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Preface

Welcome to Complex Dynamical Systems in Education: Concepts, Methods and
Applications. The application of the principles of complexity and dynamical sys-

tems in the social and behavioral sciences is a relatively new development, whose

relevance to the field of education is only beginning to be appreciated. This book

aims to further stimulate this advancement.

As our target audience, we see educational researchers as well as practitioners

and policy-makers who take an active interest in the interface between educational

research and their own practical work. The book appeals to their relatively sophis-

ticated understanding of the complex interface between research, practice, and

policy that motivates much of the current conventional research (and funding

thereof). Our intended audience also includes scholars working in disciplines

other than education who may take an interest in how, specifically, the complex

dynamical systems paradigm that they know applies to the field of education in

particular.

The book has the appropriate level of discourse to be used in graduate and

advanced undergraduate educational research courses, particularly courses aiming

to reflect the methodological diversity that currently exists in the field, or courses

that seek alternative approaches to the convention of presenting experimental and

quasi-experimental designs as the sole vehicle for legitimate causal inference in

education.

The text assumes a readiness among its readership to engage in the substantive

and methodological issues that present themselves when a complexity perspective

is taken, but, contrary to quite a few other complex dynamical texts, will not require

high level mathematical skills. We take pleasure in presenting these chapters to you

and hope that they result in a fuller awareness of what the complex dynamical

systems paradigm has to offer to the field.

Dobbs Ferry, NY, USA Matthijs Koopmans

Thessaloniki, Greece Dimitrios Stamovlasis
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Chapter 1

Introduction to Education as a Complex
Dynamical System

Matthijs Koopmans and Dimitrios Stamovlasis

This book seeks to introduce educational researchers, practitioners, and policy

makers to the theory of Complex Dynamical Systems (CDS), a novel perspective

that has gained considerable ground in many scientific disciplines, but whose

applicability to education remains underappreciated. The theory of complex

dynamical systems (CDS) is concerned with the analysis of systems irrespective

of how the unit of analysis of those systems is defined. These systems could be

molecules, cells, words, people, or human organizations. In recent years, there has

been a growing interest in the use of a complexity perspective in social science

research as well as policy and practice, as the perspective provides a rich and widely

applicable vocabulary to capture processes of change and the interaction between

individuals and larger organizational constellations. This book focuses on educa-

tional processes in human systems.

Let us begin with a clarification of the terminology. When we say complex, we
mean that the behavior of a larger systemic constellation cannot be readily reduced to

that of its individual members. Consequently, the perspective inspires a holistic view

where the behavior of individuals is understood in its larger context. For example, we

can understand student learning in terms of collaborative behavior in the classroom in

which it takes place, while a classroom climate conducive to learning cannot be

readily reduced to the learning or interactive behavior of individual teachers and

students. In other words, the whole is greater than the sum of its parts. When we say

dynamical, we mean that current behavior is understood in terms of deviations from

past behavior. As a result, the perspective focuses on behavioral change and its

M. Koopmans (*)
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determinants, rather than on outcomes frozen in time. Thus, wemight take an interest

in the learning trajectories of individuals rather than whether students meet certain

benchmarks or performance goals as a group. When we say systems, we refer to a

constellation of individual members who are in a position to interact with each other

as a coherent entity. In this sense, schools, districts, classrooms, and parent–teacher

conferences are all examples of systems, and when we would like to understand the

behavior of individuals within such systems, we also need to look at the behavior of

other units at the same level of description within the same system.

This book seeks to provide a conceptual and methodological introduction to the

use of complex dynamical systems (CDS) approaches in education, covering most

of the basic dynamical concepts that can be found in the literature, such as

emergence, complexity, self-organized criticality, attractors, catastrophe theory,

chaos theory as well as recent innovations to the complexity field such as fractional

differencing and power laws. As a field of inquiry, education has been slow to catch

on to complex dynamical systems approaches, whereas, in other disciplines, such as

psychology, econometrics, and theoretical biology, dynamical approaches have by

now been largely integrated into the theoretical and empirical research agenda.

Psychology, for example, has produced several edited volumes about the applica-

tion of dynamical systems approaches to various subspecialties in the field (Abra-

ham & Gilgen, 1995; Guastello, Koopmans, & Pincus, 2009; Robertson & Combs,

1995; Sulis & Combs, 1996; Tschacher & Dauwalder, 1999), but there is no similar

book that is specific to the field of education. This book seeks to address this gap.

In education, work from a complexity perspective tends to be theoretical, and

covers such topics as the exploration of the interface between dynamical systems,

education, and post-modernism (e.g., Doll, 1993; Truiet, 2012), the use of com-

plexity to characterize the political process in education (Osberg & Biesta, 2010),

the implications for practice of complexity as a paradigm shift (Davis & Sumara,

2006), or it consists of retrospective interpretations in terms of complexity of

research findings from studies utilizing conventional research paradigms (Morri-

son, 2006). While this work is valuable in its own right, it does not have the level of

conceptual and methodological specificity that is required to capture the dynamical

processes hypothesized in the dynamical literature, such as emergence, second

order change, and sensitive dependence on initial conditions, nor does it speak to

the specific gaps in our knowledge that result from the relative absence of dynam-

ical perspectives in empirical research in education.

There needs to be greater clarity about how research into the dynamical aspects

of the educational process can inform and supplement our knowledge obtained

through more traditional research paradigms such as randomized control trial

studies, quasi-experimental designs, and qualitative research. Recent progress in

the field of dynamical systems includes significant empirical work to study the

dynamical underpinnings of the educational process. A first inventory of this work

was a special issue in Nonlinear Dynamics, Psychology and Life Sciences on

education (Stamovlasis & Koopmans, 2014), which brought together significant

new empirical studies in education that explicitly utilize a complexity perspective.

This book further capitalizes on these developments by presenting some of the most

recent path-breaking advances in this area.

2 M. Koopmans and D. Stamovlasis



The six chapters immediately following this introduction discuss the conceptual

framework of complex dynamical systems and its applicability to educational

processes. Chapters 8–10 translate some of these concepts into coherent research

methodology. Chapters 11–17 report the results of empirical research illustrating

the use of CDS research methods. This work aims to help the reader appreciate what

we can learn about dynamical processes in education when this angle is taken. In

Chap. 2, Fleener appreciates, at a theoretical level, the implications of CDS as a

paradigm shift in education and its ability to address long-standing issues to which

conventional research paradigms have failed to produce satisfying answers, such as

how the complexities of school environment and individual differences contribute

to learning outcomes, and to forge a new kind of link between research and practice.

In Chap. 3, Bloom further explores the historical affinity between qualitative

research and complexity research that dates back to the work of Gregory Bateson

in the 1930s. Qualitative transformation is one of the central concerns in CDS, and

the fine-grained observation that qualitative research permits make it possible to

bring the dynamical underpinnings of causal processes to the surface in a way that

randomized control trial studies cannot (Maxwell, 2004, 2012).

Currently, it is difficult to imagine how one can talk about change in dynamical

terms without talking about emergence, the appearance of radical novelty in

systemic behavior and the search for the origins of such novelty. Goldstein dis-

cusses the construct of emergence in Chap. 4 and points to the failure of most

current dynamical literature to explain such novelty. He presents self-transcending
constructions as one possible way to distinguish spontaneous transformation that

may occur without any theoretically interesting antecedents from a change process

where the propensity toward transformation is already built into the system. The

identification of such propensities is both of theoretical and pragmatic interest to the

field of education, because it will help us understand why change does occur or fails

to transpire. This knowledge may, in turn, place findings of existing research into

clearer perspective. It may even help us penetrate deeper into the metaphysical

realm of questions about the origins of complex dynamical systems.

In Chap. 5, J€org appreciates the magnitude of the paradigm shift produced in the

field if a complexity perspective is taken, and he introduces the term generative

complexity as a new way of looking at systemic behavior in terms of the processes

through which systems maintain their integrity in the ongoing interrelationship

with their constituent components. His contribution is unique in that it is grounded

in a combination of the philosophical and early developmental literature (Vygotsky),

rather than in the accomplishments in mathematics, physics, and chemistry (e.g., Bak,

1996; Prigogine & Stengers, 1984; Thom, 1975), engineering (Ashby, 1957; Wiener

(1961), or anthropology (Bateson, 1972) as has been more common in the field of

complexity.

Chapters 6 and 7 analyze, respectively, the dynamical processes underlying the

acquisition of motor skills and children’s play, which both require description of how
integrated behavioral patterns occur over and above the individual elements that make

up those patterns. In Chap. 6, Corrêa, Correia and Tani describe the complex processes

that constitute psychomotor behavior, such as the fluency of movement based on

identifiable behavioral elements, as well as the dynamical components of that
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behavior: consistency and flexibility are both present in the behavior. They address the

question onmotor skills acquisition as the main goal for teaching and coaching, based

on a nonequilibrium model of motor learning, where psychomotor behavior can be

understood as adaptive behavior in its spatiotemporal context. Likewise, in Chap. 7

Fromberg analyzes the contextual, transformative aspects of children’s play as well as
the complex relationship of the individual play episodeswith the larger developmental

outcomes to which the play activities bear a generative relationship. Play is the means

through which children acquire their adaptive skills in the interface with the external

environment, and the relationship between these developmental outcomes and indi-

vidual play episodes illustrates complexity.

Koopmans in Chap. 8 focuses on an important methodological implication of

taking a dynamical approach, namely the need to augment our knowledge grounded

in rigorously sampled cross-sectional studies with an equally rigorous collection

information about the behavior of individuals observed frequently over extended

time periods. This focus on the changes in systemic behavior over time addresses a

potentially very important aspect of cause and effect relationships in education,

namely the extent to which behavior can be understood in terms of its own previous

manifestations.

Complex dynamical systems approaches are grounded in a wide variety of

mathematical models. One of the most important ones is a family of models known

as catastrophe theory, a formulation of discontinuous changes based on sets of

predictors that model the conditions under which discontinuity occurs. Stamovlasis

in Chap. 9 provides a complete presentation of catastrophe theory starting with a brief

history of its mathematical foundation and continuous with its mathematical formal-

ism in deterministic and stochastic forms. Subsequently, he reviews all the current

statistical methodologies that apply catastrophe theory to real data, focusing on cusp

model, and discusses central epistemological issues associated with nonlinear

dynamics in social and behavioral sciences. Furthermore, he demonstrates the appli-

cability of catastrophe theory in educational research by presenting nonlinear models

within the neo-Piagetian framework and science education. Marion and Schreiber in

Chap. 10 discuss the recent advances in the use of network analysis and provide a

primer of how thesemethods can be used in educational research. Themain interest is

to study networks of agents who share work-related experiences. For example,

students and teachers in a given school, or informal leaders in a school community

might constitute a relevant network. Network analysis has strong grounding in the

mathematics of graph theory and it has a specific terminology in describing the

system under consideration, associated with various network-level and agent-level

measures. It is therefore a particularly useful approach to provide an empirical basis

for our descriptions of how systems are organized.

A set of empirical studies follows in Chaps. 11–17. Each of these chapters

provides examples of methodologies that are specific to the description of complex

dynamical process and the exploration and confirmation of the hypotheses it

generates. The section showcases several standard methodological approaches

that are currently used in CDS: time series analysis, state space grid modelling,

orbital decomposition, network analysis, and catastrophe theory, as well as
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simulation models. In addition, problem-specific approaches are discussed as well,

such as van Vondel’s macro-dynamical description of student reasoning skills and

the temporal sequencing of types of teacher responses in Chap. 11. Van Vondel and

her coworkers rightly argue that understanding development requires, at a mini-

mum, a detailed understanding of how behavioral changes occur over time and

what the environmental contingencies are of these changes. The authors developed

a unique approach, and demonstrate the surplus value that a complex dynamic

systems approach offers, based on new tools designed to answer questions about

how the underlying processes affect students’ performance and provide insights

into how teachers can optimize their lessons.

The potential of CDS approaches to capture classroom interaction processes has

been appreciated in the literature on at least several occasions recently. Pennings

and Mainhart take the obvious next step in Chap. 12 by collecting and analyzing

teacher interactions with students and the social climate in classrooms using a

rigorous real-time data collection process as well as rigorous modelling practices,

State Space Grids (SSG), to identify the attractors underlying these interactions.

SSG is a powerful tool to examine the moment-to-moment nature of classroom

interactions that could be correlated with teacher and teaching process characteris-

tics. The authors in this chapter are making a remarkable contribution towards the

new paradigm establishing classrooms as complex dynamical systems.

Two papers illustrate the use of orbital decomposition analysis (ODA), a method

designed to study interaction processes and specifically to analyze time series

measured at the nominal level. Stamovlasis in Chap. 13 illustrates the utility of

the symbolic dynamics approach when looking at collaborative learning processes,

where it is shown that discourse analysis of students’ verbal interactions can reveal

those dynamical characteristics that might have a decisive impact on outcomes; this

exemplifies how to look closer, and thus, sheds light into the ‘black box’ of

educational interventions; moreover it demonstrates that small group processes,

under certain circumstances, behaves as a complex dynamical system driven by

self-organization mechanisms, finding that is important for the theory of education

regarding the emergent phenomena, such as learning and creativity. In Chap. 16,

Garner and Russell demonstrate the use of the same approach to better understand

self-regulated learning by looking at the interaction between learners and the

learning materials they use. They use ODA to investigate the nature of gaze

sequences during a self-regulated learning episode. They aimed to investigate

research questions regarding the presence and the nature of patterned sequences

in relation to global task strategies, and furthermore the degree to which these

patterns of acting, responsible for directing attentional guidance during learning,

are the fingerprints of an underling nonlinear dynamical system.

Scrutinizing ordered observations over a long period of time permits the detec-

tion of dynamical processes that otherwise remain hidden. Koopmans illustrates

this point in Chap. 14 when discussing recent advances in time series analysis, such

as fractional differencing and spectral power analysis to detect long-range dynam-

ical features in high school daily attendance over a 7-year period (e.g., pink noise,

self-organized criticality, self-similarity). Guevara and Porta in Chap. 15 reexamine
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the persistence of inequality in society and the questions it raises about the

instrumentality of the educational system in perpetuating it. The authors build

simulation models to better understand the relationships between critical variables

and triangulate them against data compiled from the educational system ofNicaragua.

It is important to note that simulation techniques are infrequently used in educa-

tional research, while they are particularly useful to address questions about the

temporal evolution and dynamical complexity of the relationship between variables

pertaining to educational outcomes. Within the CDS framework, simulation

models track down the complex interactions of social inequalities that educational

systems generate in the context of global trends, and permit the investigation of

more complex causal models than those typically documented in studies using

traditional linear methods.

Lastly, in Chap. 17 Sideridis and Stamovlasis discuss the complex interrelation-

ships between motivation, arousal and achievement and they use a cusp catastrophe

model to illuminate that relationship as well as providing empirical confirmation of

the nonlinear character of the relationships between these variables. They combined

nonlinear dynamics and self-organization theory in order to explain instabilities in

arousal level in educational settings and thus they built bridges between psychology

and physiology within the nonlinear dynamics and complexity framework.

In conjunction, we believe that these chapters illustrate the potential of CDS in

providing a new perspective on some old and newer problems in education, as well

as providing a new set of interests and priorities for the field to address. The book

also presents a set of methodological innovations that are specifically tailored to the

analysis of processes of stability and transformation in educational systems in

particular, and they demonstrate how these new approaches can be used on real

educational data collected in real educational settings.

The advent of chaos and complexity theory in the late 1980s and early 1990s

(e.g., Gleick, 1987; Waldrop, 1992; West & Deering, 1995) has created a need

among scientists as well as practitioners, policy makers and the business commu-

nity for a deeper understanding about how these new perspectives can help them

address the most persistent questions of their respective fields. Considering the

enormous variety of disciplines in which these perspectives have been utilized (e.g.,

biology, organizational theory, physics and chemistry, psychology, education, art

medicine), it is not hard to appreciate the difficulty in trying to find consistency in

the language that we use when talking about complex dynamical processes. In the

field of CDS, there has been some serious discussion about its terminological

consistency, or the lack thereof (Abraham, 1995; Goldstein, 1995), resulting in

the realization that we need to get our house in order regarding the definition of our

critical constructs. In that spirit, this book provides a glossary of terms based on

their use in its chapters. These definitions are not meant to be written in stone, but

they provide explicitness about how we used our terms, and may help bring clarity

to the field of complexity in education.

We hope that the contributions presented here will facilitate our discussions of

education as a complex dynamical system and inspire the generation of new types

of questions about educational processes and what makes them effective. The work

presented in this book seeks to take a meaningful first step in that direction.
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Chapter 2

Re-searching Methods in Educational
Research: A Transdisciplinary Approach

M. Jayne Fleener

Academic educational research has been criticized for its inability to address the

most intractable problems of public education. While critics point to the lack of

impact educational research has had on policy and practice as evidence that the

problem lies in a commitment of educational researchers to make a difference in the

real context of schools, there is a more fundamental flaw with our ability to conduct

meaningful educational research that requires a shift in our thinking about the goals

and practices of educational research.

As a dean, I was always defending my faculty to policy makers and community

leaders because they wanted to see research that was site based, scalable, and

relevant to schools, practitioners, and policy makers. Even as I described some of

the really outstanding research my faculty was doing and many of the innovations

in which they were involved, community leaders felt the research being done was

too “ivory tower” and not grounded in the real world.

This disconnect between the educational research being done by my faculty and

the expectations of policy makers for definitive answers to significant challenges in

education goes beyond a difference in purposes and goals of educational research. I

know my faculty wanted to make a difference in the real context of schools. They

wanted to impact and shape the future of education in positive ways. The disconnect

points to the need for educational research to catalyze and sustain change in

educational contexts. The drive to relevancy, however, does not require all educa-

tional research to be field based or empirical. The relevancy comes from a system of

research, not separate research studies, that informs practice, promotes change, and

makes a difference in meeting the goals of education.

This paper is an attempt to bridge the policy-researcher expectations gap by

presenting a systems perspective of education research that addresses the
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complexities of educational contexts, scalability of innovation, and sustained

change. Interrogating the questions we pose and the research methods we employ

supports a systems view of research that includes transdisciplinary application of

complexity sciences approaches to educational research.

A systems perspective of educational research engages the “re” in research by

creating a system of inquiry that is layered, recursive, self-reflexive, and conversa-

tional (interconnected). This multidimensional approach of re-searching involves a

dynamic interplay across contexts, inquiry, and modes of inquiry. This re-searching

process requires what Wittgenstein (1953) would refer to as a change in aspect

(Fleener, 2002), specifically in this case, what Ton J€org refers to as “thinking in

complexity” (J€org, 2011). Building on Morin’s notions of complex thought and

method, this approach advocates for a more complex understanding of educational

research as a system of re-searching. From the questions we ask to the methods we

employ, our ability to address the challenges of education requires a system of

research/inquiry that “reconnects that which is disjointed and compartmentalized”

(Montuori, 2008, p. vii) and layers research and innovation across contexts and

scales (Coburn, 2003).

The Question of Questions

The first issue of re-search is thinking about the kinds of questions that are asked.

We have all experienced the unending litany of “why’s” from an inquisitive 5 year

old. While we may ultimately end this type of recursive questioning with “because I

said so,” the profundity of the child’s inquiry is shaping their world. Before we ever
approach the “how” or “what” of research, we first need to question the “why”

(Fleener, 2002, 2004).

Sometimes in exploring the “why” we discover even deeper questions that

become even more central to the problems at hand. Reaching a point of impasse,

as with the 5 year old, we are forced to create new solutions to our problems (or at

least acknowledge defeat!). The biologist Humberto Maturana tells the story of

problematizing the meaning of life as a pivotal point in his ultimate creation of the

notion of “autopoiesis” or “self-creation” as a way to think about living systems

(Maturana, 1980). As he explored attempts to answer the question “what is life” he

discovered both internal and external contradictions with the approaches. Either

attempts to answer the question would enumerate all of the characteristics of living

systems, reaching a point where an artificial line ends up being drawn, or, as the list

continues to be enumerated ad infinitum, the distinction between living systems and

nonliving systems starts to become blurred. In either case, the ultimate answer to

the question of a definition of life seemed to suggest we already knew the answer!

The “why” that problematized assumptions (about the meaning of life) also

exposed our limitations in understanding (of life) and opened up entirely new

avenues of exploration. Maturana and his student Franscisco Varela created a

notion of life that was self-reflective, self-reflexive, and self-generating.

The “why” problematizes our thinking, allowing us to escape hidden assumptions

and create new ways of thinking about problems in more complex ways.
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There is another aspect of the “why” that is important in educational contexts.

Sometimes we forget to provide opportunities for our students to interrogate their

learning to open up new possibilities and engage them in expanding their world and

their place in it. As an example, from my experience in teaching computer pro-

gramming, I had one of those “take back” moments where I wished I had been more

prescient about the kinds of questions computers can and cannot solve and more

open to the possibilities of computer intelligence. The standard curricula for

teaching introductory computer science detailed beginning programming instruc-

tion with definitions of an algorithm. I would assign students homework to define

their algorithms for getting ready for school, preparing a meal, or going on a trip to

initiate discussion in class about computer algorithms. I would lead discussions to

probe students to think about what kinds of problems computers can solve and,

importantly, not solve. Computers, we would decide, cannot solve complex prob-

lems that require intuition and insight. Computers need clear algorithms as step-by-

step procedures, we decided, per the curriculum. Problems like war, poverty, and

discrimination were not problems for the computer!

These discussions with my computer science students were occurring at the

same time as an entirely new kind of mathematics was being developed. It was not

until 1975 that Benoit Mandelbrot invented the word “fractal” to describe patterned

relationships that embody unpredictability, indeterminacy, and “chaos” (Gleick,

1987). The next year, Kenneth Appel and Wolfgang Haken solved the four color

problem using computers, raising issues of a new kind of computer intelligence and

proof based on recursive problem solving and the ability to perform more calcula-

tions than a single human could in a lifetime. And just 13 years earlier, Lorenz

developed analytic modeling tools that proved weather was not predictable beyond

a few days and logistic functions provided new insights into unfolding patterns in

chaotic systems (Gleick, 1987). These and other twentieth century scientific pio-

neers invented new approaches to inquiry that embraced rather than attempted to

control for ambiguity and complexity, exploring patterned emergence, reorganiza-

tion, and complex dynamics.

By failing to complexify the re-searching of educational problems, we also pass

on our unexamined assumptions to our graduate students, the next generation of

educational researchers. We tell our graduate students they must have clearly

definable terms and constructs with answerable questions. As we probe their

thinking about key constructs, we encourage them to go to the literature to find

definitions of terms like “learning,” “problem solving,” and “knowing” that they

can use. These very constructs, when pushed to their limits, invite multilayered

discourse across multiple domains of inquiry including cybernetics, philosophy,

sociology, anthropology, and the learning sciences. Too often, we fail to invite this

complicated conversation across inquiry domains because we perceive the ques-

tions too irrelevant to educational contexts or the methods out of reach.

Complexifying our questioning exposes connections and relationships across

intellectual domains and opens up the possibilities for new ways of thinking about

problems. We have seen this process ebb, flow, and progress throughout the

twentieth century in the sciences, for example, when Einstein first proposed the
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general theory of relativity (1915), the Copenhagen Conference debated the nature

of quanta (1928), G€odel proved the incompleteness of mathematics (1931), the

Macy Conferences (1944–1954) developed interdisciplinary approaches to study

systems and invented the field of cybernetics (Umpleby & Dent, 1999), and the

1984 convening of physicists and economists in Santa Fe explored transdisciplinary

approaches (Morin, 2008) and invented complexity research (Waldrop, 1992). This

list of great twentieth century scientists and convenings, of course, is incomplete, as

there are many pioneers who have shaped our understandings by interrogating the

questions they were asking and looking outside of traditional boundaries to address

significant problems in their fields.

Complexifying questions can often lead to the core of a problem, helping us

arrive at a point where we have to reach outside traditional boundaries of thought.

As we complexify educational research, we challenge the kinds of questions we

might pose and need to extend our methods to include approaches to inquiry that

address the inherent complexity of education as a social system. Education is also

an important social system that impacts and shapes the vitality of any society.

Educational innovation and reform, as an example, have their own set of implicit

and explicit goals and assumptions that constrain how our work is done in schools

(Hatch, 1998). Questions about curriculum, teaching, teacher preparation and

development, school leadership, school organization, and so on, create a metaphor-

ical Tower of Babel like scenario for educational researchers. To overcome the

challenges to educational research, we need to interrogate our own “why” questions

to understand how all of these different pieces of the educational research landscape

come together, not as a puzzle that, when completed creates a clear picture, but as

an ecosystem that is multidimensional, dynamic and is best understood by a

systems approach examining all of its dynamic elements and interactions. And, as

we interrogate our “why” questions of educational research, we open possibilities

for complicated conversations across educational contexts and inquiry domains,

efforts more likely to respond to and engage stakeholders.

The “Why” of Educational Research

I recall, as an early career teacher, I engaged in strategic planning at my school. We

were asked to define the purpose of education and our goals for student outcomes.

We debated issues of college and career readiness, the role prepared students would

play in the future of society, the need for students to be lifelong learners, and the

hope that students would become lovers of learning. Fortunately, these pre-No

Child Left Behind (NCLB) discussions and requirements did not have to address

the assessment and accountability challenges.

Regardless of where we stand on assessment and accountability, to meet the

dynamic challenges of this mandate for universal and equitable education for all,

educational research needs to be focused on studying and transforming how we

prepare the next generation of thinkers and doers. This is a multidimensional
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challenge, as curriculum, instruction, learning theory, problem solving, teacher

preparation, and all the rest are factors in ultimate student success for the future.

If we can agree (and, of course, I invite thoughtful interrogation of this idea) that

preparing students as the next generation of thinkers and doers is a fundamental

purpose of education and therefore the central focus of educational research, if this

is, indeed, the “why” of education and educational research, what are the “what’s”
and “how’s” of educational research? These are the questions of methods.

Before transitioning to the question of methods, however, we need to tease out the

“why” of education a bit more. What does it mean to be prepared for the future in our

current societal context? Many States and school systems across the USA, as well as

most state departments of education have some set of skills and competencies defined

as twenty-first century learning, skills and dispositions for students upon which

curriculum and instruction should be based. Although assessments are lagging behind

these ideas of twenty-first century learners for which there is some overall accep-

tance, it is clear that, as a society, we recognize “reading, writing and ’rithmatic” are

not sufficient and that unquestioned memorization will not prepare students of the

future to be creative problem solvers, inventors, and adaptors in a world that is rapidly

changing, technologically evolving, and economically globally intertwined.

The Framework for Twenty-First Century Learning developed by the P21

Partnership, the Partnership for Twenty-First Century Learning, is used by many

states in the USA and provides a perspective of the purpose and goals of education

(see Fig. 2.1). As seen in the figure below, the P21 (2009) emphasizes Life and

Career Skills (including flexibility, adaptability, initiative and self-direction, social

and cross-cultural skills, productivity and accountability, and leadership and

P21 Framework for 21st Century Learning
21st Century Student Outcomes and Support Systems

Life and
Career Skills

Learning and
Innovation Skills – 4Cs

Key Subjects – 3Rs
and 21st Century Themes Information,

Media,and
  Technology

Skills

Standards and
Assessments

Curriculum and Instruction

Professional Development

Learning Environments

© 2009 Partnership for 21st Century Learning (P21)
www.P21.org/Framework

Critical thinking · Communication
Collaboration · Creativity

Fig. 2.1 Partnership for twenty-first century learning framework for twenty-first century learning
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responsibility), Information, Media, and Technology Skills (including the ability

to access, evaluate, and use information creatively to solve problems and share new

understandings), Learning and Innovation Skills (including critical thinking,

communication, collaboration, and creativity), and subject matter knowledge

framed within twenty-first century themes (that include global awareness, finan-

cial, economic, business, and entrepreneurial literacy, civic literacy, health literacy,

and environmental literacy).

Participating in a variety of businesses, public and private partnerships, and task

forces for rethinking teacher education, I have observed how complex the conver-

sation becomes when twenty-first century learning skills, for which there is basic

agreement, are considered through the lenses of standards, assessments, curriculum,

instruction, teacher and principal qualifications and development, and alternative

approaches to education. Within the Twenty-First Century Framework, the idea of

these fundamental supports for student learning as “pools of connectivity” provides

a scaffold for educational research. From a complexity perspective, these “pools of

connectivity” suggest a systems approach to educational research, what Bateson

(1972, 1979) would refer to as ecologies of knowing.

Bateson’s notion of “schismogenesis” describes a process of inquiry through

progressive differentiation, literally, “the birth of separation.” As described by

Jewett (2005), Bateson’s application of schismogenesis in and over time revolution-

ized anthropological methods, placing, distancing, and re-placing the researcher

within the context of the researched as both are subject to recursive scrutiny. The

unfolding of research is a re-searching process that creates its own system subject to

continually renewed inquiry, connectedness across contexts and time, and patterned

emergence. The layering of contexts, symmetries, and differences provides an

inquiry of the approaches to inquiry (recursively, an inquiry of inquiry approach),

that complexifies and scaffolds research. Eschewing the goal of inquiry as final

answers, this approach creates the opportunity for a “complicated conversation”

across researchers and researched; a complicated conversation (Fleener, Carter, &

Reeder, 2004; Lu, 2011) that is ongoing and transformative; re-search in its truest

form as perpetual inquiry. The complicated conversation that is research as a system

of inquiry embraces the ever-broadening and recursive understandings in concert.

Through this complex approach to inquiry, we have the opportunity to under-

stand and to transform educational contexts in ways that invite revisiting and

re-engaging the questions we explore while continually interrogating the “what’s”
and “how’s” of educational research. This approach to inquiry is an approach that

recognizes the recursive challenges of thinking about thinking. It invites an

approach to research methodologies that is self-reflexive and dynamic. Such

inquiry describes a questioning of questions and a method of methods whereby

inquiry itself becomes part of that which is studied, adapted, and transformed.

By “complexifying” our methods to include these meta-loops of recursive

inquiry, we open approaches to research that can engage in the “complicated

conversation” of re-searching. Through “complexification” we create a “generative

complexity” that recursively and dynamically interrogates method (see J€org, 2011)
and creates a system of research designed to address the “why’s” of education and

expands the “what’s” and “how’s” of method.
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Method of Methods

To interrogate the method of methods, our first step is to consider the limitations of

traditional research methods. In his book, “Scientific Literacy and the Myth of the

Scientific Method,” Henry Bauer (1994) describes the dangers of applying

the scientific method to social sciences research. Abstracting the researcher from

the researched, and applying methods that assume objectivity and rationality

are impossible in social science research, he argues, not only because of the reality

and messiness of contexts, but because the notion of pure science, itself, is a myth.

The “knowledge filter” of scientific inquiry, in an attempt to eliminate bias,

subjectivity, and error removes the researcher-as-participant in the process; a

human who has hunches, insights, makes mistakes, and disavows the role context

and the researcher play in human discovery. This is not to say scientific research

methodologies are worthless in educational contexts, nor that the scientific method

cannot be applied to the social sciences, but, he warns, we need to engage in “reality

therapy” that continually investigates our methods and our results. He intuits what

Morin describes as the musical complexity of research, “construction in movement

that transforms in its very movement the constitutive elements that form it” (Quoted

by Montuori, 2008, p. vii).

To play, a bit, with this notion of musical complexity, one comes to understand a

musical ensemble as both skilled application of musical technique and improvisa-

tion that captures the unique context of the moment (Forehand, 2005). The dance of

the musical ensemble is one that continually plays off of structure and interpreta-

tion, form and function, global and emerging patterns, and recursive dynamics. The

ensemble metaphor used in the context of our exploration of the method of methods

validates the importance of traditional attempts to address objectivity, consistent

application of methods, and clearly articulated goals. These are the backbones of

inquiry. But our meta-method must also engage the improvisation, the differences

that make a difference, the layers of complexity, the role of the researcher within

the researched, and the complicated conversation that connects and reconnects

across contexts, methods, and researchers. The musical ensemble is the system of

the performance and multiple playings that become the complicated conversation

of the arts.

The method of Cartesian doubt as the basis of modern inquiry and the culture of

method (Doll, 2005) needs to be interrogated as its own limitations and boundaries

become a part of the complicated conversation of research. The researched and

researcher are within their own transformational dance that changes both through

the process. By developing a culture of method that is open to possibilities and

fearless in the face of ambiguity, uncertainty, and complexity, we have the oppor-

tunity to create an approach to methods that is multilayered, patterned, relational

and connected. Such a method of methods allows for networked knowing across

dimensions with intersections at key nodes of purpose to create a system of

interrogation that solves complex, real-world problems in the context of education.

As a system, the method of methods based on a culture of method that embraces
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complexity becomes an autopoietic system (Maturana & Varela, 1980) itself, a

dynamic system much greater than a mere depository of discrete knowledge

“chunks.”

The culture of method that invites the complicated conversation of educational

research also opens up the possibility of using methods designed to explore

complex dynamics and the evolution of systems. Engaging research methodologies

from the complexity sciences extends the capabilities to engage in the messiness of

educational contexts and address issues of scale, complexity, and dynamics.

Edgar Morin (2008) advocates a transdisciplinary approach in educational

research to avoid the pitfalls of unquestioning assumptions of method. Transdisci-

plinarity is driven not by methods, per se, not by “problem solving in the context of

the agenda of a specific discipline . . . not in attempts to create abstract theoretical

frameworks, or to further the agenda of a new discipline, but in the need to find

knowledge that is pertinent for the human quest to understand and make sense of

lived experience, and of the ‘big questions’” (as quoted by Montuori, 2008, p. xii).

Morin, as described by Montuori (2008), distinguishes interdisciplinary approaches

whereby “methods of one discipline (are used) to inform another” from transdisci-

plinary research which “draws on multiple disciplines while actually challenging

the disciplinary organization of knowledge,” avoiding the pitfalls of “reductive/

disjunctive way of thinking that makes up what Morin was to call the ‘paradigm of

simplicity’” (Montuori, 2008, p. xxi). Transdisciplinary approaches to research,

according to Montuori (2005), are inquiry driven, meta-paradigmatic, connected,

contextual, and transparent. These approaches are important for interrogating

contexts that are complex and creating a system of inquiry that has the capacity

to interrogate itself. Applying approaches to research developed in the complexity

sciences is supported by the culture of transdisciplinary method, providing oppor-

tunity for the complicated conversation guided by Bateson’s schismogenesis, and

opening up inquiry to what Pierce referred to as the world of the probable (Truett,

2005) where knowledge is incomplete and open to infinite inquiry.

Re-searching the Culture of Method

As we think of educational research from this complex learning systems perspec-

tive and begin to engage a culture of method that is open to transdisciplinarity, we

begin to see a layered or dimensional approach to the “what’s” and “how’s” of

research. Educational research, as a system, then, engages the “why’s” of education
through a dynamic process, driven by the “why” of educational research, namely, to

support the educational agenda.

Re-searching the questions of education interrogates and connects layers of

complexity in educational contexts. Questions of curriculum, class size, uses of

technology, and models of education (charters, magnets, autonomous networks, and

traditional) have policy implications for funding that shape the educational expe-

rience and the future of society, at one dimension, and directly impacts students in a
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particular classroom in a particular context, at another dimension. Questions of

teacher evaluation, teacher effectiveness, teacher preparation, teacher professional

development, and teacher credentialing similarly shape the educational context

across multiple dimensions of the educational landscape. The role of technology

in education opens a series of questions that challenges across dimensions curric-

ular decisions, educational organization, the role of the teacher, class size, and

equity, among others.

Re-searching the culture of method engages a method of methods process that

scales educational inquiry across contexts, psychic and social domains, and intel-

lectual disciplines. The problem of scaling research to address the complex ques-

tions of education is similar to the challenge of scaling innovation in education.

Cynthia Coburn (2003) describes a scale research framework for addressing the

need for and challenges of studying education innovation across settings that is

useful for framing educational research as a whole. Making educational research

relevant for the real context of schools requires a system of research as a whole that

provides useful information for teachers, administrators, policy makers, and com-

munity leaders in the same way that scale research of education innovation con-

siders the multiple dimensions of implementation innovation that include “depth,

sustainability, spread, and shift in reform ownership” (p. 4).

Deep change in instructional innovation, according to Coburn (2003), is multi-

layered and impacts practices, beliefs, classroom norms and values. Studies of

classroom implementation of instructional reforms need to explore the depth of

implementation and, therefore, these various dimensions of change. From a

research perspective, depth of research includes research across the many dimen-

sions of the implementation process. Implementation dynamics are both across time

and across settings.

Sustainability of reform extends the question of depth of implementation to

understand change over time and across implementation sites (Freeman, Corn,

Bryant, & Faber, 2015). Clarke and Dede (2009) describe the challenges of scaling

innovation when moving from the pilot phase, where additional resources and

support are available, to replication of innovation at other sites. The same chal-

lenges exist for initial implementation sites as these resources are removed. Just as

with sustainability of innovation, educational research needs to recursively

reconnect research across contexts and time. Sustainability avoids the pendulum

swings of innovation resulting from the lack of sustainable processes and resources

being put in place after the initial innovation is tested. Beyond the sustainability of

resources, however, Coburn (2003) describes that sustainability ultimately requires

new ways of thinking, valuing, and interacting across multiple levels of the

educational enterprise. This is apparent in diffusion of innovation studies where

new technologies may be applied to classroom instruction, for example, but think-

ing about what it means to know in the context of a technology rich environment

does not change and technology use is reduced to rote practice or enrichment of

traditional instruction (Fleener, 1995).

The spread of educational reform is another dimension of innovation in educa-

tion discussed by Coburn (2003) that considers how whole school contexts or

2 Re-searching Methods in Educational Research: A Transdisciplinary Approach 17



district policies change to accommodate and support innovation. Policies and

decisions that support change, including demonstrated values about where funds

are allocated, decisions about professional development, and peer mentoring across

classroom implementation of reform, reflect that deep change to the system has

occurred. Sustaining and scaling innovation requires more than replication; it

requires whole system commitment. Scaffolding research similarly requires spread

from the perspective of policy changes and changes in school operations. We have

seen, for example, how a few teachers using the Flipped Classroom approach

(McCammon, 2011) to mathematics instruction ultimately influenced the entire

school mathematics department to adopt Flipped classroom approaches. The prin-

cipal’s role in the spread of this innovation was instrumental in its success.

As educational innovations are scaled, we have already seen how replication is

not sufficient to ensure significant change has occurred. Another dimension of the

application of innovation is when practices, policies, and understandings are

“owned” locally by those implementing the innovation. Adoption of innovation

ultimately requires contextual adaptation and local ownership that creates a system

of support for the innovation. Until our research can inform and change practice and

those who change adopt the changes as their own, we have not had a true impact on

schools.

Understanding education innovation and reform from the perspectives of depth,

sustainability, spread, and shift in ownership requires inquiry over time and across

many dimensions of the educational context. If we place these parameters for

investigating success of educational reform efforts, or the implementation of

innovation in educational settings, as focal points for organizing inquiry, we

begin to see the complexity of research across domains and scales of educational

contexts. Individual learners, teacher expertise, administrative commitment, redis-

tribution of resources, changing beliefs about teaching and learning, and policy

impact are just some of the dimensions of interconnectedness required for

re-searching and impacting educational change.

Making a Difference Through Educational Research

The graphic below (Fig. 2.2) attempts to capture the layered and dimensional

aspects of a system of educational research that is self-reflective, dynamic, and

adaptive through time. Coherence is what gives the system identity, in this case, as

the body of educational research. Within the dimensions of inquiry, transdisciplin-

ary approaches are important to maintain system openness with intellectual

domains and practices relevant to the complex social system that is education.

Inquiry driven research ensures the “why’s” of research are grounded in real

problems of education. Relevance of individual research studies is layered across

dimensions as part of the interrogation of the why’s, what’s, and how’s of the

research, adapting research findings to differing contexts. As a coherent system,

divisions across methodologies are erased as all research is entered into the
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complicated conversation of the purpose of education and change occurs through

the complex approach of scaling.

For those who understand how fractals are created (or even the Ying and Yang of

Eastern thought), the coherence of a system of educational research that is open,

relational, recursive, and dynamic can also be represented by the Sierpinski trian-

gle, depicted in Fig. 2.3 (Wikimedia Commons, 2015). Here, we see infinite layers

of complexity within a defined space; the recursive process of the re-search

approach, and scaffolding research across scales and contexts. Fractals, with the

characteristics listed below, disrupt ideas about dimensionality, introducing the

notion of fractional dimensions. Found in nature, fractals describe amazing com-

plexity within finite spaces. The average size of human lungs, for example, has the

surface area approximating the size of a tennis court (Gleick, 1987). This would not

be possible were it not for the fractal relationships constituting the lungs.

We can imagine that at different levels of the Sierpinski triangle, R1–R3 reside

as a framework for re-search that is ever present at all scale dimensions. The

repeating patterns of the fractal suggest a local and global “intelligence” of the

system where, in our case, the dimensions of research are ever present. And finally,

the coherence of this system of research ensures relevance and connection to the

real-world context of schools.

Framework for Coherence

R3 Research

Depth

Sustainability

Spread

Shift in ownership 

R2 Research

Re-connect the
What’s and the How’s

Re-examine the
why’s

Re-consider the
What’s and How’s

R1 Research

The Why’s The What’s and How’s

Fig. 2.2 A systems perspective of educational research

Fractaled Re-search

•  Self-Similarity across scales
•  Recursively infinite
•  Patterned relationship
•  Fractional dimension
•  Contained Infinity
•  Ubiquitous with nature

Fig. 2.3 Sierpinski triangle
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So what does this mean for schools, policy makers, community leaders, and

educators who look to educational research for answers to preparing students for the

twenty-first century? To our stakeholders, we are obliged to articulate the ground-

ing of our research in the “why’s” that matter to them; to engage them in the

recursive “why” process to come to common understandings about the purposes of

our research; and to change our own ideas about the role educational research

should play in educational reform.

As we utilize transdisciplinary approaches to our research, there is another

layering of complexity as our research methods engage in the complicated conver-

sation across disciplines about the nature of knowing and knowledge. The patterns

that connect across disciplines reveal important insights for knowing that have the

potential to change ways of thinking, continuing the recursive process of inquiry to

inform social understandings across social system domains.
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Chapter 3

A Batesonian Perspective on Qualitative
Research and Complex Human Systems

Jeffrey W. Bloom

Introduction

For years, we have been discussing how educational research in the complexity

sciences is distinctive from other research, if it is at all. We need to continue this

conversation to which I hope that this chapter will contribute. What we are talking

about is an emerging paradigm of complexity (see Glossary) in education. How-

ever, in order to establish such a paradigm we need to look critically at the

underlying assumptions of contemporary research approaches and of the research

we have been doing and are planning to do. This chapter begins with an exploration

of these three ideas of paradigms, assumptions, and complexity. The remaining

parts of the chapter delve into the implications for how we might view and conduct

complexity research (See Glossary for further explanation). The major emphasis

throughout is on the work and ideas of Gregory Bateson.

The complexity sciences have roots in the early work on cybernetics and systems

theories (Capra, 1996). Much of the development of cybernetics took place at the

Macy Conferences, which occurred from 1946 to 1960. Gregory Bateson, Norbert

Wiener, Heinz von Forester, Margaret Mead, George Evelyn Hutchinson, Warren

McCulloch, and Kurt Lewin among many others were key participants in these

conferences. These rather informal gatherings of some heavy hitting intellectuals

from a variety of fields initially grappled with ideas that danced around the notion

of cybernetics, including communication, learning, neural networks, teleological

mechanisms, computers, neurophysiology, analog vs. digital brain functions, per-

ception, etc. (a nice summary can be found at http://www.asc-cybernetics.org/

foundations/history/MacySummary.htm). The first conference was entitled, “Feed-

back Mechanisms and Circular Causal Systems in Biological and Social Systems.”

As the conferences proceeded, they became more focused and formalized, but in the
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early days there were few records of what took place. Mary Catherine Bateson’s
(1972/2005) account of a later Macy Conference is quite illuminating in terms of

the content discussed and the interpersonal dynamics. But what was unusual was

the interdisciplinary makeup of the membership, which changed each year. The first

year was composed of people with expertise in mathematics, physics, neurophys-

iology, medicine/physiology, anthropology, behavior, economics, psychology, psy-

chiatry, philosophy, and sociology. The list of areas of expertise expanded each

year. Overall, the Macy Conferences established cybernetics as at least a field of

study, which in turn led to the development of the fields of systems and complex

systems (Capra, 1996), as well as much of the current work in computers, artificial

intelligence, information systems, and so forth.

Although Bateson and the others pursued their own intellectual agendas and

wrote extensively, many of the ideas in the present chapter were more than likely

discussed in depth by others in the group. Distinguishing the origins of these ideas

may often be difficult, if not impossible. However, the emphasis in this chapter is on

the ideas expressed by Gregory Bateson and his impact as I see it on how we might

approach research from within a complexity sciences framework. Briefly, the major

components of Bateson’s work that I discuss in this chapter and that comprise a

“Batesonian approach” include: (a) his emphasis on nonlinear (“nonlineal”) pat-
terns of causation, (b) not confusing quantification and measurement with what

should be described, (c) primacy of relationship (see Glossary) over separation into
entities and parts, (d) not confusing the map (an abstraction) for the territory
(reality), (e) epistemology (see Glossary) as personal and social constructs,

(f) change as a given, (g) the importance of double description and multiple
perspectives, and (h) the critical importance of context for any kind of meaning.

Clash of Paradigms and Conflicting Assumptions

Those of us who are engaged in the complexity sciences face a number of chal-

lenges from those involved in establishing a new and emerging paradigm to those

involving the baggage carried over from the dominant paradigms of the past few

centuries. Among the top challenges are the ways in which we deal with the

conflicting assumptions between complexity and positivism (including reductionist

and mechanist assumptions). We certainly seem to be in the throes of a scientific

revolution. As our particular field of complexity sciences in education and the

social sciences continues to grow and develop towards an established paradigm, we

need to pay close attention to what we do and how we do it, including how we think

about the complexity sciences as a paradigm and the concomitant views, assump-

tions, and practices.

The notion of paradigm in this chapter can be situated within Kuhn’s redefined
concept of “paradigm.” From an operational perspective he described the impor-

tance of paradigm in the following way:
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Without commitment to a paradigm there can be no science. . . the study of paradigms is

what prepares a student for membership in a particular scientific community. Men whose

research is based on shared paradigms are committed to the same rules and standards for

scientific practice. That commitment and the apparent consensus it produces are prerequi-

sites for normal science, i.e., for the genesis and continuation of a particular research

tradition. . . .scientific revolutions are inaugurated by a growing sense that an existing

paradigm has ceased to function adequately in the exploration of an aspect of nature

(Kuhn, 1970, p. 11).

However, an expanded understanding of paradigm seems to include the follow-

ing aspects that paradigms:

• Involve a worldview (see Glossary) (Cobern, 1991; Pepper, 1970) or set of

reasonably compatible worldviews, including the values and assumptions asso-

ciated with these worldviews. Some may argue that worldviews may be more

fundamental to human experience than paradigms, which is likely true. How-

ever, for the present treatment of paradigms, the association of paradigms to

worldviews may be useful for developing a feel for the interconnections and

nature of the effects of paradigms.

• Involve a set of theoretical and conceptual frameworks (see Glossary) that

comprise the particular domain of interest and inquiry.

• Are usually associated with one or more compatible philosophical frameworks
(see Glossary).

• Involve research methodologies (see Glossary) that comprise the array of

inquiry tools used within the paradigm, which also are consistent with the

worldview(s) and theoretical frameworks.

• Involve the practices and discourses (see Glossary) characteristic of the par-

ticular paradigm.

Even with these descriptions and characteristics, the notion of paradigm is still

quite slippery. Is “positivism” a paradigm? Is “feminist studies” a paradigm?

Although various people may refer to both of these ideas (i.e., positivism and

feminist studies) as paradigms, they are not equivalent. These two questions point

to two different logical levels or types (Bateson, 1972/2000, 1979/2002, 1991;

Bateson & Bateson, 1987/2005; Bateson, M. C., 1972/2005; Copi, 1971/2011;

Korzybski, 1948/2010) or categories of thinking—acting (I am suggesting

“Thinking—Acting” as a way of capturing the everyday aspect of paradigms in

terms of how and what you think, and how you act and talk within your particular

professional community.) Positivism is a higher level of categorization under

which other ways of thinking—acting appear, such as behaviorism. And there are

yet other ways of thinking—acting that appear at lower levels of categorization,

such as classroom management.

A more useful way of discussing paradigms may involve a notion of levels of

categorization, such as super-paradigms, paradigms, sub-paradigms, and even

sub-sub-paradigms. Positivism seems to be at the level of super-paradigm in that

it spans and includes many other more specific ways of thinking—acting that not

only occur in research domains, but also occur across societies and cultures. At the
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same time, “behaviorism” may occur at the level of paradigm. Behaviorism falls

within positivism, but also includes other more specific ways of thinking—acting,

such as “classroom management,” which may be a sub-paradigm. I am not sure that

we can solidify such categorization schemes as absolute. The process of such

categorization is more like a process of pattern thinking, where the utility of the

categorization or pattern is in the justification or rationale for the categorization in

the context or contexts (see Glossary) in which one is working. This approach to

thinking about paradigms is still slippery, but the slippery-ness is acknowledged

and addressed upfront. Typically, from our positivist heritage we want one right

answer and one right way of doing things, which was the ultimate of Descartes’
view of the world and of a Newtonian approach to science. However, even our

notion of “paradigm” cannot fit nicely into a packaged definition. By “slippery,”

I am referring to the exceptions, the changeability, the hybridizing, the expanding,

and the contracting of what we may think of “paradigms.” We just need to take care

in describing our paradigmatic orientations in ways that promote cohesiveness and

consistency.

From the perspective of research, a careful alignment with a specific paradigm or

set of compatible paradigms can provide a framework of consistency and cohe-

siveness. A significant danger arises when research or any sort of thinking involves

conflicting paradigms. For instance, a teacher may be trying to deal with a situation

involving a student’s behavior in the classroom. A teacher considers herself a

humanist, who values the cognitive and emotional aspects of her students. She

encounters fundamental conflicts when she tries to address the problem using

prescribed behaviorist approaches that do not take cognition and emotions into

consideration and only use simplistic stimulus—response approaches to classroom

management. Using such conflicting paradigms creates confusion for both the

student and the teacher and may undermine the teacher’s overall goals for student
identity, relationships, and self-efficacy.

Since this chapter focuses on Batesonian and complexitivist implications for

research, the primary paradigmatic conflicts involve those that undermine the

emerging paradigm of complex systems. The paradigms (including super-, basic,

and sub-paradigms) that seem to be particularly contradictory to complex systems

are positivism, mechanism, reductionism, behaviorism, among many others. One of

the major problems we face in our society and in research is that we live in a world

that is deeply entrenched in positivism, mechanism, and reductionism. The under-

lying assumptions of almost everything we do and say have been molded by

centuries of positivistic patterns. These underlying assumptions are so insidious

that they work themselves into the way we think about complexity and complex

systems. As a result, we risk creating further confusion and misconceptions and

promoting views and approaches that undermine actions that can solve some of the

major threats to schooling and to the very survival of humanity. I need to insert here

that I do not view this situation of conflicting paradigms and conflicting assump-

tions as merely an academic exercise. In fact, I view these conflicts and their

remediation as critical to understanding and addressing the major issues we face
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in and across multiple contexts and across scales from the individual to all of

humanity and from the molecular to the biosphere.

The following list describes some of the more common conflicting paradigmatic

assumptions that we encounter in research and society. In this list of binaries of

conflicting assumptions, the ideas on the left side tend to be characteristic of

positivism, mechanism, and reductionism. The ideas on the right side of the “vs.”

tend to be characteristic of complexity, complex systems, and Batesonian

approaches.

• Quantification and Measurement vs. Description.

We tend to try to quantify “things” that have no quantity, such as learning,

behavior, and teaching abilities. The same issue applies to “measuring things”

that have no dimensions, which include intelligence, learning, etc. Bateson

(1979/2002, 1981, 1991) refers to such issues as epistemological errors, where

such errors confuse quantity for quality and pattern. When I have brought up this

issue of not being able to quantify or measure learning with a variety of different

people, the responses range from looks of perplexity to angry refutations. The

confusion is so deeply embedded that we cannot conceive of any alternative.

Some people respond with, “so, how do we assess kids’ learning?” But, more

often than not, people stumble over what words to use instead of “measure.” We

do not value description as a meaningful and legitimate means of understanding

learning or any other phenomenon.

• Predictability vs. Unpredictability.

Maybe the focus on predictability is embedded in a primal desire for certainty,

but predictability with any certainty only occurs in simple physical systems,

such as objects colliding, planetary motion, and so forth. From the terms coined

by Carl Jung, Bateson (1979/2002, 1991; Bateson & Bateson, 1987/2005)

suggested that the nonliving world of pleroma is predictable and governed by

linear cause and effect relationships. However, the living world of cretura is

unpredictable and governed by multiple, nonlinear feedback loops and complex

interrelationships with multiple interconnected causal factors. Descartes’ and
Newton’s mechanical view of the world has perpetuated our desire to apply

mechanistic predictability to all kinds of phenomena within living and ecolog-

ical systems.

• Complicated vs. Complex.

Complexity involves multiple interacting systems that perpetuate themselves

through various nonlinear processes. In complex systems, the multiple

interconnected processes cannot be explained separately from everything else.

There are no separate parts. In fact, complex systems are generally

interconnected with other complex systems. So a bear is a complex system,

but cannot be understood separately from the forest (another complex system) in

which it lives. A living organism, an ecosystem, the biosphere, and cognition—

learning are all interrelated complex systems. However, we often describe

events or objects as complex, when what we actually mean is that they are
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complicated. A car is complicated, but not complex. An assessment approach

may be complicated, but is not complex.

• The Thing vs. Sets of Relationships.
Almost all educational research and pedagogy focus on “things” as separate

entities and as extensions of Cartesian duality. Mind is separate from body.

Children learn about a tree as a distinct object made of parts. We examine a

teacher as an individual. We isolate “best practices” as distinctive and separate

from context. From the perspectives of Bateson and complexity sciences,

“things” as separate entities do not exist. Rather, everything is composed of

sets of relationships, both within the thing itself, between the thing and context,

and between things. Our tendency in research is to focus on things and not on the

relationships. We look at the teacher and the role of the teacher, but do not look

at the teacher within the contexts of classrooms, schools, communities, and so

forth. When we focus on the role of the teacher, we exclude that role within the

sets of roles of children, parents, and principals. As Bateson (Bateson, N., 2011)

suggested, when we look at the role of someone, we are looking at a “half-assed”

relationship. We do not look at classroom events, teacher thinking and practice,

or children’s behavior and thinking, as sets of relationships within various

overlapping contexts. In relating with students, rather than look at them as

separate entities and label them with some sort of judgment, I have tried to

look at them as bundles of relationships. What kinds of experiences have

students had that made them who they are? What could account for this or that

kind of attitude, behavioral characteristic, and so on? Such a process changed the

way I saw and related to my students, but I still had to fight the tendency to

judge. When teaching about some sort of content, I tried to take the same

approach by emphasizing the interrelationships involved. If students were

observing earthworms, at some point we would talk about gardens, similarities

to ourselves, birds, soil, ecologies of forests and fields, foods, anatomy, behav-

ior, sex, communication, beauty, and so forth. The relationships make up the

contexts in which the meanings are embedded.

• Objectivity vs. Subjectivity.

The positivistic notion of objectivity is generally dismissed among qualitative

researchers, but the influence of this faulty assumption still affects how we

conduct research. At very subtle levels, we take observational notes as if we

were objective observers. Within this process, we rarely record our emotional

reactions and explicit theoretical or belief reactions. We also rarely pay attention

to how our presence in a classroom, school, or other context affects the dynamics

of the setting and those individuals in this setting. A significant number of books

and papers address concerns of validity and reliability. The qualitative versions

of credibility, dependability, confirmability, and transferability (Lincoln &

Guba, 1985) are utilized as if they are the equivalent of the positivist notions

of validity and reliability. Qualitative researchers feel driven to take defensive

postures against the predominant positivist paradigm by showing how their

research is legitimate in ways that are understandable to positivist researchers.

This position does not dismiss the value of credibility, dependability,
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confirmability, and transferability. Rather, I am suggesting here that our moti-

vation to justify our work with these ideas is driven by more subtle drives to

achieve recognition in positivist circles. As a Batesonian complexitivist (for the

lack of a better descriptor), I do not dismiss positivism. It is useful in some

contexts, such as some kinds of engineering. But I do not think it is at all useful

in the social sciences and education, where we are dealing with living systems

that are inherently complex and should be studied from that perspective.

• Whole as Sum of Parts vs. Whole as Greater than Sum of Parts.

Reductionism contends that if we understand all of the parts, we can understand

the whole. A Batesonian or complexitivist contends that wholes are much bigger

than the sum of their parts. However, complexitivists often avoid looking at the

parts and criticize anyone who looks at the parts. Such actions or reactions are

problematic. The problem does not lie in the parts, but in thinking that the parts will

lead to a complete understanding of the whole. Looking at the parts is necessary.

However, a recursive process should involve zooming in to the depths of the parts,

then zooming out to the whole, then back to the parts and so on (Bateson, 1972/

2000, 1979/2002, 1991; Bateson, M. C., 1972/2005; Bateson, N., 2011).

• Map vs. Territory.

Gregory Bateson (Bateson, 1979/2002) focused heavily upon Alfred

Korzybski’s (1933/1994) notion of “the map is not the territory” or that one’s
concepts and conceptual models are not the same as the objects or phenomena to

which they refer. “Naming is always classifying, and mapping is essentially the

same as naming” (Bateson, 1979/2002, p. 27). From Bateson’s perspective,

confusing the map for the territory is another fundamental epistemological

error. In research, such error potentialities menacingly loom over every part of

the process. As we construct explanations from observations, we may begin to

believe that our explanations are the reality, rather than our interpretations of

reality. Our explanations may be projections of our own theoretical and belief

frameworks, which may not reflect the actually reality. A “map” is any level of

abstraction, any representation, and is not the actual thing (Korzybski, 1948/

2010). The Cartesian view of the natural world as a giant machine is a classic

example of confusing the map (machine or mechanistic view) for the territory

(natural, biological/ecological world). People actually thought the natural world

worked like a machine. In fact, people still think this way.

• Linearity (see Glossary) vs. Nonlinearity and Lineality (see Glossary) vs.
Recursion (and Process—Outcome).

Bateson made a point of distinguishing between linear and lineal, although at

present the notion of “lineal thinking” seems to have been appropriated by

“linear thinking.” Bateson distinguished between these two terms where “linear”

is a mathematical relationship resulting in a straight line or a graph and “lineal”

refers to sequential relations among causes or within an argument. “The opposite

of linear is non-linear. The opposite of lineal is recursive” (Bateson, 1979/2002,
p. 212). As Bateson contended, “lineal thinking will always generate either the

teleological fallacy (that end determines process) or the myth of some supernat-

ural controlling agency” (p. 56). Again, the lineal and positivistic—mechanistic
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tendency is to assign a singular cause to a particular effect. From the perspective

of complexity and recursive thinking, when we see a particular effect, we may

consider that the effect is due to the interaction of many different factors,

relationships, and contexts. In addition, such recursive thinking places greater

emphasis on process than on the end product and sees that there are a variety of

possible end products for any given process (Weinberg, 1975/2001). Much of

educational thinking ascribes causes for particular issues and problems.

Teachers are blamed for low student test scores. Lack of “time-on-task” is a

cause of low learning outcomes. Children’s lack of respect for teachers is the

cause of classroom behavior problems. These types of linear cause and effect

relationships are prevalent in both the popular and research literature in educa-

tion, as well as in political speech and media reports.

• Rigidity and Stasis vs. Variation and Change.

Both rigidity and stasis, as well as stability, often describe the state of some

“thing”, object, entity, or process. Once again, such notions contain epistemo-

logical errors. Even some seemingly rigid object or stable process is undergoing

continual change. One of Bateson’s (1979/2002) favorite examples, is the tight

rope walker who is continually adjusting body and balancing pole positions in

order to maintain balance. What may appear as stable, static, or rigid is actually

undergoing continual change. Bateson (1979/2002) emphasized the importance

of random variation and change as the characteristic of what he called the two

great stochastic processes: (a) learning and (b) evolution. In contemporary

practices, approaches to learning are rigidified, sequentialized, and controlled

to the point where any random variation is excluded. In research, the methods of

data collection and interpretation tend to disregard the importance of random

variation by viewing and presenting events as stable and invariable. We make

“conclusions” that this is the way it happened and this is what happened. We do

not suggest that all kinds of variation and random events occurred and may

occur. Rarely do we suggest that there were patterns in the way random

occurrences and variation were handled or not handled.

• Single Description vs. Double or Multiple Description or Multiple

Perspectives.

Research commonly utilizes single vision. We examine particular phenomena

from a single perspective. Within qualitative research, even the notion of

“triangulation,” which appears to address the issue of multiple perspectives, is

still situated within a singular perspective. One set of triangulated data may

include observations from the researcher, commentaries from subjects, and a

variety of artifacts. Although these three sets of data provide information from

different sources, they tend to be interpreted from a single conceptual or

theoretical perspective. Such an approach is certainly useful, but a truly double

or multiple description is most likely absent. One of Bateson’s examples of

double description involves relationships. Each component of a relationship

describes that relationship. These descriptions are not the same, but they both

describe and establish the relationship from different perspectives (Bateson &

Bateson, 1987/2005). Our challenge as researchers is to find and elucidate these
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double or multiple descriptions. We also need to both describe “something”

from our own epistemological frameworks and assumptions and describe the

same “something” from one or more other epistemological frameworks and

assumptions, in the same way Gregory and Catherine Bateson (1987/2005)

wrote Angels Fear from theistic and nontheistic perspectives. The taking of

multiple perspectives—from the arts, natural sciences, social sciences,

philosophy. . . or from one’s own perspectives as well as the perspectives of

widely different people, societies, cultures—can provide possibilities for

approaching some sense of bringing the map closer to the territory. Such

approaches are powerful versions of transdisciplinarity (see Glossary) and

transcontextuality (see Glossary). They play with contradictory assumptions

and conflicting views in ways that prevent being trapped by those very assump-

tions and views, while allowing glimpses of accuracy and truth to emerge. In

fact, such approaches provide the ability to see, describe, and utilize what

Bateson (1979/2002) calls metapatterns (see Glossary) or patterns which con-

nect: “It is that metapattern which defines the vast generalization. . .” (p. 10).

These patterns are what we are trying to expose and understand through

research. However, the fragmentation from specialization and the mechanization

of our thinking has led us away from transdisciplinary inquiries and robust

contextuality (Montouri, 2005).

• Disconnected vs. Contextualized.

Without context, words and actions have no meaning at all. This is true not only of human

communication in words but also of all communication whatsoever, of all mental process,

of all mind, including that which tells the sea anemone how to grow and the amoeba what

he should do next (Bateson, 1979/2002, p. 14).

The word “context” is used frequently, but is rarely defined and probably has

as many meanings as people using the word. Context can be referred to as a

physical setting, as a social or cultural setting or framework, as a period of time,

as social interaction, and so forth. Bateson (1979/2002) suggested that context is

“pattern through time” (p. 13). But he also suggested that context is connected to

the notion of story, and that contexts can be temporal, spatial, and formal.

Formal contexts are those that focus on the sets of relations or patterns that

underlie the particular phenomenon. A simplistic example that Bateson (1979/

2002) liked to use was that of the trunk of an elephant. The trunk’s location

between the eyes designates a nose from the perspective of a spatial context. The

function of the trunk as a nose for breathing relates to a temporal context. And

the embryological history of the tissues of the nose relate to the formal context of

ontological relations. The idea here is that the use of context, in fact, the use of

multiple contexts, is necessary in providing a depth and extensiveness of mean-

ing, which is generally rather thin in much research.
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There are other conflicting assumptions, but this list comprises some of the more

common assumptions that impact research practices. In general, the positivist,

mechanist, and reductionist assumptions tend to insidiously work their way into

our thinking and practices. Although we may align ourselves with subjectivity and

decry objectivity, we still may operate under the influence of objectivism. We write

as if we are taking an objective perspective. We design a study to address the

suppositions of objective research. We discuss causation as if there is one cause for

a specific effect. The effects of these assumptions can be subtle. They almost seem

to operate like Andy diSessa’s (1993) “phenomenological primitives.” By “phe-

nomenological” diSessa means that these understandings are based on our everyday

experiences, such as seeing the moon rise in the east and set in the west. And they

are “primitive” in that they do not necessarily operate at a conscious level. They can

be so deeply embedded that they come into play automatically. So such a “p-prim”

could result in a highly resistant to change notion that the moon moves around the

Earth from east to west, just the way it appears to move. So many of our assump-

tions seem to operate in a similar way to these p-prims. They seem to be self-

evident truths. However, the danger is that the effects of such assumptions can

compromise or threaten the accuracy, depth or robustness, and usefulness of our

understandings. We may place emphasis on the end product of some process (such

as test results), while from a systems framework the product is not nearly as

important as the process (such as the learning experiences) (Weinberg, 1975/

2001). While emphasizing test results, rather than learning experiences, we also

fall into thinking that we can quantify or measure learning, which is inherently

immeasurable. As a result, we have created what Bateson (1972/2000) called an

epistemological error or “muddle.”

Systems Thinking and Complex Systems

Not all systems are equivalent. There are simple and complicated mechanical

systems, such as bicycles, automobiles, planes, and planetary systems. Such sys-

tems operate according to specific physical laws and principles and are predictable.

In contrast, ecological, biological, and social systems operate in different ways.

Even though physical laws and principles continue to operate in such living

systems, much more complex sets of interrelationships are at play. These sets of

interrelationships operate in complex recursive pathways that help to maintain the

systems of which they are a part. The processes involved in such self-maintaining

systems are referred to as autopoiesis (see Glossary). This concept of self-

maintaining, self-regulating, self-generating, and self-transcending systems are

the defining features of “complex systems”.

The kind of thinking required for investigating and understanding simple and

complicated systems can be referred to as mechanistic thinking. We can think about

simple cause and effect relationships, linear processes, and predictability. On the

other hand, if we wish to understand ecological, biological, and social systems, we
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need to think in more complex ways. When I conceive of “systems thinking”, I am

focusing on ways of thinking about complex systems. Such systems thinking has to

focus on trying to understand the complex relationships and recursive processes.

The following list highlights the primary foci of systems thinking:

• Nature and interactions of multiple interacting systems (not just how one system
works).

• Relationships between parts and (a) processes, (b) wholes, and (c) other parts.

• Relationships between processes.

• Multiple perspectives of systems and processes.

• Contexts within which multiple systems operate and upon which the systems

affect.

• Nature and dynamics of relationships.

• Patterns within and among the systems and their component parts.

• Function and nature of feedback loops and other nonlinear processes in terms of

the flow of information and/or materials and in terms of their functions in

regulation, adaptation, maintenance, and so forth.

• Nature of transformation and other change processes.

• Relevance and usefulness of processes and systems (Bateson, 1979/2002;

Checkland, 1985; Daellenbachand & Petty, 2000; Paucar-Caceres & Pagano,

2009; Roberts, 1978; Ulrich, 2003; Weinberg, 1975/2001; Werhane, 2002).

These particular foci (and very likely additional foci) describe a different way of

conceiving of research in education. Rather than looking at linear cause and effect

relationships and at outcomes of various treatments, such foci can help us put more

emphasis on the processes that affect other processes, etc. We can examine how the

unique characteristics of a teacher affect the processes of her teaching and how

these processes affect multiple other processes of student learning, thinking,

talking, interacting, and so on. We can examine how educational systems affect

teacher thinking, teacher practices, student learning, etc. Rather than focusing on

rather simplistic relations and processes, we can begin to expand our vision to

include the multiple interactive, interdependent, and interrelated systems that

comprise children’s learning, thinking, and psychological development and well-

being; teachers’ learning, thinking, practices, and psychological well-being; class-

room and school community development and maintenance; parental participation

and learning; local community functioning; and local and national political func-

tioning. The extent of interrelatedness extends across contexts and levels of scale.

Without recognition of such interrelations, we limit the relevance, meaning, and

potential impacts of our research.
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Research as and About Complex Systems

We, as human beings, are complex systems. We establish various scales of complex

social systems. And we live within and affect complex ecological systems. Conse-

quently, our approaches to research should be consistent with the nature of complex

systems. In fact, our research is a complex system. The way we think and make

sense of our world is a complex system. Our thinking and our research can serve to

perpetuate and maintain our individual and social lives. We can adapt to emergent

situations and changing conditions. We can refine and adjust the ways we live so

that we can live in ways that are more in tune with the environments in which we

live, which, by the way, has not happened with the reductionist, mechanistic, and

positivistic research approaches of the last few centuries. In fact, although reduc-

tionist, mechanistic, and positivistic research has led to incredible scientific and

technological advances, such research approaches have created the life-threatening

crises we are now facing, including over-population, global warming, peak

resources, and so forth. Our involvement with social contexts of learning, teaching,

and education is no longer isolated and only relevant to specific contexts of

schooling. Our work as educators and researchers must address the fundamental

issues of our cultural and social survival, not to mention our survival as a species.

Our work can no longer be an academic pastime. And we certainly should not

perpetuate the assumptions and suppositions that have brought us to the brink of

social and ecological collapse. As Gregory Bateson suggested, “the major problems

in the world are the result of the difference between how nature works and the way

people think” (Bateson, N., 2011). We have reached a critical point where we have

to take Bateson’s point seriously and change the way we think about research,

learning, thinking, teaching, society, ecology, etc., and the way we do research.

Several years ago, Tyler Volk and I developed a model of research (which also

can be applied to learning and teaching) based on Bateson’s ideas (Bloom & Volk,

2007, 2012). There are three basic aspects to this model: (a) depth, (b) abstraction,

and (c) extent or abduction (see Glossary). These three aspects interact recursively

in ways that encapsulate the ideas that have been discussed thus far in this chapter.

“Depth” involves examining the intricacies of the relationships, patterns, and

processes within any particular system or sets of systems. “Abstraction” involves

creating explanatory models or frameworks, the “maps” that describe the territory,

and examinations of one’s own and others’ epistemologies. “Extent” or “abduction”

refers to the processes of using and testing the concepts from “depth” and “abstrac-

tion” in other contexts. These contexts can involve levels of scale and contexts

across various differences. For example, we may have examined teacher thinking

from within a working group of teachers and have found certain areas of concern

and how these areas are interrelated in various ways. Throughout this process we

may have constructed various models of how these concerns can be explained by

generalized patterns of relationship. And, concurrently, we may test out how these

patterns of relationship and models seem to explain phenomena at various levels of

schooling, from classrooms to schools to districts to states to the national institution
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of schooling. We also may find that these patterns of relationships and models

explain phenomena in other contexts, such as businesses, organizations, and state

and national political groups.

A Batesonian approach to research is in marked contrast to approaches that rely

on false notions of objectivity with narrow foci and highly sequential series of

predetermined steps. In addition, the typical separation of mind–body, self–other,

or self–context and the separation of systems as distinct do not exist in a Batesonian

approach. The entire approach can be seen as one that is rigorous (note: I use

“rigorous” with great trepidation, since it implies a certain stiffness or rigidity,

which is not descriptive of a Batesonian approach), yet relies on the complex knots

of interrelated human propensities, such as rationality, emotion, aesthetics, percep-

tions, and belief frameworks (a “contexts of meaning” approach—Bloom, 1990,

1992) to provide multiple perspectives of the interactions between parts and wholes

and between various wholes (systems) (Bateson, 1972/2000, 1979/2002, 1991).

Getting Past the Limitations of “The Researcher”
and “The Research” as Separate and Special

The tendency over the past few centuries has been to make research and researcher

appear to be inaccessible to the general population. Technical jargon among many

other aspects of technical disciplines has created barriers to understanding. In

school and in the media, we have represented science and other research oriented

disciplines as something for particularly smart people and not for the general

public. However, research as a way of using one’s observations to create explana-

tions and knowledge is a characteristic of being human. Of course, not all research

is equivalent, but the processes of exploring, examining, questioning, abstracting,

abducting, and so forth are common characteristics of research. We can refine these

processes and the ways we think about these processes and the data we collect, but

the fundamental approach is shared among people of all ages. Some groups may

devalue or suppress these natural research processes, but, nonetheless, we use these

processes from the time we are born.

The other major assumption that is problematic is this notion of research occur-

ring in a specific location and during a discrete period of time.We assume that we do

research in a lab or in some other setting, such as a classroom or school and that the

research stops when we leave or when we are not analyzing data. However, if we

consider that research is a natural propensity and that we do not turn on and turn off

our brains, we begin to realize that research is occurring throughout a day, a week, a

year, or for that matter our entire lives. Gregory Bateson did not turn off his research,

then turn it back on again. He thought about these ideas throughout his days and

throughout his life. All of his experiences became his laboratory. We can find many

other scholars who operated in this way. The idea that we have to have approval from

some human subjects committee to engage in research is very strange indeed.
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How can we not observe others and our environments and utilize what we see and

our insights in our continually developing explanatory frameworks?We teach about

and represent research as some technical and mechanistic enterprise. Many people

operate in this way. In such cases, there is a basic disconnect between ourselves as

learning beings and the activities from which we learn. Experts talk about their

research as if it is some external “thing” that has no connection to themselves, the

way they think, and the way anything else works.

Research as a complex system is integrated into our own complex systems of

living and learning. Research about complex systems is relevant and meaningful

research that focuses on our biological, ecological, personal, social, and/or cultural

contexts. Yet people are stuck in seeing the world through mechanistic, reduction-

ist, and positivistic lenses. They see no other possibility. In a recent online conver-

sation, I commented about the complex issues around a new technological

development in solar panels. I posed questions about the multiple contexts that

are not addressed, such as (a) shortages of resources that will be needed to produce

and replace the technology on a regular basis, (b) energy costs, (c) net energy

effects, (d) wear and tear, and (e) financial costs. People’s responses ignored these

complex issues. For them, technology was the answer and we’ll find technological

answers. Such lineal thinking is short-sighted and ignores the connections between

various systems that are involved. And, by the way, if you missed it, this last snippet

of an everyday event is an example of how our research as a way of living cannot

ignore the events we experience throughout our lives.

We need to “flip,” transform, or transmute our thinking about research. We need

to move from a view of research as separate from our everyday lives, as exclusive to

an elite group, as a mechanistic process, and as a lineal process. Research needs to

span multiple contexts and disciplines and pay close attention to networks of

relationships. And we all need to work at making the results of our research widely

available to the general public. The media and politicians are not communicating

accurate or relevant information, so we need to make that effort to help establish an

informed public about issues in education and beyond.
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Chapter 4

Emergence, Self-Transcendence,
and Education

Jeffrey Goldstein

Our world is so huge and complex that any model capable
of accurately representing it would be so far beyond
human cognitive resources that we could not use it . . .
All we can do is develop better and better inaccurate
models to serve particular descriptive, predictive and
explanatory purposes.

—Richard Healey

Introduction

Education devoid of creativity is oxymoronic. Wherever we turn on the educational

landscape we find an intimate bond between learning and creativity. From the

novelty of classroom methods and educational technologies to new findings in the

cognition of learning; from new public–private partnerships supporting novel

educational institutions to new programmatic configurations. . .it is the alliance of
education with the creative process that promises success. Learning, after all, is

about the inculcation of the new, the not known before, in a phrase, it is “creative

in-nova-tion” (“nova” is the Latin for “new”).

In recent years a revolutionary novel approach to creativity research has opened

up within the field of complex systems known variously as complexity theory,

complexity science, nonlinear dynamical systems, and cognate labels. One of the

most exciting phenomena in this field is emergence, the arising of unexpected novel

patterns, structures, dynamics, and entities in complex, nonlinear systems. Exam-

ples are literally boundless but certain prototypes standout (Goldstein, 2011b; see

also the excellent new book on emergence by Lichtenstein, 2014):
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• “Self-organizing” physical systems that generate emergent phenomena in the

form of “dissipative structures” such as hexagonally shaped Bernard convection

cells (see the research programs established respectively by the Nobel Laureate

Ilya Prigogine and the German physicist Hermann Haken);

• Computational emergence of artificial life that exhibits novel, moving patterns

on a computer screen whose dynamisms of appearing, merging, generating

“offspring,” and disappearing suggests the kinds of activity usually associated

with living organisms;

• Biological emergence of new speciation, symbiogenetic forms; collective col-

ony behavior; and so forth;

• Quantum protectorates or novel collective states of matter with radically unex-

pected properties such as superconductivity and superfluidity;

• Social emergence of new social, organizational, community structures

exhibiting cooperation, collective behavior, and unexpected cohesion/

correlation;

• The emerging “social self” during infancy, childhood, adolescence, even adult-

hood during developmental processes and transformations.

As this list demonstrates, instances of emergence take place across a wide

variety of fields, but our focus is on the last two since they have a direct bearing

on education. We also delve at times into features from others on the list in order to

get a better grasp of what emergence is all about.

Since all the items on the list are examples of emergence, they are certain

common characteristics (see Goldstein, 1999, 2014):

• Radical novelty which refers to the unpredictability, non-deducibility, and

irreducibility of emergent phenomena from the perspective of the substrates

from which they emerge—the contemporary term which groups these three

qualifications of radical novelty is uncomputability, i.e., emergent phenomena

are not able to be computed from antecedent substrates;

• Coherence/collectiveness/wholeness/integration which refers to the novel man-

ner by which the substrate components are related to one another in the new

emergent structure;

• Global- or macro-level which refers to the “higher level” of the emergent

phenomena in relation to the “lower level” of the substrates (this global or

macro-level is constituted by a spanning across the micro-components of the

lower level);

• Ostensiveness which refers to how emergent phenomena are unforeseeable until

they show themselves (this is closely related to the first feature of

unpredictability and non-deducibility);

• Dynamical which refers to how emergent phenomena emerge over time and

hence are not something like pre-given wholes;

• Self-transcending constructions which refers to the dual nature of emergent

phenomena as continuous with the substrate and at the same time transcending

the properties of the substrate;
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• Explanatory gap which refers to the gap in explanation that stems from the

inability to completely explain emergent phenomena from knowledge of the

lower level substrates alone.

Whereas in most other scientific and philosophical endeavors, a chief aim is to

narrow and even eliminate explanatory gaps as much as possible, when it comes to

emergence, it is actually the presence of such explanatory gaps which insures the

viability of the idea since the presence of an explanatory gap functions as a marker

indicating the need to shift inquiry away from the lower or micro-level substrates

the such macro-level constructs as higher level organizing principles, multifarious

constraints, and diverse novelty generating factors. Accordingly, in developing a

“logic” for emergence we probe its explanatory gap as a key to unlock the potency

possessed by those processes of emergence capable of generating emergent phe-

nomena with the radically novel, unique characteristics listed above.

Our strategy assumes the following presuppositions:

• The idea of emergence hinges on the presence of explanatory gaps;

• Such gaps are by definition pointers as to where explanation breaks down;

• Exactly how explanation breaks down can reveal crucial insight into what must

be going on in processes and operations of emergence that give it the potency to

impede explanation;

• The most recent way of conceptualizing explanatory gaps is of uncomputability;

• By probing how uncomputable outcomes come about we are then put into a

better position to comprehend how emergent phenomena can be uncomputable.

As mentioned, the aim of our inquiry is the development of a cogent “logic” for

emergence” which, in aiding our understanding of emergence, will have pragmatic

implications for educators in utilizing the concept of emergence. The term “logic”

of emergence includes the conceptual infrastructure or blueprint by which emer-

gence takes place, that is, explicit and implicit conditions, substrates, processes,

operations, constraints, outcomes, and consequences of emergence. This use of

“logic” is analogous to how the term “logical” was used by the physicist cum
biologist Walter Elsasser (one of the first complexity-oriented biologists; quoted in

Gilson, 1984, p. 109) to emphasize the disparity between the nature of biological

phenomena and that of physics: “[biology is endowed] with a logical structure quite
different from what we are accustomed to in physical science” (emphasis added).

Similarly, we uncover how emergence has a logical structure differentiating it from

other modalities of change.

Another example of what we mean by “logic” can be seen in the phrase the

“logic” of painting developed, for example, by Piet Mondrian (http://www.

theartstory.org/artist-mondrian-piet.htm). The logic of Mondrian’s work covers

his basic principles and how he saw the impetus behind his aesthetics which

involved a threefold process of abstraction, simplification, and two dimension

rectilinear geometrization (e.g., vertical and horizontal lines, squares and rectangles

and so on). This threefold logic guided Mondrian (and his followers) to exhibit in

his paintings an inherent, universal, and harmonious balance of two fundamental
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opposing forces. Moreover, the simplification and pairing down to essentials guided

by the logic of Mondrian’s paintings was held to insure the universal applicability

of the harmony he sought behind and under all particular contexts.

When it comes to emergence, it is important to note that explicating its logic

brings carries a somewhat daunting challenge precisely because of the explanatory

gap which by definition precludes the use of typical reductionist explanations and

thus provide scant conceptual space for the arising of the genuinely novel. One can

discern this kind of ban against novelty in Western thought as far back as ancient

Greece (see North, 2013). An example was Aristotle’s pejorative labeling of

novelties as aberrations for departing from his postulated ideal/normative ontology.

This rejection of the novel often found expression in a turn away from purely

naturalistic explanations toward appeals to supranatural sources of the radically

new, e.g., the creative activity of the divine, a theme also taken up by certain

emergentists over the past 100 years (see Blitz, 1992). In this chapter, our logic of

emergence, though, will stay on a naturalistic course and leave immaterial specu-

lations on how emergence works to others of that sentiment.

The Rise of the Idea of Emergence

The idea of emergence preceded complexity science by at least a century. The

mid-nineteenth century, when the term “emergent” was coined, saw two closely

related senses of an explanatory gap, both senses of which continued to guide the

formulation of emergence into the twentieth and twenty-first centuries and thus can

be said to ground the logic of emergence. The first sense was the basis of what the

British philosopher and polymath John Stuart Mill (cited in Goldstein, 2014) called

“heteropathic” in contrast to “homopathic” causation and what his student and

follower, the American-English man of letters G. H. Lewes (cited in Goldstein,

2014) termed “emergent” in contrast to “resultant” effects. Inspired by the study of

chemical reactions in which unanticipated outcomes were frequently observed,

heteropathic causation and emergent outcomes referred to the radically novel,

unexpected properties of the resultants of the reactions in contrast to the properties

of the antecedent substrates involved in the reaction. Both Mill and Lewes’ empha-

sized that whatever was going on in the reaction must be uniquely powerful to bring

about “altogether new phenomenon” carrying no “traces” of the substrate compo-

nents. Although both Mill and Lewes believed that science would eventually make

headway in explaining emergence and its radically novel outcomes, they alluded to

the need for changing our conceptualization of natural processes in order to allow

for radical novelty generation. That this would amount to a deep and revolutionary

change of perspective can be discerned in Mill’s calling for a thoroughly novel type
of causation, no mean feat. A logic of emergence, therefore, would need to

incorporate a revision of traditional notions of causation.

The second sense of explanatory gap focused on the distinction between mech-
anistic explanations, framed in terms of mechanical interactions of mechanical
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parts, and organicist explanations, which aimed at explicating the arising of novel

effects in terms of wholes, continuities and life forces (elan vital). Playing a key

role in this distinction between organicist and mechanical explanations was con-

sciousness or subjectivity, a subject that had been taken up by William James in the

USA and Henri Bergson in France. Thus, Bergson propounded his own French

version of the idea of emergence and emergents in his Creative Evolution (1911),

utilizing the phrase, fait jaillir (literally, “springing up,” “sprouting up,” or “to

bring forth out of”) which became “upspringing” (a synonym for emergence) in

English versions of the book.

On this side of the Atlantic, William James was developing his philosophy of “a

stream of consciousness” whose laws of operation were decidedly not mechanical

but more akin to life processes (Bauer, 2009). In particular, mechanical operations

primarily involved two non-lifelike features: the need for parts from one system

“touching” parts of another system so that the whole containing the parts is left out

of the explanation; and the discontinuity incumbent upon the discrete nature of each

instance of this mechanical causal touch, such as the repeated discrete motions of a

steam engine driving a train. In contrast, life processes as seen in the subjective

experience of the “Stream of Consciousness” (James’ major trope in his philosoph-

ical psychology) take place by way of, first, wholes influencing other wholes with

the parts playing only subsidiary roles and, two, a continuous flow of ideas,

fantasies, sensations, perception and other mental contents. The continuity of the

latter was conceived as an unbroken overlap of each content of consciousness with

each succeeding one.

The most important point about emergence to be taken from both Poincare and

James was that subjective experience, from an organistic point of view, could lead

to unforeseen insights and inspirations which were not possible in a purely mech-

anistic interpretation of subjective experience. What Bergson and James had

bequeathed to emergentist thinkers was both a focus on organicity and a placement

of emergence in a context of experience. These two themes were greatly expanded a

quarter of a century later in A. N. Whitehead’s tour de force emergence-based

metaphysics, e.g., his magnum opus Process and Reality (that Whitehead’s later
metaphysical system relied upon the idea of emergence is explored in Goldstein,

2004a, 2004b).

Whatever may be ultimately concluded about the success of the metaphysical

systems devised by either Bergson or James, they had decidedly cut a deep wedge

between mechanism and artifice on one side and life and the natural on the other

(a conceptual stance that had to show itself in any logic for emergence at that time).

Indeed, after Bergson and James, emergentists felt a pull to adopt either one side of

the cut or the other. Yet a closer scrutiny into the explication of emergence shows

that both reductionism and anti-reductionism can yield insights (Butterfield, 2001).

Such a binary choice in philosophical and scientific conceptualization could only

restrict inquiries into emergence. Emergent systems exhibit both continuity and

discontinuity, and are composed of both parts and wholes. Leaving out one side or

the other only results in a truncated explanation in danger of missing certain of the
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essential elements of emergence such as the relation of substrate parts to emergent

wholes.

We can summarize the early logic of emergence as follows: it is a logic that

recognized there were natural processes/operations resulting in unpredictable, even

startlingly unanticipated outcomes not explainable by recourse to micro-level sub-

strates alone, in other words, a logic that placed an explanatory gap at the heart of

emergence. Along similar lines, it was a logic that rejected traditional understand-

ings of causality since such traditional understandings did not attribute sufficient

potency to causality with a capability to generate the special properties of emergent

phenomena. It was a logic that favored an anti-mechanistic, even organic-like

unfolding. And finally, it was a logic that tended to focus on consciousness and

subjectivity as the place where emergence was most transparent to examination.

These early conceptions of emergence were later joined to Darwinian evolution

in the formation of a loosely connected but significant intellectual movement on

both sides of the Atlantic known as Emergent Evolutionism (from about 1915 to

1936). The main proponents were the philosopher/scientists C. L. Morgan, Samuel

Alexander, C. D. Broad, W. Wheeler, Roy Wood Sellars, and others (see Blitz,

1992). Even though important differences can be detected among their approaches,

in general they combined the two senses of explanatory gaps outlined above along

with the notion that evolution proceeds by saltations or jumps of speciation, and

thus did not follow a continuous path of descent. These saltations were momentous

phenomena shown in the course of nature (and thus not restricted to Bergson’s and
James’ subjective states), leaps of innovation exhibited in deep-seated and

far-ranging shifts of qualitative properties. Such radical jumps, even reaching the

cosmic in extent, could be seen in such examples of emergence selected by the

Emergent Evolutionists as that of life from the inert, of consciousness from the

merely alive, of new species out of already existing ones, even of such elusive

metaphysical phenomena as Alexander’s obscure claim that time itself emerged

from space (see Gillett, 2006). Although it is not clear to this day, exactly what

Alexander meant by this example of emergence, it did fall in with his general

metaphysical search for the ultimate foundations of the ontology of the world. I find

it surprising that one can come across equally arcane claims in modern theoretical

physics which has appropriated the term “emergent” to describe many recondite

matters in quantum mechanics, general relativity, quantum gravity, quantum field

theory and other foci of investigations.

Steering between mechanism and vitalism, emergent evolution was mostly

armchair speculation that contained not a few conceptual holes and plenty of

mysterious happenings. That is why Morgan, for example, proclaimed some kind

of enigmatic difference between causation and causality as a key to emergence

(what this difference amounted to remained as enigmatic as Alexander’s time space

emergence), and Alexander himself said the best we could do in confronting

emergence was to adopt a sentiment of “natural piety.” The vagueness of such

supposedly well-founded philosophical propositions is one of the reasons for the

fact that emergence evolution did not fare well in the long term. After around 1940,

we find emergence rising and falling in mini-movements spurred on by such
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scientific and philosophical luminaries as Karl Popper, Michael Polanyi, the Nobel

Laureate Roger Sperry and others (see classic papers in each issue of the transdis-

ciplinary complexity journal Emergence: Complexity and Organization).
It was the rise of complexity theory that greatly revived interest in emergence,

picking up steam along with the burgeoning of interest in self-organizing physical

systems, the computational emergence of the Game of Life and later “species” of

artificial life, and macro-level collectivities such as “quantum protectorates” (all of

which, as mentioned above, became prototypes of emergence). And, it was with the

advent of complexity science that the process of self-organization became so

closely entwined with emergence that the two words became nearly synonymous.

The Inadequacy of Self-Organization

Actually, self-organization is not a new idea but can be traced back to such

preeminent German idealist natural philosophers as Kant and Schelling (see

Keller’s excellent and insightful history of the idea, 2008a, 2008b). During those

early days, self-organization referred to the mutual influence of parts within organic

wholes so that the nature of life itself became largely defined by the kind of circular

causality by which self-organization was thought to operate. This continued as

biology further developed, with self-organization becoming a way of expressing the

organic regulation of one part to another, or whole to part, and the self-regulation of

the whole organism itself.

As complexity science advanced out of such earlier systems sciences as cybernetics

and related theoretical movements after WWII, self-organization was conceived of as

not just playing a regulatory role but more emphatically as processes made up of

interactions among micro-level substrate components resulting in macro-level adap-

tive functionalities. To the extent by which emergence became allied to self-

organization, the logic of emergence was essentially the logic of self-organization.

A main thesis of this chapter (see also Goldstein, 2006) is that self-organization

by itself as typically understood not only lacks a capacity for bringing about

phenomena with the radically novel characteristics demanded for emergence listed

above, it is not even the kind of explanatory construct that could be appropriate for

emergence. Since my contention here considerably departs from tradition, I need to

justify it.

First, let us unpack a few key elements of self-organization. To what does the

“self” of “self-organization” refer? One candidate is as an indicator that the sub-

strates are acting under their own efficacy and not being controlled by external

imposition. Cognate terms here could include: “innate,” “inherent,” “automatic,”

“unplanned,” and “natural.” Closely related are the spontaneity connotations found

in: “self-causing, “self-generating,” “self-modifying,” or some other “self-”

prefixed term.

We find the eminent German physicist Hermann Haken (2011) recently defining

self-organization as, “. . . the spontaneous often seemingly purposeful formation of
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spatial, temporal, spatio-temporal structures or functions in systems composed of

few or many components . . . the action of the subsystem without specific interfer-
ence from the outside.” Along the same lines, in the other main school devoted to

the study of self-organization in physical systems, that founded by the Nobel

laureate Ilya Prigogine (Glansdorf & Prigogine, 1971: xx), we find, “Such ‘sym-

metry breaking instabilities’ are of special interest as they lead to a spontaneous
‘self-organization’ of the system both from the point of view of its space order and

its function” (emphasis added). No doubt, the apotheosis of spontaneity in relation

to self-organization is that found in one popularization of complexity theory

(Kauffman, 1995) in which, according to a search through the book at “Google

Books,” the word “spontaneous” appears on 37 pages, with page 8 alone containing

8 repetitions of the “spontaneous” in discussing self-organization.

Both with “self” and “inner-directed” and “spontaneity” we can discern the

sense of a bottom-up organizing process in that the higher level emergent order is

thought to be the result of interactions of the lower level “self” or substrates and

their inner resources leading to an upward organizing action and not a top-down

imposition. It was these emphases on spontaneous, self-driven, and bottom-up

processes which rendered the revolutionary implications to self-organization

since previously it was widely held that change of a system required an external

push. With the idea of self-organization, though, came the contrary but more

compelling image of systems changing due to an inner adaptive response to internal

interactions on the micro-level.

We can now put together the above remarks into the special logic of self-

organization. First, it is a spontaneous and inner directed process. It is so sponta-

neous in nature that it can be brought about merely by eliminating or at least

loosening those constraints operating to suppress this inner directedness. Self-

organization is also a bottom-up process whereby lower level substrate components

interact and through this interaction, higher level patterns and structures result.

It is important to note that once the idea of self-organization became an essential

concept in the study of complex systems, its meaning had shifted from the earlier

connotations of self-regulation which it acquired from, first Kant and Schelling, and

then later the cyberneticians after WWII. Now, due to the respective research and

theorizing of Prigogine and Haken, self-organization became associated with the

lessening or outright dismantling of command and control mechanisms. The idea

was disengaged from the equilibrium-seeking self-regulation sense towards pro-

posing a lessening or even downright dismantling of command and control mech-

anisms that were interfering with the arising of novel properties. A prime example

was how Prigogine’s dissipative structure were supposedly prompted by far-from-
equilibrium and not equilibrium. This was where the revolutionary nature of self-

organization came to fore the since now the search was on how to facilitate the

arrival of these new properties by reliance on the inner, supposedly “spontaneous”

capabilities of complex systems and not through imposition novel from outside the

system or even by means of the system’s own internal “homeostatic” tendencies.

This is all well and good, yet we’re left with the baffling question of exactly how
lower level interactions lead to radically novel higher level emergent order.
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Consider the following analogy. Place a bunch of fish hooks (the substrates) in a

pail with a lid (container). Fasten the lid and shake the pail. Next, take the lid off

and carefully look at the resulting structure of interlocked hooks. If this structure is

then disentangled back to individual hooks and the process is repeated, each time

the resulting structure will in fact be a novel different structure and thus this iterated

action should satisfy being called a self-organizing process leading to a novel

emergent outcome.

The novel fish hook structures will indeed display a kind of coherence or

integration, one of the principal characteristics of emergent phenomena described

above. This was called a “new relatedness” by the Emergent evolutionist C. L.

Morgan. Yet one hesitates in calling this self-organizing operation emergence since

the type of novelty ensuing hardly seems novel enough. Peering deeply into what

goes on in self-organization reveals why: self-organization does not consist in

potent enough novelty generating factors. Indeed, because of the ingrained bias

against novelty and related conceptual assumptions, self-organization as it has been

described in complexity literature lacks enough potency to bring forth radically

novel outcomes. This does not mean, however, there is no place for self-organizing

operations during emergence for surely there are. Rather it suggests that something

else must be going on in addition which the logic of self-organization per se has not

managed to include.

I contend the one of the main reasons why self-organization lacks a capacity for

generating radical novelty is that it does not have a way for the substrates them-

selves to be transformed but instead they remain as they were before during

processes of self-organization. This is so because according to the logic of self-

organization all that is necessary is that the substrate components interact with one

another which, to be sure, may lead to a new relatedness of the substrate compo-

nents but such a new relatedness is not enough to count as emergence. The reason is

that new relatedness can turn out to be nothing more than a rearrangement of an

aggregate and not a genuinely radically novel new emergent integration (see

Wimsatt, 1997, on the difference between aggregates and emergent wholes).

In an emergent whole, on the other hand, the substrate parts undergo transfor-

mation and it is this that conveys radical novelty to the emergent phenomena. A

radically novel emergent whole must be constituted by radically transformed parts

since a whole is precisely constituted by the parts in a congruity (see Bertoft, 1996;

for a truly insightful account of this thesis, see Ganeri, 2011, 2012 on the require-

ment of transformation). Another way to put this is the dictum that for a radical

novel product to be generated, the operations resulting in the generation of this

product must themselves be radically novel. It is clear from the example of the fish

hooks in the shaken pail, the interactions prompted by the shaking of the pail leave

the fish hooks intact as they were before the operation. Certainly, the notion of self-

organization has played a significant role in accounting for new systemic order in

terms of the inner resources and direction of a complex system instead of the

previous presumption that new order must be imposed from outside the system.

But it has done little else besides that.

4 Emergence, Self-Transcendence, and Education 47



A New Logic for Emergence: Self-Transcending
Constructions

Emergentists claim that emergence is a capacity nature has always possessed

though it is only recently that this capacity has been recognized and come to the

fore as a powerful new construct for exploring how radically novel and original

outcomes can be produced. Because of both the newness of the construct and the

inadequacies of processes like self-organization to explain emergence, a new

approach is needed that departs in significant ways from self-organization. I have

been developing such a new perspective on emergence called “self-transcending

construction” (STC) for reasons I expound in this section (for the sources of STC,

see the chart and descriptions in Goldstein, 2006). I hold that STC puts us in a better

position to both understand and apply emergence in varied arenas of complex

systems, more specifically for the purposes of this chapter, the arena of the “social

self” mentioned in the beginning of the chapter as one of the prototypes of emergent

phenomena. In fact, one of the originators of theorizing about the emergence of the

emergent social self was the philosopher and social scientist George Herbert Mead

(see Goldstein, 2007a, 2007b for an exposition of Mead’s take on emergence) who

intentionally and explicitly considered his work as expounding the idea of

emergence.

Before we get to the social-self, we need to lay out the central features of the

logic of emergence according to the notion of self-transcending construction. What

originally struck me about this expression (as I say more about below) was a sense

that it provided a more accurate description of emergence than self-organization.

Self-organization does not so much describe emergence as one mechanism whereby

emergence is supposed to take place, that is, through lower level interactions. STC,

however, neutrally and with less implausible assumptions describes what emer-

gence actually looks like, namely, the arising of radically novel order in a system

that uses and then transcends some set of substrates in the complex system.

The “self” of “self-transcending constructions” refers to the substrates undergo-

ing transformation but no claim is made that the action must be only spontaneous,

innate, or self-directed, although to be sure these may indeed be seen in emergence.

Rather, the emphasis is on how this substrate “self” is transcended during the

processes of self-transcending constructions. We need to be careful with what

this “transcendence” amounts to. Although it seems a hifalutin word, it is meant

in the more prosaic sense of being transformed. For example, in the emergent

prototype of superconductivity listed above in the introduction, the electrons which

are the substrates, undergo radical transformation from being one type of elemen-

tary particle, i.e., fermions at a micro-level, to another at the macro-collective level,

namely, bosons. Certainly there is a self-organizing like interactions of electrons

during the emergence of superconductivity, but this is just a step and does not come

close to explaining the transformation that ensues.

In describing emergence, the self-transcending facet of the term expresses the

dual nature of emergence: one thrust expressing that there must be some sort of
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continuity with or following/derivation from the substrates, whereas the second

refers the radical transcendence of the substrates at the same time. The first thrust of

continuity-with substrates is what keeps emergence from being taken as “brute

emergence,” Strawson’s (2006) term for the idea of emergence spontaneously

arising “out of the blue,” an idea which tends to evoke some immaterial force

from above magically bringing about the emergent.

The self-transcending characteristic of STC implies there are natural capacities

possessing a potency for radically transformative operations. The denial that nature

could possess such capacities has been a conceptual stumbling block not only in the

acceptance of the possibility of genuine emergence but has been a main factor

behind calls for non-material, supranaturalistic sources for the production of radi-

cally novel outcomes The transformation involved in STC usually involves a

complex set of operations on the substrates, e.g., higher level organizing constraints,

emergence operations of mixing up, criticalization, and so forth (for my most recent

detailed and technical account of these operations, see Goldstein, 2014). These act to

transform the substrates so that the previous lower level is transcended in the

production of the radically novel higher level order. It is here that the explanatory

gap of emergence enters the picture, brought about by processes which have

variously been called negation operators (adopted from logic and set theory), shifts,

twists, and other cognate novelty operators which ensures the radicality of the

emergent result. Self-organization builds the outcome from bottom-up processes

of interaction but without the addition of higher level radical novelty generating and

organizing factors and accordingly, self-organization cannot rise to the occasion of

producing emergent outcomes. But the self-transcending negation operator negates
previous structure and order in the direction of radically novel order and provides the

potency for self-transcendence. This negation operation is the key component of

criticalization which supplies the “plot twist” of the narrative of emergence, that is,

pushes beyond self-organization to self-transcendence.

The phrase itself “self-transcending construction” came from a commentary on

the proof of the existence of transfinite numbers devised in the late nineteenth

century by the great German mathematician Georg Cantor (commentary by Felix

Kaufmann—see Goldstein, 2014 for a description of why Kaufmann rejected

Cantor’s proof method). Kaufmann actually used the expression in a derogatory

fashion believing that Cantor had illegitimately used a proof method that was prima
facie impossible since nothing could transcend itself. When I came across the

expression, I thought to myself, isn’t self-transcendence exactly what happens in

emergence when the substrates are radically transformed?

It must be pointed out that there was no sense on my part at that time that Cantor’s
work had anything to do with emergence, it was just that I thought the term had just

the right connotations to evoke emergence. Later, however I found out that in a

strange, rather convoluted manner Cantor’s work did in fact have a great deal to do

with the uncomputability characteristic of emergent phenomena. Uncomputability in

relation to emergence was proved by Darley (1994) using an algorithmic complexity

approach to emergent phenomena in artificial life, a prototype of emergence men-

tioned above. According to Darley, uncomputability meant that it was not possible to
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use a purely deductive, algorithmic method to derive the properties of emergent

phenomena from the properties of the substrates. Hence, the characteristic of

uncomputability has been added to the list of the properties of emergent phenomena

listed above; which now are thought to be not just unpredictable, non-deducible,

irrreducible to, radically novel with respect to, self-transcending, but also

uncomputable from knowledge of the lower level substrates alone. Consequently,

the explanatory gap of emergence was thereby made even stronger.

Darley did not stop there, he went on to apply his uncomputability idea through

the framework of the mathematical mathematician Alan Turing’s Halting Problem,

a crucial element in Turing’s own work on proving the existence of uncomputable

numbers (this is, of course, the Turing who helped break the code of the Nazi’s
Enigma machine, and also the Turing who along with John von Neumann devised

the first computers, see Goldstein, 2014). In his proof of uncomputable numbers,

Turing relied on the previous theorems of G€odel which demonstrated a fundamental

undecidability in formal logical/mathematical systems. It so happened that both

G€odel and Turing used the same above mentioned Cantorian proof method dispar-

agingly called self-transcending constructions. Thus, by this round-about way,

Cantor’s STC showed up in a path leading right to the uncomputability of emergent

phenomena. Since, these mathematicians and logicians (and many others) showed

how to generate uncomputability, I reasoned that I could reverse the chain of

thinking from “emergents as uncomputable” to “what kinds of operations could

produce uncompubility?” In this way, self-transcending construction became a

formal logic demonstrating how the explanatory gap based on uncomputability

could be produced (of course with suitable translational techniques that facilitated

going from the rarefied world of mathematical logic to the more mundane world of

prototypes of emergence in the natural world; all of this is gone into great detail in

Goldstein, 2014).

Above, I used the phrase “plot twist” deliberately in order to introduce an

analogy between mystery novels and emergence. In a mystery novel, the perpetra-

tor of the crime remains unknown until the end. This functions as explanatory gap

which motivates the reader to solve the mystery and close the gap. We can see this,

e.g., in the numerous Sherlock Holmes stories, all of which can be viewed as

fictionalized accounts of logical deduction in which Sherlock comes up with

amazing insights to traverse the explanatory gap. The mystery consists of appar-

ently incomplete or inconsistent evidence, which if put into syllogistic form would

prompt a normal linear process of thinking not capable of closing the gap or as

Holmes put it, “when you have eliminated the impossible, whatever remains,

however improbable, must be the truth? We know that he did not come through

the door, the window, or the chimney. We also know that he could not have been

concealed in the room, as there is no concealment possible. When, then, did he

come?” (A. Conan-Doyle, The Sign of the Four, chap. 6 (1890).

It is crucial to note, however, that although I use the mystery novel as an

analogy, there is no implication that emergence involves anything ultimately

mysterious or magical, nor does it necessitate appeal to any force more than natural,

nor does it call for some special kind of radical logic that would enable the
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co-presences of seeming oppositions such as found in dialectical logic (as in

Heraclitus, Hegel, Marx, dialectical materialism in general) or paradoxical/

paraconsistent/dialethist logics (see e.g., Da Costa, 1992; Melhuish, 1973; Priest,

1994, 2002) or even the complementarity logic such as by Bohr with his the

principle of complementarity in quantum mechanics.

Dialectical logic can be appealing for its apparent ability to show the conceptual

undergirding of the logic of change/becoming/growth by following the classic

threefold operations of thesis, antithesis (the negation operator in dialectical

logic) and synthesis. Usually attributed to Hegel this tripartite logical scheme

actually preceded Hegelian dialectics. The anti-thesis step is analogous to the

negation operator/criticalization, plot twist “trigger” which triggers the transcen-

dence of change. However, this dialectical scheme hardly does justice to all that is

required to produce outcomes with the radical novelty properties bestowed on

emergent phenomena.

Paradoxical logics, on the other hand, dispatch any problems of inconsistency or

contradictoriness by building into logic itself at least two extra truth valuations,

e.g., the addition of values that express the contradictory characterization of being

true and false at the same time. But there is a serious problem with such a flippant

introduction of inconsistency and contradictoriness. The Scholastics were well

aware of this problem, seeing it as igniting a veritable unstoppable spread of

permitted inconsistencies and contradictions, and thus introducing gibberish into

normal conversation (Sainsbury, 2008).

The philosopher Graham Priest (1994, 2002) has done more than probably

anyone in the contemporary scene to remedy the problem associated with paradox-

ical logics in producing a plague of contradictions in discourse. Yet his work leaves

me with a sense of flippantly doing away with difficult problems by some concep-

tual sleight of hand that does not take seriously the potential for spreading incon-

sistencies. A much sounder approach is that of Simmons (1990) whose study of the

paradox-seeming propositions of Cantor’s famous proof of transfinite sets, which as

mentioned above, was the indirect source of the phrase STC, showed how paradox

can be handled without resorting to the fancy conceptual footwork of paradoxical

logic. I have adapted Simmons’mathematical logical formulation of Cantor’s proof
in order to formalize my conception of self-transcending constructions (see Gold-

stein, 2002).

In any case, we do not need to turn to dialectical or paradoxical logics since

STCs do the work they are supposed to in transforming, in a self-transcending

manner, the substrates through their incorporation of some type of negation oper-

ator or other radical novelty generation process which does not require anything

paradoxical. Instead, the logic of emergence via STC rests on, among other factors,

the kinds of nonlinear operations of functional iteration, bifurcation, and other

transformative processes formalized in nonlinear dynamical systems theory, none

of which require paradox or dialectics.

Furthermore, the sources for the radically novel order displayed in emergent

order also hinges on a plenum of constraints within and around the complex system

wherein emergence operates. In Goldstein (2011a, 2011b), I pointed to two
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examples where we can see the required presence of constraints, namely, the

hexagonal shape of Benard convection cells and scroll rings in excitable media.

For the former I described D’arcy Thompson’s masterful mathematical explanation

of why these convection cells need to be hexagonally shaped, having to do with the

constraining fact that six circles fit exactly around a central circle of the same side, a

constraining demanded in such allied examples as optimal sphere packing and

similar situations.

The second example I mentioned was Art Winfree’s (and his student Steven

Strogatz) theorem in differential geometry which set out the order constraints at

work on the various possibilities for scroll ring formation in excitable media. As he

put it (quoted in Goldstein, 2011a, 2011b), “Left to spontaneous processes, nothing

much happens in an initial uniform excitable medium: it organizes itself in a

featureless way, perpetually minimizing any concentration of gradients. But when

prodded by a big enough, spatially structured stimulus, it reveals alternative stable

modes, organizing itself periodically in space and time.” Then, of course, there is

the constraint afforded by the actual physical (or psychological) containers of

complex systems undergoing emergence (see Goldstein, 2004a, 2004b). In both

cases, mathematical constrains operative on the system guarantee specific types of

order to characterize different types of emergent phenomena.

It is also the case that in their denigrating view of external constraints promoters

of self-organization as the key to emergence have driven a conceptual wedge driven

between the spontaneous/natural and what is otherwise constructional in nature. In

point of fact, though, construction can be as natural as self-organization is supposed

to be, a fact attested by such natural constructional phenomena, to mention just a

few, as bone growth, turtle shells, beaver dams, bird nests, hurricanes, ant hills,

termite cones, protein assemblies, and so forth.

The concept of construction and by implication structure can be found right at

the beginning of contemporary neo-emergentist research when the Nobel Prize

winning solid state physicist Philip Anderson (1972) offered his constructionist

hypothesis as a response to the arch reductionism rampant at that time among

particle physicists. This hypothesis proposes that although it might be possible to

reduce nature to certain simple, fundamental laws, this did not then entail a similar

ability for reconstructing the universe from these simple laws since each new level

of complexity involved the emergence of entirely new properties and laws not

appearing at the lower levels. Each new level of complexity, accordingly, can be

said to exhibit the self-transcending construction of new structures with new

properties that transcend lower level constructional characteristics and dynamics.

Moreover, the construction of each new level does not necessarily imply an

intentional designer or constructor behind the constructional activities since con-

struction as such can arise in countless ways whenever lower level parts are

constrained by each other and their environments, and/or interact in relation to

each other to generate even more constructional constraints.
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G. H. Mead and the Emergence of the Social Self

Psychological organization consists of all of the patterns, order, arrangements, and

structures making up a person’s psyche. Various candidates offered to explain the

emergence of psychological organization have been offered including psychody-

namic approaches (starting with Freud’s compromise formation among ego, id,

superego), personality theoretic constructs, Gestalt psychology, developmental

theories, and so forth. Darwinian ideas on psychological morphogenesis have also

been proposed to how mental characteristics have evolved. Since the study of

emergence incorporates the various elements and stages that are found in the arising

and changing of the organization of a complex system, research into emergence

offers some intriguing hints into psychological morphogenesis.

An emergence-based approach to psychological morphogenesis though implies

a creative emergence without the need to postulate any kind of innate drive such as

in Freudian and other psychodynamic approaches (Goldstein, 2007a) happens

innately and naturally when complex systems are in appropriate conditions, not in

the sense of the spontaneity claimed for self-organization, but rather in the sense of

a self-transcendence of the core psychological substrates. The novel order that is

seen to emerge is a consequence of the system creatively transmuting the substrates

of the nascent infant self within the social context of family and society.

This view on the emergence of the social self was the central conceptual theme

of George Herbert Mead’s emergentist theory of the social self. Mead’s revolution-
ary work was, in the words of his colleague and friend John Dewey, “. . .the most

original mind in philosophy in America of the last generation” who took the

doctrine of emergence “much more fundamentally” than “most of those who

have played with the idea” (Dewey quoted in El-Hani & Pihlstr€om, 2002: 29).

Yet Mead’s highly original and even radical speculations on emergence as the

linchpin of the social self are little discussed among complexity adherents.

Mead focused his emergentist-inspired speculations on how the personal self

emerged out of a social nexi of interactions within the human community. As I

pointed out in previous papers (Goldstein, 2007a, 2007b), for Mead, sociality was

“the principle and form of emergence.” This process occurred throughout nature,

for the emergent higher level was equivalent to the sociality characterizing all of

nature. For Mead, there was a double movement in which the lower level attributes

of the individual were shaped by the higher level, emergent social whole and,

simultaneously, the lower level attributes of the individuals were built up the from

the higher level social whole.

Mead even considered consciousness itself as a reflective internalization of the

social. That is why he held that any attempt at developing an adequate psychology

of the self which neglected its social core would have to fall far short of an

adequacy. According to the contemporary philosopher George Cronk’s (2005)

interpretation of Mead’s point of view, “The world in which the self lives, then,

is an inter-subjective and interactive world—a ‘populated world’ containing, not
only the individual self, but also other persons. Inter-subjectivity is to be explained
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in terms of that ‘meeting of minds’ which occurs in conversation, learning, reading,
and thinking.”

This conceptualization of a social self emerging out of intersubjectivity can be

clearly seen in Mead’s famous discussion on the difference between the sense of “I”

and “me” The “me” referred to that aspect of self-identity having to do with one’s
social self, the introjected social representations arising in the developing child

through the mediation of family, friends, neighborhoods, and society at large. It is

the “me” which enables social empathy and is organized according to “the attitude

of the whole community” or the “generalized other.” In terms of emergence, the

“me” is the individual reflection of emergent sociality itself.

The “I,” though, refers to the reaction of the organism to the ideas, values, and so

forth of the “generalized other,” particularly the reaction to the latter. For Mead, the

“I” included that sense of efficacy or agency which a mature person possesses.

However, because the “I” and the “me” are so intimately interrelated in a “creative

balance,” personal and social novelty can emerge as the “I” enacted in society and

in so doing reconstructs it Thus, the individual self as a conscious, experiencing

entity was not to be thought of as a mere passive recipient of a social whole’s
“downward” influence on the individual member, but rather an active shaper of

what that very emergent sociality was and could become. This meant that even

though logically the individual as a “lower” level entity and the social as a “higher”

level collective occupied distinct realms, in the reality of conscious experience this

distinction was mostly confounded in the ongoing actions of a person’s life.
That the social self is a self-transcending emergent entity constituted by the

transformation and melding of the substrate components was understood by Mead

in terms of his perspectivalism involving the crucial notion of a frame of reference.

Although that which may be viewed from one person’s perspective can be quite

different than that of another’s perspective, the integration of these various per-

spectives, or their being grounded in an intersubjectivity, was what made up an

emergent social whole, the different perspectives making up the different substrate

components. The philosopher William Desmonde (1967) put it, “society is the

ability to be in more than one system at a time, to take more than one perspective

simultaneously. . . This phenomenon occurs in emergence, for here an object in the

process of becoming something new passes from one system to another, and in the

passage is in two systems at the same time. During this transition, or transmutation,

the emergent entity exists on two levels of nature concomitantly” (p. 232, 233).

Indeed, perspectivalism implies that there can be many more perspectives making

up the social self than two. Instead, the emerging social self of an infant, child,

toddler, adolescent, even adult are operated on by a whole slew of perspectives, this

congeries becoming integrated into the wholeness of the self. Viewing this by way

of self-organization would leave unanswered many questions about how exactly

these interacting perspectives become integrated into a higher level unity since the

narrative of higher level organizing principles and the novelty generating factors

responsible for the radically novel emergent social self is left out of the account.

For Mead, sociality consists of a fundamental capacity for being several things at

once or “the occupation of two or more systems by the same objects,” and hence can
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be said to represent manifold relations of the emergent phenomena. Accordingly,

the self’s emergent sociality which organized the various clashing systems and

perspectives, just as a particular society was the organization of diverse individuals

so that sociality could be said to have a synthesizing function. Sociality then,

operating according to a seeming paradox encompassed both permanence and

change by allowing a process of adjustment made necessary by the new relations

characterizing the emergent event. According to Jones (1969), society could do this

through its dual capacity: first, to unite in a circularly reinforcing fashion was a

member; and, second, to allow for the individual qua individual to actually express

the social as a collective.

Conclusion: Education and the Emergence of the Social Self

Mead, of course, was well-known as an educator besides his other celebrated work.

His understanding of the emergence of an integrated social-self, capable of thought-

ful action and agency was tied into the unsurpassable role of education in generat-

ing, eliciting, shaping, directing, and channeling the social-self. From a complex

systems vantage point, education functions as not only the place of higher level

organizing which subjects the social self to a multitude of constraining influences,

education should also be viewed as the place where diverse novelty generating

factors are at work spurring the self-transcending transformation of diverse per-

spectives integrated into the social self. Mead’s perspectivalism plays a key role

here in providing the needed novelty generation through a mixing and integration of

these diverse perspectives. Thus, for Mead, whatever educators could do in order to

enable the exposure of students to different perspectives would be a main avenue

for the emergence of a viable and well-functioning person whose social self was

constructed out of these perspectives. Indeed, even exposure to one other social

perspective could serve to start the process of transcendence of that substrate

composed of the experience of being isolated within only one’s own perspectives.

Some may object that what I have just described can be understood by appeal to

self-organization alone. However, as I have tried to point out above, self-

organization has neither the “muscle,” the “potency,” the “scope,” or the “novelty

generating capacity” to bring about the needed transformation of the substrates

involved in emergence. When any particular action of education actually works

well in facilitating human development, something more than self-organization is

going on that leads to the transformation of the substrate components of the

developing self. This something is what I have discussed above in the context of

emergence as that which generates the explanatory gap. Remember the explanatory

gap of emergence is a way of talking about the various higher level organizing

dynamics which lead to an outcome not explainable by recourse to the lower level

parts alone.

The radically novel outcomes studied in emergence requires the addition of a

host of other factors beyond mere interaction. Certainly, the activities of interacting
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so emphasized in self-organization can and should also be done in educational

settings. But these are not enough since although such interaction provides the

sources of the various perspectives incorporated into the social self, the melding of

such perspectives into a higher integration requires more than that.

It makes undeniable sense to link emergence closely to creativity in the sense

that both aim at unanticipated, novel, unique, and original outcomes. Whatever is

capable of producing the latter properties presumes the generation of an explana-

tory gap and thus calls for the processes leading to them to possess an impetus and

quality substantially differing from that which produces anticipated outcomes.

Hence, emergence provides further support for the role of creativity methods in

education at all levels and contexts. Such methods should not be confined to art or

writing classes but instead spread throughout all curricula. The key for an

emergentist Mead-inspired approach is the immersion of students in a fecundity

of perspectives out of which novel phenomena will emerge shaped by the multitude

of constraining factors and rendered radically novel by facilitation of the transfor-

mation of the substrate perspectives into an integrated whole.
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Chapter 5

Opening the Wondrous World of the Possible
for Education: A Generative Complexity
Approach

Ton J€org

Introduction

Notwithstanding the fact that we live in the so-called Age of Complexity, it may be

stated that scholars of complexity in the field of education have no clear understand-

ing of the complexity and its potential role in education yet. This state of the art is

verymuch part of a more general state of the art in the science of complexity, of what

Helga Nowotny1 has called “the embarrassment of complexity” (Nowotny, 2013;

emphasis added). She explains that this embarrassment of complexity “begins when

we realize that old structures are no longer adequate and the new ones are not yet in

place” (p. 1). She explains the embarrassment of complexity as follows: “when it

dawns on us that the categories we normally use to neatly separate issues or

problems fall far short of corresponding to the real world, with all its non-linear

dynamical inter-linkages” (p. 1; emphasis added). Her position on the state of the art

seems in agreement with other complexity scholars. Different scholars have noticed

that complexity itself is still very much a contested concept. According to Melanie

Mitchell “[M]any think the word complexity is not meaningful” (Mitchell, 2011).

She also makes mention of the fact that to most complexity scholars there is not yet a

science of complexity (see Mitchell, 2011, p. 299). Neither is a general theory of

complexity yet available.2 So, it may be concluded that understanding complexity is
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still very much a problem in our twenty-first century of complexity.3 Paul Cilliers

links this problem with “a crisis of knowledge” (Cilliers, 1998, p. 121). Part of this

crisis is the lack of an adequate language of complexity: that is, a language with an

adequate vocabulary. One which is apt “to precisely describe what we’re studying”
(Mitchell, 2011, p. 301). A vocabulary which would describe the actual complexity

of the real world (see Nowotny, 2013, p. 1, referred to above). This complexity is

still very much a hidden complexity. The is the very complexity we cannot see, but

which is very much present in this real world.

The analysis above does not offer a very positive description of the general state

of the art around complexity in the Age of Complexity. This is, however, the state of
the art the scholars of complexity in the field of education are active in. Complexity

seems too complex to deal with. It may be no surprise therefore that complexity

scholars are not yet able to offer a general theory of complexity for education,

which is of use for those involved in education. That is, a theory of complexity

about the complexity of education. A theory which may be used for organizing
complexity as the fount of generative change, creativity, and novelty in education.

It may as well be no surprise that the general notion of complexity has not

changed the field of education in a real sense. The dominant view of complexity is

still very much a restricted view, being insufficiently complex. The complexity

scholars in the field of education did not really open the new spaces of possible for

the field of education (see Davis, Phelps, & Wells, 2005, with the start of the new

journal of Complicity; and Osberg, 2009). They were not able to describe the link

between complexity and the complexly generative nature of learning and develop-

ment, lest the complex process of generative change (Ball, 2009). They could not

link the processes of generative change with the process of generative emergence.

They could not link the process of generative change with the concept of

“generativity” and the corresponding “Zone of Generativity” (Ball, 2012a,

2012b). They were not able to conceive of the transitory nature of the child in its

development over time (see Vygotsky, 1987, p. 91). It has remained very much

unknown how this transitory nature of the child could be linked to the inherently

complex concepts of generative change, generativity, and creativity. It has

remained unknown how this transitory nature could be linked to the dynamic

generative architecture of complexity, as being active in the child, thereby acquir-

ing a “full generative power” of mastering the topic of concern (Bruner, 1996,

p. 119). It has remained unknown how these complex concepts may be linked to the

wondrous “world of the possible” in the field of learning and education.

Based on the critical analysis above, it may be concluded that the field is very

much in need for a more adequate account of the complexity involved in education.

This asks for a new general theory of complexity that may be linked to the very

complex nature of learning and education, involving processes of complexly

generative change. The new theory of complexity should therefore focus on the

3 See “Understanding Complexity,” Vienna 2015, at http://www.eventbrite.com/e/understanding-

complexity-offering-solutions-to-problems-of-the-21st-century-tickets-14991336491?aff¼esli.
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very complex nature of processes of learning and development in the field of

education. These processes involve processes of generative change; processes

which are enabling for new ways of thinking about the very complexity of educa-
tion. That is, of new thinking in terms of “generative complexity” as a scientific

concept (J€org, 2011). From this new thinking in generative complexity, new

concepts may be derived for the field of learning and education: complex concepts

like “generativity” and “Zone of Generativity,” to be linked with complexly

generative processes of change (see Ball, 2009, 2012a, 2012b). These are the

very processes which are so much part of the real world. The problem is that we

“simply” cannot see the generative nature of complexity of this world. We cannot

see how complexity is actually generated. We “simply” cannot see that complexity

is actually self-potentiating in the real world, which may be considered to be a fact
(Rescher, 1998, p. 28). The concept of generativity itself may be understood as the

general capability of an entity, like the human being, of “knowing how to go on”

(Lord, 1994). This capability may be achieved both as an individual and as a

collective capability in education (see Lord, 1994).

A New Framework of Complexity

To understand the (very) complex concept of generativity, linked to the very gener-

ative nature of complexity itself, a new framework of complexity is urgently needed.

This implies a fundamental and foundational reframing of complexity (cf. Capra,

Juarrero, Sotolongo, & Van Uden, 2007). This reframing implies a different view of

theworld: that is, of the realworld. The realworldmay be very different fromwhatwe

take it to be. This difference is part of what Nowotny (2013) has described as “the

embarrassment of complexity” (see above). From understanding this embarrassing

state of the art in the field of complexity science, as a fundamental failing state of

description of the real world, it may be derived that we urgently need “an altered
account of reality” (Kauffman, 2009; emphasis added). Opening the real world

implies a kind of reclaiming reality (Bhaskar, 2011; see also J€org, 2011). This opening
will open the realworld as a complex world of the possible (Kauffman, 1993, p. 375).

The fundamental challenge for education is to show how this new reality, which is

about this complex world of the possible, may be linked to the opening and enlarge-

ment of the possible around what it means to educate and be educated (Davis et al.,

2005; J€org, 2009; Osberg, 2009; Sumara &Davis, 1997). This link demands for a new

way of thinking in complexity about the complexity of a complex world of the

possible for education. It demands for a kind of reframing complexity itself

(Capra et al., 2007): that is, of a new framework of complexity. This new framework

will be the building stone for a new view and a new foundation of education.

To build a new framework of complexity, about generative complexity, it is

necessary to link complexity with causality; that is, with a more viable concept of

causality (Lincoln & Guba, 1985). One that encompasses the notion of causal
complexity, in terms of cyclic causality, mutual or reciprocal causality, and
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emergent causality (see Grotzer, 2012; J€org, 2011). Tina Grotzer argues convinc-

ingly that we need to learn causality in a complex world. Learning causality in a

complex world implies the recognition of causation as a complexly generative

process; a process which is thriving on the generative power of (causal) interaction

(Bruner, 1996; J€org, 2011).
Within the new framework of generative complexity, it will be possible to think of

a new theory of generative change (Ball, 2009), which involves complexly generative

processes (J€org, 2011), thriving on the generative power of interaction (Bruner, 1996).
A theory, which is opening a new way of thinking about complexity and education. It

makes it possible to link the very processes of generative change with the concepts of

“generative emergence” (Lichtenstein, 2014) and “emergent causality” (Grotzer,

2012), with emergent effects, which may be nonlinear effects over time.

The new theory of generative change may be taken as opening the field of

complexity and education, as a very much unexplored territory of generative

complexity. It will be possible to describe processes of learning as processes of

generative learning: that is of “learning that enhances our capacity to create”

(Senge, 1990, p. 14; see also Pellegrino, 1994; Pellegrino & Hilton, 2012; Fiorella

& Mayer, 2015). Generative learning may be taken as a fundamental for acquiring

so-called “twenty-first century skills,” like creative problem solving, critical think-

ing, etc. (Fiorella & Mayer, 2015, p. 6). The challenge here is to describe and

understand the underlying generative dynamics and mechanisms of change. The

complexly generative dynamics and mechanisms involved may have complex

nonlinear effects, hitherto very much unknown. This is all part of an unexplored

territory of complexity in the field of complexity and education. It is through the

new lens of generative complexity that new spaces of the possible may be opened

and/or enlarged: about what it means to educate and be educated (see mission

Complicity, above). The new lens may ultimately reveal a new world for the field of
education. All of this may imply the opening of the wondrous world of the possible
for education. This demands for a new foundation of education.

A New Foundation of Education

Learning is more than the acquisition of the ability to think; it is the acquisition of many
specialized abilities for thinking about a variety of things (Vygotsky, 1978, p. 83; emphasis

added).

The aim is to offer a new foundation of education which is based on a new theory

of generative complexity, based on new thinking in complexity (J€org, 2011).
This theory starts with a theory of complexly generative change (cf. Ball, 2009).

The focus will be on the concept of “generative complexity,” a concept which

integrates dynamic interlinkages with complexly generative processes.
The key for a new complexity view of education may be grounded in a new

generative theory of interaction, as a theory of generative learning in and through
interaction. The shaping forces being “at work” in the interaction may be taken as
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thriving on generative processes of generative change. These are operating within

the dynamic network of the composite unit of two actors and their particular

reciprocal relations. This dynamic unit, involving a cycle from each entity to itself

(see J€oreskog & S€orbom, 1993, p. 154), may be taken as a so-called “cyclic-helical

unity” (Valsiner, 1998), to be linked to a spiral development of both entities

involved in the interaction, exerting shaping generative forces on each other.

These forces may be modelled as causal generative forces, operating within causal

reciprocal relationships, showing potential nonlinear effects of strengthening small

changes in the dynamic entities involved: that is, human individuals as learners in

their interaction (cf. Vygotsky, 1978).

The causal complexity of the cyclic-helical unity, with the potential of spiral

development, may now be linked to the potential nonlinear effects on the entities

involved. It may be demonstrated how these effects are actually generated in the

interaction. This demands for a new understanding of the causal dynamics and the

generative dynamics involved in that interaction. This is the very causal dynamics

Vygotsky was already aware of, but was not able to model, by lack of an adequate

causal framework for modelling causal interaction (see Vygotsky, 1978, p. 62).

Vygotsky was also fully aware of the creative nature of development (see p. 61),

and the role of transitional psychological systems (p. 46; emphasis in original).

Based on the new thinking in complexity about the causal dynamics of causal

complexity, it will be possible to open and enlarge the spaces of the possible for

education. This may bring the description of generative processes of learning

closer to the complex concepts of “transition” and “transformation” and their

underlying transition mechanisms. These mechanisms may now be linked to the

“transitional psychological systems,” envisioned by Vygotsky (1978, p. 46). The

learner, then, may finally be conceived of as a transitory human being (see

Vygotsky, 1987, p. 91, on the “transitory child”). The transitional psychological

systems, with their underlying transition mechanisms, may now be taken as

responsible for the transitory nature of change in the learner as a complex

human being. This is indeed complexifying the learner as a subject of study in

the field of learning and education.

The above analysis of the very problem of complexity for the field of education

may demonstrate that the concept of complexity “in use” in the field, falls indeed

far short of describing the real complexity involved in learning and education.

What is urgently needed is a new way of theorizing on complexity.

New Theorizing on Complexity

How can we begin to help the next generation build bridges between their everyday causal
reasoning and the forms of complexity that they will need to reason in a complex world?

(Grotzer, 2012, p. 166; emphasis added).

To develop a more adequate theory of complexity demands a fundamental

reframing of complexity, based on a new way of thinking in complexity about
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complexity (J€org, 2011). Only then it will be possible to overcome the embarrass-

ment of complexity in the field (Nowotny, 2013). The reframing of complexity

needed implies the use of new tools of thinking (Capra et al., 2007). To develop a

new theory of generative complexity, as being linked to a process of generative

change, is not an easy task. Questions like “[W]hat is the true nature of complex-

ity?” may not find an easy answer within the more regular framework in use. So, the

development of a general theory of complexity for a science of education implies

the development of a general language of complexity, with an adequate vocabulary,

with adequate concepts, terms and metaphors. The challenge, then, is to link this

general language to the complex concepts in use in the field of education. We may

then better understand the very complexity of fundamental concepts like

“generativity,” as a complex capability, and the corresponding concept of “Zone

of Generativity” (Ball, 2012a, 2012b). We may as well better understand the rather

hidden complexity of a so-called “theory of generative change” (Ball, 2009), with

the underlying generative mechanisms and dynamics of generative processes of

propagating change. This new understanding of the complexity involved may lead

to a new understanding of complexity as self-generating, self-sustaining, and self-

potentiating (see Rescher, 1998, p. 28). The theory of generative change may then

be taken as a self-potentiation theory (ibid., p. 9). This theory may also be taken as a

bootstrapping theory about complexity.4 A theory that can be based on the dynam-

ics of self-generating, self-sustaining, and self-propagating processes, including

processes of generative emergence in a self-amplifying loop, with self-enhanced

loop effects (see below). This complex bootstrapping theory may be taken as the

building stone to explain the process of bootstrapping in children, as f.i. in their

process of learning and development of the number concept (Carey, 2009).

On Generative Complexity

The real complexity, operating in the real world, is self-generating, self-sustaining, and
self-potentiating: that is, a kind of bootstrapping complexity (see below).

It should be clear by now that we may understand complexity in a different way.

To do so, we have to think different indeed! This new thinking demands for several

steps to take. The first step is to understand complexity as generative complexity

(J€org, 2011). This new concept may then be linked to complex processes, described

in literature:

– Processes of generative change (Ball, 2009).

– Processes of self-perpetuating change (Ball, 2009).

– Processes of self-propagating change (Arthur, 2013).

– Processes of self-amplifying (Phelps & Hase, 2002).

4 See the general definition at http://www.thefreedictionary.com/bootstrap and as adjective, at

http://dictionary.reference.com/browse/bootstrap.
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– Processes in a self-amplifying loop (Lichtenstein, 2014).

– Causal loops with self-enhanced loop effects (Hayduk, 1996).

– Processes of self-potentiating (Rescher, 1998).

– Processes of (self-) bootstrapping (Bruner, 1996; Sloman, 2015).

– Deviation-amplifying mechanisms (Maruyama, 1963).

– Multiplier effects, like the so-called “Matthew effect”5 and “Comenius effect”6

(J€org & Akkaoui Hughes, 2013).

The fundamental challenge for the Age of Complexity is to understand and to

integrate all of these processes, with their complex dynamics, mechanisms, and

ever-evolving architectures of dynamic interlinkages. To understand the real com-

plexity of the real world, we need to learn causality anew in a complex world (see

Grotzer, 2012). It may be stated that it is only possible to fully understand the

complexity of the real world by understanding causal complexity. This implies a

new understanding of causality, as a more viable concept (Lincoln & Guba, 1985).

From such new understanding, we may understand that the real complexity,

operating in the real world, may be a rather different kind of complexity, thriving

on the causal interaction between the entities involved in that interaction. Com-

plexity, then, may be taken as a kind of (self-) generative, self-sustaining, and self-
potentiating complexity, thriving on the generative power of causal interaction

(cf. Bruner, 1996, p. 119; and J€org, 2011). This new understanding of (real)

complexity may be linked and expanded into the concept of “bootstrapping com-

plexity”: that is, for understanding the bootstrap processes of learning and devel-

opment in the field of education.

The new concept of “generative complexity” may be taken as a concept that

integrates and unifies dynamic, generative structures with generative processes.
This is already quite new. In literature, the notion of a generative nature of

complexity is not very much used, with some exceptions, like Rescher (1998) and

Lichtenstein (2014). Rescher, however, offers a very formal definition of generative

complexity, as linked to “the length of the set of instructions that must be given to

provide a recipe for producing the system at issue” (p. 9; emphasis added).

Lichtenstein (2014) offers a more dynamic description of generative complexity

as being linked to a system that “gains the capacity to create and capitalize on new

opportunities” (p. 142; emphasis added). This is opening a new perspective on the

role of complexity. Taking a further step, however, generative complexity is also

about dynamic, nonlinear complexity, involving a generative structure (network) of

“nonlinear dynamic interlinkages” (cf. Nowotny, 2013). Taking this structure into

account, we may arrive at generative complexity as a self-generative process; that

is, a complexly self-generative process; a process, which can be linked to the theory

5 The Matthew effect describes how entities may bootstrap each other in their interaction,

originally described as “the rich get richer and the poor get poorer,” from the Bible.
6 The Comenius effect describes how one can learn most by teaching the other (Gartner et al.,

1971); that is, by the returning effects in and through interaction, enabled by increasing the

influence on the other one interacts with (J€org& Akkaoui Hughes, 2013).
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of generative change, as proposed by Arnetha Ball (2009). She describes this

concept as “a process of self-perpetuating change” (p. 48; emphasis added). One

step further, this process of generative change may be linked to her use of the

concept of “generativity” as a complex network concept. This rather unknown

concept, in turn, may be linked with the corresponding concepts of “Zone of

Generativity” (Ball, 2009; Ball, 2012a, 2012b), and the so-called “Space of

Generativity” (J€org, 2014). The dynamics involved is a kind of complexly gener-

ative dynamics, operating within networks of dynamic, generative structures or

relationships as “nonlinear dynamic interlinkages” (Nowotny, 2013). As another

step forward, with a focus on education, we may link generative complexity with

the generative dynamics of acquiring the full generative power of mastering a topic

of concern (Bruner, 1996, p. 119); that is, of acquiring individual and collective
generativity through interaction within reciprocal relationships (see Lord, 1994).

All of this new thinking in complexity is opening new spaces for describing a

process “by which social entities come into being” as a process of generative

emergence (Lichtenstein, 2014, p. 145). It may be shown how this process can be

modelled within a causal framework with a more viable concept of causality,

showing the possibility of emergent causality. This is not an easy task. It demands

for learning causality anew in a complex world.

Learning Causality Anew in a Complex World

For science to explain scientifically means to explain causally (Vygotsky, 1997, p. 240;

emphasis added).

From the above description of complexity and the new complex concepts as

linked to education, it may be derived that to understand generative complexity as a

process, a new understanding of complexity as a generative process is needed. The

generative nature of this process may be derived from the generative nature of

causality, with causation as a generative process with potential nonlinear effects

over time. To understand these very complex processes, we first need to learn

causality anew in a complex world. This implies a more viable concept of causality

that may be linked with complex notions of causality, like

– Cyclic causality,

– Reciprocal or mutual causality, and

– Emergent causality (see Grotzer, 2012).

All of these concepts focus on different aspects and perspectives of the causality

involved in causal interaction. One can focus on the interactive nature of causality,

on the forces exerted on one another which may be mutual or reciprocal. One can

also focus on the fact that the relationship between the entities involved is a

reciprocal relationship. The process of causal interaction involved in cyclic

causality may show re-entrant, or cyclic effects, which may be nonlinear over
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time. These effects may lead to emergent effects which may increase over time.

The nonlinear effects may be ascribed to the generative dynamics and generative

mechanisms involved in causal interaction. This description of causality goes way

beyond the description of linear causality with its standard linear version of cause

and effect, leaving no room for entities causing themselves through interaction with

other entities. This description of causal complexity and causation as a generative

process demands for a new framework of causality, to become able to understand

the very generative nature of causation and of emergent causality, involving

complexly generative processes of emergence.

Understanding the Generative Nature of Causation

To understand how generative complexity is actually generated in the real world,

thriving on interaction, one first needs to understand causal complexity. This is the

really hard part of new thinking in complexity, about a neglected and unexplored

territory of causality.7 To understand how generative complexity actually operates

in the real world, it is necessary to understand the generative nature of causation

through causal interaction (Blossfeld, 2009; J€org, 2011). This generative nature

may be derived from the multiplicative nature of different causal effects of causal
interaction. This multiplicative nature will be explained below.

For the introduction of causal interaction within reciprocal relationships, see

Fig. 5.1. This figure shows the basic notion of causal interaction with β1 and β2 as
parameters, showing the regular direct effects of A and B on each other. A and B are

so-called “latent variables” within a so-called “structural causal relationship,”

which is a reciprocal relationship (see J€oreskog & S€orbom, 1993).

The direct effects exerted on one another may be different in value, showing

different strengths of shaping causal forces exerted on the other.

The standard calculation of the total effects exerted on each other in causal

interaction involves different effects (see J€oreskog & S€orbom, 1993). The two betas

are the parameters for the direct effects on each other within their causal relation-

ship(s). The entities A and B may also exert effects on themselves via the reciprocal
causal relationship with the other entity (see J€oreskog & S€orbom, 1993, p. 154).

These authors describe a cycle as “a causal chain going from the one Eta-variable,

A B 
ß1

ß2

Fig. 5.1 A structural model of causal interaction between latent variables with corresponding

parameters of direct causal effects

7 The reader may skip the next part and read the conclusions of this paragraph only.
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passing over some other Eta-variable and returning to the original variable” (p. 154;
emphasis added). The effect of one cycle of A on itself is β1� β2. After two cycles

the effect will be β1
2� β2

2 or (β1� β2)
2. After three cycles (β1� β2)

3 etc. These

cyclic effects, taking place over time, are themselves multiplicative of nature.

The total effect of A on itself will be the sum of the infinite geometric series

(ibid., p. 154):

β1 � β2 þ β1 � β2ð Þ2 þ β1 � β2ð Þ3 þ . . . . . . β1 � β2ð Þn

This sum of infinite cyclic effects may be called the interaction-effect or the loop
effect and is the same for A and B.

The geometric series of the loop effect above may be redescribed as

ðβ1� β2Þ=1� ðβ1� β2Þ:

This is the case if the absolute value of the product of β1� β2 is smaller than the

value 1 (J€oreskog & S€orbom, 1993, p. 154). This formula represents the sum of all

the cyclic effects. This formula shows to be symmetric in calculating the different

effects on A and B (see below). This symmetric effect, called a “loop-effect,” may

increase over time in a nonlinear way. The loop effect is the key for understanding

the complexity of emergent causality with nonlinear effects, as will be shown

below. Emergent causality, in turn, is the key for understanding complexity as

generated over time, and for complexity as self-potentiating (Rescher, 1998). These

foundational concepts for understanding complexity anew will be explained further

below. The focus for now is on the different effects involved in causal interaction,

like the indirect effect and the total effects on A and B in interaction. These may

show the unexpected complexity of causality, thriving on interaction.

The loop effect may be viewed as an essential part of the other effects of causal
interaction between the two latent variables, like the indirect effects and the total
effects on A and B (see J€oreskog & S€orbom, 1993, p. 154). The descriptive formula

of these effects are as follows:

indirect effect on B¼ β1� (loop effect)

indirect effect on A¼ β2� (loop effect)

total effect on B¼ direct effectþ indirect effect¼ β1þ (β1� loop effect)

total effect on A¼ direct effectþ indirect effect¼ β2þ (β2� loop effect)

Table 5.1 shows the results of the calculations of these indirect and total effects
for the various given values of the direct effects. These results show unusual

increases of these effects, which may be understood as emergent effects resulting
from the increasing loop effect. They show what emergent causality may actually

be about in the real world, depending on the loop effect of causal interaction.

Table 5.1 shows more unusual effects. For instance, in case the direct effect β1 of
A on B increases, keeping the direct effect β2 of B on A constant (¼0.7), not only
the indirect and total effect on B increase, but also the indirect and total effects on A
itself. This is because of the increase in the loop effect, with increasing direct
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effects: see Table 5.1. This loop effect increases nonlinearly with linear increases of
β1. This increase shows the loop to be a self-amplifying loop and the corresponding

loop effect as a self-enhanced loop effect (Hayduk, 1996). The increase of the direct

effect β1 on B gets amplified through the loop effect. Interestingly, the total effect

on A is also amplified, even although the direct effect β2 on A keeps constant
(¼0.7). So, the total effect of A on A itself increases through the increase of the

direct effect β1 on B! This is the case because of the increase in the loop effect. This
unusual effect may be called the “Comenius effect” for education, after Jan

Comenius, the Moravian pedagogue (1592–1670). He described a process of

learning by teaching as very beneficial for the teacher himself! It may be easily

derived that the increases of the total effects on both A and B may increase in

nonlinear way if both direct effects increase, because of the amplifying loop effect.

This effect may be called the “Matthew effect,” as described by the disciple

Matthew in the bible: “the rich get richer and the poor get poorer” (see also Robert

Merton, 1968, who described this effect in science).

All of these effects show the rather unusual amplifying dynamics of causal

interaction in mutual or reciprocal causality, showing the possibility of self-ampli-
fying loops, as a nonlinear phenomenon, based on the operation of direct effects,

which may be linear themselves. This demonstrates the unexpected possibility of

emergent causality with emergent, nonlinear increase of cumulative effects over

time. The process of amplification takes place in time without being dependent on

time itself as a variable!

This conclusion about amplification may be linked to the notions of interactive,

relational and emergent causality, as described by Grotzer (2012). Emergent cau-

sality may now be taken as an example of causation as a generative process with

amplifying potential. This possibility is opening new spaces for new thinking in

complexity, which may be based on the causal complexity, as described above. It

becomes possible to introduce new terms and concepts like a “self-amplifying

loop” (Lichtenstein, 2014, p. 143), with a corresponding “self-enhanced loop

effect” (Hayduk, 1996). The conclusion is that direct linear effects may actually

be amplified by the loop effect, operating as a multiplier of the direct effects in the

interaction, taking place over time. This amplification shows the possibility of

causality as emergent causality, thriving on the interaction within the causal loop,

Table 5.1 Calculation of the different causal effects on B and A

Direct

effect β1
on B

Direct

effect β2
on A

Symmetric

loop effect

A-symmetric

indirect effect

on B

A-symmetric

indirect effect

on A

Total

effect

on B

Total

effect

on A

0.4 0.7 0.28/0.72¼ 0.39 0.16 0.27 0.56 0.97

0.5 0.7 0.35/0.65¼ 0.54 0.27 0.38 0.77 1.08

0.6 0.7 0.42/0.58¼ 0.72 0.43 0.50 1.03 1.20

0.7 0.7 0.49/0.51¼ 0.96 0.67 0.67 1.37 1.37

0.8 0.7 0.56/0.44¼ 1.27 1.02 0.89 1.82 1.59

0.9 0.7 0.63/0.37¼ 1.70 1.53 1.19 2.43 1.89
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with its potential multiplier effect. Causation as a generative process, then, shows

the possibility of generative emergence of increasing total causal effects in causal

interaction.

Conclusions About Causality

The formula and the calculation of the different effects above, depicted in Table 5.1,

show the true nature of the causal effects involved in causal interaction; effects, which

may show up as potential nonlinear effects of that interaction. Yet, they are derived

from the causal modelling of the different effects of causal interaction, as sketched in

literature (see Hayduk, 1987, 1996; J€org, 2011; J€oreskog & S€orbom, 1993). It may be

concluded from these effects that understanding complexity as based on causal

complexity is opening new spaces for new theorizing on complexity. The causal

complexity shown above demonstrates the possibility of a more viable concept of

causality, based on new thinking about causal interaction (see Lincoln &Guba, 1985).

This new thinking about causality opens up new spaces for new thinking in complexity

about how complexity is actually generated in the real world. It is opening for thinking
about complexity as generative complexity, to be linked to causation within networks

of reciprocal relationships (cf. Barabási, 2003). The process of causation as a gener-

ative process may be taken as thriving on the full generative power of interaction

(Bruner, 1996, p. 119). This new thinking may also address the possibility of com-

plexity as self-potentiating through causal complexity, operating through self-

amplifying causal loops, with self-enhanced loop effects. These loop effects may be

taken as responsible for deviation-amplifying processes, with their amplifying dynam-

ics and their underlying deviation amplifying mechanisms (cf. Maruyama, 1963).

The example with the effects of interaction, shown in Table 5.1 above, shows

how causal complexity can be self-potentiating indeed: through the loop effect as

amplifier of the direct effects of the interactors on each other.

The rather unusual complex notions about causality may now be taken as

foundational for the building of a new theory of complexity, which is based on

causal complexity, as described above. A theory of complexity which may be used

as a foundation for a new theory of education as well. A theory of education which

is based on the unexpected role of interaction in education in bringing about

nonlinear effects on the partners involved in interaction.

The example above also demonstrates how the dynamics of the parts and the

whole are interconnected, constitutive of the unity of the whole, as conceived

already by Immanuel Kant:

The parts of the things combine of themselves into the unity of a whole by being reciprocally
cause and effect of their form (Kant, in his “Critique of Judgement”; see Taylor, 2001, p. 85).

Understanding the complexity of the causal dynamics of this unity of a whole is

essential for new theorizing on education, as shown below (cf. Vygotsky, 1978, on

the causal dynamics of interaction). Understanding this complexity, operating

within the unity of a whole, is foundational for a new theory of complexity.
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Building a New Theory of Complexity

Building a new theory, about generative complexity, may start with the new

framework of causality, showing the very possibility of emergent causality and

generative emergence of total causal effects in causal interaction. These possibil-

ities may take place within a loop of a reciprocal relationship between two entities

in interaction. The dynamics within the loop between two entities may operate as

complexly generative processes, generating the different effects through the cumu-

lative cyclic effects within the causal loop. These effects may cumulate and be

described as the loop effect. Each of the entities involved in interaction may have

potential nonlinear effects on itself through the loop effect. The loop effect operates
as a kind of multiplier in bringing about these nonlinear effects. This loop effect

may generate indirect and total causal effects as nonlinear effects over time:

so-called “multiplier effects.” These effects may increase when the values of the

direct effects increase. The effects may become greater than 1 when the formula for

the loop effect as multiplier gets higher than 1 (see the example in Table 5.1 above).

They are foundational for new thinking about causality as a nonlinear concept and

about its role in new thinking in complexity, based on causal complexity. It may

show how reciprocal and emergent causality may be “at work” in the real world.

The entities may bootstrap each other in the causal dynamics of their interaction,

thriving on the generative power of the interaction, with its potential nonlinear

multiplier effect. The generative mechanisms being “at work” in the causal dynam-

ics may also be called “bootstrapping mechanisms” (Carey, 2009, p. 13). This

opens the possibility of understanding these bootstrapping mechanisms as complex,

causal “learning mechanisms” (ibid., p. 13). These mechanisms may be “at work”

in the development of concepts, showing bootstrapping processes with potential

nonlinear effects. A development that may be characterized by “conceptual dis-

continuity” (ibid., p. 20). Such kind of nonlinear development is foundational for

processes of transition and transformation, as conceived by Vygotsky (1978). With

these processes, it may become possible to conceive of the child as a “transitory

child” (Vygotsky, 1987, p. 91). Understanding this kind of discontinuous develop-

ment may be taken as the key for a new understanding of what education might be

about. It is about learning and development as potential nonlinear processes with

potential nonlinear effects, thriving on the generative, amplifying power of inter-

action within relations among peers, operating as self-amplifying loops. These

processes may be taken as bootstrapping processes, with bootstrapping dynamics,

enabled through bootstrapping mechanisms as learning mechanisms, responsible

for bootstrapping processes of learning and development, characterized by discon-
tinuity of processes and effects over time (cf. Carey, 2004, 2009).

From the new understanding and modelling of generative complexity, it will

become possible to arrive at a fundamental scientific theory of generative change
(see Ball, 2009, 2012a, 2012b; Phelps & Hase, 2002). The generative change may

now be described as thriving on the causal dynamics of interaction, with potential

nonlinear effects over time. The modelling of this generative change may be based
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on the causal dynamics of interaction. This modelling shows an unexpected com-

plexity, with complexly generative processes and emergent effects; effects that

have remained very much hidden in theories of interaction. It may be shown that the

theory of generative change in and through interaction may be taken as a nonlinear

process, with potential nonlinear effects. From this new theorizing we may finally

arrive at a new theory, which is about the very generative nature of the dynamics

and mechanisms involved in the complex causal dynamics of interaction. This

theory is not only opening a new world of theorizing about learning and education.

It also offers a new lens to view the field of learning and education as a very

complex field, with learners as real-world entities in their interaction, showing

complex dynamics of generative change, with discontinuities of learning and

development.

With the new lens of generative complexity, it will be possible to open the world
of the possible for the field of learning and education. By opening new spaces of

possibility, this world may be taken as a wondrous world of the possible indeed.

The new concept of generative complexity may be taken as opening new ways of

theorizing on education as a fundamental complex subject of study.

All of this new theorizing on generative complexity will be supportive for the

opening and enlarging of the space of the possible in a world of the possible in the

field of learning and education.

New Theorizing on Education

Opening the world of the possible may start with a qualitative description of the

complex dynamics of two human beings in interaction. It was the genius of Mary

Parker Follett, who has convincingly described the complexity involved in that

interaction. In her book about organizations, published in 1924 (!), she describes

this interaction in terms of existing entities creating each other:

In human relations, this is obvious:
I never react to you but to you-plus-me;
or to be more accurate,

it is I-plus-you reacting to you-plus-me.
‘I’ can never influence ‘you’ because you have already influenced me;
that is, in the very process of meeting, by the very process of meeting,

we BOTH become something different.
She continues as follows:

It is I plus the-interweaving-between-you-and-me meeting you plus

the-interweaving-between-you-and-me, etc, etc.
If we were doing it mathematically we would work it out to the nth power.

(Follett, 1924, pp. 62–63; see also Graham, 1995, p. 42).

So, the very process of human interaction, sketched here, is a very complex one:

that of human individuals, reciprocally influencing each other, thereby co-creating
each other over time, with the result of both partners becoming different. Both
partners are ever-evolving in and through this interaction as a complex process of
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dynamic interweaving taking place over time. Both partners may become different

in this process. Follett’s description of human interaction may be combined with

Martin Buber’s description of human relations.

Martin Buber describes in his book “I and Thou” the role of “I—Thou” as the

origin, the grounding notion, constitutive of the world of relations (Buber, 1970/

1928, p. 6). Interestingly, he describes the real relation as follows: you “act” on me

like I “act” on you (ibid., p. 11). He adds to this that relation implies reciprocity:
“my Thou acts on me like I act on him” (p. 16). Buber takes the human being as

fundamentally related to an in-born “Thou” (Other). Interestingly, this makes the

reciprocity inborn too! Men/women are born to relate and communicate.

Mary Parker Follett was very right in her statement that “response is always to a

relation” (see Graham, 1995, p. 42). Interestingly, Buber views the I as a result of
the web of relationships (1970/1928, p. 29). From this description, we may derive

the I and Thou in terms of weaving each other within a web of relations (see also

Follett, in Graham, 1995, p. 43). More recently, the biologist Steven Rose (1997)

described the process of co-creating organisms, operative as complex dynamic

entities, in terms of (two) organisms which are “both the weaver and the pattern it

weaves” (p. 171). The economist Brian Arthur (2013) described a dynamic unit like

this as “a set of existing entities creating novel entities” (p. 19; emphasis added).

Jerome Bruner (1996) described the complex unit of two learners in interaction in

terms of “learners bootstrapping each other in small communities” (p. 21; emphasis

added; cf. Fazio & Gallagher, 2009, p. 10).

All of these above descriptions are opening for a new interpretation of the

dynamics of human interaction in terms of co-creating dynamics, with a focus on

the very mechanisms underlying this complex dynamics. This new interpretation

may now be linked to the quantitative causal modelling of the interaction, described

above, which is based on the causal dynamics of interaction. In this interaction, the

entities may indeed change each other (Illari & Russo, 2014, p. 113). The modelling

above showed how these changes may increase over time, through the loop effect,

operating as a multiplier effect, generated within self-amplifying loops. Small

changes in the direct effects on the other showed to generate a potential large,

nonlinear increase in the loop effect, operating as a multiplier effect. All of this new

modelling could be related to complex processes of bootstrapping: of self-

bootstrapping and mutual bootstrapping in interaction. Bootstrapping mechanisms

may now be taken as underlying these bootstrap processes, operating as learning
mechanisms (see Carey, 2009).

The new modelling of (causal) interaction, sketched above, may now be con-

sidered as the missing link in our knowledge about the complexity of interaction

between real-world entities (Carey, 2009; emphasis added), operating as

interactors, shaping each other by the shaping forces of their direct effects on

each other.

The above modelling of the process of causal interaction within the unity of a

whole makes it possible to understand the very complex learning mechanisms

involved in complex processes of learning and development and cognitive func-

tioning, as based on human interaction. This understanding of the complexity
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involved makes it possible to better understand the theory of Vygotsky about

cognitive functioning, which is based on interaction and the causal dynamics

involved in this interaction (Vygotsky, 1978, p. 62). It is through interaction, with

interpersonal processes that intrapersonal processes of learning and development

may take place. He was clear in his intention to develop a general law of develop-
ment for the higher mental functions that could be applied to children’s learning
processes (Vygotsky, 1978, p. 90). He was also clear that learning is not the same as

development. In his view, learning is “a necessary and universally aspect of the

process of developing culturally organized, specifically human, psychological

functions” (ibid., p. 90; emphasis added). About this process of learning, he stated

the following:

We propose that an essential feature of learning is that it creates the zone of proximal

development, that is, the learning awakens a variety of internal developmental processes
that are able to operate only when the child is interacting with people in his environment

and in cooperation with his peers (ibid., p. 90; emphasis added).

So, his focus was on the very creation of developmental processes through

learning, enabled through interaction with people, with peers. The zone of proximal

development (ZPD) here is a dynamic zone to be created through learning. The

changes taking place within this zone must be awakened through learning. For

short, the learning generates the zone of proximal development as a dynamic zone

of change: that is, of generative change. This generative change depends on the

interaction with others. It is from the interpersonal relations with others that the

intrapersonal processes of development within the ZPD may take place. In his own

words: “[A]n interpersonal process is transformed into an intrapersonal one”
(Vygotsky, 1978, p. 57; emphasis in original). This process describes the transfer

inward, which is “linked with changes in the laws governing their activity; they are

incorporated into a new system with its own laws” (ibid., p. 57). These changes may

now be taken as complexly generative changes, involved in development, which

can be linked with Vygotsky’s description of school learning.

Vygotsky describes his aim of the analysis of development as follows: “to

describe the internal relations of the intellectual processes awakened by school

learning” (ibid., p. 91). He described his method as to be focused on “the analysis

that reveals real, causal or dynamic relations” (ibid., p. 65; emphasis added). He

was also clear about the difference between description and explanation: “[M]ere

description does not reveal the actual causal-dynamic relations that underlie phe-

nomena” (ibid., p. 62; emphasis added). So, it may be concluded that the focus

should be more on how the processes are actually generated within these causal-

dynamic relations. The processes of development may now be described as com-

plexly generative processes, taking place within these dynamic, causal relations,

thriving on the generative power of interaction within the internal relations of the

intellectual processes.

From the above modelling of interaction within causal loops, it will now be

possible to understand how these changes may be facilitated through interaction: by

generative processes which may lead to generative emergence within the ZPD.
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The possibility of multiplier effects in this interaction may turn the concept of ZPD

into a nonlinear concept, with potential generative change and generative emer-

gence of nonlinear effects. This new kind of theorizing on the nature of the concept

of ZPD as a dynamic concept, with processes of complexly generative change, may

be linked to the theory of generative change, proposed by Arnetha Ball (2009,

2012). Ball links this theory of generative change with the concept of “generativity”

and the concept of “Zone of Generativity” as replacing the ZPD. This may bring an

opening to understand the ZPD anew: as a Zone of Generativity, with generativity

generated in and through the process of interaction with others. The challenge is to

link the new concepts with a theory of generative change and the corresponding

generative emergence of effects. It may be shown that this theory may enable to

enlarge the spaces of the possible for education.

A Complex Theory of Generative Change

Theory of generative change and the unknown link with the emergent nature of change

(Phelps & Hase, 2002, p. 4; emphasis added).

Emphasizing the importance of relations among beings, and of “becomings” as generated
within these relations, not pre-existing them (Fenwick, 2009, p. 116; emphasis added).

From the understanding of causal complexity and the underlying causal mech-

anism of generative change, sketched above, it will better be possible to understand

what a theory of generative change might actually be about. It may be shown how

this theory can be linked to Vygotsky’s analysis of causal-dynamic relations, and

the corresponding causal dynamics, operating in the complex process of interaction.

These relations may be related to human relations among human beings, with their

processes of becoming, generated within these relations (Fenwick, 2009, p. 116;

emphasis added). It may also be shown how this theory may be linked to the

emergent nature of generative change (Phelps & Hase, 2002, p. 4; emphasis

added). This theory can also be linked to the new concept of “generative complex-

ity” and the new understanding of Vygotsky’s way of thinking about the analysis of
(school) learning and development. The theory of generative change may now be

understood as a theory of complexly generative change, taking place within the

dynamics of causal relations. This may involve processes of self-generative change

and self-propagating change, showing generative emergence with potential

nonlinear emergent effects. The generative nature of these processes may be

taken as conditional for the self-amplifying nature of this generative change,

demonstrating the emergent nature of change. The dynamics of generative change

and the generative mechanisms involved may now also be understood as deviation-

amplifyingmechanisms (Maruyama, 1963), amplifying changes in the direct effects

of interactors on each other (see Table 5.1, above). The generative dynamics of such

complexly generative change may therefore be understood as a complex process of

self-potentiating. This is what generative complexity is actually about in the real
world, to be considered as a very complex world indeed, including the complex
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causal dynamics of generative change. So, it may become clear by now that to

comprehend the fact that complexity is really self-potentiating (Rescher, 1998), one
needs to understand the very nature of generative complexity and the emergent

nature of (self-) generative change.

Generative complexity can now be understood as an emergent process, linked to
emergent causality, with potential nonlinear effects over time, thriving on the

causal dynamics of interaction. From such understanding of generative complexity,

it will be possible to make a link with learning as an emergent, generative process. It

will be possible to make a link with the concept of “generativity” and the

corresponding concept of a “Zone of Generativity.” The link may be expanded to

the concept of a multidimensional “Space of Generativity,” as proposed by (J€org,
2014). All of these concepts may now be taken as complex, potential nonlinear

concepts. These concepts can be linked to the nonlinear processes of self-

amplifying and deviation-amplifying within loops, as manifested in processes of

bootstrapping each other (Bruner, 1996). These are processes of generative change,

thriving on the generative power of interaction through shaping forces exerted on

each other in interaction. It is through this generative power that the generative

power of (generative) complexity as self-potentiating may be understood (see J€org,
2011). The challenge now is how to link this generative power of interaction with a

new approach in education. Not about education-as-we-know-it but about educa-

tion as to be organized from a different perspective: a complexity perspective that

goes beyond “the very institutionalization of schooling” (Bruner, 1996, p. 21). This

complexity perspective encompasses the concept of generative complexity,

strongly based on a more viable concept of causality, showing emergent causality,

with potential nonlinear effects of strengthening of direct effects within causal

loops, as sketched above. This new perspective opens a different approach of

learning and development, opening new spaces of possibility for education. This
approach may be called a possibility-oriented approach.

A Possibility-Oriented Approach

Based on the new understanding of complexity as self-potentiating, it is possible to

make a link with organizing complexity as the fount of learning as a complex,

emergent process, based on complexly generative change. This process of learning

may be called “generative learning,” to be taken as a complexly generative process,

showing the potential of transition and transformation (Vygotsky, 1978). Genera-

tive learning is linked to learners, thriving on the full generative power of their

interaction within their causal-dynamic relations (Vygotsky, 1978, p. 62). Genera-

tive learning, then, may be linked to the corresponding processes of generative

change and generative emergence through multiplier effects. These effects are

enabling for emergent effects over time, which can be nonlinear. It is through

these processes that “learners may bootstrap each other within a subcommunity”

(cf. Bruner, 1996, p. 21). It is through these generative processes of change and

development that learners may acquire their generativity as a real, complex
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capability. They may acquire this capability within the relations of a subcommu-

nity: both as individual and as collective generativity (see Lord, 1994; emphasis

mine). So, the concept of generative learning shows to be a complex concept linked

with the complex concept of generativity. Both concepts are thriving on the

generative power of (generative) complexity as self-potentiating. These concepts

are opening new spaces of possibility. They may be taken as the complex building

stones for a new, possibility-oriented approach in education. They may open the

world of the possible for education, showing this world to be a wondrous world of

the possible, with learning as an emergent, self-generative, self-amplifying, self-

potentiating process, with potential nonlinear effects over time. Susan Carey (2009)

describes the complex nature of the transitional process of development of the

number concept in children as thriving on bootstrap processes and their underlying
bootstrap mechanisms, showing the possibility of a sudden emergent change in this

development over time. It is through such emergent change that the very acquisition
of the number concept may be acquired by children around the age of three (see

Carey, 2004, 2009).

Opening the World of the Possible

With the new complex concepts, developed above, we may offer an alternative
account of what education might be about. The theory of generative change,

sketched above, is foundational for reframing the complexity involved in education.

The new lens of generative complexity may teach us to “see” education from a new

perspective: as complexly generated processes of generative learning,

encompassing emergent processes of generative change, generated within relations

among learners. These processes take place within a relational unit, with relational

complexity, thriving on the generative power of interaction within this unit. To

show how education might be like in the real world, it is urgently needed to describe

it in a way that facilitates understanding of the generative dynamics and mechanism

involved (cf. Illary & Russo, 2014, p. 123). Based on such understanding, pro-

fessionals may organize education differently. It may then be possible to organize

complexity as the fount of new learning, of generative learning, based on a theory

about the processes of complexly generative change. Inspired by the mantra of

Padgett & Powell (2012, p. 2), it will be possible to conceive of education as

organizing the complexity involved in building a dynamic unit of lasting relations

among learners. Following their mantra, learners create/acquire relations in the

short run; in the long run, these relations create actors. The dynamics involved may

be the generative dynamics of self-generative, self-amplifying and self-potentiating

processes. The unit of the dynamic relation may be taken as a subcommunity of

“learners bootstrapping each other” over time (Bruner, 1996, p. 21).

From the complex theory of generative change, sketched above, we may derive a

new language of complexity and a new vocabulary. This language is about existing

entities creating novelty through generative change within loop-like networks in

many dimensions. The novelty created through organizing complexity may
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ultimately lead to the acquisition of generativity for both learners in interaction, to

be taken as a complex capability, and as a kind of emergent effects. All of this

organized complexity may ultimately lead to transformation and transition taking

place within the so-called “transitory child” (Vygotsky, 1978, 1987). This makes it

possible to re-describe the description of education in terms of complex, emergent

processes of generative learning and the acquisition of individual and collective

generativity (see Lord, 1994). These are the new complex skills needed for the

twenty-first century, which has become known as the Century of Complexity
(Barabási, 2003; Hawking, 2000). This offers a description of education which is

opening and enlarging new spaces of the possible around what it means to educate

and be educated for the field of education.

The new challenge for the field of education is to open the wondrous world of the

possible, with its unexplored territory of generative change and generative com-

plexity within complex, multidimensional loop-like configurations. These configu-

rations may possibly function as bootstrapping configurations, thriving on

interaction. They may open a new landscape of the possible for education, with a

new topology of the possible in an unexplored world of the possible. It may show an

unexplored science domain in the field of education, which is about the generation

of complexity as the source of novelty and complexly generative change, with the

potential of transition and transformation (cf. Müller & Riegler, 2014). For sure,

these complex notions about the real world as a nonlinear world demand for a new

way of thinking and a new way of seeing the real world as a really complex world,

in which complexity can be (self-) generated and self-potentiating.

All of this new thinking in complexity is opening a new science domain indeed

(Müller & Riegler, 2014): the domain of the complexity of (generative) complexity.

This domain may be taken as a domain “whose potential has not been sufficiently

recognized and has been insufficiently explored so far” (Muller & Riegler, 2014,

p. 11). A new domain that brings complexity to life for the domain of complexity

and education. The new possibilities of the wondrous world of the possible for

education are not given. Definitely not. They have to be organized that way. To

open the wondrous world of the possible for education, one needs to bring com-

plexity to life by showing how complexity can actually be generated in the field of

education. This demands for a new theory of education which describes and

explains the role of generative complexity in organizing education.

A New Theory of Education

Generativity is the dynamic element of individualization. Education is a continuation of

procreation, and often a kind of supplementary beautification of it (Sassone, 2002, p. 48;

emphasis added).

Most important is the notion that one makes oneself through one’s generativity (ibid., p. 48;
emphasis added).
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Opening the wondrous world of the possible for education may now be taken as

the opening and enlarging of the space of the possible around what it means to

educate and be educated8. Based on the introduction of the concept of generative

complexity, it becomes possible to link this concept to the complex concepts of

“generative learning” and “emergent learning.” These concepts may be based on

complexly generative change as a form of self-perpetuating change (Ball, 2009,

p. 48; emphasis added).

A new framework of complexity has been developed above, which demonstrates

that understanding generative complexity is based on the understanding of the

causal complexity of a dynamic unit of two entities or partners in their relation;

that is, on the understanding of the underlying “complex causal dynamics” (Grotzer

2012, p. 173; and Vygotsky, 1978, p. 62), and of the complex mechanisms involved

in this causal dynamics. These mechanisms may be taken as generative mecha-

nisms of learning, with the power to operate as bootstrapping mechanisms (Bruner,

1996; Carey, 2009). All of these dynamics and mechanisms are thriving on the

generative power of interaction. It is this generative power, developed within the

reciprocal causal relationships, to be described as a loop, which is fundamental and

foundational for generative learning and thinking as a process of complexly gen-

erative change. This generative change may be understood as an emergent process

of emergent learning and thinking, with unexpected, complex, emergent outcomes,

which can be nonlinear over time.

From the new framework of generative complexity, it may be understood that

the theory of generative change, as proposed by Ball (2009), is a theory of

complexly generative change. This theory can be linked with the “emergent nature
of change” (Phelps & Hase, 2002; emphasis added). This complex theory of change

may now be linked with the role of generative complexity in loop-like networks,

with causal loops as dynamic interlinkages between the entities involved. So, the

understanding of generative complexity is based on the understanding of the

complex causal dynamics involved (Grotzer, 2012, p. 173). The causalities

involved are about “extended and nonlinear causalities” (ibid., p. 173). From

these nonlinear causalities we may understand generative complexity as a kind of

self-generative, self-perpetuating, self-potentiating complexity, being operative

within the causal dynamics of interaction within a relation or subcommunity of

two learners. The understanding of a new framework of generative complexity is

based on an understanding of the causal complexity involved in the generation of

complexity within a dynamic relation of two learners as the smallest unit of a

network. It will be possible to link the process of complexly generative change with

processes of “bootstrapping each other” in small communities of learners (Bruner,

1996; Fazio & Gallagher, 2010). This is an example of existing entities creating
each other, triggering novelty of these entities as emergent effects over time

(cf. Arthur, 2013, p. 19). These novelties of entities may be taken as processes of

8 Cf. the original mission of the International Journal of Complicity on Complexity and Education,

above.
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spiral development, enabling for phenomena of transition and transformation of the

learning child, as described by Vygotsky (1978). These complex processes may be

taken as foundational for the complex notion of “the transitory child” (Vygotsky,

1987, p. 91). The processes of complexly generative change may lead to the

learning and development of the learner within his/her Zone of Proximal Develop-

ment (ZPD). This demonstrates the complex unity of learning processes and

developmental processes. It may then be understood that this ZPD is indeed a

created or generated zone of development, generated by the child in and through

interacting with people, i. c. in cooperation with his peers (Vygotsky, 1978, p. 90).

Linking generative learning with emergent learning may now be linked to the

complex concepts of “generativity,” the “Zone of Generativity” (Ball, 2009, 2012),
and to the even more complex multidimensional concept of “Space of Generativity”

(J€org, 2014). Generativity is a very complex concept, not very much used in the

field of education. Leslie Sassone views generativity as “the cause and effect of
individualization” (Sassone, 2002, p. 42; emphasis added). William Wimsatt takes

generativity from a different perspective in the field of biology, as “an extremely

efficient way of building complex adaptive structures, while at the same time

locking in its own generators” (Wimsatt, 1997, p. 137; emphasis added). Wimsatt

describes these features as “two sides of the same coin, their association is a deep
fact of nature” (ibid., p. 137; italics in original). So, generativity may be understood

as closely linked to the very fact that complexity is self-potentiating (see Rescher,

1998, p. 28). Thinking about complex structures of self-amplifying loops and their

multiplier effects may lead to this new concept of complexity as self-potentiating.

The complex concepts of generative complexity and bootstrapping complexity,

as conceived above, may now be incorporated into a theory of education, with a

new perspective on learners as “self-organizing beings” (Kant, in Mainzer, 2004,

p. 97). The underlying processes may be taken as enabled and triggered by

complexly generative processes of becoming. These processes may turn into

bootstrapping processes: of self-bootstrapping and mutual bootstrapping. These

processes may now be understood as fundamental complex causal processes.

According to Kauffman (2013), “we live in both a web of cause and effect and a

web of enabling opportunities that enable new possible directions of becoming”
(p. 181; emphasis added). It may be understood from this and from the causal model

of interaction, sketched above, that generativity, like fitness in evolution (see

Wimsatt & Schank, 2002), is a relational property, to be acquired in and through

interaction within relations with others. The concept of generativity may also be

taken as a web-like property, with many dimensions.

The new thinking about the causal dynamics of a generative process of becom-

ing may be linked to our methodological view of complexly (self-) generative

change with emergent effects, thriving on the generative power of (causal) inter-

action. From a perspective of cognition, generativity may be taken as a complex

capability, integrating knowing with acting in a complex process of enacting: of

“knowing how to go on” (Lord, 1994). Generativity is a complex capability that
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may be viewed as a capability to be created in education (Nussbaum, 2011). In her

book Creating Capabilities,9 Martha Nussbaum views the complexity of capabil-

ities as “combined capabilities” (pp. 20–21; italics in original). This is fully in line

with Vygotsky’s way of thinking about learning: “[L]earning is more than the

acquisition of the ability to think; it is the acquisition of many specialized abilities

for thinking about a variety of things” (Vygotsky, 1978, p. 83; emphasis added).

Interestingly, Nussbaum links these combined capabilities with fluid and dynamic

internal capabilities, as states of the person (see p. 21; italics in original). All of this
new thinking about complex capabilities and states of a person may be taken as

foundational for a complex theory of education.

Generativity may now be viewed as a norm for education without being norma-
tive, in the traditional sense. It may be taken as a norm in terms of opening a new

concept of learning and education. Developing generativity as a complex capability

and state of the person may now be viewed in terms of “the power of constituting
the individual directed by that individual to becoming a being-in-and-for-self”
(Sassone, 2002, p. 43; emphasis added). Sassone is clear that this is “a life’s
work” (p. 44). This is a description of a self-realizing being (see Kant, above).

The complex states of being of learners as a human individual being may be

triggered through complexly generative processes of becoming, enabling the full

generative power of learners acquiring individual and collective generativity

(cf. Bruner, 1996; Lord, 1994). Consequently, the theory of education may be

more focused on “the achievement of individual and collective generativity”

(Lord, 1994). The rather complex goal of co-creating each other over time, in

terms of “existing entities creating novel entities” (Arthur, 2013, p. 19), may

therefore be taken as the promise of complexity for the future of education. It

shows education as learners co-creating themselves, perpetually creating new

possibilities within new spaces of the possible. This co-creating of learners may

take place through processes of mutual bootstrapping, showing how learners may

bootstrap each other in sub-communities (see Bruner, 1996).

The world of education should be taken as a complex world, showing the

unlimited enlargement of possibilities (cf. Maturana, 1980). This description is

opening for a new, more complex understanding of education, with a description of
education as a fundamental nonlinear phenomenon of complexly generative

change. It is about education of learners bootstrapping each other, with potential

nonlinear effects of generativity as a complex capability linked to the complex

multidimensional Spaces of Generativity. They create their own Space of

Generativity as a state space of complex being, with unlimited, self-generated

possibilities through processes of co-creating in interaction.

Understanding education, then, is not only about understanding how the real

world works: as a complex causal world, with causally generative complexity. It is

also about a new way of organizing education, to be based on such complex

understanding of how complexity may “work” in the real world; that is, if well

9Which has as subtitle The Human Development Approach.
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organized. Education, then, may be organized as facilitating lasting relations

among learners. First, they may create these relations as reciprocal relations.

These are enabling for the development of a similar way of thinking and a

converging of the language they speak in their communication. This new take of

complexity involved in organizing education may then be taken as the fount of
creativity and generativity, as a complex creative capability, complexly emerging

through processes of generative and emergent learning. All of these complex

processes are enabled by generative relationships operating as generative scaffolds

for the potential unlimited enlargement of cognitive functioning (Maturana, 1980).

From the new understanding of organizing education, in terms of organizing

complexly generative change, we may develop a new generative pedagogy. This is
a pedagogy that aims at a new way of organizing education for enabling generative
learning as a form of emergent learning, with potential nonlinear emergent effects

(see Phelps & Hase, 2002; cf. Senge, 1990; Senge, Cambron-McCabe, Smith,

Dutton, & Kleiner, 2000; Senge, Scharmer, Jaworski, & Flowers, 2004).

Ultimately the world of education, with a generative pedagogy about complexly

generative processes of change, may reveal a new world for education. To open this
complex world of education, we need not only learn how to “see” but also how to

learn how generative complexity may actually operate as a self-generative, self-

potentiating process in this complex world; a process which is enabling for self-

realizing human beings, achieving their individual and collective generativity as

co-created, co-generated states of being. This opening of the world of education

may show what the real world of education may be about: about the enlarging of the
space of the possible around what it means to educate and be educated. These

spaces may be linked with complex states of being of persons as learners in their

complex development: linked to fluid and dynamic internal capabilities
(Nussbaum, 2011, p. 21; emphasis in original). This is in essence what a transitory

human person might be about as learner in the field of education, showing the very

possibility of transition and transformation (cf. Vygotsky, 1978, 1987).

Organizing education will then be about organizing complexity in terms of

learners creating relationships and relationships. creating learners through pro-

cesses of complexly generative change with emergent potential nonlinear effects.

The focus is on acquiring individual and collective generativity within the complex

Space of Generativity, involving combinations of complex capabilities (cf. Lord,

1994; and Nussbaum, 2011, p. x). Nussbaum sketches the complexity of capabil-

ities in terms of “combined capabilities” (p. 21; emphasis in original), which she

links with “substantial freedoms” of the individual to operate in the real world. She

conceives of these freedoms not only as individual freedoms but also as “the

freedoms or opportunities created by a combination of personal abilities and the

political, social, and economic environment” (ibid., p. 20; emphasis added). These

are the very freedoms for persons and their state of being, which may be created in

the Space of Generativity: as a complex state of being, dynamic and ever-evolving

over time. These are the freedoms to be achieved in education: as individual and

collective generativity (Lord, 1994), both by teachers and by learners.
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The new challenge for education is to organize education as a complexly

generative system in which novelties are generated through complexly generative

change within dynamic interlinkages between learners. These learners may then

operate as existing entities, creating novelties within new spaces of the possible.

These novelties may include learners bootstrapping each other through

bootstrapping processes, complexly emerging within so-called “bootstrapping con-

figurations” (cf. Fazio & Gallagher, 2009). These interactive configurations may be

taken as “networks of scaffolding relations” (Wimsatt, 2014, p. 90). Wimsatt

describes scaffolding as follows:

[S]caffolding refers here to “structure-like dynamical interactions with performing individ-

uals that are means through which other structures or competencies are constructed or

acquired by individuals or organizations. Material or ideational entities that accomplish this

are scaffolds.” (Wimsatt, 2014, p. 81; emphasis in original; cf. Rossi, Russo, Sardo, &

Whitford, 2010)

It may be understood that “all kinds of scaffolding are relational” (Caporael,

Griesemer, & Wimsatt, 2014, p. 14; emphasis added). This scaffolding may easily

be linked to the Vygotskian concept of “zones of proximal development” as target

zones (ibid., pp. 14–15). The scaffolds described here may even turn into so-called

“transitional scaffolds in Vygotsky’s sense” (B. Wimsatt, 2014, p. 385; emphasis

added). They may be taken as targeting to the acquisition and enlargement of

generativity by agents, showing the acquisition of new complex capacities within

the Space of Generativity of each agent in what Caporael et al. (2014) describe as

“scaffolding interactions” (p. 15). The complex processes of cognition, involved in

acquiring individual and collective generativity are “generative processes”

(B. Wimsatt, 2014, p. 345; emphasis in original). She makes a link with “the

mechanisms described by Vygotsky” (p. 345). The complexly generative processes

and configurations may be part of a generative architecture of nonlinear dynamic

interlinkages: of so-called “generative bootstrapping configurations” (see also

Wimsatt, 2014, p. 77). It is within such configurations that complexly generative

processes of “self-bootstrapping” may become possible in practice, also for educa-

tion (ibid., p. 101; cf. Carey, 2009, on “bootstrapping” processes in cognitive

development; and Sloman, 2015). These processes may actually generate “explo-

sive growth” (Wimsatt, 2014, p. 102; emphasis added).

The theory of complexly generative change presented above may reveal the

dynamics at play in generative processes of learning, growth and development. All

of this may articulate the changing complexities and the dynamics of generative
emergence involved in education (cf. Fenwick, 2012). Once you fully understand

the changing complexities involved in education, educators may be able to organize
these complexities for the sake of enlarging the spaces of the possible: showing the

unlimited enlargement of cognitive functioning (cf. Maturana, 1980). This is the

key message of the new theory of complexity and education presented here.

Reflecting on the state of the art in education, educators and those theorizing on

education may now recognize that the dominant view of education is strongly

undertheorised indeed (cf. Fenwick, 2012, p. 142; emphasis added). This is also
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very much the case for theorizing on the topic of complexity and education. The

dominant view is ignoring the deep ignorance on the very generative nature of

complexity involved in the processes of generative change, to be taken as self-

propagating change (Ball, 2009): that is, of generative learning and thinking, of

(explosive) growth and development into generativity as a complex, fluid and

dynamic internal capability, of “knowing how to go on” (Lord, 1994;

cf. Nussbaum, 2011, p. 21).

The new theory of education is foundational for building a new language of

complexity, as a tool for an altered account of education as a complex topic of

study, showing unexpected complexities involved in learning and development.

With this tool it may better be possible to describe what we’re studying in the field

of education, with a clear focus on the very complex, transitory nature of the child,

showing the complex possibility of transition and transformation, even of meta-

morphosis (Vygotsky, 1978, 1987). This transitory nature may be based on the

complexly generative nature of change thriving on the generative power of inter-

action; a power which is based on the power of self-potentiating as resulting from

emergent causality operating in interaction within a dynamic architecture of scaf-

folding relations. It is this generative power which is part of a generative approach
of education (see J€org, 2011). For sure, this is a possibility-oriented approach,

opening new spaces of the possible for education.

Conclusions

The new theory of education, presented above, is a complex theory about the

complexity involved in education, showing the potential of complexity for the

field of education. This complexity shows to be a still very much unexplored
territory for education. It is a territory about complexity operating as generative
complexity, and about complexity as self-potentiating. Understanding these com-

plexities is based on understanding causal complexity, operating within causal

(reciprocal) relations, thriving on the complex generative power of (causal) inter-

action. Understanding causal complexity is about understanding the causal dynam-
ics of interaction as a necessary condition for understanding transition and

transformation within and through transitional psychological systems (Vygotsky,

1978). Modelling causal interaction is the key for understanding how complex

interaction may enable for complexly generative processes with self-amplifying

loop effects. This modelling shows the unlimited possibilities of strengthening

effects on the entities involved in interaction. These possibilities include the

complex possibilities of mutual bootstrapping and of self-bootstrapping of learners,

taking place in and through interaction. These new possibilities may now be taken

as foundational for the unlimited enlargement of cognitive functioning of these

learners (Maturana & Varela, 1980).

The new theory, proposed here, shows the role of generative complexity in

education in complexly generative processes in interaction within relations
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among peers. These generative processes are not given but need to be organized and
facilitated by educators, by organizing the conditions for triggering these generative

processes of change. Based on the causal modelling of (causal) interaction, these

processes may be viewed as a kind of (self-) generative, self-amplifying, self-

propagating, self-potentiating processes, operating within self-amplifying loops,

with self-enhanced loop effects. They show “the highly complex dynamic relations

between developmental and learning processes” (Vygotsky, 1978, p. 91; emphasis

added). These processes and effects are thriving on interaction; that is, on the

generative power of interaction with other people and/or peers. The new theory

of education is very much in line with the view of Vygotsky, in his description of

the role of learning and development in education. His view was based on a method

that took the causal dynamics involved in the process of interaction very seriously.

He was not able, however, to offer an account of the causal complexity involved in

the interaction. So, he was not able to conceive of reciprocal causality and emergent

causality, neither of causation as a complexly generative process, with potential

nonlinear effects over time. Organizing these generative processes are the ultimate

aim of a new generative pedagogy. They may be linked to generative learning, with
the potential of emergent learning and the corresponding potential nonlinear

effects. This is what the (generative) complexity of education might actually be

about: the opening of new spaces of the possible for education.
The complexly generative processes involved in interaction may enable the

complex capability of generativity, described above as a capability of “knowing

how to go on” (Lord, 1994). This capability integrates the process of knowing with
doing. This complex capability may now be taken as a complex aim of education.

The achievement of individual and collective generativity may be facilitated in and

through interaction with other people and/or peers (Vygotsky, 1978). This complex

process can be linked with acquiring individualization through generative processes

of becoming a human individual (Sassone, 2002). The concept of generativity may

be linked to the human development approach, described by Martha Nussbaum

(2011), encompassing the complexity of capabilities as combined capabilities
(p. 21; emphasis in original). She describes capabilities in terms of to do and to

be (p. 20), linked to states of being of the person. Nussbaum describes these states

as fluid and dynamic internal capabilities (p. 21; emphasis in original).

The complex concept of generativity may now be linked to complexity as a

(self-) generative and self-potentiating processes, taking place within a complex

dynamic network of “nonlinear dynamic interlinkages” (Nowotny, 2013). A

dynamic network that may show potential nonlinear emergent effects over time.

The acquisition of individual and collective generativity takes place through a

complex process of generative change within such a complex network of dynamic

relations between learners. Education, then, may facilitate learners who operate as

actors creating relations, which, in turn, create the actors through processes of

complexly generative change, at both the individual and collective level, with

generativity as emergent effect at both levels. This is opening and enlarging the

space of the possible for the learners involved, showing their generativity as a

complex capability within the multidimensional Space of Generativity of each
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learner. With generativity as the cause and effect of individualization (see Sassone,
2002). Generativity, then, is involved in the emerging process of this complexly

generative process of individualization of these learners. It may be stated that

learners “make oneself through one’s generativity” (Sassone, 1996, p. 48). Learners
may be conceived as self-realizing human beings operating within their dynamic

networks of scaffolding relations and interactions, achieving their individual and

collective generativity through complex processes of dynamic interweaving.

Learners, then, may become able to bootstrap each other in these dynamic net-

works, to be taken as networks of communities of learners, thriving on the full

generative power of interaction within the relations with other people and/or peers

(Vygotsky, 1978). It is their generativity that opens and enlarges spaces of possi-

bility: with the potential of unlimited enlargement of cognitive and other ways of

complex functioning (cf. Maturana, 1980). All of this theorizing about learning and

education has implications for practitioners in the field of education.

Educators may now be viewed in a rather new role: a role of so-called “multi-

pliers” (Wiseman, 2010). In this role they may show the capacity “to extract all of

the capability from people” (p. 11). This implies the fluid and dynamic internal

capabilities of the learner as a person which comprise the complex state of being of
a person, knowing what to do, “knowing how to go on” (Lord, 1994), knowing what

choices to make and how to act (see Nussbaum, 2011, p. 20). Educators may fulfill

their new role by organizing complexity within networks of learners, by organizing

their relations and facilitating their cooperation with peers (Vygotsky, 1978). They
may view the very possibility of so-called “multiplier effects” (Wiseman, 2010,

p. 11), operating in interaction within relations. These dynamic networks may show

how learners may bootstrap each other into existence: that is, into self-generative,

self-realizing beings through complexly generative processes of becoming
(cf. Sassone, 2002). The new role of educators may be based on a generative

pedagogy, involving the organization of relations and the facilitation of the quality

of interaction within these relations. This pedagogy is based on a theory of

complexly generative change. The generative pedagogy can be linked to the

bootstrapping mechanisms as learning mechanisms in cognitive development

(Carey, 2009). These hitherto unexplored mechanisms may now be taken as

conditional for transition and transformation in this development.

The challenge of a new generative pedagogy, with the new possibilities of self-

realizing human beings through bootstrapping processes, goes way beyond what

(Fenwick 2009) describes as “[T]he determined pedagogical impulse to control, to

change, to rehabilitate.” The new pedagogy is opening new spaces of the possible,

with emergent effects of generativity within hitherto unknown Spaces of

Generativity. Opening these complex, multidimensional spaces replaces the rather

simplistic view of the Zone of Proximal Development. The focus, however, is very

much the same: the very creation of these complex spaces in the process of learning

and development (see Vygotsky, 1978). The new focus, then, is on individuals

creating relations which, in turn, create individuals by response to the other: “as an
awakening—both to the uniqueness of me, and to the relation and subjection to the

other in which I am already, and have always been, constituted” (Fenwick, 2009,
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p. 114; emphasis added). Fenwick is right that such a response “is opening to

others.” She describes this opening correctly as a risk: “[S]uch opening, such

vulnerability, is a risk” (Fenwick, 2009, p. 114; emphasis added). She adds to this

that despite this risk “we and others may emerge in educational relationships”

(ibid., p. 117). It may be argued that it is worth to take this risk indeed, so to

become able to open the spaces of the possible in a world of the possible (cf. Biesta,

2014, on the beautiful risk of education). The challenge now is to link this new

thinking in complexity to the real world of education, taking account of the “causal

connections between properties of real-world entities” (Carey, 2009, p. 8). These

connections and properties may be taken as the causal relations between the

learners operating as complex real-world entities, with their complex internal

capabilities as complex properties. The complex dynamics involved is the causal

dynamics of interaction operating within these connections (see Vygotsky, 1978,

p. 62). The causal complexity described above showed the very possibility of

complexity as generative and self-potentiating, enabled by the hitherto unexplored

possibility of self-amplifying loops and the generative power of interaction, oper-

ating within these loops. This new way of thinking in complexity about education
may reveal a new world for education, based on new thinking in complexity about
the very complexity of education as a process.

The complex theory of education, proposed here, turns the description of

education into “a ‘complexified’ educational vision” (Fenwick, 2009, p. 112): a

vision about education that is “alive, ever-changing, organic, and full of messy

vitality” (cf. Arthur, 2013, p. 19, on economics). This new description may show

the very promise of complexity for education: that is, for “the enlargement of the

space of the possible around what it means to educate and be educated” (see Davis

et al., 2005; J€org, 2009; Osberg, 2009; Sumara & Davis, 1997).

For educators the real challenge is to organize the complexity of education in

terms of facilitating and organizing the very conditions of generative change and

emergence for learners, so to enable the new possibilities, sketched above. The

focus is on generative, emergent learning, based on bootstrapping processes, with

their bootstrapping mechanisms operating as learning mechanisms (Carey, 2009),

all for the sake of bringing about the complex capability of generativity. It is

through the very creation of the Space of Generativity that is enabling for

generativity as a complex capability to manifest itself within this complex

multidimensional space of development. The focus here is clear, in that the learner

“makes oneself through one’s generativity” (Sassone, 2002, p. 48). This in line with
Vygotsky’s view of learning and development. Learners, then, may be viewed as

active learners, able “to organize their own behavior” (Vygotsky, 1978, p. 74;

emphasis added). They may be conceived as able to apply their own method,

“invented” by them (ibid., p. 74; emphasis added). This may show what pedagogics

may actually be about, according to Vygotsky (1997): “the creation of life in its

infinite diversity” (p. 348; emphasis added). The complex capability of

generativity, and the achievement of this complex capability, is the key for a new
understanding of “the individual as a whole” (ibid., p. 348): that is, as a complex
dynamic whole. The process of creation of the individual as a whole may happen in
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and through interaction within (lasting) relationships among learners, and with

people in their environment. The quality of relationships may increase the quality

of interaction, and vice versa. Both may increase the quality of the (emergent)

effects of generative, emergent learning, showing the potential nonlinear effects for

achieving growth and development within the complex Space of Generativity.

Complexity as a generative, self-potentiating process, with its generative mecha-

nism of change, may operate as the complex generative motor for this achievement.

All of this exemplifies the very quality of dynamic, generative complexity as a self-

generative, self-potentiating process, showing generative emergence of effects; a

process that may be self-strengthening, self-amplifying, and self-propagating over

time. All of these new complex possibilities may be related to the simple question,

posed by Nussbaum: “what are people able to do and to be?” (ibid., p. x; emphasis

added). The new possibilities may show the potential of beautification of education:
as a continuation of procreation (see Sassone, 2002, p. 48). Ultimately, the new

theory of education may demonstrate how complexifying the topic of education

may actually humanize education and the view of the subject of education as a self-

generative, ever-evolving, self-realizing human being, thriving on interaction with

other people: “with people in his environment and in cooperation with his peers”

(Vygotsky, 1978, p. 90). This view brings complexity to life and the focus of

education on the creation of life, with its infinite possibilities. The pedagogy needed
is a generative pedagogy, about increasing the capacities to enhance one’s own

creativity by the increase of one’s generativity: through individual and collective

activity (see Vygotsky, 1978, p. 88). This pedagogy goes way beyond the deficit

mode of thinking, stressing what learners still do not know or are not able to

do. Education, then, will be about human individuals creating new complex spaces

of the possible for their own development as a complex human being, thereby

generating the power for transition and transformation of the individual as a whole.

This is opening the wondrous world of the possible as the real world for education.
The new framework of complexity and the corresponding new way of thinking in

complexity, based on causal complexity, offer a new scientific understanding of

learning and development for the field of education as a complex topic of study.

The pedagogics needed for this understandingwill be a complexity pedagogics: about

complexity as a process being complexly generative and self-potentiating

(cf. “complexity economics,” by Arthur, 2013, 2015). About a complex pedagogics

that, like economics, “can handle interactions more generally” (ibid., p. 19). All of

this may be taken as being part of a larger shift in science (ibid., p. 19), enabling for a

new generative, transdisciplinary approach for science (J€org, 2011). It is this shift in
science that makes it possible to open the wondrous world of the possible for all

sciences.
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Chapter 6

Towards the Teaching of Motor Skills
as a System of Growing Complexity

Umberto Cesar Corrêa, Walter Roberto Correia, and Go Tani

Introduction

The twentieth century can be recognized as a period of “phase transitions” in

science. Without being reductionist in the historical description, we posit that two

events marked the scientific development on that period. The first event concerns

the changes of classical Cartesian, Newtonian, or modern science to contemporary,

new-paradigm, or systems science (Wiener, 1948). Classical science was based on

the assumptions of simplicity, stability, and objectivity, which meant that, respec-

tively, (1) from the parts, it would be possible to understand the whole; (2) the

world would be stable, predictable, and reversible, with the possibility of control of

phenomena; and (3) it would be possible to objectively know the world as it really

is. Contemporary science, on the other hand, is concerned with complex phenom-

ena that are apparently irreducible. It is based on the idea that a system tends to

show new features not discernible from their units’ components, but emerging from

significant relationships between members of the team—that is, interaction (von

Bertalanffy, 1952; Dupuy, 1996; Prigogine, 1997).

The second event is the change within the systemic thought from systems

functioning based on negative feedback mechanisms to systems working based on

the interplay of positive and negative feedback mechanisms. This change occurred

during the second half of the twentieth century (von Foerster, 1960; Jantsch, 1980;

Maruyama, 1963; Prigogine & Stengers, 1984; Weiss, 1967; Yates, 1987). This

change was influenced mainly by applying of conceptions about thermodynamics of

systems far from equilibrium and dissipative structures to living phenomena

(von Bertalanffy, 1950, 1952; Schr€odinger, 1945). This perspective brings about

new themes such as order from noise, order by fluctuations, organized disorder,
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emergence, complexity, self-organization, chaos, and others as a basis of promising

models that are oriented towards understanding and explaining phenomena from

areas of knowledge, including educational ones (Chow et al., 2006, 2007;

Koopmans, 2015; Steenbeek & van Geert, 2013; Stamovlasis & Koopmans,

2014). The present chapter was developed in this context.

We addressed questions on motor skills as a subject in education, their acquisi-

tion as the main goal for teaching/coaching, based on a nonequilibrium model of

motor learning (Tani et al., 2014), which comprises two cyclical processes: func-

tional stabilization towards a motor pattern formation whose structure reconciles

order and disorder, and adaptation resulting in growing complexity.

Motor Skills as a Subject in Education

The motor skills phenomenon refers to those purposeful, efficient, adaptive, and

learned movements that human beings have performed in order to survive (Corrêa,

Walter, Torriani-Pasin, Barros, & Tani, 2014; De Paula Pinheiro, Marques, Tani, &

Corrêa, 2015). The motor skills we are referring to here are those from sports, play,

fight, dance, and exercise/gymnastics human cultural constructions, that is, which

nowadays have been adapted and practised in order to fulfil biological, psycholog-

ical, and social needs: health, competition, and leisure. For instance, while in the

early days human beings threw darts, fought, and orienteered/navigated for utili-

tarian and survival reasons, today they do it to compete, improve health, and

interact socially in their leisure time. It is through motor skills that human beings

express their feelings and creativity and learn about themselves and the social

environment in which they live (Tani, 1987). How human beings change their

motor skills from one state of order to another thereby gaining in complexity poses

an important question.

Due to the biological, psychological, social, cultural, and evolutionary roles that

motor skills have had for human beings and their societies, they have been conceived

of as part of the cultural heritage of many groups, which demonstrates their educa-

tional value (Tani & Manoel, 2004). To put it in another way, if sport, play, fight,

dance, and exercise/gymnastics constitute sociocultural phenomena, enabling indi-

viduals to have access to them seems to be essential for certain educational pro-

cesses. For example, in the school context, motor skills have been a subject because

the knowledge related to them has been judged to possibly develop people’s
wellness and quality of life. It is thought that including motor skills in education

allows individuals to do the following: (1) access and enjoy cultural heritage;

(2) enhance and enrich their motor repertoire, which in turn improves interactions

with the physical, social, and cultural environments in which they live; and (3) main-

tains and promotes health, providing them with opportunities to acquire knowledge,

skills, and attitudes related to an active lifestyle (Tani & Manoel, 2004).

We suppose that in order for an individual to achieve the aforementioned

educational goals, learning motor skills should occur by implementing three

94 U.C. Corrêa et al.



dimensions: the learning “of” motor skills, learning “through” motor skills, and

learning “about” motor skills. The first refers to acquisition of ability to efficiently

perform motor skills, the second is concerned with the acquisition of cognitive,

affective and social skills by means of motor skills, and the third is related to the

acquisition of knowledge about motor skills (Tani & Manoel, 2004). However,

independently of the type of learning we believe that the teacher’s knowledge about
the nature of motor skills and on how they take place as a process of learning are a

sine qua non of competence for effective teaching.

Motor Skills as a Complex System of Hierarchical
Organization

There are a number of classifications of motor skills (Arnold, 1981; Fleishman,

1975; Gallahue, 2002; Gentile, 2000; Magill, 2000; Newell, 1989). For instance,

they might be classified as open or closed according to their environmental stabil-

ity; discrete, serial or continuous according to their starting and ending points and

according to the order in which their components are performed; gross or fine

according to the requirements of muscular groups and level of accuracy; closed or

open circuit according to the use of feedback during or after execution; and

cognitive or motor according to the demand for planning and memory. In fact,

systems of classification for motor skills have not been made up as an end in

themselves but as a tool for other purposes (Arnold, 1981).

For the purpose of the present chapter, motor skills are classified based on a

systemic view of living phenomena (Laszlo, 2002), containing three important

characteristics. First, motor skills can be conceived of as a complex system because

in any level of analysis on which they are focused, they consist of the interaction of

numerous components. A component refers to each part of a motor skill whose

function in the skill as a whole is clearly identifiable (De Paula Pinheiro et al.,

2015). For instance, in order to perform a pass in the game of futsal, an individual

must integrate six components: (1) selecting a teammate target, (2) approaching the

ball, (3) supporting a position with the non-kicking foot, (4) looking at the ball and

holding the head steady, (5) contacting the ball, and (6) transferring weight for-

wards. Thus, we conceive motor skills as complex systems because they are

emergent—that is, not discernible in their individual components but as a conse-

quence of their interaction (Weiss, 1971).

A second important characteristic of motor skills is that they exist only in

context. That is, motor skills involve a necessarily spatiotemporal relationship

between performer and performance environment. This brings about a crucial

implication for understanding the effectiveness of performances: the open nature

of human beings. Similar to open systems, human beings interact continually with

their environment, exchanging energy, matter, and information (von Bertalanffy,

1950, 1952). For instance, the selection, elaboration, and control of motor skills

are made by continuous capture and utilization of environmental information.

6 Towards the Teaching of Motor Skills as a System of Growing Complexity 95



An important theoretical issue related to the individual in a given environment is

that the perception of environmental information is critical to the regulation of

motor skills (Oudejans, Michaels, Bakker, & Dolné, 1996).

Finally, the third important characteristic of motor skills is that they simulta-

neously present consistency and flexibility. The first one is necessary to reliably

reaches outcomes, and the second is essential for dealing with environmental

instability (Bernstein, 1967; Cook, 1980; Glencross, 1980; Tani, 2005; Turvey,

1977). In the last few years these simultaneous characteristics have been explained

by conceiving of motor skills as hierarchically organized systems with macrostruc-

tural and microstructural levels (Corrêa, Alegre, Freudenheim, Santos, & Tani,

2012; Corrêa et al., 2015; Corrêa, Davids, Silva, Denardi, & Tani, 2014; De Paula

Pinheiro et al., 2015; Tani et al., 2014). The macrostructure refers to the motor

skills’ general spatiotemporal configuration, which emerges from the interaction

between its components. It is constrained by the coupling of intention and task

specificity, and it has been inferred based on relatively invariant measures of

relative size, timing, and force, as well as sequencing.

The microstructure, in turn, refers to the components themselves. In complex

open systems, the components simultaneously present autonomy and dependence

because the macrostructure does not control the behavior of each part in detail but

only constrains how they interact with each other (Lewin, 1999; Salthe, 1992;

Waldrop, 1992; Weiss, 1971). As Laszlo (2002) writes, a macrostructure sets

rules binding the parts among themselves. Thus, microstructure is responsible for

the variability in the motor skills because of the performance options available

within each component. The microstructure of motor skills has been accessed

through measures of total movement time, overall force, and overall size.

In order to clarify the hierarchical organization of motor skills, let us consider

the aforementioned example of the motor skills involved in futsal (Fig. 6.1):

invariably, the numerous passes in a game of futsal are formed by the interaction

Fig. 6.1 Illustration of the hierarchical organization of passing of the sport of futsal
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of six components mentioned above. This characterizes the macrostructure. Nev-

ertheless, deciding which teammate to pass to, how fast to approach the ball, how to

position the support foot, and which part of the body to touch the ball with vary

according to the contexts of a game (e.g., displacement of teammates and oppo-

nents). One could say that such details emerge from specificity of context, which

typifies the microstructure.

In sum, as a subject in education, motor skills can be considered as complex

systems with a hierarchical organization. From this conception, the question we ask

now is: what occurs when a given environment instability is greater than the

flexibility of the skill microstructure? The answer to this question leads to the

formulation of another important characteristic of motor skills: adaptability.

Motor Skills Learning as a Process of Growing Complexity

The currently adopted pedagogical models of motor skills can be characterized as

equilibrium-oriented models. Equilibrium-oriented models explain the learning of

motor skills as a process of reduction of inconsistency and incorrect responses

through negative feedback mechanisms. The current movement pedagogy mainly

emphasizes functional stabilization as a process of pattern formation and refinement

(e.g., Mood, Musker, & Rink, 2012; Siedentop, 2009; Smith & Cestaro, 1998;

Wrisberg, 2007). For instance, regarding the learning of futsal passing, teachers/

coaches are advised to promote patterning in the interactions between the pass

components through practice in a way the ball consistently reaches the intended

teammate.

It is beyond doubt that the functional stabilization is a necessary state or

condition for the life of human beings. One could say that its importance reflects

the main definitions of motor skills: an acquired ability to achieve an environmental

goal with the maximum certainty by organized and coordinated movements (Guth-

rie, 1952; Whiting, 1975). However, although models based on negative feedback

mechanisms are able to explain the formation and maintenance of a stable pattern,

they do not account for the open system nature of human beings, i.e., the adaptive

human behavior.

This kind of system is able to become complex and elaborate by altering the

content and organization of its contexts. This ability is possible because the system

exchanges matter/energy and information with its environment (von Bertalanffy,

1950, 1952; Jantsch, 1980). Such exchanges allow humans to dismantle the

acquired stability and change their internal state of organization. Thus, it is impor-

tant to consider not only how human beings acquire and maintain stable patterns but

also how such patterns are transformed into new ones—that is, adaptation.

From this perspective, a nonequilibrium view of motor learning has emerged as a

promising alternative to elucidate the teaching of motor skills (Tani et al., 2014). It

refers to an adaptive process model in which the acquisition of motor skills is

considered as a cyclical and continuous process of stabilization and adaptation
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(Fig. 6.2). The first refers to the functional stabilization phase that results in the

spatiotemporal patterning of motor skills. As aforementioned, it occurs by mecha-

nisms of diminishing errors and discrepancies (negative feedback), the main

emphasis of the current pedagogical views.

However, as may happen in any open system, the acquired functional pattern may

be perturbed by changes in the state of the individual (e.g., new intention), task (e.g.,

new rule), or environment (e.g., new space delimitation). In this case, the system

functions based on influence of positive feedback (mechanisms of deviation ampli-

fication). Adaptation, the second learning phase, deals with how such perturbation

can be used to reach a new stability regimen—that is, to generate order from disorder.

According to Tani et al. (2014), in order for adaptation to imply a new state of

organization in the learning of motor skills, a reorganization of the acquired

patterns in response to the perturbation must occur. For instance, in the game of

futsal, those approaching a marking defender could require that a pass be performed

faster. In this case, there would be the maintenance of stability since the perturba-

tion would be eliminated by the system’s flexibility (microstructure)—that is, by

just altering a parameter (passing velocity). However, there may be a perturbation

of such magnitude that would go beyond the reach of the system’s flexibility. But
the player could take advantage of it by reorganizing the skill structure. For

instance, a shift in the velocity of approaching of a marking defender could make

the player with the possession of the ball change the (1) support position from left to

right foot and (2) contact the ball with the anterior instead of superior part of the

foot. In this situation, the player would have changed two components in the skill

structure. This has been named structural and self-organizational adaptation.

The main assumption here is that the reorganization of a previous structure into a

new one implies growing in complexity, since it involves incorporating new

Fig. 6.2 Illustration of the nonequilibrium model of motor skill learning
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information, components, and/or interaction modes (Tani et al., 2014) into existing

structures. Furthermore, this growing in complexity also implies the acquisition of

redundancy as an increase in the availability of resources to deal with perturbations

(De Paula Pinheiro et al., 2015). Based on these statements, it seems reasonable

to propose that the teaching of motor skills should be directed at adaptation of

motor skills.

Final Remarks: Insights on the Teaching of Adaptation

As we wrote previously, motor skills are genuine educational content because they

represent a significant part of the legacy of knowledge built by humankind through-

out our existence. Motor skills are among the means by which humans interact with

their environment by exchanging energy and information, which allow them to

prevent an increase in entropy, remain in a state far from equilibrium, and develop

towards growing complexity (Schr€odinger, 1945). In sum, motor skills are the

essence of life.

From the importance of motor skills as a subject in education, the comprehen-

sion of the open nature of humans and their capacity to continually learn allows us

to conceive of learning as an adaptive process—that is, as continuum that involves

cycles of functional stabilization and adaptation. The main assumption here is that

the realization of each cycle implies states more complex of organization.

In this process, the basic question is: what kind of pattern or structure should be

formed to account for the perturbation, or what type of competence is required from

the motor system for perturbation to become an agent of change towards complex-

ity? In response to this question, we have proposed that motor skills cannot be

represented as a fixed pattern but as a pattern that reorganizes itself in the context of

a new learning process. In other words, motor skills need to have some degree of

stability, but they can reconstruct themselves through perturbation when they are

destabilized. For this purpose, we have proposed that motor skills are organized

hierarchically at the levels macrostructure and microstructure (Tani et al., 2014).

This view brings two main practical implications for teaching. First, teachers

should emphasize the skill rather than technical. The technical has been considered

as that best way to perform a motor action. It is closely related to rigidity and details

in the performances. For other hand, the skill is related to efficiency in achieving

goals, regardless of the form it occurs. Second, it seems crucial that teachers have

clear how motor skills are composed, that is, which are their components (micro-

structure) and how are their interaction modes (macrostructure). For instance, while

a pass of the sport of futsal and a spike of the sport of volleyball are open and

discrete motor skills formed, respectively, by six and four components interacting

sequentially, the front crawl and backstroke swimming refer to the closed and

continuous motor skills, formed by three components that occur simultaneously.

In the first example, instructional emphasis for formation of macrostructure should

be on sequencing (e.g., running, jumping, hitting, and landing, for the volleyball
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spike). And, in the second example, the instructions should focus on the simulta-

neousness (e.g., breathing while perform the arm and leg strokes, for the backstroke

swimming).

Furthermore, in order to manipulate the skill to cause adaptation teachers might

change its spatial and/or temporal physical dimensions. For instance, temporal

modifications (e.g., from faster to slower running) imply a low requirement for

adaptation; spatial alterations (e.g., from larger to smaller steps during a running)

implymoderate demand for adaptation; and spatiotemporal modifications in the skill

(e.g., from larger and faster to slower and smaller steps during a running) imply

higher requirements for adaptation (Corrêa, Ugrinowitsch, Benda, & Tani, 2010).

From this perspective, besides the structure of motor skills, factors related to

disorder (e.g., uncertainty, variability, and error) should be considered by teachers

in conjunction with others associated with order (e.g., information, consistency, and

regularity) in order to promote the formation of a skill that contains both consis-

tency and variability. This proposition has been supported by studies on practice

schedule (Corrêa, Benda, Meira, & Tani, 2003; Corrêa et al., 2010; Gonçalves,

Santos, & Corrêa, 2010). They have shown that the preceding skill structure might

be formed from a combination of constant and varied practice schedules. According

to these studies, the regularity of the constant regimen provides the formation of the

macrostructure by patterning the interaction modes among the components. Also,

the posterior varied condition increases the flexibility of the microstructure. Impor-

tantly, this proposition have been supported by studies with children, adults, and

elderly (Gonçalves et al., 2010). Thus, teachers could organize practice initially in a

constant way, and then in a varied regimen.

In order to adopt an ideal combination of constant-varied practices, teachers

should consider the concept of self-organized criticality. When a system has self-

organized criticality, it has achieved a degree of organization which places it at the

border of chaos—prompting for creation, innovation, and/or evolution (Langton,

1992; Packard, 1988). This refers to a state in which a system reaches critical values

that make it able to change; or, to a point of transition between order and disorder in

which a small stimulus can generate a large change (Bak & Chen, 1991; Bak, Chen,

& Creutz, 1989).

Recent evidence has shown that there is an optimal amount of constant practice to

form the skill macrostructure (Corrêa, Barros, Massigli, Gonçalves, & Tani, 2007;

Corrêa, Gonçalves, Barros, & Massigli, 2006; Corrêa, Massigli et al., 2010). These

studies have shown that a minimum amount of practice is enough to prepare a motor

skill for diversification. Furthermore, other evidence has shown that there is an optimal

level of variability that provides the required flexibility for motor skill adaptation

(De Paula Pinheiro et al., 2015). Thus, in order to develop ability for adaptation,

teaching could involve the minimal amount of constant practice for macrostructure

formation (e.g., until a pattern to be observed), and the minimal quantity of items in

varied practice for skill diversification (e.g., three parameter values).

Finally, another important insight from the adaptive process studies is that the

individual capability of the students should be considered in the practice schedule.

Specifically, adaptation is beneficed when learner is provided with moderate
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freedom of choice in practice during the stabilization phase. According to Walter,

Bastos, Araujo, Silva, and Corrêa (2008), constant practice with some freedom in

the choice of components allows the learner to perform a sequence of movements

more comfortably. It appears that the prior establishment of some components

allows the learner understands the skill’s macrostructure. Conversely, the freedom

to choose some components enables the formation of flexible strategies, i.e.,

relative to the microstructure of the skill. For instance, considering the skill

structure of the futsal passing previously described (Fig. 6.1), teachers could

instruct the learner in relation to sequencing, selecting a teammate, and approaching

the ball. Consequently, learner would choose how to perform the other components.
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aleat�oria e aprendizagem motora: efeitos da quantidade de prática constante e da manipulaç~ao
de exigências motoras da tarefa [Constant-random practice and motor learning: Effects of

amount of constant practice and motor demands of task]. Brazilian Journal of Motor Behavior,
1, 41–52.

6 Towards the Teaching of Motor Skills as a System of Growing Complexity 101
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Chapter 7

The Fractal Dynamics of Early Childhood
Play Development and Nonlinear Teaching
and Learning

Doris Pronin Fromberg

Introduction

How do children before 9 years of age actually learn about significant conceptual

meanings, solve problems, and develop self-regulation? Educators who care to

address this question—and are not content with rote memorization and children

who parrot concrete verbalisms—can find some support in considering the

dynamic, nonlinear processes by which young children learn. This chapter dis-

cusses the relationship between dynamic, nonlinear early learning and its implica-

tions for teaching. It makes sense to apprehend how young children learn in order to

choreograph and coordinate how to teach in harmonious ways (that do no harm).1

Play. There is discussion in sections that follow of some current understandings of

the dynamic, nonlinear ways that brains function as well as an explanation of the

processes underlying young children’s sociodramatic and construction play.

Sociodramatic play typically involves two or more individuals who collaborate to

improvise imaginative dramatizations that could be episodic. Construction play

typically involves observable three-dimensional manipulation with materials such

as blocks, clay, sand, and water.

Dynamic Themes Curriculum. The discussion can help to map the dynamic,

nonlinear development of early learning that is meaningful to the players and

relevant to the needs of today’s world. There is also a description and discussion
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within sections that follow of a nonlinear, content-rich, and meaning-based system

of the early educational dynamic themes curriculum. Dynamic themes curriculum

is the transdisciplinary teaching-learning practice of the grammar of experience
with isomorphic dynamic themes (see also Fromberg, 2002, 2012).

The Brain and the Future. Throughout these strands, there appear to be similar

nonlinear dynamical systems functioning within children’s brains as they play,

develop, and learn. Brain dynamics, play dynamics, and curricular dynamics are

relevant and timely perspectives. Scholars, for example, identify the twenty-first

century’s need for people who can be versatile, think flexibly, enact their imagina-

tions, collaborate, be resilient, and feel comfortable with the predictably

unpredictable future (Bergen, Davis, & Abbitt, in press; Kaku, 1997, 2008; Yelland,

Lee, O’Rourke, & Harrison, 2008). Young players already demonstrate these

characteristics in their play and imagination, an observable venue in which to

launch the narrative.

Sociodramatic Play

Sociodramatic play and imagination is one among seven integrated conditions of

learning in early childhood (see Box 7.1) that begins to reveal the nonlinear

dynamics of development that include language development, spatial and visual

progress, social competence, and connection-making skills. In particular,

sociodramatic play that involves two or more individuals reflects a kind of script
grammar that functions as a basin of attractors. In effect, children collaborate in a

kind of oral playwriting that is both immediately unpredictable while the underly-

ing script theory/grammar of play is predictable.

Box 7.1. Seven Integrated Conditions for Learning in Early Childhood

• Play. Children use their imaginations to find out what they can do and can

develop executive function skills (Diamond, Barnett, Thomas, & Munro,

2007). They explore the relationship between reality and fantasy. [The

oscillations between reality and imagination have the potential to cascade

into phase transitions/bifurcations.]

• Induction. The relationships between familiar variables, as compared or

contrasted with a fresh variable, assist perception whereas isolated facts or

sounds might be camouflaged within a rote environment (see also

Fauconnier & Turner, 2002). [The oscillations between familiar and

fresh variables have the potential to cascade into phase transitions/

bifurcations.]

• Cognitive Dissonance. The relationships between (1) an expectation, (2) a
real experience, and (3) the surprise contrast between the expectation and

(continued)
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Box 7.1 (continued)

the experience are an instance of new learning. [The oscillation between

expectation and experience has the potential to cascade into phase transi-

tions/bifurcations.]

• Social Interaction. The relationships and comparisons between personal

experience and recognition of another person’s possibly different perspec-
tive occur within the growth of a theory of mind and self-regulation.

[Children also come to appreciate that others may have perceptions and

ideas different from their own, thereby strengthening their theory of mind

(Astington & Pelletier, 2005; Blair & Razza, 2007; Harris & Kavanaugh,

1993; Leslie, 1996: Perner, 1991)]. Theory of mind is important to written

as well as oral communication because effective communication requires

appreciating that other people have thoughts, feelings, and beliefs. [The

phase transition that defines the relationship between a personally cen-

tered view and a de-centered view reflects a growth of meaning and social
competence (Piaget et al., 1965).]

• Physical Interaction. Experiences that begin within three-dimensional

phenomena enhance the relationship between past experience and a dis-

sonant or new perspective, and support the development of symbolic

representations. [The relationship affords opportunity for a phase

transition.]

• Revisiting. The relationship between prior experiences and possible fresh

connections and fractal developments with subsequent activities can exer-

cise the brain’s plasticity (Bowman, Donovan, & Burns, 2001; Gopnik,

2009; Sylwester, 2000). [The brain’s fractal, integrative functioning

strengthens connections.]

• A Sense of Competence. The relationship between a sense of success and

risk involves the integration of the brain’s emotional and cognitive capac-

ities (see Bergen et al., in press; Damasio, 2003; Kaku, 2014). A sense of

competence develops out of the paradox of challenges which offer both a

manageable risk and a reasonable chance for success. [The balanced

relationship between risk and challenge supports children’s development

of executive functions.]

Sensitive Dependence on Initial Conditions. Play is the incarnation of a sensitive
dependence on initial conditions. Each player’s prior experiences introduce partic-
ular event possibilities that influence the capacity of other players to respond in a

variety of different ways. The play framework itself involves a dynamic, nonlinear

relationship between meta-communication and personal imagery, and then group

imagery. In effect, the script grammar of play typically proceeds as follows:
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1. Enplotment meta-communication: Outside the play framework’s thematic con-

tent, young players briefly begin to plan the topic or direction of imaginative

play, e.g., You be the father and I’ll be the child who fell.

2. Enactment of imagery: Immediately entering the play framework, players inter-

act in unpredictable ways, e.g., One “father-player” might offer comfort and a

bandage. A different father-player might call for a physician. Still a different

father-player might scold the child for doing dangerous activities.

3. Unpredictable trajectories of play content within bounded parameters: The play

generates unpredictable trajectories which might range between retaining and

elaborating the episodic nature of the play script or generating other topical

directions.

4. There might be a reiteration process of moving outside the play framework to

refocus the play. The players might begin new emplotment and enactment or

simply role-play physician-patient activity or hospital-themed play or drunken

father play or decide to create a baby-parent interaction or superhero character

play or have one or both children simply abandon the sociodramatic play area.

They might alternatively invite another player-emplotment partner or subject

matter into their play.

Phase Transitions. “The predictability or grammatical structure of play constitutes

a kind of ‘attractor’ in chaos theory. When weaker, the attractor (or underlying

grammatical system) permits more random and predictable representations. Nev-

ertheless, these representations still retain their relationship to the underlying

attractor” (Fromberg, 2015, p. 425). Thus, phase transitions occur as the basins of

attractors shift between meta-communication-emplotment and imagery-enactment.

A particular action or comment by one player might serve as an attractor that leads

to the self-organization of their play.

Phase transitions also occur when the episodic content oscillates or shifts

unpredictably as each participating player contributes his or her enactment role.

“The goal of the play, or the theme, serves as the attractor or driving point around

which the play revolves and evolves. The dynamic nature of play implies that goals

and themes can shift and, as they do, so will the attractor. These changes may be

gradual or transformational, and then be governed by a periodic or even ‘strange’
attractor” (VanderVen, 2015, p. 415). Changes and transformations are related to

periodic and strange attractors, respectively. Different children at different times

are likely to have both shared and different experiences. Although the script

components change, the play is identifiable as pretend play.

Relationships and Script Grammar. Relationships are important in sociodramatic

play, beginning as early as the second year of life. A relationship takes place

between the meta-communication in planning and the imagery within the develop-

ment of the play script (Bateson, 1971, 1976, 1979). The space between the
relationships defines the grammar of script theory. “Emergent behaviors . . . are
all about living within boundaries defined by the rules, but also using that space to

create something greater than the sum of its parts” (Davis & Samara, 2006, p. 148).

The arc of the play emerges as the players interact to create fresh configurations.
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Fractal Development. There is a fractal progression within sociodramatic play

development. “Fractals describe self-similar patterns that appear on smaller to

larger scales” (Fromberg, 2015, p. 426). Within the script framework, children

learn from one another as well as from sensitive adult scaffolds. The fractal

progression includes the (1) expanding development of language complexity and

vocabulary; (2) increasing social competence; (3) increasing duration and coher-

ence of thematic content; and (4) broadening event content knowledge. Each

collaborative oscillating nonlinear progression incorporates a system of self-

organization with a self-similar pattern at all scales/levels, far from equilibrium,

and proceeds from simplicity and disorder toward complexity and order (Beran,

Feng, Ghosh, & Kulik, 2014; Kurakin, 2011; Mandelbrot, 1983; see also Jadczyk,

2014). Thus, the fractal can serve as a heuristic for expanding memory, skills, and

other developments through phase transitions. The fractal could also serve to

predict patterns.

Oscillations Support Complexity Development. The oscillating movement between

perception and collaborative construction of script development nourishes phase

transitions toward increased complexity. The players’ collaborative behavior cre-

ates a more complex drama than either of their individual contributions. At the

same time, the underlying configurations of script grammar provide the organic

medium, a basin of attraction, within which a variety of surface representations can

emerge as bifurcations. The bifurcations result from phase transitions that grow out

of the relationship between the shared imagery present in the players’ meta-

communication that, in turn, emerges as fresh imagery. The movement between

enplotment and enactment involves the relationships and is essential for perception
to occur. This process entails the unpredictability of events with the possibility of

emergent bifurcation in new directions, an instance of chaos theory. For example,

different children might each contribute a suggestion that might result in either a

positive entrainment (synergy/the whole is more than the sum of its parts) or a

destructive bifurcation. It may be the case that a fresh collaborative play configu-

ration continues to develop and expand (synergy) or evolve into a schism that

destroys the trajectory of the play so that the players disperse.

In these ways, sociodramatic play demonstrates that young children are capable

of considerable self-direction and self-regulation. While play is a manifestation of

children’s imaginations, imagination is interdependent with thinking in concepts

and reasoning (Vygotsky, 1987).

Construction Play

Construction play shares some of the play script grammar characteristics of

sociodramatic play. However, young players often (1a) plan a structure, such as

a three-dimensional construction with blocks; (1b) proceed silently to build;

and (1c) only after the construction would they then engage in sociodramatic
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interactions (Gardner, 2006). Block play, for example, continues to develop with

(2) repetitive linear building in vertical or horizontal rows; (3) followed by

connecting and bridging; (4) then deliberately placing blocks to create enclosures;

(5) followed by forming patterns or symmetrical structures; (6) engaging in role

playing, pretense, and prop substitutions; (7) culminating in realistic representation;

and (8) sometimes fantastic representations (see Bullard, 2010; Clements &

Sarama, 2009; Cross, Woods, & Schweingruber, 2009; Erikson, 1977; Hanline,

Milton, & Phelps, 2001; Hirsch, 1996; Johnson, 1933; Moyer & von Haller Gilmer,

1956 citing Krotsch; Piaget & Inhelder, 1976; Provenzo & Brett, 1983; Reifel,

1984; Schwartz & Copeland, 2010; Wardle, 2003).

Fractal Development. A fractal progression occurs as children’s three-

dimensional constructions expand and extend from basic, underlying structural

variables and possibilities to increasingly complex embellishments and creations.

They strengthen the underlying visual and spatial skills that are necessary for

understanding concepts in science, technology, design engineering, and mathemat-

ics (STEM). Building with blocks, manipulation of three-dimensional objects or

liquids, and games with objects contribute to building these learnings. Children also

extend their three-dimensional representations to two-dimensional representations,

a pathway along the continuum of symbolic development. In these ways, children at

play create physical as well as mental models of their world.

The Relationship Between Assessment and Educator
Scaffolds

The observable and physical products of construction play and sociodramatic play

provide both a concrete opportunity for educators to celebrate the progression of

complexity and an opportunity to support further development. Scaffolds
(Vygotsky, 1978) refer to sensitive educator interventions that can support devel-

opment. A scaffold is the relationship between an educator’s “(1) assessment of a

child’s learning potential in relation to (2) a learning pathway, and (3)[an] invitation
and challenge that provide a relevant next-step experience” (Fromberg, 2012,

p. 61).

Educator scaffolds might include verbal harmony, adapting to each specific

situation, as follows:

• Simply describe what children are doing

• Ask what they have done or noticed

• Ask what problems they might have encountered and how they resolved them

• Ask what help they might want

• Wonder if they might use a particular prop or what else they might use

• Ask what labels/signs they might use

• Ask about their plans
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• Wonder what might happen if . . .
• Wonder what a particular other child might contribute

• Enter the play framework with pretense

• Photograph/sketch the construction or interaction (see Ibid., pp. 62–66)

Scaffolds intend to keep opening children’s capacities to experience phase

transitions by focusing on the content of the play rather than judgments. For

example, through sensitive scaffolding, an educator could introduce a new variable

that children experience as a phase transition toward a fresh attractor; this process

supports bifurcations by highlighting contrasts between variables or the relation-
ships between expectations and actual experiences and possible next steps. Thus,

phase transitions help children to progress from non-meaning to meaning. In this

way teaching functions as an effective improvisational enterprise at its finest.

Brain Dynamics

“The brain is fundamentally a pattern forming self-organized system governed by

potentially discoverable, nonlinear dynamical laws” (Kelso, p. 257). In particular,

“The propensity to play is a biological system for promoting rapid adaptation to

threats to survival that cannot be predicted. Playfulness, then, is characteristic of

animals that make a specialty of being adaptable, and is a prime capability in

changing and changeable settings (Ellis, 2015, p. 444).”

Interconnected Components and Processes. As a complex, dynamical system, the

brain consists of billions of varied neurons and neuron networks that can intercon-

nect across specialized regions by electrical and chemical transmissions modifiable

by genetic and environmental influences (see Marcus & Freeman, 2015; Richardet,

Chappelier, Telefont, & Hill, 2015). For example, the amygdala region monitors

and helps to adapt to changes in threat levels, thereby providing emotional gate-

keeping for cognitive processes. The parts of the brain that children use during play

are integrated mainly in the connections between the amygdala (predominantly

emotional center) and neocortex (predominantly thinking center). The same sec-

tions of the brain also are involved with attention, potential attitudes toward

learning, self-regulation, creative thinking, problem solving, and the arts (see also

Blair & Raver, 2012). Strengthening the amygdala strengthens these interrelated

capacities. The term “emotional intelligence” (Goleman, 1995) has become a

popular way to think about the importance of these connections. It is therefore

significant that professional educators know how to maintain reasonable challenges

and scaffolds in order to support optimal learning and young children’s sense of

competence.

Oscillations and Synapses—Pluripotentiality. Young children’s enactment of their

imaginations through observable play experiences can represent how the brain

functions as a nonlinear dynamical system. The brain’s physiology of communication
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and developmental trajectories involve synapses, the ongoing relationships across
chemical spaces between the dendrites, and axons of the neurons in the brain. The

axon(s) within the neuron transmit electrical signals and the many branching

dendrites could receive signals from axons (Kelso, 1995, p. 231. See also Mitra &

Bokil, 2008). The synapses are oscillating chemical or electrical signals that

integrate across the various functional aspects of the brain, an oscillation between

local and global regions, a process of pluripotentiality. Each neuron has the

capacity to both receive and inhibit stimuli, a nonlinear oscillation process that

re-balances the neuronal connections across synapses. Oscillations regulate neural

thresholds and refractory periods.

Oscillations and Learning. The strength of synaptic coupling within the oscillation

process (at varying rates) can change through learning. It is possible for new

dendritic connections to form (Shelton, 2013). “[W]hen two or more nonlinear

oscillators couple nonlinearly, the process of self-organization renders a wide

variety of behaviors possible” (Kelso, p. 243).

Brain Grammar. Thus, similar to children’s play, the brain functions as a self-

organizing system of phase transitions with bifurcations “Brain maturation exhibits

pattern and order that emerges from interactions of many different components,

including those that are part of the play development dynamic system” (Bergen

et al., 2016). Similar to the nonlinear functioning of children’s play interactions, the
underlying processes of the brain conform to a predictable grammar with

unpredictable connections. Think about the enmeshed intra- (personal or intra-

neuron), inter- (interpersonal or interneural and neural networks), and extra- (envi-
ronmental context) processes.

Neuroplasticity and Self-organization. Neuroplasticity is the particular character-

istic of the brain that is most active in young children as they play and make

multitudes of connections. Neuroplasticity refers to the capacity for dendritic

connections to form and networks to reorganize within the dynamic of experience

that represents learning and the adaptation to new behavioral tasks (Mitra & Bokil,

2008; Shelton, 2013). The generative plasticity of the brain “is largely due to

networks of [neurons] . . . rather than the sum of independent effects of individual

[neurons]” (Mitchell, 2009, p. 275). The networks can serve as efficient attractors

that support self-organization. Within these modifications, networks both absorb

and generate complex brain functions (Cicurel & Nicolelis, 2015; Shelton, 2013).

In turn, there are potentially rich and complex connections across the brain that

support the development of myelination of the axons. Myelin layering, insulating

the axons, improves the strength of connections and the speed of electrical connec-

tions (Chudler, n.d.; Hanline, 2008; NGIDD Consortium, 2010).

Pruning. There is a paradox of plasticity, however, in the process of pruning
myelin. On the one hand, when children are in environments where there are rote

instruction and limited opportunities for play and action-based learning experi-

ences, there is pruning of the brain’s less used rich network of myelinations. On the

other hand, the brain benefits from pruning which supports and helps to focus the
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most often used connections that can support learning (Gopnik, Meltzoff, & Kuhl,

1999; Tang et al., 2014).

In effect, the brain’s neural networks create models of the world and simulate

them into the future; and along the way, the neural networks rewire themselves

(Kaku, 2014). It is noteworthy that Lev Vygotsky wrote of imagination and

creativity: “A person’s creative activity does essentially this: it attends to the future,
creating it, and changing the view of the present” (1990, p. 85). He saw imagination

and creativity related to cultural context. Note that children’s sociodramatic play

develops unpredictably within the cultural event knowledge of the players.

In recent years, technological developments with functional MRIs and other

technologies have added to the historical physical study of brain tissue. However,

there are additional frontiers yet to confirm physiological dynamics (see Marcus &

Freeman, 2015; Richardet et al., 2015). In the meanwhile, observing the nonlinear,

dynamical functioning of young children’s imaginative play provides an additional

basis for illuminating how learning takes place. The narrative continues with

discussion of the dynamic themes curriculum approach that mirrors the ways in

which young children learn by participating in activity-based, content-rich, and

meaningful environments.

Dynamic Themes Curriculum

Dynamic themes are predictable, isomorphic (self-similar) configurations/imagery

patterns that underlie the multiple, surface forms that could represent them. For

example, the dynamic theme cyclic change imagery appears in the history of

society, animal, human, and plant growth; weather; evaporation; phases of the

moon; and other objects that change across time. Dialectical contrast/conflict
dynamic theme imagery appears in human conflicts; voting; economic scarcity;

magnetism; and musical counterpoint. The dynamic theme synergy (the whole

exceeds the sum of its parts) imagery appears in chemical processes; explosive

events; growth and reproduction; economic processes; musical arts; square dancing;

dramatic arts; collaborative constructions; and poetic arts (see Fromberg, 2012).

So, the underlying dynamic theme imagery is predictable across disciplines but

the various surface forms are unpredictable. Meaning takes place within the phase
transition between the underlying and the surface forms. In effect, the underlying

dynamic theme imagery has the inherent potential to become represented in many

surface forms as phase transitions connect by way of fractal attractors to create

isomorphic imagery.

Grammar of Early Experience. Dynamic themes function as an analogical grammar
of early experience and serve as underlying attractors; the underlying imagery of

finite patterns can generate infinite possibilities. It is within the transformation

(phase transition/bifurcation) between the deep and surface forms that meaning

can occur. Isomorphism refers to “the generative process by which the underlying
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dynamic-theme relationships may take different surface forms. Analogies, built

from cognitive connections based upon personal experiences, help humans to infer

isomorphic connections” (Fromberg, 2015, p. 419).

Complexity theory explores nonlinear, dynamic, seemingly random experiences

and phenomena that, different on the surface, manifest underlying regularities.

From a psychologist’s perspective, “Based on random interaction, [fractal construc-

tion] reveals the holistic quality of the underlying pattern . . .. The same fractal

attractor inevitably emerges out of chaotic trajectories” (Marks-Tarlow, 2008,

p. 260). Within this nonlinear framework, dynamic theme imagery provides foun-

dational support for the ongoing educational development of phase transitions and

bifurcations. Indeed, sensitive teaching involves the creation of potential phase

transitions by the timely provision of resources, spaces, and opportunities.

Dynamic Theme Grammar and Brain Grammar. Paralleling these curricular con-

cerns, neuroscientists contend that the neural networks of the human brain support

these flexible and transformational processers (Payne & Kounios, 2009; Tognoli &

Kelso, 2008). For example, “[T]he neural circuits must perform their functions

locally, whereas the global distribution of activities is a collective function of the

activities of the parts” (Kohonen, 1989, p. 255). The underlying dynamic theme

imagery parallels the “local” whereas the multiple forms of cross-disciplinary

experiences parallel the “global” functions.

Scaffolds Revisited. When educators provide exposure to experiences that repre-

sent a particular dynamic theme, children become receptive to perceiving that

imagery within other diverse surface representations that can expand and deepen

meaningful learning. In effect, dynamic themes are teacher scaffolds that adapt

action-based learning experiences to young children’s capacities to integrate chal-

lenges and fresh phase transitions. Thus, meaningful, quality teaching-learning and

learning-teaching relationships are complex adaptive systems of coupled dynamics.

It is worth mentioning that meaningful activity-based experiences that represent

concepts within, and tools of, the social sciences and sciences afford young children

reasons to represent their grasp of meanings in two- and three-dimensional forms, in

effect, speaking, writing, drawing, and constructions. Content-rich meanings also

afford young children reasons to measure and calculate through the tools of

mathematics.

Concluding Statement

Young children’s sociodramatic and construction play can reveal the nonlinear

dynamical system’s grammar of their brain development. In turn, the underlying

grammar of their play supports the educational development of dynamic themes as

an active, meaning-based grammar of experience.

The discussion strands in this chapter embody the fractal nature of developmen-

tal trajectories along with the powerful value of oscillations between (1) integrative
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structures in the brain as well as within (2) the grammar of play and (3) the grammar

of experience. Educators who envision these dynamical processes—and have

strong grounding in meaningful content bases that are transdisciplinary—are well

equipped to nurture phase transitions and bifurcations that expand and deepen

children’s knowledge bases and executive functions, including self-regulation. In

effect, self-regulation grows out of experiences that are interpersonal as well as

environmental-personal.

There are implications for educational practice that are based upon the nonlinear

dynamics of children’s development through play with objects and other children as

well as from curriculum that includes other engaging, action-based, and meaningful

experiences.

• “The challenge for professional educators is to create happenings/basins of

attraction with children that balance both planning and adaptation to emerging

events (Fromberg, 2015, p. 431).” Educators can meet the challenge by wel-

coming more than one interpretation of an issue or solution to a problem. They

also can refine questioning skills that ask for children’s perceptions, ideas,

opinions, and reactions rather than merely isolated facts or yes-no responses.

The focus is on the dynamics of children’s learning and connection making as

well as setting and solving problems.

• Educators who recognize that different children who engage in different activ-

ities at different times might have equivalent experiences have the power to be

flexible. This principle suggests that educators could adjust to the variety of

children’s perspectives and their ways of learning by planning experiences and

resources that welcome the multiple ways in which to represent underlying

dynamic themes in activity-based formats. Formats could span concepts that

use the tools of different disciplines as their representational forms.

• Thus, educators would focus on supporting children to make connections

between events. They create cognitive dissonance when they create a basin of

attraction, in effect, the opportunity for a comparison between expectation-

experience-and-surprise comparison between the expectation and experience.

Therefore, professional educators focus on nonlinear transactions, continuous

communication (Davis & Sumara, 2006), and multiple forms of assessments to

inform planning and instruction rather than uniform presentations and expecta-

tions. This focus supports children’s capacity for self-organization and executive
function. The focus is on children’s exposure to isomorphic imagery and con-

nections through vivid imagery and integrative concepts.

• The educator’s role, furthermore, includes providing culturally relevant peda-

gogy with shared responsibility for planning. Such an educator engages in

interpretive/ethical reflection (Van Manen, 1990). Flexible, extended time

schedules, with mostly smaller groups, and collaborative as well as individual

activities, could strengthen children’s self-motivation, self-regulation, and pos-

itive attitudes toward education.

Moreover, a dynamic themes approach to curriculum could help both educators

and children to feel empowered and to look forward to having great expectations for

the future.
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Chapter 8

Ergodicity and the Merits of the Single Case

Matthijs Koopmans

Introduction

While dynamical scholarship has played a significant role in the twentieth century

in the development of theories describing the underpinnings of development and

instruction (Piaget, 1967; Vygotsky, 1978), the impact of recent understandings in

dynamical theory, such as fractals, chaos, catastrophe, and complexity, has been

relatively modest up this point. There have been some major attempts to accom-

modate the new insights from those dynamical models to our existing knowledge.

For example, van der Maas and Molenaar (1992) used catastrophe theory to

describe the dynamical underpinnings of Piagetian stage transitions, and

Stamovlasis and Tsaparlis (2012) similarly applied catastrophe models to problem

solving in science education. Steenbeek, Jansen and van Geert (2012) used a

complexity perspective to describe the real-time scaffolding dynamics in teacher

interactions with students with emotional behavioral disorders, and children’s play
has been conceptualized and described as an emergent developmental process by

Fromberg (2010) and Laidlaw, Makovichuk, Wong and O’Mara (2013).

There have also been a number of more broad based discussions about the need to

consult models of complexity when studying educational change (J€org, Davis, &
Nickmans, 2007; Koopmans, 2014b; Lemke & Sabelli, 2008). While significant,

these developments have not yet clearly positioned educational research from a

dynamical systems or complexity perspective as an alternative paradigm to negotiate

the relationship between theory and practice in education. In fact, in the policy arena,

educational research has evolved more or less in the opposite direction. There has

been an increasing reliance on quantitative information in the service of school and

teacher accountability models, and on large scale randomized control trial (RCT)
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studies to examine the effectiveness of educational interventions and school reform

efforts. Especially the use of RCT designs has been put forward as the preferred

method for establishing causal links between educational interventions and their

outcomes (Raudenbush, 2005; Slavin, 2002), because it removes the ambiguity that

affects the inference of such causality in quasi-experimental and traditional correla-

tion and regression designs (Murray, 1998; National Research Council, 2002).

Several investigators have taken issue with this methodological disposition, most

notably Maxwell (2004; 2012), who argues from a qualitative research standpoint

that we should scrutinize the processes that generate causality, because they help

understand how certain outcomeswere obtained, rather thanmerely establishing that
they were obtained, thereby leaving it up to theory to provide an answer to the how
question, as RCT often does. From the vantage point of the complex dynamical

systems (CDS) paradigm, one would concur with Maxwell’s critique because the

investigation of the dynamical processes underlying cause and effect potentially

offers important qualifications to the knowledge obtained through RCT and related

designs (Koopmans, 2014a). Because of their strictly inductive nature (Bogdan &

Biklen, 1982), qualitative research methodologies are well suited to uncover such

dynamical processes, and they have been successfully used to address a wide range

of complex processes in education, such as school reform (White & Levin, 2013),

literacy (Laidlaw et al., 2013) and leadership development (Combes & Patterson,

2013). Studies such as these illustrate the usefulness of the qualitative perspective

addressing complexity questions. The richness of the data makes it possible in these

instances to observe and describe the dynamical processes in detail.

Establishing a unidirectional causal relationship between interventions and out-

comes addresses only a narrow part of the causal process. It relies on aggregated

information (comparison of group averages) without typically providing a detailed

description of the evolution of the behavioral changes that constitute an effect or the

self-organizing process through which change manifests itself systemically. CDS

argues that the behavior of agents in the educational system (teachers, students,

administrators, policy makers) needs to be understood in relation to that of other

agents in the same systemic context. The isolation of the behavior of individual units

that is needed for aggregation of findings discourages consideration of the systemic

interactions that define those larger units. Examples of such interactions are teacher–

student interactions, student–student interactions, and the interactions between

teachers and the principal’s office. Information is also needed about recursive pro-

cesses that tie the behavior of individuals to that of the systemic constellations inwhich

they interact. Causal attribution requires an understanding of the mutual contingency

of the behaviors of individuals in relation to those of larger systemic constellations of

which those individuals are part (Koopmans, 1998; Sawyer, 2005). Examples are the

relatedness of students and their classroom systems, and school administrators within

the systemic confinements of their districts and school buildings.

It is important to note that to meet the external validity needs that come with

policy research, the large scale data collection and the generation of replicable

findings is required to the same extent in complexity research as it is elsewhere,

because a high degree of resolution is needed in the data to detect the dynamical
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processes of interest. This situation has created a need for rigorous statistical

methods that are specific to the discovery and description of complex dynamical

processes such as self-organized criticality (Bak, 1996; Jensen, 1998), qualitative

transformations (Watzlawick, Weakland, & Fish, 1974); sensitive dependence on

initial conditions (Sprott, 2003) and emergence (Goldstein, 1988, Chap. 4). In many

academic disciplines, such designs have been fully incorporated by now into the

research practice (e.g., Guastello & Gregson, 2011). However, they have been

underutilized in education until recently, when a cascade of highly promising

work appeared utilizing a wide variety of empirical approaches to uncover the

dynamical underpinnings of teacher–learner interaction (Steenbeek et al., 2012),

the interaction between the learner and the task (Garner & Russell, 2014), the

impact of economic conditions on schooling outcomes (Guevara, L�opez, Posh, &
Zú~niga, 2014), the dynamics of collaboration among school administrators (Marion

et al., 2012), interpersonal teacher–student dynamics (Pennings et al., 2014), the

impact of arousal and motivation on academic achievement (Stamovlasis &

Sideridis, 2014), self-similarity in high school attendance (Koopmans, 2015), and

the adaptive process of motor learning (Tani et al., 2014). This research illustrates a

high level of methodological sophistication in the empirical work done in this area

that was virtually absent as recently as a decade ago.

Merits of the Single Case

In a New York Times article entitled Why Doctors Need Stories, Peter Kramer, the

author of Listening to Prozac expresses his concern about the disregard of the

individual case study as a legitimate source of evidence in medicine (Kramer,

2014). He argues for a revitalization of the case study as a necessary complement

to aggregated data that are used in randomized control trial (RCT) studies. In a

climate that was still quite hostile to case-based field research (Campbell & Stanley,

1963; Scriven, 1967), Smith and Geoffrey (1968) likewise advocated for the use of

such designs in the social sciences to help generate hypotheses to be verified through

experimental or correlational studies, and it has often been argued since that using

ethnographic research in conjunction with comparative designs can help rule out

alternative explanations to RCT-based findings (National Research Council, 2002;

Yin, 2000), and strengthen explanations of observed effects that fall outside of the

purview of the confirmatory study (National Research Council, 2002).

In education, the study of the particularities of individual cases has traditionally

been relegated to qualitative researchers using ethnographic designs to immerse

themselves into the system to observe the processes of interest unfold in real time

and provide detailed description of the interaction between the various components

of the system. The use of ethnography provides “thick descriptions” that may

uncover the processes through which transformation takes place in classrooms

and school buildings (e.g., Bogdan & Biklen, 1982; Lincoln & Guba, 1985).

Ethnographic designs also allow for a triangulation of findings from experimental
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designs and other designs with thick descriptions of the implementation story,

allowing for a deeper understanding of what makes given interventions effective,

and what processes ultimately explain the outcomes of an experiment. Ethno-

graphic designs can also be utilized by themselves to investigate causal processes

(Maxwell, 2004, 2012), and examine the way antecedent and consequent events

play out over time (Miles & Huberman, 1994). There is a long-standing affinity

between ethnography and the dynamical literature going back to Gregory Bateson’s
(1935/1972) anthropological work, and Kurt Lewin’s (1947) description group

dynamics in terms of stability and change in the systems, a development that has

formed the basis for the infusion of qualitative research with more updated dynam-

ical systems concepts (Bloom, Chap. 3; Bloom & Volk, 2007; Hetherington, 2013;

Laidlaw et al., 2013).

Nomothetic Versus Idiographic Perspectives

The literature sometimes describes research in the behavioral sciences as

representing either one of two distinct epistemological perspectives, often referred

to as nomothetic and idiographic (Burns, 2000; Burrell, 1979). The nomothetic

perspective represents the search for generally applicable principles and regularities

in the relationship between variables that can be used to make inferences about the

population based on what is observed in a sample. It is therefore often equated with

quantitative research. In education, conventional RCT designs and quasi-

experimental designs would fall under the nomothetic approach. This method

derives its utility from the representativeness of the sample to the population.

However, information about the particularities of the individual cases gets lost in

the aggregation that is required to estimate population characteristics. Hence, there

is a trade-off between the rigor derived from conducting observations over a large

number of individuals, allowing for a generalization from sampled groups to the

populations they represent, and the rigor derived from the accumulation of a large

number of sequentially ordered observations of an individual case permitting the

detailed estimation of the dynamics of stability and transformation of behavior.

This latter approach represents the idiographic approach (Allport, 1960; 1961),

which capitalizes on the richness of detail that can be accessed through detailed

study of the individual case, and is therefore often equated with qualitative

research. Allport presented the idiographic approach in the context of personality

psychology, a field of inquiry that takes great interest in the search for stability in

the personality traits of individuals over time in the face of shifting environmental

conditions, or stimulus fields.
Stimulus fields can vary a great deal as the number of variables is large enough to

yield an ecologically valid description of the types of influences affecting behav-

ioral outcomes. Stouffer (1941) invites us to an instructive “thought experiment”

involving a contingency table with multiple categorical dimensions and notes that

as the number of variables increases, the number of cells in the contingency table
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increases very rapidly as well. Imagine, for instance, how students from lower SES

or non-lower SES backgrounds (2 categories) who are male or female (4 categories),

take instruction under treatment or control conditions (8 categories), with effective,

somewhat effective, or non-effective teachers serving both conditions (24 catego-

ries), who all have been classified as belonging in one of the following reading

proficiency categories: below basic reading proficiency, approaching proficiency,

proficient, advanced (96 categories). If one distinguishes the home environments

for each student as supportive or non-supportive, the number of possible ratings an

individual can obtain on the variable constellation doubles to 192. In that light, it is

not hard to appreciate how little individuals might have in common when it comes

to the environmental and other baseline conditions under which learning and

instruction takes place. This makes the individual case an understandable and

intuitively appealing methodological choice, when the stimulus field harboring

these environmental influences comes under closer scrutiny.

The Temporal Dimension

The idiographic perspective carries two major implications. One is that it identifies

the need to focus on the situational specificity of behavior of in relation to stimulus

fields, which dynamical scholars would refer to exogenous processes. The second

implication is that “one must account for the recurrences and stabilities in personal
behavior” (Allport, 1961, p. 312) over time. This temporal aspect of behavior, i.e.,

behavior relative to itself at a previous point time, is referred to in the dynamical

literature as endogenous processes, and studying them facilitates understanding of

its connection to a constantly evolving antecedent stimulus field.

In a linear causal model, causes are assumed to precede effects (Pearl, 2009). In a

recursive causal model, causes and effects are assumed to precede each other in an

ongoing interrelationship (Sawyer, 2005). In both instances, time is a critical aspect

of our understanding of behavior. The argument also been made in the psycholog-

ical literature that behavioral measures that ignore the temporal dimension are

potentially misleading as they disregard the uniqueness of responses to contingen-

cies that are time dependent, as well as the periodicity in behavioral variability both

at the individual and the collective level of description. In psychology, periodicity

has been measured in such variables as muscle activity cycles (electrocardiograms)

and electrical activity recorded from the scalp (electroencephalograms) and eye

movements (Barrett, Johnston, & Pennypacker, 1986). In education, studying the

temporal dimension has productively informed our understanding of the effective-

ness of behavior modification processes in the classroom in terms of the impact of

teacher actions on student behavior, linking behavioral outcomes to their anteced-

ent conditions (Hall et al., 1971; Neef, Shade, & Miller, 1994; O’Leary, Becker,
Evans, & Saundargas, 1969).

Dewey (1929) describes the temporal span as the most important aspect of the

educational process, yet the contributions of time to education have not often been
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systematically investigated. Glass (1972) laid out time series analysis as a method-

ological framework for doing so, to deal specifically with the correlations between

in time-ordered within-subject observations, the estimation of the constancy of

statistical properties of a time trajectory over a longer time period, as well as the

perturbation of interventions on a trajectory of outcome measurements. There has

been little follow-up in educational research to meet the challenges he put forward

(Koopmans, 2014a).

Ergodicity

In 2004, the Dutch psychologist Peter Molenaar published a paper entitled A
Manifesto on Psychology as Idiographic Science: Bringing the Person Back into
Scientific Psychology, This Time Forever. It appeared in the journal Measurement
(Molenaar, 2004) and it was accompanied by seven peer responses. The article

takes note of the fact that an orientation toward the individual case (N¼ 1) is almost

completely absent from psychology, where conventional research typically

observes and analyzes the behavior of large numbers of individuals, and computes

central tendency and variability measures to characterize the group (interindividual

variation). If a sample is randomly drawn from a population of interest, the sample

results permit generalization to that population. There is a shortage of work,

however, that takes it as its mission to observe and analyze the behavior of a

particular individual over a single time series (intraindividual variation) in order

to learn about the particularities of its behavior and how it evolves across the time

spectrum of interest. The description of the individual case permits a level of detail

in the description of processes and behaviors that would not be possible if those

processes and behaviors are aggregated across groups.

As in psychology, applied researchers in education tend to investigate phenom-

ena cross-sectionally, compute measures of central tendency across individuals to

characterize group, and estimate variability in terms of the degree to which indi-

vidual observations deviate from the means in their group. Thus, the effectiveness

of educational interventions is estimated in terms of their impact on mean group

outcomes. It is implicitly assumed in such designs that the measures used to

estimate outcomes and predictors duly characterize the full time spectrum to

which the measurements purport to apply. For example, in the course of a school

day, or a school year, it is expected that if a large number of observations had been

taken across the time spectrum, the statistical properties of the trajectory of ordered

observations across time would be constant or at least predictable. Moreover, it is

typically assumed that individual variation (error) is randomly distributed around

the mean of the entire span of observations, as it would be in the measurements

across individuals after a successful statistical modeling effort.

Both in the cross-sectional and in the longitudinal case, variances are traditionally

defined in terms of the sum of squared differences of individual observations from

their sample means, adjusted for sample size. In cross-sectional research, a
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population mean is then estimated from the observed sample mean computed across

individuals, and the reliability of this estimation is said to increase as the number of

individuals who are sampled gets larger. Variability, in this context, is a quantifica-

tion of the extent to which between subjects outcomes vary from the means of their

groups (measurement errors). In the longitudinal case, variability quantifies the

extent to which within subjects individual observations vary from the mean of the

trajectory of measurements for that particular individual. In both cases, it is typically

assumed that these errors are randomly distributed and independent of one another.

In either case, it is an empirical question whether this assumption is justified.

In its more general form, the implication of the putative equivalence between the

distribution ofmeasurements across cases andwithin cases across the time spectrum is

known as the ergodic assumption, which states that the latent variance structure across
individuals corresponds to the latent variance structure within individual across the

time spectrum. Another way of stating this idea would be to say that the data behavior

we can assume in the individual case is somehow captured in the description of the

group. The problem with this assumption is that the conclusions that are drawn based

on group means do not necessarily apply to all individual cases in that group, and

studying the individual cases may reveal idiosyncratic patterns over time that may or

may not conform to the causal structure inferred from the cross-sectional group

descriptions (Gu, Preacher, & Ferrer, 2014). While it may seem obvious that the

ergodic assumptionwould therefore require empirical confirmation (Molenaar, 2004),

the assumption is rarely discussed explicitly in our discipline (but see Gu et al., 2014

and Molenaar, Sinclair, Rovine, Ram, & Corneal, 2009).

The discussion of ergodicity speaks to the important methodological concern of

how to account for sources of variability in observed data and the assumptions we

are making about relevant data that we typically fail to collect. In part, however, the

ergodic question also reflects a substantive concern. Given that traditional fixed

effects models may not generalize to anyone in particular (Molenaar, 2004),

perhaps the question “Is the program effective?” is the wrong one to ask, and

should be rephrased as “For what type of student is what type of program effec-

tive?” The latter emphasis allows for different causal structures underlying the

behavior of different individuals (Curran & Wirth, 2004).

In its purest form, idiographic science implies that no knowledge can be gener-

alized beyond the single individual, and that the analysis of individuals on a case-

by-case basis is the only legitimate basis for the acquisition of knowledge. In their

response to Molenaar’s manifesto, Curran and Wirth (2004) rightly note that this

position undermines one of the key goals of empirical science, namely external

validity, i.e., the applicability of research findings to other people and/or settings

than those that were studied. Both Curran and Wirth (2004) and Rogosa (2004)

argue in their responses for a conditional between-subjects modeling approach

“moving us into the interior of the space demarcated on one side by the strict

study of the individual, and on the other side by the sole focus on the characteristics

of the overall group (Curran & Wirth, 2004, p. 221).” However, if you define

external validity in terms of places and people, as well as time, the challenge

of attaining external validity extends to the adequate sampling in all three areas.

8 Ergodicity and the Merits of the Single Case 125



We may therefore just not be able to resolve all aspects of external validity within

the confines of a single research design.

The use of within-subjects findings to fortify generalizations from between-

subjects studies addresses an important external validity issue in conventional

RCT designs. A fully reliable randomization of units to various treatment condi-

tions may ensure that causal inferences about the effects of those conditions may be

drawn (internal validity, Murnane & Willett, 2011; Murray, 1998). However, since

the behavior of individuals or clusters within the sample for those studies may not

necessarily be governed by a uniform causal structure, information coming from

individual cases may provide important qualifiers to the group results, either as

counterexamples, or salient illustrations of the group level processes (Cook &

Campbell, 1979).

The possibility of using more refined cross-sectional models to study time depen-

dencies deserves careful consideration. Latent growth curve modeling (e.g., Bryk &

Raudenbush, 1992; Willett, 1988) allows for the estimation of nonlinear within-

subjects processes (e.g., quadratic, cubic models), and it uses individual growth

trajectories as input, and therefore, it can be argued that in many instances, growth

modeling allows for valid inferences about both within and between subjects pro-

cesses. The method also permits an analysis of individual growth trajectories before

the cross-sectional components are added to the model. However, the growthmodel-

ing currently typically found in the educational research literature does not allow for

the more refined estimation of periodicity, a-periodicity and non-periodic error

dependencies, whichwould require the incorporation into the hierarchical regression

framework of autoregressive, frequency domain or state space modeling features to

estimate error dependencies over the short term and the long term of the trajectory

(Koopmans, 2015; Shumway & Stoffer, 2011). In such cases, we would need a

sufficient number of input data points per trajectory to ensure representativeness of

findings across the time spectrum. The aggregation of findings across cases also

results in the loss of information that could potentially be useful for the provision of

counter examples to the interpretation of results from cross-sectional comparisons.

This individual-level information cannot be recovered from the aggregated informa-

tion (Rogosa, 2004). This situation calls for an analytical approach that incorporates

a within subjects component to between subjects designs to solidify inferences to the

population based on samples (Nesselroade, 2004; Rogosa, 2004).

One could argue that studying education and human development almost by

definition calls for a within-subjects approach, notwithstanding our methodological

predisposition toward group level analyses. Questions of causality in education

almost automatically invoke an RCT framework (Raudenbush, 2005) and thereby

also the way in which we tend to phrase our research questions. Complex dynamical

systems perspectives are also concerned with the causality question, but they are

not similarly inclined to articulate their research questions in terms of differences

between group averages. Instead, the complexity angle is more likely to focus on

how a behavioral trajectory operationalizes self-organizing processes within the

system, and how those processes are affected by events that are external to this

process. This interest expresses the causal question in a different way.
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An Example of Data Suggesting a Non-Ergodic Structure

Can we assume, based on a single snapshot taken at an arbitrary point on the time

spectrum, that all microstates within a given time range are equiprobable and that

there would be no dependence between observations, had they actually been

measured? Upon further empirical scrutiny, what kind of violations can we expect

to encounter to this assumption? Let us take a cross-sectional result with a random

distribution of individual observations around the group mean, and then play out

two scenarios on the time spectrum, one of which would show such randomness, as

the ergodic assumption would lead you to expect, and the other which illustrates

non-randomness. Figure 8.1 shows these two scenarios in a simulation of N¼ 1000

successive observations, here called Yt. The top panel on the left (Fig. 8.1a) shows a
time series with a mean of zero and a random distribution of measurement error

(white noise). The corresponding histogram (Fig. 8.1b) shows that the distribution
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Fig. 8.1 (a) Simulated time series with a zero mean, a standard deviation of 1 and randomly

distributed errors (white noise), (b) corresponding frequency distribution, (c) simulated time series

with a zero mean, a standard deviation of 1.23 and non-randomly distributed errors (Brownian

motion), (d) corresponding frequency distribution. N¼ 1,000 for both simulations
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of errors approximates normality quite well. It can also be shown that the measure-

ment errors are uncorrelated in such cases, and that the pattern revealed by this

trajectory carries little information about what the trajectory might look like in the

future. If we assume cross-sectional white noise, then, these data would be ergodic

in relation to it.

Now consider the simulation result shown in the bottom two panels of the figure.

While the mean in these distributions equals zero as well, the time series plot in

Fig. 8.1c indicates that the errors are not random, but clearly show a pattern in the

way individual observations deviate from the mean of the series. The tight cluster-

ing of observations to their immediate neighboring ones contrasts with what is

shown in Fig. 8.1a, and it indicates a strong correlation between measurement

errors. The histogram (Fig. 8.1d) shows that in this simulation, the mean does not

characterize the distribution very well due to the bimodality that is also on display

in the time series plot. Therefore, if we assume white noise in a collection of cross-

sectional data on Yt, these data are not ergodic in relation to it, as they display a

non-corresponding variance structure, and a cross-sectional mean would actually

misrepresents the mean of the observations that distributed this way across the time

spectrum.

The simulated error scenario shown in the time in Fig. 8.1c is actually known in

the dynamical literature as Brownian motion, or the random walk, and it character-

izes unstable systems in which a high level of dependency between individual

observations in close proximity is coupled with a high degree of volatility in the

trajectory overall. As a result, there is no constancy in the statistical properties

(mean, variance) characterizing the series in its entirety, as those properties heavily

depend on the location of the observations on the trajectory. Therefore, conducting

valid outcome measurements would require in this situation that the status of the

ergodic assumption be addressed (Molenaar, 2004; Molenaar et al., 2009) by

empirically establishing the variance structure underlying the sequence of the

measurements.

The Dynamics of Daily High School Attendance Rates

One of my currently ongoing research projects is concerned with daily attendance

in New York City public schools, which has recorded the daily attendance rates of

all of its schools starting in 2004, and continuing up to the time of this writing. This

research strictly follows a case study approach, albeit at the school level rather than

at the level of individual students. Koopmans (Chap. 14) provides a detailed

justification of the research agenda as well as its methodology. It will suffice here

to say that the inspection of daily attendance trajectories over a longer time period

allows us to discern patterns of non-randomness in temporal educational data that

would remain hidden if conventional summary statistics are used to aggregate

results across schools. Simply reporting mean daily attendance rates and their

standard deviations is insufficient if the distribution of individual observations
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(i.e., attendance measures on any given day) is not random. A look at the attendance

trajectory over time allows for an empirical verification of this assumption. A

sample of approximately 180 observations in a year provides sufficient resolution

to look closely at many aspects of the dynamics of school attendance as an ongoing

process, and develop hypotheses about the susceptibility of these patterns to

external influences (Koopmans, 2015). Below, I would like to illustrate this point

by discussing the daily attendance trajectories in three New York City high schools.

Table 8.1 summarizes the basic enrollment and demographic information for the

three schools in the 2013–2014 school year. It can be seen that the schools are

similar in three important respects. All three are small high schools with a total

enrollment ranging from 105 to 315. Moreover, the schools are demographically

similar with an overwhelming majority of students being Black or Hispanic and

about twice as many Hispanic as Black students. Furthermore, all three schools

serve students from predominantly poor socioeconomic backgrounds, as can be

seen by the high percentage of students eligible for free or reduced priced lunch.

Table 8.2 shows the traditional summary statistics for the attendance rates in

these schools in the 2013–2014 school year. A total of 187 daily attendance rates

were recorded in that year. The mean attendance rates vary considerably, ranging

Table 8.1 Demographic characteristics of School A, B, and C: Academic year 2013–2014

School A School B School C

Enrollment 315 105 184

Gender

% Female 50.2 77.3 59.8

Ethnicity

% Asian 3.8 1.0 2.7

% Black 30.5 37.1 26.6

% Hispanic 64.1 60.2 65.2

% White 1.3 0.0 4.3

% Other 1.0 1.0 1.1

Other

% English Language Learners 9.5 1.9 7.1

% Students with Special Needs 31.1 3.8 31.5

% Eligible for Free or Reduced Priced Lunch 100.0 90.5 83.2

Table 8.2 Summary

statistics for the daily

attendance rates in

2013–2014: School A, B,

and C

School A School B School C

Mean .77 .55 .87

Standard deviation .09 .14 .08

Minimum .26 .17 .39

First quartile .74 .47 .87

Median .78 .53 .88

Third quartile .82 .63 .90

Maximum 1.00 .99 .99
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from 55 % in School B to 87 % in School C. The corresponding medians are 53 and

88 %. Inspection of the other statistics in the table indicate a negatively skewed

distribution in Schools A and C: the first and third quartile in those two schools are

close to the median and to each other, while the minimum value in the distribution

falls far below the first quartile. The quartiles are farther apart in School B than in

the other two schools. The histograms shown in Fig. 8.2a, b, c and d further

illustrate these features for the three schools.

Turning to the single-case dynamics, Fig. 8.3a, b, c and d show the attendance

trajectories for the 2013–2014 school year in Schools A, B, and C. A straight line is

superimposed in each plot to represent the average daily attendance for that school

for the entire school year. In School A, daily attendance rates appear to be fairly

stable across the time spectrum, except for some turbulence toward the middle of

the trajectory, possibly reflecting the ramifications of inclement weather during the

winter months. This turbulence is shown by the dips into lower values, but also their

off-set with peaks into higher values during the same period. In School C the

low-range dips are even more pronounced, though not compensated for by

instances of unusually high attendance rates. It should be noted, however, that

mean attendance rates are much higher on the average in School C to begin with,

and very stable as well as can be seen by the low level of variability between

observations.

In School B, attendance rates show less stability over time than those in the two

other schools, and there is a steady decline in those rates as the school year

progresses toward the middle of the year, and a slight recovery in the second half

of that year. It can also be seen that in School A and B, the attendance rates become

highly variable toward the end of the school year, reflecting in all likelihood the end

of year celebrations and wrap-up. In School C the trajectory does not appear

perturbed to the same extent toward the end of the year, but simply shows above

average attendance for the last string of school days.

School A and C illustrate a stationary process, which is to say that there are no

clear signs of an upward or downward trend, heteroscedasticity, or other trans-

formations in the outlook of the series that depend on the position of the data points
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on the timeline. The peaks and valleys are outlying observations in an otherwise

consistent trend (and would be treated as such in the statistical analysis, see

Koopmans, 2014c for an example). The trajectory shown for School B in

Fig. 8.3b, on the other hand shows a mild resemblance to the Brownian motion

shown in Fig. 8.1c. The mean of the series underpredicts the observed data for

extended periods in the course of the school year (roughly corresponding to fall and

spring), while it overpredicts in the winter months.

In all three instances discussed here, however, traditional measures of central

tendency do not characterize very well what goes on in these data, and they conceal

important time-dependent features. A case-by-case scrutiny of the observations and
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their dependency over time provides an altogether different appreciation of daily

attendance in these three schools. Educational practitioners are likely to be aware of

the fluctuations in attendance rates in their classrooms and school buildings, as well

as their seasonal dependence, but these conventional measures do not

operationalize this aspect of the variability in those rates (Koopmans, 2015), and

therefore, the study of daily attendance rates over time is a useful endeavor in its

own right.

Endogenous Processes and Feedback Loops

Successful causal attribution requires that baseline conditions in the system are

measured in sufficient detail to estimate the propensity toward change in the

system, as well as the change processes that actually occur in response to given

interventions (Koopmans, 2014b). In conventional research, the measurement of

the baseline typically involves at most a limited number of pretest observations and

a comparison between pretest and posttest to determine whether change has been

produced by intervention. The change process is then inferred a-posteriori. A

convincing description of the stability in a system with respect to certain measure-

ment outcomes requires a reliable estimation of the intra-subject variability in those

outcomes. Such estimation, in turn, requires a much larger number of measurement

occasions than is typically provided in traditional pretest-posttest designs.

Moreover, given that establishing a cause-effect relationship at the aggregate

level does not necessarily carry over to all individuals, the individual case may

prove to be a source for instructive counter-examples. From the vantage point of

complex dynamical systems, there are two interrelated aspects to causality that are

not captured in conventional research designs: the endogenous process and the

recursive feedback loop between different parts of the system. The endogenous

process explains observed outcomes at a given point in time in terms of previous

measurements of that same outcome and thus can be seen as an indicator of the

adaptive behavior of the system with respect to that particular outcome (e.g.,

learning) irrespective of a particular impulse from sources external to the system.

An educational intervention, in this context, can be seen as an exogenous process
that may or may not have an impact on the endogenous process. The analytical

framework for conducting such assessments has been in place for a long time, and

has been part and parcel of the empirical behavior modification literature referred to

above, that measures the impact of given interventions on the endogenous process.

The measurement of recursive feedback loops is a challenge of an altogether

different magnitude, as it requires an estimation of the behavior of individual

members of a given system in relation to the behavior of the system at large. While

there is a rich literature to appreciate such feedback loops in theory (Koopmans,

1998; McKelvey, 2004; Minuchin & Fishman, 1981; Sawyer, 2005), the empirical

literature has not yet risen to the challenge of connecting these two levels of

description within a single analytical framework (but see Salem, 2013). In the linear

132 M. Koopmans



paradigm, there is a cross-over between levels of description in the hierarchical

multilevel designs equipped to deal with nested data structures (Bryk&Raudenbush,

1992; Gelman & Hill, 2007). However, these approaches do not deal with the

reciprocal nature of the influences between the behavior of systems and that of the

individual members making up those systems, nor do they provide great detail about

how this process plays out over time. Both aspects are central to the interests of

complex dynamical scholarship because it describes the process of self-regulation

through which systems maintain their structure, composition and integrity as a

distinct functional unit. The analytical focus on endogenous processes does not at

all preclude an analysis of external influences that may perturb the system

(McDowall, McCleary, Meidinger, & Hay, 1980). In fact, the impact of those

external influences on the behavior of the system is better understood if we have

knowledge of the endogenous processes through which the system maintains itself.

Concluding Remarks

The single case presents an alternative perspective on the question of cause and

effect in education. It can provide us with a fine-grained description of the trans-

formations that constitute the effects of interest. In the attendance data discussed

above, for example, one could speculate about a “winter effect” on the attendance

trajectories, where inclement weather impacts the transportation options for stu-

dents and these options may vary depending on the location of the school building.

Likewise, these influences can be estimated relative to other causal factors such as

parental support and effective school building leadership (Koopmans, 2015). The

confirmation of such causal processes requires a triangulation of the data presented

here with those from other sources. The detailed sampling of observations across

the time spectrum enables us to contemplate these causal processes to begin with.

They remain hidden in cross-sectional summary statistics.

Traditional summary statistics such as means and standard deviations, as well as

ordinary least squares regression, make assumptions about the data that do not carry

over very well to time series data. When ordered observations over time are

analyzed, two issues invariably come up: error dependency between observations

and the constancy of the statistical properties of the series across the entire time

spectrum. The dependency between observations across the time spectrum is

referred to in the time series literature as autocorrelation. The constancy of

statistical characteristics across the time spectrum is called stationarity and the

detection of these two features is a central part in the description and analysis of

most time-ordered data (Box & Jenkins, 1970). Comparison of Fig. 8.1a and c

above illustrates how drastically the appearance of outcome trajectories can differ

depending on whether the data are stationary (Fig. 8.1a) or not (Fig. 8.1c). Station-

ary time series are not necessarily random in the sense of white noise, as they can

also contain clustering and dependencies between observations i.e., autocorrelation,
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that needs to be modeled as well. Koopmans (Chap. 14) provides further elabora-

tion on that aspect of the sequential ordering of the data.

Dealing with the temporal aspects of data is common practice in education, as in

traditional pretest-posttest comparisons and the use of growth modeling to describe

changes in student achievement over time (Bryk & Raudenbush, 1992; Rogosa,

2004). However, these designs are not equipped to address the dynamical features

of changes over time, nor are they typically used to address dynamical questions

about those changes. Rogosa, Floden, and Willett (1984) provide an interesting

exception to this latter point by examining the stability in teacher behavior over

time. However, while very dynamical in the way it is framed, with four to six

measurement occasions the study does not sample the time dependent process

adequately to make meaningful inferences about the stability of teacher behavior

as a temporal phenomenon. This lack representativeness of sampling across the

time spectrum is characteristic of most of the cross-sectional work done in educa-

tional research.

It is far beyond the scope of the work presented here to summarize all we have

learned over the years from the study of single cases in education. Suffice to say

here that the case study has many times been productively used in the field, such

as for example in the school district reform literature (e.g., Cuban, 2010; Reville,

2007), the developmental literature (e.g., Bassano & van Geert, 2007; Brown,

1973), or the aforementioned behavior modification studies. Sometimes, this work

is explicitly concerned with hypothesized dynamical processes (e.g., Bassano &

van Geert, 2007; Johnson, 2013; Laidlaw, Makovichuk, Wong, & O’Mara, 2013;

Molenaar et al., 2009), but often it is not. This chapter argues that there is clear

potential in the study of the single case to obtain a deeper understanding of the

dynamical underpinnings of cause and effect, without the information loss that

comes with the aggregation of information across cases (Rogosa, 2004). The

particular contribution of statistics to this area lies in the detailed analyses of

the temporal ordering of the information elements. Ethnographic research, on the

other hand, can provide the thick descriptions that may one day form the basis for

the development of meaningful mathematical models underlying interactive

behavior (Dobbert & Kurth-Schai, 1992).

In the realm of quantitative research here is a trade-off between sampling rigor

across cases between subjects and across observations within subjects. The single

case design attains sampling rigor in this latter respect, and thus address different

types of questions that are of interest to the field. While ethnographic research may

not require this type of sampling rigor for inferential purposes, its thick descriptions

are very suitable for the description of the temporal features of behavior. Miles and

Huberman (1994) explain how qualitative approaches can be used to analyze the

temporal features of the behavior of individuals and organizations. Both the qual-

itative and the quantitative single case study are well-equipped to address the

question of the underlying dynamics of stability and change in greater detail, but

have been used infrequently for that purpose.

In its most uncompromised reading, the idiographic approach altogether rejects

the aggregation of information for purposes of statistical summary as a matter of
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principle (Molenaar, 2004), as a result of which study of human development would

boil down to the accumulation of all of our life stories. This would leave us without

an accessible empirically based knowledge structure about what we can learn from

those stories (Curran & Wirth, 2004). Rather than viewing the single case as a

radical alternative to nomothetic science, it may be more productive to view it as a

necessary supplement to it. The triangulation of data from large scales studies with

those from single case designs can enrich those studies with added detail about

causal mechanisms, and challenge the interpretation of aggregated findings through

the provision of individual counterexamples (Flyvbjerg, 2006).

Perhaps it is possible one day to deal with complex cross-sectional data struc-

tures and detailed temporal information about those structures simultaneously. In

the methodological field, the discussion about integrating state space techniques

and structural equation modeling (Browne & Zhang, 2007; Molenaar, 2009;

Molenaar, van Rijn, & Hamaker, 2007) is a highly promising development. How-

ever, this work seems to be in its early stages and does not yet provide a clear

answer to the question how we can meaningfully reduce the sheer volume of the

information from individual cases to manageable proportions without losing the

level of resolution that is needed to study the finer details of dynamical complexity,

the representativeness of observations across cases, or both.

Do we need an ergodic argument to make a case for single case designs? Perhaps

this argument unnecessarily complicates a relatively straightforward justification

for using such designs (Thum, 2004). Rather than framing the case for the single

case in terms of underlying assumptions about data distributions, we can also

promote the intrinsic interest of the particularities of the single case for the sake

of learning and scholarship (Stake, 1994). The readiness to investigate the partic-

ularities of the individual case through statistical means would represent an inter-

esting point of departure in the field of education, which lacks a time series analysis

tradition at this point.

Within the field of complex dynamical systems, the increasing reliance on the

investigation of complex processes through statistical means is a favorable devel-

opment as well, as it takes us away from the reliance on woolly inspirational

metaphors, such as “the edge of chaos” (Dodds, 2012; Goldstein, 1995; Koopmans,

2009; Waldrop, 1992) to the development of observation and measurement strate-

gies specifically designed to identity the specific empirical referents of such

hypothesized processes and constructs (Bak, 1996; Jensen, 1998; Koopmans,

2009, 2015). Such work would generate knowledge that is falsifiable as well as

useful to educational practitioners and policy makers, as it gives the dynamical

aspects of their thinking about education the representation it deserves in our

research efforts.
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Chapter 9

Catastrophe Theory: Methodology,
Epistemology, and Applications
in Learning Science

Dimitrios Stamovlasis

Introduction

Catastrophe theory is a mathematical theory that addresses discontinuities and

qualitative changes in dynamical systems. It states that in a complex dynamical

system changes could be smooth and linear, but that they could also be nonlinear,

and contrary to the common sense anticipation, they might be surprisingly large

even though the input is quite small. In reality, we observe that except human

constructions, straight lines do not exist in nature neither in social and human

experience. The assumption of linearity in social science research, in both qualita-

tive and quantitative approaches, has been a philosophical convention, since it is the

simplest one to examine, by the methodological tools available thus far. Moreover

it facilitated the cause-and-effect notion of classical reductionistic interpretations.

Catastrophe theory is acknowledged for its descriptive and interpretative modeling

power and its uniqueness to be the most applicable methodological approach that

infers nonlinearity from cross-sectional empirical data. This chapter begins with a

brief history of its mathematical foundation and continues with the presentation of

catastrophe theory in its deterministic and stochastic forms. Subsequently, all the

current statistical methodologies are presented and the epistemology associated

with catastrophe theory and nonlinear dynamics is extensively discussed. Finally,

applications within the neo-Piagetian framework and science education research

are presented.
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A Brief History of Catastrophe Theory

The history of catastrophe theory begins in the decade of 1880s, when the famous

French mathematician Henri Poincaré founded bifurcation theorywhile working on
a qualitative analysis of systems by means of nonlinear differential equations.

Poincaré was interested in answering questions concerning the structural stability

of the solar system. The main question was whether the planets would escape to

infinity or crash into each other if they experience an external shock. He found that

small perturbations would either leave the system relatively unchanged or would

cause it to move in a very different mode. This signified the onset of bifurcation

theory, which led to singularity theory, as a special case of which catastrophe

theory appeared decades later. A substantial contribution on the development of the

above mathematical theories is credited also to the Russian mathematician Vladi-

mir Arnol’d (1988, 1992). However, the basic notions and the formulation were

Poincaré’s work: Bifurcation theory considers a dynamical system described by

ordinary differential equations. Certain points where the first derivative equals zero

characterize equilibrium states. At a critical point, called a singularity, this set of
equilibria bifurcates into separate branches. Note that such critical points are the

degenerate ones and they are not associated extrema.1 This splitting is a bifurcation

of the degenerate equilibrium and since it concerns equilibrium solutions it makes

the connection between the singularity of mapping and structural stability (Morse,

1931). A crucial step in the history of catastrophe theory was the invention that

there were many types of such functions and two of them are stable in all their

forms; later they become known as the fold and the cusp catastrophe (Whitney,

1955). The discovery of these two types of structurally stable singularities for

differentiable mappings was the first element of catastrophe theory, even though

at that time the emerging theory was not referred with this name.

In 1950s René Thom, a French mathematician, working on structural stability

introduced the notion of transversality and stated the corresponding theorem in

order to describe the transverse intersection properties of smooth maps (Thom,

1956). According to Thom’s theorem any smooth map may be deformed by an

arbitrary small amount into a map that is transverse to a given sub-manifold.2 The

transversality theorem facilitated the classification of singularities or elementary

catastrophes and Thom (1972) managed to define seven types of singularities,

which can be described by up to six dimensions and named them as the “elemen-

tary” catastrophes. For systems with dimensionality greater than eleven,

1 In mathematics, a critical point of a differentiable function is a point where the derivative is zero

(or undefined). Degeneracy refers to a property of a case in which an element of a class of objects is

qualitatively different from the rest of the class belonging to a different, usually simpler, class. A

singular point is a degenerate one and is not associated with usual non-degenerate extrema,

maximum or minimum, where the first derivative is also zero.
2 Transversality in Thom’s theorem refers to a generic property of the maps according to which any

smooth map f: X! Y may be deformed by an arbitrary small amount into a map that is transverse

to a given Z � Y sub-manifold (Arnol’d, 1988).
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singularities were difficult to be classified, because, as it was shown later by

Arnol’d and his coworkers, the number of categories becomes infinite (Arnol’d,
Gusein-Zade, & Varchenko, 1985).

Thom specified the basic mathematical formulation of the elementary catastro-

phe theory considering the behavior of a deterministic dynamical system that is

described by n state variables yj and r control variables bi. A potential function is

assumed to be operating on this set of state and control variables so that for all yj the
first derivative is zero, while the set of points where the derivative equals zero

constitutes the equilibrium manifold. The first catastrophe which attracted attention

was the cusp catastrophe with a three-dimensional equilibrium surface described by

one state variable as a function of two control variables. The topology suggests that

when the control variables change, even slowly, the state variable adjusts quickly

on the equilibrium manifold. The topological characteristics of the response surface

of catastrophe model exhibit a number of features, such as hysteresis, bimodality,

inaccessibility, sudden jumps, and divergence, which are presented in the following

section.

While the formulation of catastrophe theory was being developed in the area of

mathematics, in 1960s and 1970s, a number of applications appeared in the

literature of economics, psychology, and other behavioral and social science (see

Poston & Stewart, 1978; Woodcock & Davis, 1978). Most of the very early

applications were with low-dimensional catastrophes, in the sense of having a

few predictors, and their onset brought up methodological and epistemological

considerations with a plethora of concerns. One fundamental question in a continu-

ing debate over catastrophe theory was the existence of system’s potential function.
A potential function posits a symmetry condition that all cross-partial derivatives

are equal, which again singularity theory does not require. Within the ongoing

discussion it seemed also that the mathematics of Arnol’d had departed from

Thom’s original formulation and this became a further controversy which appeared

in late 1970s. Another issue of debate that appeared during the early discussions

was the issue of time. Since singularity theory is about mappings, unfolding in

space, and it might not involve time at all, the question arises about whether

catastrophe theory has to involve the time dimension. Thom strongly associated

catastrophe theory with dynamical systems, where time might be explicit a dimen-

sion as well. Since years earlier, Thom had argued that an elementary catastrophe

form might be embedded in a larger system, which incorporates time as variable.

He stressed that the discussion concerns dynamical systems evolving in S� t space,
where S is the structural characteristics and t is time. If the larger system is

transversal to the catastrophe set in the enlarged space, then time could be control

variable; however the argument was a theoretical one and hard to demonstrate in

empirical applications. Moreover, some crucial details were brought up in the

discussion when considering transitions between stable states. These are associated

with the notion of discontinuity and led to various misconceptions and furthermore

to criticism (Zahler & Sussman, 1977). On this matter, two conventions regarding

the way that the system moves between multiple equilibria were stated: the Max-
well and the delay convention. Note that the choice of one or the other convention
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might exclude a range of applications (i.e., in real systems behavior). Thom (1972)

clearly fostered Maxwell convention from the beginning, but this later proved to be

a problem, mainly because it appeared to be a weak point concerning the definition

of catastrophe theory itself. The intense dispute on this issue led Zeeman to state

later “there is strictly speaking no ‘catastrophe theory, but then this is more or less
true for any non-axiomatic theory in mathematics that attempts to describe nature”
(Zeeman, 1974, p. 623). Obviously, until that period the foundation of catastrophe

theory at mathematical level was not a completed issue; nevertheless, active

researcher in other fields rather intuitively had acknowledged a merit to it.

Catastrophe theory started to become popular around 1970s and a plethora of

applications appeared in many fields of research, which however followed a rather

descriptive and qualitative approach. It seemed a fascinated premise that could aid to

understand unforeseen changes in nature and society. The unstable sociocultural

environment that existed during that period, with radical political movements,

facilitated its dissemination and appeal among mainly intellectuals (Rosser, 2007).

This explosion of popularity triggered criticism and counteractions against the

emerging theory, which, at that time, existed only in its deterministic version. A lot

of theoretical, epistemological, and ultimatelymethodological questions were raised.

Catastrophe theory faced a severe condemnationmainly by Kolata (1977), Zahler

and Sussman (1977), and Sussman and Zahler (1978a, 1978b). Their criticism was

centered on the mathematical formulation and indirectly on its epistemology, which

was unclear at that period. The most striking points of criticism referred to (1) the

descriptive and qualitative approaches that were implemented; (2) the incorrect

ways of quantification; (3) the existence of potential function; (4) the exclusion of

time as a control variable in many applications; (5) the limited set of possible

elementary catastrophes; and (6) the incorrect verification of global forms from

local estimates (i.e., any surface can be fit to a set of points). The criticizing group

also focused the disapproval on basic mathematical concepts associated with

nonlinear behavior. For example (7) they claim that no real discontinuous jumps

exist and cusp or fold model could be inferred with a few points. Extrapolation tells

nothing about predicted behavior and, due to observational error, any surface could

be arbitrarily close to a surface that Thom’s theorems examine; (8) they also

criticized Zeeman for incorrectly using the concept of genericity in his frontier

example; (9) the predictions based on catastrophe theory are not testable and are

unverified expectations, while many underlying hypotheses are often ambiguous;

(10) the cusp models used (e.g., Zeeman’s) were based on hypotheses carefully

chosen in order to facilitate it, and the critique was talking about “mystifying” terms.

Some of the points of criticism, such as those regarding the use of qualitative

methods, made sense, because the way bifurcation theory was founded by Poincaré

had a qualitative character. Quantitative deterministic models had been demonstrated

in physical sciences, but they seemed inappropriate for the social (soft) sciences.

Most points of criticism for inappropriate ways of model design and quantification

challenged mainly Zeeman’s work. Thom, who had already acknowledged

Whitney’s work on singularity theory, agreed to some extent with the criticism on

the qualitative character of catastrophe theory. Interestingly, on this issue, Thom
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appeared to bemore a theoretician and philosopher, rather than as a mathematician in

his responses towards defending the emerging theory. Thom wrote:

On the plane of philosophy properly speaking, of metaphysics, catastrophe theory cannot, to

be sure, supply any answer to the great problems which torment mankind. But it favors a

dialectical, Heraclitean view of the universe, of a world which is the continual theatre of the

battle between ‘logoi,’ between archetypes . . . Just as the hero of the Iliad could go against
the will of a God, such as Poseidon, only by invoking the power of an opposed divinity, such

as Athena, so shall we be able to restrain the action of an archetype only by opposing to it an

antagonistic archetype, in an ambiguous contest of uncertain outcome. Thom (1975, p. 384):

The above expresses Thom’s intention to demonstrate metaphorically his dia-
lectical view on uncertain outcomes upon the operation of two opponent processes

or actions. Similarily to Hegel’s dialectics, his position was that catastrophe theory

was the means to demonstrate how qualitative changes could emerge from quanti-

tative changes. Arnol’d referred to the “mysticism” of catastrophe theory showing

his disagreement on Thom’s “metaphysical” turn; however he admitted that “in
mathematics always there is an mysterious element: the astonishing concurrences
and ties between objects and theories, which at first glance seem far apart”
(Arnol’d, 1992, p. 103).

The consequences of the criticism were καταστρoφικε�ς (disastrous) for catas-

trophe theory. Research showed a declined interest in applying catastrophe theory,

and finally it became out of fashion for some years. Despite its temporary over-

throw, catastrophe theory came back restored and more rigorous in 1980s, due to

the work of Cobb (1978) in statistics, Oliva and Capdeville (1980) in economics,

and Guastello (1981) in psychology. They defended the emergent theory by

responding to the points of criticisms, while they made substantial contributions

to the development of methodology for application of catastrophe theory in social

sciences. With their pioneer work they maintained and showed that finally “the
baby was thrown out with the bathwater” (Oliva & Capdeville, 1980). For more

than a decade strong-minded scholars in various fields, who were convinced that

catastrophe theory could become a valuable asset in research for social sciences

(i.e., Cobb & Zacks, 1985; Cobb, Koppstein & Chen, 1983; Guastello, 2002;

Lorenz, 1989; Puu, 1981; Rosser, 1991), worked for its development. Strong and

clear responses to all points criticism were given also by van der Maas and

Molenaar (1992); Wagenmakers, Grasman, and Molenaar (2005); and

Wagenmakers, Molenaar, Grasman, Hartelman, and van der Maas (2005), while

catastrophe theory has gained its reputation among scientist. Presently, it has been

understood that the criticism was based mainly on confusions and conceptual

misunderstanding of core ideas of the new theory and the only weak point, at the

earliest times, which has now been overcome, was the lack of the proper statistical

methodology applied to real-world research.

The return of catastrophe theory ensued in late 1980s where it stayed in the stage

of social sciences with the development of its stochastic version, which permitted

testing research hypotheses related to discontinuous changes in empirical data.

Overviews of the theory and some applications across disciplines can be found in

Arnol’d (1992), Castrigiano and Hayes (2004), Gilmore (1981), Saunders (1980),

Poston and Stewart (1978), Thompson (1982), and Woodcock and Davis (1978).
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Catastrophe Theory

Deterministic Catastrophe Theory

Catastrophe theory based on the initial work of Thom (1956, 1972, 1983) and

Arnol’d (1988, 1992) is concerned with the classification of equilibrium behavior of

systems in the neighborhood of singularities. The mathematical foundation of

catastrophe theory includes the proof that the dynamics of systems in such singular

points can be locally modeled by seven elementary catastrophes, which implement

up to four independent variables. These elementary behaviors of systems in the

neighborhood of singularities depend only on the number of predictors, the control
factors. The seven elementary catastrophes are namely fold catastrophe, cusp
catastrophe, swallowtail catastrophe, butterfly catastrophe, elliptic umbilic catas-
trophe, hyperbolic umbilic catastrophe, and parabolic umbilic catastrophe. The
first four, known as cuspoids, have one behavioral axis while the last three have two

behavioral axes; the formers are the most common and pertinent to social science.

The fold, the cusp, the swallowtail, and the butterfly catastrophe have one, two,

three, and four control variables, respectively. Each catastrophe is associated with

a potential function in which the control parameters are represented as coefficients

(a, b, c, or d), while one state variable, y, describes the behavior of the system. The

behavior surface is the geometrical representation of all points where the first

derivative of the potential function is zero (Zeeman, 1976). The cuspoids, which

are the most applicable, are summarized in Table 9.1.

Deterministic catastrophe theory has been applied in physics and engineering for

modeling various phenomena, such as the propagation of stock waves, the mini-

mum area of surfaces, or nonlinear oscillations. Moreover interesting applications

have been developed for conceptual formulation of thermodynamics, scattering,

elasticity, and in the predictions of van der Waals equation in the transition between

the liquid and the gaseous phase of matter using a cusp catastrophe, where temper-

ature and pressure were implemented as two conflicting control factors, while

density is the behavioral variable (Gilmore, 1981; Poston & Stewart, 1978). On

the other hand, in social and human systems, where nonlinear effects and sudden

changes are ubiquitous, with the development of its stochastic form, the perspec-

tives for catastrophe theory became by far promising.

In order to attain a conceptual understanding of the core idea in catastrophe

theory models, consider an analogy from a physical system that is moving toward

an equilibrium state. The system in Fig. 9.1 comprises a hypothetical “one-dimen-

sional surface” on which a sphere is moving driven by gravitational forces. The

sphere represents the state of the system that can be at local minima or maxima,

which are the equilibrium states. The minimum is the stable state where the system

will stay or return when permutated by an external cause. The maximum is an

unstable state, that is, small perturbations cause system’s shift to another state. The
above qualitative behaviors of changing states can be characterized according to the

configuration of the corresponding positions, which are critical points, local
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maxima or minima, with first and/or second derivative equal to zero. Next, observ-

ing across the five representations (Fig. 9.1), it is demonstrated how the sphere

“jumps” from one position to another (local minimum) as the configuration of

surface changes gradually (Castrigiano & Hayes, 2004; Gilmore, 1981).

This behavior may be described mathematically by postulating that the state of

the system, y, will change over time t according to the equation

dy=dt ¼ �∂U y=að Þ=∂y ð9:1Þ

where U(y/a) is the potential function and a is a vector of the control variables

that affects the state of the system. The above equation characterizes a gradient
dynamical system, which is at an equilibrium state, if the Eq. (9.1) equals zero

(Feraro, 1978).

The equilibrium behavior of singular systems leads to multiple equilibria (mul-

timodal distributions); thus abrupt changes in behavior might be expected as the

system shifts from one equilibrium state to another. This “strange” behavior reflects

discontinuity in mathematical sense. The concept of discontinuity is a fundamental

issue in catastrophe theory and from the beginning it was a source of misconcep-

tions that induced the criticism mentioned in the first section.

Catastrophe models become extremely complex, and less applicable, when

number of the state and control parameters increase. However, the simplest and

the most eminent one, the cusp catastrophe has numerous applications, and it is the

best representation of the catastrophe theory models to be used also for didactic

purposes. The cusp model describes the discontinuous behavior of a state variable as

a function of just two independent variables. Considering that in traditional

approaches a large number of independent variables are usually implemented

when attempting to model changes, the choice of the cusp with merely two candi-

dates has certainly an advantage; this justifies the widespread use and the applica-

bility of the cusp catastrophe.

1= minimum
2= maximum

Change in parameter a

1 1 1 1

2

U(y, a)

1 1

Fig. 9.1 The sphere represents the state of the system and can be at local minima or maxima—the

equilibrium states. It is demonstrated how the sphere “jumps” from one position to another as the

configuration of surface changes gradually
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Cusp describes the behavior as a function of the two control variables: asym-

metry (a) and bifurcation (b). The potential function of the cusp catastrophe is

expressed by the deterministic equation

U y; a; bð Þ ¼ 1

4
y4 � 1

2
by2 � ay ð9:2Þ

The first derivative with respect to y is given by the equation

∂U y; a; bð Þ
∂y

¼ y3 � by� a ð9:3Þ

Setting ∂U y; a; bð Þ=∂y ¼ 0 gives rise to equilibrium function, which is geometri-

cally represented by the three-dimensional surface. Note that Eq. (9.3) is cubic, a

point with important consequences: small variation of the control variables can lead

to abrupt shifts or jumps in the behavior y. This is an exclusive characteristic of the
above function and the changes in the dependent variable are qualitatively different

from other cases such as those in models with quadratic terms, where small

continuous variation of independent variables is just accelerating y. Moreover,

the changes in the cusp function are different from any sudden changes implied

in a model, for instance, with a threshold function and also they are distinct from the

shifts in logistic type functions, such as Rasch models, and from Markov models as

well. Discontinuous changes in the cusp are sudden jumps occurring between

regions of a smooth surface. This is a very important mathematical feature linked

with primary epistemological issues related to nonlinearity. In real-world research,

these discontinuous changes might imply a qualitative change within the system

under investigation.

Further examination of the cusp model via its response surface reveals certain

unique qualitative features, known as the catastrophe flags, which could be used to

identify the presence of cusp catastrophe (Gilmore, 1981):

Bimodality: Refers to the probability distribution of the dependent variable,

where two distinctly different modes exist or two simultaneously present sates.

Hysteresis: Is the effect, where cases with the same values of the two controls,

asymmetry (a) and bifurcation (b), can be found in both distributional modes; that

is, they can exhibit two types of behavior corresponding to both behavioral

attractors; for a dynamical system hysteresis effect denotes memory for the path

through the phase space of the system, in the sense that some point or areas of the

system keep values from the preceded states.

Inaccessibility: The region on the response surface existing in between the two

behavioral modes. This area is inaccessible in the sense that the corresponding

behavior is unlikely to occur. The points within this area are pulled towards either

attractor.
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Divergence: Deviation from a linear relationship between the response and

predictors demonstrated by two diverging response gradients—deviating paths

towards the upper or the lower part of the surface.

Bifurcation point: The two divergent paths are joined at the bifurcation point at

which the behavior is ambiguous, and beyond this point the system enters the

bifurcation set, the area where discontinuous changes take place.

Sudden jumps: Abrupt changes between attractors, representing distinct behav-

ioral modes, occurred even with slight changes in the control variables.

Among the above, sudden jumps in the value of the state variable, hysteresis, and

bimodality are the most common flags constituting indicators for the presence of a

cusp catastrophe in empirical data (Figs. 9.2 and 9.3). The identification of such flags

encompasses a qualitative approach in evaluating the cusp as a model for data (see

also Gilmore, 1981; Stewart & Peregoy, 1983; van der Maas &Molenaar, 1992; van

der Maas, Kolstein, & van der Pligt, 2003).

Stochastic Catastrophe Theory

Catastrophe theory was developed initially for deterministic dynamical systems,

whose basic processes entail change towards states of extrema (maximum or

minimum), and it is perfectly applied to physical systems, e.g., to a pendulum

Fig. 9.2 Response surface of the cusp catastrophe model
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moving towards states of minimum potential energy. Theoretically, at least, the

central idea seems to be applicable to human systems as well, by considering that

the underlying processes of any social system always attempt to optimize some kind

of “function,” e.g., to maximize support or to minimize conflict.

Thinking stochastically, and focusing on the differential equation (9.1) holding

for gradient dynamics, if the change in the dependent variable y is probabilistic

rather than deterministic, then there is a probability density function over the rate of

changes in y. On this idea Cobb (1978) set the basis for the development of

statistical catastrophe theory. He restated catastrophe models using stochastic

differential equations, where the assumed stochastic processes have stationary

probability density functions of topological interest, which are receptive to statis-

tical analysis.

The construction of stochastic catastrophe models starts by considering a deter-

ministic system controlled by smooth potential function U(y) and the relation (9.1)

dy=dt ¼ �∂U yð Þ=∂y

The singularities of U(y) are the points for which ∂U=∂y ¼ 0, while if they are

degenerate ones the relation ∂2
U=∂y2 ¼ 0 also holds. In order to get a stochastic

equation, a white noise term dw(t) is added, so the differential equation becomes

dy ¼ �∂U=∂yð Þdtþ ω yð Þdw tð Þ ð9:4Þ

The function w(t) corresponds to standard Wiener process (Brownian motion),

while the ω(y) modulates the intensity of the random input dw(t) (Cobb, 1978).
The increments of a Wiener process, w(tþΔt)�w(t), are normally distributed with

variance Δt. The function ω(y) determines the size of the variance of the noise and

is called the diffusion function, which could be set to be constant. It was shown that
the probability density function of the state variable y ultimately converges to a

stationary one. Placing an error term in equation, the model becomes stochastic and

the concept of persistence replaces the concept of stability in the deterministic one.

Moreover, distinction between and within subject variability is allowed; thus

Fig. 9.3 Schematic representations of bifurcation, hysteresis effects, and bimodality
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stochastic catastrophe models can provide the means for investigating systems

driven by underlying nonlinear processes (Cobb, 1978; Stewart & Peregoy, 1983).

Applying stochastic calculus and using Ito-Wright formulation finally a general

equation is derived, which expresses that any differential equation can be presented

as a probability density function pdf:

pdf yð Þ ¼ ξ � exp 2

ðx
�∂U=∂yð Þds=ε

� �
pdf yð Þ ¼ ξ � exp 2U yð Þ=ε½ � ð9:5Þ

where ε is the value of the variance function assuming to be constant and ξ is a

constant introduced to ensure unity density.

In Cobb’s stochastic catastrophe theory the derived stochastic differential equa-

tion is associated with a probability density that describes the distribution of the

system’s states in time. Thus, there is a unique relation between the potential

function and the pdf. The stable and unstable equilibria of the potential function

correspond to modes and antimodes of the pdf, respectively. A stochastic bifurca-

tion occurs when the number of modes and antimodes changes as the control

variables vary. By choosing a potential function one formulates the corresponding

model. For instance using the canonical potential function for cusp catastrophe

(Table 9.1) the corresponding probability density function is

pdf yð Þ ¼ ξexp �1

4
y4 þ 1

2
by2 þ ay

� �
ð9:6Þ

For empirical research, the next step was the development of statistical procedures

to make estimates for the parameters for a specified hypothetical model, given a

random sample of observations. Over the last decades various methods were

developed based on maximum likelihood or least square optimization methods,

so that given a set of empirical data, it becomes possible to test statistically

hypotheses concerning the existence of degenerate singularities within the data.

Statistical and Methodological Issues

In this section, some crucial issues that appeared during the development of the

stochastic catastrophe theory are highlighted, along with comments on the various

methodological approaches and solutions. It is important to realize that catastrophe

theory models, compared to the linear ones, are not easily workable and there are

difficulties in developing evaluation procedures due mainly to the probability

density functions, that is, the idiosyncrasy of the bimodality (or multimodality)

and the non-triviality of the error variance. In addition, there are some strictly
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mathematical impediments concerning the nonlinear diffeomorphic transformation

of the measurement, which however are not addressed here.3

From mathematical point of view the development of catastrophe theory

involved primarily understanding of the critical points, that is, to determine how

critical points behave via an, e.g., “equation of motion,” which actually does not

exist. Thus, the state of the system can be determined by fostering certain assump-

tions about the dynamics of the system (Gilmore, 1981, p 143). There are two

conventions associated with these underlying assumptions, theMaxwell convention
and the delay convention. The Maxwell convention considers that the system

immediately jumps to a new equilibrium area. The state of the system is determined

by the global minimum of the potential function. As the control parameters change,

the state remains at the minimum as long as the current minimum remains the global

minimum of the potential.When this minimum stops to be the global minimum, then

the system state jumps to a new global minimum. The delay convention assumes that

the system remains in the old equilibrium zone until the last possible point before it

passes to the new equilibrium area. The state of the system is determined by the local

minima of potentials. As the controls change, the state remains at the local minimum

as long as the minimum exists. When the current minimum disappears, then the

system’s state jumps to a new local one. For the stochastic catastrophe theory, the

above have crucial impact on the way the expected value of the bimodal distribution

is estimated and affect the computation of the error variance and scale. It is

recommended and worth trying to proceed with both conventions.

The various modeling techniques developed for testing catastrophe theory in

empirical data are based on different assumptions and statistical approaches. A

difference could be based on aforementioned conventions. Another difference lies
in the presumed nature of variables; that is, they could be considered as univariate

or multivariate. The univariates are measured directly as observable, while the

multivariates are treated as latent variables with multiple indicators. Differences

could also be based on the modeling formula, which could be the system’s potential
function or the derivative of the potential function.4 Different optimization

methods, such as the least squares or the maximum likelihood method, could also

be implemented. Accordingly, different statistical tests and indexes are used for

model evaluation; for example in the maximum likelihood method, BIC and AIC

3Another mathematical issue of concern is that the classification scheme of the systems developed

by Thom presupposes that the systems under consideration must be transformed to its canonical

form using diffeomorphism transformations. Thus, the invariance under diffeomorphic transfor-

mation should hold. For the deterministic case it does. The stochastic version as developed by

Cobb based on pdf is not invariant under nonlinear diffeomorphic transformation of the measure-

ment. Statistical problems related to diffeomorphic transformation have not been addressed, while

solution has been proposed for some cases, e.g., time series data (Wagenmakers, Molenaar et al.,

2005).
4 There are pros and cons to that choice, since as it has been pointed out that methods based on the

derivative of potential function might reward the presence of unstable equilibrium states, while

those based on the pdf might punish their presence, as these correspond to points in an area of the

density function of low probability that lies in between two high-probability states.

9 Catastrophe Theory: Methodology, Epistemology, and Applications in Learning. . . 153



criteria are implemented, while in least squares method the percent variance

explained (R2) is used as the effect size criterion for comparing a catastrophe

model with the linear competitors. Besides the above criteria, a nonlinear model

has to have all parameters statistically significant, while special attention should be

given to certain parameters, e.g., the bifurcation factor in the cusp model, which

plays a crucial role in the model specification and its interpretation. Practically

wise, the different methods and the corresponding calculations could be performed

either with popular software (e.g., IBM-SPSS, Statistica, Stata, SAS, Minitab) or

with more specialized ones (e.g., GEMCAT, cuspfit in R). Specific concerns about

the methodological choices, pros and cons, critiques, and debates could be found

elsewhere (e.g., Alexander, Herbert, DeShon, & Hanges, 1992; Guastello, 1992;

Guastello, 2011a, p. 275; van der Maas et al., 2003).

Finally, it is imperative to single out that the researcher be aware of the fact that in

catastrophe theory analyses, like in any other methodological approach and stochas-

tic procedure, assumptions and conventions always aremade, whichmight inevitably

limit the anticipated results and conclusions. Ergo, it is suggested that analyses might

be strengthened by a combination of methods. Encouraging, however, is that the

methodological assets of catastrophe theory nowadays support high-quality research,

and thus are promising for the advancement of theory and practice in educational

research, as it has been realized in other social sciences.Methodologically, when new

research endeavors are initiated, it is important that statistical procedures are not

merely applied to available data with a curve fitting philosophy, but rather, a research

design is followed in model specification, which is sourcing out from a deeper

understanding of the underlying mechanism and the dynamics of the system.

Sample Size and Research Design Philosophy

The sample size issue is in general an unexplored territory for nonlinear regression

modeling. It is related to statistical power, which is the odds of rejecting the null

hypothesis (Ho) given that it is actually false. Note that the issue arises from cases

with very large samples that result in statistical significance, while the effects are

very small. In the linear regime and for bivariate tests the statistical power analysis is

rather a straightforward procedure, whereas for multivariate analysis, e.g., multiple

regressions, the determination of sample size for a given power is a more compli-

catedmatter, since it depends on a number of factors, such as the intended effect size,

overall R2, the number of independent variables, the degree of correlation among

them, and assumptions on their equal or unequal weights. Therefore, a lot of

different procedures have been developed for determining the proper sample size.

For catastrophe theory models a concerned researcher has to rely on rubrics that

developed for linear models with the same number of variables. For example, for a

linear regression with three independent variables, medium effect, and intended

power of 0.80, 55 cases might be the sample size (Maxwell, 2000). Recently, a

Monte Carlo simulation-based method was reported, which was used to calculate

statistical power and sample size for Guastello’s polynomial regression cusp
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catastrophe model. A power curve is produced under different model specifications

(e.g., different error term) and then it was used to determine sample size required

for specified statistical power (Chen. Chen, Lin, Tang, Lio & Guo, 2014). Interest-

ingly, sample size varies with measurement error. For power 0.85 and σ¼ 1 the

sample size is 36 and becomes 100 for σ¼ 2. Thus, for this statistical approach, a

moderate sample size is adequate for cusp analysis. Moreover, as far as the

statistical significance is concerned for small samples, the results can be strength-

ened by implementing bootstrapping techniques (Stamovlasis, 2014a).

The sample size and the sampling adequacy in nonlinear analysis and modeling

have been an issue of debate for some time where the “myth of million data points”

has been untangled (Gregson & Guastello, 2005). A fundamental notion related to

the issue in question is the restriction of topological range, which concerns the full

ranges of data which the hypothesized dynamics are unfolding in. It is of paramount

importance that the available data should cover the proper spectrum of values in

order to capture the nonlinear effect associated with hypothesized model

(Guastello, 1995). Given that nonlinear phenomena are manifested along with

linear dependences, it is the researcher’s responsibility not to just seek for merely

a good curve fitting, but to also build first a theory-laden model, which satisfies

aspects of the anticipated behavior in the context of system’s dynamics.

Statistical Methods in Cusp Catastrophe Analysis

The contemporary stochastic catastrophe theory permits testing related hypotheses

and examining the type of catastrophe structure that a set of observational data

might possess. In this section, the cusp model analysis will be examined as the most

eminent and applicable to behavioral sciences. In practice, when analyzing data one

may start with the qualitative approach, seeking for catastrophe “flags,” such as

sudden jumps, hysteresis effects, and bimodality. For example, bimodality

increases at higher values of bifurcation variable and it can be observed using the

graphical representation showing the frequency distributions of the state variable at

different levels of the bifurcation. However, the quantitative approach, which

includes statistical procedures, merely, provides the sound evidence that the

model fits the observational data. A number of methods and techniques have

appeared in the literature based on different assumptions and statistical modeling.

Some of them are more established, popular, or applicable; it is worth presenting,

however, all the most contributing to development of the stochastic catastrophe

theory and its application to behavioral sciences.

Model with Probability Density Function

First, Cobb (1978, 1981) starting from stochastic differential equations demon-

strated that the cusp catastrophe can be represented by the cusp family of
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probability density function, such as the pdf in equation (9.6). The state variable is

corrected for location and scale, z¼ (y� λ)/σ, while it is assumed to be univariate,
but the control variables a and b, the asymmetry and the bifurcation factors,

respectively, are assumed to be multivariate (latent). The canonical parameters

a and b in the model depend on the two observed and measured control variables,

i.e., c1 and c2, and they are expressed with the equations

a ¼ a0 þ a1c1 þ a2c2 b ¼ β0 þ β1c1 þ β2c2

The cusp catastrophe fitting procedure then involves the estimation of the param-

eters α0, α1, α2, β0, β1, β2, λ, and σ using maximum likelihood method (Cobb &

Watson, 1980). A reliable computer program was developed for data analysis,

which later had undergone some computational improvements (see Hartelman,

van der Maas, & Molenaar, 1998) and it is free on the Web.

Based on the probability function a direct method has also been proposed for

fitting the cusp model using nonlinear regression with least square procedures

(Guastello, 2011b). The cusp model is compared with its linear alternatives and it

has to be superior in terms of R2. The method is easy to perform and the related

statistics can be carried out with a usual software.

The GEMCAT Methodology

Oliva and his coworkers (1987) developed the GEMCAT methodology, primarily

for cusp, but also for swallowtail and butterfly catastrophe. The mathematical

formalization for the cusp assumes that the response Z and the two controls,

asymmetry and bifurcation X and Y, are defined as latent variables, each measured

by a number of observables:

Z ¼
Xk
k¼1

γkZk X ¼
Xi

i¼1

aiXi Y ¼
Xj

j¼1

βjYj

The equation f Z;X; Yð Þ ¼ 1
4
Z4 � 1

2
YZ2 � XZ defines the cusp function and its first

derivative set equals to zero: Z3 � YZ � X ¼ 0. The estimation problem then is

stated as

min ai; βj; γk
� � ¼ Φ ¼ ε2

�� �� ¼
XN
1

�
Z3 � YZ � X

�
2 ð9:7Þ

where ε¼ error and the summation is over the N observations. Given a set of

empirical data for the response Z and the two controls, asymmetry X and bifurcation

Y, one may estimate the impact of coefficients (αi, βj, γk) that define the

corresponding latent variable, which minimize the function Φ. A modified control
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random search (CRS) algorithm was developed to estimate the desired parameters.

The procedure, which is an MLE method, is equivalent to finding the best cusp

catastrophe surface fitting to the empirical data. Analogous methodology and

similar optimizing algorithms are followed for the other of catastrophe models.

The GEMCAT program which is free on the Web provides a series of options, such

as constraints on the coefficients (αi, βj, γk), standard errors for the parameters, a

utility for testing competed nested models, chi-square statistics, standard likelihood

ratio tests, and AIC statistic for fitting indices. In the latest version of the method

(GEMCAT II, Lange, Oliva, & McDade, 2000), the technique was improved and

inference is based on resampling techniques (jackknife and nonparametric boot-

strap). The present program has been popular mainly among economic researchers.

Method of Difference Equations and Polynomial Regression Techniques

This model was developed by Guastello (1982, 1987, 2002, 2011), who followed a

different approach. Starting from the deterministic equation dz¼ (z3� yz� x) dt¼ 0

by setting dt¼ 1 and inserting beta coefficients one gets the statistical formula:

Δz ¼ z2 � z1 ¼ β1z1
3 þ β2yz1 þ β3xþ β0 þ ε ð9:8Þ

where ε is the error term. The polynomial regression technique approximates

Cobb’s stochastic form of Eq. (9.4) by a difference equation, which essentially

results in a polynomial regression equation. The above equation is used to model

the behavioral change z2� z1 between two points in time, Time 1 and Time 2, with
behavioral outcomes z1 and z2, respectively. The difference equation in this for-

malism is assumed to imply a differential equation. Practically the equation

implemented in data analysis contains often a quadratic term β4 z1
2, which serves

as a correction term associated with location, and it could be dropped if it is not

significant or if it does not improve the model (Guastello, 2002). Data analysis with

model includes testing the following alternative linear models:

Linear 1 Δz ¼ β1xþ β2yþ β0 ð9:9Þ
Linear 2 Δz ¼ β1xþ β2yþ β3xyþ β0 ð9:10Þ
Linear 3 z2 ¼ β1xþ β2yþ β3z1 þ β0 ð9:11Þ

z is the normalized behavioral variable, while x and y are the normalized asymmetry

and bifurcation, respectively. The normalization procedure involves transformation

of raw scores λ to z scores corrected for location and scale σs:

z ¼ λ� λminð Þ=σs ð9:12Þ

Location correction is made by setting the zero point at λmin, the minimum value of

λ, and the scale σs is the ordinary standard deviation of λ. The normalization is
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applied to the control variables as well. In some cases, the scale could represent the

variability around the modes rather than around the mean (Guastello, 2002). The

most competitive model is usually the pre-post linear model in Eq. (9.11).

In the above model the least square (OLS) method is used as optimization

procedure. The distribution of the dependent measure at Time 2 is expected to possess
larger variance and it might exhibit bimodality. In order to demonstrate that a cusp

catastrophe is the appropriate model to describe the outcome, its regression equation

should account for a larger percent of the variance (R2) in the dependent variable than

the linear models. In addition, both the cubic and the product terms in Eq. (9.8) must

have significant weights and/or the confidence intervals (95%CI) should not span the

zero point. The regression slopes, standard errors, t-tests, confidence intervals, and
model fit for the cusp and the control linear models should be reported.

When modeling nonlinear phenomena, the inclusion of a nonlinear function in

the model affects basic assumptions of standard measurement theory. In classical

psychometric theory a measurement Y consists of a true score, T, and error term e.
The percent unexplained variance is considered as error, while errors are assumed

to be normally distributed and uncorrelated to each other and to true scores (iid).
However, when a nonlinear function is included dependent errors (de) are expected
to appear in the residuals. It has been shown that such non-iid errors (residuals) are

indicative of nonlinear processes (Brock, Hseih, & Lebaron, 1990). The residual

analysis could suggest that this might be the case. In nonlinear dynamical processes

the score variance has four components:

σ2 zð Þ ¼ σ2 linearð Þ þ σ2 nonlinearð Þ þ σ2 deð Þ þ σ2 iidð Þ ð9:13Þ

The four components are the linear, the nonlinear, the dependent errors, and the iid.
A linear model treats the last three components as errors [(σ2(e)], while the

dependent errors are captured only by the proper and well-defined nonlinear

model and could increase the variance explained (Guastello, 2002).

The difference equation model is affected by the restrictions and disadvantages

of the OLS, e.g., under suboptimal condition the empirical coefficient may not be

significant, while the bivariate correlations are. In those cases a cross-validation

strategy is suggested by investigating collinearity effects among the control vari-

ables or other components of the model. Also, the order that the variables are

entered in the OLS procedure could make a difference. It is recommended that all

variables are entered simultaneously. In principle, the method considers the asym-

metry and bifurcation as observables; however combination of candidate variables

could be tested (e.g., Stamovlasis & Tsaparlis, 2012).

For enhanced generalization, bootstrap estimates have been recommended to

cross validate the significance of the beta coefficients and the overall fitness of the

model (Stamovlasis, 2014a). Note also that a large explained variance that might

appear in some cases due to high linear correlations is not adequate to ensure a

cusp structure. The fundamental components, such as the cubic term and espe-

cially the bifurcation term, have to be statistically significant (Guastello, 2011a,

pp. 276).
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The Cuspfit in R

Latest advances in catastrophe theory literature have presented methodological

improvement and sophisticated software supported the analyses. The cusp package

in R (Grasman, van der Maas, & Wagenmakers, 2009) combines the maximum

likelihood approach of Cobb and Watson (1980) and the subspace fitting method

proposed by Oliva et al. (1987).

The state-dependent variable y and the control variables of the cusp are consid-

ered as canonical variables, that is, they are smooth transformation of the actual

state and control variables of the system. If there are n measured dependent vari-

ables Y1, Y2, . . .,Yn, then y is a linear weighted sum of them:

y ¼ c0 þ c1Y1 þ c2Y2 þ � � � þ cnYn

Similarly the latent controls a and b are linear functions of the k measured inde-

pendent control variables X1, X2, . . .,Xk:

a ¼ a0 þ a1X1 þ a2X2 þ � � � þ akXk

b ¼ b0 þ b1X1 þ b2X2 þ � � � þ bkXk

The fitting routine in R package performs maximum likelihood estimation of all the

parameters in the above equations. The cusp program using one built-in optimiza-

tion routine minimizes the negative log-likelihood L for a given set of experimental

data, with respect to parameters, α0, α1, . . ., αk, b0, b1, . . ., bk, c0, c1, . . ., cn:

L ¼
Xn
i¼1

logΨi �
Xn
i¼1

�1

4
y4i þ

1

2
biy

2
i þ aiyi

� �
ð9:14Þ

In order to preserve stability and to control collinearity among predictors, standard-

ized data are used.5 A problem might arise from non-convergence of the optimiza-

tion algorithm, which is overcome by providing alternative starting values

(Grasman et al., 2009).

For statistical model fit evaluation, a number of diagnostic tools are provided.

One is the pseudo-R2 which is defined by the equation

pseudo R2 ¼ 1� ErrorVariance

Var yð Þ ð9:15Þ

5 The standardization is performed with QR decomposition, which is a mathematical procedure for

obtaining accurate matrix decomposition using the modified Gram Schmidt re-orthogonalization

method. It accounts for collinearity in the design matrix and the stability of the estimation

algorithm (Press, Teukolsky, Vetterling, & Flannery, 2007).
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The concept is analogous to the squared multiple correlation coefficient; however in

the cusp catastrophe model the pseudo-R2 is not the same as the measure of

explained variance. It can take negative value if the error variance exceeds the

variance of y, and for this reason it is not a reliable fit index. This is because the

error variance is nontrivial and it is calculated based on predictions of delay or

Maxwell rules. Recall that these estimation rules (conventions) are relevant to the

concept of discontinuity as it was discussed earlier. Thom had from the beginning

fostered theMaxwell convention, while in Cobb’s method the delay convention was
suggested. The cuspfit in R offers both conventions with the delay convention as the

default.

Additional criteria typically used for evaluating the model fit of the cusp

catastrophe are the following:

• The coefficients in the model should be statistically significant.

• Cusp model compared to the linear counterparts should be significantly better in

terms of its likelihood.

• Cusp model could also be compared to the logistic function below:

yi ¼
1

1þ e�ai=b
2
i

þ ei i ¼ 1, . . . , n

which does not possess degenerate critical points, but it can model steep changes

mimicking abrupt transitions similar to the cusp (Hartelman, 1997). Besides the

statistical part, however, it is important to note here that even though the logistic

function is co-examined as an alternative model, it is not associated with rigorous

theoretical interpretations as the cusp catastrophe (see the epistemology section).

• The use of AIC, AICc, and BIC for all alternative models should be in favor to

cusp model. Especially the BIC can be used to compute approximation of the

posterior odds for the cusp relative to the logistic curve, assuming equal prior

probabilities (Wagenmakers, van der Maas, & Molenaar, 2005).

When analyzing with the cuspfit in R a difficulty arises if there are two or more

dependent variables because in these cases the counterpart antagonistic linear

regression model is not uniquely defined. Additional limitations are the absence

of the alternative linear model with the interaction term and the lack of an effect

size index, such as the R2 in least square approach that could serve as a basis for

comparison.

The advantage of the cuspfit method is that it can implement control variables as

multivariate latent constructs and can be used in confirmatory analysis. When it is

used in an exploratory approach the independent variables should not be assigned

arbitrarily to the controls because the results might be very peculiar and

uninterpretable. In order to improve estimations and get better results, it is

recommended that before using the cuspfit, a factor analysis (e.g., PCA) should

be applied, in order to identify the sets of potential candidates for control

parameters.
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Theoretical and Epistemological Issues

The following epistemological discussion focuses on the cusp catastrophe and its

main features, which are fundamentally related to nonlinear dynamics. The cusp

model reveals the pattern of behavior as a function of the two control variables, the

asymmetry a and the bifurcation β, and it states that both linear and nonlinear

changes in behavioral variable are expected depending on the values of the two

controls.

The model interpretation via Fig. 9.2 suggests that at low values of β changes are

smooth and a linear relation can better describe the relationship between the asym-

metry and the response. At low values of a, changes occur over the lower mode and

are relatively small. At high values of a, changes occur around the upper mode and

are again small. At high values of β, however, changes are discontinuous and abrupt
shift can be observed between the two modes or behavioral attractors. At the control

surface we can observe the bifurcation set mapping in the unfolding of the surface in

two dimensions. The cusp bifurcation set induces two diverging response gradients,

which are joined at the cusp point. At the cusp point the behavior is ambiguous, while

the two diverging gradients represent varying degrees of probability that a point be in

the one or in the other behavioral mode (Guastello, 2002).

The three-dimensional response surface entails the geometry of behavior, which
explicates that for certain values of the asymmetry a and the bifurcation β, a point,
the bifurcation point, exists, beyond which the system enters the bifurcation set, the
area where discontinuous changes occur. Points within the area of inaccessibility
are unlikely to be observed, since they are pulled towards either behavioral attrac-

tor, and this is what introduces nonlinearity and uncertainty in the system, which, it

is said, enters the chaotic regime. This behavior is also depicted on the other

fundamental feature disclosed in the cusp structure, the hysteresis effect; that is,
cases with the same values on control variables could be found either in the upper or

the lower mode of the response surface.

The above geometry of behavior, which seems quite complicated to ordinary

linear thought, is obviously phenomenological; that is, it apparently does not

explain, but merely it describes the behavior. Thus, the crucial question, which

entails explanation, is what kind of mechanism might force the state of the system

to follow the response surface. This is a fundamental epistemological question to be

answered (Zeeman, 1977).

Catastrophe theory models in science involve dissipating systems or potential-

minimizing systems. The mathematical formalism using a potential function for a

mechanical system, e.g., Zeeman’s catastrophe machine, seems appropriate since

by nature it is expected to obey some sort of deterministic type natural law.

Epistemological questions arise, however, when attempting the application of

catastrophe theory to “soft” science dealing with human behavior and related

systems. Recall here that one of the points of criticism of catastrophe theory was

the existence of potential function, which seems to arbitrarily appear in order to

describe the sudden shifts in the system. The issue is related to argument originated
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from the confusion about the conception of discontinuous jumps (Zahler &

Sussman, 1977), which ignores the attractor notion, a fundamental concept in

nonlinear dynamics. The cusp model describes the shifts between stable states or

distinct modes of behavior (behavioral attractors). This behavioral change might

imply or be a qualitative change. This description is founded on the operation of a

potential function, which mathematically is the proper tool to model shifts between

attractors. The mathematical formalism of the cusp model assumes that the system

is controlled by a “potential” function with two stable equilibria (Poston & Stewart,

1978). This assumption, for behavioral sciences, is not as arbitrary as it seems to

be. Note that the assumption of linearity is also arbitrary, to the extent that there are

no reasons for the behavior to follow straight lines; however the assumption of

linearity being seemingly the simpler one is easier to accept.

Within complexity and nonlinear dynamics, epistemological arguments

concerning human systems are advocates to the existence of attractors and dissi-

pating mechanisms. One is that for human systems’ behavior, an optimization

process, analogous to energy dissipation or potential minimization process, can

be reasonably assumed. A psychological system for instance could be sought as

seeking to minimize cognitive dissonance, or to maximize the degree of adaptation

(Saari, 1977). The concept of energy minimum is closely related to and it is a

special case of the attractor concept, which by definition represents the stable state

of a system operating in a dynamical equilibrium. Moreover, attractors at the

psychological level can be assumed that originate from the brain functioning,

which operates as nonlinear dynamical system possessing multiple coexisting

attractors (Kelso, 1995; Freeman, 2000a, b; Freeman & Barrie, 2001). In addition,

theoretical models on brain functioning based on neuropsychological evidences

have provided mathematical description of its dynamics in perception and action,

using the language of nonlinear dynamics. According to Nicolis and Tsuda (1999),

brain functions as dissipative dynamical system, which is characterized by sensitive

dependence on the initial conditions and the control parameters. These are

manifested as chaotic behavior including bifurcations, braking symmetry, and

multiplicity of behaviors beyond an instability point. In compensation to

unpredictability due to the nonlinear character of the underlying process, the

following hold for the system: (1) the existence of multiple attractors possessing

invariant measures in the dynamical system governed by the interplay among the

order parameters and (2) drastic reduction of degrees of freedom in the vicinity of a

bifurcation and the emergence of essentially only a few dominant order parameters.

These parameters may subsequently interact in a nonlinear fashion, giving rise to

low-dimensional dissipative chaos. (3) Within such systems information is pro-

duced (Nicolis & Tsuda, 1999). The latter, the potential to produced information, is

a property of nonlinear dynamical processes and it will be seen again in a later

discussion on learning and creativity.

Answers to epistemological questions on phenomena, such as a bifurcation and

hysteresis effects (Fig. 9.3), the interpretation of which seems too complicated for

linear and reductionist ways of thought, are given by self-organization theory. The
important feature of complex dynamical systems is the emergent properties that
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appear through self-organization processes. A cusp catastrophe for instance, when

detected, is by virtue a state transition, and it is an emergent discontinuity. This

finding at the behavior level has important philosophical implications targeting to

ontological questions, since a bifurcation is the phenomenology of complex adap-

tive systems; it is in fact the signature of complexity and indicative of self-
organization mechanisms (Nicolis & Nicolis, 2007). The notion self-organization
has supported the development of the major scientific theories of nonlinear dynam-

ics: Prigogine’s non-equilibrium thermodynamics (Nicolis & Prigogine, 1977;

Prigogine, 1961), Haken’s synergetics (1983, 1990) and Thom’s catastrophe theory
(1975), even though they were grown with different rationales.

Self-organization can provide a causal interpretation of the bifurcations and

state transitions within a nonlinear dynamical system and it is the process that

occurs when a system is at a state of high entropy and far-from-equilibrium

condition (Prigogine & Stengers, 1984). The structure that is taken on, which is

an ordered state, allows the system to operate more efficiently and interestingly it

does not require any outside intervention; this is the notion of “order for free”
pointing out by Kauffman (1995, p. 17). Self-organization has been implemented

for physical and biological systems as an explanatory theory; however it could be

transferred to human system as well, for explaining emergent patterns observed in

psychological processes (Grigsby & Osuch, 2007; Hollis, Kloos, & van Orden,

2008). It has been fostered for a causal interpretation of Piaget’s theory of stepwise
cognitive development (Molenaar & Raijmakers, 2000) and for interpreting the

emergence of creativity (Stamovlasis, 2011).

A final point to be singled out is that the phenomenology of nonlinear systems is

due to self-organization mechanism and on the other hand to the operation of

coexisting attractors and the dynamics of the system. Bifurcation mechanism in a

physical system such as Zeeman’s catastrophe machine is nested in the operation of

a potential function and the dynamics of the system (Zeeman, 1976). Similarly,

when examining a cognitive or human system, its dynamic behavior is the forma-

tive cause of the ensuing bifurcation and the emergence of the new topological

pattern in the state space of the system.

Note also that in psychological and educational sciences, the processes under
examination regarding cognitive and human systems are more likely non-ergodic,
and the hypothesized underlying evolution equation that describes the system over

time is unknown. These two points are where catastrophe theory is filling the gap: it

concerns sudden changes and it exemplifies that for studying these state transitions

in a system, the evolution equation does not have to be known in advance; the

description and the explanation of local observed behaviors can be attained with a

small number of control parameters (Castrigiano & Hayes, 2004; Gilmore, 1981;

Poston & Stewart, 1978; Thom, 1972, 1975, 1983). The above are also in accor-

dance with primary postulates of nonlinear dynamical systems, where the principle

of dynamical minimalism is assumed; that is, complex behaviors can be produced

by simple rules and/or a few interacting variables. Thus, in constructing nonlinear

models it is always sought to identify the simplest realistic set of assumptions and
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variables that finally produce theories that provide the simplest explanation of

phenomena (Nowak, 2004; Vallacher & Nowak, 2009).

The above epistemological discussion concerns and applies to any process in

educational research. The application of catastrophe theory, as a part of the meta-

theoretical framework of nonlinear dynamics to a specific domain and discipline,

does not ignore, but it essentially requires a local theory, which can provide the

variables to implement as state and control factors.

Catastrophe Theory and Neo-Piagetian Premises
in Learning Sciences

The Piagetian and Neo-Piagetian Theories

A requisite local theory that could serve as the bridge between science education

research and nonlinear dynamics is the Piagetian and neo-Piagetian premises (Case,

1985; Pascual-Leone, 1970; Piaget, 1967; Piaget & Inhelder, 1969). They have

been exceptionally appealing to educational sciences and they are the first on which

catastrophe theory and nonlinear dynamics have been applied in a remarkable way.

At earlier times, catastrophe theory has been connected to Piagetian stagewise

development (Molenaar & Oppenheimer, 1985). A few interesting models had

been proposed with the implementation of some core Piagetian concepts, such as

the assimilation and accommodation processes, which were considered as controls

determining the abrupt shifts between developmental stages, while discontinuities

in the children responses in the vicinity of a transition from preoperational to

concrete operational thought have been shown (Preece, 1980; Saari, 1977). A few

decades ago, it has been pointed out that catastrophe theory analysis could embrace

the traditional methodological approaches concerning stagewise cognitive devel-

opment, and later the dynamic systems theory has been proposed as the unified

framework of development (van Geert, 1991; van der Maas & Molenaar, 1992; van

der Maas & Raijmakers, 2009).

The fundamental connection points between Piagetian and catastrophe theory

are the notion of equilibration as applied to the former and the concept of equilib-
rium to the latter. Both are expressed mathematically by setting the first derivative

of the dynamic system equation to zero. As it was pointed out in the epistemological

section of this chapter, the equilibrium is implied by an optimization process, which
is taking place within a dissipating system. This process allows the cognitive

system to choose its internal states so that it maximizes the degree of adaptation,

given the environmental inputs. Thus, from the beginning it was recognized that the

inherent compatibility with catastrophe theory holds also for the neo-Piagetian

theories, which can make available all the prerequisite psychological constructs

for a catastrophe model specification.
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The most representative within the neo-Piagetian premises is the theory of
constructive operators (TCO), founded by Pascual-Leone (1970, 1987) as an

account of individual differences in performance on mental tasks. According to

TCO, cognitive processes involve a variety of constructive operators, each of

which performs a specific function: the M-operator deals primarily with mental

capacity, the C-operator with content knowledge, the L-operator with logical

operations such as conservation and formal logic, the F-operator with field depen-

dence/independence, and so on. The development of psychometric tests operatio-

nalizing the above mental resources allowed an array of applications in learning and

educational sciences.

The merit of the neo-Piagetian framework as a scientific program with the

Lakatotian sense (Lakatos, 1974) has demonstrated by its continuing evolution

through the last decades (Pascual-Leone, 1970, 2000, 2013). Furthermore, it has

supported a considerable amount of research at the behavioral level which has

become the basis for further progress on theories of cognitive organization and

growth that has determinedly added to our understanding about the architecture and

function of mind (e.g., Demetriou, Efklides, & Platsidou, 1993; Demetriou &

Efklides, 1994).

The neo-Piagetian theories emphasize the importance of a match between

subject’s mental operators and certain characteristics of mental tasks, for instance,

the relation between M-operator and the mental demand of a task or between

F-operator and the existing misleading information or “noise” in the data. Based

on the above and given that numerous types of mental tasks or problems could be

designed, a considerable amount of research has been carried out in the area of

learning sciences, where individual differences associated with neo-Piagetian con-

structs have been shown to play a decisive role. The most known are the informa-

tion processing capacity (M-capacity), the field dependence/independence or

disembedding ability, the logical thinking (developmental level), and the conver-

gent and divergent thinking. Note also that the information processing models

(Baddeley, 1986) offer an analogue to M-capacity construct, the working-memory

capacity, which has been linked to the well-known working memory overload
hypothesis (Johnstone & El-Banna, 1986; Stamovlasis & Tsaparlis, 2001, 2005;

Tsaparlis & Angelopoulos, 2000). It has been shown that the effect of the above

variables is apparent in different types of mental tasks, such as algorithmic prob-

lems (Johnstone & Al-Naeme, 1991; Johnstone & El-Banna, 1986; Niaz, 1989),

non-algorithmic problem solving (Lawson, 1983; Niaz, de Nunez, & de Pineda,

2000; Tsaparlis, 2005; Tsaparlis & Angelopoulos, 2000), and conceptual under-

standing (Danili & Reid, 2006; Kypraios, Stamovlasis, & Papageorgiou, 2014;

Tsitsipis, Stamovlasis, & Papageorgiou, 2010, 2012; Stamovlasis, Tsistipis &

Papageorgiou, 2010). Moreover, it has been shown that the effect of these individ-

ual differences is present at different ages from elementary school to the upper

secondary education (Stamovlasis & Papageorgiou, 2012). Thus, the relationships

between these individual differences and performance in learning sciences are well

established, at least, in the linear regime.
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Nonlinear Dynamics and Learning Science

In this section, the development of the framework for the application of catastrophe

theory and nonlinear dynamics in science education is presented. It includes

findings of inductive and deductive endeavors and implications for theory and the

practice.

The first attention of nonlinear dynamical thinking to issues in science education

was on problem solving, the most intriguing areas where neo-Piagetian constructs

have been proved predictive variables. However, these effects have not been

consistently observed across topics and ad hoc explanations were given to various

contradictions, such as the unexpected failure of highly skilled students. On the

other hand, it was clear that success could not be attributed to merely one variable

and that some other individual differences interfere and cover up the effect of the

hypothetical main predictor (Johnstone & Al-Naeme, 1991; Tsaparlis &

Angelopoulos, 2000). The moderator role of some variables, e.g., field depen-

dence/independence on information processing capacity, was evident, but there

was lack of a comprehensible model that joins the synergetic role of these two

mental resources. A response to this inquiry was the proposition of a cusp catas-

trophe model with the two above variables as controls. The effect of the two

independent variables operationalizing two opponent processes is visualized as

force field dynamics, where the outcome cannot be merely estimated as their

weighted linear sum. Analysis of empirical data showed that for some cases the

cusp catastrophe model was superior to its linear alternatives explaining a large

portion of the variance of students’ performance in chemistry problem solving

(Stamovlasis, 2006). The above cusp structure, however, was not identified in

every type of problem-solving data. Nonlinear models are not always better; that

is, nonlinearity is not manifested everywhere.

The explanation to this was sought in the nature of mental processes and the

differences that might exist among various tasks. There was need for reasonable

justification, rooted, however, to fundamental theoretical premises. In science

teaching, there are two types of cognitive tasks: The first are known as exercises.
The students by applying a well-known solution path reach the answer successfully.

The algorithm has usually been practiced, while the subjects are not necessarily

aware about the strategy followed. On the other hand, there are “real” problems,
where students cannot apply a learned procedure and the challenge is to find the

solution path. Often it is said that those non-algorithmic problems require concep-

tual understanding and high-order cognitive skills (Tsaparlis & Zoller, 2003),

implying an effective synergy of mental resources (e.g., neo-Piagetian constructs).

Of course, in the school context all the above depend on what has been taught.

The answer to the question regarding nonlinearity manifested at the behavioral

level is hidden in the differences between the two above categories of cognitive

tasks; they correspond to two different processes, with distinct qualitative charac-

teristics that determine the observed behavioral outcomes. A note of statistical

interest is that the differences between the two types of problem solving are
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reflected in the empirical data and might become apparent in the briefing descrip-

tive statistics. In easy and algorithmic problem solving, students’ achievement

scores are more likely distributed normally around the mean and most of the

basic assumptions for linear modeling hold. A second statistical remark is that

practically, in everyday school evaluation, students’ scores conform to Gaussian

distribution because they have to; that is, following procrustean rationality, which
all the traditional evaluation theories propose, teachers and/or researchers tailor the

assessment tests, so that they purposely produce bell-shaped curves in order to

proceed with linear statistical analyses.

However, contrary to the ordinary thought, when exploring really challenging

tasks, achievement scores are not recorded as normally distributed around the

expected value, but deviation from normality, strong skewness, or even bimodality

is often observed. Frequently, observations in these asymmetric distributions con-

form to the inverse power law or the fractal distribution. These are indicative for

underlying dynamic processes where multiplicative rather than additive effects are

taking place (West & Deering, 1995). Bimodality quite often appears also in very

demanding tasks denoting bifurcation in a nonlinear process rather than the exis-

tence of two district subpopulations. In these cases, the implementation of conven-

tional linear approach is proved inadequate and a nonlinear model, e.g., the cusp,

arises then as a potential candidate. The reasons, however, for applying a nonlinear

model to these empirical data are not merely statistical, but primarily are relevant to

theoretical and philosophical issues. Algorithmic and non-algorithmic mental tasks

belong to different categories as far as the nature of the underlying process is

concerned. Algorithmic problem solving is a linear process, where predetermined

and learned steps are followed. Non-algorithmic problem solving is a process with

no predetermined scenario; each step is determined by the previous steps and there

isn’t a unique path to follow. The solution (if any) emerges from an iterative and

recursive process, which is nonlinear and dynamic in nature. In this type of

problems, nonlinearity at the behavioral level is more likely to be observed.

Methodologically wise, yet, exploring empirical data obtained from such processes

with linear models is an epistemological fallacy because the method is incompatible

with the nature of the phenomenon being investigated (Stamovlasis, 2010, 2014b).

Based on the above theoretical premise, deductive endeavors have further

supported the nonlinear hypothesis. A series of investigations have provided evi-

dences for nonlinearity by the application of catastrophe theory in empirical data

taken from science education research. Cusp catastrophe models explained stu-

dents’ achievement scores in chemistry and physics problem solving as a function

of neo-Piagetian constructs that operationalize mental resources associated with the

task execution. Those constructs were the information processing capacity (M-

capacity or working memory capacity), logical thinking, disembedding ability,

and divergent and/or convergent thinking. The dependent measure was the differ-

ence between the achievement scores in the prerequisite theoretical knowledge (z1)
and the problem-solving performance (z2), while the least square technique

(Guastello, 2002) was implemented. R2 values were higher in the cusp compared

to the linear alternatives. The nonlinear models were also supported by maximum
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likelihood estimates using cuspfit in R (Grasman et al., 2009), with fit criteria, such

as AIC, AICc, and BIC (Stamovlasis, 2014a). The cusp structures do not appear in

data originated from algorithmic problem solving and simple mental tasks. They

are learned predetermined procedures, where the solution is actually known and

nested in the algorithm. These are linear processes.

The crucial question for learning sciences is what the implications are. What

have these nonlinear endeavors offered to science education, in theory and prac-

tice? Have they just provided an additional support to neo-Piagetian theories with

new methodological tools? This is obviously true, but the main message is the

crucial epistemological issues that challenge the dominant paradigm in educational

research and practice.

In the epistemological section it was discussed that bifurcation and hysteresis

effects are the signature of complex adaptive systems (CAS) and self-organization
mechanisms. The findings via catastrophe theory models provide direct links to

self-organization theory, and connect the behavioral level in education sciences

with psychology and neuroscience, where the paradigm shift has already been

attained. Thus, the above empirical research signified the departure from the

mechanistic view of educational settings and set the framework for reconsidering,

under the new perspective, the epistemological assumptions and the methodolog-

ical issues in the existing local theories. It should be emphasized that the cusp

models cited above are not advocates to the reductionist view for the role of

individual differences and in general for any independent variables selected for

describing and predicting phenomena in education. On the contrary, what the cusp

models explicate is that given the protagonist role of decisive components in a

nonlinear process the outcome might be ambiguous, due to the dynamics of the

system and the sensitivity of the parameters.

Moreover, nonlinear dynamics and complexity challenge the conventional

notion of causality, emphasizing the emergent nature of the outcomes through

self-organization mechanism. The above concern the existing theories in educa-

tional sciences and in science education particularly, e.g., constructivism or con-
ceptual change theories, which totally ignore, at least at the methodological level,

the actual phenomena under investigation. Crucial debates and unanswered ques-

tions, such as those concerning the nature of conceptual change, could be resolved.

For instance, the question, whether conceptual change is an outcome of a linear

additive process modeled on the “architecture metaphor” or it is the outcome that

emerges from a nonlinear dynamical process, could be addressed by implementing

catastrophe theory. It is obvious that a new area of investigation opens that could

elucidate crucial disputes and incoherent theoretical perspectives.

Coming to practical implications, based on rational explanations of students’
failure, teaching strategies could be developed with the aid of the cusp response

surface as a qualitative/metaphorical guide for manipulation of variables; for

instance by reducing the “noise”-to-“signal” ratio one might induce “catastrophic

success” (avoiding failure) for field-dependent students (see Stamovlasis, 2006).

In addition, the identification of potential bifurcation variables in different cogni-

tive tasks is crucial in learning sciences because these variables are more sensitive
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to the parameters and induce nonlinearity, turbulence, and uncertainty in the out-

comes. For instance the moderating role of disembedding ability or logical thinking

deficiencies beyond a threshold value might have a severe impact, leading abruptly

to the overload phenomena (Stamovlasis & Tsaparlis, 2012). Catastrophe theory

models could be applicable also to other educational processes at different level of

complexity, e.g., at classroom or school level, where other variables, such as

motivation or performance climate, under certain conditions, could operate as

bifurcation variables for students’ academic behavior (e.g., Sideridis &

Stamovlasis, 2014; Sideridis, Stamovlasis, & Antoniou, 2015; Stamovlasis &

Sideridis, 2014). It fact, a plethora of variables, individual, collective or environ-

mental ones (Vygotsky, 1978), associated with educational process are potential

candidates to be tested in a nonlinear context.

The new paradigm of nonlinear dynamics and complexity encourages further

deductive endeavors and it signifies the departure from mechanistic views of the

cognitive and educational processes and specifically of learning. Returning to the

distinction between the two types of mental tasks, it was pointed out that the

execution of algorithms and memorizing procedures are linear processes, which

do not actually produce information (Nicolis, 1986, 1991). On the contrary, in real
problem solving, where the system proceeds step by step in an iterative and

recursive process without predetermined scenario, the solution emerges from the

course of a nonlinear dynamical process driven by self-organization mechanisms.

This theoretical remark affects obviously the definition of learning; algorithmic

problem solving, like raw or parrot learning, is not “learning” per se (Stamovlasis,

2011). Novices attain learning outcomes if they involved in cognitive tasks mim-

icking processes that are nonlinear and dynamical in nature: the processes that

produce information. Thus, educators and the scholars who develop curricula

should be aware about this significant knowledge and should act accordingly. In

science education the dominant and traditional instructing methodology stands on

the opposite thesis, and persists in teaching algorithms, contributing essentially

nothing to the issue of learning.6

It is noteworthy that most teaching practices have been developed on the

computer view for mind, and it is rather amazing that they are still active, even

though the theory has been proved flawed. The nonlinear dynamical nature of brain

functioning as complex adaptive system operating far from equilibrium is the

inherent property of mind that permits development that is not restricted by the

6A characteristic example is the plethora of problem-solving techniques taught in the Greek

education system (and perhaps elsewhere) focusing on how to succeed in examinations in

chemistry and physics, while students remain ignorant about the strategy followed or how to

turn the implicit into explicitly. Behind this educational policy are wrong theoretical premises, that

of computer metaphor for mind, and the hope that teaching problem solutions will enhance

students’ repertoire. This actually does not happen and rather it leads to functional fitness. The
computer metaphor as theory of mind, applied to education, has been catastrophic for a

novice’s mind.
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repertoire of the contributed components. This feature is a core element for

nonlinear theories in psychology and behavioral sciences addressing human devel-

opment, learning, and motor skill acquisition (e.g., Corrêa, Alegre, Freudenheim,

Santos, & Tani, 2012; Molenaar & Oppenheimer, 1985; van Geert, 1991). It is

relevant here to recall a debate and the criticism on Piaget’s constructivist theory of
stagewise cognitive development, around 1980s. Reductionist views (e.g., Fodor,

1980), refuting the nonlinear dynamical nature of human development, stated the

alternative with the notion of “nativism”, that is, certain features are “native” in the

brain at birth, thus setting strictly programmed limitations to learning and devel-

opment. The response to the criticism was decisive at that time, showing the

possibility of acquiring more powerful structures, by fostering the nonlinear

dynamical view of human development (Molenaar, 1986). That was merely a

theoretical conjecture, and at that period along with the “adventures” of catastrophe

theory and due to deficits in research methodology, the advancement of the new

ideas delayed for two decades. Today the nonlinear dynamics and complexity

framework returned in the scene with vigorous epistemological and methodological

assets, as the new paradigm, alternative to linear and reductionist view of cosmos.

Regarding educational issues in science teaching and in general the social and

academic behavior, nonlinear dynamics is also filling the gap between genetic and

environment dilemmas and offering a holistic view of reality that could amalgamate

Piagetian and Vygotskian interpretations to a unified theory.
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Chapter 10

Evaluating Complex Educational Systems
with Quadratic Assignment Problem
and Exponential Random Graph Model
Methods

Russ Marion and Craig Schreiber

Introduction

The dynamic, changing nature of complex systems poses unique challenges for

researchers. This is because complex systems are interactive, constantly changing

networks in which agents are driven by personal perceptions and local rules of

behavior yet are simultaneously embedded in, and engaging in interdependent

relationships with, larger networks of agents. Described differently, the theory of

complexity is multilevel theory (integrates multiple levels of analysis; Dansereau,

Yammarino, & Kohles, 1999; Gupta, Tesluk, & Taylor, 2007; Hogue & Lord,

2007); its components interact interdependently and are changed by that interaction

(Cilliers, 1998), and complex systems evolves in response to environmental pres-

sures (Coveney, 2003).

Several researchmethodologies can capture elements of such complex processes.

Qualitative analysis provides methods for understanding the collective construc-

tionist nature of complex dynamics and how different processes interact to shape a

collective (Chiles, Meyer, & Hench, 2004; Plowman et al., 2007). Mathematical

modeling (Solow, Burnetas, Piderit, & Leenawong, 2003), agent-based modeling

(Bonabeau, 2002), and systems dynamics (Sterman, 1994) can analyze evolving or

emergent outcomes in complex systems. Traditional statistical designs examine

variable relationships (measures of independent cases) and are generally inadequate

for the estimation of complex processes. However, there are emerging statistical

procedures tailored specifically for evaluating relationships among complex net-

works rather than among variables, and two suchmethods are the foci of this chapter.
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By way of introduction to these methods, there are two branches of statistical

network analysis: actor-focused and tie-focused (van Duijn & Huisman, 2011;

actors are also referred to as agents.) Actor-focused models distinguish between

actor groups with the goal of explaining or predicting actor attributes. For more

information on actor-focused models see van Duijn and Huisman (2011).

Tie-focused models, on the other hand, seek to explain or predict ties and tie

patterns within networks (or matrices). The emphasis of this chapter is on the two

most widely used tie-focused models: multiple regression quadratic assignment

problem (MR-QAP) and Exponential-family random graph models (ERGM). The

social relations model (SRM) is another tie-focused model that is much less used

and therefore is not covered in this chapter. More information about SRM is

available in Kenny & La Voie, 1984.

MR-QAP (Krackhardt, 1987) is a statistical method for regressing output

networks (matrices) on input networks. For example, a researcher might regress

social capital (measured as each networked agent’s level of access to resources)

onto network density (a measure of the density of interactive relationships in a

network), centrality (the degree to which information is channeled to central

agents), and a trust network (who trusts whom). MR-QAP produces coefficients

of determination, effect coefficients, and probability levels for each input matrix—

the results are recognizable to anyone conversant with variable-based linear

regression techniques. The interpretation, however, is somewhat different. For

example, a significant positive coefficient for social capital on trust network

indicates that capital tends to distribute to interdependent, high trust agent-

relationships across a network rather than to low trust relationships. MR-QAP

methods can perform analyses using standard variables like wealth or job position,

but its real strength is in understanding how peoples’ positions in a network of

relationships affect given outcomes.

ERGM (also referred to occasionally as p*, or p-star) is likewise a regression

procedure for networks but its focus is somewhat different. ERGM examines how

network patterns “arise from the internal processes of the system of network ties”

(White, Currie, & Lockett, 2014, p. 736). Robins, Pattison, Kalish, and Lusher

(2007) stated more simply that ERGM examines how patterns of ties in a network

are related to other patterns of ties. White et al. (2014), for example, used ERGM to

argue that weak network hierarchy is associated with distributed patterns of

information exchange in an organization while strong professional or strong

managerial hierarchy is associated with LMX-like (leader-member exchange rela-

tionships) direct exchanges between leader and follower (see, for example, Graen

& Uhi-Bien, 1995). ERGM results are presented as effect coefficients and standard

errors.

We begin by describing salient issues regarding network analysis, particularly

how to collect and setup networks for MR-QAP or ERGM analysis. We follow by

describing MR-QAP analyses, its basic premises and interpretation; we then discuss

possible research questions appropriate for QAP analysis and describe sample

research studies utilizing this process. We follow a similar outline to describe

ERGM procedures later in the chapter.
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Network Analysis

Network analysis procedures study characteristics of networks of relationships,

such as networks that are described by complexity theory. Network analysis can,

for example, identify informal leaders in a network, describe the robustness of a

network (such as its ability to move and use information), simulate what might

happen to a network under various conditions, or model how a network will evolve

over time. Networks analyzed by network analyses are constructed of paths through

which information flows. Like complex systems, they are dynamic in that their

structures change over time (a process that network analyses can simulate). Agents

in such networks influence one another because they interact and are interdependent

(e.g., they can represent common dependence on resources). Network analysis data

is collected from organizations but that original data can be modified to demon-

strate how that organization would respond to varying conditions.

Data for network analyses are collected by determining such things as who is

social with whom (or who one interacts with over work, lives near, trusts,

or is related to, etc.), who is associated with what tasks, resources, or knowledge,

who is located where, and so on. This data is then formatted as matrices (e.g., an

agent-by-agent (A�A) matrix of who consults with whom at work, an A�A trust

network, etc.), typically by using spreadsheet software. Some analysis programs

evaluate only A�A networks (e.g., UNICET); the software package ORA permits

inclusion of such things as agent-by-tasks, or agent-by-resources, knowledge, or

location matrices.

Participants in network analyses are typically (but not exclusively) selected

because they are united in a common network of interactive and often

interdependent relationships, and anyone who is not a part of the interactive,

interdependent network would not be considered participants. School bus drivers,

for example, are not usually considered part of a professional school staff network

because they have little professional interaction with that staff.

A given pair of agents in a network need not have direct dyadic relationships

with one another to be included but if not, they should be indirectly related through

other relationships. Logically, of course, this indirect relationship principle could

extend networks to include every person on this globe—the 6-degrees of separation,

or Kevin Bacon, principle (the notion that everyone is connected by, on average, six

intervening relationships, also called the Small World phenomenon). In practice,

however, this is tempered by the nature of the design: One may only be interested,

for example, in studying networks of agents who share work-related experiences

and would not be interested in the familial relatives or club relationships of those

agents. Teachers in a given schools or informal leaders in a school community

might constitute a relevant network while teachers or community leaders in differ-

ent schools or different school zones might not. That is, networks should be

bounded by commonalities that are relevant to the researcher’s questions.
This discussion of networks leads us to an important issue that differentiates

network analysis from traditional variable-based methodologies: Variable-based
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designs presume that variables may be correlated but that cases (participants in the

analysis) should not be; the violation of this assumption is called autocorrelation

(Fields, 2009). Consequently, variable-based researchers must be particularly

attentive when evaluating samples in which participants are interactive and

interdependent. Network analysis is attentive to just the opposite concern: Agents

should be interactive and interdependent (also a basic principle of complexity

theory). Variable-based research operates on randomly selected participants from

across a population, participants who ideally do not influence one another’s
responses to any significant degree; network analysis operates on participants

who do influence one another. Consequently, the selection of participants for

network analysis should be carefully considered and participants who lie outside

a given interactive, interdependent network are typically rejected.

Human interaction networks used in network analyses are agent-by-agent matri-

ces and as such they must be square (number of rows equal number of columns) and

the order of the names for the rows must be the same as the order of names in the

columns (see Table 10.1). Other types of networks (e.g., agent-by-resources,

knowledge-by-task) are not necessarily square. Data usually is represented in

binary form representing the presence or absence of a link but may be recorded

as weighted ordinal or scale data.

Data for network analyses can be collected in any of a number of ways. One

might, for example, use existing documents such as the headers of emails in a given

organization, which would reveal who is communicating electronically with whom.

Table 10.1 How network matrices are represented for network analysis

The Agent 4 column represents the
other agents in the network who
selected Agent 4 as a relationship;
this is Agent 4’s in-degree

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
Agent 
1

0 1 1 0

Agent 
2

0 0 1 1

Agent 
3

1 1 1 0

Agent 
4

0 0 0 1

Agent 
5

0 1 1 1

Rows 
represent
who each
agent
selected, or
their out-
degree
choices

This table represents an agent-by-agent matrix, and thus the names in the first column mirror

names in the first row, and the number of rows equals the number of columns

This table might be generated by asking respondents who they regularly go to for advice about

instructional issues. 1s represent choices, 0s are non-choices
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Alternatively, one might build network matrices from direct observations. Educa-

tional researchers may find it more convenient, however, to collect data with

surveys.

There is a sample survey for network analysis in the appendix. Several things

about it should be noted. First, it is commonly necessary to obtain the names of

respondents, which are needed to build matrices—one must know who has selected

which other agents, tasks, etc., and matrices typically need considerable name-

related manipulation before they are usable (rows and columns should be alpha-

betized so they can be ordered and the researcher must determine that all names in

the columns have corresponding entries in the rows). Respondents may, of course,

be provided assurance that their names will be anonymized once matrices are built

and prior to analysis (this helps with ethics board’s approval as well). Second, as
noted, names (and the codes that ultimately may replace them) should be alpha-

betized. The program one uses to analyze network data will likely provide alpha-

betized output measurements and the researcher will often need to generate

correspondences between the original matrix and these outputs. One can save

much time by simply alphabetizing names in rows and columns to start with.

Third, note that respondents are given a choice of names (or tasks, resources,

etc.) in the response scales for each question in the survey. If respondents were free

to add names to an “other” write-in field, then any additional names would not

likely be available for other respondents to select. Consequently, measurement

outputs will be misrepresented (there are strategies for snowball selection but the

snowballing process should precede collection of data for the network analysis).

The researchers should carefully develop the response scales used for data

collection. Network participants, along with tasks, skills, and resources

(if appropriate), must be defined and the network fully bounded. Task, skills, and

resources are selected that relate to the research question. Further, tasks, skills, and

resources should usually represent pathways that can link respondents (e.g., com-

mon experiences teaching grade 9 math, a task, disposes agents to interact with one

another).

Network Measures

Network analyses describe networks with a number of useful network-level and

agent-level measures. Network level measures include density (the number of

actual links in a network divided by the total possible links) and speed (a measure

based on the shortest paths between each agent and every other agent; networks

with high scores move information quickly). From a practical perspective, density

represents how intensely interactive a network is and speed represents how fast

information flows through a network (see Fig. 10.2; the density of this network is

0.136, and the speed at which information flows through this network is 0.463

(moderate speed); both measures are scaled 0–1).
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Useful agent-level statistics include betweenness centrality (the degree to which

an agent links other agents; see Fig. 10.1), resource competence (the degree of

access an agent has to resources), Simmelian ties (the degree to which agents

belong to three-way reciprocal relationships; Fig. 10.1), and hub centrality (the

degree to which an agent has many out-degree links to agents who have many

in-degree links). More practically defined, betweenness centrality (e.g., individuals

who are connected, or “stand between,” two or more groups) identifies the degree to

which individuals are in position to intercept, thus influence, information flow and

information content in a network; resource competence (the level of each individ-

ual’s access to resources) can be a useful measure of social capital; Simmelian ties

(triads of agents, all of whom identify one another as relationships) identify

individuals who tend to be more affectively associated to the network than are

others; and hub centrality identifies individuals who send information to highly

connected others—the principal of a school likely has high hub centrality, for

example. Figure 10.2 illustrates several measurements in the context of a full

network. For a comprehensive overview of social network analysis see the SAGE
Handbook of Social Network Analysis (Scott & Carrington, 2011) and Social
Network Analysis: Methods and Applications (Wasserman & Faust, 1994).

MR-QAP

For the remainder of the chapter we explore the potential of two methods (MR-QAP

and ERGM) for studying complexity dynamics and we broadly overview how these

methods work. Complex networks are characterized by any number of interacting

structures and processes. For example, groups of three interacting agents influence

High Betweenness
Centrality

Agent B

Agent A Agent D

Agent E

Simmelian Tie

Agent 
C

Fig. 10.1 Representation

of Simmelian ties and

betweenness centrality.

Simmelian ties are triads of

agents with reciprocal ties

(they select one another as

relationships, i.e., agents C,

D, and E). Agents with high

betweenness centrality

connect two or more groups,

i.e., agent C
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one another in unpredictable ways, but this relational dynamic also shapes the

group’s affective relationship with one another and with the system as a whole.

Consequently, such triads (or Simmelian ties) tend to have significant influence in a

system and help to shape and strengthen the complex system as a whole

(Krackhardt, 1998, 1999; Tortoriello & Krackhardt, 2010). Cliques are another

such interactive process, and we have learned that they absorb and process massive

amounts of information in a complex knowledge system (Marion, Schreiber, Klar,

Christiansen, & Reese, 2014), thus modifying well-known conclusions about mod-

erate coupling and information flow by Stu Kauffman (1993) and Karl Weick

(1976). Further, we have learned that another interactive dynamic, informal lead-

ership, exerts important influence over the capacity of a network to perform

effectively (Marion et al., 2014). Such insights are available because researchers

now have tools for analyzing complex networks; MR-QAP and ERGM are two

such tools.

The multiple regression quadratic assignment problem (MR-QAP) was first

introduced by Koopmans and Beckmann (1957) to solve the problem of assigning

a set of companies to a set of locations such that transportation costs between them

are minimized (Burkard, Çela, Karisch, & Rendl, 2013). MR-QAP is a regression

procedure that feels in many ways like variable-based regression except that it acts

Fig. 10.2 A network created from survey data. Circles represent agents and lines represent ties.
Select statistics for Agent 37 (A37) are shown; each ranges between 0 and 1. This individual has

zero betweenness centrality (see text) but exhibits moderate cognitive demand (0.35; Agent 37 has

a fair amount of access to knowledge and tasks performed by each agent, thus enabling him or her

to perform moderate levels of work). Eigenvector centrality is a measure of well-connected

individuals who are linked to well-connected others; resource exclusivity represents the number

of resources to which a given agent has exclusive access; and total degree centrality is a measure of

the total links a given agent has. Density of network: 0.136. Speed of network: 0.463
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instead on networks, or matrices of interacting agents. MR-QAP regression can be

visualized as shown in Fig. 10.3. Here networks are represented as circles (nodes, or

agents) and lines (sides, or links between nodes). The figure shows a dependent

network on the left that is hypothesized to be affected by two independent networks

on the right. A regression equation similar to that produced by variable regression is

shown below the networks, except that X and Y are matrices of social networks

instead of variables.

Regression coefficients are relatively simple to produce in MR-QAP, and their

calculation is quite similar to that for rank order correlation. The calculation of

probability levels is more complex, for there is no variance inherent in network data

from which to calculate confidence intervals. Instead, MR-QAP utilizes a

bootstrapping permutation method. Imagine the face of a Rubrik’s cube that is

the same size as the matrix under investigation. A regression coefficient is calcu-

lated between the original observed matrix and the expected matrix. Then, the cube

is randomly altered to produce a new configuration of relationships for the original

matrix such that rows and columns are randomly permuted synchronously, and a

new regression coefficient is calculated. The rows and columns are permuted

synchronously so that the autocorrelation that exists in the observed relationships

is maintained. This is repeated numerous times (our personal experience is that

10,000 such permutations produce stable results) to calculate numerous, randomly

generated regression coefficients. The probability level is determined by the rela-

tive position of the original coefficient within these randomly generated coeffi-

cients; if the original is greater or less than 95 % of the random coefficients, then it

is significant at the 5 % level.

Permutations can be performed in several ways. Each differs in its ability to deal

with network (as opposed to variable) skewness, collinearity (which exists when

vectors are equal to, or multiples of, other vectors), and autocorrelation (an agent’s
value or property is dependent on the value or property of others in their relational

sphere, i.e., my productivity depends on your productivity). A recent permutation

procedure called the Dekker permutation is robust against such network issues.

Fig. 10.3 Visual representation of QAP matrix regression; the error matrix is omitted for

simplicity. Y, X1, and X2 represent matrices. Based on Blackwell (2014). Y (Social

Capital)¼ β1X1 Trust networkþ β2X2 Closeness network
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Another popular permutation procedure, the Y-permutation, is a bit less robust

against violations of assumptions (Dekker, Krackhardt, & Snijders, 2007).

MR-QAP acts on square matrices, thus one might use it to determine (for

example) whether an agent-by-agent trust matrix is a function of an agent-by-

agent social network plus an agent-by-agent physical proximity network. However,

while valuable, this restriction to square matrices is a bit limiting: It would be

useful, for example, to know how the principal’s engagement in the school’s advice

network or agents’ degree of betweenness centrality also contributes to explaining

trust. The problem with doing this is that such measures are single vector matri-

ces rather than square—each agent has one measure and the measure is represented

as a single column matrix. Each agent has only one measure of centrality, and the

principal advice engagement is represented as the single vector in-degree column

for that person that is lifted out of an agent-by-agent advice network (Friedkin &

Slater, 1994).

There are two primary ways for dealing with this. The first we may call the

repeated vector method. Using closeness centrality as an example, one enters agent

names and their measures in contiguous columns of a spreadsheet. Then one copies

the names column to the top row of the spreadsheet (use Paste Transpose) to

produce a mostly blank (except for the first column vector) agent-by-agent network.

Finally, the agent’s scores for closeness centrality measures are copied from

column 2 to each remaining column in the agent-by-agent matrix (see Table 10.2).

The network is now square and can be used in a QAP analysis (see Borgatti, Everett,

& Johnson, 2013).

The second procedure is useful when data points can be interpreted as distances.

For example, one may have a single vector that identifies whether the given agent

is low, middle, or high socioeconomic status (SES). The distance between low

and middle is 1 and that between low and high is 2, and to characterize

distances between dyadic pairs of agents in this manner makes conceptual sense.

A square, symmetrical agent-by-agent matrix, then, is calculated as the distance

(non-absolute) between the statuses of each pair of agents.

MRQAP results for difference matrices should be interpreted as indicating

differences between different regions of a dependent network. For example, a

researcher might use difference matrices to determine if various regions in

a dependent matrix differ by socioeconomic status and to what degree they differ.

Table 10.2 Repeated vector techniques, used to create A�A networks when the researcher has

only a single measure for each respondent

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

Agent 1 0.25 0.25 0.25 0.25 0.25

Agent 2 0.34 0.34 0.34 0.34 0.34

Agent 3 0.46 0.46 0.46 0.46 0.46

Agent 4 0.16 0.16 0.16 0.16 0.16

Agent 5 0.14 0.14 0.14 0.14 0.14

The first column is copied into each of the subsequent columns
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Interpretation

MR-QAPs involving repeated vector matrices are interpreted differently than are

relational matrices (e.g., who associates with whom). Consequently we look at three

conditions: MR-QAPs involving just repeated vector matrices, those involving a

mixture of vector and relational matrices, and analyses of relational matrices only.

Interpretation of relationships among repeated vector matrices of agent–level

measures only (such as the effect of betweenness centrality and Simmelian ties on

resource capability; see above for definitions) is straight forward, for coefficients in

these cases can be understood just as relationships among variables in traditional

statistics methods are understood. Indeed, were one to treat the measures as variables

rather than as matrices, and if autocorrelation were not a problem, standard variable-

basedmultiple regression should produce results close to those produced byMR-QAP.

Regressions of repeated vector and relational networks are a little more compli-

cated to interpret. A positive relationship between, say, a betweenness centrality

repeated vector matrix and an A�A social network indicates that agents with high

betweenness centrality measures map onto highly connected areas of the A�A

social matrix and vice versa. Thus individuals who exhibit high betweenness

centrality are likely to be socially well connected.

Regressions of relational on relational networks are interpreted similarly. A

positive relationship between A�A social and A�A advise networks, for example,

indicate that agents in highly interactive regions of one network map onto highly

interactive regions in the other network. Positive coefficients between two networks

indicate that highly vibrant interactions in the two networks tend to map onto each

other (and vice versa, of course) and negative coefficients indicate that high vibrant

areas in one network map with low vibrant areas in the other.

MR-QAP Illustrated

Table 10.3 is produced by a MR-QAP analysis using the ORA software package.

This particular analysis illustrates how certain agent-level measures and relation-

ship networks affect access to resources. The measurements were created by

converting the agent measures to matrices with repeated vector procedures. Ten

thousand permutations were run to obtain significance levels; we started at 1000

then tried increasingly larger numbers until the probability levels stabilized.

The second table of results in Table 10.3 report correlations between each

independent network and the dependent network. The Hamming distance in this

table is the total number of ties that must be changed (new links added or old ones

deleted) in the independent matrix to convert it into a duplicate of the dependent

network; i.e., it measures how different the two networks are (Borgatti, Carley, &

Krackhardt, 2006). The Euclidean distance is the square root of the sum of squares

of distances between every pair of dyads in two matrices. This is roughly equivalent

to how mean squares are calculated in linear statistics.
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The third table, the regression results, reveals that about 14.5 % of the variance

in the dependent network is explained by the independent networks. The table itself

reports unstandardized and standardized coefficients plus significances using

Y-permutations and the Dekker permutation. Only hub centrality fails to affect

resource capability at the 5 % level, but since the probability level is 0.07 and

permutations are calculated using Monte Carlo procedures, it is safe to conclude

that the hypothesis for hub centrality is at least promising (this is particularly

appropriate when the analysis is exploratory; Friedkin & Slater, 1994). As observed

earlier, the Dekker permutation is the more robust of the permutations.

The dependent matrix, resource capability, was generated from a single vector

measure called resource capability, a measure of access to resources (in this study,

political resources). Each agent had one measure for resource capability thus

producing a single vector; this vector was copied repeatedly into each column of

Table 10.3 MR-QAP analysis of betweenness, centrality, principal engagement, social network,

and work network on access to political resources

Random seed 0

Number of permutations 10,000

Dependent network Agent x Agent Resource Capability

Independent network names Agent x Agent Betweenness Total, Agent x Agent Hub Central

Total, Agent x Agent Principal Engagement, Agent x Agent

Trust, Agent x Agent Work

Number of independent

networks

5

Correlation results

Network Correlation Significance Hamming

distance

Euclidean

distance

Agent x Agent Betweenness

Total

0.203 0.080 2550 24.322

Agent x Agent Hub Centrality

Tot

0.158 0.137 2550 17.071

Agent x Agent Principal

Engagement

0.245 0.037 2550 22.573

Agent x Agent Social 0.067 0.138 2550 27.116

Agent x Agent Work 0.132 0.011 2550 20.812

Regression results

R-Squared: 0.144875839392

Variable Coef Std. Coef Sig. Y-Perm Sig. Dekker

Constant �0.623 0.020

Agent x Agent Betweenness 1.498 0.517 0.032 0.035

Agent x Agent Hub Centrality

Total

�0.819 �0.627 0.068 0.072

Agent x Agent Principal

Engagement

0.717 0.777 0.024 0.023

Agent x Agent Social �0.012 �0.022 0.039 0.028

Agent x Agent Work 0.037 0.054 0.039 0.025
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a square A�A matrix as described earlier, the repeated vector method. Between-

ness, hub centrality, and principal’s engagement in the advice network (this repre-

sents the teachers who seek advice or do not seek advice from the principal) were

created similarly using the repeated vector method. The interpretation of their

impacts is straightforward: Betweenness and principal engagement in the advise

network have positive coefficients and consequently map directly with correspond-

ingly high or low regions of the resource capability network; hub centrality exhibits

a negative, hence inverse, effect on resource capability. That is, the degree to which

teachers are informal leaders because they stand in the communication links

between groups and the degree to which they seek advice from the principal are

positively related to access to school resources. The degree to which teachers

communicate to powerful clusters of other teachers in the school is inversely related

to resource access.

Agent-by-agent social and agent-by-agent work are matrices of dyadic relation-

ships that were generated by asking agents with whom they socialized and with

whom they worked. The work matrix is positively related to the dependent network

and we conclude that regions of high work relationships on the A�A work

landscape map onto areas of high access to resources on the resource capability

matrix. The negative coefficient for social indicates that regions of high sociability

in the social landscape are associated with low resource access and vice versa. That

is, agents with closer social relationships have less access to resources than do

agents with fewer social relationships.

Research Possibilities Using MR-QAP

The repeated vector method or the distance (between pairs of agents) method

enables matrices to be created for just about any attribute. One could, for example,

create A�A matrices from student test scores or attitudinal scales. Blackwell

(2014), for example, examined the effects of closeness centrality, Simmelian ties,

a trust network, social network, and work interaction network on an independent,

attribute measure of creativity, and found significances for closeness centrality,

trust network, and the social network. Tsai and Ghoshal (1998) similarly found that

trust and social networks are related to resource interaction, which in turn affect

creativity.

We found relatively little in the education literature that used MR-QAP, but the

procedure has seen greater application in the business, psychology, and sociology

literature. Brewer and Webster (1999), for example, found that forgetting past

friends is related to density, cliques, centralizations, and individual centralities;

this has implications for research designs that analyze variables based on memory.

Bowler and Brass (2006) related interpersonal organizational behavior to the

strength of network ties. Marineau and Labianca (2010) looked at the effects of

personal and work-related conflict on the flow of information in an organization.

The interested reader can find other examples in various business, psychology,
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sociology, and methodology journals, but we would recommend especially the

Academy of Management journals, the journal Social Networks, and the journal,

Connections.

ERGM

QAP predicts one network from one or more other networks. ERGM, or exponential

random graph models, predict different sorts of network outcomes. From a basic

standpoint, an ERGM identifies the micro-structures, called configurations, within

an observed network that are influenced by social processes that generate network

ties. ERGM then compares these configurations to a random network (or graph) in

which these social processes are not at play to determine if the observed configu-

rations in the actual social (or observed) network appear more often than one would

expect by chance (Borgatti et al., 2013). For example, one might explore network

features such a cliques or gender to explain the emergence and patterns of bullying

in schools. ERGMs belong to the general linear family of models in standard

statistics, but ERGMs differ from these standard models in that ERGMs have

been modified to deal with the dependence of observations, or ties or relations

between people in a network.

To explain, we will discuss how ERGM developed over time to show how

dependence has been incorporated into the models. The evolution of ERGM can

be arranged into four increasingly complex categories of models: simple random

graph models, dyadic independence models, dyadic dependence models, and

higher-order dependence models (Harris, 2014). We begin with the least complex

of these models, the simple random graph models.

A random graph is a network that has n nodes and each independent tie between
all pairs of nodes has the same common probability of being chosen (Frank &

Strauss, 1986). The probability of a tie being chosen is equal to the density of the

separate, observed network. Patterns of relationships, like three-way ties or stars

configurations (a central actor connects four other actors) among such random,

independent ties have equal chances of occurring and are not dependent on any

other relationship in the network. Therefore, any attributes of the nodes (e.g.,

gender or tenure) or any social forces (e.g., numerous three-actor friendships or

patterns of trust) influencing relationship formation are ignored.

This randomness, of course, is unlikely to occur in actual human networks,

particularly in the bounded, interdependent networks described earlier in this

chapter. Network researchers have identified several structural features based on

influencing forces that commonly occur in observed networks; these features

include nonuniform distribution, homophily, transitivity, and reciprocity (Harris,

2014). Nonuniform distribution refers to the tendency for some people to form a

high degree of ties while others form a moderate degree of ties and still others form

only a few ties. Homophily refers to the reality that people with similar attribute

(s) tend to form ties with one another. Transitivity is the tendency for the friends of
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friends to become one’s friends. Reciprocity means that a relationship, which is

directed from one person to another person, is reciprocated by that other person

more often than would be expected by random chance (if I identify you as a friend,

you are likely to identify me as a friend as well; Robins & Lusher, 2013).

ERGM compares the patterns of relationships, or configurations, in an observed

structure against those in random graphs that represent other possible ways that a

network of the same size can be arranged. It does this by generating large numbers

of random graphs using Monte Carlo procedures, which produces a sample space. It

then determines if the patterns of relationships in the observed network occur more

often than would be expected by chance. If a relational pattern does occur more

often than by chance then it can be kept in the model as an explanatory social

process underlying the observed network’s structural formation. For example, if the

number of same gender ties occurs significantly more often in the observed network

as compared to the random networks then it can be concluded that gender

homophily is a social process influencing the observed network structure. This is

repeated several times for different relational patterns that are theoretically or

hypothetically expected to have an influence on network formation. The process

of using ERGM is like model-building and the baseline model obtained from simple

random graphs provides a way to assess model improvement as different relational

patterns are input into the model.

The next innovation in the development of ERGM is called, dyadic indepen-

dence models, and was introduced by Holland and Leinhardt (1981). Their p1
model, as they labeled it, modified the basic model described above to capture a

larger variation of in-degree ties plus the reciprocity existing in observed networks

(e.g., agent A trusts agent B and agent B reciprocates that trust). As a result,

networks of various sizes and densities could be directly compared. This was a

major breakthrough for statistical network modeling. Despite this breakthrough,

dyadic independence models were not able to capture transitivity, homophily and

other influencers of social structure and therefore were still of limited use.

Dyadic dependence models, the third modification to ERGM, were first

presented by Frank and Strauss (1986). Frank and Strauss improved the p1 dyadic

independence models of Holland and Leinhardt (1981) by incorporating the expo-

nential family of distributions and adding a Markov dependence assumption.

Markov dependence assumes that two ties with a node in common are dependent

(e.g., if A and B both relate to C, they are likely to become related to each other).

With this assumption, dyadic dependence models began to capture transitivity (e.g.,

a friend of my friend will likely become my friend as well) and improved the

capturing of nonuniform degree distribution (some agents form numerous relation-

ships and others form few). While this expanded the representation of observed

network characteristics, the model did not account for node attributes such as

gender or tenure, which are often significant influencers of network formation.

Wasserman and Pattison (1996) extended the dyadic dependence model by

developing their p* model. The p* model uses a more general assumption of

dependence whereas the probability of a tie existing is conditionally dependent

upon all other ties in the network and not just ties that share a common node. In
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addition, the p* model can incorporate the attributes of nodes. This made p* models

extremely useful, as node attributes are often related to the structural characteristics

that emerge in observed networks. All in all, the p* model improved ERGM by

allowing for a better representation of the structural features of observed networks

and accounting for social process influencers of network formation.

Despite the improvement, dyadic dependence models often had problems with

degeneracy. Degeneracy occurs when some simulated random networks are almost

void of ties or almost full of ties. When these degenerate networks are averaged

with the other simulated networks in the Monte Carlo process, the resulting

estimate may look to be reasonable whereas in actuality it is not an appropriate

baseline against which the observed network can be compared. Degeneracy is due

to the configuration patterns of observed networks not being adequately captured.

Higher-order dependence models were developed to help address the issues of

degeneracy. Hunter and Handcock (2006), building on work by Pattison and

Robbins (2002) and Snijders, Pattison, Robbins, and Handcock (2006), added

three terms to the p* model to better account for conditional dependence patterns

and thus reduce degeneracy. The three terms are:

• Geometrically weighted degree distribution (GWD)—accounts for the decreas-

ing degree distribution (variance) found within observed networks, i.e., fewer

members have a high degree of ties and many members have a few degree

of ties.

• Geometrically weighted edgewise shared partnerships (GWESP)—accounts for

the transitivity patterns of clusters found within observed networks.

• Geometrically weighted dyad-wise shared partnerships (GWDSP)—accounts

for dyads with shared partners, which is another cluster characteristic often

found in observed networks.

Progress on the ability to statistically capture observed network characteristics

has made ERGM useful and popular. At the moment, ERGM only handles binary

network data, or data that indicates the existence/nonexistence of a relationship.

Current efforts are seeking ways to allow ERGM to handle valued data that indicates

not only the existence of a relationship but also the strength of the relationship

(Krivitsky, 2012). For a thorough explanation of ERGM see Exponential Random
Graph Models for Social Networks (Lusher, Koskinen, & Robins, 2013).

ERGM Illustrated

In this section we illustrate the model-building process of ERGM. We begin with a

null (random) model and then add variables. As we add variables we assess model

improvement and determine what to keep in the model. A tie is an outcome, and

node attributes plus structural characteristics are used to explain or predict the

probability of a tie (Hunter, Goodreau, & Handcock, 2008).
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Prior to building a model, it is advisable to explore one’s data to see if there are

any patterns that will give insight about the structure of the network. These insights

will help develop the model. One way to explore the data is to visualize it with a

network program like ORA or UNICET and to color-code the nodes by specific

attributes (e.g., see Fig. 10.2). If, for instance, gender is color-coded and gender-

based clusterings are observed, it would be a good idea to use gender as a control

variable in the model. The hypothesis is that the attribute-based clustering is

occurring more than would happen by chance. Any given pattern-identified attri-

bute may not necessarily result in a statistically significant outcome for that

attribute or, even if statistically significant, it may not result in model improvement,

but at this point in the analysis, the intent is to focus the model building with theory-

based and hypothesized variables that show promise for explaining patterns.

Another way to explore the data is to look at the effects of descriptive network

statistics like density, degree frequency and triads. The density of the observed

network (number of actual ties/total possible ties) enables the researcher to match

the random graphs generated during model building to the observed network.

Degree frequency indicates whether there is declining frequency across ties in the

observed network that simple random graphs do not reflect. Examining triads

(agents, or nodes, that are linked by reciprocal ties) will show if triads are an

element of the underlying structure of the network. Of course, one would want to

look at other statistics and potential influencers in the observed network structure

for possible inclusion in the model. The terms included in the model should,

however, represent a theoretical and hypothesized statement of what is affecting

network formation.

There are a few software packages available for running ERGM. The most

widely used currently are Statnet (Goodreau, Handcock, Hunter, Butts, & Morris,

2008; Handcock, Hunter, Butts, Goodreau, & Morris, 2008) and PNet (Wang,

Robins, & Pattison, 2009). The software used in this illustration is Statnet, which

is a package in the R statistical computing environment.

The dataset used in this illustration is a study seeking to explain collaborative

innovation ties within an organization. A collaborative innovation tie exists when

two people interact and work on an innovative idea. In addition to the collaborative

innovation network, data for separate shared leadership and adaptive leadership

networks were collected to determine if they have an effect on the collaborative

innovation network. Data on agents’ demographics were also collected to

account for agent attributes that may influence the formation of collaborative

innovation ties.

To begin model building, the hypothesized antecedent networks (shared leader-

ship and adaptive leadership) and agent attributes were entered as variables in the

model (see Table 10.4). These antecedent networks, which represent tie (also called

edge) covariates, are the main network tie-variables of interest and agent attributes

are added because these variables are hypothesized to influence network formation.

Social networks are complex and there are many simultaneous explanations of a

particular structure in observed networks. Several variables are included in this first

iteration to determine if the combined presence of these predictors provides
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explanation for the collaborative innovation ties. An examination of the effects of

each predictor independently may overestimate the influence of that predictor

(Robins & Lusher, 2013).

The results of the ERGM are shown in Table 10.4, which includes parameter

estimates that specify the direction and strength of the network patterns. In addition,

the standard errors and p-value are reported. One thing to note is that the strength of
different network patterns is not comparable because scaling varies for each

statistic. Results are interpreted below:

Edges: Edges are a measure of tie frequency; it indicates whether density is greater

or less than 50 %. Its interpretation is similar to that for the intercept of linear

regression. An edge coefficient of 0 indicates a density of 50 % whereas a

positive or negative edge coefficient indicates a density above or below 50 %,

respectively. In this case, the edge coefficient is negative indicating a density

below 50 %. This is quite common as observed networks normally do not have

densities above 50 %.

Shared Leadership: The shared leadership network (edgecov.sharedlead) is con-

sidered exogenous to the collaborative innovation network and is therefore fixed

in the ERGM modeling process. The estimate associated with this covariate

network of shared leadership is positive and significant. This indicates that

shared leadership and collaborative innovation ties co-occur—shared leadership

is a predictor of collaborative leadership.

Adaptive Leadership: The adaptive leadership network (edgecov.adaptlead) is

also considered exogenous and is fixed in the modeling process. The covariate

network of adaptive leadership is positive and significant indicating that the

adaptive leadership and collaborative innovation ties co-occur.

Education: Education is a measure of the tendency for agents to interact in the

collaborative innovation network based on similar education levels. This is a

homophily effect. The node attribute education (nodematch.edu) is positive and

significant.

Gender: The node attribute gender (nodematch.gender) is both positive and sig-

nificant. This indicates the tendency for agents to interact in the collaborative

innovation network based upon gender. This is another homophily effect.

Table 10.4 Effects of shared leadership, adaptive leadership, education, and gender on the

likelihood of collaborative innovation ties

Maximum likelihood results:

Estimate Std. Error p-value

Edges �2.17170 0.09161 <1e-04 ***

edgecov.sharedlead 0.98789 0.05193 <1e-04 ***

edgecov.adaptlead 1.06109 0.08597 <1e-04 ***

nodematch.edu 0.49363 0.12805 0.000118 ***

nodematch.gender 0.19876 0.10060 0.048250 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
AIC: 2646.5 BIC: 2677.4
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In addition to the parameter estimates, two measures of model fit, AIC and BIC,

are reported. AIC, or the Akaike information criterion, takes the form, deviance

(�2LL)þ 2p. BIC is the Bayesian information criterion and takes the form, devi-

ance (�2LL)þ p*ln(N ), where p refers to the number of parameters and N refers to

the sample size (Harris, 2014).

ERGM can have many terms, and deviances (AIC and BIC) will become smaller

as more terms are added to the model. However, AIC and BIC penalize models for

adding terms that do not contribute enough explanation to provide a better fit. This

is similar to adjusted R2 in linear regression. The BIC measure penalizes additional

parameters more so than AIC. At this point, we merely note the AIC and BIC

statistics for comparison with subsequent model runs.

Now, we run another model to see if other variables can further explain the

collaborative structure. Additional node attributes relating to service at the organi-

zation were input as variables into the model along with structural terms accounting

for triads. The node attributes relating to organizational service included tenure

(nodematch.orgyr), professional affiliation (background; nodematch.profaff), and

subunit (nodematch.subunit).

The structural terms for triads were included to account for transitivity

(a relationship of someone I know is likely to become another relationship of

mine). There were, additionally, two terms used: GWESP and balance. GWESP,

as noted before, accounts for transitivity found in clusters (also called cliques). We

also used a curved exponential family model indicated by the gwesp.alpha. GWESP

and the curved exponential family model were calculated using a sub-routine within

Statnet. The calculation of GWESP requires the input of a degree weighting

parameter alpha (α), which influences the value of this statistic. Typically, one

would start with a low α and then increase it until the log-likelihood stopped

improving. Running an ERGM can take a very long time and so running several

models until the best log-likelihood is reached could be quite time intensive. A

curved exponential family model estimates the α resulting in the best log-likelihood

during model estimation thereby not requiring an a priori α.
Balance refers to balanced triads. Balanced triads are ones where sets of two

actors have reciprocal ties. More about balanced triads and transitivity can be found

in Davis and Leinhardt (1972). This is included to test for another way that triad

structure and transitivity may be present in the observed network. One needs to use

a directed network (indicating who is selecting whom) to test for balance since it

measures reciprocity.

The results of this ERGM are shown in Table 10.5. The model includes the

original parameter estimates since they were significant plus the new variables and

terms. Results are interpreted below:

Original Model: The edges coefficient is still negative and significant. The shared

leadership network, adaptive leadership network, education attribute and gender

attribute are all still positive and significant.

Tenure: The tenure coefficient, represented by orgyr, is negative and significant.

The number of years an agent worked in the organization was categorized into
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bins such as 0–5, 5–10, etc. The negative and significant result indicates the

tendency for agents to interact in the collaborative innovation network regard-

less of years worked in the organization. They worked with others who were

within their bin and with others who were located in bins that were either higher

or lower in years than their own. In other words, there is collaboration across

organizational generations.

Professional Affiliation: The professional affiliation coefficient is positive

and significant indicating the tendency for agents to interact more with

others of the same professional affiliation within the collaborative innovation

network.

Subunit: The subunit coefficient is negative and significant indicating the tendency

for agents to interact in the collaborative innovation network regardless of the

subunit one belongs to. In other words, there is collaboration across subunits of

the organization.

GWESP: The gwesp coefficient is positive and significant indicating the existence

of triad structures beyond what one would expect by chance.

Balance: The balance coefficient is positive and significant indicating the existence
of balanced triads beyond what one would expect by chance.

The model fit is then compared with that of the original model (Table 10.4) to see

whether the model was improved by adding the new variables and terms. A lower

AIC or BIC is indicative of improvement. The original AIC and BIC were 2646.5

and 2677.4, respectively. The new AIC and BIC is 2294.2 and 2362.1, respectively.

Both measures show model improvement and the decision is to keep the new model

with the additional variables and terms.

Table 10.5 Table 10.4 with addition of tenure, professional affiliation, subunit, and triads

(transitivity) and balance triads

Maximum likelihood results:

Estimate Std. Error p-value

edges �6.506121 0.053030 <1e-04 ***

edgecov.sharedlead 0.800741 0.016539 <1e-04 ***

edgecov.adaptlead 0.814074 0.030644 <1e-04 ***

nodematch.edu 0.176544 0.051671 0.000641 ***

nodematch.gender 0.134263 0.027396 <1e-04 ***

nodematch.orgyr �0.151436 0.047942 0.001598 **

nodematch.profaff 0.136785 0.045288 0.002543 **

nodematch.subunit �0.116729 0.052493 0.026231 *

gwesp 2.965689 0.199404 <1e-04 ***

gwesp.alpha 0.492072 0.067252 <1e-04 ***

balance 0.038541 0.001522 <1e-04 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
AIC: 2294.2 BIC: 2362.1

10 Evaluating Complex Educational Systems with Quadratic Assignment Problem and. . . 195



The model of fit presented above only compares the models that were produced.

There are more advanced goodness-of-fit methods for determining how well

the model represents the data. These methods are beyond the scope of this

chapter. For a comprehensive discussion of goodness-of-fit methods for ERGM

see Lusher et al.(2013).

Research Possibilities with ERGM

As was the case with MR-QAP, we found no study in the educational literature that

used ERGM methods; however, a search in the journal, Social Networks, found
studies that suggest potential directions for educational research. These studies

examine questions such as: How does the nature of ties among agents affect social

status formation in workplaces (Yap & Harrigan, 2015): How does the status of

individuals affect emergence of positive and negative gossip at work (Ellwardt,

Labianca, & Wittek, 2012)? How does popularity and changes in popularity affect

substance abuse among middle school students (Moody, Brynildsen, Osgood,

Feinberg, & Gest, 2011)? How do patterns of network relationships influence the

emergence of ad hoc work teams in organizations (Zhu, Huang, & Contractor,

2013)? How do communication ties affect the social integration of immigrant

children (Windzio, 2015)? How does ethnicity relate to friendship groups in schools

(Smith, Maas, & van Tubergen, 2014)? How do network dynamics explain segre-

gation in a system (Bojanowski & Corten, 2014)? We should also add the study

from The Leadership Quarterly by (White et al., 2014) (referenced earlier in this

chapter), who found that weak network hierarchy is associated with distributed

patterns of information exchange in an organization while strong professional or

strong managerial hierarchy is associated with LMX-like (leader-member exchange

relationships) direct exchanges between leader and follower. The common feature

of all these studies is that they examine how micro network dynamics emerge in a

network.

Taking cues from these studies, educational researchers might apply ERGM to

explore the emergence of peer group dynamics in schools (such as bullying,

influence on student learning, fads, etc.), the nature and movement of negative

information among teachers, informal emergence of work groups such as collabo-

rations or professional learning communities, social barriers to the integration of

ethnic and racial minorities in schools, teacher informal groups and how inter-

influence patterns in such group limit or enable administrative use of authority,

what structures influence emergence of positive and negative cliques, how creativ-

ity emerges, rumor formation and transmission in schools, and the principal’s level
of engagement in advise networks and its effect on teacher group dynamics. The

common thread through these is the formation of ties and group structures—

bullying, cliques, peer groups, for example—and, arguably, there is little in social

life that is not influenced by such structures.
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Conclusions

Educational researchers have written extensively in recent years about such things

as collaborative teams, distributed leadership, and professional learning communi-

ties. Such structures are interactive and interdependent, hence subject to description

by complexity theory and analysis with methods such as those described in this

chapter.

Network analysis enables researchers to describe the structure and dynamics of

networks and to simulate their dynamics under varying conditions. MR-QAP

explores relationships among these networks and ERGM describes how network

processes emerge. These methods permit unique research questions, such as

whether student performance is influenced by the degree of teachers’ engagement

as informal leaders plus network vibrancy in general. They can help researchers

explore how peer processes among students influence the emergence of negative

interactive processes. They can help principals foster stronger, more effective

collectivist behaviors in their schools (collaborative activities, distributed leader-

ship, etc.). It can help administrators better understand the structure of informal

leadership and cliques among parents and residents in their attendance zones, what

dynamics influence those cliques and informal leadership, and how to leverage

these dynamics to support the school. Summarizing, these techniques focus

researchers and practitioners on the potency of complex dynamics in schools, and

this is a refreshing new direction for study in education.

Appendix: Sample Survey for Collecting Network
Data—Structured for use in ORA

What is your name? (this is very important; your name will be deleted as soon as the

data is formatted and before analysis).

[DROPDOWN LIST WORKS WELL]

1. From the following list, identify the people with whom you regularly talk about

work-related issues (choose all that apply).

[LIST ALL PROFESSIONALS BOUNDED BY THE RESEARCH NET-

WORK; this question, with the drop-down list above, enables construction of

an agent-by-agent matrix]

2. Which of the following tasks do you perform on a regular basis at this school

(Choose all that apply)? This data can be used to create an agent-by-task matrix.
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Teach

pre-k

Teach Gr

4

Teach Special Ed Teach Art Administration

Teach k Teach

Gr5

Teach remedial

lessons

Coordinate Title I

Activities

Other support

services

Teach Gr1 Teach

Art

Teach computers Teach, other Financial

monitoring

TeachGr2 Teach PE Teach music Counseling/Psychology

Teach Gr3

3. Which of the following knowledge would someone most need to perform your

tasks at this school (choose all that apply)? Data for an agent-by-knowledge

matrix.

Budgeting Finding resources Differentiating

instruction

Music Using

technology

Community

partnerships

Subject area

content

Child growth/

development

Organizational

management

Clerical

Student

testing

Subject area con-

tent standards

Motivating students Using data to assess

learning

Nursing

Writing IEPs Developing

curriculum

Classroom

management

Standardized test

statistics

Psychology

Implementing

IEPs

Pedagogy/teach-

ing styles

Recreation/physical

development

School rules- poli-

cies- procedures

Using

technology
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Chapter 11

“Looking at” Educational Interventions:
Surplus Value of a Complex Dynamic
Systems Approach to Study the Effectiveness
of a Science and Technology Educational
Intervention

Sabine van Vondel, Henderien Steenbeek,

Marijn van Dijk, and Paul van Geert

Introduction

There is no doubt that a classroom can be conceived of as a complex dynamic

system, in that it consists of many interacting components —the students and the

teacher— that influence each other’s behavior and characteristics over a wide

variety of nested time scales (Lewis, 2002; Smith & Thelen, 2003; Van Geert &

Steenbeek, 2005). If one takes, for instance, a science lesson in a classroom

consisting of 11-year-old students, then the teacher’s questions during a science

activity influence the reactions of the students. The interactions during this activity

influence the interaction during the next activity or next lesson.

As this is an example of an educational system, the interactions at the behavioral

level of the system are explicitly aimed at durably changing particular properties

—such as the students’ knowledge, skills, or understanding about science. Note that
at the same time other properties, such as the order in the class or the level of

involvement of the students, should be maintained. Modern schools that promote

the lifelong learning of the teacher make decisions about programs for teacher

professionalization, which are either reluctantly or enthusiastically received by the

teachers (Wetzels, Steenbeek, & Van Geert, 2015). Such professional interventions

are often presented as fixed protocols, but in reality they unfold as highly idiosyn-

cratic processes. In fact they are emergent processes in which many components

—including the written intervention protocol, the coach’s capacities, the unique

circumstances of the school and the time and effort invested by the teachers— are

dynamically intertwined. Such interventions are in fact forms of perturbation in an

existing, self-sustaining pattern of activities which takes place during real-time

learning situations. Asking a particular type of questions, performing a particular
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type of activities or typical reactions of students are examples of such self-

sustaining patterns. The aim of perturbations, i.e., the intervention, is to durably

change these self-sustaining patterns and replace them by new, more adequate

patterns that, once they are established, should also be self-sustaining (Van Geert,

1994; 2003). From a dynamic systems point of view, changing these patterns of

action and thinking of the teacher is quite similar to changing the patterns of action

and thinking of the students, i.e., those can be indicated as teaching-learning

processes.

In order to fully understand the effect of educational interventions on students’
performance, insight is needed in the properties of these teaching-learning pro-

cesses in individual teacher–student pairs. However, the progress of individual

students as a result of an intervention is hardly reflected in effectiveness studies.

This is because the effectiveness of interventions is usually studied using standard

research practices. This methodological study aims to demonstrate how properties

of a complex dynamic systems approach can help gain insight into change in

teaching-learning processes due to educational interventions. This will be illus-

trated by examining a science education intervention, Video Feedback Coaching

for teachers (VFCt), aimed at improving the quality of teachers’ questions, and by

doing so increasing students’ scientific reasoning levels.

Standard Research on Educational Interventions

Assuming that the description given above provides a reasonably realistic picture of

education as a complex dynamic system, we may ask ourselves what kind of picture

teachers, parents and policymakers get from the standard research on education.

Although probably few teachers will read the scientific journals on education

science, the standard approach trickles down via various sources, such as via

policymakers who have been trained in the standard practice of educational

research, or the news media who report about scientific findings on education.

What the standard research practice implicitly or explicitly conveys to educators

is, to begin with, the idea that influences of one variable onto another —such as

motivation on school science performance— can be meaningfully separated from

other influences and then in a sense stitched together again to provide a picture of

individual educational processes.

Another idea that educators can get from the research is that effectiveness of an

intervention (a curriculum, a teacher training program and so forth) resides in the

intervention itself, i.e., that effectiveness is like an intrinsic causal force present in

the intervention. In addition, the effectiveness of an intervention is something that

is seen as applicable to particular kind of persons, i.e., to particular populations,

such as the population of primary school teachers.

Another idea that the standard research practice in education conveys to educa-

tors is that knowledge and skills are internal properties of individuals, internal

representations, internally represented schemes of action and so forth that are

204 S. van Vondel et al.



transmitted from a teacher or a curriculum to an individual student. These internal

skills or levels of knowledge can best be measured by validated, normed and

relatively objective measurement instruments that express the internal skill or

knowledge by means of a single number, i.e., a test score on a science test (Borman,

Gamoran, & Bowdon, 2008 Penuel, Gallagher, & Moorthy, 2011; Şimşek &

Kabapinar, 2010). Though, a more proximal measure, at the behavioral level, like

the quality or complexity of the answers may be a better indicator of, for instance, a

student’s scientific reasoning level compared to a more distal measurement, like

paper and pencil tests —as paper-and-pencil tests require other skills like reading as

well (Van der Steen, Steenbeek, Van Dijk, & Van Geert, 2015). In addition, several

studies report that interaction is essential to stimulate students’ performance

(Vygotsky, 1986). More specific, both Chin (2006) and Oliveira (2010) state that

asking thought-provoking, student-centered, questions is a key element to stimulate

students to reason with longer sentences and on higher levels of understanding.

Standard educational research also conveys the idea that what actually matters is

the real or true skill, level of knowledge or ability, and that this real or true skill or

ability can best be represented by averaging over individual fluctuations or individ-

ual variability (for more information see Rosmalen, Wenting, Roest, De Jonge, &

Bos, 2012). The message is that these fluctuations or variability are in fact purely

random variations around the true skill, level of knowledge or ability, and that they

reflect purely accidental influences. For that reason, such fluctuations or variability

within individuals are not intrinsically interesting, and should thus be averaged out.

Preferably this is done by averaging over many individuals who, together, consti-

tute a representative sample of the unit of analysis that really matters, namely the

unit of populations characterized by a particular natural property, such as “typically

developing students” or “dyslexia.”

In this standard approach, there is of course room for interaction, for context, for

individual variation, for change over time and so forth. These aspects are, however,

clearly viewed from a perspective that is different from the perspective of complex

dynamic systems. In the latter, they are like the primary givens, the starting point of

theory formation and research (Fogel, 2011; Thelen, 1992; Van Geert, 2003),

whereas in the more standard picture they are like secondary aspects, inferred

from the primary aspects of research as discussed above.

How should educational research be transformed in such a way that it can

convey to educators a picture of education that comes closer to the reality of

education as a complex dynamic system? In the remainder of this chapter, we

shall first discuss how properties of a complex dynamic systems approach can be

applied to study the effect of educational interventions, such as the Video Feedback

Coaching program for teachers. This approach will then be further illustrated by

discussing an example of educational research, which uses properties from complex

dynamic systems thinking in order to examine the effect of an intervention.
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Intervention Assessments

In order to assess the effectiveness of such interventions several guidelines are

frequently used. Veerman and van Yperen (2007), for instance, describe an often

used classification scheme for assessing the effectiveness of youth care interven-

tions as evidence-based practice. This scheme consists of four stages from potential

effective interventions to efficacious interventions. An intervention is considered

effective when the causality between the intervention and the outcome can be

determined. Large-scale experimental research, multiple case-studies and norm

related research are considered as ways to accomplish these causal relations.

Another way to establish the effectiveness of an intervention has been described

by Boelhouwer (2013; as adapted from Lichtwarck-Aschoff, Van Geert, Bosma, &

Kunnen, 2008). Boelhouwer proposes a taxonomy using four dimensions —which

are grounded in the complex dynamic systems approach— to address the effective-

ness of an intervention. Boelhouwer stresses the importance of using observational

data and studying mutual causality. The four dimensions are:

1. The static versus dynamic dimension pertains to the dimension of analysis.

Respectively, data are aggregated over many individuals versus data are

displayed as a process over many time points. The static dimension can be

used to analyze science performance as a combination of factors in a large

sample. The effect of an intervention can, for instance, be assessed by focusing

on the difference-score between pre measure and post measure, in which half of

the participants receive an intervention while the other half does not (control

group). The dynamic dimension, on the other hand, can be used to depict the

process of change. Time series are used to depict how the changes emerge in and

over time (Velicer, 2010).

2. The micro versus macro time-scale refers to the time-dimension. Respectively, a

student’s performance in real-time (i.e., the micro time-scale of seconds,

minutes or hours (Lewis, 1995)) versus learning and development over several

lessons or years (i.e., the macro time-scale of weeks, months or years (Lewis,

1995)). Analysis can be situated on different time scales at which the micro level

is at the one end of the continuum and the macro level on the other end of

that continuum. At the micro level, scientific reasoning skills can be captured in

one specific situation, in which action sequences are studied. An example is a

conversation during a science and technology lesson, consisting of one or several

action–reaction sequences. At the macro level scientific reasoning skills can be

captured over a longer period of time, for instance a series of science and

technology lessons. The change in students’ scientific reasoning skills due to

the implementation of an intervention can also be interpreted as an example of a

macro time-scale.

3. The distinction between direct and indirect assessment refers to the dimension of

information sources, respectively the assessed person him or herself or a third-

party assessor. A researcher can use several sources of information when

evaluating an intervention program. One way is using direct measures, which
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means information from those persons who actively participate in the interven-

tion. In a professionalization trajectory for teachers, the teacher would be a direct

source of information when (s)he is observing own behavior and reports about

that, for instance by means of a questionnaire. Indirect assessmentmight refer to

scientists who report about behavioral change.

4. The distinction between short-term effects versus long-term effects refers to the

dimension of behavioral change due to —the effects of— an intervention. The

short-term effects of an intervention can be seen as a change in observable

behavior right after or eventually during the intervention lessons. The long-

term effects refer to maintaining effects that are still observable a long time after

the intervention, which can be visualized at follow-up or post-measurements

(Boelhouwer, 2013; Steenbeek & Van Geert, 2015).

Using a Complexity Approach to Map Change:
How to Apply the Properties

The complex dynamic systems approach offers tools to focus on properties of

development and learning as dynamic processes (Steenbeek & Van Geert, 2013;

Van Geert, 1994), which lie beneath the aforementioned dimensions. Using this

approach is a way to study how learning occurs in interaction with the material and

social context by focusing on those processes during real-time and frequent obser-

vations, i.e., during actual lessons (Granott & Parziale, 2002; Van Geert, 1994; Van

Geert & Fischer, 2009). In order to understand the dynamics of a complex system,

such as a teacher’s behavior in the context of a group of developing students, the

assessment should also focus on the dynamic character of learning, i.e., how a

student’s performance emerges in interaction with the context (see Steenbeek &

Van Geert, 2013; Wetzels, Steenbeek, & Van Geert, in press). Observational

methods, i.e., video recordings, are considered essential to be able to capture the

developments on these real-time (micro) timescales and to preserve the complexity

of the process of learning. Several properties of learning —such as change,

nonlinearity, iteration and self-organization, variability, and the transactional

nature of learning— as a result of an intervention must accordingly be taken into

account. Mapping these properties is important to explain average group-based

findings and provide insight into the underlying processes of learning and subse-

quent performance of individual students (Van Geert, 2004) and the quality of a

science education intervention (Wetzels et al., 2015). The relevance of a complex

dynamic systems approach, for intervention studies, demonstrates itself in offering

possibilities for answering different research questions.

In the next section we will discuss three important properties of a complex

dynamic system for the context of learning. This is a background for understanding

the need for a process-based methodology. For this reason, we will describe how
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underlying properties of Boelhouwer’s (2013) dimensions can be integrated in

educational intervention studies as an essential addition to group-based analyses.

The role of time in change has a prominent role in Boelhouwer’s taxonomy: in

the time-dimension (micro versus macro) as well as the behavioral change-

dimension (short-term versus long-term intervention effects). Velicer (2010) states

that a time series analysis can help to understand the underlying naturalistic process

and patterns of change over time, or to evaluate the effects of an intervention. For

instance, time provides valuable information about the dependency between all

measurements. As Steenbeek and Van Geert (2005) state, behavior of the student—

which can be as small as an utterance— at a certain point in time affects the

subsequent activity of the teacher —also known as iteration.1 Since changes in

the micro‐timescale —short-term effects— are intertwined with long‐term effects,

analyzing student’s actions during real‐time interactions might be helpful in under-

standing change (Steenbeek, Jansen, & Van Geert, 2012).

As an illustration, let us return to a science class in an upper grade elementary

classroom. The teacher’s questions influence the reactions of the students in

the form of answers, signs of interest or of avoidance, which on their turn influence

the subsequent questions and reactions of the teacher following the reactions of the

students. Students hear other students giving an answer, or see them performing

particular activities, and this influences their own potential answers to questions

asked by the teacher. The effect of the interactions takes place on various, nested

timescales (e.g., Van der Steen, Steenbeek, & Van Geert, 2012). There is, for

instance, the short-term time scale of a particular science class, which involves

the dynamics on the level of activities, solving problems and formulating explana-

tions. There is also the long-term timescale of changes in the nature of the answers

or the probabilities of high-level reasoning that develops as a consequence of the

short-term interactions. As is typical of a complex dynamic system, events on these

various timescales affect one another, that is to say there is mutual influence and

reciprocal causality (Steenbeek et al., 2012). Another example is the short-term

timescale of asking a particular kind of questions by the teacher and the long-term

timescale of eventual changes in the nature of the questions asked by the teacher,

for instance as a consequence of an intervention aimed at teacher professionaliza-

tion (e.g., Wetzels et al., 2015). A class of students with their teacher tend to evolve

towards particular, class-specific patterns of activity, that is to say towards a typical

pattern of asking questions, giving assignments, giving answers, showing interest or

1Dynamic processes are iterative in nature. Iteration refers to “a procedure that operates on an

input that is in fact its preceding output” (Van Geert, 1997). This means that over time, the

teaching-learning process (the current state) is a product of the previous state, and serves as input

for the next state. Teacher and student mutually influence each other over time; the current action

of the teacher influences the next (re)action of the student, which influences the next (re)action of

the teacher, and so on.
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boredom, and many other properties. These patterns form some sort of complex

attractor state2 (e.g., Steenbeek & Van Geert, 2005) that is typical of the teacher-

classroom system in question. These attractor patterns are in a sense self-sustaining,

for instance the nature of the questions habitually asked by the teacher influences

the nature of the answers habitually given by the students, and these answers are

likely to sustain the nature of the questions asked by the teacher. In addition, the

attractor patterns, i.e., few variability is visible in the teacher–student interaction

patterns, are relatively resistant to change.

A focus on variability3 provides information about interindividual variability

and intraindividual variability. Bassano and Van Geert (2007) state that “variability

is informative on the nature of developmental change”. The dynamic dimension

in Boelhouwer’s taxonomy (2013) allows further for possibilities to map inter-
individual variability4, variability among students, teachers, or groups. This might

be done to compare several individual teachers to find out whether one teacher’s
intervention trajectory is more effective compared to a similar intervention trajec-

tory of another teacher. Questions might focus on whether the pathways of all

students are equivalent, i.e., did they develop in similar ways? A change in student’s
science performance might be found in trajectories in which a teacher seems

capable of adjusting his/her questions to a student’s level of functioning and

thinking, while the less effective trajectories remain in a fixed pattern of

non-differentiating interactions (Ensing, Van der Aalsvoet, Van Geert, & Voet,

2014). Variability at the micro level (adjusting to the level of students) might, in

this case, be an important element accounting for the variability between the

teachers. Interindividual variability can provide important information about under-

lying dynamics of (less) effective intervention trajectories. Each trajectory —either

an intervention or another developmental trajectory— takes the form of a dynamic

pathway, constructed as real-time iterative processes, which emerges through

interaction with the context (Fischer & Bidell, 2006). As each student starts an

2An attractor state is a temporarily stable state that recurs over time: “the state to which systems

are attracted, that is, towards which they spontaneously evolve as a consequence of the underlying

dynamic principles that govern their behavior” (Van Geert, 2003). For instance, in a classroom a

teacher may routinely ask knowledge-based questions. This mode of interaction becomes a self-

sustaining comfortable state for both teachers and students, making this type of questioning and

students’ reactions an attractor state for this particular classroom. If the teacher, under influence of

the intervention, begins to change her questioning strategies towards open-ended questions, the

students might first resist. However, if the teacher persists in using these open-ended questions and

the students start to engage in critical thinking, the classroom system (teacher–student interaction)

might change permanently over time—resulting in a new attractor state.
3Variability is defined as the “coexistence of many different patterns of development” (Van Geert,

1998). Two types of variability can be distinguished: 1. Interindividual variability: differences in
the behavior between—groups of—individuals at some point in time. 2. Intraindividual variabil-
ity: Van Geert and Van Dijk (2002) have defined intraindividual variability as “differences in the

behavior within the same individuals, at different points in time” (p. 341).
4 Note that ‘individual’ does not necessarily refer to a single person. It refers to the level at which a
particular process actually occurs, which can be an individual person, but also a classroom.

11 “Looking at” Educational Interventions: Surplus Value. . . 209



intervention at their own level and masters science and technology to the best of

his/her capabilities, each trajectory is unique and should be analyzed as such to

provide insight in the variability.

Intraindividual variability is defined as “differences in the behavior within the

same individual, at different points in time” (Van Geert & Van Dijk, 2002). By

looking at multiple measures of individuals it is possible to see how the change and

development proceeds (e.g., Van der Steen, Steenbeek, Van Dijk, & Van Geert,

2014). Van der Steen, et al. (2014), for instance, showed that a student’s perfor-

mance changed over several science activities. By focusing on intraindividual

variability, a change in interaction between a student and a researcher was found.

At the start of the learning trajectory, the teacher took initiative by asking thought-

provoking questions during inquiry activities (state 1); the student followed the level

of the teacher. At the third lesson, a change in interaction pattern was found, in that

the student took initiative (state 2) and seemed to have initialized the process of

inquiry. In between these two states, some form of “chaos”, in this case increased

variability, was found in which the researcher and student did not seem to adapt to

each other as well as before (state 1) and after (state 2). Transitions from one state to

another are often accompanied by qualitative indicators, but also by increased

variability or critical slowing down of variability (e.g., Bassano & Van Geert, 2007).

The surplus value of focusing on variability is that it yields information about the

differences in underlying characteristics leading to differences between lessons or

participants. Specifically, this might show whether there are behavioral character-

istics accounting for why a trajectory seems to yield more positive change for one

subgroup than another or how one state changes into another (concerning

development - Lichtwarck-Aschoff, Van Geert, Bosma, & Kunnen, 2008;

education - Steenbeek et al., 2012; sports - Den Hartigh, Gernigon, Van Yperen,

Marin, & Van Geert, 2014).

The transactional nature provides insight into how the learning gains of students

can be understood, i.e., how is performance (co-) constructed during actual lessons,

why is the intervention for some classrooms or students more effective than others?

Learning can be seen as a dynamic and distributed, transactional process

(Steenbeek, Van Geert, & Van Dijk, 2011). Students do often not come to a

conclusion spontaneously. Teacher support is essential to reach a higher level of

performance (Van de Pol, Volman, & Beishuizen, 2011). Teaching and learning are

dynamic processes that are constantly adapting to changing needs and opportuni-

ties. It is therefore important to focus on the dynamics of reaching a performance by

studying interactions, i.e., what the teacher’s contribution is in students’ perfor-
mance. The unit of analysis ought to be the dyad of a teacher and the students, and

not the individual student on its own. Knowing more about how teachers stimulate

students toward higher levels of science performance might provide valuable

information about how to optimize inquiry-based learning situations (Van der

Steen et al., 2014).

Note that although the three properties describe distinct mechanisms, during the

process of learning, they all work simultaneously. Boelhouwer’s (2013) observa-
tional dimensions might be seen as different levels of analyses and can show
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increasingly detailed information about how well the averaged findings (static)

represent the variability in individual trajectories (dynamic) in (micro) and over

time (macro). For the purpose of this article, the properties are presented in such a

way that the surplus value compared to the classical approach is stressed

(Table 11.1). However, we do not intend to give the impression that this classifi-

cation is the ultimate way to study interventions. The principles of variability can,

for instance, be very well applied at the micro level to find change points in the

transactional nature of learning trajectories over several lessons (e.g., Steenbeek

et al., 2012).

Present Study

In this study, we aim to demonstrate the contribution of a complex dynamic systems

approach when assessing the effectiveness of a science education intervention. We

illustrate this by presenting data from the Curious Minds Video Feedback Coaching

program for teachers (Van Vondel, Steenbeek, Van Dijk, & Van Geert, 2015). By

doing so, we intent to provide a more thorough and multifaceted view of the process

of studying the effectiveness of an intervention, compared to standard evaluations.

By starting with the more classical group-based analysis, we aim to demonstrate

that each remaining analysis —increasingly more process-based— can provide

more understanding of the effectiveness. Hence, information about students’ per-
formance (static and dynamic) and the development of students’ scientific reason-
ing skills during one lesson (micro) and over several lessons (macro) will be

presented. In addition, the role of the teacher in this process (micro-dynamic) can

be shown during the intervention (short-term effects) and a few weeks after the

intervention (long-term effects).

Method

Rationale for the Teaching Intervention

The Video Feedback Coaching program for upper grade teachers is a profession-

alization trajectory designed to support teachers in improving the quality of science

education lessons in their classroom. More specifically, this pedagogical-didactic

intervention was developed to stimulate change in teacher–student interactions, i.e.,

changing the discourse from mostly teacher-centered into a more stimulating

student-centered discourse (Wetzels et al., in press). By doing so, teachers enhance

the quality of students’ scientific reasoning skills by establishing a series of

inspiring teachable science moments (Bentley, 1995; Hyun & Marshall, 2003).

The way teachers interact with students was regarded as a key to quality of the
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science lessons. The intervention contained the following evidence-based key

elements: (1) improving teachers’ knowledge about teaching science and scientific

skills, (2) establishing behavioral change by improving teachers’ instructional skills
by means of (a) VFCt and (b) articulating personal learning goals.

The first element was reflected in an interactive educational session about

knowledge of teaching science and scientific skills for participating teachers.

Osborne (2014) defined these skills as knowledge about the process of science —

including knowledge about the empirical cycle— and the skills needed for

performing an actual scientific inquiry —such as higher order thinking skills.

During this educational session information was provided and the features impor-

tant for science learning were discussed: the use of the empirical cycle (De Groot,

1994), use of thought-provoking questions (Chin, 2006; Oliveira, 2010), scaffold-

ing (Van de Pol et al., 2011), and science and technology-education in general

(Gibson & Chase, 2002). According to Lehmann and Gruber (2006) expertise can

best be acquired through case-based learning, including authentic cases which are

embedded in naturalistic contexts. Therefore, several best-practice video fragments

of teacher–student interactions during science lessons were shown to illustrate the

transactional nature of performance; i.e., the importance and effect of high quality

interactions during science and technology-activities.

The second element referred to the aim to establish —durable— behavioral

change. A promising method for implementing evidence-based instructional strat-

egies, i.e., establishing behavioral change is providing feedback on real-time

behavior (Noell et al., 2005; Reinke, Sprick, & Knight, 2009). Teachers instruc-

tional quality can be greatly increased by offering video feedback on own class-

room behaviors (see also Mortenson & Witt, 1998; Seidel, Stürmer, Blomberg,

Kobarg, & Schwindt, 2011; Wetzels et al., 2015). As a rule, the effect of feedback is

best when a 3/1 ratio is used (Fredrickson, 2015), i.e., three positive fragments were

discussed and one fragment which could be improved. In order to stimulate teachers

to fully understand the behavioral patterns and consequences of those interactions

for students’ performance, the coaching focused on the transactional nature of

learning by reflecting on teacher’s own specific behaviors and interactions at the

micro-timescale and was conducted immediately after each lesson, as immediate

feedback is most beneficial for learning (Fukkink, Trienekens, & Kramer, 2011).

Note that aside from this practical application, these videotapes were used as the

primary source to evaluate the effectiveness of the intervention.

In addition, goal setting at the beginning of a coaching trajectory is an effective

way to achieve results (Hock, Schumaker, & Deschler, 1995), i.e., behavioral

change, as they ensure feelings of autonomy (Pintrich, 2000). By formulating

learning goals that reflect teacher’s personal professionalization trajectory,

teacher’s feelings of autonomy were respected and teachers were provided with

opportunities to monitor and control their motivation and behavior. Another way to

ensure teacher’s feelings of autonomy and thus to create more responsibility for

their own learning process, was by encouraging them to prepare science and

technology-lessons to his or her own liking (Table 11.2). Teachers were allowed

to choose a topic and an instructional method (for instance experiments or a design
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assignment) suiting their own and students’ interest. The table shows that the first

lesson of classroom 6 mainly focused on experiments and the topic was air pressure.

The main focus of the next lesson was on using laptops to search for information

about satellites.

Participants

Six upper grade teachers (two men and four women) and their students (Mage: 11.2,

9–12 year olds) from the North of the Netherlands participated in the study in

school year 2013/2014. Their teaching-experience ranged from 6 to 18 years in

regular elementary education. The average classroom consisted of 28 students

(49 % girls, 51 % boys).

Procedure and Materials

Six science and technology lessons and an educational session were conducted in a

period of 3 months: one pre-measure, four lessons immediately followed by a VFC

session led by a trained coach (first author) and one post-measure, on average 4.5

weeks, after the end of the VFCt.

Although the intervention was intended as adaptive support and was highly

idiosyncratic, some standardization was implemented during data collection. That

is, the same coach provided identical information during the introductory session,

videotaped all lessons, and was responsible for the guided reflection after each

lesson. In addition, teachers were asked to use the following guidelines: provide six

lessons using a fixed format: introduction (plenary introduction), middle part

(students work on their own or in groups), and end (plenary discussion). Further-

more, they were asked to teach lessons about the “earth and space” system —such

as weather, air pressure, gravity, or the positions of the moon. Lastly, the teachers

were instructed to focus on air pressure and aim at learning students about high and

low pressure during the pre-measurement and post-measurement.

Data Analysis

Ten minutes of the middle part of the lessons were coded, because in this part a

relatively larger amount of rich, interactive interaction was present. For further data

analysis, the classroom of students as a whole was taken as the unit of analysis,

which means that the individual case is always consisting of a group of individuals.

However, in contrast with the classical group approach of looking at the perfor-

mance of independent individuals, which most studies use to calculate averages,
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this group is conceived of as a collection of interdependent individuals interacting

with each other. In line with that, the previous utterance of the teacher or a fellow

student was taken into account when scoring students’ level of complexity.

Students’ scientific reasoning skills were measured by quantifying verbal utter-

ances, using a scale based on skill theory (Meindertsma, Van Dijk, Steenbeek, &

Van Geert, 2012; Parziale & Fischer, 1998; Van der Steen, Steenbeek, Wielinski, &

Van Geert, 2012). The dynamic skill theory (Fischer, 1980) is a cognitive develop-

mental theory focusing on how skills —which are considered complex and vari-

able— are constructed in specific domains. These skills can be captured by focusing

on those skills as they emerge in interaction with the context. This scale has proven

useful for task-independent measures in the analysis of student’s scientific expla-

nations. Student utterances were scored on complexity using a 10-point scale,

divided in three tiers (sensory-motor, representations, and abstractions). The first

tier (level 1–3) consists of sensorimotor observations and explanations, which mean

simple observable connections are given. Level 1 means the least complex utter-

ance, a single sensorimotor aspect (e.g., an expression of what they see; the student

says: “It [the balloon] is white”). At level 2, the sensorimotor mapping level, the

student is able to combine to single sensorimotor aspect into one mapping (e.g., the

student says: “It is white and that one is yellow.”). The second tier (level 4–6)

comprises representational predictions and explanations, which means that students

use higher order thinking skills to go beyond simple perception-action couplings.

The student understands that an object has a specific characteristic, outside the

present situation. (S)he can, for instance, make a prediction about what is going to

happen when you put salt into a water/oil fluid —without directly seeing it. The

third tier (level 7–9) constitutes abstract explanations; students are capable of

generalizing ideas about the object outside specific situations. A student might for

instance explain that “the molecules in the water are strongly drawn towards each

other. . . probably leading to surface tensions. . . the water and oil cannot blend

because of that” or “the density of the water is higher compared to the density of the

oil, the fluid with lower density floats”. Level 10 could be scored when students

expressed understanding about global laws and principles (e.g., the abstract princi-

ples of thermodynamics can be applied to the situation at hand). Ten to twelve-year

olds are expected to be “capable” of reaching the seventh level of understanding

(Fischer & Bidell, 2006). They could express abstract thinking skills (e.g., relate

abstract concepts to the situation at hand, as showing in the following utterance “the

air pressure pushes the paper towards the table”).

Coding was done by means of the program “Mediacoder”5 (Bos & Steenbeek,

2009). To establish the interobserver reliability for the application of the coding

scheme, the interobserver agreement was determined in advance by the first author

5Mediacoder can be obtained free of charge by sending an e-mail to one of the developers: h.w.

steenbeek@rug.nl or j.bos@rug.nl. Mediacoder is a simple application for coding behaviors within

media files. A media code is a moment in time in a recorded video when a particular event occurs.

The meaning of the coding is determined by the specified character (which the user can choose

him/herself). The point in time is determined by the time within the recorded media. Each media
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and an independent coder. With an agreement ranging from 79 to 83 %, Cohen’s
kappa of .76, the interobserver agreement was considered substantial.

Excel was used for descriptive analysis and to display patterns in the data. As the

collected data consisted of a small group of participants, dependency between

variables, and multiple measures, a nonparametric test was used to test differences

in students’ scientific reasoning level over several lessons. This random permutation

test was used to test the empirical results in relation to a statistically simulated

baseline of random patterns, using Poptools (Hood, 2004). This means that the

nonparametric test statistically simulated the null hypothesis that the probability

of the relationship or property was based on chance alone. For instance, the scientific

reasoning level data were randomly shuffled (values were randomly drawn from the

data without replacement), and the same average and difference score was calcu-

lated for the statistical simulation of the null hypothesis. This random shuffling, i.e.,

data generated on the basis of the null hypothesis model that there was no effect of

the intervention, was permutated 1000 times in order to calculate whether the

empirically found difference between pre- and post-measure could be expected to

occur on the basis of chance. When the finding was smaller than 0.05, the test

statistic was considered significant. This means that when we speak about signifi-

cantly different, we mean a considerable difference that has applied meaning (for

instance a difference that is big enough, one complexity level, for the teacher to be

observed in the real world). A significance score between 0.05 and 0.1 is considered

as a trend, i.e., non-randomness (see for a discussion about cut-off scores of p-values
and the use of confidence intervals: Kline, 2004; Lambdin, 2012; Cumming, 2014).

Pre-measure versus Post-measure

All task-related student utterances were coded on complexity. Subsequently, we

calculated the average complexity level of all students over all classes at

pre-measure and post-measure, and computed the difference between the two. In

addition, as significance scores are not directly linked to practical significance

(Sullivan & Feinn, 2012) the effect size was calculated using Cohen’s
D. Following Sullivan and Feinn, an effect size of 0.2 is considered small, 0.5

medium, 0.8 large, and 1.3 or higher very large.

The Role of Time in Change

The long-term effects were operationalized as the effects that were still observable,

4.5 weeks, after the intervention. These were assessed by comparing students’
scientific reasoning level at the intervention-lessons with students’ scientific

code can be supplemented with an explanation. After coding the file can be exported to excel or

SPSS for further analyses.
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reasoning at the post-measure. Therefore, we calculated the average complexity

score of each lesson. The same was done for the statistical simulation of the null

hypothesis. Short-term effects were assessed by focusing on scores during the

intervention.

Variability

Again, all students in the classroom were taken as our unit of analysis, and focused

on the classroom performance level. While doing so, the focus was on variability in

the sense of differences between the various classrooms (interindividual variability)

and of differences over time within classrooms (intraindividual variability). The

variability of each classroom was computed and compared with the variability

between lessons of that classroom. The same analysis was done on the group level,

in that the variability was computed of all classrooms and the variability of each

classroom was compared with the overall —averaged— variability. This analysis

can be the basis to find intraindividual variability which might show the properties

of effective and less effective trajectories. In order to actually study the process, you

must study the process on the individual case level. Second, in an attempt to

generalize, or more precisely to find similarities between individual cases, cluster-

ing techniques may be used (e.g., clustering of students working on science

activities; Van der Steen et al., submitted). As an illustration a simple example of

looking for groups of cases, of which the averages are clearly different, will be

presented. The quantitative findings were supplemented with qualitative findings,

derived from video fragments, to show possible explanations for variability

between and within classrooms (mixed method; Johnson, Onwuegbuzie, & Turner,

2007). Significant differences were used as a starting point for examining the data in

a qualitative manner.

Transactional Nature of Learning

In order to be able to make a comparison with the first, group-based analysis, the

focus of this representative case was again on the pre-measures and post-measures.

Variables which were assessed (over time) concerned task-related utterances: the

number and types of questions asked by the teacher, the complexity of student

utterances, and the occurrence of coherent “action–reaction chains” in teacher–

student interaction. Therefore, for the teacher variable the utterances were coded on

an ordinal scale of “level of stimulation” (based on the “openness-scale” of

Meindertsma, Van Dijk, Steenbeek, & Van Geert, 2014); i.e., utterances intended

to evoke students’ (higher order) scientific reasoning skills. The scale ranged from

giving instructions, providing information, asking a knowledge-based question,

asking a thought-provoking question, posing encouragements, to posing a task-

related follow-up. Giving an instruction is considered as least stimulating, i.e., the

smallest possible chance of evoking a high level of reasoning as an answer. With a

Cohen’s kappa of .72 the interobserver agreement was considered substantial. First,
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the interactional space, i.e., the amount of utterances, covered by the teacher and

students was computed to gain insight into the general distributions of turns during

the lesson. Note that the non-task related utterances are removed from this graph.

Next, a graph showing the temporal sequence of the interaction is displayed (with

the program Excel), as an alternative to the state space grid method (Hollenstein &

Lewis, 2006). Both the graph and a state space grid use two axes to display the

interaction between variables. A state space grid is a useful way to depict attractor

states. However, for the purpose of answering the research question about how

scientific understanding is co-constructed an excel graph is, in this particular case, a

more accessible application. Lastly, a transition diagram (e.g., Ensing et al., 2014;

Steenbeek et al., 2012) was used to study the micro dynamics of the transaction

between students (as a class) and the teacher. Transition diagrams were made to

reveal pattern characteristics, which provide insight into the number and types of

questions asked and potentially how the difference between pre- and post-measure

can be explained. These diagrams show the succession of variables. The observed

differences between the pre- and post-measure regarding the percentages were

statistically tested based on the null hypothesis that the observed differences were

accidental. For the transition diagrams the follow-ups were summarized in

non-stimulating reactions —instructions, providing information— and stimulating

reactions —thought-provoking questions and comments and encouragements.

Results

Pre-measure versus Post-measure: Static-Macro Dimension

In order to answer the research question on whether there is an effect of the VFCt on

students’ performance, the observational data of the pre- and post-measure is

aggregated over all classrooms. Note that the pre-measure and post-measure had

the same teaching goal in all groups, i.e., teaching students about high and low (air)

pressure. The scores during these lessons can therefore be compared validly.

Students performed on average better during the post-measure,M¼ 4, compared

to the pre-measure, M¼ 3.25 ( p< 0.05; Cohens d¼ 1.6, very large). Results show

an expected intervention effect, i.e., students’ science performance increased. This

static macro dimension is the standard answer to questions about effectiveness of an

intervention; most researchers are confining themselves to this single static macro

evaluation. However, more insight can easily be gained by knowing how these

average classroom complexity levels are constructed. In this particular case, the

lower levels of scientific reasoning (1, 2, 3) are, for instance, more apparent during

the pre-measure (PreM¼ 52; PostM¼ 25), while the higher levels (5, 6, 7) of

scientific reasoning (PreM¼ 17; PostM¼ 36) are manifested more during the post

measure (resp. p< 0.05 and p< 0.01). Looking at all measurements provides more

information about the question what happens during the intervention-lessons.
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Time: Short- and Long-Term Effects

In order to answer the question about development; how can we characterize

students’ scientific reasoning on the group level during the intervention trajectory,

the solid black-diamonds line in Fig. 11.1 represents the average score of students’
scientific reasoning level over all classrooms over time.

The solid line in Fig. 11.1 depicts that students display higher levels of scientific

reasoning at the post-measure compared to the other measurements

(preM¼M1¼M2¼M3¼M4< postM, p< 0.01). We thus see a long-term effect

for this variable and the level of scientific reasoning seems rather stable on group

level from the pre-measure to the lessons during the intervention.

This is already one step forward in comparison to the static macro comparison of

the pre- and posttest. However, since the black line represents the average of the

levels for all the classes, it is still the representation of a pseudo process (as a

sequence of averages over independent cases it is not a real process). Based on this

notion of a pseudo process, in order to actually see the process of change, analysis

should focus at the process on the individual level, which in this case is the classroom

level. Note that this is, in turn, a pseudo-process for the individual trajectories.

Variability: Dynamic-Macro Dimension

Next, there is a need to know the performance level of each classroom and how this

changes (dynamic) over time (macro) under influence of the VFCt. Figure 11.1

depicts considerable variation in the level of scientific reasoning between class-

rooms (dashed lines), but also within a classroom over time.

With regard to interindividual variability: In Fig. 11.1, all observations over the six
clasrooms in the post-measurement case are very close to one another, whereas

Fig. 11.1 Dynamic-macro scores of students’ scientific reasoning skills of all classrooms during

all measurements
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almost all the preceding measurements show quite considerable variation between

individual classrooms. This shows, for instance, that during post-measure the

average complexity level of students’ level of scientific reasoning of all classrooms

is closer to each other compared to the pre-measure ( p¼ 0.1). Furthermore, quite

considerable differences were found in the amount of task-related utterances among

classes. For instance, classroom 6’s first scientific reasoning level is based on five

task-related utterances ranging from complexity level 1 to 4, while classroom 1’s
level is based upon 54 task-related utterances ranging from complexity level 1 to 7.

In addition, as an illustration of the clustering of individual cases: two subgroups

were found in the level of variability (M1variability¼ 0.4 and M2variability¼ 1.3,

p< 0.01). Classroom 1, 3, and 4 showed a rather stable level of scientific reasoning

level over the lessons (Mvariability¼ 0.4), while classroom 2, 5, and 6 showed

considerable variability (Mvariability¼ 1.3).

With regard to intraindividual variability: Intraindividual variability is visible in all
classrooms (see Fig. 11.1, dashed lines), but most clearly in classrooms 2, 5,

and 6 (note that this is one of the two subgroups mentioned above). When we

zoom in at the development of classroom 6, the difference between the first and

second lesson in students’ scientific reasoning level is 1.91 complexity level.

Measurement 1 ( p< 0.01) and measurement 4 ( p< 0.01) are different from the

other lessons in that the average scientific reasoning level is lower. During both

lessons only a handful task-related utterances could be scored, and 75–80 % of

those utterances were on the lowest complexity level.

Looking back, these results may be explained by the content of lesson

1 and 4 (Table 11.2—method section). In both cases, the students were not allowed

to experiment and the material was less provoking (note that the same variation in

lessons applies for classroom 2 and 5). This suggests that the type of lesson and

material used influences the —amount of— emergent complexity level of students’
utterances.

Transactional Nature of Learning: Micro-dynamic
and Long-Term Effects

Due to the labor-intensive nature of the observations, the following illustrations

focus on one representative case; one teacher and her students. Classroom 3 could

be used as a representative case in that preliminary analyses of teacher behavior

showed that the behavior of the teacher represented the general interactional

patterns in the classrooms best —i.e., starting the intervention by predominantly

using instruction towards a more thought-provoking teaching style at the end of the

intervention— the teacher neatly followed the guidelines, students’ average age

closely resembled the average age of all participating students, and all measures

were available of this classroom.
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Figure 11.2 depicts the quantified interaction during 10 minutes of the middle

part of the pre- and post-measure of classroom 3. The figure depicts different

interaction patterns during pre-measure and post-measure. During post-measure

there is in general much more interaction, mainly at the higher (more stimulating

and complex) side of the graph. This type of display is a way to represent the nature

of the process of interaction between the teacher and the students. On the x-axis
the temporal sequence of the interaction is displayed. Each number represents

an utterance of either the teacher or the student. On the left y-axis the task-related
teacher utterances (diamonds) are categorized according to the degree of stimula-

tion, while on the right y-axis the complexity level of task-related student utterances

(squares) are depicted. Blank spaces represent a non-task related utterance. For

purposes of illustration and as a guide how to read the graph, part of a literal

translated transcript of an experiment “blow a paper wad in a bottle” will be

described. Starting from utterance 57 (the grey square in Fig. 11.2, on the top):

the teacher starts with a knowledge-based question: “I think. . . What’s in there?”

Fig. 11.2 Dynamic-micro scores during pre- (top) and post-measure (bottom) for classroom

3 Note: the teacher (left) axis depicts an ordinal scale from less stimulating to more stimulating

utterances to provoke scientific reasoning skills: 0¼ instruction, 1¼ providing information,

2¼ knowledge question, 3¼ thought-provoking question, 4¼ encouragement, 5¼ follow-up.

The student (right) axis depicts the ordinal complexity scale based on skill theory. The grey
boxes are illustrated in the text
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followed by self-iterated information giving “There is still moisture in it.” Next the
student answers by formulating what he sees: “Yes, it is red.” The teacher continues
with providing information “And then the paper sticks, that’s a shame.” She offers
a possibility for why the moisture has an effect on the outcome “This bottle is
dry. . .” and offers a new bottle with the instruction to retry the experiment: “Try this
[dry] one.”

The level of stimulation: Figure 11.2, on the top, depicts that the teacher occupies

most interactional space (75 %) during the lesson, more specifically most of her

utterances are on the lowest stimulation level, namely to instruct students (41 % of

her utterances). The transcript described above is an example of that type of

interaction. During the pre-measure most of the utterances were teacher-centered

(56 %), i.e., focusing on what students need to do and on knowledge acquisition by

instructing, providing information, and asking knowledge-based questions, while

44 % were student centered utterances, i.e., stimulating utterances focusing on

students thinking process—thought-provoking questions, encouragement, and sub-

stantive follow-up.

In contrast, although the teacher still occupies most of the interactional space

(67 %) during post-measure, we can now see reciprocity between teacher utterances

and student utterances which seem to emerge in higher levels of complexity

(Fig. 11.2, bottom). Compare for this the upper side (on the teacher axis stimulating

question, encouragement and follow-up) of the pre-measure graph with the upper

side of the post-measure graph. During post-measure there is much more interaction

at the higher (more stimulating and complex) side of the graph. The teacher asks

more questions, poses more encouragements and students reason on higher levels of

complexity (4, 5, 6, and 7). In addition, compared to the pre-measure a reversed

pattern was found in teacher style, meaning that 29 % was teacher-centered (least

stimulating) and 71 % consisted of stimulating utterances during post-measure.

Table 11.3 describes an interaction during the post-measure showing how this was

seen during the activity. Here, the teacher starts the interaction with a thought-

provoking question, followed by a student answer that shows understanding of the

experiment. The teacher continues with encouragements and rephrases student

answers.

To conclude, by comparing the pre-measure and post-measure, the quantitative

data shows an emerging pattern in which the teacher uses higher levels of stimula-

tion during post-measure. The teacher asks more stimulating questions or poses

encouragements to reason further (compared to preM; p< 0.05), students answer

more often (preM¼ 20; postM¼ 36) and on a higher level of complexity (p< 0.01).

Action—reaction sequences: Figure 11.3 shows transition diagrams of both lessons.

Both the type and number of teacher and student utterances change. During the

pre-measure, students answer a teacher initiation question in only 31 % of the cases

and the teacher answers her own question or continues herself in 15 % of the

utterances. A student answer is in 20 % of the cases followed by a non-stimulating

teacher response (like providing information or instruction) and in 44 % of the cases

by a stimulating follow-up (encouragement, question, or an utterance to encourage
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Table 11.3 Literal translated transcript of the experiment: “candle and lemonade,” starting from

utterances 38 (grey square) and further during the post-measure

Teacher Student(s) Comment

What do you think

[will happen] [***]?

Thought-provoking initiation

question

When you put the glass over [the

candle]. . . the water comes up

and. . . because of the water the
candle goes out

Student is capable of making a

representation about what he

expects to happen

Ok. . . hmm. . . Encouragements (without

directing to the “right” answer)

Ok, you think the

candle extinguishes

because of the water.

Rephrasing student’s answer

Who has another

idea?

Invite other students to formulate

a hypothesis

When you put the glass. . . the fire
causes vapor. . . when that comes

down the candle stops burning

Student is capable of formulating

a representation in which insight

into a natural phenomenon is

represented

Hmm. . . Basically
you make rain. . .

Rephrasing student’s answer —
providing information about how

it could compare to daily life

situations

What do you think

[***]?

Invite another student to formu-

late a hypothesis

I think there will be no more

oxygen

Student is capable of formulating

a hypothesis using abstract

language

No more oxygen. . .
Where?

Teacher uses a follow-up question

to make the student elaborate on

her answer

Fig. 11.3 Transition diagrams pre-measure (left) and post-measure (right) of Teacher initiation
(T), Student task-related utterance (S), Teacher’s stimulating response (T st), and Teacher’s
non-stimulating response (T N-st)
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reflection). A significantly different interaction pattern is found between pre- and

post-measure ( p < 0.01) in that during the post-measure an initiation question of

the teacher is often (in 77 % of the cases) directly followed by a task-related student

utterance. Next, a student utterance is most often followed by a stimulating follow-

up of the teacher. This seems to indicate better attuned interactions, i.e., stimulating

interactions, possibly emerging into higher levels of student complexity.

Conclusion and Discussion

From a content-based perspective, the surplus value of a complex dynamic systems

approach was illustrated by analyzing the (effect of) the Video Feedback Coaching

program for teachers intervention, in which complexity properties were intertwined

in design, data collection, and analysis.

When looking at the aggregated and static data, the results showed a positive

intervention effect on the macro level of students’ science performance. The

question arose about the practical significance of this result. An average increase

of 1 complexity level seemed trivial. The effect size (d¼ 1.6) showed that this

effect can be considered very large. However, this number does not provide

practical tools for teachers. By using a process-based intervention study the surplus

value of applying the properties became clear:

1. By incorporating time serial aspects of change, the intervention effect could be

further explained. The average trajectory of all classrooms over several lessons

(dynamic) showed a rather stable level during the intervention. The effect of the

intervention on students’ performance only became apparent at post-measure.

2. By focusing on intra-individual variability, however, it became clear that the

average trajectory underestimated the variability present in individual trajecto-

ries. Half of the classrooms showed a rather stable trajectory, while the other half

represented great variability. None of the groups showed a clear positive inter-

vention effect on students’ scientific reasoning level during the intervention

sessions. However, previous research indicated that before a new state (i.e.,

higher level of performance) can be reached, a period of “increased variability”

appears (Bassano & Van Geert, 2007; Van Der Steen et al., 2014; Van Geert &

Van Dijk, 2002). These suggestions can be further analyzed by focusing on

micro-dynamic processes in all lessons, in order to find out whether there is more

variability leading to a new state at the micro level during the lessons of the

intervention period. Another explanation for the, in this case rather high, vari-

ability might be found by focusing on the lesson characteristics. When a teacher

provides a lesson mainly focussing on following the steps on a worksheet, a

different interactional quality might be expected compared to a lesson in which

students have more degrees of freedom to experiment. Note that the transac-

tional nature might be used to further interpret this qualitative finding.
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3. By examining the transactional nature, it became apparent that the higher

performance seems to be achieved by a mutual investment of teacher and

students and that a change in interaction patterns seems to underlie this phe-

nomenon. The representative case showed that an increase in students’ under-
standing is accompanied by a change in interactional quality and that the

students’ scientific reasoning level fluctuates in interaction with the teacher.

During the post-measurement, teacher and students seem more attuned to each

other, in that a teacher’s question is twice as often followed by a student answer

compared to the pre-measurement. Students seem more capable of using com-

plex terms to express their thinking processes, as is expressed in the higher

complexity scores. In addition, during post-measurement, the student utterance

is only followed by a stimulating response, while during pre-measure,

non-stimulating utterances were apparent. Based on the micro-dynamic data,

we therefore suggest that the higher performance during the post-measurement

can be explained by interactions of higher quality in which the teacher poses

more stimulating questions and that the students reason on higher scientific

reasoning levels. The point of this type of analysis is not to pretend that these

percentages apply to the population, as an average level. We aimed to depict a

technique of representation that shows the time serial nature of the process. It

goes without saying that the structure of these processes may be quite different

for one case in comparison to another, but the nature of the representation, in

terms of a transition diagram, in principle applies to all possible forms of

interaction in classrooms. By choosing a different way of representing the

interaction in the classroom, namely by means of these transition diagrams,

the emphasis which is traditionally put on static measures, is now replaced by a

dynamic representation, which in some cases may be of quite considerable

complexity. Especially for teachers, the latter might be a more accurate reflec-

tion of the teacher’s real time experiences as teachers are “aware” —usually

without being familiar with the technical terms— that they are working within a

complex dynamic system.

To summarize, the surplus value of the analysis is that it illustrates how a

complex dynamic systems approach can be used to describe the processes under-

lying static group-based educational intervention effects, and provide information

about the quality of that intervention. By using a process-based methodology, we

were able to show that average results can be deepened by focusing on several

complexity properties. We suggested answers to the question of why the VFCt

intervention worked and why it seemed to work better during some lessons com-

pared to other lessons within one classroom (i.e., type of questions, attuned inter-

actions, using active participation during experiments versus classical experiment

lessons). In addition, insight was provided into the actual changes during lessons

and how interaction proceeded. This information cannot be found in conventional

longitudinal studies, but are essential for teachers as this might more accurately

reflect what they experience during their lessons and gives insight into how teachers

can optimize their lessons—compared to standard evaluations.
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Of course, when assessing the effectiveness of an intervention the use of a

control group will primarily provide information about differences between the

actual processes; especially the micro-process differences (see for instance Wetzels

et al., 2015). Veerman and van Yperen (2007) state that the use of a control group is

a prerequisite for analysis of the effectiveness. Therefore, the next step is to analyze

classrooms that did not participate in the VFCt, but did provide science and

technology lessons (Van Vondel et al., 2015).

From a methodological point of view, we would like to make a distinction

between “hard” complex dynamic systems research and “soft” complex dynamic

systems research in education. The distinction might be somewhat exaggerated and

is rather a matter of degree, but we think it is important to discuss it in order to put

much of the complex dynamic systems research that is currently being done in

education in the right perspective.

By “hard” complex dynamic systems research, we mean the research that

focuses on typical complex dynamic systems properties and which is based on

very dense time series. Examples are studies of attractors and discontinuities, for

instance by means of cusp catastrophe models (Van Der Maas & Molenaar, 1992),

or studies of the statistical structure of time series revealing properties such as pink

noise in rower’s coordination of ergometer strokes (Den Hartigh, Cox, Gernigon,

Van Yperen, & Van Geert, 2015) or studies using techniques such as recurrence

quantification analysis that try to reconstruct the complexity of the state space that

underlies the attractors of the system (Wijnants, Bosman, Hasselman, Cox, & Van

Orden, 2009).

By “soft” complex dynamic systems research, in contrast, we mean educational

research inspired by basic, qualitative features of a complex dynamic systems view

on education and which is rooted in educational practice, as the VFCt. Some

examples which would typically qualify as “soft” complex dynamic systems

research are presented by Steenbeek, et al. (2012): research on learning that focuses

on individual trajectories and on intraindividual variability, on the transactional and

iterative nature of the teaching-learning process and on the relationship between the

short-term time scale of learning activities and the long-term time scale of devel-

opment. It is a kind of research that describes how such patterns are self-sustaining

and hard to change, i.e., tends to show considerable resistance to change and thus

have the qualitative properties of attractor states.

Scientific implications for intervention studies: Especially evaluation studies of —

applied— educational interventions are fruitful areas for a “soft” complex dynamic

systems approach. As performance is usually constructed in interaction between a

more knowledgeable partner and a student (Steenbeek & Van Geert, 2013; Van De

Pol et al., 2011), observational classroom studies provide rich information. Ana-

lyses on the micro-level show whether the effect of an intervention can be found on

the level where interventions focus at, in this case on interactions of higher quality.

For a complete understanding of the process of teaching students a particular way of

reasoning, an intensive study of a teacher’s —in combination with the students’—
behavior over several lesson will reveal important insights. Focusing on “how” an
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intervention works is a way of describing why one state changes into another, and in

fact implies a way of describing what can be done to make the state change into

another one (Van Geert & Steenbeek, 2005). Furthermore, the case study findings

can be supported by findings of a multiple case study. These findings can then be

used to generalize findings and by that strengthen evidence-based practice.

Practical implications: The results of process analysis can be used in two different

ways, as both scientific and practical purposes can be highlighted. First, the results

add to fundamental knowledge about how scientific reasoning skills are (co-)

constructed in real-time (Meindertsma et al., 2014) and how the effect of a teaching

intervention emerges during actual science and technology lessons. Second, the

results can be used for educational purposes. This approach provides accessible

practice-based tools for best practice, or perhaps more importantly, familiar exam-

ples which can be used for (in-service) teacher professionalization (Wetzels et al.,

2015). The micro-dynamic analysis might map the most interesting information for

educational practitioners as it yields practice-based results.

Further analyses: An important next step for the study of interventions is to map the

teacher–student interactions of individual teachers in order to study whether

interindividual variability can be further explained on the micro-level (Van Vondel,

Steenbeek, Van Dijk, & Van Geert, in preparation). The analyses of the empirical

example as presented in this paper may be not more than only the first steps towards

a complex dynamic systems approach. More information can be extracted by

repeating similar analyses for teacher variables, by focusing on all lessons of

individual teachers, by comparing micro and macro findings, or by comparing

two extreme cases on the micro level (e.g., Steenbeek et al., 2012).

To conclude, interventions should be studied as emerging processes on various,

intertwined time scales taking place in individual cases, and not as isolated causal

factors, with an intrinsic effectiveness, applying to a specific population category.

We, therefore, stress the importance of using variables that capture the transactional

character of interventions, specifically when they are aimed at improving interac-

tion patterns in the naturalistic classroom situation. For future research we like to

state that it is essential to look more closely at what the intervention is aiming at and

what the role of the immediate context/proximal factors are in this process. When

more understanding is gained about what happens during the intervention, for

instance about stability or change in interaction patterns, intervention programs

can be specifically attuned to supporting high quality interaction patterns in the

classroom and students can thus be stimulated to perform optimally.
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Chapter 12

Analyzing Teacher–Student Interactions
with State Space Grids

Helena J.M. Pennings and Tim Mainhard

Introduction

In educational research there is a growing body of knowledge on the general

classroom and teacher characteristics that enhance or hamper student learning. This

body of knowledge is primarily based on a product oriented research approach

(Lavelli, Pantoja, Hsu, Messinger, & Fogel, 2005), that is, relying on global percep-

tions and measures, which summarize any development, rather than focusing on how

classroom processes unfold in time. Another, more process oriented focus, may be

more suited to understand how classroom interventions or specific teacher behavior

take their effect in class during teaching. In this chapter we describe how we use a

research tool called State Space Grid analysis, originated in Complex Dynamic

Systems theory, to take amore process oriented rather than product oriented approach.

Our researchmainly focuses on interpersonal teacher behavior and teacher–student

interactions as the building blocks of teacher–student relationships and the quality of

the classroom social climate. In this chapterwe present four illustrations of studies that

share this focus and in which State Space Grid analysis was used to examine the

moment-to-moment nature of classroom interactions. First, interpersonal theory is

introduced, which we use to frame classroom interaction. Then we discuss classrooms

as complex dynamical systems and introduce the State Space Grid technique.
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An Interpersonal Perspective on Classroom Social Processes

The classroom social climate is the social aspect of the classroom environment;

In product oriented terms, it refers to the overall quality of interpersonal relations in

a classroom (Mainhard, Pennings, Wubbels, & Brekelmans, 2012). These relations

can be conceptualized in terms of the generalized interpersonal meaning students

and teachers attach to their own and each other’s behavior in class. The basic

processes that underlie the classroom social climate are virtually all interactions

that occur in a classroom.

To describe interactions between teachers and students (or classes of students),

we use Interpersonal Theory (Horowitz & Strack, 2011). In interpersonal theory a

two-dimensional circular model called the InterPersonal Circle (IPC) is used to

describe interpersonal styles and interpersonal behavior of people (Fournier,

Moskowitz, & Zuroff, 2011; Gurtman, 2009; Horowitz & Strack, 2011; Kiesler,

1996). The basic premise of this theory is that every behavior can be positioned in

the IPC as a specific blend of the two dimensions agency (i.e., power) and

communion (i.e., warmth) (Fournier et al., 2011; Locke & Sadler, 2007). In essence

an IPC always consists of the two basic dimensions, however how these dimension

are called may vary depending on the context in which the model is applied

(Fournier et al., 2011). The IPC can be divided into octants that describe prototyp-

ical interpersonal behavior located in that part of the IPC.

To study interpersonal behavior of teachers and students we use two IPCs

(Fig. 12.1), one to describe interpersonal teacher behavior, the IPC-T, and one

to describe interpersonal student behavior, the IPC-S (Pennings, Mainhard, &

Brekelmans, 2015; Prins & Mainhard, 2012).

For decades interpersonal theory has been used in educational research to study

the quality of the classroom social climate (for an overview see Wubbels,

Fig. 12.1 Teacher and student interpersonal circle (Pennings et al., 2015; Prins & Mainhard,

2012)
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Brekelmans, Den Brok, & Van Tartwijk, 2006), mainly through the applications of

the Questionnaire on Teacher Interaction (QTI; Wubbels et al., 2006), which

measures teacher agency and communion as perceived by students. By completing

the QTI, students provide their general interpersonal perception of their teacher in

class. To describe the general classroom social climate the individual student scores

can be aggregated per class or teacher (Wubbels et al., 2006). Throughout the years

nine general types of classroom social climates have been distinguished (Pennings

et al., 2015). Eight types correspond to the IPC octants and the ninth is located in the

center of the IPC.

Throughout the years ample knowledge has been gathered on how the quality of

the classroom social climate, also from perspectives other than interpersonal theory,

is related to student motivation and achievement (e.g., Cornelius-White, 2007;

Henderson, 1995; Henderson & Fisher, 2008; Maulana, Opdenakker, Den Brok,

& Bosker, 2011; Roorda, Koomen, Spilt, & Oort, 2011; Wentzel, 2012), but also to

teacher motivation, self-efficacy, well-being and quality of teaching (e.g., Spilt,

Koomen, & Thijs, 2011; Van Petegem, Creemers, Rossel, & Aelterman, 2005;

Wubbels et al., 2014). For example, classroom social climates that are characterized

by high levels of agency and communion in teacher behavior are most desirable for

student motivation and achievement, but also for teacher well-being (Wubbels

et al., 2006). A problematic classroom social climate is often related to classroom

management issues (Mainhard, Brekelmans, & Wubbels, 2011) and can even be a

reason for teachers to leave the profession (De Jong, Van Tartwijk, Verloop,

Veldman, & Wubbels, 2012).

Since, daily interactions are the building blocks of relationships (Granic &

Hollenstein, 2003), many scholars, including Kiesler (1996), Thomas, Hopwood,

Woody, Ethier, and Sadler (2014) and Wubbels et al. (2012), advocate to study the

dynamical process of interpersonal interactions as they unfold in time instead of

focusing solely on the static products of these interactions (such as the quality of the

classroom social climate). Ultimately, doing so might help us to understand better

how teachers who experience problems in creating and maintaining a classroom

climate conducive to learning can be supported. The theoretical framework and its

accompanying methods that guide us in this process oriented endeavor is Complex

Dynamical Systems (CDS) theory.

Classrooms as Complex Dynamical Systems

CDS theory describes how complex processes unfold in time (Guastello,

Koopmans, & Pincus, 2009), and how change occurs gradually or dramatically

(Guastello & Liebovitch, 2009). CDS theory originates from physics and mathe-

matics, where it is used to study complex processes within and between systems

(Guastello et al., 2009; Hollenstein, 2013). For example in thermodynamics the

study of how temperature and energy are related to each other can be explained

using CDS theory. There are two types of systems, closed and open systems. Closed
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systems are systems that cannot interact with other systems in its environment,

whereas open systems develop through interactions with other systems in their

environment (Hollenstein, 2013). Humans are open systems, because they interact

with other systems in their environment, such as other humans or animals.

Interactions and development simultaneously take place on various time-scales.

In real-time from second to second (i.e., micro-level time-scale), from hour to hour

(i.e., meso-level time-scale), or in developmental time like month to month or year

to year (i.e., macro-level time-scale) (Hollenstein, 2013). Development is,

therefore, hierarchically nested in time (Hollenstein, 2007; Thelen & Smith,

1998). Defining the specific measurement level needed depends on the research

question and the phenomenon that is studied. What makes development complex is

that interactions occur within time-scales but also between time-scales (Hollenstein,

2013) and that behavior on one time-scale may affect behavior on another. For

example, friendly teacher behavior from moment-to-moment may result in a

supportive and warm classroom climate (a higher level time-scale), which in turn

makes disruptive student behavior less likely (the lower-level timescale).

We have described how humans are considered to be individual complex

dynamic systems and that interactions between humans foster development of

systems. In the educational context teachers and students resemble individual

systems as well, while classrooms (or the classroom social climate) can be seen

as higher order social systems in which multiple individual systems (i.e., teacher

and students) interact with each other. Interactions and development within class-

rooms also occur on multiple time-scales, from second to second within lessons

(micro-level), from lesson to lesson (meso-level), month to month (meso/macro-

level), and in some cases from year to year (macro-level). To complicate this, all

individual systems within a specific classroom social system are also individual

systems within other social systems (e.g., other classrooms, families, and sports

teams). In these other social systems which different interactions might lead to

differences in development of, for example, relationships (Bronfenbrenner &

Morris, 2006). For teachers, this means that experiences in one classroom may

transfer to other classrooms, also in subsequent years. Guided by CDS theory, we

assume that these interactions are necessary for teachers to improve in their

profession and that they drive teacher professional development.

To understand the illustrations of our research we provide in this chapter, it is

necessary to grasp the meaning of several terms that are commonly used in CDS

theory; terms such as state(s), state space, attractors, circular causality, and entropy.

We elaborate on these terms in the next section. For a complete and comprehensive

overview of these concepts and the CDS terminology we refer the reader to

Guastello et al. (2009).
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Using State Space Grids in Educational Research

Now that we have explained the two main theoretical perspectives that guide our

research we turn to State Space Grid (SSG) analysis, which is the focus of the

remainder of this chapter. The SSG tool is rooted in CDS theory and is used to

examine the content (e.g., the level of friendliness) and structure (e.g., the vari-

ability in friendliness) of real-time (micro-level) interactions in systems. SSG

studies can be found in various areas of social sciences research, such as family

studies (e.g., Granic, Hollenstein, Dishion, & Patterson, 2003) where they origi-

nated, peer relationship studies (e.g., Lavictoire, Snyder, Stoolmiller, &

Hollenstein, 2012), studies on cognitive styles in solving jigsaw puzzles (e.g.,

Hong, Hwang, Tam, Lai, & Liu, 2012), coach–athlete interactions (e.g., Turnnidge,

Cote, Hollenstein, & Deakin, 2013), or clinical psychology (e.g., Bento, Ribeiro,

Salgado, Mendes, & Gonçalves, 2014). The last couple of years SSG analysis has

found its way into educational research (e.g., Mainhard et al., 2012; Pennings,

Brekelmans et al., 2014; Turner, Christensen, Kackar-Cam, Trucano, & Fulmer,

2014; Vauras, Kinnunen, Kajamies, & Lehtinen, 2013).

First, we explain what SSGs are; second, we discuss the measures that can be

derived fromSSGanalysis; third,wedescribe howattractors and information about the

structure of interactions can be derived from these measures; and finally we provide

some illustrations from our own research in which we used various approaches to

construct and use SSGs to study real-time interactional processes in class.

In 1999 Lewis, Lamey, and Douglas developed SSG analysis (Fig. 12.2) and

GridWare (www.statespacegrids.org; Lamey, Hollenstein, Lewis, & Granic, 2004)

the software needed to built and analyze SSGs, because they needed methods to

study complex dynamical processes in child parent interactions (Hollenstein, 2013).

In this chapter we largely draw on ideas and research that originated from this group

and specifically on the Gridware manual (Lamey et al., 2004) and Hollenstein’s
book on SSG analysis (Hollenstein, 2013).

The foundation of SSG analysis lies within the CDS term State Space. A SSG is a

graphic representation of a state space that consist of at least two orthogonal dimen-

sions that describe the states a system might reside in and all possible states a social

system can adopt are graphically represented as cells in a grid. Hence, these cells

together represent the state space of a social system. Thereby, SSGs provide an

intuitively appealing way to view the structure of complex interactional, which

makes SSGs also very suitable for exploratory analysis (Granic & Hollenstein,

2003; Hollenstein, 2013).

The dimensions underlying the SSGs usually consist of categorical observations

of behavior states. It is important that these categories are mutually exclusive and

exhaustive on each dimension (Granic & Hollenstein, 2003; Hollenstein, 2013;

Hollenstein & Lewis, 2006). For example, in our studies one dimension may

represent interpersonal teacher behavior, while the other represents interpersonal

student behavior. Yet the dimensions and the number of categories underlying the

dimensions need not to be similar (Hollenstein, 2013). For example, in one of our
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first studies (Pennings, Van Tartwijk, Vermunt, & Brekelmans, 2012) we combined

eight categories of interpersonal teacher behavior (i.e., the categories reflect the

octants of the IPC-T) with four categories of student behavioral engagement (i.e.,

passive/active on-task or off-task behavior; see Illustration 4).

In several studies (i.e., Mainhard et al., 2012; Pennings et al., 2015; Pennings,

Van Tartwijk et al., 2014) the state space of teacher and class behavior is comprised

of all the possible joint states of agency and communion that teachers and students

might adopt in interaction. Thus, in these studies every cell in the SSG represents a

specific dyadic state, that is a typical combination of the interpersonal behaviors the
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Fig. 12.2 Example of a state space grid of teacher–class interaction. Note. The horizontal axis

shows the teacher’s behavior and the vertical axis the class’s behavior. The arrowed line represents
the change in behavior in the interaction over the course of a few minutes (i.e., the interaction

trajectory), and the thickness of the nodes indicates the duration of each interaction state. Note that

the position of a node in a cell is arbitrary. The opaque node marks the start of the interaction
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teacher and the class show at a certain moment during the lesson. Every time the

behavior of the teacher or the class changes a new event occurs and a new point is

plotted in a SSG cell (i.e., the dyadic state changes), this is often referred to as

online or real-time coding. In this way all changes in level of agency/communion in

both teacher and student behavior are visualized as a change in the interaction

trajectory within the SSG.

In order to explain how a SSG is used as a visual representation of a given

interaction an example SSG is included in Fig. 12.2. Note that this SSG represents a

fictional trajectory of classroom interaction.

The state space in Fig. 12.2 consists of an 8� 8 grid. Teacher behavior is

displayed on the x-axis and student behavior on the y-axis. The eight categories

correspond to the octants of the IPC-T and IPC-S. Therefore each cell in the grid

represents the intersection of interpersonal teacher behavior and interpersonal

student behavior observed in the students. For the analysis it is arbitrary on which

axis whose behavior is displayed.

When a particular combination of behavior, let us say teacher assured behavior

and student reliant behavior, is observed at a given point in time a so-called node is
drawn in the corresponding cell. Teacher assured behavior corresponds to the first

cell on the x-axis, thus x1, and student reliant behavior corresponds to fourth cell on
the y-axis, the y4. To refer to a specific cell we follow xy convention, and thus this

cell is called 14.

The start of the interaction can be marked with a hollow node. In this example the

interaction starts in cell 14. Let us say that this state reflects a lecturing situation

where students listen rather quietly to what the teacher says. Then, some students

start to chat unvoiced with each other, and the level of agency in their behavior

increases; the interaction trajectory thus moves to cell 13. Next the teacher may

notice that some students chat, but lets the students talk for a while and thus the level

of agency in the teacher’s behavior decreases and the trajectory moves to cell 33.

The students’ talk becomes louder and more engaged, and after a while the teacher

restricts the students, that is, the teacher’s level of agency increases and the level of
communion decreases and thus the trajectory moves to cell 82. In this hypothetical

scenario, the students react to the teachers’ imposing behavior and their behavior

becomes more collaborative and eventually reliant again and at the same time the

teacher becomes assured and eventually helpful, and the teacher resumes her lecture

in an assured manner. Thus from cell 82 the trajectory moves to cell 13 and

eventually to cell 24. To visualize how the observed interactional trajectory changes

chronologically in time, it is possible to add a line that connects the nodes in the SSG.

For the purpose of clarity we also added arrows to the line in this example SSG. The

combination of these nodes and lines is called the interaction trajectory.

It is important to note that the interpretation of the observed behaviors in each

cell entirely depends on the observational system used. In most of our own studies

the unit of analysis represented in the SSGs is the dyadic behavior of teachers and

students in moment-to-moment interactions. To study patterns in these interactions

Granic and Hollenstein (2003) recommend looking at the content and structure of

interaction.
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Content of Interaction

The locations of attractors (a single cell or several adjacent cells) provide informa-

tion about the content of the micro-level interactions as they indicate what states
occur most frequently (Granic & Hollenstein, 2003; Hollenstein & Lewis, 2006),

for example mutually friendly behavior. As specific interactional patterns between

teacher and students become apparent (i.e., attractors emerge), the macro-level

classroom social climate may become more constrained and defined. For example,

a poorly organized classroom lesson might evoke distraction and chatting amongst

students, which in turn may lead to dissatisfied teacher behavior; the more often

lessons are poorly organized, the more easily students may become distracted, and

the more easily aversive teacher behavior may be triggered, i.e., a negative inter-

action attractor develops (see for an example from teacher practice Créton,

Wubbels, & Hooymayers, 1989). Moreover, an attractor may become stronger

through feedback loops and circular causality between those negative interactions

on the micro-level time-scale and the poor classroom social climate on the macro-

level time-scale. Such processes could explain why in classrooms with less positive

social climates even minor student misbehavior may trigger repressive teacher

reactions with a high intensity (Créton et al., 1989). On the other hand, a teacher

that introduces project based work in class for the first time may struggle to

structure and support student activities. Students however may get engaged by

this kind of work and may be more responsive to the teacher’s efforts the next time

project based assignments are used. An, in interpersonal terms, positive (i.e.,

mutually warm or communal) interaction attractor emerges. In more positive

classrooms, corrections with a low intensity may be sufficient to return students’
attention to class related activities (Wubbels et al., 2006). Indeed, such processes of

stabilization seem to occur within only one or just a few lessons (Mainhard,

Brekelmans, den Brok, & Wubbels, 2011).

Based on how long interactional behavior is located in a particular cell or cell

region attractors and their strength can be identified. Hollenstein (2013) explains

several methods to identify attractors in detail; some methods are more rigorous

than others. It is for example possible to select the cell or cells with (a) the highest

mean durations, (b) the highest total duration, or (c) the highest number of visits as

attractors (Hollenstein, 2013). It is also possible that, based on theory, the

researcher has defined an attractor or attractor region beforehand. One may then

calculate a measure called perseverance, the mean duration that interaction remains

in that specific state. A higher value for a cell represents a stronger perseverance. It

is also possible to calculate perseverance for a specified area in the SSG, which is

defined by the researcher (see Illustration 1). Yet a more empirical procedure to

identify attractors is the Winnowing procedure (Lewis, Lamey, & Douglas, 1999).

Using this method, the cell or cell region with the highest probability of being an

attractor is identified based on a heterogeneity criterion. This procedure iteratively

(step-by-step) eliminates the cells with the lowest durations (i.e., perseverance).

Then a heterogeneity score is calculated using the following formula:
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Heterogeneityj ¼
X

Observedi � Expectedj

� �2

=Expectedj

# of Cellsj

where i represents the specific cell targeted in iteration j. The observed value is the

duration that the interaction trajectory resided in the target cell. The expected value

in each cell is calculated by the total duration of the observed interaction divided by

the number of cells included in the iteration.

The heterogeneity scores corresponding to each cell are quantified as a propor-

tion of the heterogeneity score in the first iteration by dividing heterogeneityj by

heterogeneityi. The value after the largest drop in proportions (i.e., Lewis et al.,

1999 defined large as �50 %) indicates that the target cell in that iteration may be

regarded as an attractor cell (Hollenstein, 2013). If multiple adjacent cells are turn

out to be attractors, this can be referred to as an attractor region. Please refer to

Hollenstein (2013) who describes this procedure in a comprehensible and

straightforward way.

Thus, with SSGs it is possible to identify attractors by tracking how long

interactions remain in some states but not others or how quickly interaction returns

to or stabilizes in particular states (Granic & Hollenstein, 2003). However, an

interaction often does not remain in only one state, even though that one state

might be an attractor. It is therefore also possible to study changes from state to

state, how often these occur and how predictable these state-to-state changes are.

These changes are what Granic and Hollenstein (2003) refer to as structure.

Structure of Interaction

An interaction trajectory may remain in one or a few states for a large part of the

time, which would indicate a stable or inflexible system. On the other hand, if the

dyadic trajectory includes many different states and there are a lot of state-to-state

changes, that indicates a more chaotic or flexible system (Granic & Hollenstein,

2003). The terms someone chooses to describe the degree of variability (flexible

versus chaotic) ultimately depends on external criteria. Because it has been found

that in Mother-child interactions variability is positively associated with the child’s
social adjustment later, Granic and Hollenstein (2003) used the more positive term

“flexible.” In the classroom, however, higher variability in teacher behavior or

teacher–student interactions is associated with less desirable classroom social

climates (i.e., in terms of learning outcomes), and therefore, Mainhard

et al. (2012) used the term “chaotic” rather than flexible to describe highly variable

systems.

Gridware (Hollenstein, 2013; Lamey et al., 2004) provides several so-called

whole-grid measures to study variability or the structure of interaction. In our own

research (Claessens et al., 2014; Mainhard et al., 2012; Pennings, Brekelmans et al.,
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2014; Pennings, Van Tartwijk et al., 2014) we have used the following grid

measures: (1) the number of uniquely visited cells (i.e., cell range), (2) total cell

transitions (i.e., number of visits or state-to-state changes), (3) the average duration

per cell, (4) the average duration per visit, (5) dispersion, and (6) visit entropy.

Before turning to a more detailed description of our own work, we first provide a

more general explanation of these whole-grid measures. All these measures are

related as they all tap the structure of a trajectory, but each concerns a specific

aspect of how interaction moves across the state space.

The two measures number of events and number of visits may seem similar, but

can yield very different figures. The number of events corresponds to the number of

nodes in the SSG whereas the number of visits is the number of nodes transitioning

to a new cell. In our example in Fig. 12.2 the number of events and the number of

visits are both 6. In some studies it is possible that there is a change in behavior

observed and is counted as another event, but that event remains in the same cell.

This is completely dependent on the observation method and scheme used.

The number of unique cells visited (i.e., cell range) is the number of unique

behavioral states that occur in an interaction trajectory. The example SSG provided

in Fig. 12.2 consists of 64 cells (i.e., based on the octants in the IPC-T and IPC-S)

and the interaction moved between only 5 out of these 64 cells, then the number of

unique cells visited is 5. Of course it is likely that some cells are visited multiple

times by an interaction-trajectory, in the example SSG there was one cell that was

visited twice. A higher value is one indicator of more variability in the interaction.

Total cell transitions (TCT) is the number of movements between cells. TCT is

calculated as the number of visits—1 (i.e., the first visit is not counted as a

transition). A lower value indicates less frequent changes of system states, and

therefore less variability. TCTmay be high while the number of unique visited cells

is low. In our example in Fig. 12.2 TCT is 5 (6 cells—1).

The average duration of visits is the duration of the observed interaction

trajectory divided by the number of visits. The average duration of visits indicates
the overall variability of behavior, which Hollenstein (2013) calls “the overall

stuckness or rigidity of the trajectory” (p. 72). When the interaction trajectory

during the observed period remains in one specific cell (i.e., the number of visits
is low), the average duration of visits is extremely high (i.e., the average duration

equals the total duration of the interaction). When the interaction trajectory contin-

uously switches from one cell to another (i.e., the number of visits is high), the

average duration of visits is low.

The Average duration per visited cell is the duration of the observed interaction

trajectory divided by the number of uniquely visited cells (rather than total visits,

see above). When the interaction trajectory during the observed period remains in

one specific cell (i.e., the cell range is low), the average duration per visited cell
will be extremely high, then the average duration equals the total duration of the

observation period. Also, note that if multiple events within that single cell occur,

the average duration per visited cell remains the same. When the interaction

trajectory continuously switches from one cell to other cells (i.e., the cell range is

high), the average duration per cell is low.
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Dispersion describes the extent to which interactional states are scattered across

the state space. This measure is based on the number of visited cells while control-
ling for the proportional average duration per cell. It is calculated by taking the sum
of the squared proportional average duration per cell across all visited cells

corrected for the total number of cells and inverted (Hollenstein, 2013). Thus,

dispersion is expressed in a value between 0 (no variability) and 1 (maximum

variability).

Visit entropy represents the degree of predictability of an interaction trajectory.

It is calculated by summarizing the conditional probabilities of cell visits (Dishion,

Nelson, Winter, & Bullock, 2004; Hollenstein, 2013) in order to do so the Shannon

and Weaver (1949) formula1 for entropy was built into GridWare (Dishion et al.,

2004; Hollenstein, 2013). When visit entropy is high, the system’s behavior

changes frequently between many cells, indicating that the pattern of interaction

is unpredictable. Low visit entropy means behavior remains in only a few states,

returns to the same states often, or constantly visits a few states in the same order;

this indicates a highly organized and predictable pattern of interaction (Dishion

et al., 2004; Hollenstein, 2013; Lunkenheimer & Dishion, 2009).

Areas of Interest and Specific Cells

In some cases researchers may study predefined grid regions, or areas of interest,
which can be based on theory or previous studies. For example, with regard to the

most desirable classroom social climate, we know that assured and helpful teacher

behavior in combination with reliant and collaborative student behavior is good for

learning outcomes and a positive social climate (Wubbels et al., 2006). We could

therefore, define a specific area in the grid and study to what extent the teacher–

class interaction trajectories visit this specific area. To study such areas of interest

Gridware (Lamey et al., 2004) allows selecting specific cells or cell regions of the

SSG, which makes it possible to derive several measures related to those specific

cells or the cell region. These measures are called cell or region measures (Granic &
Hollenstein, 2003). We have already explained some of these measures, such

as perseverance, because this measure is needed to identify attractors with the

winnowing procedure. Remember that perseverance is the mean duration an inter-

action remains in a specific cell. It is however also possible to select multiple cells

and to calculate the perseverance within that entire grid area. Another cell or region
measure is the return latency. Return latency equals the time it takes before an

interaction returns to a specific cell or area of interest and is an additional measure

1 The Shannon and Weaver (1949) formula for entropy that is built into Gridware to calculate visit

entropy: ∑(Pi� ln (1/Pi)). In which i is an index of each cell on the grid and Pi is the probability in

cell i. Thus, for visit entropy, Pi is the number of visits to cell i divided by the total number of visits

in the entire trajectory.
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for the strength of an attractor. A lower return latency indicates a stronger attractor
and a high return latency may indicate a repellor (opposite of attractor) or weak

attractor. A return is defined as a sequence of events starting with the exit from the

cell or region and ending with the return to the cell or cell region. The duration of

this sequence is the return latency. For example, the interaction in a disorderly

classroom may be mutual positive at times, but with long intermediate states

including unfriendly behavior. This would result in relatively long return latencies

for more positive interpersonal states (e.g., friendly behavior) or areas of interest.

Applications of SSG to Study Interpersonal Processes
in Classrooms

In this section we provide some examples of how we used SSGs in our research

focusing on classroom interaction. We present four illustrations of how we used

SSGs and in each example we first sketch the question of the specific study and

explain the global method that was followed. Across the studies different types of

state spaces have been built, which are explained for each illustration separately. It

is also explained which grid measures were chosen and finally, the general conclu-

sion of each study is summarized. The illustrations discussed are all based on

research in Dutch secondary education classrooms.

The illustrations we provide focus on how teacher behavior (an intra-personal

process) or teacher–student interaction (a dyadic process), which occur in real-time,

can be captured with SSGs. In Illustration 1, a specific area of interest, which was

predefined to reflect more favorable teacher–student interaction, was used to facil-

itate the comparison of two classrooms taught by teachers with rather distinct

classroom social climates. In this study three consecutive lessons were included.

In Illustration 2 SSGs are used to plot intrapersonal processes, here the behavior of
the teacher, in terms of agency and communion is examined to illustrate that it is

also possible to study real-time processes within persons. In Illustration 3 we

studied teacher–student interactions of 35 teachers during the lesson start and

studied how content and structure of those interactions are related to the general

classroom social climate. In Illustration 4 we looked at interpersonal teacher

behavior and student behavioral engagement in four classrooms. In this study we

also predefined an area of interest and sampled three classroom situations (i.e.,

lesson start, a positive interaction episode, and a negative episode).

Before we turn to our own research, we would like to emphasize that there are

other examples of educational studies that used SSG analysis. Vauras et al. (2013)

conceptualized teacher–student interaction in terms of scaffolding (Van de Pol,

Volman, & Beishuizen, 2010), that is, from a cognitive perspective. Their question

was whether and how teachers offer opportunities to learn in class, and how (e.g.,

whether or not) students respond to these opportunities (i.e., student up-take).

Turner et al. (2014) chose yet another way to employ SSGs. First, they combined

observations of teacher motivational support with student engagement in a single
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grid, that is, they combined “cause and effect” in one trajectory. They crafted grids

that summarized interactions in three activity settings as the unit of analysis across

12 lessons per year (for 3 years), instead of micro-level second-to-second interac-

tions. All these studies underpin the versatility of SSG analysis.

Illustration 1: Favorable Interaction States

The goal of this study (Mainhard et al., 2012) was to explore the value of SSG for

research on the quality of the classroom social climate by comparing classroom

interaction in a classroom of a teacher characterized as drudging (Teacher A), that

is with according to students a considerably lower agency and communion, with

a class characterized by high levels of both teacher agency and communion (i.e., a

positive climate conducive to learning; Teacher B). A cluster of cells was

defined as reflecting favorable states of classroom interaction to facilitate the

comparison of the two classrooms (see bordered cells in Figs. 12.3 and 12.4).

These interpersonally favourable states reflect what Woolfolk Hoy and Weinstein

(2006) refer to as a warm demander.
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Fig. 12.3 Agency State Space Grids for the two classrooms per lesson. Bordered cells represent
the favorable interaction area. The upper panel (a) refers to the classroom of the drudging teacher,

the lower panel (b) refers to the classroom with the more positive climate
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Approach

Three consecutive lessons in two different classrooms taught by two different teachers

were videotaped and coded for teacher agency and communion and class agency and

communion. In this study the two interpersonal dimensions were directly coded on a

scale running from 1 to 5 (i.e., 1¼ very low vs. 5¼ very high interpersonal agency).

Following an online coding procedure every time either the teacher’s or the class’s
behavior changed a new codewas added. Teacher and class were coded separately and

subsequently codes were combined into SSG trajectories.

Trajectories and Grid Measures

In this study we chose to craft two 5� 5 SSGs which represented the interpersonal

teacher–classroom state space: one representing the interactional trajectory in terms

of agency (i.e., combining teacher and class agency in one SSG) (Fig. 12.3) and one

representing a communion trajectory (Fig. 12.4).

As working hypothesis and in order to compare the two classrooms we defined a

favorable interaction area reflecting interactional states that we thought of being

relatively more positive or constructive than other states. This area of interest was

defined based on findings of previous research described by Wubbels et al. (2006).
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Fig. 12.4 Communion State Space Grids for the two classrooms per lesson. Bordered cells
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We used the perseverance and return latency measures to further explore the areas

of interest for these two classrooms’ interactional trajectories. To study variability

the whole-grid measures TCT and dispersion were calculated. As higher values of

agency and communion are more conducive to learning, the areas we defined here

encompass states including relatively high teacher and low student values on

agency (i.e., cells 32, 42, and 43), and “neutral” to friendly teacher and student

values for communion (i.e., cells 33, 34, 43, and 44). The more favorable areas in

the SSG are represented by the bordered cells in the grids (Figs. 12.3 and 12.4).

States that include the highest teacher values on agency in combination with the

lowest possible student values (e.g., cells 41 or 51, a combination of obedient

students and a very strict teacher) were considered as less desirable. Likewise,

combinations with very high teacher and student Affiliation values (e.g., cells 54 or

55, the teacher is or tries to be “one of the crowd”) were also regarded as less

desirable. Note however, that occasional projections of a trajectory into less

favorable areas were not deemed unwanted. On the contrary, occasional interaction

in the less favorable areas might sometimes be necessary or beneficial, for example,

when a teacher is restricting incidental deviant student behavior.

Findings and Conclusion

Already a first visual inspection of the interactional trajectories shows that the two

classrooms differ. Interaction remained longer in a specific state (see the larger dots

in the lower panel of Fig. 12.4) in classroom B with the more favorable overall

climate, whereas interaction in the upper panel, representing the classroom of the

drudging teacher, consists of smaller dots (short durations in a specific state) and

more projections in various areas of the grid. Nonetheless, it seemed that the

interaction trajectories in both classrooms were rooted within roughly comparable,

central regions of the grid. Figures 12.5 and 12.6 summarize the perseverance and
return latencymeasures for the favorable areas of the agency and communion SSGs

as histograms.

For agency, cell 42 had the largest perseverance in both classrooms (somewhat

higher teacher than student agency) as is indicated by the relatively large perse-
verance bars in Fig. 12.5.

Since a strong perseverance may be regarded as an indicator of an attractor in a
system cell 42 could be regarded as an attractor for both teachers. Yet the interac-

tion of classroom B was more strongly attracted to this specific agency state than

classroom A, taking the three lessons together, perseverance of cell 42 was twice as
large in classroom B (A¼ 0.35; B¼ 0.65). Furthermore, the return latencies of the
cells included in the favorable agency area indicated that the interaction of class-

room B was much faster to return to these favorable states than classroom

A. Taking the three lessons together, the shortest return latency in classroom A

(0.11, cell 43) was about four times longer than the shortest return latency of

classroom B (0.03, cell 43). Thus the attraction to cell 43 was much stronger for

classroom B than for classroom A.

12 Analyzing Teacher–Student Interactions with State Space Grids 247



The state occurring most frequently in the interaction trajectories for communion

of both classrooms was reciprocated “neutral” interaction (cell 33; Fig. 12.4). For

example, the teacher goes through a homework assignment without much enthusiasm

while students cooperate, but do not contribute spontaneously. Interestingly, in

classroom A with the less desirable climate this state had the highest perseverance

of all states in this study (0.63, Fig. 12.6). Also, return latencies of the states included
in the favorable areas were markedly longer for the communion interaction trajecto-

ries of classroom A (see Fig. 12.6). In the more positive classroom B however, from

lesson two on a state including warm teacher behavior showed the highest persever-
ance (cell 43, perseverance¼ 0.56). Thus, interaction in the more positive classroom

was more strongly attracted to states including warmer interaction.

In Table 12.1, the whole-grid measures TCT and dispersion are summarized.

Both the agency and communion interaction trajectories of classroom A with the

less positive classroom climate were more dispersed and fluctuating than those

interaction trajectories of classroom B.

The higher variability of the interaction in classroom A was most obvious in

terms of the transitions between interpersonal states (i.e., TCT), especially for

agency. Overall, it appeared that interaction in classroom B was more consistent

and visited more positive interpersonal states.
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Table 12.1 Grid-measures for agency and communion trajectories of the three lessons

Agency Communion

Total cell

transitions

N of visited

cells (dispersion)

Total cell

transitions

N of visited cells

(dispersion)

Classroom A

Lesson 1 1.62 10 0.97 6

Lesson 2 3.04 10 2.72 11

Lesson 3 1.88 8 1.77 10

Total 2.12 13 1.77 12

Classroom B

Lesson 1 0.49 4 0.72 5

Lesson 2 0.63 7 1.75 7

Lesson 3 1.11 7 1.44 9

Total 0.74 9 1.30 10
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Thus, although interaction in both classrooms was primarily characterized by a

positive interpersonal valence, greater variation seemed to be linked to movements

away from more favorable interpersonal states, and lower variability seemed to

indicate more balanced interpersonal interaction and less “need” for projections

into less favorable states.

Classroom A resided relatively longer in less favorable agency and communion

states (43 % and 15 % of the total time respectively), while the trajectory of

classroom B seemed to just shortly tap these less favorable states (13 % and 4 %

of the time), returning quickly to more favorable states, which is also indicated by

the smaller and less frequent dots in the B-grids outside the favorable areas (see

Figs. 12.3 and 12.4).

An example of a projection into less favorable interaction areas in classroom B is

a situation where the teacher was confused about his notes and tried to figure out

what he wanted to do; meanwhile the students started to chat rather loudly.

However, as soon the teacher had reorganized, the students were back on track

immediately. Notably, the agency trajectory of classroom A projected into inter-

personal states including the highest teacher values for teacher agency (i.e., cells

52, 53, and 54), which the trajectory in classroom B never did. In classroom A the

teacher for example restricted students with a high intensity for relatively minor

disruptions, to which the students occasionally responded indignantly.

In classroom A projections of the communion trajectories covered states

representing both relatively high-, and low-reciprocated communion (e.g., cells

44 and 22, see Fig. 12.4). In contrast to classroom B, states with the highest teacher

communion scores were not covered by the trajectory of classroom A at all.

To sum up, in both classrooms only one clear attractor was found, rather than

multiple stable states of interaction. This might reflect the commonly assumed

social hierarchy in the classroom, with legitimate teacher power in combination

with a basically non-oppositional attitude of both teacher and students towards each

other. However, although in both classrooms the same agency attractor existed, it

was stronger in the classroom with the more positive social climate. Thus, the

differences between the two classrooms were especially apparent in the strength of

the attractor and not in its position in the state space. The findings suggest further

that variability in interaction is a potent variable in explaining differences in the

quality of classroom social climates. In the more negative classroom not only four

times more time was spent in less favorable interpersonal states, interaction also

shifted far more often between different states (Table 12.1).

Illustration 2: Intrapersonal SSG of Teacher Behavior

In another study (Pennings, Brekelmans et al., 2014) we used a different application

of SSGs. We did not study the content and structure of dyadic interactions but

instead used SSGs to build intrapersonal trajectories depicting how teacher behav-

ior differs for teachers with different general types of classroom climates.
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Approach

To observe sequences of real-time or micro-level teacher behavior we used Sadler’s
Computer Joystick method (Box 12.1; Sadler, Ethier, Gunn, Duong, & Woody,

2009). This method enabled us to observe teacher behavior (1) as a blend of agency

and communion and (2) continuously over time (behavior is coded every half

second).

As in Illustration 1, we defined the macro-level classroom social climate as

aggregated student perceptions of interpersonal teacher behavior, tapped with the

Questionnaire on Teacher Interaction (QTI), also in terms of agency and commu-

nion. These aggregated perceptions represent relatively stable and predictable

patterns of teacher behavior resulting from frequent interpersonal behavior

exchanges between a teacher and his or her students (cf., Mainhard et al., 2011).

Assuming that the quality of the classroom social climate is based on student

perceptions of actual interactions in class, our goal was to study the correspondence

between the location of attractors in teacher behavior and the degree of agency and

communion characterizing the general quality of the social climate. Thus, we

expected that differences in general climate would be reflected in differences in

the content of teachers’ micro-level interpersonal behavior as indicated by

(a) differences in the strength or existence of attractors and/or by (b) the location

of attractors in the SSG. We formulated specific criteria to assess the correspon-

dence between micro-level behavior (i.e., location of attractors) and macro-level

classroom social climate. First, we expected that teachers with a classroom social

climate characterized by high levels of agency and communion (teacher A and B;

Fig. 12.7) would have attractors in the upper right part of the SSG: e.g., frequent

occurrences of laughing, helping, and explaining in a friendly manner. Second, we

expected that teachers with a classroom social climate characterized by low levels

of agency and high levels of communion (teacher C and D) would have attractors in

the lower right part of the SSG: frequent occurrences of for example tolerant or

understanding behavior. Third, we expected that teachers with a classroom social

climate characterized by low levels of agency and communion (teacher E and F)

would have attractors in the lower left part of the SSG we used in this study:

frequent occurrences of aggressive, hesitating, and uncertain behavior. Finally, we

expected teachers with a classroom social climate characterized by high levels of

agency and low levels of communion (Teacher G and H) to have attractors in the

upper left part of the SSG, reflecting frequent occurrences of, for example, sarcasm

or confrontational and enforcing teacher behavior.

Our expectations concerning structure were based on previous findings about

which social climate types are most productive in terms of student or teacher

outcomes and classroom atmosphere (see for an elaborate overview Wubbels

et al., 2006) and also findings from our previous SSG case studies (Mainhard

et al., 2012; Pennings, Van Tartwijk et al., 2014). We expected that teachers with

climates characterized by lower levels of agency and communion would have

higher variability (more visited cells, lower mean durations of visits) and less

predictable trajectories (higher entropy) in real-time interpersonal teacher behavior
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Fig. 12.7 SSGs for eight teacher’s (A–H) interpersonal behavior. Agency is represented on the

y-axis and Communion on the x-axis. The black lines are included to illustrate how the SSGs

represent the IPC as an interpersonal grid
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than teachers with climates characterized by higher levels of agency and commu-

nion. More specifically we expected a negative association between agency and

communion with the number of visited cells and with visit entropy, and a positive

association between agency and communion and the mean duration per cell visit.

Trajectories and Grid Measures

To analyze the content and structure of micro-level interpersonal teacher behavior,

a combined agency and communion SSG was built with Gridware (Lamey et al.,

2004). The with the Joystick coded behavior was represented with 20 categories and

1 category included just the 0 value, resulting in 21 categories per dimension

ranging from �10¼Very low Agency/Communion (0¼Neutral) to 10¼Very high
Agency/Communion. In this study we used what Hollenstein (2013) refers to as the

more simple criteria for the identification of attractors. We selected a cell or cluster

of cells if (a) the average duration per cell was longer than 100 s (i.e., based on

30 min coding and 441 cells) and (b) the number of visits per cell was larger than
two times the average number of visits of all eight teachers.

This study used three whole grid measures concerning the structure of teacher

behavior: the number of unique cells visited, the average duration per cell, and visit
entropy.

We defined our criterion for differences in structure in real-time interpersonal

behavior between teachers as larger than 1 SD difference regarding number of

visited cells and mean duration per visit. For visit entropy, we followed the

procedure used by Dishion et al. (2004) using boxplots to identify teachers with

highly predictable versus highly unpredictable behaviors. Visit entropy values

within the first quartile (i.e., 25th percentile) were regarded as low, thus highly

predictable. Visit entropy values in the second quartile (i.e., the median split) were

regarded as average predictability, and visit entropy values in the third quartile (i.e.,

75th percentiles) were regarded as highly unpredictable.

For structure in real-time interpersonal behavior, we explored whether differ-

ences between teachers were related to the level of agency and communion of their

macro-level classroom social climate. In order to do so we calculated Spearman’s
rank-order correlations between the grid measures and the continuous scores for

agency and communion characterizing the macro-level classroom social climate.

Findings and Conclusion

The SSGs representing the interpersonal behavior of the eight teachers are

presented in Fig. 12.7. It can be seen that the trajectories depicted are somewhat

different from the example in Fig. 12.2 and the SSGs in Illustration 1. GridWare

provides two options for visualization, the random and the diagonal layout of SSGs.

The SSGs in Figs. 12.2, 12.3, and 12.4 are examples of the random layout, but for

the SSGs in Fig. 12.7 (and also Fig. 12.8) we used the diagonal layout. Also, the
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nodes are not really visible in these SSGs, the reason for this apparent lack of nodes

is that the interaction trajectory is 30 min long and the number of possible cells is

very high, transitions to adjacent cells occur more frequently and as a result the

nodes are very small and almost invisible.

Visual inspection of the different SSGs in Fig. 12.7 already shows some obvious

differences between the selected teachers in terms of their real-time behavior

trajectories. The trajectory of Teacher B for example was characterized by almost

entirely highly communal and agentic interpersonal states. Compared to Teacher E’s
behavior, who seemed very submissive and frequently switching between

unfriendly and friendly behavior, the behavior of Teacher B seemed much more

predictable. The grid measures as presented in Table 12.2 confirmed this (i.e.,

43 versus 112 visited cells, an average of 42.57 versus 16.26 s visit duration, and

the lowest versus one of the highest values for visit entropy).

The identified attractor cell(s) with corresponding values for perseverance and

number of visits are presented on the right in Table 12.2. The level of agency in

teacher behavior corresponds to the y-part and the level of communion in teacher

behavior corresponds to the x-part of the cell(s).
Figure 12.7 and Table 12.2 indicate that the majority of the attractors in teacher

behavior trajectories were found in the SSG area corresponding to the levels of

general agency and communion that characterized the macro-level social climate of

that teacher. Note that for teachers D, E, and G, no specific attractors could be

identified.

Most results for structure were in line with our hypothesis, yet for teacher A, D

and H the findings were only partly in line with the hypotheses. For example, we
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Fig. 12.8 SSG for a helpful and a drudging teacher in this study. The number 1–8 correspond to

the octants of the IPC-T/IPC-S 1 is the upper right octant (i.e., assured/pro-active) and 8 is the

upper left octant (i.e., imposing/critical). The red lines mark the identified attractor cells

254 H.J.M. Pennings and T. Mainhard



expected that the number of visited cells would be lower for teacher A and higher

for teacher H, both numbers of visited cells were indeed lower than the number of

visited cells for teacher D, E, F, and G. Yet based on the desirableness of the

classroom social climates we expected that the number of visited cells for teacher A

would be more similar to teacher B, and for teacher H we expected that the number

of visited cells would be more similar to teacher C. The result showed that teacher

A and H were more similar and teacher B and C were more similar in the number of

visited cells.

We calculated Spearman’s rank correlations to explore whether differences

between teachers were related to the level of agency and communion characterizing

the teachers’ macro-level social climate. For Number of visits and Visit entropy, we
found negative correlations with agency. Respectively Spearman’s Rho were�0.36

and �0.05. For Duration in visited cells we found a positive correlation,

Spearman’s Rho was 0.33. However, none of the correlations were significant.

For communion we also found very high and significant correlations with all

three whole grid measures. For Number of visits and Visit entropy, we found

negative correlations with communion. Respectively Spearman’s Rho were

�0.90 and �0.73, and for duration in visited cells we found a positive correlation,

Spearman’s Rho was 0.86. Thus, we could only confirm our hypothesis about the

relation between macro-level communion and micro-level structure of interper-

sonal teacher behavior.

Table 12.2 Results for content and structure in interpersonal teacher behavior

Whole grid measures Attractor cells

Number of visited

cells

Average cell

duration

Visit

entropy Cells Perseverance

Number of

visits

A 75 24.98 3.54 48 107.0 41

74 166.5 48

95 110.5 18

58 209.0 43

57 166.5 55

B 43 42.57 3.07 55 143.50 28

66 172.5 46

65 199.5 56

64 212.5 62

C 44 41.56 3.29 5�1 101.0 15

63 115.5 34

62 124.5 35

6�1 360.5 20

D 103 17.51 4.35 NAS – –

E 112 16.26 4.39 NAS – –

F 114 15.82 4.23 �1�2 108.5 41

G 113 15.62 4.46 NAS – –

H 88 20.34 3.99 46 102.0 26

Note. NAS no attractor specified
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Overall, using SSGs in this study allowed us to visualize and study how the

content and structure of interpersonal teacher behavior and to show how they

differentiate between teachers with different types of classroom social climates.

Illustration 3: Interpersonal SSG of Teacher–Class Interaction

In a recent study (Pennings et al., 2015) we studied the content, structure, and

degree of complementarity in teacher–student interactions during the lesson start of

35 teachers with different classroom social climates. In order to do so we included

observations of both the teacher’s and the students’ (coded as whole class) behavior.

Approach

Our observational approach was similar to our approach in Illustration 2. Again we

used the joystick method (Box 12.1) to observe interpersonal teacher behavior, yet

for this study we also included observations of class interpersonal behavior. Since

we included 35 teacher–class dyads we were able to use some additional statistical

analyses to study differences between teachers.

Also, we introduce a new concept in this study, the concept of complementarity
which is rooted in interpersonal theory. The principle of complementarity defines

how the interpersonal behaviors of both participants fit together, mutually adjust to

each other, and how this dynamically changes during interactions. Complementar-

ity in terms of agency is called reciprocity, and denotes the tendency to pull an

interaction partner towards oppositeness. Complementarity in terms of communion

is called correspondence, and denotes the tendency to pull a partner in interaction

towards sameness (Sadler et al., 2009).

Trajectories and Grid Measures

The SSGs in this illustration represent dyadic behavior states (combinations of

teacher and class behavior) and are therefore comparable to the SSGs presented in

Illustration 1. The difference is that in the present illustration we combined the level

of agency and communion in teacher and class behavior into one SSG. In order to

do so we recoded (following a procedure described by Gurtman, 2011) the joystick

data into eight categories corresponding to the octants of the IPC-T and IPC-S and

collapsed those on the x-axis (teacher) and y-axis (class) of the SSG. This yielded
SSGs similar to the example SSG provided in Fig. 12.2.

In this study we used the winnowing procedure (Hollenstein, 2013; Lewis et al.,

1999) to empirically derive attractors to study the content of the interactions. We

expected that the octant representing the teacher behavior component of the attrac-

tor cell(s) (micro-level data) would correspond to the octant that characterized the

256 H.J.M. Pennings and T. Mainhard



classroom social climate (macro-level data). Given the complementarity principle

we expected that octants corresponding to the class behavior component of the

attractor cell(s) would represent opposite behavior for teacher agency and similar

behavior for teacher communion. Thus, if the attractor cell corresponds to the first

octant for teacher behavior (assured; i.e., which is characterized by high levels of

agency and moderately high levels of communion), we expected that the octant for

class behavior would be octant 4 (reliant; i.e., which is characterized by low levels

of agency and moderately high levels of communion).

For structure we formulated the following expectations based on our previous

studies; we expected that interactions of teachers with desirable classroom social

climates would be less variable than interactions of teachers with less desirable

classroom social climates. To study the structure of the teacher–class interactions

we used the grid range, the duration per cell, the number of transitions, duration
per visit, dispersion, and visit entropy.

Findings and Conclusion

The SSGs for the teacher–class interaction of two of the 35 teachers are presented in

Fig. 12.8. One for a assured teacher and one for a drudging teacher. These two SSGs

show differences between the interactions trajectories of both teachers.

In Table 12.3 the results of the winnowing procedure are provided. For most

teachers one or two attractor cells are identified. The perseverance values show

that for those teachers the attractors are strong. For some teachers more than two

attractors are identified, for these teachers the attractors are weaker. Also for both

the helpful (16) and drudging teacher (27), of whom the SSGs are provided in

Fig. 12.8, two attractor cells are identified. However, the location and strength of

these attractors is quite different. For the helpful teacher the attractor shows that

the teacher mainly shows helpful behavior and the students mainly are reliant

or collaborative (i.e., cell 24 and 23). The two cells are adjacent to each other and

together form an attractor region. For the drudging teacher two quite different

cells are identified as attractors, the drudging teacher shows imposing and

compliant behavior and the students mainly show critical behavior (i.e., cell

48 and 88). That the strength of the drudging teacher’s attractors is weaker

than those of the helpful teacher, which can also be seen in the visualizations

of the SSG as well as in the grid measures that represent structure, provided in

the next section (Table 12.3).

From Table 12.3 it can also be seen that 32 out of 35 teachers have at least one

attractor where teacher behavior is characterized by assured or helpful behavior. Of

these 32 teachers 10 teachers have attractors with students also showing more

agentic (i.e., critical, proactive or supportive) behavior. Most of these teachers

have a drudging classroom social climate according to their students. The other

three teachers have attractors of compliant or imposing behavior, it can also be seen

that students of these teachers are mainly critical, confrontational or dissatisfied.

These three teachers all have drudging classroom social climates.
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In Table 12.4 the overall means and standard deviations of the grid measures of

the 35 teachers and the means and standard deviations per classroom social climate

are provided. We concluded that there are large variations between the teachers for

most grid measures.

In this study we carried out quantitative statistical analyses to study differences

in teachers’ grid measures. Six separate ANOVAs were carried out to compare grid

measures between teachers with different classroom social climates. The results

showed that all grid measures except duration per visit [F(5, 29)¼ 1.75, p¼ 0.156]

showed significant differences between teachers with different classroom social

climates. Post hoc tests showed that: (1) ForGrid range [F(5, 29)¼ 3.06, p¼ 0.025]

teachers with a drudging classroom social climate visited significantly more cells

than teachers with assured ( p< 0.01) and helpful ( p< 0.01) classroom social

climates. (2) The Number of transitions [F(5, 29)¼ 2.69, p¼ 0.041] was signifi-

cantly higher for teachers with an imposing classroom social climate compared to

teacher with a helpful classroom social climate ( p< 0.05). Teachers with a drudg-

ing classroom climate switched cells significantly more often than teachers with an

assured ( p< 0.05) or helpful ( p< 0.01) climate. (3) For dispersion [F(5, 29)¼
2.99, p¼ 0.027] teachers with an assured classroom social climate had significantly

lower dispersion than teachers with a compliant ( p< 0.05), imposing, or drudging

( p< 0.01) climate. (4) For Visit Entropy [F(5, 29)¼ 3.03, p¼ 0.024] teachers with

a drudging climate had significantly higher visit entropy values than teachers with

an assured or helpful classroom social climate ( p< 0.01. (5) For Duration per cell
[F(5, 29)¼ 2.60, p¼ 0.047] teachers with a drudging social climate had signifi-

cantly lower cell durations than teachers with an assured ( p< 0.05) or helpful

( p< 0.01) climate. Thus, these results showed that especially teachers with a

drudging social climate, which is relatively less desirable, show significantly

more variability in their interactions with the class than teachers with assured and

helpful social climates, which are the most desirable social climates in terms of

student and teacher outcomes.

Table 12.4 Means and standard deviations for the grid measures

Style Grid range

Number of

transitions Dispersion

Visit

entropy

Duration

per cell

Duration

per visit

1 12.50 (3.27) 43.83 (7.73) 0.73 (0.10) 2.16 (0.46) 50.11 (14.48) 13.77 (2.53)

2 12.84 (4.02) 43.23 (14.46) 0.80 (0.08) 2.26 (0.32) 49.80 (14.75) 14.13 (4.07)

3 15.33 (5.51) 61.00 (39.15) 0.78 (0.10) 2.40 (0.30) 42.95 (19.36) 143.80 (12.71)

4 16.50 (0.71) 54.50 (7.78) 0.89 (0.04) 2.59 (0.08) 35.64 (1.53) 10.89 (1.55)

8 18.33 (3.27) 77.00 (30.80) 0.90 (0.01) 2.66 (0.06) 32.19 (2.62) 8.76 (4.29)

9 24.13 (12.56) 76.50 (32.89) 0.87 (0.08) 2.83 (0.52) 30.40 (14.35) 8.94 (3.67)

Total 16.26 (7.98) 56.74 (25.75) 0.82 (0.09) 2.44 (0.44) 42.51 (15.80) 12.30 (5.13)

Note. Standard deviations are presented within brackets
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In sum, the study showed that the number, the strength, and the location of

attractors varies between teachers with different classroom climates. Also, a quan-

titative comparison of the interaction trajectories in terms of the grid measures

showed, for example, that teachers with less desirable classroom climates changed

their behavior more often and were relatively more unpredictable.

Illustration 4: Interpersonal Teacher Behavior and Student
Behavioral Engagement

This example was adapted from an unpublished study (Pennings et al., 2012). In

this study we observed in four teacher–class dyads interpersonal teacher behavior

and student behavioral engagement (Fredricks, Blumenfeld, & Paris, 2004) in terms

of active or passive on- and off-task behavior (Skinner, Kindermann, & Furrer,

2009). The idea of this study was that students of teachers with classroom social

climates characterized by higher levels of agency and communion have better

academic results (Wubbels et al., 2006) and show more behavioral engagement

(Birch & Ladd, 1997; Valeski and Stipek (2001).

Skinner and Belmont (1993) for example, found that students’ emotional and

behavioral engagement was not only influenced by their perception of the class-

room social climate, but also by the teachers actual behavior. Therefore we wanted

to observe interpersonal teacher behavior in connection with student behavioral

engagement. In this illustration we stick to what can be seen in the SSGs. We

included this example for the purpose of illustrating that it is also possible (1) to

create SSGs with different kinds of behavior for the two parties in the interaction

(i.e., interpersonal behavior vs. student behavioral engagement), and (2) to create

asymmetrical SSGs (i.e., 8� 4 SSGs).

Approach

Participants were four secondary school teachers with their students. These teachers

were chosen based on their classroom social climate (based on their agency and

communion scores measured with the QTI). Figure 12.9 the SSGs of the four

teachers are ordered following the quality of the social climates of these teachers

(i.e., teacher A in the upper right quadrant; teacher B in the lower right quadrant;

teacher C in the lower left quadrant; and teacher D in the upper left quadrant of the

IPC-T).

We used the joystick method (Box 12.1) to observe teacher behavior the same

way we described in Illustration 2 and 3. Yet we also used the joystick method to

observe student/class engagements as two dimensions. The horizontal axis was

used to observe on-task (þ) vs. off-task (�) student behavior, and the vertical axis

was used to code whether on/off-task behavior was active (þ) or passive (�).
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Gurtman’s (2011) procedure was used to recode teacher interpersonal behavior

coordinates into the octants of the IPC-T. The student engagement coordinates were

also recoded following this procedure, but an additional computation was used to

combine the octants into quadrants, resulting into four categories representing the

observation categories defined by Skinner et al. (2009): (1) On-task active (upper

right quadrant), (2) On-task Passive (lower left quadrant), (3) Off-task Passive

(lower left quadrant), and (4) Off-task Active (upper left quadrant).

Findings and Conclusion

As can be seen in Fig. 12.9, the four lower left cells (11, 12, 21, and 22) in the SSGs

are marked with a thicker line.

This area is the predefined area of interest where teacher behavior is assured

and helpful and student behavior is active or passive on-task. All four interac-

tions regularly visit the cells in this area. The nodes in this area of interest are

larger for teacher A and D, than for teacher B and C. This means that the

duration of individual visits to these states for teacher A and D were longer than

for teacher B and C. The SSGs also show that the interactions of teacher A and

D less often and for shorter durations of time visited areas of the grid where

students are off-task than teacher B and C. In addition, the interactions of

teacher C and D show more behavior that is characterized by lower levels of

communion (i.e., uncertain, dissatisfied, confrontational or imposing behavior)

than teacher A and B.

Thus, even without using any grid measures the visual information provided by

the SSGs provides information about the interactions in these classrooms. It also

shows that although classroom social climates (macro-level) of these four teachers

are different with some being more favorable, that students in all classrooms still

show some degree of on-task behavior, and that teachers show some degree of

assured and helpful behavior.

Box 12.1: Sadler’s Computer Joystick Method for Observation
of Interpersonal Teacher and Student Behavior

Interpersonal behavior of students and teachers was coded continuously

within the IPC following an online-scoring procedure and using Sadler’s
joystick tracking method (Fig. 12.10) (Sadler et al., 2009).

(continued)

12 Analyzing Teacher–Student Interactions with State Space Grids 263



Box 12.1 (continued)

Fig. 12.10 Sadler’s computer Joystick observation (this picture is adapted from Pennings,

Brekelmans et al., 2014)

First teacher behavior and then student behavior was coded in separate

observation sessions. The joystick tracking device is designed to observe

verbal and nonverbal behaviors that have clear interpersonal meaning

(Markey, Lowmaster, & Eichler, 2010). By moving the joystick in a certain

direction the behavior of people can be observed (a) continuously in time

(online observation) and (b) represented as a degree of both agency and

communion (Markey et al., 2010). Thus, an observer moves the joystick to

code the teacher’s or the students’ ongoing interpersonal behavior, while

watching a video recording of a lesson. The joystick device enabled us to

observe behavior as a specific blend of agency and Communion, instead of

coding behavior separately (and arbitrarily) for both dimensions.

Joymon
This joystick method comes with a computer program (Joymon.exe; Lizdek,

Sadler, Woody, Ethier, & Malet, 2012) that numerically records the exact

location (based on X- and Y-coordinates) of the joystick within a two dimen-

sional space, meant to represent the IPC (Markey et al., 2010; Sadler et al.,

2009). During the observation, a dot in the IPC (i.e., presented in a separate

(continued)
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Box 12.1 (continued)

screen) marks the exact location of the joystick. These behavior coordinates

ranged from �1000 (i.e., very low agency/Communion) to þ1000 (very high

agency/Communion). This range is a default setting of the joymon-progam

and ensures maximum sensitivity of the computer joystick device. Also, by

default the program is set to record the joystick cursor’s location twice per

second. We also used this default setting to record teacher and student

behavior twice per second.

Thus, in a study where 10 minute interactions are observed, about

600 behavior coordinates were provided for agency and Communion, per

teacher and class. For a more elaborate description of this computer joystick

procedure see Lizdek et al. (2012).

Joystick Training and Interrater Reliability
To learn how to observe teacher–student interactions with the computer joystick

two of the researchers (first author and last author of the study presented in

illustration 3) participated in a computer joystick training provided by Pamela

Sadler. Four trained observers independently coded the videos. Every video was

coded by two out of these four observers. Interrater reliability was established for

the observations by calculating intraclass correlations (ICC(K); Markey et al.,

2010; Thomas et al., 2014). Resulting in ICC(K¼ 2) values of 0.72 for teacher

agency, 0.84 for teacher communion, 0.82 for student agency, and 0.89 for

student communion. This indicated strong agreement between the observers

(LeBreton & Senter, 2008).

General Discussion

Our goal for this chapter was to illustrate a process oriented way of doing classroom

research. We wanted to show how moment-to-moment or real-time classroom inter-

action can be captured and studied with State Space Grids (SSGs) (Hollenstein, 2013;

Lewis et al., 1999). We think that SSGs are a suitable tool for many issues that arise

when classroom or educational processes are approached from a CDS perspective.

SSGs make it possible to visualize and capture many features of real-time interaction.

This in turn allows us to study how higher levels developmental outcomes, like the

quality of the classroom climate or for instance student engagement, are grounded in

real-time processes but also how they restrain those real-time processes at the same

time. Therefore, SSGs offer away tomove away from solely product oriented research

that summarizes entire lessons or even larger time units in single measures.

An approach that is much needed in order for educational scientists to make a

contribution to educational practice (Koopmans, 2014; Wubbels et al., 2012).
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We provided four illustrations of how we approached the study of the classroom

socialclimateand its connectionwith teacher interpersonalbehaviorandteacherstudent

interactions. We think that using SSGs has advanced our understanding of teaching in

terms of what teachers seem to have in common regarding interpersonal processes, but

also in terms of differences between teachers and types of classroom climates.

One basic observation is that visualizations of interactions in different class-

rooms are already compelling in the way they convey differences and sameness

between teachers. In exploratory studies this helps to formulate hypotheses about

the content and structure of interactions, which can be tested with more advanced

methods and larger sample studies. For example, in all of the illustrations the visual

inspection of the SSGs shows that there seems to be a rather common base in the

interpersonal state space all teachers share and that in most classrooms only this one

general attractor exists. This common base consists of states where teacher and

class are both friendly (or on-task for students), for example by showing assured

and helpful behavior. Yet variation on the agency dimension in combination with

friendliness (high communion) is possible. Note that for classrooms in which this

area is not an attractor as such, the interaction still visits this area quite often.

Therefore, differences between teachers seem to be rooted more in the way they

move in and out of this area or an attractor, rather than in were an attractor is

located. Indeed, as the illustrations included in this chapter show, this first obser-

vation is confirmed when more sophisticated grid- and cell-measures are employed.

Specifically in Illustration 3, which uses relatively more advanced techniques and

the largest sample, it becomes clear that there is something like a commonly

assumed social hierarchy in the classroom, with legitimate teacher power in com-

bination with a basically non-oppositional attitude of both teacher and students

towards each other (moderately high agency and communion or in other words

assured or helpful teacher behavior).

Notwithstanding these common features of classrooms, a lot of differences in

interaction were detected. The main theme seems to be that the more favorable the

general classroom climate (also in terms of student and teacher outcomes; Wubbels

et al., 2006), the more firmly interaction is rooted in a moderately high agency and

communion attractor, and the more classrooms divert from this more favorable

states, the more variable or chaotic classroom interaction becomes. This is apparent

in all of the four illustrations used here and specifically reflected in grid- and cell-

measures like the number of transitions between states, duration per cell, but also

more sophisticated measures like visit entropy. Not only teachers that have a what

we have called drudging social climate in class change more often between

interpersonal states, also interactions in classrooms of teachers where the classroom

social climate is generally imposing or compliant, interactions showed relatively

more variability. Indeed, as Illustration 2 shows, correlations between agency and

communion and many of the measures that indicate variability are negative,

indicating that less social influence and less warmth go together with more vari-

ability in classroom interaction.

Not only variability indicated less favorable interactions, interactions may also

visit more “extreme” cells of the grid (for example states including the highest
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scores for teacher dominance) from time to time (see for example discussion of

Illustration 1). As these extreme episodes of interaction seem to be very short, it is

questionable whether such a characteristic of classroom interaction could have been

captured with more product oriented approaches.

We think that the use of SSG is attractive also because of the intuitive way of

visualizing data and the versatile way in which grids can be built and employed.

Indeed, there are many ways in which SSGs can be build, varying the combinations

of dimensions, methods of observation, study individual behavior (e.g., Pennings,

Brekelmans et al., 2014), dyadic interactions (e.g., Granic et al., 2003; Mainhard

et al., 2012), and even triadic interactions (e.g., Lavictoire et al., 2012) and one can

chose to conceptualize development and visualize trajectories over time

(e.g. Granic et al., 2003; Turner et al., 2014). Also the possibilities for the inter-

pretation of the resulting data are virtually infinite. Possibilities for analysis start

from mere visual inspection of SSGs, include qualitative comparison of cell and

whole grid measures (e.g., Illustration 1), but also allow researchers to conduct

more advanced analysis, for example by using the winnowing procedure for

attractor identification. Of course it is also possible to use any measure resulting

from SSG-analysis in more “classical” statistical analyses (see Illustration 3) and in

multilevel or structural equation modeling to test hypotheses. Thus, researchers

with various degrees of statistical knowledge should be able to profit from this tool.

Bear in mind, however, that the SSG technique is merely as good as the data that is

used. It totally depends on the theoretical rigor that underlies the decisions made by

the researcher who builds the grids.

Overall, SSGs and CDS thinking are very promising in educational research,

because they provide the means to study individual teachers, teacher–student/class

dyads, teacher teams, teachers with parents, or student–student interactions. It is

possible to generalize results across, for example, teachers but also to focus on

individual development of teachers or students. The insights in the differences in

content and structure that we have found in our studies can easily be incorporated in

professional development courses for teachers (e.g., to create awareness on the effect

of behavior in interactions with students on the teacher–student relationship or the

general classroom social climate; Pennings, Van Tartwijk et al., 2014). The interested

reader should turn to Hollenstein (2013) for a more comprehensive introduction to

SSG analysis or should consult the GridWare manual (Lamey et al., 2004).
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Chapter 13

Nonlinear Dynamical Interaction Patterns
in Collaborative Groups: Discourse Analysis
with Orbital Decomposition

Dimitrios Stamovlasis

Introduction

Literature on learning-in-groups research, in all areas of education, frequently

makes use of the term group dynamics to refer to a hypothetical dynamical process

taking place when individuals are interacting within a group setting. This is not

surprising because most researchers acknowledge the inherent dynamical character

of human and social experience, expanding from the microlevel processes of mind

functioning to the macro-level processes of collective and social life. Paradoxically,

most of the research endeavors in this area have been carried out in the traditional

way, ignoring the time aspect and any reference to dynamics is considered merely

at a metaphorical level.

Nevertheless, focusing on some ontological aspects of group functioning one

may recognize that the dynamics is more than a metaphor and acknowledge that a

different methodological framework is needed for a profounder investigation.

Considering the interactions among group members working towards a common

goal that requires collective action, it is observed that individuals adapt their

behavior according to other’s actions. They respond and add iteratively to the

ongoing process, the results of which cannot be reduced to the behaviors of

individual group members. Interactions among participants give rise to an outcome

that is not explicably understood as resulting merely from the individual actions,

because it emerges from a complex dynamical process and it can be understood

only in an evolutionary context. Thus, group interaction processes cannot be

effectively studied with conventional linear approaches which are incompatible

with the nature of the underlying phenomena.
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This chapter presents and exemplifies the application of nonlinear dynamics and

complexity framework to the study of learning-in-groups studies focusing on

science education. A discourse analysis is carried out by orbital decomposition
analysis (ODA), a method designed for data that comprise categorical time series.

In the beginning, a short reference to cooperative learning literature in science

education is made. The section that follows discusses theoretical issues, such as the

ontological characteristics of verbal interaction processes, and it reveals the

nonlinear nature of the discourse taking place in a cooperative learning setting.

Subsequently, fundamental theoretical concepts, such as entropy, self-organization,
and inverse power law distribution, are explained in relation to discourse analysis;

also, methodological assets of nonlinear dynamics and complexity, such as Shan-
non entropy, topological entropy, dimensionality, and Lyapunov exponent, are
presented along with the basics of ODA. Results from experimental data and

their interpretation are presented analytically in the following section, while a

final discussion on methodological and epistemological issues along with implica-

tions for educational theory, practice, and research is provided.

Learning-In-Groups in Science Education

Educational sciences, in order to explain research findings and to guide practice,

have fostered various psychological theories, such as Piaget’s (1973) cognitive

developmental theory, which focuses on the personal construction of knowledge;

Vygotsky’s (1978) theory, which emphasizes the social aspect of knowledge

construction; and behavioral learning theories of Bandura (1977).

Learning-in-groups has traditionally been considered as an effective teaching

approach and it belongs to cooperative learning methods, a generic group of

educational procedures. In these settings, learners work together in small groups to

accomplish shared goals, e.g., to understand a given topic or problem and arrive at a

solution (e.g., Johnson & Johnson, 1991; Johnson, Johnson, & Maruyama, 1983;

Lazarowitz & Hertz-Lazarowitz, 1998). These educational processes are relevant to

Vygotsky’s ideas emphasizing the construction of knowledge as social process.

Within the social environment, the learner or novice negotiates the meaning of the

matter to be learned with others, who could be either experts (e.g., a teacher) or

peers. The process of negotiation results in a cognitive gain that is substantially

higher than the anticipated achievement by one’s own abilities. This learning

environmental support is the zone of proximal development, which is modified and

expanded when students interact within a learning-in-group setting. Relevant to

social learning perspective is the situation learning theory, which emphasizes a local

process depending on situational characteristics and being temporarily decoupled

from individual differences. Situational characteristics include the means, the rules,

and the setting climate that determine the function of the group under particular

circumstances. It is imperative to mention here that specially for science education,

which could be characterized by a synthesis of linguistic, mathematical/symbolic,

and visual representations, (Lemke, 1998, 1999; Lynch & Woolgar, 1990), the role
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of language is crucial. This justifies why researchers attempt to understand learning

outcomes by focusing on discourse analyses.

Typically, group interaction studies in learning science are designs which

include recording and analyzing discourse material with the aim to identify dom-

inant interactions and to correlate them with achievement. The data consists of

verbal interactions occurring among members of small group of students who

elaborate explanations about physical or chemical phenomena, and work together

towards understanding the relative scientific concepts. The effectiveness of small-

group process in learning has been studied as a function of various independent

variables, such as the type and difficulty of the task or prior experience (Appleton,

1997; Bowen, 2000; Lazarowitz & Hertz-Lazarowitz, 1998; Lazarowitz, Hertz-

Lazarowitz, & Baird, 1994; Shachar & Fischer, 2004; Zady, Portes, & Ochs, 2002),

where it has been established that classroom interactions are correlated with

students’ performance; that is, enhanced learning outcomes are observed in group

processes where certain types of interactions occur more frequently (Kempa &

Ayob, 1991, 1995; Stamovlasis, Dimos, & Tsaparlis, 2006; Zady et al., 2002).

Research has been facilitated by recognizing various roles for the groupmembers,

which have been introduced for analytical convenience when doing empirical work,

such as the learner or the learner facilitator. A member could also be a leader or a
follower. The leader is someone who continuously takes the initiative to provide an

idea or to develop an argument and leads in a way the unfolding discussion, while the

follower is someone who merely responds to other’s initiatives. Each individual

engaged in the discourse interactions might play one or more roles successively.

Some roles could be assigned in the group from the start, e.g., the leader; they might

also appear or emerge during the course of interactions. In the latter case, these roles

are rather correlatedwith some individual differences (Hall et al., 1988; Horn, Collier,

Oxford, Bond, & Dansereau, 1998; O’Donnell, Dansereau, & Rocklin, 1991).

For instance, a student with high cognitive skills and verbal ability attains the learning

material faster and can provide support to his/her peers acting as a facilitator or

leader. Inmost group settingsmembers are encouraged to take initiatives to contribute

to the process; however, not surprisingly, some members only demonstrate

active participation and leadership. In science education, the active participation is

encouraged and essentially it is presumed for effective outcomes; however, a con-

siderable amount of silent learning is taking place as well (Stamovlasis et al., 2006).

Research in science education has shown that the effectiveness of an interaction

process in a group setting depends on a number of factors, some of which are

individual differences of the group members, previous training, the nature of the

task, and the interactive process itself (Johnson, Johnson, Ortiz, & Stanne, 1991;

Johnson, Johnson, Stanne, & Garibaldi, 1990; Webb, 1989, 1991). On the other

hand, properties which can characterize quantitatively and qualitatively the dis-

course are referred as the features of interactions and concern the type of informa-

tion exchanged during group sessions. For example these could be of cognitive type

or interpersonal interactions of social type. Some of the features may concern the

group functioning as a whole, e.g., the climate which concerns explicit or tacit

affective communication and/or the cooperativeness among members. These are
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characteristics, which in a structured session could be manipulated by the instructor

in order to optimize the outcomes. The factors and the features of interactions are

typically subjected to measurement and comprise the foremost independent vari-

ables in learning-in-group research. It has been pointed out that small-group

processes contribute to productivity and to the development of higher order cogni-

tive skills, provided that interactions with the appropriate features are developed

(Noddings, 1989; Taggar, 2001; Vygotsky, 1978). Thus, the temporal patterns of

verbal exchange developed in an evolutionary context, ceteris paribus, are the

determinants ensuring learning and productivity.

A Note on Methodological Issues

Even though learning-in-groups has become a widely used instructional procedure at

all levels of education and in all subject areas, and its effectiveness is well established,

there are still theoretical and methodological issues that warrant for further examina-

tion. There is lack of a unified theoretical framework that could embrace all associated

with learning-in-groups phenomena and provide a comprehensive description and

explanation in terms of specific mechanisms underlying the interaction processes. In

general, group research in behavioral sciences seems to be fragmented regarding the

theoretical premise. There is a multiplicity of theoretical approaches and methodolo-

gies, which focus on different aspects and lead to a variety of perspectives, e.g.,

communication, psychoanalytic, social, developmental, or functional perspective

(see Wheelan, 2005). Yet, no attempts have been made to formulate a unified theory.

The theoretical issues, however, are interrelated with the methodological ones. A

sophisticated theory needs a robust methodology to be developed, and on the other

hand, an effective methodology requires a coherent and intelligible theory to be

founded on, while the epistemological issues are by far crucial. Regarding the

present inquiry, putative dynamical processes put forward by the theory are in

need of a methodology that is specifically tailored to measure those processes. To

this end, nonlinear dynamics and complexity appear to be more than a distinct

alternative perspective. There are substantial contributions at theoretical level that

approach a general theory of group functioning (e.g., Arrow, McGrath, & Berdahl,

2000), and also research methodology assets and tools for extensive applications

(e.g., Guastello, 1998, 2009, 2011; Guastello & Bond, 2007).

Returning to science education, research objectives and methodologies followed

in collaborative group settings have been diverse and linked to the theoretical

perspectives adopted by the researchers. Typically, when investigating the effec-

tiveness of a relevant learning procedure, the quasi experimental design has been the

dominant one in quantitative research. This, however, is a “black-box” approach,

which possesses a series of disadvantages. It has not provided essential understand-

ing about the underlying processes, while it has been severely criticized for scant-

iness on core issues, such as establishing causality (Koopmans, 2014a, 2014b).

A large body of research focusing on group-learning approach belongs to the

perspective known as process-product-studies of peer interactions (e.g., Stamovlasis
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et al., 2006; Teasley, 1995; Webb, Troper, & Fall, 1995). In these studies, peer

interactions are coded, analyzed statistically, and finally linked to group performance

and learning outcomes. The coding schemes could be either predetermined or the

categories/codes could be assigned inductively during the actual coding procedure.

The latter approach to coding is considered to be grounded in the data and it takes into

account the context in which the discourse occurs. Furthermore, the distinction

between content frames and interaction frames has been introduced, focusing on

how students bring their frame of reference to the interaction situation and how these

frames are jointly negotiated and developed (e.g., Barnes & Todd, 1995).

In most studies, the attention has been focused on specific features of the

interactions, measured at the nominal level, representing events/categories that

occur successively and form patterns unfolding in time. In science education

research these patterns have been characterized as interpretative or exploratory

modes of interaction and on the basis of their frequencies they were shown to be

indicative of certain quality features of the discourse. Certain patterns have been

found to be the most effective and constructive in critical engagements, including

argumentation and hypothesis testing (Mercer, 1996).

Other researchers have attempted to follow more process-oriented methods to

group interactions, which are seen as socially and situationally developed in

students’ discourse (e.g., Kumpulainen & Mutanen, 1999). By concentrating on

individual and group functioning, these methods aimed to highlight the situated

dynamics of peer interactions and learning-in-groups. Data analysis, which was

focused on three dimensions, the language function of verbal exchange, the cogni-

tive interactions, and the social process, revealed stimulating interaction patterns,

where, nonetheless, the time aspect was rather implicit in the analytical framework.

The notion of dynamics, even though was evoked through microanalysis of inter-

actions and the concepts and tools utilized, was the traditional linear means.

Moreover, while traditional methodologies applied to discourse analysis have

yielded interesting findings, they have not been mathematically formalized to the

extent that they can be meaningfully associated with a certain theoretical frame-

work. This chapter seeks to address this gap by presenting ODA, a novel approach

to the study of peer-interaction processes in educational settings; it adds to theo-

retical and epistemological development of the situated learning perspective, and

sets the framework for the application of nonlinear dynamics and complexity to

learning-in-groups methodology in science education.

Theoretical Issues

Discourse as a Nonlinear Dynamical System

A group of individuals, e.g., students working together and interacting with each

other, form a system that possesses dynamical characteristics. Before developing

any mathematical formalism on group interactions, it is imperative to attempt a
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narrative portrayal of the processes and their dynamical features in a physical

language. This may seem trivial; however it provides an understanding of how

the elementary actions or events are linked to the behavior outcomes at a higher

level of complexity and contributes to the formation of macro-characteristics of a

given discourse.

When students with a shared goal interact amongst themselves attempting, e.g.,

to solve a problem, to gain a common understanding, or to reach a consensus about

an issue, collective action simultaneously or successively is required. In these

processes, the group members adapt their behavior according to the actions of

others. In discourse, verbal interactions are taking place as the participants are

exchanging information, and in order to scrutinize it, one may have to track verbal

exchanges and reveal their qualitative features that are patterns of sequential events

unfolding over time. Of course, the focus is on the emerging interactions at the

group level, whereas the individual dynamics unfolding in each one’s mind are

usually ignored; however, they are present at a lower level of complexity and a

reference to them should be made when describing behavior at that level.

Within a single person, the cognitive and affective states and the goal-directed

actions as well might evolve independently from external causes. The intrinsic
dynamics of each individual is central to the characterization of his/her actions

(Vallacher, Van Geert, & Nowak, 2015). Actions realized in time also have their

own dynamics, and they typically have a hierarchical structure spanning in various

time scales. Time scale is a fundamental notion in nonlinear dynamics and refers to

the length of time during which an event occurs or develops; for example it could

happen in the period of a few seconds or in the period of hours or days. Elementary

actions being organized accordingly give rise to action at higher level, which could

result in a qualitative change in the course of time (e.g., a decision to intervene or

refrain from intervening in an ongoing discourse). The intrinsic dynamics are

fundamental in understanding the dynamics of human experience overall, and

human behavior at social level in particular (Vallacher & Nowak, 2007, 2009).

Coordination of individuals’ actions over time is a necessary condition in social

interactions and collective behavior. At social level, research has showed that

coordination dynamics are central to human behavior, and they include lower

level actions such as speech and movement (e.g., Kelso, 1995), and synchronization

phenomena at macro-social level, such as norms and public opinions (e.g., Nowak,

Szamrej, & Latané, 1990; Vallacher & Nowak, 2006). Studying interpersonal

dynamics of lower level action suggests that the coordination interplay exhibits

features of nonlinearly coupled oscillatory processes, where the temporal pattern

might include in-phase and anti-phase forms. These notions refer to synchroniza-

tion effects of engaged vs. disengaged interacting parts, respectively, while phe-

nomena such as hysteresis could also be present; the latter denotes the time-based

lag between input and output and it is encompassed among the fundamental

characteristics of nonlinear dynamical processes (Kelso, 1995).

Returning to the discourse analysis, the process where the elementary actions

give rise to macrostructure of temporal communication patterns, coordination

dynamics are decisive for the process evolution and coherence. In a cooperative
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learning setting, temporal coordination dynamics of internal states such as feeling,

mood, and dispositions also occur, and are rather the prerequisites to the coordina-

tion of actions within the group. The coordination dynamics in a discourse include

temporal patterns of in-phase and anti-phase forms of synchronization such as

competition/cooperation or agreement/disagreement; that is, they encompass the

complementary opposites that function in self-organized fashion and shape the

evolving information flow (Kelso & Engstrøm, 2006).

The observable traces of the coordination interplay in a discourse are sequence of
utterances/categories unfolding in time that convey information about the evolving

scenario, which however cannot be reduced to the individual’s dynamics of lower

level action. In such sequence, each step is a function of the previous steps and the

trajectory in time possesses characteristics that may resemble to nonlinear or even

chaotic time series; this implies sensitive dependence on the initial conditions and on

the parameters shaping the unfolding discourse. A different order of utterances, a

different pattern, induces different dynamics and it might yield to a different out-

come. A leader in the group often imposes his/her thesis to their peers, the process,

then, might be halted, and the discourse comes to conclusion; however the process

goes on if the intrinsic dynamics of another individual allows an action that intervenes

with an objection and/or different proposition. The peer’s intervention feeds back the
process, which continues in an unpredictable way since the present state depends on

the previous one and the evolving scenario becomes history dependent; multiple

scenarios are likely to emerge. The discourse evolution is not determined by certain

features or properties of the interacting elements (group members), but it seems to be

self-regulated by the coordinated actions of the participating agents.

Therefore, both the initial conditions and the evolution of the process do play a

role. In the language of nonlinear dynamics, it is said that the trajectory of the process

follows a complex pattern, which on the course of time might possess thresholds,

bifurcations, and/or attractors. If the coordination pattern does not converge to a

certain point of consensus (an attractor), it might be trapped to a limit-cycle attractors

that characterize a system evolving in time, being unable to shift towards a desirable

conclusion (for the attractor concept see also Chap. 9 in this volume).

The self-regulation mentioned above implies that the system is not driven by an

external cause, but it shapes its own dynamics via self-organizationmechanisms. The

irreducibility of the system’s behavior as a whole (discourse in the group) to that of its
elementary components (members’ actions) can define the discourse process as a

complex adaptive system (CAS). The ontology of such system requires the episte-

mological shift towards the new science of nonlinear dynamics and complexity.

Discourse and Self-Organization

Having provided a theoretical description of discourse interactions, an epistemo-

logical step towards the regime of nonlinear dynamics and complexity has been

made. Further investigation on the discourse interaction process and under this
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meta-theoretical framework requires the application of the relevant mathematical

formalism and for this some core concepts are elucidated next. Relevant to the

present inquiry are the notions of entropy, self-organization, and fractal distribu-
tion. General introduction to nonlinear dynamics and complexity theory can be

found in Nicolis and Nicolis (2007), while relevant comprehensive outlines for

psychology and life sciences could be found in Guastello, Koopmans, and Pincus

(2009). In educational research literature, besides the present volume, relevant

introductions have been sporadically reported in a number of papers (e.g.,

Koopmans, 2014a; Stamovlasis, 2006, 2011).

Within nonlinear dynamics and complexity theory, a significant descriptor of a

system’s state is its entropy. The concept of entropy originates from classical

thermodynamics. Its statistical definition was developed by Ludwig Boltzmann in

the 1870s. Entropy was introduced in social science applications with the develop-

ment of Information Theory by Claude E. Shannon in 1948. In general, entropy

stands for disorder (-order) or uncertainty and in the complex system sciences it

appears as a significant variable associated with the information needed to describe

the system, and thus it is related to system’s complexity. Basic formalism of the

entropy concept and its applications could be found in Nicolis and Prigogine (1989)

and Nicolis and Nicolis (2007). A related entropy measure is information entropy,
or Shannon entropy (HS), which concerns a system or a set of categories with

unequal odds of occurrence (see next section).

Self-organization concerns the corresponding theory which focuses on the study
of open systems that operate at far-from equilibrium conditions, exchanging infor-

mation, energy, or matter with their environments. Such systems, known as CAS,

are self-regulated through complex feedback mechanisms, so that they can tune

their dynamics and their own evolutionary characteristics, thus being adaptive to

their environment (Nicolis & Prigogine, 1989; Prigogine & Stengers, 1984).

Self-organization means that the system is driven neither by any external

intervention or control nor by any internal “demon” or a homunculus-like agent.

It is the complex feedback processes, the temporal microscale fluctuations, and the

underlying dynamics that determine the system’s evolution. Under certain condi-

tions, a discourse might exhibit such self-organizing behavior, when coordination

among individuals leads to the organization of verbal interaction into dynamic

patterns that emerge as a global structure from the local elementary actions with no

predetermined scenario.

One characteristic property of a self-organization process is that the output

variables or other measured quantities do not follow a Gaussian—normal distribu-

tion as it happens with independent measurements. There is a high degree of

dependency among observations, which obey the inverse power law (iPL), a

distribution that mathematically is expressed by the equation

S fð Þ / f�β ð13:1Þ

where S is the size of an event (object or attribution) and f is the frequency of the

event (object or attribution). The iPL is also called fractal distribution. The iPL in

280 D. Stamovlasis



the case of event time series suggests that a large number of small events are

expected, while exponentially very fewer large events occur. The exponent β can be
calculated as the slope of the distribution curve at the log-log scale; it is called the

fractal dimension and it is a measure of the system’s complexity. Values 1< β< 2

denote dynamical characteristics (Schroeder, 1991; West & Deering, 1995). Higher

values of β, that is steeper curves, denote that there are more small events, while

lower values corresponding to relatively flat curves denote more large-scale events.

Note that in discourse and group interaction phenomena, lower fractal dimensions

are associated with greater structure or coherence (Guastello, 2005; Pincus &

Guastello, 2005).

If a system’s distributional characteristics exhibit fractal structure, then the

underlying process evolves through a series of discontinuous shifts, a state that

manifests itself as an iPL distribution, and/or through more global transformations

as the system is being adjusted between different degrees of relative chaos (disor-

der) and order. In the language of nonlinear dynamics and complexity the above

denote that the system is working at the dynamic regime, being at the edge of chaos
(EOC) (Waldrop, 1992). Systems at the EOC demonstrate high capability of

adaptation without annihilation or stagnation. Such properties of adaptive behavior

are observed in complex adaptive systems across the sciences. Related examples

are the distribution of total acts in social interaction systems initiated based on rank

(Bales, 1999), the in-degree distributions in Web (Broder et al., 2000), and the

distribution of verbal turn-taking interaction in family therapy sessions (Pincus &

Guastello, 2005), to mention a few.

Returning to the current study and the discourse analysis, if the process under

investigation is driven indeed by self-organization mechanisms, then the informa-

tion flow or the evolving exchange of utterances within the group are expected to

conform to the above type of temporal fractal structure as evidenced by the

existence of an iPL distribution in the magnitude of recurrence of the various

patterns.

Method

Experimental Settings, Data Collection, and Measurements

A common practice in science education involves small groups working together in

order to carry out a task, such as physics or chemistry problem solving, explaining

phenomena, elaborating and understanding science concepts, or even experimen-

tation aiming to develop practical skills. The results presented in a following

section are derived from experimental settings with groups of three members

aimed to investigate how students’ verbal interactions evolved during a discourse

segment, when developing explanations of physical phenomena and the relevant

concepts, such as gravity, velocity, and acceleration. The subjects were secondary
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school students in tenth grade, taking compulsory classes in the sciences.

The assignment of the groups was based on two criteria: academic achievement

and performance in a psychometric test of developmental level (Lawson’s test,

1978), so that the group synthesis preserved heterogeneity within each group and

thus equivalence. The design included pre- and posttest (which are not used here)

and in addition a group test, which was an evaluation test on questions that had to be
answered after negotiation and consensus, at the end of the session. This was a

measure of the group performance, reflecting the amount of learning emerged from

the discourse. Group performance was measured and recorded as a three-level

ordinal variable: high performance (successful), intermediate (partial success)

performance, and low performance (failed). No specific time limit was imposed

on these sessions, which however had by design two important features: First, these

tasks were relatively novel to the students; this was chosen in order to pose an

intellectual challenge to the students and allow emerging phenomena, e.g., brain

storming. Second, the groups were unstructured in terms of role taking and they

were let to function spontaneously, allowing so the manifestation of pronounced

dynamic effects. Students’ verbal interactions through their negotiations in all

groups were audiotaped and transcribed.

After the coding procedure and the identification of verbal interactions, a

variable named group activity was defined to measure the total contributions or

actions occurred during the interaction process. Ordinarily, the group activity is

measured by the number of utterances brought up in the discussion and it has been

correlated with high performance (Kempa & Ayob, 1991, 1995; Stamovlasis et al.,

2006). It has been acknowledged however that not only the number of contributions

enriches the discourse and enhances the probability of an ultimately successful

outcome, but the multiplicity and variety of utterances as well. To this end, within

the present methodology information entropy (HS) is proposed as a measure of the

group activity, because it has two advantages. First, HS is a theoretically suitable

measure to reflect the degree of novelty in terms of new categories and/or new

patterns. Second, it is a concept of complexity theory and thus it can be

co-examined along with other nonlinear measures (see next section).

Coding Procedure: The Key of Inquiry

The first and crucial step in a discourse analysis is the coding procedure. Spoken

conversations produce utterances which can be coded according to the theoretical

framework of interest and create a series of events/categories unfolding in time. It

should be emphasized that the coding procedure does not necessarily implement

predetermined categories; the categories/codes could be inductively emerged from

the coding procedure, e.g., see qualitative approaches (Denzin & Lincoln, 2005).

Thus, the coding procedure is not different from a typical one followed in tradi-

tional inquiries. ODA focuses on the ensued symbolic sequences and analyzes them

accordingly. The categorical time series analysis could be applied with various
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methodological approaches of data collection and coding procedures, depending on

the research questions or hypotheses posted. The coded data resemble the following

stings of symbols:

AABBBDCAABAEAABBBEAABAEAABBBABABABEED. . ..

where A, B, D, or E are coded utterances. An utterance is defined as a simple,

complete or incomplete phrase or a chain of phrases, which possess recognizable

and interpretable elements of communication. When the interaction process

involves written messages, e.g., in e-mail communications, the interacting agents

have the opportunity to express much more ideas and greater variety of utterances

can be recorded, and the coding scheme becomes richer. Note that the content of the

coded utterances is not related to dynamics; it is the pattern structure that is

associated with the dynamical characteristics. Also in ODA discrete event

sequences are recorded regardless of the length of time required to complete the

event or the time that elapses between the events. Time length is an interesting

feature, which deserves a special focus in the time series analysis; however, it is not

examined in this chapter.

A discourse could be coded with category systems of various forms simulta-

neously and analyzed accordingly with ODA. In Table 13.1, examples of coding

systems are presented. Coding systems I and II include codes of two types of

interactions, cognitive and social-interpersonal interactions, respectively. Another

simple coding scheme might assign a symbol to each participant, so that the turn-

taking pattern can be followed and recorded. Different coding schemes facilitate

different hypothesis testing of theoretical or practical interest. For instance, it might

be desirable to compare the level of cognitive activity to the level of social interac-

tion process evolving simultaneously through a given discourse. Another interesting

example of coding scheme might include categories characterizing language func-

tion, such as “informative,” “evaluative,” and “affectional,” (e.g., Kumpulainen &

Mutanen, 1999). In the latter case the application of ODA may serve testing

hypotheses concerning the evolution of discourse at linguistic level and determining

potential relationships between language functions and discourse outcomes.

Coding procedures are fundamental parts of the analysis since the results

concern the theoretical premise that is behind the coding scheme and drive the

Table 13.1 Example categorization systems

Coding system I Coding system II

Cognitive interactions Interpersonal interactions

R¼ Reflection on the problem Y¼ Expressing approval

E¼ Explanation with a physical law N¼ Expressing disagreement

H¼ Hypothesis D¼ Expressing doubt

A¼ Argument A¼ Asking for approval

T¼ Thesis H¼ Asking for help

S¼ Skeptical G¼ Providing guidance or help

C¼ Recall a physical law
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hypotheses posted. It is also possible to include multiple categorical variables in

ODA (Pincus, 2001; Pincus, Fox, Perez, Turner, & McGee, 2008). A complex

coding that includes multiple categorical variables applied to an educational setting

is depicted in Table 13.2. A three-digit code for each utterance includes the

following: the first for the speaker, the second for the type of cognitive category,

and the third digit evaluates the content correctness at an ordinal scale. Moreover, in

a multiple coding scheme, certain individual difference might also be coded and

their role in the peer interaction process could be examined.

Finally, after a set of mutually exclusive and exhaustive categories have been

derived their reliability should be established by two or more raters. Cohen’s Kappa
statistic could be used for measuring inter-rater reliability. Typically, values above

0.65 are considered satisfactory.

Symbolic Dynamic Analysis with Orbital Decomposition
Method

ODA is based on symbolic dynamics and it is specially designed for the analysis of

time series with data measured at the nominal level (Guastello, 2000; Guastello,

Hyde, & Odak, 1998). The basic idea of ODA originates from a methodological

approach involving calculations of entropy with scale variables, applied primarily

to a physical system when characterizing an experimental strange attractor with

periodic orbits (Lathrop & Kostelich, 1989). In these systems periodic orbits

presuppose basins of attraction, and thus if more basins exist, the more chaotic

the motion becomes (Newhouse, Ruell, & Takens, 1978). Analogously, in an

interaction process of verbal exchange, the concept proximal recurrences of a

Table 13.2 Coding scheme with cognitive utterances and participants’ psychometric measures

Digit Description Evaluation

First digit Actor’s level of a psychometric variable

(e.g., M-capacity)

1¼Low

2¼ Intermediate

3¼High

Second digit Cognitive utterance (nominal scale) 1¼Reflection on the problem

2¼Explanation with a physical law

3¼Hypothesis

4¼Argument

5¼Thesis

6¼ Skeptical

7¼Recall a physical law

Third digit Correctness (ordinal scale) 1¼ Incorrect

2¼ Partially correct

3¼Correct
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repeated pattern plays the role of neighboring orbits and thus the greater the variety

of these orbits, the more unpredictable the conversation flow will be, and more

nonlinear or even chaotic the dynamic character of the evolving process might

be. This analogy between periodic orbits and pattern recurrence in a categorical

time series allows the application of similar concepts and formulas to the latter and

the description of the process under investigation via quantitative means.

The primary form of a symbolic sequence under investigation is a string of

symbols: e.g., AABEDBDEAABAEAABBBEA, where A, B, D, and E are the

codes for the events occurring during the course of time. Patterns are combination

of at least two symbols with varying length. A single symbol is not considered as

pattern; however it is included in the analysis. The first two steps of the procedure

involve two calculations: a likelihood χ2 and φ2 test for a string sequence or pattern

of responses with varying length (C), and topological entropy (HT). For C¼ 1 a

single utterance (e.g., A) is considered as the unit of analysis, while if C¼ 2, two

utterances in the row (e.g., AB or DB) are taken together as the unit of analysis. The

calculations include all string lengths starting with C¼ 1 and continuing with

C¼ 2, C¼ 3, C¼ 4, etc.

For each increasing string length, a likelihood χ2 test provides the statistical

significance; this is to exclude the pattern that occurred by chance. For a given

string length C (e.g., C¼ 3, A-B-D) and Nc strings of length C in the data, the

expected frequency of the string is

Fexp ¼ PAPBPDNc ð13:2Þ

where PA, PB, and PD are the probabilities for A, B, and D, respectively. The

corresponding likelihood χ2 is given by the formula

χ2 ¼ 2
X

Fobsln
Fobs

Fexp

� �� �
ð13:3Þ

Note that for C¼ 1 equal probability is considered for the null hypothesis, while for

C� 2 the H0 is that the odds of the string are equal to the a posteriori combinatorial

probabilities of the states. The φ2 test provides a correction to the χ2. Moreover, φ2

test is a measure analogous to the proportion of variance accounted for this string

length and it is given by the equation

φ2 ¼ χ2

Nc
ð13:4Þ

χ2 and φ2 are used to determine the optimal length at which the analysis of the

symbolic sequence should be carried out. The optimum length corresponds to the

maximum φ2.

Topological entropy (HT) describes the deterministic nonrandom complexity for
the time series and it is the upper bound for the metric entropy, which is equal to the

positive Lyapunov exponent (Lathrop & Kostelich, 1989). The latter is a measure of
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the chaoticity of the dynamical process. The calculation of HT is based on the

diagonal entries or trace of a hypothetical transition matrix at each string length

(MC). Each cell entry is binary and indicates whether a particular symbolic

sequence is followed in time by any other symbolic sequence. The trace trMC of

this matrix represents instances in which a pattern is followed by itself in a

consecutive period of time. This is the proximal recurrence (Guastello et al.,

1998). The topological entropy (HT) measure based on the trace of the matrix MC

is given by the equation

HT ¼ lim
c!1 1=Cð Þlog2tr MC

� � ð13:5Þ

The trace trMC is the sum of the diagonal elements, which consists of 0 and 1 s.

Proximal recurrences become less likely for longer patterns based on simple

combinatorial probabilities of single utterances; thus, as C increases,HT is expected

to decrease and eventually drops to zero. The longest optimal string length for

analyzing the discourse corresponds to the string length C, when the trMC becomes

zero at Cþ 1, and at which, under optimum conditions, the value of φ2 is

maximized.

As the string length approaches infinity, assuming that the dynamics of the

system is described by the transition matrix MC, HT approaches the base-2 loga-

rithm of the maximum eigenvalue of the matrix, which is the Lyapunov exponent, a

measure of the chaoticity of the dynamical process described by the matrix MC

(Lathrop & Kostelich, 1989), and it also reflects its complexity that is not due to

chance. The Lyapunov dimensionality then is calculated by the equation

DL ¼ eHT ð13:6Þ

The second entropy measure is the information entropy or Shannon entropy (HS).

For a set of categories with unequal odds of occurrence it is defined by the

following equation

HS ¼
Xr

i¼1

pi ln 1=pið Þ½ � ð13:7Þ

where pi is the probability associated with each (i¼ 1 to r) categorical outcome

(Shannon, 1948; Shannon & Weaver, 1949). Shannon entropy is not related to

dynamics; however it is a measure of complexity since it reflects the information

content needed to describe the system. HS has been proposed as a measure of the

degree of novelty present within a categorical time series (Attneave, 1959). It

indicates the degree to which a categorical time series contains relatively rare

patterns, that is, those with low probabilities of occurrence. Topological entropy,

on the other hand, does not reflect this degree of novelty because it relies on

proximal recurrences.
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Having found the optimal string length using the procedure described above,

then the calculation of fractal dimension can be carried out using the iPL distribu-

tion graph (Eq. 13.1). If S is the magnitude of the recurrent pattern and f is the

frequency at which each particular pattern occurs, the slope of the 1/f curve

(Eq. 13.1) can be used as an estimate of fractal dimension.

Nonlinear Hypotheses for Discourse Analysis

The nonlinear analysis applied to categorical time series might be driven by various

types of research questions and hypotheses. The identification of repeated patterns

of different size, proximally or distantly, is a key feature to be sought. ODA can

provide this information along with frequency distributions. By applying ODA to

verbal interactions in learning-in-groups settings, the structure within turn-taking

patterns can be examined, and a characterization of discourse sessions could be

achieved, based on the amount of structure within the discourse patterns. Such

macrostructure of a given discourse might be a qualitative emergent property that

could be used as a classification criterion. The emerged macrostructure, along with

its nonlinear quantitative measures, such as exponents and entropy of a given

discourse, might also be correlated to the outcomes and the effectives of the

interaction process.

Assigning codes for each person’s name initials can accommodate the investi-

gation of whether the interacting group is balanced as far as each member’s
contribution in the turn-taking patterns. In multiple coding schemes individual

differences might be included so that hypotheses regarding their role in the inter-

action process might be investigated. For example, in Table 13.2, the coding

scheme where each member’s personal code is replaced with a code representing

levels of a psychometric variable, e.g.,M-capacity, facilitates testing the hypothesis

that students with high information processing capacity demonstrate influential

contributions to the peer interaction process.

Moreover, two fundamental interrelated theoretical hypotheses can be tested:

(1) Verbal interaction processes in learning-in-group sessions display complex

dynamic characteristic of self-organization. (2) Learning outcomes from group-

member interactions are emergent phenomena from nonlinear dynamical processes.

Methodologically, the two measures, Lyapunov dimensionality (a measure of

turbulence) and fractal dimension (a measure of complexity), are the means of

demonstrating when the signature of nonlinearity and complexity is present in a

group interaction process. Shannon’s entropy is not a dynamic measure per se;

however it indicates whether the discourses encompass novel patters regarding

spoken utterances. Information entropy might be related to other nonlinear charac-

teristics and is a valuable tool for evaluating complex patterns.

An interesting endeavor is the investigation of the conditions under which

dynamical characteristics are present and how these might be associated with

effectiveness and learning outcomes. Special cases, such as brain storming

13 Nonlinear Dynamical Interaction Patterns in Collaborative Groups: Discourse. . . 287



situations with emerging phenomena, attract special attention and are potential

candidates for the application of ODA. In this inquiry, an additional hypothesis

posted was that the information entropy of the resulting symbolic sequences, which

reflects the group activity in each session, is correlated with the group performance.

Discourse Analysis with Orbital Decomposition

The application of ODA to symbolic time series and the related calculations can be

carried out with ORBDE software (Peressini & Guastello, 2010). The provided

tables and results are explained in the following paragraphs.

Table 13.3 presents the ODA results for a students’ discourse, where the time

series comprised of cognitive type interactions. All the relevant statistical indices

were calculated for C¼ 1 to C¼ 5. The trMC becomes zero at C¼ 5, and between

C¼ 3 and C¼ 4 strings, the former was chosen as the optimum string length for

analysis based on the greater φ2 value. The anomaly of φ2 values greater than 1.0

has been described as resulting from a violation of the assumption of a 2� 2 matrix,

which however does not affect comparison, and the value of φ2 reflects the

proportion of variance accounted for this string length (Guastello et al., 1998). At

C¼ 3 the entropy measure is HS¼ 4.137 and Lyapunov exponent DL¼ 1.390,

indicating a nonlinear complex process. The measures DL and HS might be used

to compare two categorization systems. For instance, an interpersonal interaction

coding scheme that results to values HS¼ 3.252 and DL¼ 1.134 shows lower

degree of novelty and less turbulence or chaos at the level of social interactions.

The most frequently recurring patterns are listed in Table 13.4. The first and

second columns show the most repeated patterns (e.g., HES, SAS and RAC), while

in the next columns the expected frequency along with the observed probability is

given. In the last column the contribution of each triplet to the total information

entropy value is calculated. The findings suggest that certain patterns or structure

dominate in the evolution of the discourse; that is, triplets of utterance that express

skepticism or doubt on preceding propositions or combine reflection with argu-

mentation appeared more frequently and they might have a decisive contribution to

Table 13.3 Complexity and entropy indicators from orbital decomposition analysis of cognitive

type interactions

C trMC HT DL χ2 df N* φ2 HS

1 4 2.00 7.389 68.85 8 114 0.604 1.895

2 7 1.404 4.070 67.937 22 113 0.601 3.324

3 2 0.333 1.390 153.725 27 112 1.373 4.137

4 1 0 1.000 123.534 14 111 1.112 4.483

5 0 –

String length (C), number of proximal recurrences (trace of binary matrix C), topological entropy
(HT), Lyapunov dimensionality (DL), Shannon entropy (HS), χ

2, φ2, and number of strings for

C¼ 1–4
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the final outcomes. Table 13.5 depicts the patterns of multiple coding; it suggests

that crucial contributions of decisive utterances with correct contents were made by

members of high information processing capacity (Mc), who are essentially under-

taking the role of facilitator. Analogously, a number of similar hypotheses regard-

ing the effects of other individual differences in collaborative groups could also be

tested.

One of the main concerns expressed in the hypotheses frequently posted is the

relation (if any) between group performance and effective dynamic patterns

unfolding in the discourse. In the current study, group performance is measured

by the group test, which accounted for the correct answers received after negotia-

tion by the group members, and it reflects the amount of learning resulted from the

collaborative session. On the other hand, group activity, which traditionally is

operationalized by the number or frequencies of utterances, is a prerequisite for

high-level outcomes. A relation between group performance and group activity was

sought by implementing information entropy (HS) as a measure for the latter. HS

proved to be a suitable index to characterize discourse based on certain categori-

zation scheme, since it reflects the degree of novelty of utterance patterns in regard

to category/code scheme of the choice. Successful sessions, that is, those of high

group-performance, appeared to display higher information entropy, compared to

the unsuccessful ones. Even though causality between HS and group performance

cannot be directly established, a probabilistic relation might be derived from

empirical data analyzed by means of ordered logistic regression. Figure 13.1

depicts the proposed relation showing the probability of attaining low and high

group performance level (effective and ineffective sessions) as a function of

information entropy HS (calculated values) encompassed in the utterance patterns

of the discourse. The probability of attaining a successful session increases as the

information entropy increases, while the probability of attaining an unsuccessful

session decreases as the information entropy increases.

Table 13.4 Primary strings of cognitive utterances identified at C¼ 3

Code

(C¼ 3) Utterances’ pattern Frequency

Expected

frequency Pobs

Shannon

p log (1/p)

HES Hypothesis-explanation-skeptical 4 0.542 0.036 0.119

SAS Skeptical-argument-skeptical 4 1.703 0.036 0.119

RAC Reflection-argument-recall 4 0.210 0.036 0.119

ESR Explanation-skeptical-reflection 3 0.348 0.027 0.097

STS Skeptical-thesis-skeptical 3 0.310 0.027 0.097

CAS Recall-argument-skeptical 3 0.745 0.027 0.097

EAE Explanation-argument-

explanation

3 0.426 0.027 0.097

AEA Argument-explanation-argument 3 0.585 0.027 0.097

ESH Explanation-skeptical-hypothesis 3 0.542 0.027 0.097

ACH Argument-recall-hypothesis 3 0.326 0.027 0.097

HSE Hypothesis-skeptical-explanation 3 0.542 0.027 0.097
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Processes at the Edge of Chaos

One of the main hypotheses is whether the propagation of verbal interactions or the

time series of verbal turn-taking patterns conforms to inverse power law. It was
found that some of the analyzed symbolic sequences followed the iPL distribution.

The iPL for one session is demonstrated in Fig. 13.2 showing the log of the

Table 13.5 Patterns of multiple coding

Code Multiple pattern

HES 333 223 363 High Mc-Hypothesis-correct, Int.Mc-Explanation-correct, High

Mc-Skeptical-correct

333 222 362 High Mc-Hypothesis-correct, Int.Mc-Explanation-partially cor.,

High Mc-Skeptical-correct

232 223 363 Int.Mc-Hypothesis-correct, Int.Mc-Explanation-partially cor.,

High Mc-Skeptical-correct

333 121 263 High Mc-Hypothesis-correct, Low Mc-Explanation-incorrect,

High Mc-Skeptical-correct

SAS 262 342 363 Int. Mc-Skeptical- partially cor., High Mc-Argument-partially cor.,

High Mc-Skeptical-correct

262 342 363 Int.Mc- Skeptical- partially cor., High Mc-Argument-partially cor.,

High Mc-Skeptical-correct

362 141 363 Int.Mc-Skeptical-partially cor., Low Mc-Argument-incorrect,

High Mc-Skeptical-correct

262 342 162 Int.Mc-Skeptical-partially cor., High Mc-Argument-partially cor.,

Low Mc-Skeptical-incorrect

RAC 313 243 171 High Mc-Reflection-correct, Int.Mc-Argument-correct, Low Mc,

Recall-incorrect

313 243 172 High Mc-Reflection-correct, Int.Mc-Argument-correct, Low Mc,

Recall- partially cor.

313 243 373 High Mc-Reflection-correct, Int.Mc-Argument-correct,

High Mc -Recall-correct

313 243 373 High Mc-Reflection-correct, Int.Mc-Argument-correct,

High Mc -Recall-correct

ESR 323 263 313 High Mc-Explanation-correct, Int.Mc-Skeptical-correct,

High Mc-Reflection-correct

323 262 313 High Mc-Explanation-correct, Int.Mc-Skeptical-par.correct,

High Mc-Reflection-correct

121 263 313 Low Mc-Explanation-incorrect, Int.Mc-Skeptical-correct,

High Mc-Reflection-correct

HSE 333 263 131 High Mc-Hypothesis-correct, Int.Mc-Skeptical-correct,

Low Mc-Explanation-incorrect

233 363 233 Int.Mc-Hypothesis-correct, High Mc-Skeptical-correct,

Int.Mc-Explanation-correct

333 263 333 High Mc-Hypothesis-correct, Int.Mc-Skeptical-correct,

High Mc-Explanation-incorrect
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frequency [ln( f )] at which each of these recurrence phenomena occur as a function

of the log of the number of recurrences [ln(S)] for a given pattern at the optimum

string length. The distribution has a negative slope which is the fractal dimension.
The fitted line (R2¼ .97; F¼ 313.30; p< 0.001) provides the value of β¼�1.46,

with 95 % CI [�1.68;�1.26], which is within the typical range (1< b< 2) for EOC

processes (Bak, 1996; Kauffman;, 1995). The presence of an iPL denotes that the
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Fig. 13.1 Plot of the probability of attaining low and high group performance as a function of

information entropy (HS) encompassed in the dynamical utterance patterns [calculated values

using a logistic function]
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Fig. 13.2 A log-log scale plot of the number of different patterns that occur at various frequen-

cies. The fitted line (R2¼ 0.97) suggests an iPL distribution with β¼ 1.46 (t¼�17.7, p< 0.001)
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system is working within the dynamic regime, being at the EOC (Waldrop, 1992), a

state characterized by both complexity and coherence, and even though the cate-

gorical time series is unpredictable on a moment-by-moment basis, it could be

somewhat predictable on a global level (fractal distribution). This finding, along

with the other nonlinear indices, supports the central hypothesis on the emergence
of learning outcomes and the creative nature of interactive processes.

Discussion and Overview

This chapter presented the ODA, a novel method for studying dynamical properties

of patterns in categorical time series. ODA is based on symbolic dynamics and it

was used to identify patterns of interactions in discourses taking place within

collaborative group sessions. Symbolic dynamics is an area of mathematics that

studies series of entities or categories forming regularities or patterns unfolding in

space or time, whereas they can be further examined for structures of higher order.

The identification of regularities and hierarchical structures within symbolic

sequences is an analogous endeavor to cryptographic analysis, where meaningful

patterns of symbols are sought, and it is motivated by similar philosophy as the

Turing’s computational machine (Hodges, 2012). The main question that chal-

lenges this inquiry in a discourse analysis is if, at the optimum unit of analysis

(string length), there are certain combinations of utterances, events, or multiple

patterns of them, which are the more prevailing or the more creative contributions

to the process under investigation.

Research has shown that discourse verbal interactions are not randomly orga-

nized in time (Pincus & Guastello, 2005). They possess dynamical structures of

nonlinear character with varying dimensionality, order, or entropy. Typical math-

ematical tools, such as Markov chains used in symbolic dynamic analysis, cannot

identify emerging and recurring patterns of utterances. Moreover, the various

discourse analysis techniques, which have been applied to psychological and

educational research for testing specific hypotheses, have not been grounded on

any mathematical formalism or coherent theoretical premise. ODA is filling this

gap in the literature of methodology by providing a general philosophy to measur-

ing dynamical properties and unfolding patterns in time series measured at the

nominal level. It provides quantitative indices of patterning, information, complex-

ity, entropy, or chaos that can characterize the systems generating these series. The

ODA method originates from an orbital decomposition method applied to chaotic

time series; however it does not require the presence of chaos per se, but it can

distinguish systems of sufficient complexity and quantify them based on measures

comparable to chaotic indices, such as topological entropy and Lyapunov dimen-

sionality.DL is a dynamic measure and it is informative for the degree of turbulence

or chaos in the categorical time series; higher values of DL denote higher degree of

complex patterning over the course of conversation that is not due to chance. In

addition, information entropy, HS, which increases with longer strings and richer
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combinations, reflects the decree of novelty characterizing the time series. DL and

HS at the optimum string length correspond to the most probable structure convey-

ing the dynamical characteristics and the information content, and are used for

comparisons and further analyses.

The present study demonstrates that group interactions in cooperative learning

settings can be studied effectively with ODA. Methodologically, it challenged the

traditional approaches, which due to epistemological fallacies ignore what is

between the input and output. It shed light into the “black box” by implementing

the proper methodological tools and revealed the determinative role of dynamics,

while it opens a new area of investigation for education research. The method could

be extended to discourses of various topics in science and other disciplines as well.

ODA is an appropriate mean of analysis for any relevant to education processes,

such as attention, reading, studying, or playing. Moreover, it is applicable to any

time series of qualitative attributes, actions, or events taking place within the school

system, such as class attendance, accomplishments, episodes of decent or antisocial

behavior (e.g., bulling), to name a few.

Returning to group-interactions inquiry, it must be said that groups are not

always functioning as nonlinear systems and discourses do not always display

emergent patterns. In the experiments presented in this work, group settings were

designed so that activated members were involved in a free interaction process.

Discourses, under certain circumstances, show special features of nonlinearity,

nonrandom complexity, and novelty as measured by information entropy, which

are associated with group performance and productivity. These cases are more

likely to occur within unstructured settings where the discourse is allowed to evolve

spontaneously without preexisting scenario. The findings support a central hypoth-

esis that the learning outcomes from interactive groups emerge from nonlinear

dynamical processes. This is in line with theoretical premises and empirical evi-

dences from chaos and complexity research. The identification of iPL and fractal

dimensionality supports the hypothesis that in certain cases discourse in a group

interaction process could be functioning at the EOC, indicating creative processes

and emergent phenomena. The connection between creativity and nonlinear pro-

cesses has been elaborated in a special issue of Nonlinear Dynamics Psychology,
and Life Sciences (issue 2, April, 2011). At the individual level, and focusing on the
interactive mental resources in task executions, it was pointed out that the effective

cognitive processes, those which lead to learning outcomes, are nonlinear dynam-

ical processes. On the contrary, there are linear processes, such as “raw learning”

procedures and algorithmic problem solving, which are not associated with learning

and creativity (Stamovlasis, 2010, 2011, see also Chap. 9 in his volume). At a

theoretical level, any mental process and inductive-type complex problem-solving

procedure, where the solution is not hidden in the initial conditions, but is generated

via an iterative and recursive process, conform to nonlinear dynamical processes.

These are the processes that produce information (Nicolis, 1991). That is, these are
the creative processes. In this chapter, the central notion of emerging learning or

creativity through nonlinear dynamical processes has been extended to processes at

social level, referring to a constellation of individuals/students who interact with
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each other as a coherent unity. It is of paramount significance that irrespective to the

unit of analysis, at individual or collective level, the same principles can be

demonstrated, and this is the advantage of the theory of complex dynamical

systems.

The above findings have also important implications for education. At the group

level, a productive interaction process differs from a traditional instructional

session, which is based on behavioristic “transfer of knowledge” assumptions.

The latter represents a linear process having a predetermined scenario, in which

“learning” (if any) is considered to occur as a passive reception of emitted infor-

mation. In those cases, active involvement is not taking place and the participating

minds do not contribute to construction of meaning in the classroom. On the

contrary, within interactive groups, learning outcomes emerge through an iterative

and recursive process. The nonlinear perspective for the situated learning theory
suggests that collaborative construction of knowledge requires an “activated” group

involved in a dynamical interplay. The term activated implies strong interventions

and contribution to the evolving session. Given that the outcome is not nested in any

of the member’s initial repertoire, it has to be created through the interaction

process. Thus, creativity is associated with emergence, and this is the fundamental

element that nonlinear dynamics offers to educational theory and practice.

Learning-in-group approaches should encourage and train novice for active partic-

ipation, in a way that nonlinearity is induced in the interactive process. An evolving

discourse—a categorical time series portrayed by ODA—following a trajectory

which possesses low-dimensional chaos and operating at the EOC, is more likely to

be creative process.
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Chapter 14

Investigating the Long Memory Process
in Daily High School Attendance Data

Matthijs Koopmans

Complex dynamical systems research is motivated by a desire to understand how

systems maintain stability over the longer term, and how they transform them-

selves. To that end, the early cybernetic literature has maintained that the role of

time needs to be considered when trying to establish a causal connection between

outcomes and input conditions (Ashby, 1957; Wiener, 1961). While the causal

attribution of outcomes to changing input conditions is part and parcel of many

educational studies, there have been few attempts to deliberately model time when

establishing this causality (Koopmans, 2014a). The description of large samples of

sequentially organized data through time series analysis is quite common in many

other disciplines, such as cardiology (heart rates), meteorology (temperature, pre-

cipitation), and econometrics (mortgage rates, interest rates), and in fact, time series

can be found on an almost daily basis in newspapers such as the New York Times
and the Wall Street Journal.

Time series are useful whenever it needs to be estimated whether the passage of

time influences the causal mechanisms that predispose systems to behave in a certain

way. They have been used to study phenomena as diverse as irregular heartbeat

(Peng et al., 1993), blood cell perfusion in rat brains (Eke et al., 2000), seasonal

variability in the teen pregnancy rates in the state of Texas (Hamilton, Pollock,

Mitchell, Vincenzi, & West, 1997), and much more. In spite of the fact that the

conceptual foundations of this approach for education have been lucidly laid out

quite a long time ago (Glass, 1972), the use of time series in education has not

received as much attention as one might expect given the time dependency of many

of the processes of interest to the discipline: students learn over time, achievement

gaps get narrowed over time, and teachers manage time when they plan and execute

their lessons. This lack of attention to the time aspect reflects a tendency, particularly
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in applied research circles, to build studies around the prediction of educational

outcomes at the group level, rather than the underlying dynamics of educational

processes at the individual level (Koopmans, 2014a).

Cross-sectional methodologies rely on the tacit assumption that measurement

results obtained over a large sample of cases can be generalized across a large time

spectrum, as defined by the scope of the conclusions drawn from those measure-

ments. Does a “snapshot” standardized test result characterize stable achievement

levels over the scope of, say, an entire school year? The assumption that you can

generalize from cross-sectionally obtained group averages to the entire time spec-

trum for individual group members is known in the literature as the ergodic
assumption (Molenaar, 2004; Chap. 8). If this assumption cannot be taken for

granted, its verification becomes an empirical issue, requiring a detailed analysis

of individual cases. While Molenaar originally made this argument in the context of

psychological research, similar argument can be made for education, which, in

many ways relies on the same measurement practices for statistical inference, i.e.,

the measurement of behavioral constructs across groups of individuals (Kerlinger,

1977). An interesting question to contemplate for educational researchers is what

we can learn about systemic behavior and transformation thereof from the detailed

and statistically rigorous analysis of the contribution of time to behavior in indi-

vidual cases. Such understanding cannot be easily obtained through conventional

linear statistical techniques, which typically rely on the aggregation of the findings

across individuals for statistical inference (Neter, Wasserman, & Kutner, 1985).

The underlying assumption when using time-invariant measures is that the

systems under study are stable. This assumption of stability has also pervaded

the early dynamical literature that traditionally assumed that systems were in

principle in a state of equilibrium, except for the instability that accompanies a

transformation process (e.g., Lewin, 1947). The more recent literature on dynam-

ical processes has challenged this assumption and proposed that healthy systems

may often be in a state of disequilibrium (Bak, 1996; Goldstein, 1988), resulting in

an openness to transformation (Stadnitski, 2012b), whereas this proclivity may be

absent in systems that are stable in the sense that their behavior is highly predictable

based on past occurrences.

Moreover, systems may appear stable for long periods of time while the

endogenous process brings those systems to a critical state called self-organized
criticality (Bak, 1996). The prototypical example of self-organized criticality is the

sand pile model, which states that a continued supply of sand to a pile on a flat

surface causes occasional avalanches that reorganize the pile, ostensibly to reduce

the friction between the grains that result from the accumulation (Jensen, 1998).

The state of friction in a system where change is imminent is called self-organized

criticality or being “at the edge of chaos,” and it is seen as an indicator of systemic

complexity (Waldrop, 1992). One implication of the idea of self-organized criti-

cality is that there is a continuous relationship between the small ordinary events

that define the endogenous process in the system and the large cataclysmic events

that produce transformation in the system, requiring a single analytical framework

capturing both aspects.
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One important characteristic of self-organized criticality in systems is self-

similarity, also referred to as fractality, 1/f βnoise or pink noise. A well-known

example of self-similarity is the coastline of Norway, which on a small scale

replicates patterns that are also observed on a large scale (Feder, 1988), although

the scale at which they replicate is not constant. This independence of the patterns

observed on the scale at which they are observed is called scale invariance. When

measurements are conducted over time, patterns of variability can similarly repli-

cate themselves. Such self-similarity occurs when the same variability patterns are

observed within an undetermined variety of different time frames, suggesting an

alternating but unpredictable pattern of stability/instability.

Complexity and nonlinear dynamical system theories provide a rich array of

transformative scenarios, such as bifurcation and period doubling, sensitivity to

initial conditions, hysteresis, second-order change, coupled oscillators, and change

through self-organized criticality (Koopmans, 2009), and the search for empirical

manifestations of those scenarios requires the detailed analysis of sequentially

ordered observations in almost all instances. While time series is a common

statistical technique, its fine-tuning to specifically address transformative hypothe-

ses put forward in the dynamical literature is a relatively recent development. Two

aspects that have generated particular analytical interest are the use of time series

analysis to detect sensitivity to initial conditions and chaos (Kantz & Schreiber,

2004; Kaplan & Glass, 1995; Sprott, 2003), and the measurement of self-organized

criticality, fractality, and long memory processes (Beran, 1994). The analysis

presented here focuses on the latter of these two applications.

School Attendance as a Dynamical Process

Few educators would dispute that attending school is critical to successful educa-

tional outcomes, as it is a prerequisite to exposure to classroom instruction and the

learning opportunities it provides. In addition, school attendance is also a mediating

variable in the system of causal relationships that includes parental support, student

academic engagement, instructional effectiveness, and academic attainment

(Astone & McLanahan, 1991; Balfanz & Byrnes, 2012; Kemple, Segeritz, &

Stephenson, 2013; Kemple & Snipes, 2000; Roby, 2003). In spite of its apparent

importance, the analysis of school attendance has taken the backseat to outcomes

such as academic achievement, high school dropout, and college persistence behav-

ior, and to the extent that attendance data get reported, it is reported in aggregated

form, averaging daily attendance rates over weekly, monthly, or yearly periods (see,

e.g., National Center of Education Statistics, 2008), requiring us to assume that those

rates are stable over time. Reporting attendance aggregated across the time spectrum

results in significant information loss. A time-sensitive view of attendance may help

reveal how existing attendance rates impact future attendance over the immediate

and longer term, whether there are cyclical patterns to this impact, and what the

timing might be of the response of attendance rates to external events or conditions.

14 Investigating the Long Memory Process in Daily High School Attendance Data 301



An opportunity presented itself to conduct a statistically rigorous analysis of the

dynamical processes that may be manifest in educational time series when the

New York City Department of Education started recording and publishing the daily

attendance rates of all of its schools in 2004, and continued to do so up to the day of

this writing. The resulting data sets provide highly detailed information to estimate

about how attendance behavior is affected by the progression of time, how attendance

patterns differ fromone school to the next, and towhat extent transformative scenarios

such as the ones mentioned above play out over these attendance trajectories.

Most teachers and school administrators are probably well aware of the ebbs and

flows in the daily attendance in their classrooms and school buildings. In formal

research, these fluctuations get obfuscated by the aggregations that are seen as

necessary to summarize the data meaningfully. Hence, the findings of this research

do not connect effectively to local knowledge in the schools about daily attendance

(Koopmans, 2015). A related point is that applied research in education tends to

prefer the cross-sectional estimation of complex cause-and-effect relationships

instead of the estimation of the endogenous process through which those relation-

ships are generated (Sulis, 2012). As a result, the literature provides little guidance

about what to expect with regard to the short-range dependencies in daily atten-

dance rates, nor the correlations between observations over longer time periods.

The work discussed here aims to address this gap.

Using Time Series Analysis to Uncover Dynamical Patterns

The purpose of the analysis presented here is to uncover the dynamical patterns in

daily attendance rates, and illustrate why the estimation of those patterns may yield

relevant insights into attendance behavior at the school level. Data were obtained

from a total of seven schools and some data preparation was done to make the

information suitable for a time series analysis. Since such analyses do not permit

missing values, a nearest-neighbor imputationwas conducted in instances when daily

attendance was not recorded on three or fewer subsequent occasions in a given week.

If more than 3 days were missing from a given week, that week was removed in its

entirety from the series. Similarly, the summer and winter recess was not considered

and the last session before and first session after recess were connected as neighbors

to ensure the integrity of the dynamics of the temporal ordering of the information.

The two sections that follow will first describe how the estimation of short-range

error dependencies (autocorrelation) proceeds in a conventional autoregressive inte-

grated moving average (ARIMA) analysis (Box & Jenkins, 1970; Cryer & Chan,

2008). It is then shown how long-range patterns can be estimated through an extension

of this framework called autoregressive fractionally integrated moving average

(ARFIMA), a method introduced by Granger and Joyeux (1980) and Hosking

(1981) to model the slowly decaying autocorrelations that characterize the long-

term memory process. A third section describes the use of power spectral analysis,

a procedure used to convert time series plots into plots that show the periodicity of
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the data. This analytical procedure can be used to detect long-term fractal patterns

(Delignières, Torre, & Lemoine, 2005; Wagenmakers, Farrell, & Ratcliff, 2004).

The capability of the combined ARIMA/ARFIMA approach to address both

short- and long-range error dependencies within a single analytical framework

(Wagenmakers et al., 2004) makes the approach particularly attractive to analyze

daily attendance rates, and sets it apart from many other approaches to the detection

of fractality, such as power spectral density (PSD) analysis (Eke et al., 2000),

de-trended fluctuation (DFA) analysis (Peng et al., 1993), and rescaled range

(R/S) analysis (Hurst, 1965), none of which is particularly well suited to differen-

tiate short-range and long-range processes. Delignières et al. (2005) provide a lucid

overview of these and related approaches.

Like ARFIMA, Thornton and Gilden’s (2005) spectral likelihood classification

is designed to distinguish short-term from the long-term processes, but it

approaches the issue as an “either/or” proposition; that is, the short-term model

and the long-term model compete to provide the best fit to the data. As a result, this

approach does not enable the investigator to examine the contribution of long-range

processes to the variability in the trajectory over and above the contribution of the

short-range ones. Thornton and Gilden rightly argue that such as assessment is

unlikely to be of great theoretical interest when first-order dependencies (i.e.,

correlations between neighboring values on the trajectory) are at issue, but in the

context of the analysis of daily attendance patterns in high schools, the question is

pertinent whether the long-range modeling component needs to be supplemented by

seasonal estimators, i.e., short-range features that are of substantive importance to

the field such as the days of the school week. Our knowledge about seasonal

fluctuations in attendance may facilitate planning at the classroom, school building,

and policy level, and may help us better understand the interplay between exoge-

nous (e.g., parents, SES) and endogenous influences (i.e., school attendance rates in

the near and distant past). Such estimation may also enhance our understanding

about the extent to which the prediction of variability in daily attendance trajecto-

ries is relatively straightforward and to what extent it requires dealing with the

complexities in the system’s behavior. The ARFIMA approach is better equipped to

make these distinctions than approaches based on power spectra. However, the

particular strength of power spectral analyses compared to ARFIMA is that the

former procedure does not require any assumptions with regard to the distribution

of observations across the spectrum. Specifically, it can reliably estimate fractality

regardless of whether the original time series is stationary or not, whereas ARFIMA

requires stationary data (Stadnitski, 2012b; Wagenmakers et al., 2004), i.e., data

whose statistical properties are constant across the entire time spectrum.

Short-Range Dependencies

In this section, I’d like to discuss the estimation of short-range dependencies, a

statistical procedure that has been part and parcel of conducting time series analysis

for many decades now. Let us start with an example. Figure 14.1a shows the daily
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attendance for the entire academic year 2009–2010 in one New York City high

school (School 1), marking the days of the week (“R” represents Thursday). The

trajectory displays a somewhat drooping appearance with many outlying observa-

tions falling way below what would be the average of the series. It can also be seen

that there is an overrepresentation of Fs (Fridays) among those low-lying observa-

tions. The implication of this pattern would be that average daily attendance rates

aggregated across the time spectrum systematically overestimate attendance on

Friday and underestimate attendance on the other days of the week.

Figure 14.1b shows a trajectory of attendance increments, or first differences

(Yt� Yt�1) in that same school. It can be seen in that figure that in the course of the

school year, the differences between given observations and their immediately pre-

ceding neighbors become larger, resulting in increased variability, which is to say that

the trajectory shows heteroscedasticity across the time spectrum. This trend would go

unheeded if traditional central tendency and variability measures are used to charac-

terize these data, leaving us unaware of the increased turbulence in daily attendance as

the year progresses.

These examples illustrate very clearly why measures of central tendency and

variability are insufficient to characterize the distribution of daily attendance data,

as these measures ignore the skewness and the cycles in the first example, and they
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Fig. 14.1 (a) Daily attendance 2009–2010 in School 1 with the days of the week marked

(“R” represents Thursday, N¼ 183); (b) first difference Yt� Yt�1 of the attendance rates in

School 1 (attendance increments)
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ignore the increased variability over time in the second one. These examples also

indicate why conducting an ordinary least squares regression of daily attendance

rates on time yields a biased estimate of their relationship. The observations are not

independent, as shown in the first example, and the assumption of homoscedasticity

is violated in the second example. The failure of these traditional estimates to

handle characteristics that are typical of time-dependent data is part of what

motivates ARIMA, which is designed to distinguish two types of error dependency:

the autoregressive process (AR), and the moving average process (MA).

The AR model predicts the value of Yt as a linear combination of its own past

values, plus an error term that is presumed to be an independent identically

distributed random variable. The MA model predicts Yt in terms of accumulated

error disturbances, also called innovations. Appendix 1 explicates the ARMA

models formally. The investigator can control the number of lags that are used in

this prediction for each of these two modeling components. To ensure an unbiased

estimation of AR and MA processes, it is essential to verify the stationarity

assumption, i.e., the constancy of statistical properties of the data across the entire

trajectory. In case of non-stationarity, the first difference of the time series

(Yt� Yt�1) is typically used for the estimation. A process that requires such

differencing to estimate the ARMA components is called an integrated ARMA or

ARIMA process (Cryer & Chan, 2008).

There is a variety of ways to test for the stationarity of a time series. Themost well

known is the augmented Dickey-Fuller (ADF) test (Fuller, 1996), which regresses

the first difference of an observed time series on lag 1 or the original series, and on

the past k lags of the first difference of the series. It is then tested whether the beta

coefficient in the regression model associated with the lag 1 observation is different

from zero, using the parameters for the past k lags as covariates. Rejection of the null
hypothesis confirms stationarity of the series (Cryer & Chan, 2008). Thus, using

conventional notation, ARIMA ( p, d, q) defines the number of AR parameters p and
the number of MA parameters q included in the estimation process. The parameter

d refers to the order of differencing required, i.e., d¼ 0 for the stationary process,

and d¼ 1 for the use of the first difference of a non-stationary process.

Figure 14.2a, b shows simulated examples of a stationary and a non-stationary

time series for a sample of 180 observations. Figure 14.2c shows the first difference

of the trajectory in Fig. 14.2b, which results in stationarity. In the series shown in

Fig. 14.2a, c, it can be seen that the patterns of variability look pretty similar across

the series and that the mean of zero appropriately characterizes its central tendency.

This is clearly not the case for the trajectory shown in Fig. 14.2b, which character-

izes non-stationarity. This latter simulation shows what is known as a random walk
or Brownian motion, an unstable system with strongly correlated observations. The

results of the ADF test on these three trajectories are as follows: ADF¼�4.95,

p< 0.01; ADF¼�1.43, p> 0.01; and ADF¼�5.95, p< 0.01 for the series in

Fig. 14.2a, b, and c, respectively, using k¼ 4 as the lag order. These results confirm

the properties that these simulations were set out to show.

When estimating short-range effects across the time spectrum, it is often produc-

tive to inspect to the autocorrelation function plots to detect the patterns of
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dependency residing in the data. The use of these plots is illustrated in Fig. 14.3.

Three simulated trajectories (N¼ 180) are shown in the left panels and the

corresponding ACF plots are shown on the right. Figure 14.3a shows a simulated

trajectory without error dependencies (white noise). In this situation, knowing the

trajectory does not improve our ability to predict subsequent observations. The ACF

plot corresponding to this situation is shown on the right. The spikes in the plot

indicate the size of the autocorrelations at the lags indicated on the abscissa. The

dotted lines indicate the 95 % confidence interval. The plot shows that none of the

autocorrelations up to lag k¼ 30 are different from zero. The trajectory in Fig. 14.3b

shows the clustering of neighboring observations that comes with autocorrelation,

giving the trajectory in its entirety less of a random appearance than the one shown in

Fig. 14.3a. An autoregressive process was generated using an AR (1) model with

φ¼ 0.70, also with 180 observations. The ACF plot shows what a positive AR

(1) process typically looks like. The correlations at the first few lags are significantly

different from zero, but they rapidly recede to non-significance as the lag order
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increases. Figure 14.3c illustrates an MA (1) scenario at θ¼ 0.70. A different

clustering pattern can be observed in this latter series where consecutive observations

tend to alternate across the mean of zero, as is also indicated by the negative

autocorrelation shown in ACF plot for the first lag. Note also that, typical of the

moving average process, after the first spike, the autocorrelations immediately recede

to non-significance at subsequent lag values. The examples presented here can be

extended to include AR andMAprocesses at negative parameter values, multiple AR

(p) or MA (q) parameter values, and combined ARMA (p, q) estimates (see, e.g.,

Box & Jenkins, 1970; Cryer & Chan, 2008; Shumway & Stoffer, 2011).

Seasonal ARMA Processes

One of the advantages of the ARIMA/ARFIMA approach is that the number and

size of the lags included in the predictive models are fully up to the investigator, and

Time

a

b

c

Y
t -

 W
hi

te
 N

oi
se

0 50 100 150

-3
-2

-1
0

1
2

5 10 15 20

-0
.1

5
0.

00
0.

10

Lag

A
C

F

Time

Y
t -

 A
ut

or
eg

re
ss

io
n

0 50 100 150

-3
-1

1
2

3

5 10 15 20

-0
.2

0.
2

0.
6

Lag

A
C

F

Time

Y
t -

 M
ov

in
g 

A
ve

ra
ge

0 50 100 150

-3
-1

1
2

3
4

5 10 15 20

-0
.4

-0
.2

0.
0

0.
2

Lag

A
C

F

Fig. 14.3 Three simulated time series (left panels) with corresponding ACF plots (right panels).
(a) White noise; (b) autoregression (φ¼ 0.70); (c) moving average (θ¼ 0.70). N¼ 180

14 Investigating the Long Memory Process in Daily High School Attendance Data 307



there may be substantive reasons to model predictions around particular lag sizes,

such as cycles denoting the days of the week or months in a year. For the analysis of

school attendance in particular, the 5 days of the week are of particular interest to

estimate whether daily attendance rates have a seasonal cycle. Consequently, over

and above the estimation of the impact of immediately neighboring values (i.e.,

attendance on the previous day or 2 days), as illustrated above, we would like to

estimate the impact of last week’s attendance rate. Does knowing the attendance

rate on a given day of the week improve our prediction of attendance on that same

day the following week? The trajectory shown in Fig. 14.1a illustrates the relevance

of this estimation. Appendix 1 shows the formal modeling features of the seasonal

ARMA model.

An empirical example of the weekly cycles is shown in Fig. 14.4a, which shows

the daily attendance trajectory for School 2 in the 2009–2010 school year, as well as

the ACF plot. While the cyclical dependencies may be difficult to detect in the time

series, the ACF plot brings them out very clearly as a pronounced spike at the fifth

lag. This ACF plot also points to the absence of short-range dependencies at other

lag values. Figure 14.4b shows the residuals of the ARIMA model that successfully

models the seasonal dependency at five lags (φ1¼ 0.90, θ1¼�0.71, and θ2¼ 0.16).

The trajectory on the left suggests randomness, and the ACF plot confirms that there

are no remaining short-range dependencies in the data. The extreme values shown

in Fig. 14.4a were modeled using an intervention analysis framework (Cryer &

Chan, 2008, see Koopmans, 2011 for further details about that aspect of the

analysis).
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ACF plot at the right; (b) residuals of a successful ARIMA model with corresponding ACF plot.
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Long-Range Dependencies

The estimation of long-range dependencies helps determine whether there is evi-

dence of self-organized criticality in the trajectories. Self-organized criticality

would indicate that, as in the sand pile experiments discussed above, there are

instances of critical instability and a repeating tension-release process in the face of

continued input. In the data discussed here, perhaps long episodes of required

attendance behavior create the need for incidental release, with a state of self-

organized criticality immediately preceding this release. In time-sensitive measure-

ments, indicators of self-organized criticality are the presence of self-similar

patterns, and strong autocorrelations over a wide time spectrum. An important

part of the data for long-range dependencies therefore is the detection of these

two patterns.

Self-similarity refers to the replication of certain patterns at various scales, i.e.,

patterns within patterns. These patterns do not replicate in a strictly deterministic

way. Rather, it is their general impression that remains the same (Beran, 1994).

Figure 14.5 shows an example of self-similarity in the daily attendance rates in one

school (School 3). The first panel (Fig. 14.5a) shows the daily attendance rate in that

school over a 7-year period, from the fall of 2004 through the spring of 2011.

Figure 14.5b shows those rates for one school year (2007), and Fig. 14.5c shows the

rates for the fall of 2007. Figure 14.5d shows the rates for a 22-day period within the

fall of 2007. Comparison of these four trajectories suggests self-similarity in the

following three ways. There appears to be a slight downward trend in Fig. 14.5a that

replicates itself at the smaller grid levels of Fig. 14.5b, c, and d. In addition, there
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Fig. 14.5 Evidence of self-similarity in the attendance trajectory in School 3. (a) Attendance rates
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are pronounced dips that surface more toward the end of the series. Furthermore, at

each level of description, variability appears to increase as the series progresses.

While this self-similar pattern is striking, not all features of the three trajectories

replicate across scales: the last few observations toward the end of the trajectories

show different variability patterns, and the lower dips do not necessarily occur at

the same relative position of the time window. In the face of these conflicting signs,

further statistical modeling is needed to empirically confirm the impression that

daily attendance trajectories are indeed self-similar. As with the estimation of

sensitivity to initial conditions, a large number of data points is needed to estimate

a process hypothesized to replicate itself over and over in a scale-invariant manner.

The conventional ARIMA model described above is highly suitable to esti-

mate such short-range dependencies, and a successfully fitted ARIMA model

results in randomly distributed residuals. However, ARIMA models are not well

suited for the detection and estimation of long-memory effects. The ARFIMA

model is specifically designed to analyze the long-term fractional process that

indicates self-similarity, by estimating the significance of the parameter

d (the differencing parameter) over and above that of the autoregressive and

moving average parameters. The use of ARFIMA to estimate long-range pro-

cesses presumes a stationary trajectory, however. In case of non-stationarity, the

investigator has the choice of analyzing the first (or second) difference, of

the series, or resorting to different estimation methods altogether to detect

fractality (Stadnitski, 2012a).

You may recall that in the short-term ARIMA ( p, d, q) model, the parameter d is
fixed to be zero if the trajectory is stationary, or d¼ 1 if it is non-stationary, in

which case the first difference Yt� Yt�1 is analyzed. The fractional part of the

ARFIMA ( p, d, q) process refers to the fact that the detection of self-similarity

through modeling of the long-range processes involves estimating fractions of

d falling between d¼ 0 and d¼ 1. Dealing with the stationary case, ARFIMA

also presumes that the differencing parameter d ranges from �0.5 to 0.5, with a

d¼ 0 indicating no error dependency (white noise). A positive differencing param-

eter indicates a long-range positive autocorrelation pattern, also known as persis-
tence. Conversely, a negative differencing parameter indicates a long-range

negative autocorrelation pattern, referred to as anti-persistence (Beran, 1994;

Stadnitski, 2012a; 2012b). Appendix 2 explicates ARFIMA formally.

A simulation with 1200 data points is shown in Fig. 14.6a, b to illustrate,

respectively, short-range dependency in a simulated autoregression (φ¼ 0.5) and

long-range dependency in a simulated fractal process (d¼ 0.35). The panels on the

left show the relative stability of the autoregressive process in Fig. 14.6a compared

to the more turbulent manifestation in Fig. 14.6b. The panels at the right of the

figure show the characteristics of the corresponding ACF plots. The spikes indicat-

ing the size of the autocorrelations quickly recede to non-significance as the lag size

increases in Fig. 14.6a, while in the plot in Fig. 14.6b the recession to

non-significance proceeds very slowly, indicating persistence.

Figure 14.7a shows the mean-centered attendance trajectory in School 2 (see

Fig. 14.5a for the original trajectory for this school), as well as the ACF plots at
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Fig. 14.6 Time series plot (left panels) and ACF plot (right panels) of (a) simulated

autoregression (N¼ 1200, d¼ 0; φ¼ 0.5) and (b) simulated fractality (N¼ 1200, d¼ 0.35)
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31 lags and at 200 lags (Fig. 14.7b and c, respectively). The short-term picture in

Fig. 14.7b shows a rapidly decaying autocorrelations at the first few lags, as well as

a seasonal cycle at the fifth lag that looks quite persistent. The longer term picture

shown in Fig. 14.7c shows the persistence of the seasonal dependency as well as

some evidence of nonseasonal persistence. Koopmans (2015) describes in greater

detail the ARFIMA modeling process through which it was determined that the

long-range dependencies made a statistically significant contribution to the vari-

ability in the data, even after modeling the short-range and seasonal processes in the

trajectory. This analytical process yielded a differencing parameter of d¼ 0.13,

indicating some degree of persistence over and above the short-range and seasonal

dependencies.

In addition to the differencing parameter d, several other parameters are often

used to characterize the dynamical process in time series data. One is the Hurst

exponent H, named after Harold E. Hurst, who developed the measure to charac-

terize the scaling dimension in such natural phenomena as water discharges, tree

rings, temperature, and precipitation. Hurst originally defined the parameter in

terms of the range R and standard deviation S of the measurement trajectories

within given time periods to assess how the observed variability depends on the

time ranges over which the measurements are taken. A linear correlation between

the time range and measurement variability indicates long-range dependencies

(Feder, 1988; Mandelbrot, 1997). Within the ARFIMA framework, the estimation

of H is based on the differencing parameter d as H¼ dþ 0.5. So then the interpre-

tation of the differencing parameter provided above translates into an interpretation

of the Hurst exponent as follows: H¼ 0.5 indicates white noise, H> 0.5 indicates

persistence, and H< 0.5 indicates anti-persistence. Hence, the scaling component

for School 3 equals H¼ 0.63, again indicating some persistence.

Power Spectral Density

To analyze fractal patterns in time series data, it is common practice to generate

power spectra to assist with the detection of self-similarity. The conversion of a

time series to a power spectrum involves a mathematical operation called Fourier

transform (Shumway & Stoffer, 2011), which re-expresses the trajectory of

observed measurements over time as a power versus frequency relationship as

follows (Mandelbrot & van Ness, 1968):

S fð Þ / 1=f β

In this function, f represents the frequency and S( f ) is the squared amplitude

corresponding to that frequency (Delignières et al., 2005). The amplitude, or

power, represents the magnitude of the variability in the cycles of dependency

between observations at different lag values. The frequency in the spectrum is a

relative frequency, which expresses the periodicity of the dependencies as f ¼ j
n
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with j¼ 0, 1, 2, . . ., (n�1)/2. Here, j represents the number of cycles and n the

number of time points in the series (Shumway & Stoffer, 2011). Thus, the relative

frequency ranges from
1

n
to

1

2
after the Fourier transform is carried out. Few

iterations j represent the long-term process and many iterations represent the short-

term (Eke et al., 2000), and the power or amplitude expresses the strength of the

dependency between the observations that constitute the cycle.

A power spectrum is produced by log-transforming the relative frequency as

well as the power of this function. A power spectral density plot is said to display a

power law if the relationship of the log power to the log relative frequency is linear

with a negative slope. Such a relationship would indicate that if one, for instance,

doubles the frequency, the power diminishes by the same rate regardless of the

frequency values chosen on the abscissa of the density plot. This feature indicates

the scale invariance that is one of the signature characteristics of self-similarity

(Eke et al., 2000). Generating power spectra is therefore of theoretical as well as

diagnostic interest in such cases. The parameter β in the power function above is

used to estimate the slope in this plot, assuming that the relationship is linear. This

latter proviso is an important reminder that a careful inspection of the power

spectrum is required to determine whether this assumption is actually met. For a

lucid discussion of the interpretation of linear and nonlinear patterns in power

spectra, see Wagenmakers et al. (2004).

A major advantage of power spectral density analysis over ARFIMA is its

capability of distinguishing fractality in stationary as well as non-stationary trajec-

tories, typically referred to as fractal Gaussian noise (fGn) and fractal Brownian

motion (fBm). As you may recall, ARFIMA requires stationarity in the data, and in

the absence thereof, differencing is used to make the data stationary. Some

researchers have argued that such a transformation effectively removes intrinsically

interesting features from the data, resulting in information loss (Granger & Joyeux,

1980). Comparison of Fig. 14.2b and c illustrates this point. The differencing

accomplished in Fig. 14.2c removes many interesting particularities from the data

trajectory, such as the lack of consistency of the behavior of the data from one time

period to the next in the original series. This feature, which could have major

substantive interest in the analyses at hand, completely disappears in the

differenced transformation shown in Fig. 14.2c.

The estimation of the Hurst coefficient H, on the basis of which the presence

of long-term dependencies is decided, requires a distinction between fGn and

fBm processes. Eke et al. (2000) describe how power spectral density analysis

can be used to that end. The criteria for deciding whether a given time series

belongs to the fBm or the fGn family are described as follows: if the slope of the

power spectrum based on an observed time series equals �1 < β̂ < 0:38, fGn

should be assumed when estimating H. If 1:04 < β̂ < 3, fBm should be assumed.

If 0:38 < β̂ < 1:04, the process is said to be unclassifiable in terms of fGn vs. fBn.

In the fGn case, the theoretical relationship between the Hurst exponent and the
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power exponent β is H¼ (βþ 1)/2; the power exponent can also be expressed as

twice the differencing parameter estimated in ARFIMA, i.e., β¼ 2d. As indicated
above, the Hurst exponent can be defined as H¼ dþ 0.5. In the fBm case, H¼
(β� 1)/2. In both fGn and fBm processes, an H of 0.5 marks the boundary between

persistence and anti-persistence (Stadnitski, 2012a, 2012b).

Figure 14.8a–c shows, respectively, what these power spectra would look like

for simulated trajectories of white noise (no memory), pink noise (long-range

memory), and Brownian motion (infinite memory). The ARFIMA simulation

routine was used to generate white noise at d¼ 0 (H¼ 0.5) and pink noise at

d¼ 0.35 (H¼ 0.85). Brownian motion was generated using phytools (Revell,

2012) with β¼ 2.0. In all three cases, the series were set to be 1500 observations

long with a random normal distribution. The fourth panel (Fig. 14.8d) shows the

power spectrum for School 3 (N¼ 1290 observations). The similarity between the

power spectra for School 3 and the simulated pink noise in Fig. 14.8b is clearly

discernible here, as are the differences between those two spectra on the one hand,

and the white noise and Brownian motion spectra on the other. These differences

can be appreciated both in terms of the steepness of the slopes and in terms of the

amount of variability left around the fitted lines. As expected, the power function

for white noise is flat; the slopes for the pink noise spectra fall well within Eke

et al.’ range for fGn, while the power spectrum for Brownian motion shows steeper

slope with a narrow range of variances throughout indicating infinite memory

(continued autocorrelation) in the entire trajectory.
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Fig. 14.8 Power spectra for (a) simulated white noise (β¼�0.21), (b) simulated pink noise

(β¼�0.57), (c) simulated Brownian motion (β¼�2.0), and (d) empirically observed daily

attendance rates in School 3 (β¼�0.55). The slopes for the simulated pink noise and Brownian

motion spectra and for the attendance rates for School 3 are different from zero ( p< 0.05)
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Discussion

Few would argue that time plays a role in daily classroom and school-building

activities, and the analysis of what the contingencies are that affect behavior in

those contexts is a highly relevant undertaking as it might tell us what the under-

lying processes are of the transformations that constitute learning (Vygotsky,

1978). However, in educational science, our models of causal attribution tend to

be cross-sectional, as we examine whether our instruction, leadership, policy, and

other interventions impact the educational outcomes of our student population.

These models are incomplete if the endogenous process is overlooked (Koopmans,

2014b). We need to know the behavior of interest over a larger time spectrum in

order to understand the system’s propensity toward transformation or toward

maintaining the status quo. Knowing these propensities is important to qualify

our causal attributions about educational effectiveness. Finding no relationship

between interventions and outcomes may indicate that the system is resistant to

change regardless of the (perceived) merits of the intervention in question. Like-

wise, it is possible that observed changes are not sustained in the long run in a

highly flexible system as it deals with ever-changing adaptive requirements without

sustaining the innovations whose effectiveness was demonstrated. We therefore

need to acquire more knowledge about the internal systemic processes and how

they behave over time because they reveal the system’s predisposition toward

change. Dynamical theories such as chaos theory and the theory of self-organized

criticality are particularly concerned with such systemic propensities.

This chapter addresses two interrelated issues. The first one is that when the

phenomena we study potentially have a temporal dimension, as may educational

variables do, the contribution of this time dimension to the variability in one’s
observations needs to be investigated in a fair amount of detail to provide some

meaningful answers about how endogenous processes contribute to the transforma-

tive process in education. Researchers may counter that longitudinal approaches

such as survival analysis, repeated measures analysis of variance, and growth

modeling can address this concern. However, these approaches differ from the

ones described here in that traditional longitudinal techniques do not provide the

degree of detail and resolution in the data that is required to estimate dynamical

processes such as cyclical trends, or processes pointing to complexity such as self-

organized criticality and sensitive dependence on initial conditions. The circum-

stances under which the time series approaches described are capable of capturing

such complexity are a point of some contention in the dynamical literature. Eke

et al. (2000) tested the reliability of fractality estimates using a time series of 217

(N¼ 131,072), a length that is unlikely to have any meaningful empirical referents

in education. Many researchers have proceeded with series of 29 or 210 deemed

sufficient for that purpose (Delignières et al., 2005; Stadnitski, 2012a). The chal-

lenge for nonlinear time series, in education as well as elsewhere, is the resource

intensiveness of collecting information at this level of detail.
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There is also a general point to be made about the cross-sectional use of central

tendency and variability measures to address questions of educational effective-

ness. The use of these measures presumes that the characteristics of interest are

stable over time and that the time factor therefore does not have to be measured (the

ergodic assumption, Molenaar, 2004). Given the dynamical nature of educational

processes, it does not seem likely that the ergodic assumption holds very often; yet

there are very few examples of the type fine-grained analyses that are needed to

examine quantitatively the influence of time on the variability in our observations.

This chapter illustrates one way of addressing this issue. Obviously, daily atten-

dance rates are not the only variable of interest in the educational context. Important

work to address the influence of time on educational outcomes and implementation

variables includes several of the chapters included in this volume (Garner &

Russell, Chap. 16; Pennings & Mainhard, Chap. 12; van Vondel, Steenbeek, van

Dijk, & van Geert, Chap. 11), although the estimation of fractality is not the focus

of that work.

The second concern addressed in this chapter is the fact that we know very little

about how time contributes to school-level daily attendance rates in particular. The

availability of a data repository covering more than a decade’s worth of data by now
has provided a unique opportunity to investigate the applicability of nonlinear time

series in education, and learn more about how such attendance rates behave over the

longer term. The analysis presented here indicates that in addition to the first-order

autoregressive and moving average parameters that enhance the reliability of our

descriptions, effective models incorporate seasonal estimators. Here, these estima-

tors indicate that the 5-day weekly cycle exercises considerable influence over the

patterns of variability found in the attendance trajectories. Practitioners may have

been able to tell us about the seasonality of the daily attendance in their school

buildings, but the formal research on high school attendance has traditionally had

remarkably little to say about those patterns.

Of particular interest in the context of complexity research are the patterns in

daily attendance that go over and above the seasonal influences noted above. The

estimation of fractality or self-organized criticality is of interest because it points to

complexity in the system as it adjusts to changing circumstances (Beran, 1994;

Stadnitski, 2012b). This may be the case for schools as well, where schools showing

fractality may have greater susceptibility to those influences whereas schools whose

attendance trajectories do not show fractality may be more immune to them

(Koopmans, 2015). Another aspect that is of importance to this discussion is the

presence of many extreme observations that are likely to be tied to specific

contingencies, such as snow days, upcoming vacations, and the irregularities

associated with the end of the school year (Koopmans, 2011). Figures 14.1a,

14.4a, and 14.5a in this chapter illustrate the prominence of these observations.

Irregularities of this kind are highly influential to the attendance trajectories, but

they can usually be explained in terms of specific external contingencies, whereas

the cyclical and long-range dependencies are often not as easy to account for.

Particularly in those cases where schools show evidence of self-organized critical-

ity or fractal patterns in the trajectories, the development of strong theories to
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explain those patterns becomes a pertinent issue, requiring investigator to collect

additional information about putative causal influences such as parental support,

teacher quality, and school responsiveness to student absences.

To develop strong causal theories about attendance behavior, in other words, it is

necessary to triangulate the quantitative characteristics of school-level daily atten-

dance trajectories with data from other sources to find out more about the factors

that produce irregularity in attendance behavior as well as what the determinants

are of self-organized criticality in the schools. Are small high schools to be more

likely or less likely to display self-organized criticality? Are schools serving

predominantly students from poor families more or less likely to show such

patterns? It is up to empirical research to address these questions to help us

understand better why given attendance rates are what they are, as well as to theory

to articulate the putative causal mechanisms.

In this context, it is also relevant to contemplate what it means to say that there is

self-organized criticality in the attendance trajectory for a given high school.

Figure 14.5 in this chapter illustrates what it looks like in one school. The patterns

shown there seem to suggest a fatigue dynamic, where initial cycles of high

attendance/low variability are followed by higher variability and then lower

peaks. This pattern appears to replicate in this trajectory in a scale-invariant

manner, which is to say that it occurs over large time frames (e.g., a 7-year period),

but also in much smaller time frames residing within those larger ones. The value of

attendance research from a complexity perspective is that, contrary to the seasonal

cycles that are easy to discern for school-building practitioners, these self-similar

patterns are much harder to detect let along confirm, while they nonetheless have

important implications for policy.

To estimate fractality, Wagenmakers et al. (2004) recommend a competitive

modeling approach, along the lines of a stepwise multiple regression, where the

statistical goodness-of-fit models including all the short-term estimators of interest

are compared to a model including all of those as well as a differencing parameter

estimate. Koopmans (2015) shows the applicability of this modeling strategy to

daily school attendance trajectories. The literature advises caution when concluding

self-organized criticality based on evidence of persistence in time series data,

because the possibility remains that the appearance of persistence may in fact

mimic a pattern of short-range dependencies (note that d is not lag specific in the

general ARFIMA formulation shown in Appendix 2). Therefore, a careful inspec-

tion of the plotted trajectories and ACF plots is always indicated, as well as the

triangulation of the statistical evidence from ARFIMA with other sources of

information that may provide a more substantive description of the dynamics

underlying long-range dependencies to help develop a strong causal theory to

explain the results of time series analyses.

In closing, I’d like to stress the merits of single-case designs to enhance our

understanding of educational processes, and the attendance data presented here are

meant to illustrate that point as well. We can learn from studying the particularities

of bounded individual systems and investigate in great detail the processes of self-

maintenance and transformation as they play out over a large time spectrum and in
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the interactions between individual agents within the system (students, teachers,

administrators, policy makers) and the larger systemic components (classrooms,

school buildings, districts, federal agencies) with which these agents interact in an

ongoing dynamical interrelationship. In educational science, a distinction is tradi-

tionally made between qualitative research, which tends to focus on the particular

and quantitative research, which is oriented toward the analysis of data for purposes

of statistical inference. The research presented here argues from a complexity angle

for the obsolescence of the idea that quantitative and qualitative research are

mutually exclusive empirical strategies. The richness of detail provided by the

single case uniquely allows for a rigorous quantitative assessment of the dynamical

underpinnings of behavior, as well as revealing its qualitative transformations.

Appendix 1: Short-Range Estimation Using ARIMA

The general model AR can be stated as

Yt ¼ ϕ1Yt�1 þ ϕ2Yt�2 þ � � � þ ϕpYt�p þ et

This model estimates Yt using p lags. The parameter ϕ estimates the influence of

past observations on the series at each given lag.

The MA model estimates Yt in terms of accumulated error disturbances, also

called innovations. Using q lags, this estimation can be written as follows:

Yt ¼ et � θ1et�1 � θ2et�2 � � � � � θqet�q

In this equation θ estimates the impact of each innovation on the series.

AR andMA processes can be captured in a single predictive model. For purposes

of clarity, we describe a predictive model that uses one lag only, i.e., p¼ 1 and

q¼ 1:

Yt ¼ ϕ1Yt�1 þ et � θ1et�1

A special case is the seasonal ARMA process, which estimates the dependencies in

terms of days of the week, months in a year, etc. The analysis presented here

focuses on the regularities as a cyclical weekly pattern with 5 days in the school

week. The model used to address this question can be formally written as

Yt ¼ ϕ1Yt�5 þ et � θ1et�5
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The autocorrelation function (ACF) at lag k is defined as

rk ¼
Xn

t¼kþ1

Yt � Y
� �

Yt�k � Y
� �

=
Xn

t¼1

Yt � Y
� �

for k ¼ 1, 2, . . .

Appendix 2: Long-Range Estimation Using ARFIMA

Some mathematical reorganization of the terms in the ARIMA model as stated in

Appendix 1 is required to describe what the estimation of the long-range influences

adds to the models that assess the short-range effects on attendance trajectories.

It is often conventional in time series notation to express ARMA processes in

terms of the so-called lag operator, or backshift operator, which is defined as

BYt ¼ Yt�1

In plain English, the backshift operator B shifts observations back one time unit to

construct a new series. The next lag over can be written as BBYt¼ Yt�2, or

B2Yt ¼ Yt�2

In terms of this operator, the ARIMA process described above is often written as

1þ φ1Bþ φ2B
2 þ � � � þ φpB

p
� �

Yt ¼ 1þ θ1Bþ θ2B
2 þ � � � þ θqB

q
� �

et

The left side of the equation represents the autoregression (AR) component; the

moving average (MA) component is on the right. The mathematical derivation of

this formulation, called the characteristic equation, from the equations above can

be found in Box and Jenkins (1970), Cryer and Chan (2008), and many other

standard time series texts. It is assumed in this model that remaining error is

randomly distributed, i.e.,

et t ¼ 1, 2, . . .ð Þ e N 0, σ2
� �

IID:

The ARFIMAmodel separates long-term dependencies from the short-term ones by

parameterizing d as a differencing estimate:

ð1þ φ1Bþ φ2B
2 þ � � � þ φpB

pÞð1�BÞdYt ¼ ð1þ θ1Bþ θ2B
2 þ � � � þ θqB

qÞet

It is assumed here that the trajectory is stationary and that �0.5< d< 0.5 (Beran,

1994; Sowell, 1992; Stadnitski, 2012b).
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Chapter 15

Educational Systems
and the Intergenerational Transmission
of Inequality: A Complex Dynamical Systems
Perspective

Porfirio Guevara and Emilio Porta

Introduction

It is one of the greatest puzzles of our time. Globalization and technological change

has lifted hundreds of millions of people out of poverty and improved the lives of

many more that, thanks to the internet and advances in education, have joined the

global supply networks everywhere, mainly in developing countries during the last

half-century. Paradoxically, this trend has also intensified internal divisions in

society, like those based on income distribution. Individuals with better skills

have managed to outstrip unskilled workers as the formers’ knowledge has facili-

tated access to well-paid jobs and investment opportunities. Unskilled workers, on

the other hand, are more likely to access jobs that compete more directly with

automatic processes performing routine-intensive activities that affect their

employment and returns opportunities. The numbers are astonishing; worldwide,

some 780 million adults and 126 million youngsters still lack the most basic reading

and writing skills (UNESCO, 2015). As a result, income or wealth-based inequal-

ities has been reported on the rise everywhere (Piketty, 2014; Ravallion, 2014).

This is a reminder that despite the startling technological advance of the modern

world in solving many of today’s most pressing scientific and engineering chal-

lenges, the complexities of the systems in which most human activities are embed-

ded prevent us from taking full control of even our good intentions to provide

inclusive social and economic progress for everyone.

Although social and neural scientists are still trying to disentangle the multiple

causes of inequality and policy measures are currently subject to an intense debate,

the role of educational systems on human capital in an increasingly technologically

connected society are at the center of deliberations (Noble et al., 2015; Porta &

Laguna, 2007). Educational systems are one of the main sources of skills and
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productivity available to a country. At an individual level, researchers have long

established a strong causal link between advances in school attainment and indi-

vidual earnings via improvements in productivity, and therefore productivity is

crucial to explain how much workers earn.1 But workers’ earnings depend not only

on specific issues related to their productivity to perform determined tasks, earnings

also depend on the pool of additional workers currently available in a country

to accomplish such tasks, for which the underlying educational system is crucial.

If, on average, only a reduced fraction of individuals finish the school on time—i.e.,

there is a sizeable fraction of students that repeats or drops out—then one would

expect to see a shallow pool of skilled workers in this country and as a consequence

high returns to schooling, which would be one of the main sources of inequality.

Moreover, if this process is prolonged over time and it systematically targets specific

groups, we just need a dominant positive feedback in the system reinforcing small

differences to attain the intergenerational transmission of inequality.

Feedbacks are an essential component of any complex dynamical system and

positive—or reinforcing—feedbacks have been extensively identified in educa-

tional systems (see Koopmans, 2014). Constituent elements in an educational

system change and react over time—usually in nonlinear ways—with the collective

patterns they create amplifying original differences. One may naturally think, for

example, on the influence that the aggregate characteristics of a community has on

individual schooling decisions. Students from low-income families are more likely

to repeat or dropout the school, starting out at a disadvantage in the labor market

and in that way restricting their earnings and likely, those of their offspring. The

educational system rewards disproportionally those who complete the process but

additionally penalizes extensively who fail to do so as the reverberations of these

outcomes are transmitted through generations. Thus the role of educational systems

and their efficiencies must be placed at the center of the debate on the transmission

of inequalities and social mobility for the purpose of understanding them and

designing possible strategies to address them.2 Consequently, to approach inequal-

ity in a relevant dimension our analytical framework must grasp the dynamics of the

whole system and not only the behavior of its individual components. Under this

perspective two prominent approaches can be applied in the analysis:

(a) Individual-based interventions, which focus on cognitive skills and

learning trajectories attained by students during the instruction process

1 The dominant theory of human capital formation is rooted in economics and owns its relevance to

outstanding contributions by Mincer (1958), Becker (1962), and Becker and Chiswick (1964).

These celebrated authors established the central role of education to explain earnings’ differences
and inequalities in society, and their ideas have been subject to mounting empirical scrutiny by

authors like Hanushek (2009, 2014), Autor (2014), Ravallion (2014), among others.
2 By efficiency we mean the ability of an educational system to graduate the maximum number of

students had children entered school at normal age and advanced one grade each year, without

repetition or dropout.
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and the influence of school and socioeconomic factors on those trajectories

(Noble et al., 2015).3

(b) Improving the education production process by enhancing the operational

activity of human capital generation at macro level.

The approach we follow in this chapter is of an operational and aggregate

nature and thus the second category is the relevant to our analysis. The overall

behavior of a complex system cannot be deduced from its constituent elements in

isolation—which can be regarded as the emergent property—and therefore the

analysis of an educational system can be enriched from a modeling perspective by

adopting a macro perspective that accounts for the interactions of its elements.

When the relevant unit of study is set to be at aggregate or macro-level, it becomes

much simpler to focus on the average performance of the students in a system

without losing relevant information for the analysis. Additionally, as the macro-

level of any complex system is governed by the laws of physics (Carroll, 2010),

once we integrate these laws in our model a certain amount of discipline is

imposed in its structure increasing the reliability of simulations over long periods

of time since these laws are expected to remain unchanged over time.4 Thus,

complex modeling and simulation grounded on scientific principles offers a sound

and reliable methodology to understand the relationship between the structure of

an educational system and the behavior driving the intergenerational transmission

of inequality, as many of these relationships mainly emerge over long periods

of time.

To perform the analysis we present a dynamic, nonlinear system dynamics

simulation model for primary education, calibrated for the case of Nicaragua during

the period 2000–2010, in a similar fashion to the one described by Guevara, Lopez,

Posch, and Zuniga (2014). We also illustrate how the model can be extended to

disaggregate population by income/wealth and by their opportunities to finish

primary school. We believe this approach will help us understand how educational

systems work in reality by making explicit some of the channels and feedbacks

that influence the relationship between income/wealth and education across

3 The individual-based interventions which focus on cognitive skills and learning trajectories

attained by students during the instruction process and the influence of school factors on those

trajectories have also a great deal of interest in this book. See for instance the analysis of learning

trajectories over time and the influence of the classroom interactional context by Steenbeek and

van Geert (University of Groningen, Netherlands); or the use of orbital decomposition to study the

predictability of learning behaviors and patterns of social interaction in educational settings by

Stamovlasis (Aristotle University of Thessaloniki, Greece).
4 The model complies with the first two laws of physics. The First Law (conservation of the matter)

states that the amount of people entering the system must not be different from that that ever goes

out, ruling out the possibility that the simulation model creates people artificially due to a human

error in the computer code. The Second Law proposes that the entropy of a closed system cannot

decrease and time has only one direction (see Guevara, 2014).
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generations. Under this perspective, we find insightful to portray (the lack of)

equality as a critical factor of the human capital process—following Guevara and

Posch (2015)—and show how income inequality might impact the overall opera-

tional efficiency of the system. Our intention is to draw a methodological line

related to the transmission of inequalities from a complex system perspective that

can be extended and refined in future studies for the purpose of designing and

evaluating policies to tackle income distribution in a country via the efficiency of its

educational system. This CDS simulation model thus will allow us to draw alter-

native causal inferences to those documented in studies using simple correlations as

in Hanushek (2009) or Hanushek and Woessmann (2014).

Assessing a complex system’s topology using correlational methods is helpful

albeit insufficient due to the nature of this study. The interactions we aim to

capture in our model are embedded in a complex web of multiple subsystems and

variables producing outcomes that feedback to these subsystems and their com-

ponents. Thus we require information about the multiple components’ roles in a

system and their mutual and simultaneous interplay which likely go beyond

correlational procedures (see Guevara et al., 2014). Another fundamental omis-

sion in traditional statistical analysis arises from its static nature. It normally

takes a snapshot of the complexities of the human capital process over time and

its impact on the transmission of inequalities through generations. In a dynamic

context, when skills and opportunities for social mobility are to a great

extent determined by the economic or social family background, their effects

go beyond the direct impact on the actual individuals perceiving such benefits, as

it takes the form of an intergenerational wealth transfer. Therefore we need

approaches that explicitly deal with these issues and help us to answer critical

questions like:

• How can we model the simultaneous and dynamic interrelationship between the

efficiency of educational systems and income distribution?

• What are the consequences of income-based unequal opportunities in education

systems dominated by self-reinforcing causal relationships?

• What will happen to the school attainment of current and future generations if

such causal relationships are held over the long term?

The current empirical literature does not provide answers to these questions and

this study aims to start the debate. The intergenerational transmission of inequality

is not less controversial from an academic perspective given its complex nature and

multidimensionality. Multiple channels of influence interact via feedback mecha-

nisms making clear-cut conclusions difficult to wage. We argue that inequality and

low social mobility are not only bad for those individuals born in disadvantaged

households; it is also detrimental for the efficiency of the whole educational system

which in turn may have implications for the long-term productivity and social and

economic progress of countries. As we show next, Nicaragua presents several

characteristics that make the country suitable for the analysis from a complex

dynamical systems perspective.
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The Case of Nicaragua

It is very much the case in Latin America and other regions in the world that more

income inequality is associated with less opportunities for the new generations to

advance due to low educational mobility (see Fig. 15.2). Low educational mobility

in this context means the family background is determinant and a large fraction of

socioeconomic advantages and disadvantages are passed on from parents to chil-

dren, generating a self-perpetuating behavior in the system. In short, more inequal-

ity at any point in time is associated with a greater transfer of educational (and

consequently economic) status across generations.

The Nicaraguan educational system is a conspicuous case in this regard as it

shows certain regularities in its behavior suggesting that an underlying structure is

driving the observed outcomes. For example, (1) income and wealth are unequally

distributed among the Nicaraguan population and this condition is fairly stable

across time and directly projected in the school population (Table 15.1) that

reinforces these results. While some improvement in equality is observed over

the past three decades, income inequality still remains large as shown by the Lorenz

curves in Fig. 15.1.5 The closer the Lorenz curve is to the equal-distribution line the

better the income distribution in the country. So for the last two years that

information is available, 2005 and 2009, the country improved its income distribu-

tion (2) Most individuals in the upper quintiles of income start and complete

primary education without delay, as represented by high promotion and low

dropout and repetition rates, while those in the lower quintiles of income are

predominantly underperforming in the same terms. In Table 15.2 children in the

first quintile (the poorest) have completion rates below 75 % while the richest show

promotion rates of 95 %. Similarly repetition and dropout rates are 3 to

7 times higher in the lower quintiles than in the highest quintiles, respectively.

These differences tend to remain stable over time. Likewise, Nicaraguan families

with high educational attainment tend to have fewer and better educated children

Table 15.1 Nicaragua 2001:

Primary-school enrollment by

household wealth

Quintile Students Percentage (%)

I (poorest) 231,672 26.13

II 225,540 25.44

III 198,213 22.35

IV 161,575 18.22

V (richest) 69,683 7.86

Total 886,683 100.00

Source: LSMS 2001

5 The Lorenz curve is often used to represent income distribution and shows the proportion of

income or wealth (y%) accrued by the bottom x% of the population. A perfectly equal income

distribution would be one in which the bottom x% of society would always have x% of the income

and can be depicted by the straight line y¼ x which is called the ”line of equidistribution”.
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and these children tend to repeat and dropout less than those in less educated

families (World Bank, 2001). Consequently, educational and social mobility is

very low in the country, Nicaragua scores very low in mobility (very high position

in Fig. 15.2) even respect to other Latin American countries to which it is often

compared (Andersen, 2001; SEDLAC, 2015). So Fig. 15.2 shows countries ranked

from low to high inequality (left to right): Argentine, Peru, Nicaragua, and Bolivia

being the most equal countries, and Brazil, Paraguay, and Honduras being the least.

On the other hand, moving along the vertical axis from bottom to top represents a

movement from more mobility in educational status across generations to less

educational mobility. In countries such as Argentine, Bolivia, and Ecuador, the

correlation between parental economic status and the adult outcomes of children is

the weakest: Less than 10 % of any educational advantage or disadvantage that a

father had had is passed on to a son in adulthood. In contrast, in Honduras, Panama,

and Nicaragua, more than 15 % of any advantage or disadvantage is inherited by the

next generation. If a father had twice the average of years of education in Bolivia, for

example, he would expect his son to end up having only about 8 % above average; in

Nicaragua, this would be more than 20 %. In such settings the Nicaraguan poor are

Table 15.2 Nicaragua 2001:

promotion, repetition, and

dropout in primary by

household wealth

Quintile Promotion Repetition Dropout

I (poorest) 74.5 9.7 14.9

II 83.7 6.3 9.5

III 87.0 4.2 8.5

IV 92.1 3.2 4.5

V (richest) 94.9 2.8 2.2

Source: Living Standards Measurement Survey (LSMS),

2001 (Porta, Arcia, Macdonald, Radyakin, & Lokshin, 2011)
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more likely to see their children growing up to be the next generation of poorly

educated people, and the rich are more likely to see their children at the top rungs of

the social ladder. Therefore, the large disparities that exist in the education system of

Nicaragua just replicate the inner pattern of income inequality. This result also holds

on a global scale and among regions as confirmed by Porta (2011) in more than

80 countries and it is what we would like to capture in our model.

The Model

When attempting to understand the complex dynamic behavior of an educational

system we first need a fair understanding of the underlying structure—in term of its

stocks, flows and feedbacks—that may influence the system’s observed behavior. A
stock variable is something that can be accumulated, i.e., water in a reservoir or

population in a country. It is measured at one specific time and that measurement

represents a quantity existing at that point in time (say, persons). A flow variable is

analogous to the mathematical concept of rate, which measures a variable over a

period of time and when coupled to a stock, the flow variable is measured in the

same units of the stock per time unit (say, persons per year). Finally, feedbacks are
closed chain of interactions between the elements of a system forming a loop that

can be of two classes: positive and negative. Positive feedback loops are self-

reinforcing (more population—more births—more population). Negative feedback

loops are self-correcting as they counteract change (larger population—more

deaths—smaller population).

Stock and flow variables are natural candidates to be included in any educational

system structure because time is intrinsically embedded in these variables and it is

possible to identify and capture the components’ mutual influences as well as their

direction of influence.
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A well-documented feedback in demographic educational modeling and simu-

lation is the assortative mating characteristic that suggests that educated families

are more likely to send their offspring to school where they can meet peer students,

or in its dynamic version—the role model effect—as more educated households

place education a top priority for the next generations (Behrman & Rosenzweig,

2005; Durlauf, 1998, Morrison, 2008). In the context of a causal loop diagram, we

can capture this effect using the population of literates whose effects influence

directly the system’s transition rates (see reinforcing feedbacks R1 and R2 in

Fig. 15.3). High literacy in a country reduces repetition rates because more literate

parents persuade and are persuaded by their peers to support children’s academic

activities and their collective efforts are more effective (Durlauf, 1998; Oreopoulos,

Page, & Stevens, 2006). This leads to an improvement in promotion rates leverag-

ing primary graduates which also increases the amount of literates in the popula-

tion. A second causal loop effect captures the influence of educated population on

aggregate economic growth (Dowrick, 2004). A country with a sustained economic

growth is more likely to improve households’ budgets and support youngsters’
education because there will be more enrollment and less dropout. In such setting

more students finish primary school ceteris paribus (R3 in Fig. 15.3), and the share
of persons with complete primary education increases improving human capital in

the country. More human capital in turn improves economic growth in the long run

when a more educated labor force exploits better economic opportunities in the

market and more efficiently, boosting up the country’s productivity. Notice that
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Fig. 15.3 State variables (stocks) are represented by rectangles and are disaggregated by age-a,
income-q, and grades-i. Flows change the values of these stocks and are represented by arrows.
The other variables such as the state of the education system, state of the economy, and graduates
from primary school (human capital, h) are the critical factors that modify these flows

(nonlinearly) and generate positive feedbacks such as R1, R2, and R3 (reprinted with permission,

see Guevara et al., 2014)
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extending the previous feedbacks loops to include income-based differences in a

population is straightforward as we only have to disaggregate the same variables

included in these loops by wealth or income percentiles. These positive feedbacks

spawn the conditions for income-based feedbacks that would induce an

intergenerational transmission of inequalities in society.

To grasp how the whole structure works in an educational context one may begin

dividing up the entire course of school levels into grades, represented by stock

variables through which a population flows via transition rates: intake, repetition,

dropout, and promotion. Clearly, these transitions occur from the first to the last

grade in school; flow-variables capture these processes via differential equations for

intake (e), repetition (r), dropout (d ), and promotion ( p)—as shown in Fig. 15.3—

while feedbacks are the mechanisms driving these dynamical processes. This

chapter uses the primary school completion rate (PCR)—which measures the

number of graduates from primary school in a given year as a proportion of

the total number of children in the population reaching the appropriate age for

graduation—as an output indicator to track progress, efficiency, and the dynamics

of education systems. The system dynamics model presented here builds upon

Guevara et al. (2014) who presented a model of the Nicaraguan educational system

originally disaggregated by age and grade only, which we extend by disaggregating

all population stocks and their respective inflows and outflows by quintiles of

income.6 An income-disaggregated population thus is more relevant for our pur-

pose because beyond the simple age-grade disaggregation, a richer picture emerges

due to the indisputable relationship between each income-group and the educational

transition rates: intake, repetition, dropout, and promotion. As we climb up the

ladder of income quintiles in the system, from the lowest to the highest, intake rates

increase unambiguously while repetition and dropout decrease monotonically.

Three critical factors are included in the model: the state of the education system
(S), the index of human capital (or the state of adult literacy) in the country (h), and
the state of the economy (E).7 To explicitly capture feedbacks and nonlinear

relationships in the model, all parameters governing transition rates in the model

are specified through the multiplicative interaction of their respective initial values

(at time t¼ 2,000) and the nonlinear effects that the critical factors exert on each

parameter through a number of functions f, g, j, that make explicit the nonlinear

impact of variables S, E, and h on enrollment (e), repetition (r), and dropout (d).

6We calibrated the model using a complete set of quantitative information circa 2000 (most of data

used in the model comes from the 2001 LSMS). Before 2001, primary-school data available were

not disaggregated by income.
7 A particularity of these factors is that they cannot be developed or purchased instantaneously;

they resemble stocks, which thus must be accumulated over time to reach a particular level. For

instance, the state of adult literacy in a population cannot be raised immediately; it has to be

developed through the transmission of basic learning capabilities on to children, which takes

several years. So to explicitly use adult literacy as a critical factor in this model, the flow of

primary school graduates is accumulated in a stock.
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These critical factors interact nonlinearly with the model components in a closed

chain of causal relationships. This is explained in some detail next (Fig. 15.3).

The state of the education system (S) indicates the presence of adequate physical
space, supporting personnel, and all related amenities (power, water and toilets,

chalkboards, chairs, etc.) that make school activities suitable for students. School

infrastructure in this model comprises a stock that increases with newly built

classrooms and decreases with those that wear out after a period of 20 years

of activity. Classroom requirements are measured considering the actual amount

of students in the system and an observed good practice of maintaining an average

of 30 students per classroom. “Saturated” classrooms reduce enrolment and

increase repetition and dropout.

The index of human capital (h) measures the share of graduates from primary

school as a proportion of the relevant population. This share has a direct influence on

enrollment and repetition. This index also affects dropout indirectly via the state of

the economy (R3 in Fig. 15.3). Currently enrolled students in primary education have

only three possible directions r, d, or p. While d and p are both exit strategies in this
system, the latter is clearly preferred to the former as school graduates are expected to

have the skills and experience intended for them. So at the end of the school

course, graduate students can be accumulated in a stock we label human capital.
The state of the economy (E) is used to quantify economic progress through a

measure of relative per capita Gross Domestic Product (GDP) in the country. The

relative income measure is the per capita GDP at any point in time compared to that

recorded in the country in year 2000.8 GDP grows at 5 % per year on average and

this growth rate increases with the education level of the country (Calvacanti,

De Abreu, & Veloso, 2013). The intuition behind this formulation is that per capita

income and the level of education move in the same direction and this reduces

dropout rates as more people can afford education costs (Porta & Laguna, 2007).

An increase in primary completion rates raises human capital (h) and more human

capital reinforces economic progress at aggregate and individual level (Hanushek,

2009). So when the relative income in the country is low, children are more likely to

abandon school as their parents cannot afford the cost of education (Arcia, 2003;

Oreopoulos et al., 2006). Countries exhibiting such characteristics would typically

exhibit low per capita income and low economic growth.

In this study we aim to understand how coordinated interactions of these critical

factors work in a complex dynamic environment like the educational one. Coordi-

nation in this setting describes a situation where multiple, interdependent elements

interact simultaneously, following their own dynamical processes with limited

control by a central authority and with a clear impact on school outcomes. In

practical terms, Guevara and Posch (2015) show that coordinated actions that

improve infrastructure (state of the educational system, S), economy (state of the

economy, E) and literacy (human capital, h) simultaneously are more effective to

reach full completion in education.

8 Real GDP per capita in 2000 was US$1,035 (World Bank, 2015).
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However, given that these critical factors follow different accumulation paths

(different timing), as we add more critical factors to the system it would take longer

for them to line up in the right way to reach a particular configuration, making

coordination more difficult. We assess their coordinated impact on the system using

the PCR indicator aforementioned over a long period of time (i.e., 2010–2050).

When all these properties are merged in a simulation model, the underlying system

is expected to bring about features commonly observed in complex systems like

tipping points, phase transitions, etc.

Simulations

Baseline Scenario

Under the baseline scenario, the model exploits all assumptions and parameter

values used for calibration along with an average economic growth rate of 5 % (see

Appendix, Tables 15.3. and 15.4). Table 15.3 presents the initial values of popula-

tion stocks and Table 15.4 presents some parameter values used for repetition and

dropout rates across age and income groups in year 2000.9 With these specifica-

tions, the model generates synthetic data that allows a direct comparison of

simulated PCR (continuous line) to corresponding observed time values (dotted

line) from 2000 to 2010, when the last empirical result was published (World Bank,

2015) and period 2010–2050 for forecasting and analysis. Figure 15.4 shows that

the model closely replicates real data for the case of Nicaragua.

The bump registered by the simulated PCR in Fig. 15.4 during 2003–2005

occurs as a result of the substantial over/under official age student population

accumulated in the educational system during the 1990s coupled with decreasing

repetition and dropout rates of the mid-2000s. An educational system with such

characteristics can even temporarily overshoot the 100 % completion level when

these over/under age students are driven out of the system via higher graduation

and/or less dropout and repetition (see Guevara & Posch, 2015). We disaggregated

completion rates by income quintile, and simulated them for the period 2000–2015.

Thus, this illustration shows Nicaragua as a five-tiered education system. As can be

reasonably expected, the first and second quintiles (poorest) are also the worst

performers, well below the national average (black thick line) with completion rates

under 80 % during the period of analysis, while the top two quintiles are well above

the 90 % PCR. The same bump is also observed in Fig. 15.5, particularly at the top

quintiles. This result comes in the model’s simulation as a consequence of top

9Of course the entire data set used to calibrate the model is far larger than that and the one

provided in the appendix is just for the sake of illustration. For the complete data set used in the

calibration process please contact the authors. Similarly for a detailed description of all assump-

tions (feedbacks and nonlinear relationships) see Guevara et al. (2014).
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income quintiles showing more progress not only in reducing repetition and dropout

rates but also in enrolling their children at the official school age. These results are

consistent in the country’s survey data that show decreasing completion rates in

nearly all quintiles after reaching a maximum level, the fifth quintile even over-

shooting 100 % (LSMS, 2001, 2005, 2009).

Table 15.3 Nicaragua: Population values disaggregated by age and income quintile, circa 2000

Population Income

TotalAge Q1 Q2 Q3 Q4 Q5

0 49,058 47,763 41,961 34,207 14,757 187,746

1 47,794 46,532 40,880 33,326 14,377 182,909

2 46,547 45,318 39,814 32,457 14,002 178,138

3 45,324 44,127 38,767 31,604 13,634 173,455

4 44,131 42,966 37,747 30,772 13,275 168,891

5 42,979 41,844 36,762 29,969 12,928 164,482

6 41,878 40,772 35,820 29,201 12,597 160,268

7 40,838 39,759 34,930 28,475 12,284 156,286

8 39,862 38,809 34,095 27,795 11,991 152,552

9 38,945 37,917 33,311 27,156 11,715 149,043

10 38,069 37,064 32,562 26,545 11,451 145,692

11 37,210 36,227 31,827 25,946 11,193 142,403

12 36,343 35,383 31,085 25,341 10,932 139,084

13 35,451 34,515 30,323 24,719 10,664 135,672

14 34,529 33,617 29,534 24,077 10,387 132,144

15 33,581 32,694 28,723 23,416 10,101 128,516

15> 693,281 674,974 592,990 483,413 208,541 2,653,199

Total 1,345,820 1,310,282 1,151,132 938,417 404,827 5,150,480

Table 15.4 Nicaragua:

primary education repetition

and dropout parameters,

circa 2000

Repetition

Age Poorest II III IV Richest

0 0.00 0.00 0.00 0.00 0.00

1 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00

5 or above 0.15 0.12 0.08 0.05 0.00

Dropout

Age Poorest II III IV Richest

0 0.00 0.00 0.00 0.00 0.00

1 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00

5 or above 0.05 0.02 0.02 0.00 0.00
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More Scenarios

Note, however, that despite the economic and social differences, students and

population in general interact on a more regular basis. Therefore, despite every

income quintile being clearly delimited in the Nicaraguan completion rates, these

layers are still interdependent as they jointly determine the aggregate amount of

literacy in the population which we assume impacts the system’s transition rates.

The magnitude of these interactions can be better appreciated in results shown by
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Fig. 15.5 Nicaragua 2000–2015. Simulated primary completion rates by income quintiles

15 Educational Systems and the Intergenerational Transmission of Inequality 335



Fig. 15.6 under two alternative scenarios: one with a strong economic growth and

one with a weak economic growth.

In Fig. 15.6a we show that under a strong 5 % economic growth the fifth quintile

(the richest) reaches 100 % on its own while the other four quintiles must “wait”

until they altogether reach a similar level of completion rate to finally progress

toward a maximum completion rate, i.e., the second quintile waits until 2018 for the

first quintile to catch up, and similarly the third and fourth wait for the previous ones

before advancing in 2020 and 2030, respectively. It also has to do with the fact that

the first two quintiles include more than 50 % of the total primary student popula-

tion and the first four quintiles more than 90 %. On the other hand, assuming a
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Fig. 15.6 Nicaragua 2000–2050. Simulated completion rates by income quintiles assuming

(a) economic growth rate of 5 %. (b) economic growth rate of 3 %
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slower economic growth rate of 3 % in Fig. 15.6b,10 we observe that the first four

quintiles primary completion rates do not advance to catch up with the fifth one.

Thus, following the patterns generated by the simulations, it is easy to tell that when

the overall education system (the black thick line in Figs. 15.5 and 15.6) is below the

80 % threshold and economic growth in the country is not strong, even if one waits

for complexities to play out over a long period of time, the systemwill not eventually

converge to 100 % completion level. As GDP per capita is set to be low at the

beginning of the simulation for all income quintiles—except the first one—while

drop out and repetition rates are very high, income and education will not reinforce

each other to fuel completion rates towards its maximum level. A long period of time

of robust economic growth would be needed to bring those values of the four lower

income quintiles to a level consistent with a full primary completion rate.

Therefore when the whole system has reached a steady-state below the maxi-

mum completion rate, policy interventions may be necessary in order to drive it

more rapidly toward the higher equilibrium level. The magnitude of these inter-

ventions should be adequate to accelerate completion rates—particularly those at

the lower income quintiles—up to the point at which the system crosses the lower

equilibrium threshold. Once this critical level of 80 % PCR is exceeded, a transition

phase occurs via the positive interactions between human capital and economic

activity that becomes capable of fueling itself to drive the system to a path of self-

sustained momentum until reaching the maximum level. It is at this is point when a

society manages to break the clogs-to-clogs cycle at least in primary education.

Discussion

Complex dynamic mechanisms drive many social, economic, and natural processes

in modern highly connected societies and the prospects for advancing at the right

pace in human development can more likely be accomplished if the impact of past,

present, and future events that shape the development paths of countries are

identified and understood. But satisfactory answers need consistent models showing

alternative paths and the consequences that intertwined factors in human and

natural systems may have on the shape and direction of such paths.

In this model, the life opportunities of Nicaraguan children are, at the broadest

level, determined by the income, education, and direction they receive from their

families which then are reinforced across generations. The stronger and more

enriching family environment children receive, the stronger and more enriching

family environment they will pass on to the next generation. Using this complex

10Here we assume that Nicaragua’s population grows at 3 % which means that a 3 % growth in its

Gross Domestic Product (GDP) would not change per-capita GDP, which is the ratio of GDP

divided by population.
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approach we are able to capture several empirical observations about this educa-

tional system and project key outcomes into the future.

Complexity modeling and simulation can be regarded as an informed guide for

decision-making intelligence providing consistent forecasts when properly

designed and constructed. Decision-making intelligence that is timely, relevant,

and accurate adds significant value to decision makers when such insights provide

consistent information that reduces the uncertainties of future events; this is what a

well-designed model should aim to. This in no way is suggesting that models are

capable of predicting future events accurately. What it indeed suggests is that in

principle all simulated paths should be consistent predictions based on the logic of

the model’s structure and the impact of the assumed nonlinear relationships. So if

the model’s logic has been articulated in a consistent way, the model predictions

will remain sound, regardless of which particular scenario unfolds, and that pro-

vides sound information about the real system. This perspective is likely to lead to a

view that the more we learn about the functioning of complex systems using

simulation models, the better we will interfere in real-world systems.

As we have already discussed in this chapter, a very useful perspective in

demographic education modeling might consider populations as a collection of

elements whose combined activities shape the realm of the environment they are

embedded in—the behavior of individual components influences the dynamic

behavior observed at aggregate level—and the aggregate behavior of that popula-

tion reciprocally influences individuals’ courses of action. We find it particularly

interesting to track behavioral patterns generated by segregations stemming from a

population whose educational systems—governed by reinforcing feedbacks tend to

perpetuate initial conditions—dragging the whole system in poor outcomes due to

disadvantaged initial conditions of some segments in the population. When a

model’s population is disaggregated by income, a much richer collection of behav-

ioral patterns is achieved due to the innate particularities that each income-group

possesses regarding enrollment, repetition and dropout. The richest quintiles

behave very much like an average developed country with high promotion and

low repetition and dropout rates while the first and second quintiles, covering more

than 50 % of the population, are more representative of the country reality, showing

low completion rates and high repetition and dropout. This, however, has further

implications for the educational system as a whole, advancing toward full primary

completion at country level becomes increasingly difficult if the poorest quintiles

are not brought along with the rich ones, in particular the first quintile. The reason is

straightforward and well-recognized in economics; educated people generate pos-

itive influence on others to whom they interact with, a concept normally regarded as

a positive externality (captured by the model’s feedbacks and nonlinear interac-

tions) or in other words the public good nature of equality, in the economic sense of

the term. When a sector of the population lacks educational skills such positive

externality is interrupted generating a negative effect on their peers (think on the

difficulties to transmit ideas efficiently when people lack basic education). All in

all, it means that we must turn the impact of these reinforcing feedbacks into an

affirmative force that drives high educational accomplishment and better
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distribution and mobility in society. Even if certain segments of the population—

i.e., like the low-income and low-educated—are initially segregated in society,

technological advances in communication and transportation make such segments

more likely to interact with more educated and affluent ones on a more frequent

basis for cultural, social, or economic reasons. So reducing income-based outcomes

in educational systems is not just a policy measure to show our solidarity with the

most disfavored groups, it is also an effective operational policy required for well-

functioning systems. This reasoning thus downplays the premise often argued that

inequalities work as an incentive for social mobility implying that at a system level

decision makers should not prioritize on policies to level the playing field for all

individuals. It is likely that similar results can be obtained with other inequalities

like those based on gender, geographical areas, race, etc.

Although the magnitude of intergenerational educational mobility is lower in

Nicaragua than in many other countries, the “persistence” pattern derived from

reinforcing feedbacks is consistent with low social class mobility in the country and

does not differ from the rest of the world. Therefore, we expect that research on the

intergenerational transmission of inequality from a complexity system perspective

like the one portrayed here can inspire new endeavors to better understand the

underpinning of such mechanisms in other countries.

Appendix

The following description of the simulation model is an excerpt from Guevara

et al. (2014) reprinted with permission from the journal Nonlinear Dynamics,

Psychology, and Life Sciences.

The Simulation Model

The educational model has 3 state variables: Population (P), Population in Primary

School (G), and Primary School Graduates (H). These are represented by stocks

(rectangles) in Fig. 15.3. P stands for the country’s total population, disaggregated
into age cohorts and it is the main input to the education system (Eq. 15.1). The

arrows in Fig. 15.3 are differential equations that modify the stocks; hence, popu-

lation increases with births and decreases with deaths. Equation 15.1 shows that the

birth rate B, is the product of a constant fractional vector β multiplied by the

country’s population (i.e., the sum of all age-cohorts). Similarly, death rate D, is
the result of a constant ϕ multiplied by the stock of population. In the model, aging

[A(t)] represents the transition of the population from one age cohort to the next,

after it has remained an average length of time (υ) in that cohort. Pa(0) is the initial

population.
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Pa tð Þ ¼
ðT

t¼t0

B tð Þ þ Aa�1 tð Þ � Aa tð Þ � Da tð Þ½ �dtþ Pa 0ð Þ ð15:1Þ

where B tð Þ ¼ β
X
a

Pa 0 < β < 1

Da tð Þ ¼ ϕPa 0 < ϕ < 1

Aa tð Þ ¼ Pa
�
υ

υ ¼ 1;

Pa tð Þ ¼ stock of age-a population, a ¼ 0, 1, 2, . . . , 15, and Adults 16 or moreð Þ:
Aa tð Þ ¼ aging rate, B tð Þ ¼ birth rate, Da tð Þ ¼ death rate;

The second state variable, G, is a matrix broken down by grade and age,

encompassing children currently enrolled in school. Equation 15.2 shows that it

consists of 6 grades according to the official cycle length in the country. In words,

G1,a(t) represents the population of age-a students attending the first grade. Once

children enter the school system they may follow three mutually exclusive direc-

tions: (1) passing to the next level through promotion ( pi,a(t)) from grade i to iþ 1
and growing older by 1 year (from a to aþ 1); (2) repeating the year (ri,a(t)) just
passing to the next age cohort (from a to aþ 1) but remaining in the same grade (i);
or (3), dropping-out of the grade i at age a (di,a(t)). Note that in Eq. 15.2 intake

[e1,a(t)] only occurs in the first grade, denominated by p0,a�1 tð Þ; and promotion

replaces it as an inflow after the second grade. Thus,

Gi,a ¼
ðT

t¼t0

pi�1,a�1 tð Þ þ ri,a�1 tð Þ � pi,a tð Þ � di,a tð Þ � ri,a tð Þ� �
dtþ Gi,a 0ð Þ ð15:2Þ

where Gi,a tð Þ ¼ population in grade i ¼ 1, 2, . . . , 6; age

a ¼ 0, 1, 2, . . . , 15, 16 age16and aboveð Þ:
pi,a tð Þ ¼ promotion grade i at age

e1,a tð Þ ¼ intake rate grade 1 at age a; p0,a�1 tð Þ � ea tð Þ
ri,a tð Þ ¼ repetition grade i at age a

di,a tð Þ ¼ dropout grade i at age a

All transition rates are specified as the product of a vector of fractions such as intake

(α1,a), repetition (ρi,a), dropout (δi,a), and promotion πi,a � 1� δi,a � ρi,a
� �� �

multiplied by the stock of people in the respective grade (in the case of intake, by

the population stock, P). In addition, these fractional values change across grades

but remain constant within grades δi,a, ρi,a, πi,a ¼ δi, ρi, πi
� �

. The corresponding

formulations are Eqs. 15.3–15.6.
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ea tð Þ ¼ e Pa tð Þ, α1,að Þ ¼ α1,aPa tð Þ ð15:3Þ

di,a tð Þ ¼ d Gi,a tð Þ, δi,að Þ ¼ δiGi,a tð Þ ð15:4Þ

ri,a tð Þ ¼ r Gi,a tð Þ, ρi,a
� � ¼ ρiGi,a tð Þ ð15:5Þ

pi,a tð Þ ¼ p Gi,a tð Þ, πi,að Þ ¼ πiGi,a tð Þ ð15:6Þ

α1,a, δi,a, ρi,a, πi,a2 0, 1ð Þ for every a

The third stock in Fig. 15.3, H, accumulates graduates from primary education as

shown in Eq. 15.7. Equation 15.8 describes the construction of an index h of

per-capita human capital which is the number of living people who have completed

primary school compared to the country’s population. This index ranges from 0 to

1 where 0 implies that no adult (i.e., no person aged 16 and above) has completed

primary education and 1 means that all adults have at least finished it. Therefore

Ha¼16 ¼
ðT

t¼t0

X
a

p6,a tð Þ � Da¼16 tð Þ dt

" #
þ Ha¼16 0ð Þ ð15:7Þ

ha¼16 ¼ Ha¼16

Pa¼16

, where 0 � h � 1 ð15:8Þ

Equations 15.1 to 15.8 allow the construction of the two performance indicators: the

gross enrollment rate (from Eqs. 15.1 and 15.2) and the primary completion rate

(from Eqs. 15.1 and 15.6):

GER ¼
X
i, a

Gi,a tð Þ
P7�12 tð Þ ð15:9Þ

PCR ¼
X
a

pi,a tð Þ
P12 tð Þ ð15:10Þ

Model Calibration

To calibrate the model it is necessary having a complete dataset for at least one

point in time in which all stock variables are disaggregated by age, income group,

and level of education attained. In this model that data point corresponds to year

2000 (LSMS 2001, 2005 and World Bank, 2015) and Table 15.3 shows this data

point for the population variable used in the model, disaggregated by age and

income. Likewise, Table 15.4 presents average parameter values for repetition

and dropout rates across all grades for year 2000.
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Chapter 16

The Symbolic Dynamics of Visual Attention
During Learning: Exploring the Application
of Orbital Decomposition

Joanna K. Garner and Daniel M. Russell

Introduction

In educational research, the objects of study include individuals in classrooms and

other environments where learning takes place. A wide variety of methodologies

have been used to describe and explain learning-related phenomena, but until

recently the majority of quantitative analysis techniques have supported the for-

mulation of acontextual, mechanistic linear models. Such an approach has been

criticized for overlooking the richness and complexity that exists within and

between individuals as they go about their work (Winne, 2015). However, interest

in complexity and dynamic systems approaches to learning and educational aspects

of human development has begun to arise (Davis & Sumara, 2008; Kaplan, Garner,

& Semo, 2015; Kunnen & Bosma, 2000; Stanton & Welsh, 2012). This reflects

researchers’ increasing willingness to think about behaviors and processes as

manifestations of emergent, self-organizing psychological or social systems.

Authors on the leading edge of these developments have adapted analytical tools

from other fields to align their research methods with their new epistemological and

theoretical perspectives, but the number and variety of examples available to the

educational researcher remains limited. Therefore, a primary aim of this chapter is

to provide a worked example of one particular analytical approach called orbital

decomposition (OD; Guastello, Hyde, & Odak, 1998) and to demonstrate how basic

psychological processes used in learning can be described using a complexity-

informed, dynamic systems perspective.
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Complex Dynamic Systems

In mathematics and computational scientific fields, a complex dynamic system is a

collection of hierarchically structured components that mutually influence one

another over time, often in nonlinear ways, within the confines of a numerically

specifiable space (Capra, 1983). Phenomena as diverse as the weather, the human

brain, and the economy have all been modeled using complex dynamic systems

(Juarrero, 2010). When principles of complex dynamic systems are adopted as a

conceptual framework for thinking about interpersonal behaviors and human

development, far-reaching implications arise because of new assumptions about

the nature of the phenomena under consideration and the methods through which

they should be studied (Granic & Patterson, 2006; Stanton & Welsh, 2012; Thelen

& Smith, 1994).

The transition from a mechanistic to a complex dynamic systems perspective

requires movement towards an approach in which phenomena are conceived as

emerging from the interaction of many parts which cannot be simply reduced to the

behavior of those parts (Stanton & Welsh, 2012). According to this view systems

have properties such as adaptive self-organization, meaning that they may exhibit

fractal dimensionality, with the structure of smaller parts resembling the structure

of larger parts like the branches of a tree. Within the system numerous hierarchi-

cally arranged components influence one another in a mutual, reciprocal manner

(Granic & Patterson, 2006). Self-organizing systems also have the capacity for

relations among components to become reconfigured, sometimes unpredictably, in

response to features of the environment. In addition, systems are inseparable from

the context in which they evolve, such that even small changes can produce

perturbations to the system that consequently emerge as large, nonlinear shifts in

behavior patterns (Guastello & Liebovitch, 2009; Prigogine & Stengers, 1984).

Such shifts in the system’s behavior can appear abruptly, manifesting empirically as

an inflection point on a graph, and achieved through internal positive and negative

feedback loops that either promote or prevent destabilization (Granic & Patterson,

2006; Prigogine & Stengers, 1984). Stability in both system configuration and

behavior can bemodeled via a topographical landscape of mathematical probabilities,

with valleys and basins representing areas in which the system is likely to arrive and

stay for a period of time. Such locations, depicted in quantity and relative capacity to

stabilize the system, are termed attractors (Kelso, 1995). Multiple attractors form a

landscape that represents the “behavioral repertoire” or an array of potential states of

the system at a given point in time (Granic & Lamey, 2002, p. 267).

In this chapter we consider the phenomenon of studying—learning from infor-

mational text and graphics—from a complex dynamic systems perspective. As a

means of articulating how the differences between linear mechanistic and nonlinear

probabilistic systems apply to this topic, imagine that a student is presented with the

task of learning about the structure, function, and blood flow patterns of the heart.

The student has three informational sheets of paper in front of them, labeled A, B,

and C, which contain diagrams and paragraph-length explanations. The task
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requirements are to be able to draw and label components of the heart and

associated patterns of blood flow. A blank sheet of paper is also available for

note-taking during the studying period. The student has a limited amount of time

to complete the studying task, and must regulate their attention and cognitive

processes accordingly.

Based on this description, if we could trace the student’s visual attention, we
might expect to find a relatively simple, linear trace of task behavior. The student

might review the task instructions in order to make sure that they understand the

task, and then might review each of the three informational sheets in turn, i.e., look

at and read Sheet A followed by Sheet B followed by Sheet C. Another simple,

linear option might be for the student to take notes after reading each informational

sheet, such that their task progression looks like this: Instructions, Sheet A, Notes,

Sheet B, Notes, Sheet C, Notes, Finish. However, the act of learning from text

involves more than simply reading the information. Thus, another more segmented

option might emerge, involving the activation of comprehension-monitoring pro-

cesses that drive the student to move back and forth between the sheets of infor-

mation such that their progression looks like this: Instructions, Sheet A, Sheet B,

Sheet A, Sheet B, Sheet C, Sheet B, Sheet A, Sheet B, Sheet A, Sheet C, Sheet A,

Finish. In addition, if the student takes notes then a trace of their visual attention

might show that notes are visited periodically during the back-and-forth reading

activity, leading to a pattern such as Sheet A, Notes, Sheet B, Notes, Sheet A,

Sheet B, and Notes. Finally, if we add in goal-oriented performance-monitoring

processes on top of comprehension-monitoring processes, the trace of the task

progression might include periodic review or looping between informational sheets,

task instructions, and notes, hence: Instructions (planning), Sheet A, Notes,

Sheet A, Notes, Sheet B, Sheet A, Notes, Sheet B, Notes, Instructions (comprehen-

sion monitoring), Sheet B, Sheet C, Notes, Sheet C, Sheet A, Sheet B, Notes,

Instructions (performance monitoring), Finish.

Thus, studying may emerge through the interaction of hierarchically organized

elements of a cognitive-metacognitive system, and may manifest itself as sequences

of visual attention that are contingent on prior ones such as when new information

sparks the reader to look back, search for something elsewhere in a text, reread the

task instructions, and take notes. Progressions of attention may in fact include

repeating sub-loops nested in larger dynamic sequences. If so, then it is appropriate

to question the utility of mechanistic models that focus on linear progressions

through phases such as planning, execution, and reflection, and instead consider

ways in which a dynamic approach might be fruitful. If visual attention is sensitive

to context and the initial conditions of the task in ways that cannot be predicted at

the outset, or if individuals’ trace behaviors can shift midway through the task from

being linear to chaotic and back again, then we propose that it may be worthwhile to

investigate the phenomena through the application of analytical tools that are

associated with complexity and nonlinearity. One example of such an approach is

symbolic dynamics.
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Symbolic Dynamics

The behavior of a complex dynamic system can be described using mathematical

terms that model the relations between successive states or configurations of the

system as they occur over time. At its most basic, the mathematical analysis of such

a system involves the pursuit and identification of a function, f, that is applied to the
system, x, over n number of times (Sundararajan, 2012). However, the time series of

data derived from the recorded behavior of a system will often reveal the presence

of short-term or transient functions, meaning that one or more functions “that

characterizes one part of the time series does not characterize the entire series,”

(Guastello, Peressini, & Bond, 2011 p. 465). Put simply, repetitive sequences of

behavior may occur periodically, and may be interspersed over a time interval. If

the behavior is to be characterized from a dynamic systems perspective, techniques

are needed to discover these intermittent behavioral sequences (Guastello,

2005; Guastello & Gregson, 2011; Guastello et al., 1998). Symbolic dynamics is

one area of mathematics that includes a variety of methods for achieving precisely

this goal, thus opening up its application to real-time behavioral data that changes in

structure according to ongoing feedback to the system. For example, it may capture

changes in the structure of visual attention sequences, when individuals revise an

action plan in service of a learning goal.

In contrast to the numerical data that one may typically associate with time

series, strategies under the heading of symbolic dynamics have in common the

capacity for detecting patterns in sequences of nominal level data derived from the

observation or simulation of successive states of a system (Guastello, 2008; Marcus

& Williams, 2008). Because it is the analysis of shift spaces—the series of discrete

states in which a dynamical system exists over time—symbolic dynamics can

benefit researchers by reducing the otherwise complicated system dynamics into a

data set consisting of a string of symbols such as A, B, C, and D (Tabrizian, 2010).

The resulting data series reflects the state of the system at discrete intervals over

time, such as the location of an individual’s gaze during a learning task. The

meaning of the data string can then be interpreted in light of the theoretical

framework being applied to the topic of investigation, such as the meaning of

particular sequences of visual attention during reading and note-taking.

Strings of nominal data are particularly useful for analyzing systems whose

attractor landscape includes configurations that recur periodically over time

(Sundararajan, 2012), such as when engaged in a task that requires repeated steps.

The application of symbolic dynamic mathematical modeling techniques can reveal

the degree to which the system’s behavioral traces reflect regularity or randomness,

thereby offering potential clues as to the degree towhich the series of system’s states is
in fact amanifestation of the presence of some deeper, underlying structural properties

of the system and the context in which the system is embedded. This feature of

symbolic dynamics makes it appropriate for studying self-organizing systems in

which order arises or emerges in a nonlinear and non-predictable way from the

dynamic interaction among its components (Crutchfield, 1994).
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Orbital Decomposition

Orbital decomposition (OD) refers to a series of computations that identify struc-

ture and complexity in dynamical patterns, such as those that might be evident

within a time series of behaviors or social interactions over time (Guastello &

Gregson, 2011). Consistent with a particular approach to complexity known as

chaos theory, OD seeks to quantify the systematicity of recurring sequences in data.

It is based on the notion that a time series of events can be chaotic, meaning that

although the data series can appear random it can actually be characterized by one

or more mathematical functions (Guastello, 2000, 2008).

Initially used by Guastello et al. (1998), OD assumes that within a time series of

data are a number of coupled oscillators or orbits that manifest as patterned

recurrences in nominal data strings (Pincus et al., 2014). An oscillator produces a

periodic change in its state which when coupled to another oscillator can lead to

complex changes in state, such as chaos, which have been studied and modeled in

mechanical, electrical, and biological systems (Kelso, 1995). The OD analysis

decouples the orbits to determine their nature by modeling the contributing oscil-

lators as patterned recurrences in the nominal data. This is done by finding patterns

in the nominal data string and determining how frequently they repeat and whether

they repeat immediately (Guastello et al., 2011). Beginning with a sequence

length (C) of one, this process continues with increasing sequence length up to

the longest pattern that is immediately repeated in the data. This analysis therefore

identifies oscillations in the data string and quantifies the probability of each

occurring. For each C length, up to the maximum detected, additional variables

are quantified requiring the researcher to identify the appropriate or optimal

C length to consider. This may be determined by finding the longest string length

that immediately repeats itself, or by finding the string length for the largest

resulting χ2 value, which indicates the length at which the proportion of expected

versus observed frequencies of data string patterns is the largest (Pincus et al.,

2014). The description of how each variable is calculated will be provided shortly.

Once the optimal pattern length has been revealed, indices of informational

complexity can be calculated. A frequently used measure is Shannon entropy

(Shannon, 1948; Shannon & Weaver, 1949), which is calculated using the proba-

bilities of each event in the data series. It provides an indication of the degree to

which a data series is random versus the degree to which systematic patterns exist.

When single behavioral sequences are repeated continuously, there is a lack of

novelty and the Shannon entropy index is low. Conversely, if sequences are never

repeated and the novelty is very high, then the index will also be high. Topological

entropy, on the other hand, is a measure of content. It can be used to calculate a

Lyapunov exponent, which reveals the fractal dimensionality or complexity of the

recurring patterns. Shannon entropy and topological entropy are inversely related to

one another. The more random the time series, the less complex the content of the

information contained within it is likely to be, leading to high Shannon entropy and

low topological entropy (Katerndahl & Parchman, 2013; Pincus & Guastello,
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2005). In essence, the indices that OD yields reveal the degree to which recurring

patterns are incorporated into time series data. In the following section we elaborate

on the steps of OD, including the mathematical formulae used to derive its constit-

uent indices.

When adopting a symbolic dynamic approach the first step is to define the

different categories of system dynamics. This involves identifying the exclusive

categories of system behavior that underpin the phenomena under investigation.

Examples might include individuals who are speaking within a social interaction,

categories of behaviors exhibited at a particular time and location, or, as in the

present study, the different materials to which each participant could orient them-

selves during a learning episode. After specifying an exhaustive list of categories,

the second step is to define the data sampling rate. At this point standard behavioral

sampling methods can be applied, such as coding the state of the system at a

constant interval (e.g., every second or every 10 s), and/or when a change in state

occurs. If the category is recorded at a constant interval of one per second the result

is a series of nominal data points representing repeated locations over 24 seconds,

such as EEEAEAAAADADADDDADDADDAA.

Deciphering the above symbol sequence is possible if two parameters are

known: (1) what the letter symbols represent, and (2) the length of time that each

instance of a symbol indicates. In this example, the sequence describes the mate-

rials that an individual attends to during 24 s in the context of a learning episode.

The letter sequence indicates that an individual began a studying task by looking at

the task instructions (designated as material E) for 3 s before switching visual

attention to material A for 1 s and then back to the instructions for 1 s before

returning to material A for 4 s, etc. In all cases, coding may continue until the end of

a given time period or trial. In addition to recording and analyzing the letter

sequences such as listed above, the researcher may elect to de-emphasize the

relative amount of time spent in each successive state and instead focus on the

sequence itself. Doing so emphasizes the patterns of shifting among states or

materials, and allows the researcher to investigate questions pertaining to the

sequential structure of the time series. If this were to be the case for the previous

example, repetitive notation is removed and the data series becomes

EAEADADADADADA. Either form of letter sequence (i.e., coded at equal time

intervals or only changes in state) can be analyzed using OD.

A computer program which performs OD analysis (ORBDE, v.2.4) was created

by Peressini & Guastello (2014) and can be freely downloaded from the

Society for Chaos Theory in Psychology & Life Sciences webpage: http://www.

societyforchaostheory.org/resources/#4menu. ORBDE requires data files to be in

ASCII format with up to 80 characters in a line being read in sequence before the

next line of data. These files can be readily created in Microsoft Windows Notepad

by representing each category with a single lowercase or uppercase letter (ORBDE

is case sensitive) from the Roman alphabet. Up to 52 different mutually exclusive

categories can be used and a sequence of approximately 1000 letters can be readily

handled by the program. Version 2.4 of ORBDE allows more than one code to be

aggregated to an event; however for simplicity we will only be considering the

standard analysis of only one code being applied to an event.
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The computations of ORBDE begin by finding patterns (C) of length 1 and then

continue with increasing sequence lengths. To enhance understanding we provide

some example calculations below using the sequence EAEADADADADADA. For

each performed pattern the software counts the frequency or number of occurrences

(Fob), and determines whether it is proximally (immediately) repeated or not. The

observed probability for each pattern ( pi) is computed by dividing the number of

times it was performed by the maximum number of times a pattern of that C length

could have occurred, N* (e.g., pA¼ 7/14¼ 0.5, pAE¼ 1/13¼ 0.077). The calcula-

tion of expected frequency (Fex) depends on the C length. For C¼ 1, Fex for each

pattern is computed by dividing the maximum times a pattern of that length could

be performed, N* (e.g., N*¼ 14) by the number of different performed patterns

(e.g., for A, D, or E, Fex¼ 14/3¼ 4.667). For C� 2, the Fex is computed by the

combined observed probability of each single letter code multiplied by N*:

Fex ¼ pipi . . .N
* ð16:1Þ

(e.g., for EA, Fex¼ 2/14� 7/14� 13¼ 0.929). All patterns that were performed

only once or not at all are represented by a single Fex that is calculated by

subtracting the sum of Fex for all patterns that occurred at least twice from N*
(e.g., C¼ 2 non-repeating patterns, Fex¼ 13� (0.929þ 0.929þ 2.321þ 2.321)¼
6.5). A partial calculation for Shannon entropy (Shan) is then computed for each

pattern (i):

Shan ¼ pi ln
1

pi

� �� �
ð16:2Þ

Along with a partial calculation for the χ2 test (SqDev), where ln is the natural

logarithm:

SqDev ¼ Fobln
Fob

Fex

� �
ð16:3Þ

These partial statistics tables are repeated up to the sequence length, C, that is
requested by the researcher. A final statistics table is then provided that summarizes

the calculations for the different C sequence lengths where at least one pattern is

immediately repeated. Shannon entropy (HS) is calculated from the probabilities for

each pattern at a given C length:

HS ¼
Xt

i¼1

pi ln
1

pi

� �� �
ð16:4Þ

In contrast, topological entropy HT is computed as the base 2 logarithm of the

number of recurring strings or patterns of length C (NC) in the data series (see

Appendix):
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HT ¼ lim
C!1

1

C

� �
log2 NCð Þ ð16:5Þ

NC can be estimated by the trace of a transition matrix (trMC), which represents the

number of strings that are immediately repeated (e.g., for C¼ 2, trMC¼ 3), and can

be substituted into Eq. (16.5) to become

HT ¼ lim
C!1

1

C

� �
log2 trMC

� � ð16:6Þ

HT is provided for each string length C preceding trMC¼ 0.

The stability of an oscillator in phase space can be quantified by the largest

Lyapunov exponent (i.e., how likely similar orbits will converge or diverge over

time). As string length increases to infinity, HT asymptotically approaches the

largest Lyapunov exponent. Therefore, the largest Lyapunov exponent equals the

largest eigenvalue of MC, which can be approximated by trMC. Based on the

Lyapunov exponent the Lyapunov fractal dimension DL can be quantified as

DL ¼ eHT ð16:7Þ

As noise can effect these calculations it remains important to use a statistical test

to assess whether the findings could be simply explained by chance. To do this a χ2

test is computed in ORBDE based on the Fob and Fex:

χ2 ¼ 2
X

Fobln
Fob

Fex

� �� �
ð16:8Þ

Using the degrees of freedom provided in the summary table along with the χ2

value, statistical significance can be determined by looking up the critical χ2 value
in a standard statistics textbook. In an effort to quantify the proportion of variance

accounted for in one categorical variable by another ORBDE computes ϕ2

according to:

ϕ2 ¼ χ2

N*
ð16:9Þ

This calculation is based on Cramer’s V which computes ϕ from an N�M
contingency table, where N are the expected frequencies of category membership

and M are the observed frequencies of category membership (Guastello et al.,

1998). For a 2� 2 contingency table, ϕ is equivalent to the correlation coefficient,

but for an N�M contingency table ϕ provides only an estimate of the strength of

the relationship and is not bounded by 1. Hence ϕ2 can also be larger than 1. While

clearly it is not possible to account for more than 100 % of the variance in a
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variable, ϕ2 still provides a useful index of the goodness of fit for comparing across

similar conditions.

In addition to the indicator of dimensionality derived from the entropy analysis,

an additional approach for assessing the presence of self-organization via fractal

dynamics and the quantification of the fractal dimension is to determine if a

frequency distribution of the observed recurring patterns follows an inverse

power-law relationship (IPL). ORBDE identifies the patterns that appear in the

time series and the number of recurrences for each pattern (X). Based on these

results the number of different patterns with the same recurrence frequency can be

quantified (Y). An IPL distribution occurs when Y is an exponential function of

X (Fig. 16.3):

Y ¼ aX�b ð16:10Þ

The intercept (a) and the shape/rate of decay of the curve (b) can be estimated using

nonlinear regression. The shape of the IPL curve is of particular interest as it can be

interpreted as an estimate of the fractal dimension. The larger the magnitude of b,
the greater the complexity, meaning the greater the ratio of the frequency of less

recurrent patterns relative to the frequency of more recurrent patterns. Nonlinear

regression analysis, which can be performed in SPSS or a similar statistical

software program, can also provide a measure of R2 which indicates how well the

data can be modeled as an IPL distribution. To begin with, the data file must contain

the Xs (number of recurrences for each pattern) and Ys (number of different patterns

with the same recurrence frequency). The dependent variable is Y and the model

expression used in SPSS is a�X���b. The nonlinear regression analysis esti-

mates parameters a and b based on initial starting values (e.g., 0), and computes R2

according to the ratio of residual to corrected sums of squares.

Self-Regulated Learning from Text

Self-regulated learning (SRL) is the process of thoughtfully engaging in behaviors

that result in the achievement of a learning goal (Boekaerts & Corno, 2005;

Pintrich, 2000; Winne & Hadwin, 2008; Zimmerman, 2000, 2008). Engagement

includes “self-generated thoughts, feelings, and actions that are planned and cycli-

cally adapted to the attainment of personal goals” (Zimmerman, 2000, p. 14). A

SRL episode is a period of time during which an individual is actively and

metacognitively engaged in planning, monitoring, executing, and evaluating stra-

tegic behaviors in service of a particular academic outcome (Garner, 2009). Tasks

are often executed independently without direct guidance from an instructor and

may involve reviewing assignment details, reading one or more texts, inspecting

diagrams, taking notes, practicing problems, and self-testing. Importantly, the

behavioral sequences that give rise to task completion are contingent on one

another. The perceived success of each step in the learning process is derived
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from previous behaviors and the feedback and subjective evaluations generated by

the outcome of metacognitively controlled cognitive processes such as reading.

Global task strategies include high-level, metacognitively controlled methods for

approaching and executing the task. They refer to decisions to strategically allocate

time and attentional resources according to an assessment of the task in relation to

the learner’s skills. These strategies should influence the way that visual attention is
deployed. For example, in order to read words and sentences and interpret diagrams

and figures, learners must control their visual attention across space (materials) and

time. Skilled reading may therefore appear as a nonlinear progression of attention

through the text, especially for readers who are able to use metacognitive self-

monitoring processes to work towards carefully specified goals (Bråten & Stromsø,

2011; Pressley & Harris, 2006). Research has shown that successful readers distrib-

ute their attention unequally across both text and visual aids (diagrams and figures)

depending on their global task strategy and how these choices impact specific

cognitive and metacognitive processes (Bråten & Stromsø, 2011; Moreno &

Mayer, 2000; Pressley & Harris, 2006; Schnotz & Bannert, 2003). Deviations

from linear attentional processes also correlate with domain knowledge; content

novices are more likely than experts to distribute attention evenly among sources or

ideas because they are not able to use critical ideas to organize and frame the

meaning of supporting details (Afflerbach & Cho, 2009; Maggioni & Fox, 2009).

When it comes to reading comprehension, it seems that some deviation from

equitable distribution of attentional resources is adaptive. For example, Pressley and

Afflerbach (1995) reported that highly effective learners tended to engage in pre-

reading behaviors such as previewing and goal setting. During reading, they then

spent more time in some parts of the text than others, took notes, returned iteratively

to particular sections to clarify or identify information, and connected their reading

to their prior understanding of the world. After reading new information, effective

readers took time to summarize or reflect on their reading and reread selectively

depending on the outcome of a self-evaluation of comprehension quality.

An additional manifestation of a global task strategy is note-taking, “a complex

activity that requires comprehension and selection of information and written

production processes” (Piolat, Olive, & Kellogg, 2004, p. 291). Note-taking is one

of the most frequent behaviors students engage in while working with informational

text (DeZure, Kaplan, & Deerman, 2001; Howe, 1970; Kauffman, 2004) and it is an

important predictor of the outcomes of a SRL episode when students work with

technical information (Bernacki, Byrnes, & Cromley, 2012; Kauffman, 2004).

Notes quality has also been shown to indicate the likelihood of success on assess-

ments of learning episodes associated with both textbooks and lectures (Peverly,

Vekaria, & Garner, 2014). Some researchers, however, have questioned the univer-

sal value of note-taking. One reason for concern is the potential cost of continuously

dividing one’s attention during a learning episode (Long, 2014; Piolat et al., 2004).
The potential cost of switching attention back and forth between materials may

depend on the degree to which the student has executive capacity to control their

attention (Altemeier, Jones, Abbott, & Berninger, 2006), but also on the specific part

of the learning activity in which the student is engaged.
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In sum, research pointing to nonlinear and non-equitable distributions of atten-

tion during reading, plus equivocal findings on the frequently occurring strategy of

note-taking that link note-taking to the distribution of attentional resources, led us

to wondering if a dynamic approach might reveal insights into the ways in which

global task strategies disrupt or promote patterns of visual attention during learning.

The Present Study

Process-driven theories of self-regulated learning postulate ways in which time-

based behavioral sequences are related to performance outcomes (e.g., Winne &

Hadwin, 2008; Schnotz & Bannert, 2003). Commonly applied methodological

approaches to collecting data about the processes that take place during learning

include self-report questionnaires, rubric-driven analyses of think-aloud protocols,

and other forms of qualitative data. Each of these approaches has its limitations;

self-report can be subject to presentation bias and other sources of error (Dupreyat

& Mariné, 2005; Winne & Jameson-Noel, 2002), and think-aloud protocols can be

disruptive to ongoing psychological processes (Ariasi & Mason, 2010). Perhaps

most problematic is that these methods provide little insight into and lack mecha-

nisms for identifying and quantifying the patterns or contingencies that result from
the moment-by-moment operation of psychological processes, even though these

contingencies and the sequences may reveal just how it is that particular psycho-

logical processes operate in concert with one another. Symbolic dynamics offers a

means by which these behavioral contingencies can be explored.

In the present study, SRL is conceptualized phenomenologically as studying

(Winne & Hadwin, 2008). The primary goal was to explore and characterize the

presence of nonrandom patterns of behavior during studying, with a view to

considering the viability of the proposition that visual attention sequences during

SRL can be modeled as a complex dynamic system. The direction and duration of

attentional gaze served as an indicator of the contents of the learner’s conscious
attention, an accepted indicator of the strategic processing that takes place during

the metacognitive control of working memory (Ainsworth, 2006; Just & Carpenter,

1980; Mayer, 2009; Norman & Shallice, 1980; Schnotz & Bannert, 2003). By

providing participants with an authentic studying task that included multiple,

overlapping sources of information to review, we hoped to trigger cognitive and

metacognitive processes including goal setting, comprehension monitoring and

self-checking strategies that lead to repeated reading, repeated reference to the

task instructions, and note-taking.

A second goal was to apply principles of symbolic dynamics to explain how

visual attention sequences in learning shift over time, and in particular to glean

information about the structure of repeated sequences using orbital decomposition.

We evoke a principle of structure, which is to say that we do not expect participants

to behave randomly when faced with the learning task. The consequence of this is

that we expect that the derivation of nonrandom patterns of visual attention will be
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possible, such that structure will be evident. We also propose to uncover contextual

sensitivity, which is to say that we expect that the dynamic structure of participants’
actions will be sensitive to the informational content provided in each of the source

materials. Contextual sensitivity may manifest itself as some materials acting as

points of origin for attentional sequences more so than others. This is of importance

in relation to principles of complex dynamic systems, which include the existence

of attractors—points or states to which the system iteratively returns.

The study focused on the following research questions:

1. What is the structure in the patterns of visual attention to different materials

during a learning episode, and how does it vary with global task strategy?

2. Does the dynamic structure of participants’ gaze sequences demonstrate char-

acteristics of complexity and self-organization, and do these characteristics vary

with global task strategy?

Method

Participants

Twenty-four undergraduate college students (n¼ 12 female, n¼ 12 male; mean

age¼ 22.14 years) participated in the study in return for extra credit towards a

course grade.

Materials and Procedure

Participants engaged in a self-paced, time-limited learning task in which they were

instructed to learn about the structure and pattern of oxygenated and deoxygenated

blood flow to and from the human heart (Fig. 16.1). Task materials consisted of

three physically separated pages of diagrams of the heart accompanied by infor-

mational text. The first page presented the structure of the heart, the second page

presented the arrangement of blood flow into and out of the heart and lungs, and the

third page included a detailed and annotated graphic with explanation of where

oxygenated and deoxygenated blood could be found. Participants were also given a

blank sheet of paper on which they could take notes, and a separate page containing

written instructions for their learning task. Participants were aware that they would

need to learn the information for a test. A timer was visible to participants, who

were instructed that they could have up to 10 min to study. After studying was

complete and participants had answered several questions about their studying

methods, participants were given a posttest.

356 J.K. Garner and D.M. Russell



Data Analysis

Studying behavior was recorded to DVD using a video camera. Footage from each

participant’s learning episode was then coded according to what the participant was
looking at during each second of the recording, and how long the gaze lasted before

a transition to something else. Coding was exhaustive, meaning that at any given

point during the learning episode, visual attention was coded in one of the six

categories: sheet 1 (A), sheet 2 (B), sheet 3 (C), notes/note-taking (D), instructions

(E) or elsewhere, including a countdown timer (F). In accordance with procedures

described by Guastello (2011), the resulting time series was converted to a string of

letters, such as AAABBB, which would represent 3 s of looking at sheet

1 (A) followed by 3 s of looking at sheet 2 (B).

These letter sequences were quantified in several different ways. Because the

length of this letter string varied among individuals, total sequence length was

calculated. This reached a maximum value of 600, reflecting 1 letter per second for

up to 600 s. This allowed the calculation of the percentage of time spent fixated on

each material (e.g., total time spent on Sheet A¼ 128, total sequence length¼ 412 s,

percentage of time spent on A¼ 128/412¼ 31.1 %). Because we were interested in

transitions of visual attention we calculated the number of transitions from one

material to another, with the sum reflecting how many transitions occurred between

categories. The mean time between transitions was then computed by dividing the

total sequence length by the number of transitions plus one.

The symbol sequence was also turned into a graphical image using custom-written

Matlab software (Mathworks, R2010a). Symbol sequence figures (Engbet et al., 1997)

Fig. 16.1 Spatial configuration of task materials
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were generated to visually represent fixations and transitions in visual attention

across the learning episode (Fig. 16.2). These figures provide an immediately visible

depiction of differences in the patterns exhibited by participants.

As our interest was in the sequential structure of the time series each letter

sequence was recoded to include only the transitions between the materials prior to
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Fig. 16.2 Symbol sequence figures for individuals with Shannon entropy scores at the (a) 1st, (b)
25th, (c) 50th, (d) 75th, and (e) 99th percentiles
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OD analysis. Orbital decomposition analysis was performed on these recoded

strings of letters using ORBDE v1.2 (Peressini & Guastello, 2010). Final dependent

variables computed by ORBDE included the trace matrix (trMC), Shannon entropy

(HS), topological entropy (HT), Lyapunov dimension (DL), χ
2, and ϕ2 at different

sequence lengths (C). Additionally, the patterns that were detected for C� 2 were

further analyzed. Unique sequences shared among at least two or more participants

were inspected for beginning and second location in order to determine where

participants were most and least likely to look next, after beginning a sequence with

a particular material. Also calculated were the most frequently occurring unique

sequences for each individual participant, and for the sample as a whole. This was

done for the raw number and proportions of sequences, so that the number of times

that the sequence was carried out could be expressed as a percentage of the number

of unique sequences begun by a particular stimulus material. Finally, the number of

recurrences for each pattern (X) and the number of different patterns with the same

recurrence frequency (Y ) were determined for each individual, and were analyzed

for evidence of an inverse power-law distribution using nonlinear regression anal-

ysis. All nonlinear regression analyses and statistical analyses were conducted

using SPSS 20.0.

Results

Research Question 1.What is the structure in the patterns of visual attention to

different materials during a learning episode, and how does it vary with global

task strategy?

Symbol Sequence Plots

Participants were free to study each of the different materials for as long and as

often as they wanted within the total possible study time of 10 min. Figure 16.2a–e

graphically reveals the visual attention patterns of four individuals during the

studying task. These symbol sequence plots depict time on the x-axis and each

location of visual gaze on the y-axis, thus providing a second-by-second account of
the location of visual gaze in relation to learning materials, notes, and the task

instructions.

It is clear from these figures that each individual had a different gaze pattern and

that the complexity of these patterns varied across the participants. For example, the

individual in Fig. 16.2a spent time studying the instructions, and then read material

A followed by material B. He/she alternated between A and B for the majority of

the time, before spending a block of time looking at material C. The participant

ended by inspecting material B for a short period. In contrast, the individuals in
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Fig. 16.2d and e immediately exhibited variability in visual attention by shifting

between the different materials, notes, and instructions.

In addition to the information provided by these figures, quantitative analysis

techniques were employed to reveal more about the structure in visual attention as it

pertained to global task strategy (note-taking). Time spent looking at each of the

materials will be assessed first, before we describe the gaze sequences revealed by

the OD analysis.

Time Spent Viewing Materials

Individuals did not spend equal time looking at each material and differed from

each other in how they allocated time across materials (Fig. 16.2). Regarding global

task strategy, two-thirds of the sample (n¼ 16) elected to take notes (Fig. 16.2c–e)

while they were reading the materials. Notes are indicated as material D. We

hereafter refer to them as a group of “note-takers.” The other one-third of the

participants (n¼ 8) completed the task by reading without taking notes, and we

hereafter refer to them as a group of “readers”.

The overall time on task was not significantly different between the groups (see

Table 16.1 for descriptive statistics), but a two-way mixed design ANOVA revealed

that the proportion of time spent attending to each material was contingent upon the

content of the material and the participant’s overall strategy of reading versus

reading and note-taking, F(2.91, 63.90)¼ 9.06, p¼ 0.000.

Sidak post hoc tests revealed statistically significant differences with large effect

sizes depending on whether participants read or took notes for Sheet A, Notes/

Table 16.1 Descriptive statistics (mean and standard deviation) for the timing variables of visual

attention for the reader and note-taker groups, and overall

Participant group

Variable Readers (n¼ 8) Note-takers (n¼ 16) All (n¼ 24)

M SD M SD M SD

Time (s)

Total task 355.4 143.1 440.3 161.2 412.0 157.6

Before a transition 11.0 4.1 7.0* 4.0 8.4 4.4

Proportion of time

Sheet A 43.7 14.3 24.7* 11.0 31.1 15.0

Sheet B 26.5 11.8 21.1 11.4 22.9 11.6

Sheet C 25.0 18.3 18.5 8.1 20.7 12.4

Notes D 0.0 0.0 27.0* 18.8 18.0 19.9

Instructions E 3.4 2.5 7.2* 4.7 5.9 4.4

Elsewhere F 1.3 2.1 1.6 1.6 1.5 1.7

Number of transitions 33.9 15.5 80.4* 44.4 64.9 43.1

*Significant group differences, p< 0.05
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Sheet D, and Instructions/Sheet E ( p’s< 0.05). Readers spent proportionally more

time inspecting sheet A than did note-takers (Cohen’s d¼ 1.57), but note-takers

spent proportionally more time inspecting the task instructions (d¼ 0.91). The

pattern of group differences remained the same when the absolute time spent

viewing the materials was considered. Post hoc comparisons between materials

revealed that readers spent significantly more time attending to materials A and B

than the notes, instructions, or elsewhere (materials D–F, p’s< 0.05), but material

C did not differ from any other location. In contrast, note-takers viewed materials

A–C and the notes (material D) for approximately the same time ( p’s> 0.05), but

significantly more than the instructions (material E), ( p’s< 0.05). All materials (A–

E) were viewed significantly more than any nonmaterial location (designated F),

( p’s< 0.05). In sum, differing proportions of time spent viewing each of the

materials indicated differences in the salience of each material to the participants,

and changes in relative salience were dependent on whether or not notes were taken.

Orbital Decomposition: Origin of Various Gaze Sequences

Sequences were ordered by the material that represented their origin. When the

frequencies of sequences initiated at each location were examined, it became

apparent that the materials differentially impacted the likelihood that a sequence

would originate at that location. Table 16.2 includes the number of unique

sequences for each group, the percentage of the total number of unique sequences

generated, the aggregated total number of repetitions of the unique sequences, and

the mean number of repetitions for sequences initiated at each location per partic-

ipant. As is apparent from Table 16.2, Sheet A was the most likely point of origin

for a repeated gaze sequence for readers, but the notes page was the most likely

point of origin for note-takers. In addition, the instructions were more likely to act

as a point of origin for the note-takers, who also initiated a substantially higher

number of different unique sequences from this location than did the readers.

Table 16.2 Frequencies of sequences that began at each point of origin for readers and note-

takers

Learning

material

Readers (n¼ 8) Note-takers (n¼ 16)

No. Percentage

Total

no. Mean No. Percentage

Total

no. Mean

Sheet A 22 32 % 282 35.25 44 19 % 680 42.50

Sheet B 16 24 % 219 27.38 48 21 % 615 38.48

Sheet C 21 31 % 144 18 34 15 % 530 33.13

Notes 0 0 % 0 0 68 30 % 1438 89.90

Instructions 5 7 % 21 2.62 26 11 % 155 9.19

Room/timer 4 6 % 12 1.5 10 4 % 29 1.81

16 Symbolic Dynamics of Visual Attention During Learning 361



Taking notes had a large and significant effect on the number of transitions

between materials, F(1, 22)¼ 8.11, p¼ 0.01, d¼ 1.23 (Table 16.1). Note-takers

made on average more than twice as many transitions between materials while

studying than participants who only read. The time spent looking at a material

before switching visual attention elsewhere was also significantly less for note-

takers than readers, F(1, 22)¼ 5.12, p¼ 0.03, d¼ 0.98. The symbol sequence

figures and quantitative measures about the time viewing the materials revealed

significant differences between note-takers and readers in their visual attention of

the different materials. Next, we consider if the sequences of viewing the materials

demonstrate any patterns and differences between these groups.

Orbital Decomposition: Repeated Sequences

The OD analysis broke the time series of categories (in our case, visual attention to

a particular material) into patterns of different length that reoccur immediately or at

any point in time. Given that participants could remain focused on the same

material over many seconds, each time series was turned into the sequence with

which materials were viewed (e.g., AAAABBAAAC became ABAC). Under these

circumstances orbital decomposition could be used to inform about patterns in the

sequence of materials. For increasing sequence lengths, designated C, all patterns of
that length were identified, along with how many times each pattern occurred.

Additionally, the number of different patterns that were immediately repeated were

counted. This process continued until the longest pattern sequence that immediately

reoccurred was determined. The length of this longest pattern was designated as the

maximum C length.

In our sample, the maximum C length varied among participants, revealing

individual differences in the maximum number of gaze locations that comprised

an immediately repeated sequence. Across the sample the minimum C length was

2 and the maximum C length was 32, meaning that at least one individual did not

immediately return to any sequence that was longer than 2 locations in length, but at

least one individual immediately returned to a sequence that was 32 locations in

length. The overall mean C length for the sample was 8.2 (SD¼ 6.6). The mean

length of any immediately repeated gaze sequence was 9.1 locations for note-takers

(SD¼ 7.6) but only 5.1 locations for readers (SD¼ 3.6); however this difference

failed to reach the level of significance ( p¼ .30, d¼ 0.45).

As an illustration, Table 16.3 provides a summary of the more frequently

occurring patterns of sequence lengths C¼ 2–5 for readers and note-takers. Only

patterns which reoccurred at least twice for an individual participant were included

in the analysis and only those that occurred at least an average of once per person

are displayed in the table. Data for the other less frequent patterns are summarized

together. Mean frequency is the number of recurrences of a particular pattern across

all members of a group divided by the number of participants in that group. Given

the large discrepancy in the number of total recurrences between the groups, the
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Table 16.3 Mean frequency of patterns of sequence lengths (C¼ 2-5) performed by readers and

note-takers

Readers (n¼ 8) Note-takers (n¼ 16)

Pattern

Mean frequency

(% of recurrences) Pattern

Mean frequency

(% of recurrences)

C¼ 2 (252 recurrences of 12 unique patterns) C¼ 2 (1144 recurrences of 26 unique patterns)

AB 7.8 (24.6 %) DA 10.1 (14.2 %)

BC 6.1 (19.4 %) BD 7.7 (10.8 %)

CA 5.1 (16.3 %) DB 7.7 (10.8 %)

BA 4.8 (15.1 %) CD 7.0 (9.8 %)

AC 4.0 (12.7 %) DC 6.9 (9.6 %)

EC 1.0 (3.2 %) AE 5.2 (7.3 %)

6 other patterns 2.8 (8.7 %) BA 3.3 (4.5 %)

AB 3.1 (4.4 %)

CE 3.0 (4.2 %)

BC 2.6 (3.6 %)

CB 2.1 (3.0 %)

AD 1.8 (2.4 %)

DE 1.7 (2.4 %)

ED 1.6 (2.3 %)

CA 1.4 (2.0 %)

EC 1.1 (1.6 %)

10 other patterns 5.3 (7.3 %)

C¼ 3 (191 recurrences of 19 unique patterns) C¼ 3 (1009 recurrences of 62 unique patterns)

ABA 5.9 (24.6 %) DAD 8.6 (13.7 %)

BAB 4.1 (17.3 %) ADA 8.4 (13.3 %)

CAC 2.9 (12.04 %) DBD 6.0 (9.5 %)

ABC 1.9 (7.9 %) BDB 5.4 (8.5 %)

BAC 1.6 (6.8 %) DCD 5.3 (8.3 %)

ACE 1.5 (6.3 %) CDC 5.1 (8.0 %)

BCA 1.0 (4.2 %) ADB 4.3 (6.8 %)

12 other patterns 5.0 (20.9 %) BAB 1.5 (2.4 %)

54 other patterns 18.6 (29.4 %)

C¼ 4 (133 recurrences of 21 unique patterns) C¼ 4 (742 recurrences of 76 unique patterns)

ABAB 4.6 (27.8 %) DADA 7.2 (15.5 %)

CACA 2.3 (13.5 %) ADAD 7.1 (15.4 %)

ACAC 1.8 (10.5 %) DBDB 4.6 (9.8 %)

BABA 1.4 (8.3 %) DCDC 4.1 (8.8 %)

17 other patterns 6.6 (39.9 %) CDCD 3.9 (8.5 %)

BDBD 3.7 (8.0 %)

70 other patterns 15.8 (34.1 %)

(continued)
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percentage of the total recurrences is also provided for each pattern. The percentage

provides an indication of the strength of attraction for that particular pattern

compared with other patterns performed by the participants of that group.

The overall number of recurrences decreased as sequence length increased.

However, the total number of unique patterns increased with longer sequence

length up to C¼ 4, after which they decreased for C¼ 5 and beyond. What is

clear in comparing the two groups is that taking note-taking led to many more

unique patterns (greater flexibility) and total recurrences for C lengths 2, 3, 4, and 5.

The most common patterns of visual attention across materials also differed with

global task strategy. For note-takers, visual attention to the notes (material D) was

involved in a large percentage of sequence recurrences (63.6 % of C¼ 2; 86.1 % of

C¼ 3; 73.7 % of C¼ 4; 83.4 % of C¼ 5). The five most frequently occurring

patterns at each of the different sequence lengths (C¼ 2–5) all involved notes

(material D) and an instructional material (A–C). Note-takers generated the major-

ity of their transitions between an instructional material and the notes. This meant

that note-takers made proportionally less sequences (19.3 % of C¼ 2) switching

directly between instructional materials (e.g., AB, AC, BA, BC, CA, or CB),

compared with readers who generated 89.7 % of C¼ 2 recurrences between the

materials A, B, and C.

Another difference in the use of materials between the groups was in the

proportion of C¼ 2 recurring patterns that included the task instructions, which

suggests a link between the global task strategy of note-taking and metacognitive

monitoring processes. Note-takers looked at the instructions in 21.1 % of C¼ 2

recurrences, while readers only viewed the instructions in 6.3 % of the total

recurrences. No differences in the utilization of instructions were observed for

higher sequence lengths. A final difference between the groups was in the propor-

tion of patterns that involved more than two materials. Of the seven most frequent

Table 16.3 (continued)

Readers (n¼ 8) Note-takers (n¼ 16)

Pattern

Mean frequency

(% of recurrences) Pattern

Mean frequency

(% of recurrences)

C¼ 5 (102 recurrences of 19 unique patterns) C¼ 5 (544 recurrences of 69 unique patterns)

BABAB 5.0 (39.2 %) DADAD 6.7 (19.7 %)

CACAC 1.5 (11.8 %) BDBDB 3.9 (11.4 %)

ABABA 1.1 (8.8 %) DBDBD 3.9 (11.4 %)

16 other patterns 5.1 (40.2 %) CDCDC 3.4 (10.1 %)

DCDCD 3.4 (9.9 %)

ADADA 1.7 (5.0 %)

63 other patterns 11.1 (32.5 %)

Only patterns with a frequency of at least once per participant are displayed
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C¼ 3 patterns by readers (mean frequency �1), four involved three different

materials (i.e., ABC, BAC, ACE, BCA) amounting to 25.2 % of the total recur-

rences. In contrast, only one of the most frequent sequences performed by the note-

takers included three different materials (i.e., ADB) totaling only 6.8 % of the total

recurrences. For C lengths of 4 and 5 none of the most frequent patterns included

more than two different materials. These findings indicate that participants mostly

went back and forth between two materials. However, readers executed more visual

attention sequences that switched between three materials than did note-takers.

Research Question 2. Does the dynamic structure of participants’ gaze

sequences demonstrate characteristics of complexity and self-organization,

and do these characteristics vary with global task strategy?

Orbital Decomposition: Overall Measures of Complexity

OD computes several variables that provide indices to different aspects of com-

plexity, including Shannon entropy, topological entropy, and dimensionality, based

on the maximum Lyapunov exponent. These values are quantified for each

sequence length. For comparison between the groups we selected C¼ 2, because

many longer sequences were made up of this length pattern (Table 16.3) and 23 out

of 24 participants produced a C¼ 2 pattern that was immediately repeated, which

was a necessary pattern for the calculation of some indices.

Shannon entropy quantifies the probability of the patterns occurring. Lower

values indicate fewer patterns being performed many times, while higher values

indicate more different patterns, in other words greater novelty. Note-takers were

found to have more novelty in their visual attention sequences than readers

(Table 16.4). This finding is in line with the analysis of the number of unique

patterns performed, which revealed that note-takers performed many more unique

repeated sequences than readers.

While Shannon entropy quantifies the repetition of sequences it ignores the

temporal structure of these sequences, i.e., whether they immediately reoccur or

not. In contrast, topological entropy and dimensionality measures were estimated

based on the immediate recurrence of a pattern. The number of different sequences

that were immediately repeated (trace of the transition matrix) for C¼ 2 was

significantly greater for note-takers than readers (Table 16.4). Since topological

entropy has been interpreted as indicating turbulence, this finding shows that note-

takers’ overall sequence of visual attention was structurally more complex than that

exhibited by readers. When the dimensionality of the visual attention sequence was

estimated according to the maximum Lyapunov exponent based on topological

entropy, for C¼ 2 the dimensionality for all participants was nonlinear (DL> 1). In

addition, the dimensionality was significantly greater for the note-takers than for the

readers (Table 16.4). Simply stated, note-takers performed more unique repeated

sequences (i.e., orbits) and repeated these patterns more often during the studying

episode, suggesting both more structure and more complexity in their visual
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attention patterns. These results indicate that the more complex visual attention

sequences performed by note-takers were not simply due to greater stochastic noise,

but rather arose deterministically from a richer attractor landscape.

Inverse Power-Law: Characteristics of a Self-Organizing
System

Self-organizing systems that display fractal properties have frequency distributions

that follow an IPL function, where there are many more small compared with large

parts. This is in contrast with a normal frequency distribution, where the highest

frequency would be for the medium-size components. In our case, the number of

different patterns served as the system parts. These data were summed for each

number of pattern reoccurrences and the resulting frequency distribution was

plotted. The resulting distributions followed an IPL function and were not

Gaussian.

Figure 16.3 shows an example of this phenomenon for a single participant,

where the vast majority of patterns only repeat once and very few patterns reoccur

up to 19 times. For this participant, nonlinear regression analysis determined the

following function, Y ¼ 169:83� X�2:96, R2¼ 0.99. The shape of the IPL function

(b¼�2.96) provides information about the ratio of patterns that repeat few times to

those that repeat many times, and is a measure of the system’s fractal dimension-

ality (DF). A DF equal to �2.96 indicates a fractal process. This finding was

consistent across all subjects, with an average DF¼�3.11 indicating strong fractal

dimensionality in the distribution of different repeating visual gaze sequences.

Integrity of the IPL function can be quantified by the variance accounted for,

with a high R2 value revealing high structural integrity (Table 16.5). The overall

mean R2 across participants was 0.94, supporting the conclusion that visual gaze

sequences displayed characteristics of a self-organizing system. Thus, the fractal

Table 16.4 Group descriptive statistics (mean and standard deviation) of the final statistics

obtained from orbital decomposition at the repeated sequence length of 2

Indicator

Readers (n¼ 7) Note-takers (n¼ 16)

M SD M SD

Shannon entropy 1.85 0.46 2.34** 0.34

Trace matrix 3.71 1.50 6.38* 2.68

Topological entropy 0.89 0.31 1.25* 0.38

Lyapunov dimension 2.54 0.75 3.73* 1.20

χ2 31.64 18.78 60.48 40.36

ϕ2 0.82 0.23 0.70* 0.21

*p< 0.05, **p< 0.01

366 J.K. Garner and D.M. Russell



structure of the pattern of reoccurring gaze sequences during a SRL episode is

congruent with known properties of self-organizing systems.

While all participants demonstrated significant IPL relationships for the fre-

quency of repetitions of sequences, differences were observed between the groups

according to global task strategy. On average, the readers had larger DF. However,

this was not significant ( p > 0.05), likely due to the large variability between

subjects (Table 16.5). In contrast, note-takers still had a large average DF but

exhibited much reduced variability. A Mann-Whitney U test revealed significant

differences between the two group’s R2 fit indices, with note-takers exhibiting

significantly greater R2 values ( p < 0.05) and therefore greater structural integrity

in visual attention patterns than the readers. In sum, although both groups exhibited

visual gaze sequences that closely resembled the properties of self-organizing

systems, greater flexibility and adaptability in the sequence of studying the mate-

rials were found for note-takers.
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Fig. 16.3 Illustration from a single participant of the inverse power-law relationship between the

number of reoccurrences of patterns and the number of unique patterns that were repeated

Table 16.5 Group and overall descriptive statistics (mean and standard deviation) for the inverse

power-law analysis on repeated sequence lengths

Function statistics

Readers (n¼ 8) Note-takers (n¼ 16) All (n¼ 24)

M SD M SD M SD

b �4.08 5.31 �2.62 0.71 �3.11 3.07

R2 0.86 0.23 0.98* 0.04 0.94 0.13

Highest repeated pattern frequency 9.50 5.66 13.5 8.20 12.17 7.57

*p< 0.05
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Discussion

To our knowledge, this study is the first of its kind to use symbolic dynamics to

investigate the nature of gaze sequences during a self-regulated learning episode.

Drawing on principles of complexity science and dynamic systems theory, we used

orbital decomposition (OD) to methodologically frame the visual inspection of

learning materials as an example of learners’ exploration of an attractor landscape,

and we proposed that participants’ tactical decisions would impact their behavior

within it. Our two research questions concerned (1) the presence and nature of

patterned sequences in relation to global task strategies such as note-taking, and

(2) the degree to which these patterns revealed evidence that the cognitive and

metacognitive processes responsible for directing attentional guidance during

learning can exhibit the features of a complex, dynamic, and self-organizing

system.

The OD analysis explicated gaze sequences and allowed for the quantification of

the degree to which these sequences were repeated. It revealed that regardless of

whether or not a note-taking strategy was used, visual attention sequences were

most likely to consist of iterative repetitions representing movement between just

two locations. None of the participants exhibited a linear behavioral trace of

looking at each material without returning to the same material. Sequences longer

than two locations were detected but these were primarily comprised of iterative

repetitions of two-location sequences (e.g., ADAD) rather than sequences that

represented sequential attention to all of the learning materials (e.g., ABDC).

This was particularly evident for the note-taking group, for whom notes comprised

a significant attentional attractor.

The process of checking for congruence and completeness between informa-

tional sources is known as intertextual comparison, and its use has been associated

with improved learning outcomes (Stahl, Hynd, Britton, McNish, & Bosquet, 1996;

Kobayashi, 2009). In our study readers, more than note-takers, executed intertex-

tual visual sequences. The note-takers’ apparent reluctance to make intertextual

comparisons has implications for modeling the process of how learners create

coherent representations of meaning from multiple sources of information, and

what happens when they read and take notes to support comprehension. Studying

from informational texts requires two interrelated processes, the first being the

derivation of meaning within and across sources, and the second being the integra-

tion of information with prior knowledge (Holsanova, Holmberg, & Holmqvist,

2009; Kintsch, 1991; Schnotz & Bannert, 2003). The process of selecting, organiz-

ing, and integrating information is postulated to end with the formation of a mental

model, an abstract internalized representation of concepts and their relations that

supports future performance (Glenberg, Meyer, & Lindem, 1987; Johnson-Laird,

2013; Leopold & Leutner, 2012; Mayer, 2001, 2005; Schnotz & Bannert, 2003;

Van Meter & Firetto, 2013). When creating a mental model by inspecting multiple

texts, the learner must read and compare the different sources.
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Unfortunately, research on students’ learning strategies has also shown that

intertextual comparisons are rare, unlikely to be generated spontaneously, and

very unlikely to manifest in written form through the content of notes (Hagen,

Braasch, & Bråten, 2014; Stahl et al., 1996). Our findings corroborate this; direct

unmitigated intertextual comparisons were extremely unlikely if the individual was

taking notes. In our study, the information contained in each informational sheet

was designed to complement and build on the contents of the other sheets. How-

ever, although it was entirely feasible for participants to produce sequences such as

ABD (A followed by B followed by Notes) or ADBD (A followed by Notes

followed by B followed by Notes), these sequences almost never appeared if the

individual took notes. Readers, on the other hand, were far more likely to demon-

strate intertextual sequences such as AB or ABAB.

Note-taking is often promoted as a useful supplement to careful reading that can

greatly improve comprehension and is commonly included in lists of activities

associated with effective text-based self-regulated learning (Kauffman, 2004).

According to Kierwa (1987), note-taking can exert a meaningful impact on learning

by promoting encoding in working memory, and by providing external storage that

relieves cognitive resources that are otherwise heavily taxed during the compre-

hension process. However, studies have shown that students’ notes are often

verbatim rather than elaborative, or highly deficient in content, which can lead to

students studying from incomplete or incorrect information (Britt & Sommer, 2004;

Hagen et al., 2014; Kierwa, DuBois, Christensen, Kim, & Lindberg, 1989). In one

study, simple rereading of text was even found to be more beneficial than note-

taking (Kierwa et al., 1989), while another applied study reported that students’
performance in a lecture class was actually superior when note-taking was not

permitted (Piolat et al., 2004). Additionally, students with cognitive and attentional

disabilities are often overwhelmed by the task of taking notes while listening or

reading new information (Kauffman, 2004).

Our findings suggest that note-taking and reading are quite different tasks from

the perspective of the patterns of visual gaze associated with them. For participants

in our study who took notes, the notes page was a salient part of the learning process

and it strongly impacted the sequence and tempo of visual attention and gaze

sequences. The notes page became a temporal as well as spatial attentional attractor

during learning—as a group, note-takers on average devoted about one-quarter of

the 10-min studying time attending to their notes. Together, these findings highlight

the substantial effect that note-taking can have on the way that visual attention

sequences are executed during studying.

Self-monitoring refers to attempts to reflect upon and react to judgments of

progress in relation to a set task or goal (Greene & Azevedo, 2009; Pintrich, 2000;

Winne & Hadwin, 2008). Strategies for self-monitoring include pausing to compare

information or to check on the accuracy of notes (Azevedo, Guthrie, & Seibert,

2004; Kauffman, Zhao, & Yang, 2011; Zimmerman & Paulsen, 1995). In our study,

a second manifestation of the way in which global task strategy became linked to

visual attention patterns came from the analysis of the proportions of time that

individuals spent viewing particular learning materials and the task instruction,
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which we suspect links to attempts to self-monitor comprehension and progress

through the task. In the context of the present study, we used reference to the

instructions as an indicator that the learner was engaged in self-monitoring, pre-

sumably due to the realization that one portion of the task had been accomplished,

or the desire to check that learning was aligned with the performance outcomes

listed, or both. The analysis of the proportions of time spent viewing each material

showed that on average, participants who engaged in note-taking spent twice as

long viewing the task instructions than participants who did not take notes. We

speculate that this may have been due to a variety of factors relating to self-

monitoring; note-takers may have been less sure of the task at hand, may have

felt the need to use the instructions to guide their note-taking, or may have been

using the task instructions to gauge the completeness of their learning behaviors.

In sum, we found that the dynamics of visual attention were not linear and

progressive. Instead, they were patterned and repetitive in nature. Global task

strategy, particularly note-taking, led to significantly higher rates of attentional

shifting throughout the learning episode, with proportionately less time spent

alternating back and forth between information sheets and more time alternating

attention between material and the notes page. Note-taking was also associated with

increased use of the task instructions compared to the groups who read but did not

take notes. To our knowledge, these findings are novel among studies on SRL and

learning from text.

Our study also sought to determine the degree to which visual attention during

learning could be understood as a manifestation of a complex, dynamic system. The

second research question asked to what degree novelty and dimensionality might be

found in the attentional sequences, and to what extent such indices of self-

organization might vary according to global task strategy choices such as note-

taking. We found that the complexity and organization of visual attention

sequences varied with global task strategy; whereas readers tended to initiate

sequences from the first informational sheet, note-takers initiated sequences from

the notes page that they were creating. Note-takers initiated a greater number of

repeated novel attentional sequences overall, as indicated by higher Shannon

entropy values, with a significant proportion of them originating from the

notes page.

The greater complexity found in the note-taking group was not due to greater

noise, but from deterministic processes. The topological entropy was significantly

higher for this group, indicating greater turbulence and a higher fractal dimension-

ality based on the largest Lyapunov exponent (Table 16.4). Although the fractal

dimension computed as the steepness of the curve (b) in the IPL analysis did not

reach significance between groups, the significantly higher R2 values (Table 16.5)

demonstrated that the frequency distributions for the note-takers could be better

modeled as an IPL function than that of the readers (Fig. 16.3). This is a hallmark of

self-organizing systems.

Note-taking was associated with greater variability in attentional sequences,

with the notes page acting as an attractor or anchor point of origin for a large

number of different patterns of attention. In addition, the note-taking group spent
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more time viewing the instructions and used the instructions as the origin of

significantly greater numbers of unique, repeated attentional sequences. This is an

example of note-takers’ exhibiting more novelty in attentional sequences—they

were less rigid than readers, exhibited a richer range of patterns, and were not

“stuck” in a small number of high-frequency repetition patterns. Metaphorically

speaking, their attractor landscape was more varied, and they moved more freely

among the valleys. It seems that note-taking may foster psychological processes

that have greater structure and flexibility than reading alone.

Limitations

While OD exhaustively detects patterns in the data and computes several complex-

ity metrics, like any other analysis technique it has its limitations. First, it is critical

for the researchers to define appropriate categories for coding and to record the

categories with an appropriate time resolution or sequence of categories. These

factors require knowledge about the area of investigation and potentially some trial

and error. Recent developments in the ORBDE software allow several categories to

be coded at the same time allowing more complex assessments of patterns in

behavior or learning (Peressini & Guastello, 2014). Such a capability raises ques-

tions about how to classify behaviors or utterances, and upholds rather than relieves

the researcher’s incumbent responsibility to proceed with caution in this regard.

Second, ORBDE exhaustively determines patterns in the data, but only reports

the number of occurrences of each pattern in the total data length or whether a

pattern is immediately repeated once or not at all. It does not indicate how many

times a sequence immediately repeats itself, even though such information may be

helpful for understanding some dynamic aspects of a system. A third issue is that

ORBDE computes complexity metrics for any C length that has at least one pattern

that immediately repeats. Therefore, an issue faced by the researcher is the deter-

mination of the appropriate C length from which to consider the complexity

metrics. It has been recommended that the optimal C length is the length of the

longest sequence that is immediately repeated (Guastello, Koopmans, & Pincus,

2011). In our opinion, this potentially places undue focus on a single pattern.

Guastello et al. preempt this concern by stating that it is also important to consider

statistical techniques, including χ2, and the value of Shannon entropy, which both

provide information about structure in the data series. In the current study our goal

was to compare readers and note-takers on different metrics computed by ORBDE.

For statistical comparison it made more sense to compare values for the same

sequence length; otherwise the metrics would have been heavily dependent on the

C length used. Fourth, it should be noted that selecting maximum C length tends to

lead to a low trace of the matrix, which in turn approaches a topological entropy

value close to 0 and a DL close to 1.
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Finally, a substantial conceptual limitation for our study is the lack of prior work

on reading and SRL that has articulated component processes as being dynamically

interrelated and constituent parts of a complex dynamic system. Therefore,

although we can describe the patterns of visual attention that were evident in the

data, basic questions remain. For example, it is far from clear whether it is

advantageous to exhibit greater or lesser complexity or flexibility when engaged

in a SRL episode. Similarly, our proposal that self-monitoring processes might

trigger particular sequences of visual attention is speculative, as is our suspicion

that visual sequences that originate from either notes or one information sheet in

particular might be meaningfully construed (and therefore perhaps, in future

research, manipulated) as attractors in a landscape. However, in spite of these

concerns we believe that careful use of OD promises to reveal dynamical structure

in learning behaviors that cannot be readily quantified with an interval or ratio scale

and therefore have heretofore been neglected.

Future Directions

The inclusion of complex dynamic systems into educational research requires the

development of a particular epistemological posture about the nature of the phe-

nomena being studied. A general step-by-step approach for adopting such a per-

spective has been articulated by Stanton andWelsh (2012). In regard to theory, they

call for the researcher to conceptualize the phenomena of interest as a

multicomponent, dynamic system of mutually influential variables, rather than as

a collection of independent, dependent, and moderator variables that interact

according to mechanistic, linear relationships. In our view, regarding the problem

of how to investigate learning from text, this requires an acknowledgement of the

potential for simultaneous and reciprocal influences among groups of cognitive,

metacognitive, and affective constructs, and a far more dynamic progression

through SRL phases than has typically been conceptualized.

A consequential second and more empirically focused step is for researchers to

identify a “collective variable” of interest, an “observable phenomenon that cap-

tures the interrelatedness of diverse system elements” (Lunkenheimer & Dishion,

2009 p. 290 in Stanton & Welsh, 2012). The collective variable, analogous to a

dependent variable, must be quantifiable through observation, linked to a construct

of interest, and able to account for the ever-changing interaction between the

system and the context. The collective variable in the present study was a mea-

surement of visual gaze patterns, which we designated as a proxy measure for visual

attention and the target of active processes in working memory. Visual gaze

patterns were predicted to be sensitive to the contingencies among behaviors

needed to execute the learning process as well as choices of strategy and task

conditions.
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Third, the researcher must characterize attractor states, which are conceptual and

empirical locations where the system may settle. The possible potential locations or

states in which the system may be found are designated as the landscape or plane of

attractors. In the present study the attractors were the repeated gaze patterns and the

attractor plane was comprised of all possible sequences or locations that the

individual could visit during their learning episode. Our findings reveal marked

differences in how the attractor plane was navigated by readers and note-takers. In

this way, we accomplished an additional step, which Stanton and Welsh describe as

the process of identifying the “dynamic trajectory of the collective variable” (p. 21).

Using OD we were able to determine how each learner’s cognitive-metacognitive

system moved around the attractor plane. Through symbol sequence plots and the

summary presented in Table 16.2, we were able to construct a representation of the

dynamic “signature” of systems’ behavior over time.

In a final step, Stanton and Welsh challenged researchers to identify and then

intervene in the control parameters of the system. Control parameters, like inde-

pendent variables, are features that can be manipulated in order to impact an

outcome. A naturally occurring control parameter emerged in the case of our

study; individuals’ decisions to take notes or simply read the material resulted in

significant differences in the collective variable of visual gaze patterns.

In sum, by adopting a complex dynamic systems approach we found that global

task strategy propagated very different patterns of task execution behaviors during

learning from text. Simply stated from the perspective of task execution, reading

and note-taking appear to be very different from one another. Greater intertextual

comparisons were made by readers, for whom the primary information sheet served

as an attentional anchor. Note-takers relied heavily on a notes page and the task

instructions to structure their attentional sequences, and made many more (and

more flexible) shifts in visual attention throughout the learning episode. What is not

clear, and should be the subject of further research, is how these differences may

relate to individual differences in content knowledge, strategic knowledge, reading

comprehension, and processing capacity. Also unknown is how such differences

might be associated with performance outcomes, and whether global task strategy

might exhibit a nonlinear effect on such an outcome depending on other aspects of

each learner’s metacognitive system.

Learner’s systems were “found” in some locations within the attractor plane with

much greater frequency than in others. This suggests that as SRL episodes progress,

learners may variously become entrained or entrenched in attractors. Whether such

entrenchment is adaptive or maladaptive, and when and how interventions might be

timed to interrupt or perturb the learner’s SRL system to promote its movement to a

different attractor or its stability in service of a particular learning sub-goal, are also

intriguing questions for future research. To answer this and other questions we

challenge SRL theorists to increase their consideration of behavioral contingencies

within and across learning episodes, and to incorporate their findings in ways that

might add complexity-based ideas to currently dominant models that emphasize a

trajectory through distinct phases of learning. Integrating the two perspectives
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together may yield helpful insights, such as understanding the conditions that occur

just prior to an individual’s decision to shift strategies and take notes, pause to judge
the quality of their learning, or conclude a learning episode.

Appendix: Calculation of Number of Recurring String
Patterns (NC)

NC is estimated by first creating a separate transition matrix MC for each

C sequence length with the allowable strings on each axis. Each cell then contains

1 if the row string is immediately followed by the column string or 0 if it does not:

AD DA EA AE

MC¼ AD 1 0 0 1

DA 0 1 0 0

EA 0 1 1 0

AE 1 0 0 0

The diagonal of the matrix (bolded in the example above) indicates if a string is

immediately followed by itself (1) or not (0). Rather than using the determinant of

this matrix, which could be very large and computationally intensive, the trace of

MC (trMC) can be easily computed by summing the 1s from the diagonal (Lathrop

& Kostelich, 1989). Hence, trMC represents the number of strings that are imme-

diately repeated (e.g., for C¼ 2, trMC¼ 3) and is used to compute HT.
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Chapter 17

A Catastrophe Model for Motivation
and Emotions: Highlighting the Synergistic
Role of Performance-Approach
and Performance-Avoidance Goal
Orientations

Georgios Sideridis and Dimitrios Stamovlasis

Introduction

In educational psychology, it is widely acknowledged that learning outcomes

presuppose motivation, in that motivation is acting as the “source of energy”

required for effective self-regulation and achievement (Atkinson, 1964). Motiva-

tion has been considered in implicit theories of intelligence and was implemented

as a construct to understand and explain school performance (Gonida, Kiosseoglou,

& Leondari, 2006; Gonida, Voulala, & Kiosseoglou, 2009). In addition, a link

between motivation and performance with concomitant effects on emotions has

been reported (Pekrun, Elliot, & Maier, 2006). Several researchers have attempted

to unravel the relationship between anxiety and performance or motivated behavior

and performance (e.g., Elliot & Harachiewicz, 1996; Hardy & Parfitt, 1991) with

few endeavors examining the relationship between motivation and arousal (Elliot &

McGregor, 2001; Pekrun et al., 2006, 2009). Shedding light onto the motivation-

performance relationship, different researchers suggested various roles for arousal,

considering it in the role of an antecedent (Elliot & Church, 1997), a consequence

(Elliot & Thrash, 2002), a mediating (Cury, Da Fonséca, Rufo, Peres, & Sarrazin,

2003), or a moderating variable (Barron & Harackiewicz, 2001). All related studies

have fostered linear methodologies and they have failed to converge convincingly,

suggesting a specific model with motivation and emotion involved in self-regulation
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and performance. Recently, a catastrophe theory model has been proposed for

explaining variability in students’ arousal under achievement situations

(Stamovlasis & Sideridis, 2014). In this work, nonlinear dynamics and self-

organization theory were combined to explain instabilities in arousal level in

educational settings. In the present chapter, further evidence is provided for

nonlinear dynamic effects in emotional sates as a function of achievement goal

orientations (Elliot & Harackiewicz, 1996).

Next, a short description of achievement goal theory including an explanation as

to how motivated behavior, in the form of goal orientations, co-varies with arousal

is provided. Furthermore, a rationale was developed for employing catastrophe

theory to elaborate on the type of relationship between motivated behavior and

arousal.

Achievement Goal Theory

Goal theory was developed with the pioneer work of Dweck, Nichols, Ames, and

other theorists. The premise of goal theory was based on early observations that

some children “who show impairment in the face of difficulty are initially equal in

ability to those who seek challenge and show persistence” (Dweck & Leggett, 1988,

p. 256). The above remark helped Dweck (1986) describe motivation using two

classes of goals: the goals that aim to validate one’s ability, termed performance,
using normative evaluative standards of what success is, and the goals that aim to

aid understanding and learning of a skill in the absence of normative evaluations but

rather the employment of intraindividual standards of what success is, termed

mastery goals. The early works from that dichotomization pointed to the fact that

performance goals are maladaptive and mastery goals are adaptive for

achievement-related gains (Dweck & Leggett, 1988). For newer conceptualizations

see Grant and Dweck (2003) and Elliot and Murayama (2008).

Later, Elliot and Harackiewicz (1996) proposed that performance-oriented indi-

viduals may approach a task to prove their competence, worth, and likeability, but

they may also target at avoiding negative end states (performance and/or affective).

This thesis resulted in the dichotomization of performance goals into approach and
avoidance forms pointing to the need to revise achievement goal theory

(Harackiewicz, Barron, Pintrich, Elliot, & Thrash, 2002), in a way that would clearly

identify the positive effects of performance-approach goals (particularly with regard

to academic achievement). The main hypothesis from that dichotomization was that

performance-approach goals are linked to positive achievement outcomes, because

the positive valence associated with approaching success would likely act as a

“promoter” of regulation (even when individuals are highly challenged). On the

contrary, for performance-avoidance goals the expectation was that the focus on

failure (even being on avoiding failure) would be associated with agitation-related

emotions when one fails to attain personal standards of success, with important links

to one’s functioning, and efficacy during an achievement situation. The differenti-

ation between the two performance goals on affective grounds is themain purpose of
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this study. A secondary purpose is to explain their differences using a nonlinear

perspective particularly given the fact that linear approaches have had little success

in explaining substantial amounts of variance in academic and nonacademic out-

comes due to goal orientations (Harackiewicz et al., 2002; Sideridis, 2003). Linear-

ity has been questioned a long time ago, as it graphically has been stated: “There is

no apparent reason, intuitive or otherwise, as to why human behavior should bemore

linear than the behavior of other things, living or nonliving” (Brown, 1995, p. 1). The

latter is relevant to epistemological issues that are raised by the new paradigm of

nonlinear dynamics (see also Stamovlasis, 2010, 2011).

Catastrophe Theory and Goal Orientations

Goal orientations, as psychological constructs, describe human behavior under

achievement situations or in other words they describe the fundamental function

of self-regulation (Carver, 2006; Elliot, 1999). From earlier times, performance

goals associated with one’s need to prove his/her basic worth, competence, and

likeability were identified as being linked to a potentially disastrous functioning, in

terms of self-regulation without however being considered in their dichotomized

forms (Dykman, 1998). Performance goals, approach, and avoidance, in their

conceptualization, include a distinct set of affective criteria that are largely respon-

sible for their regulation properties (Elliot, 1999). In other words, the affective

response associated with each type of goal saliently defines the goal and explains

the regulation that is the outcome of that affective response. For example, a person

who is motivated by performance-approach goals is certainly stressed during an

achievement situation when challenged up to a point, more so than a person who

adopts mastery goals. Their affective response is different due to foci. Individuals

adopting performance-approach goals heavily value normative evaluations. Thus,

low performance may be synonymous to failure. However, the “approach” focus

drives the person to strive and “approach” success in an achievement situation. This

is why in such a strong association between performance-approach goals there is

need for achievement (Elliot, 1999, 2005; Elliot & Church, 1997; Elliot et al., 2011)

and actual performance (Harackiewicz et al., 2002). On the contrary, for individuals

who adopt performance-avoidance goals the tension associated with failure is far

greater compared to those who target at approaching success. That is, the tension

from the agony to avoid failure is so strong that cognitive functioning is impaired

(Dweck & Leggett, 1988). Regardless of type of task (cognitive or physical) the

resources associated with effective regulation are gradually withdrawn in these

cases and overtaken by an emotional over-response, which is usually immense and

difficult to regulate. Covington (1992) has nicely described performance-avoidance

individuals as persons who do not have a skill, performance, involvement, or

motivation deficit but rather experience an amazing overflow of negative emotions.

They further added that “the tension that persists during test taking itself appears to
cause a massive failure to recall what was originally learned.” Thus, performance-

avoidance goals have been largely held responsible for the maladaptiveness of
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performance goals, when these goals included both approach and avoidance terms

(Dweck, 1986). The main objective of this study is to test the hypothesis that

emotional dysregulation could be explained by performance-avoidance goals, how-

ever, with the presence and the synergetic effect of performance-approach goals.

Now how all these could be related to chaos and catastrophe theories?

Given that the two forms of performance goals represent two opposite modes of

motivation onemay seek a proper theory andmodelingmethod to empirically explain

the data. If one attempts to predict the operation of these two opponent processes

using a linear additive equation model, one may find difficulties to explain the

outcomes for reasons related to methodological and epistemological issues. These

complications arise from the incompatibility of linear modeling with the nature of the

processes being investigated (Stamovlasis, 2010). An intriguing idea, butworkable as

well, is to visualize the interaction of approach and avoidancemotives as force field
dynamics (Fig. 17.1). This scheme assumes the concomitant operation of opponent

processes and it is quite realistic since the synergy of two “complementary opposites”

is ubiquitous in nature and human experience (Kelso & Engstrøm, 2006).

In the social and behavioral science literature, the force field dynamics has been

an effective modeling approach to explain social behavior (Tesser, 1980; van der

Maas & Hopkins, 1998; Van der Maas, Molenaar & van der Pligt, 2003), cognitive

phenomena (Stamovlasis, 2006, 2011; Stamovlasis & Tsaparlis, 2012), overload

and fatigue (Guastello, Boeh, Schumaker, & Schimmels, 2012; Guastello et al.,

2013), to mention a few.

Force field dynamics cannot be described merely as a linear sum because the

interplay of opponent processes, acting upon the self-regulation mechanism, can

result in surprises and unexpected outcomes in emotional states or arousal. A

suitable modeling methodology is offered by catastrophe theory and particularly

by implementing the cusp model (Guastello, 2002; Thom, 1975). The cusp model

posits that the change in behavior can be described by two control variables, the

asymmetry and bifurcation associated within the mathematical Eq. 17.1,

δf ðyÞ
δy

¼ y3 � by � α ð17:1Þ

in which a response variable y, e.g., arousal, is predicted by the bifurcation

variable b and the asymmetry variable a. The change in behavior y is depicted on

The interplay between the two performance goal orientations

Approach
motive

Avoidance
motive

PERFO PERFA

Fig. 17.1 Conceptualization of the approach—avoidance dynamics of achievement goals
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a three-dimensional surface (Fig. 17.2). When the bifurcation variable has low

values, change in behavior will be smooth and predictable being linearly correlated

with the asymmetry; when the bifurcation variable takes on high values the

behavior is predicted to become discontinuous (Arnol’d, 1992). In this work the

approach and avoidance motives are considered as acting or contributing to the

control variables. Specifically, this study attempted to elucidate the role of perfor-
mance-avoidance goals, which in theory fit the role of a bifurcation factor.

The applicability of catastrophe theory in educational psychology and specifi-

cally in the area of motivation and goal orientations is also demonstrated by

Guastello (1987, 2002); Sideridis and Stamovlasis (2014); Sideridis, Stamovlasis,

and Antoniou (2015); and Sideridis, Antoniou, Stamovlasis, and Morgan (2013). It

is worth mentioning here that the perspectives for a nonlinear motivation theory are

also reflected to the empirical endeavors that include time-series analyses of

motivational flows demonstrating scale-free and chaotic properties (Guastello,

Johnson, & Rieke, 1999; Navarro & Arrieta, 2010; Navarro, Arrieta, & Balén,

2007; Navarro, Curioso, Gomes, Arrieta, & Cortés, 2013).

Importance of the Present Study and the Related Hypotheses

In the present endeavor, as in many studies where the nonlinear methodology is

fostered, the central aim is the theory development and the elucidation of findings

that appear to provide limited or controversial evidences regarding roles and/or

Fig. 17.2 A three-dimensional representation of the cusp catastrophe response surface describing

the relationship between achievement goals (performance approach and performance avoidance)

and arousal (heart rate per minute)
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relations among variables. Thus, it is important here to employ catastrophe theory in

order to unravel the affective basis that differentiates performance-approach from

performance-avoidance goals and mastery goals for the following reasons: (a) the

relationship between goal orientations and affect has been largely understudied with

limited exceptions (e.g., Pekrun et al., 2006); (b) goal orientation theory considers

affect as a by-product of the goal-performance relationship but the authors and

recent evidence suggest that this speculation does not hold (e.g., Grant & Dweck,

2003; Pekrun et al., 2006); (c) the relationship between the approach forms of

mastery and performance goals needs to be further elucidated (i.e., if they are really

different); (d) the presence of nonlinear relationships between goals and affect needs

to be further tested, particularly given the fact that linear models have not been

particularly explanatory (Sideridis, 2003); and (e) a theoretical account of the

relationship between affect and goal orientations can be further formed using the

premises of catastrophe theory and nonlinear dynamics—if supported by the data

(Stamovlasis & Sideridis, 2014). This exploration further helps refine our concep-

tion of the form and function of goal orientations (see Grant & Dweck, 2003) and

eventually intervene on their deleterious effects (if there are such effects).

Ergo, the purpose of this study was to resolve an empirical but of great theoret-

ical importance issue, concerning the relationship between goal orientation forms

and a potential dysregulation process under achievement situations. It was expected

that goal orientations would be responsible for individual differences in emotional

regulation and would be accountable for those differences as a function of their foci

(i.e., approach avoidance, mastery, or performance). The following two hypotheses

were posited in this research: (a) mastery-approach goals and performance-

approach goals are linked to self-regulation control, but together do not explain

emotional dysregulation phenomena measured by arousal; (b) performance goals,

approach, and avoidance synergetically explain emotional dysregulation, via the

cusp catastrophe with positive paths linking performance-avoidance goals to the

catastrophic event.

Method

Participants, Procedures, and Measures

The participants (N¼ 70, 9 males and 61 females) were first-year college students

from a public university majoring in psychology, and they were selected because

they were offering in-class presentation as part of a course requirement. Students’
participation was voluntary. They were informed that the purpose of the study was

to examine how motives relate to performance and were asked to wear a heart rate-

monitoring device. Students were assured of the confidentiality of their participa-

tion and were informed that they could withdraw from the study at any time.
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A few students who did not feel comfortable in wearing the device were excluded

from further consideration. Furthermore, three participants were excluded because

the monitoring device failed to provide valid estimates. The participants wore the

heart rate-monitoring device approximately 15 min prior to the presentation until

after the end of it. Prior to wearing the device, the students had to complete

measures of goal orientation, modified to be specific for the task at hand (i.e.,

in-class presentation). Limitations of the present investigation might originate from

peculiarities of the sample chosen, which comprised predominantly female univer-

sity students.

Goal Orientations

Students’ goal orientations were assessed using a modified version of the Elliot and

McGregor’s (2001) 2� 2 scales, without the mastery-avoidance construct. The

major modification was the attempt to make the items context specific. Sample

items were the following: (a) Do you enjoy to offer presentations because it is an

important learning experience (mastery approach)? (b) How important is it to you to

do better than your classmates in that presentation (performance-approach goals)?

(c) Is it important to you to avoid performing worse than the other students in that

presentation (performance-avoidance goals)? Cronbach’s alpha coefficients were

.88 for mastery approach, .79 for performance approach, and .82 for performance

avoidance, which were acceptable.

Arousal

Participant’ heart rate per minute (HRPM) was assessed using a commercial heart

rate-monitoring device (Polar 610i). There was ample evidence regarding the

reliability and validity of the device for the assessment of the cardiac response

(Durant et al., 1993; Godsen, Carroll, & Stone, 1991; Treiber, Musante, Hartdagan,

Davis, Levy, & Strong, 1989;Wajciechowski, Gayle, Andrews, & Dintiman, 1991).

The device stored the data in ASCII format. Data were collected using 10-s

intervals; thus, there were 6 data points per minute. An example of the patterns of

HRPM for a participating student is shown in Fig. 17.3.

Data Analysis and Results

Initially, an auxiliary linear analysis via multilevel random coefficient modeling

(MRCM) was performed in order to elucidate some indicative differences between

the various goal orientations (Bryk & Raudenbush, 1992). After running the

model without any predictor variable (unconditional), the variabilities between

and within persons were estimated at 65.5 % and 34.5 %, respectively
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(Raudenbush & Bryk, 2002), while it was established that there were ample levels

of variability due to condition (baseline versus presentation). Given that this slope

would subsequently comprise a dependent variable that would be modeled as a

function of goal orientations, it was imperative that variability due to condition

was present (Nezlek, 2001). These findings further substantiate the fact that goal

orientation differences have a strong affective basis. Moreover, it was found that

the increase in arousal was significantly more salient for individuals adopting

performance-avoidance goals compared to those who adopted either performance-

approach or mastery-approach goals, while no difference was observed between

mastery-approach and performance-approach goals at any comparison suggesting

equivalence in functioning with regard to affect (see Appendix). The above

provided an indication that performance-avoidance goals hold a protagonist role.

The expectation, however, to obtain an explanatory conceptual model involving

achievement goals failed by means of linear methods. The next step was the

application of a nonlinear framework, which encompasses the analysis of HRPM

and the application of the cusp catastrophe.

For analyzing the time series HRPM data in a nonlinear fashion, the methodo-

logical approach presented in Stamovlasis and Sideridis (2014) was adopted. In this

method, which is different from the typical analysis of a single case presented by

Koopmans (this volume, 2015), the time series was partitioned in 12 epochs and

then the cusp catastrophe model with difference equations and polynomial regres-

sion techniques was implemented using cross-sectional data. The dependent vari-

able, heart rate per minute, was defined as the difference in HRPM between two
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Fig. 17.3 Data on heart rate per minute (HRPM) for a participant of the study. The three phases of

HRPM are displayed in the dotted lines
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time points z1 and z2, that is, the difference between two epochs corresponding to

periods before (baseline) and during or at the end of the presentation. Heuristically

the epochs 4 and 9 were selected although alternative points provided almost

equivalent estimates (see Stamovlasis & Sideridis, 2014) for details.

The modeling equation (Guastello, 2011) for the cusp model is

Δz ¼ z2 � z1 ¼ b1 þ b2z1
3 þ b3 PERFAð Þz1 þ b4 PERFO� PERFA½ � ð17:2Þ

with PERFO¼ performance approach and PERFA¼ performance avoidance.

Based on the above model, as performance-avoidance levels increase, the response

variable, HRPM, bifurcates into two behavioral modes, which are two behavioral

attractors representing high and low levels of arousal, respectively. Evidence in

favor of the cusp model was found pointed to the explanation of significant amounts

of variance in the dependent variable over the competing linear models. Similar

cusp models involving mastery goals were not supported, suggesting that mastery

goals may not be directly involved in the (dys)regulation process.

The cusp analysis results are summarized in Table 17.1. Findings suggested

excellent model fit as the total amount of variance explained by the cusp model was

equal to 59 %. The cusp model was overall statistically significant [adjusted

R2¼ 0.59 F(3, 66)¼ 33.7, p< 0.0001] having the cubic term [t(66)¼�2.52,

p< 0.05], the bifurcation, PERFA [t(64)¼�3.80, p< 0.001], and the asymmetry

parameter (PERFO-PERFA) [t(66)¼�2.67, p< 0.01] significantly different from

zero. Interestingly, the signs of the coefficients b3 and b4 were negative suggesting

that when high scores in performance avoidance (the bifurcation variable) were

coupled with high values in the asymmetry factor (i.e., the difference between

performance-approach and performance-avoidance goals) with the latter dominat-

ing that relationship (i.e., performance approach< performance avoidance), then

HRPM pulses were high. The opposite was true when high performance-avoidance

scores were coupled with a domination of performance-approach goals in the

asymmetry factor (i.e., when performance approach> performance avoidance).

These findings suggest that the relationship between the asymmetry and heart rate

per minute is linear up to a point when performance-avoidance scores increased

greatly and enters a stage of uncertainty; there sudden jumps between attractors of

low and high arousal occur, while the behavior resembles as being in and out of

control phase. The linear competitor models explaining less than 10% of the

Table 17.1 Cusp model for students’ arousal levels (heart rates per minute): multiple regression

slopes, standard errors, t-tests, and model fit

Model Adj R2 b S.E. t Model F

Cusp 0.58 33.7****

z1
3 �0.003 0.010 �2.52*

z1x PERFA �0.194 0.051 �3.80***

(PERFO-PERFA) �0.338 0.126 �2.67**

* p< 0.05, ** p< 0.01, *** p< 0.001, **** p< 0.0001
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variance were found inferior to the proposed cusp, the superiority of which is not

based merely on its statistical significance, but mainly on its theoretical interpreta-

tion and explanatory value (see Sect. “Discussion”).

Discussion

This study provided the empirical evidences for the relationship between goal

orientations and arousal, which adds to establishing connections between psycho-

logical constructs and emotional regulation (or dysregulation) under achievement

circumstances. The finding is supportive of the basic premises of achievement goal

theory with regard to the role of the goals on affect and extends its boundaries to the

nonlinear regime by providing better explanatory models.

A finding, however in linear terms, suggests that performance-approach individ-

uals may have elevated levels of anxiety prior to a stressful event, compared to

mastery-approach individuals but not during the presentation condition. That is, the

two approach forms of goals are not differentiated as earlier works on their concep-

tualization and function suggest (Midgley, Kaplan, & Middleton, 2001). Earlier

differences between mastery- and performance-approach goals had been observed

with regard to achievement (Harackiewicz et al., 2002), and anxiety (Elliot &

McGregor, 1999). However, to our knowledge the present work is the only one

that relates goal orientations with the emotional response as measured by heart rate

per minute (Sideridis, Antoniou, & Simos, 2013). By taking into account the

contribution of performance-approach/avoidance goals to the cusp structure, earlier

conceptualizations of approach goal orientations (mastery and performance) with

regard to emotional regulation (Dweck & Leggett, 1988) might be reconsidered.

The emotional effect was evident by the significant change in the physiological

response between the baseline and presentation condition (Fig. 17.3). Linear coef-

ficients indicated that this increase was significantly more salient for individuals

adopting performance-avoidance goals compared to those who adopted either

performance-approach or mastery-approach goals. The finding is consistent with

the relevant literature, where the performance-avoidance goals have been charac-

terized as maladaptive in that the emotional overflow experienced by individuals

significantly disturbs effective self-regulation (Darnon, Butera, Mugny,

Quiamzade, & Hulleman, 2009). However, the nonlinear analysis suggested that

the phenomenon under investigation does not only consist of emotional overflow,

but the arousal system enters a chaotic phase unpredictably, which might further

grow towards dysregulation and failure.

The “behavior” of performance-avoidance goals was consistent and in accord with

expectations of revised goal theory (Harackiewicz et al., 2002). Individuals adopting

performance-avoidance goals started with elevated anxiety at baseline and had sig-

nificantly elevated physiological response during the presentation compared to both

baseline levels (at the within-person level) but also the other goal orientations (at the

between-person level). Thus, performance-avoidance goals were somehow
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responsible for the negative affective response during this stressful event. This finding

agreeswith earlier works forwhich the negative links of performance-avoidance goals

with anxiety and stress were established (Elliot & McGregor, 1999). These links

howeverwere not elucidated or explainedwithin a comprehensive explanatorymodel.

Aiming on an explicated answer to the above research question, this study

examined the achievement goals within a nonlinear perspective and presented a

cusp catastrophe model for changes in arousal levels under an oral presentation

condition. The findings showed that the difference of performance-approach minus

performance-avoidance goals contributed to the asymmetry factor, which has a

linear relationship with arousal, while performance-avoidance goals acted as the

bifurcation factor. The interpretation of the model suggests that there is a cutoff

value in performance-avoidance goals beyond which the linear relationship with the

arousal terminates and the system enters a nonlinear phase. This is the area, where

bimodality is observed and the outcome is ambiguous since the response could

move between two different levels of arousal, low and high, respectively. These

moves are discontinuities in the mathematical sense as behavior moves between the

two attractors (upper and lower).

The findings agree with the recognition of a synergetic effect for both psycho-

logical constructs. When individuals are motivated by performance goals they have

the concurrent operation of an approach and an avoidance motive. The difference

between them can play an important role and this is reflected on the magnitude of

the asymmetry factor. A cusp structure discloses a hysteresis effect existing in the

response variable; that is, participants with the same values on performance goals

could be found in the upper or the lower mode of the response surface. At the

individual level, given the sensitivity of the parameters and the dynamics of the

system, an extended interpretation suggests that small differences in the valence of

motivation or random fluctuation may cause arousal to oscillate between the two

attractors, causing systems’ dysregulation through emotional instability (see

Fig. 17.4). This portrays the maladaptive function of the performance-avoidance

motive demonstrated within the nonlinear dynamics and complexity framework.

We maintain that the application of the nonlinear model added significant

findings to the literature. First, the amount of variance explained was surprisingly

large for this line of research as goal orientations usually have accounted for less

than 10 % of the variance in academic and nonacademic variables (Hulleman,

Schrager, Bodmann, & Harackiewicz, 2010). Explaining almost 60 % of the total

variability in heart rate is certainly of paramount importance. Second, the cusp

model showed that both linear relations and sudden shifts in emotional states are

expected and elucidated the role of performance-avoidance goals. This finding has

implications for the theory of goal orientations and the appropriate analytical means

to model their relationship, particularly with regard to emotional regulation. Cer-

tainly, the nonlinear dynamics perspective provided the means to verify theoretical

assumptions with regard to the synergistic role of performance-approach and

performance-avoidance goals (Covington, 1984).

It is important to emphasize also that the cusp model implies an underlying

nonlinear dynamical process. The observed bifurcation in fact showed a different
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ontology that characterizes complex adaptive systems and thus the epistemological

shift is the additional merit of this investigation (Nicolis & Nicolis, 2007).

The nonlinear dynamics has provided a comprehensive explanatory model for the

function of performance-avoidance goals in the self-regulation process. The above

provided a strong link between achievement goal theory and self-organization
theory, introducing the former into the meta-theoretical framework of nonlinear

and complexity sciences (Stamovlasis & Sideridis, 2014).

Future research is encouraged to examine the presence of interactions between

goal orientations and other motivational/affective variables in order to unravel the

complex relationship between goals and self-regulation. Also the role of nonlinear

dynamics and complexity theory in this regulation could be further investigated

given that chaotic events interfere with competence (White, 1959) and may be

linked to anxiety and depression (Skar, 2004). It will be stimulating to further reveal

self-organization evidence via catastrophe modeling of motivation goals in con-

junction with cognitive variables, contributing therefore to unified theoretical

frames.

Appendix

Specification and results from multilevel random coefficient model (MRCM)

predict arousal from goal orientations. This model tests also the alternative hypoth-

eses (comparing to cusp model) that goal orientations have significantly different

intercepts and slopes in their HRPM compared to grand mean estimates

(Table 17.2):
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Fig. 17.4 Data for a participating student from the start of a heart rate-monitoring (HRM) device

(reflecting the waiting period) until the onset of an in-class presentation. The vertical line indicates
the onset of a chaotic stage in which behavior/arousal can oscillate between two attractors, due to

sensitivity of the parameters and the dynamics of the system. This chaotic epoch of emotional

instability may result in systems’ dysregulation and/or self-regulation failure
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Yti ¼ π0i þ π1i Phaseð Þ þ þeti Level 1ð Þ
π0i ¼ β00 þ β01 Mastery � approachið Þ þ β02 Performance� approachið Þ

þ β03 Performance � avoidanceið Þ þ r0 Level 2ð Þ
π1i ¼ β10 þ β11 Mastery � approachið Þ þ β12 Performance� approachið Þ

þ β13 Performance � avoidanceið Þ þ r1 Level 2ð Þ
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Glossary

1/fβ Noise See Pink Noise.

Anti-persistence The presence of long-range negative autocorrelations in a time

series.

ARFIMA Autoregressive fractionally integrated moving average, a statistical

approach to the analysis of time series data that estimates correlations over the

long term of the trajectory.

Attractor Represents the stable state of a system operating in a dynamical equi-

librium. A frequently recurring and stable state a system adopts or an area of

state space that a system tends to inhabit.

Attractor Landscape A state space with several attractors a system could occupy.

Autocorrelation The correlation between repeated observations within subjects

over time.

Autopoiesis A defining characteristic of living systems. Literally it means self-

making, self-creating, or self-generating, and it characterizes the system in terms

of processes rather than structures.

Average Speed A network-level measure of all the shortest paths between agents

in a network; indicates how quickly information could flow in the network.

Betweenness Centrality Agents who stand between two or more agents or groups

such that they can influence communication flows between those groups.

Bifurcation Point The two divergent paths in the cusp surface are joined at the

bifurcation point at which the behavior is ambiguous, and beyond this point the

system enters the bifurcation set, the area where discontinuous changes take place.

Bifurcation Set The area on the control plane where discontinuous changes take

place.

Bifurcation Variable The control variable, beyond a threshold value of which a

bifurcation effect is taking place.

Bifurcation The phenomenon where the trajectory of a system’s behavior evolving
in time splits into two divergent paths or branches.

Bimodality Refers to the probability distribution of the dependent variable, where

two distinctly different modes exist or two simultaneously present states.
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Brownian Motion A time series in which individual observations in close prox-

imity are highly correlated, while the trajectory shows a high degree of volatility

overall.

Causal Dynamics This dynamics is about the complex causal dynamics within a

unity of a whole of a reciprocal causal relation. This dynamics describes the

potential self-amplifying loop effect, which is thriving on the full generative

power of interaction.

Causal Complexity Links complexity with the complex causal dynamics and the

corresponding potential nonlinear effects, taking place within loop-like net-

works of ever-evolving entities in many dimensions.

Clogs-to-Clogs Cycle The clog, a shoe with a thick wooden sole, was worn by

manual workers in the north of England. The implication is that the effort

required to raise wealth from poverty is often not continued to the third gener-

ation, and that the success is therefore not sustained. A similar idea is found in

other languages: in Italian “from stables to stars to stables”; in Japanese “the

third generation ruins the house”; in Chinese “wealth does not survive three

generations,” and in Spanish “he who doesn’t have it, makes it and he who has it,

waste it.”

Collective Variable An empirical variable that provides a nonexhaustive descrip-

tion of the behavior of the system in a particular context.

Collinearity A condition in a network in which vectors are equal to, or multiples

of, other vectors.

Complementarity A concept in interpersonal theory that defines the interplay

between people in interaction; how the interpersonal behaviors of both partici-

pants fit together, mutually adjust to each other, and how this dynamically

changes during interactions.

Complex Dynamic Systems Theory The theory that describes how open or closed

systems develop through complex processes in which the behavior of the system

in its entirety cannot be reduced to the behavior of individual elements of that

system.

Complexify An inquiry process that embraces ambiguity and complexity, explores

patterned emergence, re-organization, and complex dynamics, and engages in

the “why’s” of thinking.
Complexity Research The term refers to the approaches used to investigate

complex living, social systems in ways that try to avoid the lenses of mechanism,

reductionism, and positivism in social science.

Complexity Systems’ behavior in terms of the following properties: (1) simple

components relative to the whole system, (2) feedbacks, and (3) recursive

interactions among components. All these characteristics mean in general that

the behavior of the system in its entirety cannot be reduced to that of its

constituent members.

Constraints The various physical and mathematical limitations or restrictions

operating on whatever emerges during emergence. Examples include the actual

containing vessels holding reagents together in cases of chemical emergence, or
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the mathematical constraints of circle packing dynamics underlying the hexag-

onal shape of Benard convection cells.

Content (of Interactions) The content of interactions indicates what (dyadic)

states occur most frequently in the interactions.

Context It refers to spatial, temporal, or formal (conceptual–informational) sets or

webs of interrelationships.

Coupled Oscillators Systems with periodic orbits that are linked.

Degeneracy A situation where some simulated random networks in a Monte Carlo

process are almost void of ties or almost full of ties, thereby producing an

average that is not an appropriate estimate to use a baseline comparison with

an observed network.

Delay Convention Refers to the way the dynamical system moves from one stable

area to another. In this convention, it is assumed that the system remains in the

old equilibrium zone until the last possible point before it passes to the new

equilibrium area. The state of the system is determined by the local minimum of

potentials.

Deterministic A signal that is causative and nonrandom.

Differencing Parameter (d ) The parameter d estimates the degree of long-term

dependency in a time series that is assumed to be stationary.

Divergence Deviation from a linear relationship between the response predictors

demonstrated by two diverging response gradients-deviating paths toward the

upper or the lower part of the surface.

Dynamical Minimalism A principle stating that complex dynamic behaviors can

be produced by simple rules and/or a few interacting variables.

Dynamical System A system that changes over time. At any given time, the

system is in a particular state, and follows an evolution rule that describes how

it changes states over time. Generally, a continuous dynamical system will be

described by differential equations.

Edge of Chaos See self-organized criticality.

Edges Ties that link agents in a network, represented as a line or arrow between

agents.

Emergence The coming into being of radically novel structure, patterns, organi-

zation, dynamics, and even laws of behavior in complex nonlinear systems when

the conditions are right.

Emergent Behavior Aggregate-level attributes of a system that arise from the

interactions of its components that cannot be explained by the individual behav-

ior or the sum of these components.

Emergent Phenomena The outcomes of processes of emergence, these outcomes

being characterized as unpredictable, nondeductible, and uncomputable from

and irreducible to the substrates already existing in the system along.

Endogenous Processes The behavior of a system as impacted by its own past

behavior.

Entropy A concept originating from classical thermodynamics that expresses a

measure of disorder in a system (see also Information Entropy).
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Epistemology (Batesonian), Epistemological Errors Traditionally, epistemol-

ogy refers to the study of how knowledge is constructed as a formal function of

philosophy. However, Bateson used “epistemology” to refer to the way individ-

uals (and social groups) constructed knowledge and meaning as personal epis-

temologies. “Epistemological errors” occurred when personal interpretations

conflicted with reality, such as errors that occur when confusing the map for

the territory.

Ergodicity The equivalence of data structures underlying observed in between-

subjects and within-subject distributions.

Exogenous Processes The behavior of a system as impacted by influences external

to the system.

Externality An unintended effect (positive or negative) that an activity has on

others’ well-being for which there is no (positive or negative) compensation for

the person causing that effect.

Far from Equilibrium A state of ongoing turbulence in a system and lack of

proximity at most temporal instances to the attractor(s) in the system’s behavior.
Feedbacks (Positive/Negative) A feedback is a closed chain of causal interactions

between interrelated variables. In a positive feedback, a change in two or more

linked variables produces a response in the same direction: more (less) of one

variable leads to more (less) of the other variables; while in the negative

feedback the response is in the opposite direction.

Fourier Transform The conversion of a time series to a periodogram, which

re-expresses the trajectory of observed measurements over time in terms of the

variability accounted for by periodic cycles at varying lag values.

Fractal Dimension The dimension of phase space a system occupies that can be a

non-whole number. It is a measure of a system’s complexity and it can be

measured by the slope of the iPL distribution graph. If S is the magnitude of

the recurrent pattern and f is the frequency at which each particular pattern

occurs, the slope of the 1/f curve can be used as an estimate of fractal dimension.

Fractal Distribution See inverse power law distribution.

Fractional Differencing A method of estimating long-term dependencies in a

stationary time series.

Generative Change Shows change as a complex, causal, generative, potential

nonlinear process. A process that takes place within the structure of a dynamic

unity of the whole of a reciprocal causal relation.

Generative Complexity Generative complexity links complexity with causal

complexity. Shows complexity as encompassing causal, generative processes

of change that generate complex emergent effects over time, potential nonlinear,

thriving on the full generative power of interaction.

Generativity Generativity is a complex, general, dynamic capability of an entity,

like a learner, linked to a complex state of being and doing: that is, of knowing

how to go on. This may be an individual or a collective state of being and doing,

to be linked to an individual and collective capability.
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Gini Coefficient A measurement of the income distribution of a country’s residents
is based on the Lorenz curve (see definition). This number ranges between 0 and

1 with 0 representing perfect equality and 1 representing perfect inequality.

Grid Measures Measures that can be derived from State Space Grid analysis to

study the content and structure of interactions.

Homophily Similarity between or among individuals. Homophilous relationships

are more likely to form bonds than are heterophilous relationships (network

analysis).

Hub Centrality The degree to which an agent has many out-degree links to agents

who have many in-degree links, or the degree to which agents communicate to

people who are in the know (e.g., a school principal); standardize to a 0-1 scale.

Hurst Exponent (H ) An estimator of long-range autocorrelations, or dependen-

cies, in time series data.

Hysteresis Is the effect, where cases with the same values of the two controls,

asymmetry and bifurcation, can be found in both distributional modes, that is,

they can exhibit two types of behavior corresponding to both behavioral

attractors. For a dynamical system, hysteresis effect denotes memory for the

path through the phase space of the system. Also hysteresis could refer to the

time lag between input and output in a process.

Inaccessibility The region on the response surface existing in between the two

behavioral modes. This area is inaccessible in the sense that the corresponding

behavior is unlikely. The points within this area are pulled toward to either attractor.

Indeterministic A system that is causative, but its complexity means that its

behavior cannot be completely predicted.

Information Entropy (Shannon Entropy, HS) A variable of a dynamical system,

associated with the information needed to describe the system and thus it is

related to system’s complexity.

Interaction Trajectory The chronological representation of a dyadic interaction

in a State Space Grid.

Interpersonal Theory Theory that describes communication processes between

people in terms of a two-dimensional model called the Interpersonal Circle.

Inverse Power Law (iPL) A statistical distribution, which mathematically is

expressed by the equation S fð Þ / f�β, where S is the size of an event

(or object) and f is the frequency of the event (or object).

Lag Distance between two observations in a time series, expressed in terms of the

number of time intervals.

Lineality It refers to sequential sets of relations or processes [Opposite: Recursivity].

Linear Causality Cause and effect as a relationship in which cause precedes

effect, and changes in outcomes are proportional to changes in input conditions.

Linearity Mathematical relations that can be plotted on a graph as a straight line.

Log Frequency The logarithm of the relative frequency.

Log Power The logarithm of the amplitude of the cycles in a time series.

Lorenz Curve Plots the proportion of total income (y axis) that is cumulatively

earned by the bottom x% of the population. When using quintiles, each quintile

has 20 % of the population, sorted in ascending order by the relevant income

variable. The line at 45� represents perfect equality of incomes.
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Lyapunov Exponent The rate of divergence of nearby trajectories in state space; it

is a measure of the chaoticity of a dynamical process resembling random

variability.

Maxwell Convention Refers to the way the dynamical system moves from one

stable area to another. In this convention, it is assumed that the system imme-

diately jumps to a new equilibrium area, while the state of the system is

determined by the global minimum of the potential function.

Metapatterns A term coined by Gregory Bateson and further elaborated upon by

Tyler Volk. Refers to patterns of patterns or patterns that span multiple contexts

while maintaining a general functional quality and/or meaning.

Meta-stability See Self-organized criticality.

Monte Carlo Procedure A procedure for predicting the likely range of trajectories

of a given activity by projecting that trajectory forward in time from different

initial conditions. Initial conditions are typically selected based on a statistical

probability.

Network Cliques Groups of agents in a network who communicate among them-

selves more than they communicate with agents outside the group.

Network Density The number of actual links in a network divided by the total

possible links, standardized 0-1 with 1 being highest possible density.

Nondeterministic A system that has a random component (measurement error) in

its output.

Nonlinear Dynamical Systems That branch of mathematics having to do with

equations/functions that can represent evolutionary change in a system. It

includes such constructs as phase space, attractors, bifurcation, technical

chaos, and so forth.

Nonlinear Regression Analysis A statistical approach for estimating the param-

eters of a nonlinear function.

Nonlinearity It refers to mathematical relations that do not appear as a straight line

when plotted on a graph.

Orbital Decomposition (OD) A series of computations to identify the

systematicity of recurring sequences in a string of data.

Path Dependence Refers to the idea that current and future states, actions, or

decisions depend on the sequence of states, actions, or decisions that

preceded them.

Patterned Recurrence A sequence that repeats itself.

Periodogram Spectral density plot.

Permutation, Dekker A recent algorithm for performing permutations that is

more robust against skewness, network collinearity, and network autocorrelation

that are other forms of permutation.

Permutation, Y A traditional algorithm for performing permutations in a matrix.

Persistence The presence of long-range positive autocorrelations in a time series.

Philosophical Frameworks Cohesive frames of thinking based on the work of a

particular philosopher, set of philosophers, or school or schools of philosophy.

Such frameworks provide a solid foundation for cohesive and consistent work

within a particular paradigm.
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Pink Noise A pattern of correlated errors over the long range of a time series that

contracts slowly toward statistical nonsignificance as the lag size increases.

Power Law A linear relationship between the log power and the log frequency in a

power spectrum.

Power Spectral Density The expression of a time series in terms of cycles of

dependency between observations at given lag sizes and the magnitude of the

variability explained by those cycles, both log-transformed.

Power Spectrum The log-amplitude of the cycles in a time series as a function of

the log-relative frequency (see also Inverse Power Law).

Practices and Discourses The practices and discourses of a paradigm are those

ways of doing specific kinds of functions and the ways of talking about specific

topics within that paradigm.

Proximal Recurrence An immediately repeated sequence.

Quadratic Assignment Procedure A statistical method for regressing one matrix

onto another.

Radical Novelty A characteristic of emergent phenomena indicating such interre-

lated properties as unpredictability, nondeducibility, irreducibility, and

uncomputability.

Randomness The lack of predictability of a signal in a nondeterministic time

series (see also White Noise).

Reciprocity A two-way (shared) relationship between or among individuals.

Recurrence The exact repetition of particular observed values in a trajectory.

Recursive Causality An iterative relationship between cause and effect.

Recursivity It refers to processes that cycle back through sets of relations that are

modified in some way after each cycle [Opposite: Lineality].

Regularity The predictability of a signal or time series.

Relationship The meaning of “relationship” is based on Bateson’s idea that

everything exists in relationship. Protons exist in relationship to electrons.

Hemoglobin exists in relationship to oxygen, blood, and cells. Relationships

are functional and dynamic and provide the binary tensions that drive more

complex sets of relationships and functions (Kelso & Engstr€om, 2006).

Relative Frequency An expression of the periodicity of the dependencies in a time

series in terms of the number of cycles in a series, divided by the total number of

observations in that series.

Relative Mobility Measures a person’s rank on the income, earnings, or wealth

ladder compared to her parents’ rank at the same age.

Random Graph A matrix created by random, chance combinations of dyadic

relationships. Random graphs do not have patterns of relationship that can be

attributed to any systematic social force such as friendships or relationships

between leaders and followers; thus they are useful for comparing against actual

observed networks to determine if there are any patterns in the observed network

that can be attributed to social forces.

Research Scaffold Promote a deeper, more connected research agenda that is

contextually relevant and publicly meaningful.
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Scale Invariance The nested structure of replicated patterns in a self-similar

process.

Self-generating A self-replicating, recursive process of regeneration or renewal in

living systems. For example, cells in the organs of our body renew themselves

continuously through the process of self-generation.

Self-organization Refers to the systems that evolve in time, operating far-from-

equilibrium, and taking on ordered structures without requiring any outside

intervention. It is the “order for free” notion.

Self-organized Criticality Critical state in a system resulting from the accumula-

tion of certain input conditions, such that further exposure to those conditions

leads to higher-level transformation.

Self-organizing A process whereby a pattern spontaneously emerges from the

interaction of lower-level constituent parts in the behavior of a system.

Self-reflective The capacity of learning systems to learn from their previous

responses, behaviors, or thinking when navigating their world.

Self-reflexive Constituted by self-reflective responses, this is the characteristic of

living systems to be self-reflective.

Self-regulated Learning The process of thoughtful engagement using cognitive,

metacognitive, and affective control strategies in service of a learning goal.

Self-regulating Self-maintaining, a property of living systems to maintain identity

over time.

Self-similarity Across Scales A characteristic of fractals that patterns are repeated

across scales; the parts of a fractal reflect the same structure of the whole.

Examples in nature include cauliflower, broccoli, and trees.

Self-similarity The replication of patterns at varying scales, i.e., patterns within

patterns. The replication is not strictly deterministic, but rather a matter of

general impression.

Self-transcending Constructions A descriptive and neutral term for emergence

indicating how the radically novel outcomes, i.e., emergent phenomena, are

constructed out of antecedent substrate components. Processes of emergence

need to be potent enough that substrates are transformed effectuating radically

novel emergent integrations.

Shannon Entropy (HS) See Information entropy.

Simmelian Ties The degree to which agents belong to 3-way reciprocal relation-

ships, standardize to a 0-1 scale.

Spectral Density Power spectral density (see above) without the log

transformations.

Stability Continued proximity of a set of repeated observations to a fixed point

attractor.

Star Configurations Patterns of relationships in which several agents are

connected by another actor.

State Space Grid (SSG) A graphic representation of a state space. An SSG

consists of at least two orthogonal dimensions that describe all the possible

states a system can adopt.
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State Space A description of all possible states a system can adopt.

State Behavior a system can adopt.

Stationarity Constancy of statistical properties (mean, variance) in an ordered

sequence of observations across the entire trajectory.

Structure (of Interactions) Structure represents the degree of variability in

interactions, in terms of stability, flexibility, and chaos.

Sudden Jumps Abrupt changes between the behavioral modes occurred even with

slight changes in the control variables.

Symbolic Dynamics An area of mathematics that examines the structure in the

sequence of nominal data.

Theoretical and Conceptual Framework (see Chapter on Bateson Philosophy)

Theoretical and conceptual frameworks are the factual knowledge, principles,

and laws that support the particular “theory” or “concept.”

Time Scales Complex Dynamic Systems Theory assumes that development takes

place on three different time scales that are all interrelated to each other. On the

micro-level time-scale development occurs in real-time from second to second.

On the meso-level time-scale development occurs in real time from hour to hour

or day to day. On the macro-level time-scale development occurs in develop-

mental time from week to week, month to month, or year to year. The exact

definition of the time scale depends on the variables that are studied.

Time Series A sequence of temporally ordered observations.

Topological Entropy (HT) A notion and mathematical concept describing the

deterministic nonrandom complexity for the time series.

Trajectory See time series.

Transitivity The tendency for the friends of friends to become one’s friends

(network analysis).

Transcontextuality Transcontextuality does not refer to just multiple or

overlapping contexts, but to thinking in ways that span and incorporate views

from multiple contexts. The idea of Bateson’s “multiple perspectives” or “dou-

ble description” is based on information from two or more contexts that are used

in forming a unified understanding.

Transdisciplinarity Transdisciplinarity is similar to transcontextuality but refers

to the more specific sense of “discipline” as a context of inquiry.

Transversality Theorem Any smooth map may be deformed by an arbitrary small

amount into a map that is transverse to a given submanifold. This theorem

facilitated the classification of singularities that permitted the identification of

seven types of “elementary” catastrophes.

Turbulence A state of high variability with an irregular appearance.

Uncomputability The most recent way of characterizing the radically novel nature

of emergent phenomena in the sense that these radical novel characteristics

cannot be predicted nor deduced nor computed from the nature of the substrates.

For example, the computational emergence found in artificial life cannot be

computed (predicted) from the dynamics of the substrate on/off cells in cellular

automata.
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Vector A single row or column in a matrix.

White Noise Uncorrelated errors/random scatter of data points without predictive

value.

Worldview “Worldview,” in this discussion, is based upon, but expanded from,

the notion of world hypotheses. Fundamentally, worldview incorporates these

world hypotheses but also extends to the sets of social, cultural, and idiosyn-

cratic belief frameworks that guide one’s interpretation of perceptions of the

world.
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