’ psychometric measures

Digit Description Evaluation

First digit Actor’s level of a psychometric variable

(e.g., M-capacity)

1¼Low

2¼ Intermediate

3¼High

Second digit Cognitive utterance (nominal scale) 1¼Reflection on the problem

2¼Explanation with a physical law

3¼Hypothesis

4¼Argument

5¼Thesis

6¼ Skeptical

7¼Recall a physical law

Third digit Correctness (ordinal scale) 1¼ Incorrect

2¼ Partially correct

3¼Correct
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repeated pattern plays the role of neighboring orbits and thus the greater the variety

of these orbits, the more unpredictable the conversation flow will be, and more

nonlinear or even chaotic the dynamic character of the evolving process might

be. This analogy between periodic orbits and pattern recurrence in a categorical

time series allows the application of similar concepts and formulas to the latter and

the description of the process under investigation via quantitative means.

The primary form of a symbolic sequence under investigation is a string of

symbols: e.g., AABEDBDEAABAEAABBBEA, where A, B, D, and E are the

codes for the events occurring during the course of time. Patterns are combination

of at least two symbols with varying length. A single symbol is not considered as

pattern; however it is included in the analysis. The first two steps of the procedure

involve two calculations: a likelihood χ2 and φ2 test for a string sequence or pattern

of responses with varying length (C), and topological entropy (HT). For C¼ 1 a

single utterance (e.g., A) is considered as the unit of analysis, while if C¼ 2, two

utterances in the row (e.g., AB or DB) are taken together as the unit of analysis. The

calculations include all string lengths starting with C¼ 1 and continuing with

C¼ 2, C¼ 3, C¼ 4, etc.

For each increasing string length, a likelihood χ2 test provides the statistical

significance; this is to exclude the pattern that occurred by chance. For a given

string length C (e.g., C¼ 3, A-B-D) and Nc strings of length C in the data, the

expected frequency of the string is

Fexp ¼ PAPBPDNc ð13:2Þ

where PA, PB, and PD are the probabilities for A, B, and D, respectively. The

corresponding likelihood χ2 is given by the formula

χ2 ¼ 2
X

Fobsln
Fobs

Fexp

� �� �
ð13:3Þ

Note that for C¼ 1 equal probability is considered for the null hypothesis, while for

C� 2 the H0 is that the odds of the string are equal to the a posteriori combinatorial

probabilities of the states. The φ2 test provides a correction to the χ2. Moreover, φ2

test is a measure analogous to the proportion of variance accounted for this string

length and it is given by the equation

φ2 ¼ χ2

Nc
ð13:4Þ

χ2 and φ2 are used to determine the optimal length at which the analysis of the

symbolic sequence should be carried out. The optimum length corresponds to the

maximum φ2.

Topological entropy (HT) describes the deterministic nonrandom complexity for
the time series and it is the upper bound for the metric entropy, which is equal to the

positive Lyapunov exponent (Lathrop & Kostelich, 1989). The latter is a measure of
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the chaoticity of the dynamical process. The calculation of HT is based on the

diagonal entries or trace of a hypothetical transition matrix at each string length

(MC). Each cell entry is binary and indicates whether a particular symbolic

sequence is followed in time by any other symbolic sequence. The trace trMC of

this matrix represents instances in which a pattern is followed by itself in a

consecutive period of time. This is the proximal recurrence (Guastello et al.,

1998). The topological entropy (HT) measure based on the trace of the matrix MC

is given by the equation

HT ¼ lim
c!1 1=Cð Þlog2tr MC

� � ð13:5Þ

The trace trMC is the sum of the diagonal elements, which consists of 0 and 1 s.

Proximal recurrences become less likely for longer patterns based on simple

combinatorial probabilities of single utterances; thus, as C increases,HT is expected

to decrease and eventually drops to zero. The longest optimal string length for

analyzing the discourse corresponds to the string length C, when the trMC becomes

zero at Cþ 1, and at which, under optimum conditions, the value of φ2 is

maximized.

As the string length approaches infinity, assuming that the dynamics of the

system is described by the transition matrix MC, HT approaches the base-2 loga-

rithm of the maximum eigenvalue of the matrix, which is the Lyapunov exponent, a

measure of the chaoticity of the dynamical process described by the matrix MC

(Lathrop & Kostelich, 1989), and it also reflects its complexity that is not due to

chance. The Lyapunov dimensionality then is calculated by the equation

DL ¼ eHT ð13:6Þ

The second entropy measure is the information entropy or Shannon entropy (HS).

For a set of categories with unequal odds of occurrence it is defined by the

following equation

HS ¼
Xr

i¼1

pi ln 1=pið Þ½ � ð13:7Þ

where pi is the probability associated with each (i¼ 1 to r) categorical outcome

(Shannon, 1948; Shannon & Weaver, 1949). Shannon entropy is not related to

dynamics; however it is a measure of complexity since it reflects the information

content needed to describe the system. HS has been proposed as a measure of the

degree of novelty present within a categorical time series (Attneave, 1959). It

indicates the degree to which a categorical time series contains relatively rare

patterns, that is, those with low probabilities of occurrence. Topological entropy,

on the other hand, does not reflect this degree of novelty because it relies on

proximal recurrences.

286 D. Stamovlasis



Having found the optimal string length using the procedure described above,

then the calculation of fractal dimension can be carried out using the iPL distribu-

tion graph (Eq. 13.1). If S is the magnitude of the recurrent pattern and f is the

frequency at which each particular pattern occurs, the slope of the 1/f curve

(Eq. 13.1) can be used as an estimate of fractal dimension.

Nonlinear Hypotheses for Discourse Analysis

The nonlinear analysis applied to categorical time series might be driven by various

types of research questions and hypotheses. The identification of repeated patterns

of different size, proximally or distantly, is a key feature to be sought. ODA can

provide this information along with frequency distributions. By applying ODA to

verbal interactions in learning-in-groups settings, the structure within turn-taking

patterns can be examined, and a characterization of discourse sessions could be

achieved, based on the amount of structure within the discourse patterns. Such

macrostructure of a given discourse might be a qualitative emergent property that

could be used as a classification criterion. The emerged macrostructure, along with

its nonlinear quantitative measures, such as exponents and entropy of a given

discourse, might also be correlated to the outcomes and the effectives of the

interaction process.

Assigning codes for each person’s name initials can accommodate the investi-

gation of whether the interacting group is balanced as far as each member’s
contribution in the turn-taking patterns. In multiple coding schemes individual

differences might be included so that hypotheses regarding their role in the inter-

action process might be investigated. For example, in Table 13.2, the coding

scheme where each member’s personal code is replaced with a code representing

levels of a psychometric variable, e.g.,M-capacity, facilitates testing the hypothesis

that students with high information processing capacity demonstrate influential

contributions to the peer interaction process.

Moreover, two fundamental interrelated theoretical hypotheses can be tested:

(1) Verbal interaction processes in learning-in-group sessions display complex

dynamic characteristic of self-organization. (2) Learning outcomes from group-

member interactions are emergent phenomena from nonlinear dynamical processes.

Methodologically, the two measures, Lyapunov dimensionality (a measure of

turbulence) and fractal dimension (a measure of complexity), are the means of

demonstrating when the signature of nonlinearity and complexity is present in a

group interaction process. Shannon’s entropy is not a dynamic measure per se;

however it indicates whether the discourses encompass novel patters regarding

spoken utterances. Information entropy might be related to other nonlinear charac-

teristics and is a valuable tool for evaluating complex patterns.

An interesting endeavor is the investigation of the conditions under which

dynamical characteristics are present and how these might be associated with

effectiveness and learning outcomes. Special cases, such as brain storming

13 Nonlinear Dynamical Interaction Patterns in Collaborative Groups: Discourse. . . 287



situations with emerging phenomena, attract special attention and are potential

candidates for the application of ODA. In this inquiry, an additional hypothesis

posted was that the information entropy of the resulting symbolic sequences, which

reflects the group activity in each session, is correlated with the group performance.

Discourse Analysis with Orbital Decomposition

The application of ODA to symbolic time series and the related calculations can be

carried out with ORBDE software (Peressini & Guastello, 2010). The provided

tables and results are explained in the following paragraphs.

Table 13.3 presents the ODA results for a students’ discourse, where the time

series comprised of cognitive type interactions. All the relevant statistical indices

were calculated for C¼ 1 to C¼ 5. The trMC becomes zero at C¼ 5, and between

C¼ 3 and C¼ 4 strings, the former was chosen as the optimum string length for

analysis based on the greater φ2 value. The anomaly of φ2 values greater than 1.0

has been described as resulting from a violation of the assumption of a 2� 2 matrix,

which however does not affect comparison, and the value of φ2 reflects the

proportion of variance accounted for this string length (Guastello et al., 1998). At

C¼ 3 the entropy measure is HS¼ 4.137 and Lyapunov exponent DL¼ 1.390,

indicating a nonlinear complex process. The measures DL and HS might be used

to compare two categorization systems. For instance, an interpersonal interaction

coding scheme that results to values HS¼ 3.252 and DL¼ 1.134 shows lower

degree of novelty and less turbulence or chaos at the level of social interactions.

The most frequently recurring patterns are listed in Table 13.4. The first and

second columns show the most repeated patterns (e.g., HES, SAS and RAC), while

in the next columns the expected frequency along with the observed probability is

given. In the last column the contribution of each triplet to the total information

entropy value is calculated. The findings suggest that certain patterns or structure

dominate in the evolution of the discourse; that is, triplets of utterance that express

skepticism or doubt on preceding propositions or combine reflection with argu-

mentation appeared more frequently and they might have a decisive contribution to

Table 13.3 Complexity and entropy indicators from orbital decomposition analysis of cognitive

type interactions

C trMC HT DL χ2 df N* φ2 HS

1 4 2.00 7.389 68.85 8 114 0.604 1.895

2 7 1.404 4.070 67.937 22 113 0.601 3.324

3 2 0.333 1.390 153.725 27 112 1.373 4.137

4 1 0 1.000 123.534 14 111 1.112 4.483

5 0 –

String length (C), number of proximal recurrences (trace of binary matrix C), topological entropy
(HT), Lyapunov dimensionality (DL), Shannon entropy (HS), χ

2, φ2, and number of strings for

C¼ 1–4
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the final outcomes. Table 13.5 depicts the patterns of multiple coding; it suggests

that crucial contributions of decisive utterances with correct contents were made by

members of high information processing capacity (Mc), who are essentially under-

taking the role of facilitator. Analogously, a number of similar hypotheses regard-

ing the effects of other individual differences in collaborative groups could also be

tested.

One of the main concerns expressed in the hypotheses frequently posted is the

relation (if any) between group performance and effective dynamic patterns

unfolding in the discourse. In the current study, group performance is measured

by the group test, which accounted for the correct answers received after negotia-

tion by the group members, and it reflects the amount of learning resulted from the

collaborative session. On the other hand, group activity, which traditionally is

operationalized by the number or frequencies of utterances, is a prerequisite for

high-level outcomes. A relation between group performance and group activity was

sought by implementing information entropy (HS) as a measure for the latter. HS

proved to be a suitable index to characterize discourse based on certain categori-

zation scheme, since it reflects the degree of novelty of utterance patterns in regard

to category/code scheme of the choice. Successful sessions, that is, those of high

group-performance, appeared to display higher information entropy, compared to

the unsuccessful ones. Even though causality between HS and group performance

cannot be directly established, a probabilistic relation might be derived from

empirical data analyzed by means of ordered logistic regression. Figure 13.1

depicts the proposed relation showing the probability of attaining low and high

group performance level (effective and ineffective sessions) as a function of

information entropy HS (calculated values) encompassed in the utterance patterns

of the discourse. The probability of attaining a successful session increases as the

information entropy increases, while the probability of attaining an unsuccessful

session decreases as the information entropy increases.

Table 13.4 Primary strings of cognitive utterances identified at C¼ 3

Code

(C¼ 3) Utterances’ pattern Frequency

Expected

frequency Pobs

Shannon

p log (1/p)

HES Hypothesis-explanation-skeptical 4 0.542 0.036 0.119

SAS Skeptical-argument-skeptical 4 1.703 0.036 0.119

RAC Reflection-argument-recall 4 0.210 0.036 0.119

ESR Explanation-skeptical-reflection 3 0.348 0.027 0.097

STS Skeptical-thesis-skeptical 3 0.310 0.027 0.097

CAS Recall-argument-skeptical 3 0.745 0.027 0.097

EAE Explanation-argument-

explanation

3 0.426 0.027 0.097

AEA Argument-explanation-argument 3 0.585 0.027 0.097

ESH Explanation-skeptical-hypothesis 3 0.542 0.027 0.097

ACH Argument-recall-hypothesis 3 0.326 0.027 0.097

HSE Hypothesis-skeptical-explanation 3 0.542 0.027 0.097
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Processes at the Edge of Chaos

One of the main hypotheses is whether the propagation of verbal interactions or the

time series of verbal turn-taking patterns conforms to inverse power law. It was
found that some of the analyzed symbolic sequences followed the iPL distribution.

The iPL for one session is demonstrated in Fig. 13.2 showing the log of the

Table 13.5 Patterns of multiple coding

Code Multiple pattern

HES 333 223 363 High Mc-Hypothesis-correct, Int.Mc-Explanation-correct, High

Mc-Skeptical-correct

333 222 362 High Mc-Hypothesis-correct, Int.Mc-Explanation-partially cor.,

High Mc-Skeptical-correct

232 223 363 Int.Mc-Hypothesis-correct, Int.Mc-Explanation-partially cor.,

High Mc-Skeptical-correct

333 121 263 High Mc-Hypothesis-correct, Low Mc-Explanation-incorrect,

High Mc-Skeptical-correct

SAS 262 342 363 Int. Mc-Skeptical- partially cor., High Mc-Argument-partially cor.,

High Mc-Skeptical-correct

262 342 363 Int.Mc- Skeptical- partially cor., High Mc-Argument-partially cor.,

High Mc-Skeptical-correct

362 141 363 Int.Mc-Skeptical-partially cor., Low Mc-Argument-incorrect,

High Mc-Skeptical-correct

262 342 162 Int.Mc-Skeptical-partially cor., High Mc-Argument-partially cor.,

Low Mc-Skeptical-incorrect

RAC 313 243 171 High Mc-Reflection-correct, Int.Mc-Argument-correct, Low Mc,

Recall-incorrect

313 243 172 High Mc-Reflection-correct, Int.Mc-Argument-correct, Low Mc,

Recall- partially cor.

313 243 373 High Mc-Reflection-correct, Int.Mc-Argument-correct,

High Mc -Recall-correct

313 243 373 High Mc-Reflection-correct, Int.Mc-Argument-correct,

High Mc -Recall-correct

ESR 323 263 313 High Mc-Explanation-correct, Int.Mc-Skeptical-correct,

High Mc-Reflection-correct

323 262 313 High Mc-Explanation-correct, Int.Mc-Skeptical-par.correct,

High Mc-Reflection-correct

121 263 313 Low Mc-Explanation-incorrect, Int.Mc-Skeptical-correct,

High Mc-Reflection-correct

HSE 333 263 131 High Mc-Hypothesis-correct, Int.Mc-Skeptical-correct,

Low Mc-Explanation-incorrect

233 363 233 Int.Mc-Hypothesis-correct, High Mc-Skeptical-correct,

Int.Mc-Explanation-correct

333 263 333 High Mc-Hypothesis-correct, Int.Mc-Skeptical-correct,

High Mc-Explanation-incorrect
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frequency [ln( f )] at which each of these recurrence phenomena occur as a function

of the log of the number of recurrences [ln(S)] for a given pattern at the optimum

string length. The distribution has a negative slope which is the fractal dimension.
The fitted line (R2¼ .97; F¼ 313.30; p< 0.001) provides the value of β¼�1.46,

with 95 % CI [�1.68;�1.26], which is within the typical range (1< b< 2) for EOC

processes (Bak, 1996; Kauffman;, 1995). The presence of an iPL denotes that the
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Fig. 13.1 Plot of the probability of attaining low and high group performance as a function of

information entropy (HS) encompassed in the dynamical utterance patterns [calculated values

using a logistic function]
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Fig. 13.2 A log-log scale plot of the number of different patterns that occur at various frequen-

cies. The fitted line (R2¼ 0.97) suggests an iPL distribution with β¼ 1.46 (t¼�17.7, p< 0.001)
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system is working within the dynamic regime, being at the EOC (Waldrop, 1992), a

state characterized by both complexity and coherence, and even though the cate-

gorical time series is unpredictable on a moment-by-moment basis, it could be

somewhat predictable on a global level (fractal distribution). This finding, along

with the other nonlinear indices, supports the central hypothesis on the emergence
of learning outcomes and the creative nature of interactive processes.

Discussion and Overview

This chapter presented the ODA, a novel method for studying dynamical properties

of patterns in categorical time series. ODA is based on symbolic dynamics and it

was used to identify patterns of interactions in discourses taking place within

collaborative group sessions. Symbolic dynamics is an area of mathematics that

studies series of entities or categories forming regularities or patterns unfolding in

space or time, whereas they can be further examined for structures of higher order.

The identification of regularities and hierarchical structures within symbolic

sequences is an analogous endeavor to cryptographic analysis, where meaningful

patterns of symbols are sought, and it is motivated by similar philosophy as the

Turing’s computational machine (Hodges, 2012). The main question that chal-

lenges this inquiry in a discourse analysis is if, at the optimum unit of analysis

(string length), there are certain combinations of utterances, events, or multiple

patterns of them, which are the more prevailing or the more creative contributions

to the process under investigation.

Research has shown that discourse verbal interactions are not randomly orga-

nized in time (Pincus & Guastello, 2005). They possess dynamical structures of

nonlinear character with varying dimensionality, order, or entropy. Typical math-

ematical tools, such as Markov chains used in symbolic dynamic analysis, cannot

identify emerging and recurring patterns of utterances. Moreover, the various

discourse analysis techniques, which have been applied to psychological and

educational research for testing specific hypotheses, have not been grounded on

any mathematical formalism or coherent theoretical premise. ODA is filling this

gap in the literature of methodology by providing a general philosophy to measur-

ing dynamical properties and unfolding patterns in time series measured at the

nominal level. It provides quantitative indices of patterning, information, complex-

ity, entropy, or chaos that can characterize the systems generating these series. The

ODA method originates from an orbital decomposition method applied to chaotic

time series; however it does not require the presence of chaos per se, but it can

distinguish systems of sufficient complexity and quantify them based on measures

comparable to chaotic indices, such as topological entropy and Lyapunov dimen-

sionality.DL is a dynamic measure and it is informative for the degree of turbulence

or chaos in the categorical time series; higher values of DL denote higher degree of

complex patterning over the course of conversation that is not due to chance. In

addition, information entropy, HS, which increases with longer strings and richer
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combinations, reflects the decree of novelty characterizing the time series. DL and

HS at the optimum string length correspond to the most probable structure convey-

ing the dynamical characteristics and the information content, and are used for

comparisons and further analyses.

The present study demonstrates that group interactions in cooperative learning

settings can be studied effectively with ODA. Methodologically, it challenged the

traditional approaches, which due to epistemological fallacies ignore what is

between the input and output. It shed light into the “black box” by implementing

the proper methodological tools and revealed the determinative role of dynamics,

while it opens a new area of investigation for education research. The method could

be extended to discourses of various topics in science and other disciplines as well.

ODA is an appropriate mean of analysis for any relevant to education processes,

such as attention, reading, studying, or playing. Moreover, it is applicable to any

time series of qualitative attributes, actions, or events taking place within the school

system, such as class attendance, accomplishments, episodes of decent or antisocial

behavior (e.g., bulling), to name a few.

Returning to group-interactions inquiry, it must be said that groups are not

always functioning as nonlinear systems and discourses do not always display

emergent patterns. In the experiments presented in this work, group settings were

designed so that activated members were involved in a free interaction process.

Discourses, under certain circumstances, show special features of nonlinearity,

nonrandom complexity, and novelty as measured by information entropy, which

are associated with group performance and productivity. These cases are more

likely to occur within unstructured settings where the discourse is allowed to evolve

spontaneously without preexisting scenario. The findings support a central hypoth-

esis that the learning outcomes from interactive groups emerge from nonlinear

dynamical processes. This is in line with theoretical premises and empirical evi-

dences from chaos and complexity research. The identification of iPL and fractal

dimensionality supports the hypothesis that in certain cases discourse in a group

interaction process could be functioning at the EOC, indicating creative processes

and emergent phenomena. The connection between creativity and nonlinear pro-

cesses has been elaborated in a special issue of Nonlinear Dynamics Psychology,
and Life Sciences (issue 2, April, 2011). At the individual level, and focusing on the
interactive mental resources in task executions, it was pointed out that the effective

cognitive processes, those which lead to learning outcomes, are nonlinear dynam-

ical processes. On the contrary, there are linear processes, such as “raw learning”

procedures and algorithmic problem solving, which are not associated with learning

and creativity (Stamovlasis, 2010, 2011, see also Chap. 9 in his volume). At a

theoretical level, any mental process and inductive-type complex problem-solving

procedure, where the solution is not hidden in the initial conditions, but is generated

via an iterative and recursive process, conform to nonlinear dynamical processes.

These are the processes that produce information (Nicolis, 1991). That is, these are
the creative processes. In this chapter, the central notion of emerging learning or

creativity through nonlinear dynamical processes has been extended to processes at

social level, referring to a constellation of individuals/students who interact with
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each other as a coherent unity. It is of paramount significance that irrespective to the

unit of analysis, at individual or collective level, the same principles can be

demonstrated, and this is the advantage of the theory of complex dynamical

systems.

The above findings have also important implications for education. At the group

level, a productive interaction process differs from a traditional instructional

session, which is based on behavioristic “transfer of knowledge” assumptions.

The latter represents a linear process having a predetermined scenario, in which

“learning” (if any) is considered to occur as a passive reception of emitted infor-

mation. In those cases, active involvement is not taking place and the participating

minds do not contribute to construction of meaning in the classroom. On the

contrary, within interactive groups, learning outcomes emerge through an iterative

and recursive process. The nonlinear perspective for the situated learning theory
suggests that collaborative construction of knowledge requires an “activated” group

involved in a dynamical interplay. The term activated implies strong interventions

and contribution to the evolving session. Given that the outcome is not nested in any

of the member’s initial repertoire, it has to be created through the interaction

process. Thus, creativity is associated with emergence, and this is the fundamental

element that nonlinear dynamics offers to educational theory and practice.

Learning-in-group approaches should encourage and train novice for active partic-

ipation, in a way that nonlinearity is induced in the interactive process. An evolving

discourse—a categorical time series portrayed by ODA—following a trajectory

which possesses low-dimensional chaos and operating at the EOC, is more likely to

be creative process.
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