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About the Book

Along with the advent of the 5G era in telecommunications systems, new emerging
applications, services and engineering are now being announced to facilitate the
wide range of end user demands over cellular and ad hoc networks. Therefore, such
rapid advancements in mobile and wireless communications are expected to
increase the demand for higher data rates by several orders of magnitude over the
next decade. The resulting customer demand for ubiquitous network access and
wireless services is mainly responsible for increased energy consumption and,
consequently, for the growing carbon footprint of the wireless communications
industry.

Energy Management in Wireless Cellular and Ad-hoc Networks will bring
together academic and industrial researchers and experts from communication and
signal processing to present recent advances, identify technical challenges and
forecast future trends related to a wide range of topics associated with energy
efficiency in wireless cellular and ad-hoc networks. The book:

• Investigates energy management approaches for energy efficient or
energy-centric system design and architecture.

• Presents end-to-end energy management in the recent heterogeneous-type
wireless network medium.

• Considers energy management in wireless sensor and mesh networks by
exploiting energy efficient transmission techniques and protocols.

• Explores energy management in emerging applications, services and engineer-
ing to be facilitated with 5G networks such as WBANs, VANETS and cognitive
networks.

• Examines the energy management practices in emerging wireless cellular and
ad-hoc networks.
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Considering the broad scope of energy management in wireless cellular and
ad-hoc networks, this book is organized into six sections covering a range of energy
efficient systems and architectures; energy efficient transmission and techniques;
energy efficient applications and services.
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Outage Detection Framework for Energy
Efficient Communication Network

Ahmed Zoha, Oluwakayode Onireti, Arsalan Saeed, Ali Imran,
Muhammad Ali Imran and Adnan Abu-Dayya

Abstract In this chapter, we present a Cell Outage Detection (COD) framework
for Heterogeneous Networks (HetNets) with split control and data planes. COD is
a pre-requisite to trigger fully automated self-healing recovery actions following
cell outages or network failures not only to ensure reliable recovery of services but
also to significantly minimize wastage of energy. To cope with the idiosyncrasies of
both the data and control planes, our proposed framework incorporates control COD
and data COD mechanisms. The control COD leverage the relatively larger number
of UEs in the control cell to gather large scale Minimize Drive Testing (MDT)
reports data. These measurements are further pre-processed using multidimensional
scaling method and are employed together with state-of-the art machine learning
algorithms to detect and localize anomalous network behaviour. On the other hand,
for data cells COD, we propose a heuristic Grey-Prediction based approach, which
can work with the small number of UEs in the data cell, by exploiting the fact that the
control BS manages UE-data BS connectivity, by receiving a periodic update of the
Received Signal Reference Power (RSRP) statistic between the UEs and data BSs in
its coverage. The detection accuracy of the heuristic data COD algorithm is further
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improved by exploiting the fourier series of residual error that is inherent to grey
prediction model. We validate and demonstrate the effectiveness of our proposed
solution for detecting cell outages in both data and control planes via performing
network simulations under various operational settings.

1 Introduction

The increased demands of high throughput, coverage and end user quality of ser-
vice (QoS) requirements, driven by ever increasing mobile usage, incur additional
challenges for the network operators. Fueled by the mounting pressure to reduce
capital and operational expenditures (CAPEX & OPEX) and improve efficiency in
legacy networks, the Self-Organizing Network (SON) paradigm aims to replace the
classic manual configuration, post deployment optimization, and maintenance in
cellular networks with self-configuration, self-optimization, and self-healing func-
tionalities. A detailed review of the state-of-the-art SON functions for legacy cellular
networks can be found in [1]. The main task within self-healing functional domain
is autonomous cell outage detection and compensation. Current SON solutions gen-
erally assume that the spatio-temporal knowledge of a problem that requires SON-
based compensation is fully or at least partially available; for example, location of
coverage holes, handover ping-pong zones, or congestion spots are assumed to be
known by the SON engine [2, 3]. Traditionally, to assess and monitor mobile net-
work performance manual drive test have to be conducted. However, this approach
cannot deliver the stringent resource efficiency and low latency, and cannot be used
to construct dynamic models to predict system behavior in live-operation fashion.
This ultimately results in pronounced reduction in capacity and quality of service,
and coverage gap [4, 5]. Moreover, today the energy demand for mobile networks
is in gigawatts per hour per year [6]. The traditional radio systems are optimized for
maximum load, whereas excessive waste of energy occurs under conditions in which
either the traffic is low or the system is not providing services to the users (i.e., under
cell outages). With increase scale of networks, automatic detection and compensa-
tion of cell outage has become a necessity, and, it has been included in recent 3GPP
releases [7]. The proposed COD framework aims to autonomously detect outage
cells, i.e., cells that are not operating properly due to possible failures, e.g. external
failure such as power supply or network connectivity, or even misconfiguration [4,
5, 7, 8]. The timely cell outage detection in a heterogeneous network not only ensure
reliable services to the users, but it also significantly reduces the overall energy
wastage, since the major source of power consumption in mobile networks stems
from the radio base stations [9].

A few algorithms have already been proposed in literature, e.g. in [4, 8, 10–16]
for COD. All these works have focused on the traditional homogeneous deploy-
ments, where only macro cells are deployed. However, future cellular deployments
are expected to be heterogeneous and extremely dense. In this context, macro cells
will provide the UEs with ubiquitous experience, while dense small cell deploy-
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ments, operating in bandwidths with heterogeneous characteristics, will facilitate
high data rate transmissions to a reduced number of UEs. At the same time, conven-
tional heterogeneous deployments pose a number of challenges in terms of network
management and energy consumption, as a result of the increased number of cells. In
order to mitigate these challenges, a new HetNet architecture with split control and
data planes has been recently proposed as a candidate architecture for 5G [17–21].
In such architecture, the control and data planes are separated and are not necessar-
ily handled by the same node. Consequently, this gives the network operator more
flexibility, since the small/data cells can be activated on demand to deliver UE-
specific data only when and where needed, while the macro/control cells manage
UEs connectivity and mobility [21]. Thus, the separated plane architecture allows
for improved mobility management performance, since the RRC layers of the UEs
and other control messaging, such as paging, will be handled by the control cells. In
addition, the energy consumption is improved, since the proposed architecture also
leads to longer data cell sleep periods, due to their on demand activation. Note that
contrarily to the newly proposed HetNet architecture, the RRC layers of all UEs in
the conventional HetNet are handled by their serving cell, which could be either a
small or macro cell.

The control plane provides ubiquitous network access and is made up of macro
base station (BS)s, which we refer to as control BSs. On the other hand, data plane
supports high data rate transmission and is composed of the small BSs, which we
call data BS [3–6]. Note that contrarily to the newly proposed HetNet architecture,
the RRC layers of all UEs in the conventional HetNet are handled by their serving
cell, which could be either a small or macro cell [19–21].

To the best of our knowledge, a complete COD solution particularly for HetNet
with split control and data plane, is still missing. In this paper, we propose two distinct
COD algorithms to cope with the peculiarities of data and control cells. Since control
cells tend to have a large number of UEs, we exploit large scale collection of MDT
reports, introduced by 3GPP in [22], and we apply machine learning based anomaly
detection schemes for control COD. The reported studies in literature that addressed
the problem of detecting outages in a macro cell environment are either based on
quantitative models [10], which requires domain expert knowledge, or simply rely
on performance deviation metrics for detection [11]. Until recently, researchers have
appliedmethods from themachine learningdomain such as clustering algorithms [23]
as well as Bayesian Networks [14] to automate the detection of faulty cell behavior.
Coluccia et al. [13] analyzed the variations in the traffic profiles for 3G cellular
systems to detect real-world traffic anomalies, as well as network visibility graph
approaches using Neighbor Cell List (NCL) reports [24] have also been considered
for COD.

Compared to aforementioned approaches, our control CODadopts amodel-driven
approach that exploits MDT functionality [25] as specified by 3GPP. MDT mech-
anism allows control BS to request and configure UEs to report back the key per-
formance indicators (KPIs) from the serving and neighboring cells along with their
location information. To accurately capture the network dynamics,wefirst collectUE
reported MDT measurements and further extract a minimalistic KPI representation
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by projecting them to a low-dimensional embedding space. We then employ these
embeddedmeasurements together withmachine learning algorithm to autonomously
learn the “normal"operational profile of the network. The learned profile leveraging
the intrinsic characteristics of embedded space intelligently diagnose a outage cell
situation. This is in contrast to state-of-the-art techniques that analyze one or twoKPIs
to learn the decision threshold levels and subsequently apply them for detecting net-
work anomalies. In addition, the proposed solution further exploits the geo-location
associated with each measurement to localize the position of the faulty cell, enabling
the SON to autonomously trigger cell outage compensation actions.

Furthermore, to find the best detection model for control COD, we compare and
evaluate theperformanceof density anddomainbased anomalydetection approaches:
Local Outlier Factor based Detector (LOFD) andOne Class Support Vector Machine
based Detector (OCSVMD), respectively, while taking into consideration the acute
dynamics of the wireless environment due to channel conditions as well as load fluc-
tuations. To the best of our knowledge, no prior study examines the use of OCSVMD
and LOFD in conjunction with embedded MDT measurements for autonomous cell
outage detection.

However, the same COD scheme cannot be applied for data cells, as number of
users will not be large enough to constitute reliable training models for underlying
anomaly detection techniques. To overcome this problem, we take advantage of the
following peculiarities, about data cells, to develop a heuristic, yet reliable data COD
algorithm. The RRC layers of all UEs are handled by the control cells, as a result,
the control BS is aware of: (1) every UE-data BS association within its coverage,
(2) the state of each UE (idle or active), (3) every radio link failure between the UEs
and data BSs, (4) every handovers to other data BSs in its coverage and (5) data link
handover from the data BS to itself. Also, once the normal state of the control cells
has been established, each UE associated to the data cells can periodically report the
RSRP statistic between itself and its associated data cell to its serving control cell.
Using these observations, we propose a heuristic data COD scheme, which works
despite of small number of UEs in the data cell, by exploiting a GM for detecting
data cell outage.

Wedesign, evaluate and compareCODsolutionswith network simulations that are
setup in accordance with 3GPP LTE standard. In addition to proposing a COD frame-
work for theHetNetwith split control anddata plane,webelieve the proposed solution
provided paves a way towards developing a fully automated cell outage management
solution via integrating self-healing functionality in the proposed architecture for
the emerging (LTE) as well as future (5G) self organizing networks. The remainder
of this paper is organized as follows. In Sect. 2, we present the system architecture,
which includes description of the system model and an overview of the COD frame-
work. In Sect. 3, we elaborate the control COD solution for detecting outages in
control cells. In Sect. 4, we introduce a heuristic based data COD scheme. In Sect. 5,
we present extensive simulations to substantiate the performance of our proposed
COD framework for HetNets with separated control and data planes. Furthermore,
we also discuss the impact of energy efficiency gain of the COD framework. Finally,
Sect. 6 concludes this paper.
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2 System Architecture

2.1 System Model

We consider the new paradigm of HetNets architecture where the control plane
provides ubiquitous network access and is made up of macro\control BSs, and the
data plane supports high data rate transmission and is composed of the small\data
BSs. The control plane is responsible for handling UE connectivity, RRC connection
management as well as different radio-specific functions. In contrast, the data plane
handles UE specific data, and its functionlities are unicast and synchronization [20].
Consequently, UEs requiring high data rate transmission are connected to both the
control and data BSs, while low rate UEs are connected to just the control BS.

We consider that the control and data BSs are operated on separate frequency
carriers, so that there is no interference between the two planes. We assume that the
HetNet is composed of a set of M control BSs and F data BSs, where M = |M |
control BSs form a regular hexagonal network layout with inter-site distance D and
provides coverage over the entire network. The F = |F | data BSs are randomly
distributed. We also consider that Um and U f UEs are provided with service by the
M control BSs and F data BSs, respectively. The multi user resource assignment
to the R RBs in a plane is carried out by a FFR scheduler and each of the UEs in the
plane is assigned a CQI value.

2.2 COD Framework

TheCODframework aims to detect the network performance deterioration,whenever
a problemoccurswithin a network either in control or data plane. This can be achieved
by monitoring deviations from normal operational behaviour of the network. To
do so, we first collect the KPI measurements report from the fault free network
which are subsequently used to learn decision models by our control and data COD
solutions. These decision models can then be employed to detect outage situations
in the network during the monitoring period. An overview of our proposed COD
framework, which is primarily consists of the control COD and data COD modules,
is illustrated in Fig. 1.

As mentioned earlier, active high data rate UEs are served by both the data and
control BS, while the low rate UEs are served by only the control BS. This implies
that all UEs maintain connectivity with the control BS. Furthermore, as a result of
the split of the control and data planes, the control and data cell outages are inde-
pendent of each other, hence, the detection of a cell outage in each plane is executed
independently of the other. As shown in Fig. 1, our framework has two distinct COD
algorithms to cope with the idiosyncrasies of the control and data cell. The control
cell tend to have large number of users, so a large scale data collection and machine
learning is used for the control COD. Consequently, our control COD scheme is
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Fig. 1 System model for cell outage detection

based on the MDT functionality, where all UEs report their MDT measurements,
which include RSRP of the serving and neighboring cells, to the OMC center vis
respective BS. A normal network profile is built based on the measurements in a non-
outage scenario. The control COD is then performed at the OMC, by using anomaly
detection algorithms, such as OCSVMD and LOFD, on the actual network profile.

However, this approach is not applicable for data COD, where UE statistics are
sparse, due to the small number of UEs connected to each data BS. The control BS
knows the location of every data BS in its coverage and it can passively monitor the
RSRP measurements of every UE-data BS association within its coverage. Conse-
quently, a heuristic scheme, which can effectively leverage on the small number of
reports effectively and the fact that the control BS can monitor the UE-data BS asso-
ciation, is used for the data COD. The data COD is executed at the control BS and
is triggered when the control BS detects irregularities in UE-data BS associations,
while the actual detection is performed by using a GM algorithm.

3 Control COD

TheMDT reporting schemes have been defined in LTE Release 10 during 2011 [25].
The release proposes to construct a data base of MDT reports from the network
using Immediate or Logged MDT reporting configuration. In this study, the UE’s are
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configured to report the cell identification and radio-measurement data to the con-
trol BS based on immediate MDT configuration procedure as shown in Fig. 1. The
signaling flow of MDT reporting procedure consists of configuration, measurement,
reporting and storing phase. The UE is first configured to perform measurements
periodically as well as whenever an A2 event (i.e., serving cell becomes worst than a
threshold) occurs. Subsequently, it performs KPI measurements: serving and neigh-
bors Reference Signal Received Power (RSRP), serving and neighbors Reference
Signal Received Quality (RSRQ), and further reports it to the control BS. The control
BS after retrieving these measurements further appends time and wide-band channel
quality information (CQI) and forwards it to Trace Collection Entity (TCE). TCE
collects and stores the trace reports which are subsequently processed to construct a
MDT database. In this study, the trace records obtained from the reference scenario
(i.e., fault-free) act as a benchmark data and is used by the anomaly detection mod-
els to learn the network profile. These models are then employed to autonomously
detect and localize outage situations. The control COD solution as shown in Fig. 1
consists of profiling, detection and localization phases, as detailed in the following
subsections.

3.1 Profiling Phase

The next step after collecting measurements from the network is to perform data
transformation. Each trace record is processed to extract a KPI vector V that contains
theRSRPandRSRQKPIs of the serving aswell as of the three strongest neighbouring
cells along with the CQI augmented to form a measurement vector as shown in Eq.1

V = {
RS R PS, RS R Pn1 , RS R Pn2 , RS R Pn3 ,

RS RQS, RS RQn1 , RS RQn2 , RS RQn3 , C Q I
}

(1)

where S and n stands for serving and neighboring cells, respectively. The 9-
dimensional feature vector V corresponds to one measurement sample which is
further embedded to only three dimensions in the Euclidean space using Multi-
Dimensional Scaling (MDS) method [26]. MDS provides a low-dimensional embed-
ding of the targetKPI vectorV while preserving the pairwise distances amongst them.
Given, a t × t dissimilarity matrix ΔX of the MDT dataset, MDS attempts to find t
data points ψ1 . . . ψt in m dimensions, such thatΔΨ is similar toΔX . Classical MDS
(CMDS) operates in Euclidean space and construct an m dimensional embedding
of the data points, whereas the value of m is chosen to be 3 in our case. Further
details on the mathematical formulation of MDS embedding can be found in [15].
The embedded KPI representation V e has several advantages. First, it makes the
framework generic allowing it to incorporate new KPI’s and network-centric fea-
tures such as call drop ratios, data traffic etc. without imposing higher computational
requirements. Moreover, the interrelationships of high-dimensional databases can
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be explored in a lower-dimension space. Secondly, given the growing complexity
of the networks, particularly in case of SON, it is challenging to identify few KPIs
that accurately capture the behavior of the system. The network-level intelligence
can be inferred through low-dimensional representation of large volume of network
measurements. The embedded space reveals a hidden structure by mapping similar
measurements close to each other and vice versa, that naturally isolates high and
low data density regions. This makes it easier to detect the underlying patterns that
are representative of network dynamics. The learning algorithm leverages embedded
network measurements to learn a optimal decision rule and subsequently during the
monitoring phase apply it to classify observed network measurements as anomalous
or normal, as discussed in detail below.

To construct a reference database DM , we apply an MDS based data transfor-
mation on the network measurements collected from a fault-free operating scenario.
The DM also includes samples of Radio Link Failure (RLF) events, in addition to
periodical MDT measurements, as expected in a realistic environment. As shown
in Fig. 2a, the DM acts as a training database for the anomaly detection algorithm,
enabling it to learn the “normal” network behaviour. This involves learning a deci-
sion function ‘ f ’ and a corresponding threshold ‘θ’, which is used to differentiate
between normal and abnormal network measurements. Thus, it can be treated as a
binary classification problem which can formally be expressed as follows:

f (xi ) =
{

Normal, if f (xi , DM) ≤ θ

Anomalous, if f (xi , DM) > θ
(2)

where xi is the test measurement. Two state-of-the-art algorithms from the machine
learning domain: OCSVMD and LOFD are examined for modeling the dynamics of
network operational behaviour. The brief working description of the two detection
algorithms are summarized as follows.

3.1.1 Local Outlier Factor Based Detector (LOFD)

The LOFD method [27] adopts a density based approach to measure the degree of
outlyingness of each instance. In comparison to nearest neighbor based approaches,
it works by considering the difference in the local density ρ of the sample to that
of its k neighbors; instead of relying on distance estimation alone. A higher score
will be assigned to the sample, if ρ is highly different from the local densities of its
neighbor. The algorithm starts by first computing the distance of the measurement x
to its kth nearest neighbor denoted by dk , such that

d(x, x j ) ≤ d(x, xi ) for at least k samples

d(x, x j ) < d(x, xi ) for at most k − 1 samples
(3)
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Fig. 2 An overview of COD framework. a Profiling, detection and localization phases of COD
framework. b Normal/reference scenario. c Outage scenario

The subsequent step is to construct a neighborhood Nk(x) by including all those
points that fall within the dk value. The following step is to calculate the reachability
distance of sample x with respect to rest of the samples

dr (x, xi ) = max{dk(xi ), d(x, xi )} (4)

The local reachability density ρ is the inverse of average dr and can be defined as

ρ(x) = | Nk(x) |
∑

xi ∈Nk (x) dr (x, xi )
(5)

Finally, theS (L O F D) represents a local density-estimation score whereas value close
to 1 mean xi has same density relative to its neighbours. On the other hand, a
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significantly highS (L O F D) score is an indication of anomaly. It can be computed as
follows:

S (L O F D)(x) =
∑

xi ∈Nk (x)
ρ(xi )

ρ(x)

| Nk(x) | (6)

Since, S (L O F D) is sensitive to the choice of k, we iterate between kmin and kmax

value for each sample, and take the maximumS (L O F D) as described in Algorithm 1.

Algorithm 1 Local Outlier Factor Based Detection Model

1: Input Data X = {x j }N
j=1, kmin , kmax

2: for j = 1, 2, . . . , N : do
3: for k =kmin to kmax : do
4: Find dk(x j ) from Eq.3
5: Find the neighborhood Nk of x j
6: Calculate dr (x j , xi ) from Eq.4
7: Calculate ρ(xi ) from Eq.5
8: Calculate S (L O F D) from Eq.6
9: end for
10: S (L O F D) = max(S (L O F D)

kmin , . . . ,S
(L O F D)
kmax

)
11: end for

3.1.2 One-Class Support Vector Machine Based Detector (OCSVMD)

One-Class Support Vector Machine by Schölkopf et al. [28] maps the input data/
feature vectors into a higher dimensional space in order to find a maximum margin
hyperplane that best separates the vectors from the origin. The idea is to find a binary
function or a decision boundary that corresponds to a classification rule

f (x) =< w, x > + b (7)

The w is a normal vector perpendicular to the hyperplane and b
‖w‖ is an offset from

the origin. For linearly separable cases, the maximization of margin between two
parallel hyperplanes can be achieved by optimally selecting the values of w and b.
This margin, according to the definition is 2

‖w‖ . Hence, the optimal hyperplane should
satisfy the following conditions

minimize
1

2
‖w‖2

subject to : yi (〈w, xi 〉 + b) ≥ 1

f or i = 1, . . . , N (8)
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The solution of the optimization problem can be written in an unconstrained
dual form which reveals that the final solution can be obtained in terms of training
vectors that lie close to the hyperplanes, also referred to as support vectors. To
avoid overfitting on the training data, the concept of soft decision boundaries was
proposed, and slack variable ξi and regularization constant ν is introduced in the
objective function. The slack variable is used to soften the decision boundaries,
while ν controls the degree of penalization of ξi . Few training errors are permitted
if ν is increased while degrading the generalization capability of the classifier. A
hard margin SVM classifier is obtained by setting the value of ν = ∞ and ξ = 0.
The detail mathematical formulation for SVM models can be found in [28]. The
original formulation of SVM is for linear classification problems; however non-linear
cases can be solved by applying a kernel trick. This involves replacing every inner
product of x .y by a non-linear kernel function, allowing the formation of non-linear
decision boundaries. The possible choices of kernel functions includes polynomial,
Gaussian radial basis function (RBF), and sigmoid. In this study, we have used
the RBF kernel: κ(x, y) = exp(−‖x − y‖2/2σ2), and the corresponding parameter
values of the model are selected using cross validation method, as discussed in
Sect. 5.1.

As shown in Fig. 2a, using the benchmark data, we compute a reference z-score
for each control BS in the network. The z-score is calculated as follows: zb = |nb−μn |

σn

where nb is the number of MDT reports labeled as anomalies for the eNB b, and
variables μn and σn are themean and standard deviation anomaly scores of the neigh-
bouring cells. In the profiling phase, we also estimate the so called dominance area,
i.e., for each cell, we define the area where its signal is the strongest. This is to estab-
lish the coverage range for each cell by exploiting the location information tagged
with each UE measurement. The dominance estimation is required to determine a
correct cell and MDT measurement association during an outage situation. This is
because as soon as theSC situation triggers in the network, themalfunctioning control
BS either becomes completely unavailable or experience severe performance issues.
This triggers frequent UE handovers to the neighboring cells, and as a result the
reported measurements from the affected area contains the neighbor cell E-UTRAN
Cell Global Identity (CGI), instead of the target cell. Hence, CGI alone cannot be
used to localize the correct position of faulty cell during an outage situation. The
detection and localization phase of our control COD solution make use of estimated
dominance map and reference z-score information established in the profiling phase
to detect and localize faulty cell as discussed in the following subsection.

3.2 Detection and Localization Phase

In the detection phase, the trained detection model is employed to classify network
measurements as normal or anomalous. The output of the detection models allow
us to compute a test z-score for each control BS. To establish a correct cell mea-
surement association, the geo-location of each report is correlated with the estimated
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dominance maps. In this way, we can achieve detection and localization by com-
paring the deviation of test z-score of each cell with that of reference z-score, as
illustrated in Fig. 2a.

4 Data COD via Heuristic Approach

Contrarily to the control COD, which is performed at the OMC, the data COD is
performed at each control BS. Hence, establishing the normal state of the control BS
is a pre-requisite for data COD. The data COD process is organized into the trigger
and detection phases, as illustrated in Fig. 3. The control BS receives a periodic
update of the RSRP of each UE to its associated data BS and stores this value in a
database, which is later used in the detection process.

Fig. 3 Data cell outage detection flowchart
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4.1 Outage Trigger Phase

As mentioned earlier in Sect. 2.2, the control BS is responsible for managing UE
connectivity, as well as radio specific functions, such as: (1) RRC connection,
(2) configuration and measurement reporting, (3) cell handover and network con-
trolled mobility. Consequently, the control BS is aware of any change in UE-data
BS association, as a result of handover or radio link failure. The control BS is also
aware of any state change in the UE, such as a change from active to idle state, idle
to detached state and vice versa. Furthermore, the conditions for data BS to enter the
sleep mode is known to the control BS. For example, the data BS could be allowed
to enter the sleep mode if the number of active UEs is lower than a certain predefined
threshold during the last scheduling time interval.

In the outage trigger phase, the control BS monitors the UE-data BS association
and triggers the outage detection when it discovers irregularities in UE-data BS
association. Irregularities in UE-data BS association occur when all UEs attached to
a particular data BS changes their association without any of the following: (1) prior
handover initiation process, (2) change in state of all the UEs, (3) radio link failure
notification from all the UEs, (4) the data BS going into sleeping mode.

4.2 Outage Detection Phase

Once the outage detection phase is triggered, the control BS can detect outage of the
data BS by predicting the RSRP of all the UEs that were associated with it prior to the
outage.We utilize the GM, which has been extensively used in handover, positioning
and general forecasting algorithms [29–31], as prediction model.

4.2.1 GM Approach

In grey system theory, G M(n̄, m̄) denotes a grey model, where n̄ is the order
of the differential equation and m̄ is the number of variables. Here we focus on
G M(1, 1), which is a widely used time series forecasting model. According to [29],
the G M(1, 1) model can only be used on positive data sequences. Note that the
RSRP values are always positive, hence, the grey model can be used to predict the
next RSRP value from data points obtained in the database.

The three basic operations in grey prediction are: (1) the AGO, (2) the IAGO,
(3) Grey Modelling. By using AGO, an irregular raw data can be transformed into
a regular data, which can be used to construct a model in grey differential equation.
The non-negative RSRP data sequence of UE u prior to the outage is denoted as

r (0)
u =(

r (0)
u (1), r (0)

u (2), r (0)
u (3), . . . , r (0)

u (n)
)
,∀n ≥ 4. (9)
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The prediction value of the benchmark RSRP data at time (c + 1) can be calculated
by an IAGO as

r̂ (0)
u (c + 1) =

[
r (0)

u (1) − b

a

]
e−ac

(
1 − ea

)
, (10)

where a and b are coefficient defined in [29, 31],

4.2.2 GMF

According to [31] grey model prediction accuracy can be improved by the Fourier
series of error residuals. Consider the uth UE RSRP sequence, r (0)

u in (9) and its
predicted values obtained from (10), then the error of the sequence r (0)

u can be
expressed as

ξ(0)
u = (

ξ(0)
u (2), ξ(0)

u (3), . . . , ξ(0)
u (n)

)
, (11)

where

ξ(0)
u (c) = r (0)

u (c) − r̂ (0)
u (c),∀c = 2, 3, . . . , n. (12)

The error residuals given in (12) can be re-expressed in Fourier series [31] such that
the Fourier series correction can be expressed as

ˆ̂r (0)
u (c) = r̂ (0)

u (c) − ξ̂(0)
u (c),∀ c = 2, 3, . . . , n + 1. (13)

4.3 Outage Decision

Firstly, the RSRP of all the UEs that were previously attached to the data BS, whose
outage is being detected, i.e., data BS, d, are predicted according to (10) or (13).
Then, for each UE the control BS compares its predicted RSRP value, vu = r̂ (0)

u

(c + 1) ≈ ˆ̂r (0)
u (c + 1),with theRSRPafter the trigger, ru = r (0)

u (c + 1). If afterwards
outage is triggered, the UE, u, is served by the control BS for data transmission and
vu = r̂ (0)

u (c + 1) ≈ ˆ̂r (0)
u (c + 1) > ru − Δ, where Δ is the data cell range expansion

offset, the counter, i1, is incremented by 1, since the UE should be associated with
data BS, d, based on the prediction. Otherwise, the counter, i2 is incremented by 1.
On the other hand, if another data BS is serving UE u, after the outage trigger and
vu ≈ r̂ (0)

u (c + 1) ≈ ˆ̂r (0)
u (c + 1) > ru , the counter, i1, is incremented by 1, otherwise

an inverse prediction is performed on the RSRP to the serving data BS. The inverse
prediction checks the RSRP to the data BS d and the RSRP to the serving data BS
after the trigger, i.e. data BS d̄ , at the point just before the trigger. The control BS
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waits for the prediction window size, N , and performs an inverse prediction on the
RSRP of each of the UEs associated with data BS d̄ to obtain the predicted RSRP
prior to the trigger decision, ivu . Thus, if the RSRP of the uth UE to the serving data
BS (d) before trigger, ovu , is such that ovu > ivu the counter i1 is incremented by 1
otherwise, the counter i2 is incremented by 1. The data cell outage is declared if the
ratio i1

i1+i2
> μ, where μ is a predefined threshold.

5 Simulation Results and Discussion

5.1 Simulation Setup

To simulate theLTEnetwork based on3GPP specifications,we employ a full dynamic
system tool. We consider a HetNet architecture where the control and data BSs
operate on separate frequency carriers. Each operation mode occupies 5 MHz of
channel bandwidth.The scenario that we set up consists of 27 macro/control BSs
with Um = 20 UEs per control BS, and F B = 5 femtocell blocks per control BS,
each one with l = 40 apartments, t = 1 floor, d = 0.2 small/data BS deployment
ratio as per [32], and c = 0.5 data BS activation ratio, which results in 20 data BSs
per control BS. Also, there are U f UEs per data BS in the scenario. To model the
variations in signal strength due to topographic features in an urban environment, the
shadowing is configured to vary within a range for values. Normal periodical MDT
measurements as well as RLF-triggered data due to intra-network mobility, reported
by UE’s to control BS, is used to construct a reference database for training outage
detection models. To simulate a hardware failure in the network, at some point in
the simulation the antenna gain of cell 11 is attenuated to −50 dBi that leads to a
cell outage in a network. The measurements collected from the outage scenario are
then used to evaluate the detection and localization performance of the proposed
COD framework. The SINR plots of the reference and SC scenario has been already
shown in Fig. 2b, c, respectively. The detailed simulation parameters are listed in
Table1. The detection performance of the outage detection models is also examined
for different network configurations, obtained by varying the simulation parameter
settings for ISD, load and shadowing.

Parameter Estimation and Evaluation

The parameter selection for LOFD and OCSVMD is performed using a combination
of grid search and cross-validation (CV) method. Initially, a grid of parameter values
are specified that defines the parameter search space. For example, the hyperparame-
ters of OCSVMD ν and kernel parameter γ is varied from 0 to 1 with 0.05 interval to
determine different combinations. Subsequently, for every unique parameter com-
bination Ci , CV is performed as follows: The DM is divided into training Dtrain

and validation dataset Dval , and subsequently performance of the model is evalu-
ated using K -folds approach. The value of K is chosen to be 10 in our framework.
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Table 1 Simulation parameters

Parameter Values

Cellular layout 27 Macrocell sites

Inter-site Distance (ISD) 1000m

Sectors 3 Sectors per cell

User distribution Uniform random distribution

Path loss L[d B] =128.1 + 37.6log10(R)

Antenna gain (Normal Scn) 18dBi

Antenna gain (SC Scenario) −50dBi

Slow fading Std 8dB

Simulation length 420s (1 time step = 1ms/1TTI)

Control BS Tx Power 46dBm

Data BS Tx Power 23dBm

Network synchronization Asynchronous

HARQ Asynchronous, 8 SAW channels, Maximum
Retransmission = 3

Cell selection criteria Strongest RSRP defines the target cell

Load 20 users/cell

MDT reporting interval 240ms

Traffic model Infinite buffer

HO margin 3dB

Detection threshold μ 0.5

Detection window size N 10

Grey weighting factor α 0.5

SINR threshold −6db

The performance estimate of the model over K folds is averaged and iteratively
this process is repeated until all the parameter combinations are exhausted. The Ci

yielding the highest performance estimate is selected as an optimal parameter com-
bination for the target model. The value of kmin and kmax for LOFD is found out to
be 5 and 14. In case of OCSVMD, RBF kernel is employed and the values of the
hyperparamters ν and γ is found out to be 0.3 and 0.25, respectively. Finally, the test
data Dtest from the outage scenario, has been used to estimate the performance of
the trained models.

In our study, the quality of the target models is evaluated using Receiver Oper-
ating Characteristic (ROC) curve analysis. The ROC curve plots the true positive
rate or detection rate (DR) (i.e., a percentage of anomalous measurements correctly
classified as anomalies) against the false positive rates (FPR) (i.e., a percentage of
normal cell measurements classified as anomalies) at various threshold settings. An
Area under ROC curve (AUC) metric is used for model comparison, whereas a AUC
value of 1 or close to it, is an indicator of higher discriminatory power of the target
algorithm.
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5.2 Control COD Outage Detection Results

The training database DM contains pre-processed embedded measurements from
the reference scenario as discussed in Sect. 3.1. The database is subsequently used
to model the normal operational behaviour of the network. The database measure-
ment also includes RLF-triggered samples, since even in the reference scenario UE’s
experience connection failures due to intra-LTEmobility or shadowing. The test data
collected from the outage scenario is used to evaluate the performance outage detec-
tion models.

The diagnosis process has been tested in twelve scenarios by changing the shad-
owing, user-density and inter-site distance (ISD) parameters of the baseline simula-
tion setup as listed in Table1. We have evaluated the detection performance of the
OCSVMD and LOFD against every target network configuration. Figure4a, illus-
trates the MDS projection of MDT measurements from the normal and the outage
scenario using the baseline network operational settings. It can be observed that the
abnormal measurements belonging to SC scenario lie far from the regular training
observations. As discussed earlier in Sect. 3.1, MDS tries to maximize the variance
between the data points and consequently dissimilar points are projected far from
each other, allowing the models to compute a robust dissimilarity measure for outage
detection. The goal of OCSVMD is to learn a close frontier delimiting the contour
of training observations obtained from the non-outage scenario. In this way, any
observation that lie outside of this frontier-delimited subspace (i.e. representative of
the normal state of the network) is classified as an anomaly or an abnormal measure-
ment. However, the inlier population (i.e. measurements that lie inside the OCSVMD
frontier) is contaminated with RLF events, which ultimately elongates the shape of
the learned frontier. As a result, during the detection phase, the observations from the
outage scenario exhibiting similarity to RLF-like observations are positioned within
the frontier-delimited space as shown in Fig. 4a, and hence wrongly classified as
normal. The shape of the learned frontier determines the precision of the model for
detecting anomalous network measurements.

To study the impact of different radio propagation environment on the detection
performance, we varied the shadowing parameter from 8 to 4dB and 12dB cases.
Under low-shadowing conditions (i.e., 4dB), it can be observed from Fig. 4b that
inlier population exhibits wider separation from anomalous observation in compar-
ison to reference scenario. This is because higher shadowing conditions affects the
spread of the KPI measurements, as indicated in Fig. 4c. It can be inferred from the
ROC analysis of OCSVMD, that detection performance deteriorates as the shadow-
ing effect is varied from low to high. As shown in Fig. 5a, at target false positive
rate of 10%, the model reports the highest detection rate (i.e. TPR) of 93% under
low-shadowing conditions. Likewise, the AUC score has also decreased from 0.98
to 0.94 for high-shadowing scenario (i.e., 12 dB). Moreover, we also analyzed the
OCSVMD detection performance under varying traffic conditions. Figure4d depicts
the distribution of measurements in the MDS space for a user density of 20 per cell.
The higher user density implies an increase in the number of training observations
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(a) Reference Scenario: Shadowing = 8 dB (b) Shadowing = 4 dB

(c) RSRP Distribution (d) Load = 20 UE/cell

(e) ISD= 500m (f) RSRP Distribution

Fig. 4 a OCSVMD learned network profile for Reference Scenario. b Low-shadowing case.
c Distribution of RSRP values for all shadowing cases. d Medium Traffic case. e Smaller ISD
case f Distribution of RSRP values for all ISD cases

that leads to a more accurate estimate of the frontier shape. This explains the slight
improvement in the AUC score for OCSVMD with the increase in the cell load as
shown in Fig. 5b. A notable detection rate improvement of 10% is observed for high
traffic scenario (i.e., 30 users per cell) in comparison to the baseline OCSVMD.

As for different ISD configurations of a network, we see a significant change in
the values of KPI measurements. This is expected since there is a strong correlation
between UE reported KPI’s and their distance from the eNB. Figure4f shows the
distribution of UE reported RSRP values for three different ISD cases. In case of
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(a) (b)

(c)

Fig. 5 OCSVMD ROC curves for shadowing, traffic and ISD cases. a Shadowing. b Cell load.
c ISD

ISD = 500m, we see a distinct peak of RSRP values around −90dBm. Likewise,
at the farther left end we see a small peak around −180dBm that is mainly due
to RLF-like observations. In contrast, when ISD = 1000m, the highest peak value
is observed at around −140dBm, and the observed measurements have lower data
spread as indicated in Fig. 4f. As already highlighted, the shape of the learned frontier
by OCSVMD is directly affected by the distribution of observations in the embed-
ded space. This becomes evident in Fig. 4e which shows that the OCSVMD learns
two decision frontiers instead of one, since there exists two distinct modes in the
data distribution, for the case of ISD = 500m. As a result, OCSVMD interprets a
region where RLF-like event are clustered, as inliers, which leads to an inaccurate
network profile. The ROC analysis shown in Fig. 5c, clearly indicate the degradation
of OCSVMD performance for lower ISD values.

Similar to OCSVMD, the performance of LOFD is also evaluated for all target
network configurations. As explained in Sect. 3.1, LOFD derives a measure of out-
lyingness of an observation (i.e., S L O F D), based on the relative data density of its
neighborhood. Figure6a illustrates the labels assigned by LOFD to the observations
obtained from the baseline scenario. It can be observed that LOFD classifies some of
the test instances that even lie close to the vicinity of training observations as anom-
alous. Due to such instances LOFD receives a high outlying scoresS L O F D , since the
local density around them is highly different from the density of its neighborhood.
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(a) (b)

(c)

Fig. 6 Network profiling usingLOFD. aReference Scenario: Shadowing= 8dB.bCDFofS L O F D

for shadowing cases. c CDF of S L O F D for ISD cases

To further illustrate the impact of the variation and spread of the data on the values
of S L O F D , we plot a cumulative distribution function (CDF) for different shadow-
ing scenarios, as shown in Fig. 6b. It can be seen that for low-shadowing scenario,
almost 80% of the observations obtain S L O F D value less than 50. However, as the
shadowing increases we see a gradual increase in the value of S L O F D . Likewise,
a similar behaviour is observed with the increase of ISD, as shown in Fig. 6c. The
shadowing and ISD parameters influence the distribution and spread of the data as
explained earlier, and consequently the value ofS L O F D . This leads to a low detec-
tion performance of LOFD, since it generates an increased number of false alarms,
as inferred from our ROC analysis.

As shown in Fig. 7a, the AUC score for LOFD decreases for high-shadowing
scenario. On the other hand, the increase in the cell load also increase the spread of
the data, which consequently affect the detection performance of LOFD.As shown in
Fig. 7b, at false alarm rate of 10%, the highest detection rate of 81% is achieved for a
network scenario in which load configuration is set to be 10 users per cell. Similarly,
the change in the ISD has a severe effect on themodel performance and low detection
performance of 60 and 30% is achieved for 800 and 500m ISD configurations, as
shown in Fig. 7c.
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(a) (b)

(c)

Fig. 7 LOFD ROC curves for shadowing, traffic and ISD cases. a Shadowing. b Cell Load. c ISD

In summary, we can conclude from the reported results that OCSVMD under
most cases achieves a better detection performance in comparison to LOFD. The
outage detection models yields worst performance scores particularly for network
configuration with low ISD. The performance issue of the target outage detection
models can be addressed as follows: For OCSVMD, in the pre-processing step the
RLF-like events must be filtered before constructing a training database. This would
also help decrease the spread of the data and the model would only learn frontier
that corresponds to normal operational network behaviour. The performance issues
of LOFD can be addressed by incorporating a concept dirft detection mechanism,
that indicates when to re-tune model parameters to minimize the false alarm rate.

5.3 Localization

Since, OCSVMD model has outperformed LOFD for most test cases, it has been
selected as a final model to compute per cell z-scores for the normal and SC scenario,
as shown in Fig. 8. It can be observed from Fig. 8 that measurements are classified
as anomalous even in the normal operational phase of the network due to occurrence
of RLF events. This is particularly true for cell ID 1, 5, 11, 16, and 19 whose nb

values are found to be 700, 2000, 3000, 1500, respectively in the reference scenario.
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Fig. 8 Localization of SC based on per cell z-scores

However, during an outage scenario, since cell 11 is configured as a faulty cell,
the corresponding z-scores are significantly higher than the rest of the network. A
simple decision threshold can be applied on the computed z-scores to autonomously
localize faulty cells, and consequently an alarm can be triggered. In addition to cell
outage localization, the change in the z-score can be used to identify performance
degradation issues or a weaker coverage problems. This information can act as an
input to self-healing block of SONengine,which can then trigger automated recovery
or optimization procedures.

5.4 Data COD Outage Detection Results

Figure9 illustrates the performance of our data COD framework in terms of the DR.
In Fig. 9a,we compare the performance of theGMandGMF,which are obtained from
(10) and (13), respectively, by plottin their DR against the data cell UE density, U f ,
and for shadowing fading standard deviation of, σ=2 and 10 dB. We observe that
the GMF scheme outperforms the GM as expected, since the former utilizes the
prediction error in the later to improve its performance. Figure9a clearly shows that
increasing the UE density increases the DR. This is due to the fact that increasing
UE density enables a better spatial correlation. Figure9b depicts the DR for various
data BS power levels and a data cell UE density of U f = 3(/100m × 100m). The
result shows that low data BS transmission power results in degradation of the DR,
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Fig. 9 performance of data COD framework. a GM versus GMF. b Effect of data BS transmission
power on DR. c Effect of threshold setting on DR. d Effect of window size on DR

while increasing the transmission power leads to an improvement in the DR. This
is because when the data BS transmission power increases, it becomes easier to
distinguish between the predicted RSRP statistics of the outage case and normal
case. We also observe in Fig. 9a, b that the DR becomes lower with larger shadowing
fading standard deviation σ. This is because a high σ means a severe shadowing
fading, which leads to a more random RSRP statistics.

Figure9c, d investigate the impact of the predefined threshold μ and prediction
window sizeN , respectively, on the DR. We observe in Fig. 9c that the highest DR
is obtained by setting μ = 0.5. This setting implies that the RSRP prediction of more
than half of the UEs that were associated with the data BS whose outage is being
detected, i.e. d, must indicate the existence of an outage, before d can be declared
to be in outage. The stepwise shaped plot is obtained since the number of UEs must
be an integer value. We also observe that there is not much degradation in DR until
μ > 0.67, which implies more than two-third of UEs that were associated with d
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must indicate the existence of an outage. In Fig. 9d, we observe that increasing the
prediction window size above the required minimal (N = 4) leads to an increase
in DR up to a point where any further increase in N has no impact on the DR.
Figure9d further shows that increasing N has more impact on the DR for larger
shadow fading standard deviation, σ. This is because of the lower randomness in
RSRP statistics when σ is low; hence a low value of N is required to obtain the
highest attainable DR, which is the contrary for higher σ where a higher value ofN
is required.

5.5 Energy Efficiency Gain of the Cell Outage
Detection Framework

The energy efficiency gain of the cell outage detection framework is defined as the
gain that is achieved as a result of detecting a cell outage and consequently switching
the outage cell off as against leaving it in operational mode. As mentioned earlier in
Sect. 1, cell outage can be due to network connectivity, misconfiguration, hardware
failure and power supply failure. With the advancement in technology, only a few
of the cell outages are of result power failure, which involves a complete cut in
the power supply to the base stations [33]. Hence, we focus on gains from outages
which are not based on power supply failures. In situation with hardware failure,
misconfiguration and network connectivity, the base station of the outage cell still
consumes significant power even when not transmitting data [9].

Consequently, in addition to the degradation in system performance caused by
cell outage, it can also result in significant energy wastage if the outage cell remain
undiscovered. Once the cell outage is detected, the base station in outage can be
completely switched off until the cause of the outage is identified and correction
measures are implemented. The basic power consumption model of the base station
can be expressed as the sum of circuit power and the transmit power given as:

PT OT = P0 + Δ × Pt (14)

where PT OT is the total power consumed, P0 is the circuit power drawn if the BS
is active, Pt is the transmit power and Δ is the slope of load dependent power
consumption. As assumed in our simulation setup in Sect. 5.1, if the cell goes into an
outage due to antenna malfunction, from Eq.14 we can see that it is still consuming
P0, even if it is not transmitting data. According to [34] a typical P0 of a macro BS
and femto BS is 130 and 4.8W, respectively. In case of no automatic COD solutions
in place, cell outages may remain undetected for days and weeks [35]. Assuming
a 24h outage duration, a typical macro BS would waste around 11.23 × 106 J of
energy. This wastage of energy can be reduced by putting in place an effective COD
solution as proposed in this study, that can reduce the outage detection time and
consequently faulty BS can be repaired or shut down completely to minimize energy
expenditure.
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6 Conclusion

In this study, we have presented a Cell Outage Detection (COD) framework for Het-
Nets with split control and data planes. Two distinct COD algorithms have been
proposed taking into account expected large number of UEs in the control cells and
small number of UEs in the data cells. For control COD, we have utilized the large
scale data gathering of MDT reports, as recently standardized by 3GPP in release 10.
The solution exploits multidimensional scaling techniques to reduce the complexity
of data processingwhile retaining pertinent information to develop trainingmodels to
reliably apply anomaly detection techniques. Furthermore, within the control COD,
domain and density based outage detection models: OCSVMD and LOFD respec-
tively, were examined for different network configurations. It was established that
OCSVMD, a domain based model attained a higher detection accuracy compared
to LOFD which adopts a density based approach to identify network abnormality.
Finally, the UE reported coordinate information is employed to establish the domi-
nance areas of target cells which are subsequently used to localize the position of the
cell in outage. On the other hand, for data cell outage, we have utilized a heuristic
Grey-Prediction approach, which can reliably work despite of small number of UEs
in the data cells by exploiting the information stemming from the fact that the control
BS manages the UE connectivity to the data BS within its coverage. The simulation
results have shown that both control and data COD schemes can detect control and
data cell outages, respectively, in a reliable manner. The proposed COD framework
can act as a foundation for next generation network monitoring tools that aims to
provide an autonomous self-healing functionality, as well as to detect other network
problems including coverage holes, weak coverage and performance degradation
problems.
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Towards Energy-Aware 5G Heterogeneous
Networks

Hafiz Yasar Lateef, Mischa Dohler, Amr Mohammed,
Mohsen Mokhtar Guizani and Carla Fabiana Chiasserini

Abstract Over the past decade, the telecommunication industry has witnessed
excessive growth in the number of mobile users. Market forecasts envision that
there will be nearly 8.6 billion mobile devices worldwide by 2017. This tremendous
increase in the number of cellular users demands an expansion in the wireless Base
Stations (BSs) for improved coverage and capacity. However, this hike in the deploy-
ment of base stations will lead to immense energy consumption, because in mobile
networks 70–80% of the power is consumed by BSs. This upsurge in the energy
consumption of telecommunication networks implies an increase in CO2 emissions
in the environment. In addition, energy bills also represent a major chunk of wireless
network operators’ expenditures. These ecological and economical challenges have
provoked the curiosity of telecommunication standardization bodies and researchers
in an emerging research area termed ‘energy-aware Heterogeneous Networks (Het-
Nets)’. HetNets are a mix of various cell shapes and sizes, including high power
macro cells and low power nodes such as micro cells, pico cells and relays. The large
macro cells are responsible for the basic coverage of the cell users, and the small
cells are effective in providing higher data rates to their nearby users in dense areas
with reduced power consumption. The combination of various BSswith different cell
sizes and a wide range of power levels can lead to substantial gains in network energy
consumption by creating hotspots and enabling dense spatial reuse. It is envisioned
that a dense deployment of low power BSs will take place in the near future. HetNets
in particular are considered as a promising solution for Fifth Generation (5G) in
order to meet the exponentially growing demand for multimedia traffic. The main
focus of this chapter is to investigate optimal energy efficient deployment strategies
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for low power nodes such as relays and small cells in 5G HetNets. In this chapter, a
comprehensive overview of remarkable small cell deployment schemes is presented
in order to facilitate the debate on technical challenges in deploying HetNets. It goes
on to discuss some useful techniques to mitigate the severe interference in 5G dense
HetNets. Finally, a novel Long Term Evolution (LTE)-Advanced relay deployment
scheme is introduced using graph theory, not only to address some of the identified
deficiencies of existing solutions, but also to optimize the energy efficiency of 5G
cellular networks.

1 Introduction

Over the past decade, the cellular industry has witnessed an unprecedented growth
in the number of subscribers and traffic, particularly, video and multimedia. This
tremendous increase in mobile subscribers calls for major investments in additional
wireless infrastructure, namely base stations for enhanced coverage and capacity.
However, such hike in the deployment of BSswill result in huge energy consumption.
It is estimated that wireless networks currently consume approximately 60 billion
kWh per year globally and these statistics are predicted to double by 2020 [1–3].

The economical challenges and high power consumption of conventional macro
BSs have led standardization bodies and researchers to seek alternative, cost-effective
and energy-efficient solutions. This has, in turn, shifted the focus on energy efficient
Fifth Generation (5G) wireless networks in the research community. In this regard,
some recent projects such as GreenTouch, Greenet, Towards Green 5G Mobile Net-
works (5GrEEn),GreenRadioExcellence inArchitecture andTechnology (GREAT),
Communicate Green (ComGreen), Energy Aware Radio and neTwork tecHnology
(EARTH) and Towards Real and Energy Efficient Network Design (TREND) have
started to realize the vision of, both eco-friendly and green 5G cellular networks
[4–10].

The challenges associated with the deployment of traditional macro base sta-
tions can be overcome through the utilization of BSs with lower transmit power.
Specifically, HetNets are the potential solution to achieve energy efficiency in future
wireless networks. In a HetNet, macro BSs are deployed in a planned way to achieve
required coverage (large area), while Low Power Nodes (LPNs) serve the purpose
of coverage extension, throughput enhancement, and achieving overall lower energy
consumption for the network [11].

The introduction of dense HetNets and Massive Multiple Input Multiple Output
(MIMO) techniques are the key ideas for 5G technology in order to achieve both
capacity gains and energy efficiency in future wireless networks [12, 13]. Typically,
network operators place low power BSs at strategic areas to enhance the network
performance while keeping the infrastructure deployment cost low [14]. However,
the dense and random deployment of low power BSs raises fundamental challenges
for the energy consumption of dense HetNets. Therefore, dense deployment of small
BSs should be carefully designed in order to avoid undesired network behaviour
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[15]. Key challenges for dense HetNets from the energy perspective include finding
the optimal densities of small BSs and determining which infrastructure network
nodes should be switched on/off depending on the user traffic patterns. Thus, optimal
switch on/off policies for dense HetNets can play a key role in enhancing the energy
efficiency and data rate towards 2020.

2 Energy Efficient Resource Allocation Schemes
for 5G HetNets

This section presents a comprehensive survey of state-of-the-art work on energy
efficient resource allocation and load balancing schemes for 5G HetNets. Several
works have addressed energy-efficient sleep mode protocols and traffic offloading
schemes for HetNets, e.g., [16–21]. In particular, the performance of a macro-pico
network is studied in [16]. Specifically, the work highlights that the number of pico
BSs, the user distribution and the fact that pico BSs can enter a sleep mode can lead
to significantly high energy savings. The work in [17] has proposed an analytical
framework for the performance evaluation of the energy saving that can be obtained
by applying sleep mode to the network devices. Specifically, the authors formulated
a theoretical model which allows to estimate that how much energy can be saved for
different network topologies. The performance evaluation results reveal that highly
connected networks, with high randomness tend to make the use of sleep modes
more energy efficient.

The authors in [18] proposed an analytical model to determine the optimal set
of BSs that can be switched off based on the daily traffic pattern. Specifically, the
authors derived analytical expressions for the energy saving by first assuming that
only a single BS can switch off per day and then considering that multiple BSs can
switch off per day. The performance evaluation results indicate that substantial energy
saving can be realized by switching off a single BS per day, while the advantage of
switching off multiple BSs is minor. In [19], the authors have utilized stochastic
geometry theory to analyze the optimal macro/micro BS density for energy efficient
HetNets under Quality of Service (QoS) constraints. The authors have addressed the
two important issues: capacity extension and energy saving, and they have proposed a
rule to determine which type of BSs should be deployed or slept with higher priority.
Yong et al. have investigated the impact of random sleeping and strategic sleeping
on the power consumption and energy efficiency of HetNets [20]. On the other
hand, energy minimization in macro-relay networks has been studied in [21] and
[22], where minimum user data rate requirements are accounted for. In particular,
the authors formulated an integer optimization problem and proposed a heuristic
solution for energy minimization.

The effect of coverage area on energy efficiency of macro-pico HetNets has been
studied in [23]. System-level simulation results reveal that the area energy efficiency
of macro-pico networks can be substantially improved with interference reduction
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and adaptive power control. The authors in [24] have investigated the energy effi-
ciency of pico nodes in HetNets by taking into account the effect of pico cell size
on the overall energy efficiency of the network. The performance evaluation results
reveal that energy efficiency of pico BS can improve substantially by applying effi-
cient resource allocation and cross-tier interference mitigation scheme. The work in
[25] has proposed a dynamic on/off switching algorithm for BSs based on the concept
of network impact which is defined as how much can switching on/off a BS affect
the whole network. Moreover, the authors proposed various heuristic algorithms for
determining the on/off state of a BS with partial feedback or even no feedback.
Shengrong et al. considered the role of smart grid in designing energy efficient cel-
lular networks by taking into consideration, both real-time traffic conditions and the
associated carbon emissions [26]. The authors proposed a scheme in which some of
the base stations can be switched off to save energy while Coordinated Multi-Point
(CoMP) scheme is used to increase the coverage of the active base stations.

3 System Model

In this section,we present a systemmodel for the performance evaluation of an energy
efficient macro-relay network consisting of macro eNBs, low power Relay Nodes
(RNs) and User Equipment (UEs). An overview of a multi-cell macro-relay net-
work is shown in Fig. 1. The eNBs, RNs and UEs are equipped with single antenna.
We consider in-band Type 1 LTE-Advanced RNs, which use the same frequency
resources for both backhaul (eNB to relay) and access (relay to UE) links. Moreover,
the backhaul and access links are time division multiplexed in order to avoid inter-
ference between these links. The RNs must connect to a donor macro eNB either
through a backhaul link, or, in a multi-hop fashion, to another RN as shown in Fig. 1.
The users can connect to the network through macro eNB, either directly or through
RNs using decode and forward technique. The UEs are uniformly distributed in the
macro-relay network under consideration. The energy consumption of UEs varies
depending on the distance and path loss from macro eNBs or RNs. We adopt the
large-scale path loss propagation model that is endorsed by 3GPP [27–29].

The EARTH project [9] introduced a linear power model for different types of
base stations, which details the relation between base station power consumption
Pin and Radio Frequency (RF) output power Pout . According to the EARTH power
model, we have;

Pin = Po + ∇p × Pout 0 ≤ Pout ≤ Pmax (1)

wherePmax represents the maximumRF output power at full load,Po is the minimum
power consumptionwhen the node is in idlemode and∇p denotes the power amplifier
efficiency. The power consumption parameters for different types of base stations
and relays, based on the EARTH project state-of-the art estimation, are presented in
Table1.
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Fig. 1 An illustration of a macro-relay network with relay-to-relay communication

4 Optimization of Energy Efficient Relay Placement
and Load Balancing

With the aim to minimize energy consumption, we now present an analytical model
for optimizing relay placement and load balancing in a macro-relay heterogeneous
network. We divide the network service area into a set τ of non-overlapping tiles.
These tiles in general cannot be bigger than a cell and may differ in size and shape
as shown in Fig. 2.

We define τt to be the amount of traffic or data (e.g., Megabits) requested by
each user, for each tile t. We assume that an estimate of τt is already known. The
set β represents macro eNBs and the set L represents candidate locations where
RNs can be deployed. The eNBs, relay candidate locations and tiles constitute the
vertices of a graph, representing our network. The edges of the graph represent the
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Table 1 Performance evaluation parameters

Earth parameters for different base stations

LTE base station type Pmax(W) Po(W) ∇p

Macro 40 712 14.5

Relay urban 2014 1 19.91 5.6

Relay advanced 5 or 1 13.91 20.4

Performance evaluation parameters

Carrier frequency 2GHz

Bandwidth 20MHz

Thermal noise PSD −174dbm/Hz

eNB transmit power 43dbm

Relay transmit power 30dbm

User transmit power 23dbm

Antenna configuration (eNB, relay and User) Tx-1, Rx-1

User distribution Hotspot + Uniform

Distance and path loss R (km) & PL(dB)

3GPP Case 1 urban scenario Inter Site Distance (ISD) = 500m

Direct link (Macro-UE)

PLLOS = 103.4 + 24.2log10(R)

PLNLOS = 131.1 + 42.8log10(R)

P(LOS) = min
( 0.018

R , 1
) ∗ (

1 − exp
(− R

0.063

)) + exp(− R
0.063 )

Access link (Relay-UE)

PLLOS = 103.8 + 20.9log10(R)

PLNLOS = 145.4 + 37.5log10(R)

P(LOS) =
P(LOS) = 0.5 − min

(
0.5, 5 exp

(−0.156
R

))
+ min

(
0.5, 5exp

( −R
0.03

))

Backhaul link (Donor eNB-Relay and Relay-Relay)

PLLOS = 100.7 + 23.5log10(R)

PLNLOS = 125.2 + 36.3log10(R) − b

P(LOS) = 1 − (
1 − min

( 0.18
R , 1

) ∗ (
1 − exp

(− R
0.072

)) + exp
(− R

0.072

))
cb = 5, c = 3

connectivity opportunities among the vertices. It is assumed that each macro base
station provides single cell coverage. All the direct link connections from eachmacro
eNB to its neighboring cells are considered redundant and therefore we neglect these
connections.

For each edge connecting a pair of nodes (e1, e2), there is a corresponding weight
w (e1, e2), representing howmuch data we can transfer from e1 (representing an eNB
or a RN) to e2 (representing a RN or a tile).

For all the edge points (e1, e2), representing any of the following pairs (relay
candidate location, tile), (eNB, tile), (eNB, relay candidate location), (relay candidate
location, relay candidate location) we know the associated transmit power P(e1, e2),
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Fig. 2 A graph based representation of a LTE-Advanced macro-relay network

Furthermore, active eNBs and RNs consume Po(b) and Po(l) amount of power,
respectively, which depend on the transceiver electronics, cooling, etc., i.e., they are
independent of the node traffic load. Finally, due to operator’s budget constraints,
we have a maximum number R of RNs that can be deployed.

The energy efficient relay placement optimization algorithm is formulated as a
MILP problem. First, we introduce a set of binary variables yl, ybε{0, 1}, represent-
ing, respectively, whether we place a RN in a candidate location l ε L, and whether
eNB is b ε β ON or OFF. Furthermore, we need to denote howmuch traffic we trans-
mit between UEs, RNs and eNBs. We do so through real variables x(e1, e2). At last,
we introduce a set of binary variables z(b, l), each expressing whether bεβ is a donor
eNB for RN in location lεL. To rationalize the notation, we also denote the donor
eNB for RN in l as Dlεβ.

Constraints: The first constraint corresponds to the capacity. For each pair of nodes
(UEs, RNs and eNBs) that can communicate with each other, the total amount of
transmitted data x must not exceed the capacity (w) of the edge:

x(e1, e2) ≤ w(e1, e2) (2)
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The exact value of the weight w can be calculated using the channel capacity
formulas. Next, a flow conservation equation holds for RNs. These are purely relay
nodes, so the amount of data receiving and transmitting each of them must be the
same:

∑

e1εβUL
x(e1, l) =

∑

e2εLUτ

x(l, e2) ∀lεL (3)

The association between the RN and their respective donors (these can be eNB or
any other RN) should be in such a way that each active RN is association with only
one donor at a particular time.

∑

eεβUL
z(e, l) = y1 ∀lεL (4)

The constraint in (5) defines that an inactive node (eNB or RN) can’t be a donor
to any RN.

∑

eεβUL
+

∑

l∈L
z(e, l) ≤

∑

eεβUL
ye ∀e ∈ βUL (5)

Obviously no date can flow between inactive nodes. Therefore we modify the
capacity constraint as follows:

x(e1, e2) ≤ ye1 .w(e1, e2). ∀e1 ∈ βUL (6)

When ye1 is zero, i.e. the source node (eNB or RN) is not active, the right side of
the equation becomes zero and no data can be transmitted.

The association variables z(b, l)will alsomake sure that there is no data flow between
an eNB and RN, if they are not associated with each other. This can be represented as;

x(e1, e2) ≤ z(b, l).w(e1, e2) ∀ b ∈ β, l ∈ L (7)

As described earlier, each tile must receive the adequate traffic τt , in order to meet
the minimum data rate requirements. This translates into the following constraint:

∑

b∈β

x(b, t) +
∑

l∈L
x(l, t) ≥ τt (8)

Finally, the following constraint represents the limit on the maximum number of
RNs that can be deployed in the network, due to budget constraints

∑

l∈L
yl ≤ R∀l ∈ L (9)
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Objective: Our objective is to minimize the total power consumption of the net-
work. This includes;

• The static or fixed power consumed by active source nodes (eNB and RN)
• The dynamic or traffic dependent power P(e1, e2) based on communication end
points.

min
∑

b∈β

(

ybP0(b) +
∑

l∈L
P(b, l)x(b, l) +

∑

t∈τ

P(b, t)x(b, t)

)

+
∑

lεL

(

y1P0(l) +
∑

t∈τ

P(l, t)x(l, t)

)

(10)

Clearly, the objective function and all the constraints are linear and the complexity
stems from the binary variables yb and yl.

5 Performance Evaluation Parameters

In this section, we evaluate the performance of our proposed energy efficient algo-
rithm. The parameter values we use in our analysis are reported in Table1. The
scenario we consider consists of 7 cells macro-relay network with hotspot and uni-
formly distributed users as shown in Fig. 3. In this scenario, we utilize the relay urban
2014 power model for performance evaluation.

Figure4 depicts the effect of the density of RNs on the number of active macro
base stations in operation. Specifically, from the plot, it can be seen that our proposed
load balancing algorithm for a dense macro-relay network can offload traffic from
macro BSs and switch off most of the lightly loaded macro BSs. Moreover, it is
evident from Fig. 4 that more macro BSs are switched off by increasing the density
of RNs in the network.

The effect of the density of RNs on the Area Energy Efficiency (AEE) of a macro-
relay network is shown in Fig. 5. The bar labeled “Optimal macro-relay network” in
Fig. 5 represents the scenario where we take into account transmission and circuit
energy of both macro base stations and RNs in active mode which are obtained by
solving the problem in (10) using CPLEX.

Similarly, the bar labeled “macro relay network without sleep mode” represents
the scenario where we consider transmission and circuit energy of all macro base
stations and RNs in the network. Finally, the bar “Macro only” refers to the scenario
where we only deploy macro base stations and all macro base stations are in the
active mode. From Fig. 5, we note that our proposed algorithm has the best AEE as
compared to other cases. The rationale behind this fact is that most of the macro
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Fig. 3 An illustration of a 7 cell LTE-Advanced macro-relay network with uniformly distributed
users

BSs are operating in “off” state in the optimal macro-relay configuration, as shown
in Fig. 4. Moreover, it can be seen from Fig. 5 that the AEE of macro-relay network
increases with an increase in the density of RNs.

Figure6 depicts the effect of the density of RNs on the user association for a
macro-relay network. It is evident from Fig. 6 that our proposed energy efficient load
balancing scheme connects more users to RNs than macro base stations with an
increase in the density of RNs in the network. As a result, it relaxes traffic load of
some macro eNBs in order to allow them to switch into inactive mode and reduce
the overall power consumption of the network.
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Fig. 4 An illustration of the number of active macro base stations versus relay density for a 7 cell
LTE-Advanced macro-relay network

6 Conclusion

In this chapter, we present energy efficient and quality of service aware load bal-
ancing and sleep policy for Fifth Generation (5G) dense macro-relay networks. We
formulate an energyminimization problem for densemacro-relayHetNets as aMixed
Integer Linear Programming (MILP) problem. Specifically, our proposed algorithm
not only optimally connects users to macro BSs and RNs, but also enables lightly
loaded macro BSs to switch into off state. Our extensive performance evaluation
results reveal that our proposed algorithm for dense macro-relay network can switch
off most of the macro BSs with an increase in the density of RNs. It is worth men-
tioning that our unique approach of relay-to-relay communication forms the basis for
relays to act as donors for neighboring relays instead of macro BSs thus allowing the
latter to enter the off state. As a result, our proposed energy efficient load balancing
and sleep algorithm power consumption is significantly lower than a macro network
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Fig. 5 A comparison of Area Energy Efficiency (AEE) for a 7 cell LTE-Advanced macro-relay
network

without relays.Moreover,we have shown that the power consumption of the proposed
optimal solution is also lower than a macro-relay network without inactive mode.
Our performance evaluation results depict that most of the users connect to RNs with
an increase in the density of RNs in the network. It is worth noting that optimally
deploying relay nodes should yield communication over short ranges and, hence,
lower-power transmissions, as well as enabling switching off some macro BSs. We
demonstrated that our proposed algorithmhas the bestAEE as compared to other load
balancing and sleep policies. In summary,we have shown that the proposed algorithm
for 5G densemacro-relay networks can significantly reduce system energy consump-
tion while guaranteeing the minimum required data rate in 5G wireless networks.
In this chapter, we also present a comprehensive survey of state-of-the-art work on
energy efficient resource allocation, load balancing and energy harvesting schemes.
However, a number of open challenges suggest a variety of future research directions
that can be pursued in order to design QoS aware energy efficient user association
techniques for Fifth Generation (5G) cellular networks. One such direction would be
to investigate optimal user association between Wi-Fi and LTE coexisted networks
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Fig. 6 An illustration of the user association for a LTE-Advanced Macro-pico-relay network

powered by renewable energy sources. Another dimension would be to determine
that how much renewable energy should be utilized to power a base station during a
specific period of the day based upon real-time weather forecasts.
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An Overview of 4G System-Level
Energy-Efficiency Performance

Kazi Mohammed Saidul Huq, Shahid Mumtaz and Jonathan Rodriguez

Abstract This chapter provides the state-of-the-art (SoA) analysis on the current
energy efficient approaches for 4G/OFDMA systems. These concepts will act as
benchmark for comparison against the energy-efficient approaches to be developed
in subsequent chapters. In order to position our work, we review briefly the key
components, and decision metrics that can influence the system-level performance
from an energy-efficient perspective.

1 Introduction

The ever-growing energy consumption in information and communication technolo-
gies (ICT) stimulated by the expected growth in data traffic has provided the impetus
for mobile operators to refocus network design, planning and deployment towards
reducing the cost per bit, whilst at the same time providing a significant step towards
reducing their operational expenditure. In fact, the ICT industry constitutes 3% of
the global energy consumption and contributes towards 2% of the worldwide CO2
emissions [1]. This is comparable to the worldwide CO2 emissions by airplanes or
one quarter of the worldwide CO2 emissions by cars [2]. According to [2, 3], the
57% of the energy consumption of the ICT infrastructure is attributed to users and
network devices in cellular and wireless networks, the scale of which is still growing
rapidly [4].

Given the dramatic expansion of wireless networks worldwide, the development
of energy-efficient solutions forwireless networks can significantly reduce the energy
consumption in the ICT sector. From the viewpoint of telecommunication operators,
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minimizing the energy consumption is not only a matter of being environmentally
responsible, but can substantially reduce their operational expenditure. Furthermore,
developing energy-efficient products will open up new business models, since end-
users will enjoy enhanced mobile services with longer battery lifetime [5].

2 Energy-Efficient Radio Resource Management

Here, we provide state-of-the-art (SoA) on energy-efficient radio resource manage-
ment (RRM) in wireless networks. Wireless communications are dynamic in nature.
This dynamic nature arises from multiple dimensions: propagation conditions, cell
load level, interference, etc. Thus, proper radio management of the available radio
resources are needed.

Radio management is performed by an RRM entity with an associated number
of parameters that need to be chosen, measured, analyzed and optimized. Efficient
utilization of the radio resources leads to higher capacity, Quality of Service (QoS)
guarantees, and better user experience. RRM functions should take into account the
constraints imposed by the radio interface in order to make decisions regarding the
configuration of the different elements and parameters (e.g., the cell size, antenna
numbers, the number of users transmitting at the same time). It is pretty evident that
the number of parameters to be considered as well as their nature identifies a set of
RRM functions whose joint behavior should lead to an overall radio access network
optimization [6]. In order to perform properly in a real network environment, RRM
schemes should be low in complexity, and require low signaling overhead whilst
delivering high performance. Furthermore, they must provide stability and overload
protection to the network, in addition to allowing the network to autonomously adapt
to dynamic traffic and environment changes. The following subsections cover the
above mentioned aspects related to “energy-efficient” RRM , where we first describe
the design requirement/trade-offs.

2.1 Fundamental Trade-Offs in RRM Protocol Design

RRM protocol design implies several trade-offs involving energy-efficiency (EE).
In [7] the authors present four fundamental trade-offs for EE to drive the design of
RRM in next generation cellular networks, which are briefly described herein.

• Deployment efficiency versus energy-efficiency trade-off
Deployment efficiency (DE) is a performance indicator of a wireless networks
which quantifies system throughput in terms of per unit of deployment cost.
Deployment cost includes Capital expenditures (CAPEX) and operational expen-
ditures (OPEX). Wireless engineers estimate the network CAPEX and OPEX
during network planning and EE is mostly considered during network operation.
As an example (see [8]) cell radius has a relevant impact on EE: the greater
the radius means a reduction in the EE. As a consequence, to maximize EE we
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need to deploy additional transmission points, which in turn could increase the
deployment cost. This implies the need to identify the proper balance between
the DE and EE requirements. LTE-Advanced adopted a heterogeneous networks
paradigm, which could provide enhanced deployment functionalities (femto/small
cells, coordinated multi-point (CoMP), etc.) to enable proper DE-EE trade-offs.

• Spectral efficiency versus energy-efficiency trade-off
Traditional research on wireless networks mainly focuses on system capacity and
spectral efficiency (SE), defined as the system throughput per unit of bandwidth.
The spectral efficiency is a key performance indicator of wireless cellular networks
and the peak value of SE is always among the key performance indicators of 3GPP
evolution. On the other hand, EE accounts for energy consumption: i.e., using less
energy to provide the same level of service or using same energy to accomplish
improved services.
For point-to-point transmission in an additivewhiteGaussian noise (AWGN) chan-
nel, the relationship between EE and SE is shown to be in general monotoni-
cally decreasing [7]. However, for next generation wireless networks (3GPP LTE,
WiMAX), reference OFDM/OFDMA technology [9, 10] and non-Gaussian chan-
nel models make such relationship more complex. Rate adaptation (RA), which
maximizes throughput and thus increases SE, and margin adaptation (MA), which
minimizes total transmit power and thus increases EE [11], are the two main
resource allocation schemes to control the SE-EE trade-off in such framework.
Improving the SE-EE trade-off curves as a whole and tuning the operation point
on the curve to balance the specific system requirements are expected to guide
practical system designs toward energy compliant solutions. Moreover, an accu-
rate closed-form approximation of the SE-EE trade-off has not been discussed for
interference limited multi-cell scenario. Nevertheless, the concepts demonstrated
in the existing literatures [12–14] can be used for evaluating the impact of MIMO,
CoMP transmission/reception and relay on the SE-EE trade-off.

• Bandwidth versus power trade-off
Bandwidth (BW) and power (PW) are the most important yet limited resources
in wireless communications. From Shannon’s capacity formula, the relationship
between transmit power and signal bandwidth demonstrate a monotonic trend [7].
For future wireless system such as UMTS and LTE, the trend remains similar.
Future wireless systems such as LTE-Advanced demonstrate more flexibility in
spectrum usage compared to GSM and UMTS, since spectrum re-farming is built-
in LTE-Advanced. The deployment of different heterogeneous networks in LTE,
such as coordinated multiple point (CoMP) and distributed antenna system DAS,
introduces additional infrastructure nodes into the network, which increases con-
trol on the BW-PW trade-off.

• Delay versus power trade-off
Delay (DL) is defined as service latency, i.e. a measure of quality of service (QoS)
and quality of experience (QoE) [7]. Design of wireless networks should cope
with both channel and traffic uncertainties, which makes the characterization of
DL-PW trade-off more complex.
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Few published works deal with DL-PW trade-off in wireless cellular networks,
even though wireless systems need to deal with service latency in order to support
users’ expectations. As a consequence, it is necessary to analyze when and how
to trade service delay with power consumption.

2.2 Cross-Layer Framework for Energy-Efficient Resource
Allocation

A key component in RRM is the scheduling approach that identifies how to map
the available resources to the user queues according to a priority assignment. This
assignment is based on a given scheduling policy that can exploits specific network
parameters (or context information) to feed a predetermined cost function. This
function is intellectual property and governed by the network operator, and we can
immediately observe that the type of function will have a large bearing on the oper-
ating performance of the network, and therefore energy-efficient operation can be
directly linked to the way we design this function.

An energy-efficient design can benefit from a cross-layer (CL) approach as several
layers of system design have impact on power consumption ranging from silicon to
applications. The authors in [15] particularly focused on a system-based approach
towards optimal energy transmission and resource management across time, fre-
quency, and spatial domains. A framework for EE is developed in [16] and depicted
in Fig. 1. Thementioned paper focuses on improving device energy-efficiency. Cross-
layer approaches exploit interactions between different layers and can significantly
improve energy-efficiency as well as adaptability to service, traffic, and environ-
ment dynamics. Since wireless network is a shared medium, layering is not the best
approach to create impact on device energy consumption comprising a point-to-point
communication link, because it impacts the entire network due to the interaction
between links. Therefore a system approach better suits energy-efficient wireless
communications.

Themediumaccess control (MAC) layer dealswithwireless resources for physical
(PHY) layer and directly affects overall network performance. Traditional wireless
systems have no power adaptation. System-level energy-efficiency is determined by
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Fig. 1 Framework of EE based cross-layer resource allocation
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a set of PHY parameters. The performance of the system ought to be adjusted to
adapt the real user requirements (e.g. throughput and power consumption) and envi-
ronments (such as propagation and multipath channel model) to trade off energy-
efficiency and spectral efficiency. TheMAC layer ensures that wireless resources are
efficiently allocated to maximize network-wide performance metrics while main-
taining user quality-of-service (QoS) requirements. According to [15] two types of
access are discussed. In distributed access schemes, the MAC should be enhanced to
reduce the number of wasted transmissions that are corrupted by other user interfer-
ence or antenna elements, while in centralized access schemes, efficient scheduling
algorithms should exploit the variations across users to maximize overall energy-
efficiency of users in the network. From the Shannon capacity, energy-efficiency can
only be obtained at the cost of infinite or huge bandwidth and results in zero or very
low spectral efficiency.

The MAC layer can enhance energy efficiency using the following three method-
ologies [15].

• Energy can be saved inmobile devices by shutting down system components when
inactive. The MAC can enable inactive periods by scheduling shutdown intervals
according to buffer states, traffic requirements, and channel states.

• The MAC layer controls medium access to assure both individual QoS and net-
work fairness. In distributed access schemes, the MAC should be improved to
reduce the number of retransmissions; while in centralized access schemes, effi-
cient scheduling algorithms should exploit the channel and traffic variations across
users to maximize overall energy efficiency in the network.

• Power management at the MAC layer reduces the standby power by developing
tight coordination between users such that they can wake up precisely when they
need to transmit or receive data.

2.3 Load Adaptive Resource Management

To satisfy the users’ QoS requirements most current network dimensioning is peak
load oriented. As a matter of fact, the majority of the existing literatures [17–19]
demonstrated that everyday traffic loads at base stations change widely over time and
space. Therefore, a great deal of energy iswastedwhen the traffic load is low.Vendors
and operators realized this problem and acted upon this. For example, Alcatel-Lucent
proclaimed a new feature in their software upgrades called dynamic power save,
which is quoted to save 27% power consumption for BSs deployed by China Mobile
[20]. Energy-saving solutions through cell-size breathing and sleep modes, based on
traffic loads, were proposed by the OPERA-Net project [21].

In [21, 22], ameasured traffic patternwas analyzed enabling optimal power-saving
schemes using cell switch-off under a trapezoidal traffic pattern, where it is shown
that a 25–30% energy saving is feasible by merely switching off the active cells
during the periods of low traffic activity. Nevertheless, the impact of switch-off on
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coverage was not investigated. In [18], the authors investigated the notion of block-
ing probability requirement enabling a traffic-aware BS mode (active or sleeping)
switching algorithm. One minimum mode holding time was also recommended to
avoid frequent BS mode switching. It was demonstrated that changing the holding
time over a specified range will cause trivial performance change on either energy
saving or blocking probability [18]. The effect of the traffic mean and variance as
well as the BS density on the energy saving strategy with BS switching was exten-
sively studied in [19], which proved that energy savings will increase with the BS
density and the statistical ratio of the traffic load. In [23], they presented some possi-
ble approaches to establish energy consumption of the BS’s scale with the traffic load
across space, frequency and time domains. According to [24], joint reconfiguration
of the bandwidth and the number of antennas and carriers according to the traffic
load gained maximum energy saving. Similar energy-saving solutions based on user
load variations on the terminal side were described in [25].

2.4 Service Differentiation

Service differentiation mainly deals with the trade-off between energy consumption
and delay [26]. The trade-off between energy consumption and delay was exten-
sively studied in the literature for wired non-cellular network. For cellular wireless
networks, only few works had been done in the early systems (1G, 2G systems),
because only limited service types (mainly voice communications) were available.
However, the evolution of cellular systems provided the vehicle for more sophisti-
cated services and devices (smart phones, iPhone, and the blackberry among others).
To be precise, some applications, such as video conferencing, web-based seminars,
and video games, require real-time service; and other applications, such as email,
and downloading files for offline processing are delay tolerant services. Therefore,
it is useful to separate the types of wireless traffic and build the energy consumption
mechanism protocol with the traffic type.

Several researchers have targeted the efforts on the service latency of applications
to reduce the energy consumption in cellular networks. In [27], energy-efficient
power and rate control with delay QoS constraints using a game-theoretic approach
was presented. The demonstration was based on CDMA system. They translated
the delay constraint of a user into a lower bound on the user’s output SIR (signal-to-
interference ratio) requirement; afterwards the Pareto-dominant equilibrium solution
is derived. The delay performance of users at theNash equilibriumwas also analyzed.
Inspired bymobility-prediction-based transmission strategies,which are usually used
in delay tolerant networks, a store-carry-and forward (SCF), relay-aided cellular
architecture was proposed in [28, 29]. According to [24], in the SCF scheme, when
the application data is not delay prone, a user can first transmit the data to a mobile
relay (for instance, a vehicle) which conveys the message close to the BS, and then
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the mobile relay retransmits the data to the BS. Numerical results in [29] depicted
that, for delay insensitive services, a factor of more than 30 in energy savings can be
obtained by SCF compared to direct transmission.

3 Exploitation of Multi-user Diversity

The process of multiple users experiencing independent fading channels is known as
multi-user diversity (MUD). In an energy-efficient context, it turns out that the sum
capacity (sum of the simultaneous user capacities) is maximized if, for each time
instant, the user with the best energy-efficient channel gain is scheduled. The gain
achieved with such strategy can be defined as energy-efficient MUD gain. According
to [30, 31], the most feasible solution takes into account a power control law which
uses more transmit power for strong channels than weak channels. This solution is
the opposite to conventional power control which uses transmit power to compensate
weak channels.

A major problem for energy consumption multi-user diversity adaptation is how
to design heuristic algorithms that achieve the multi user diversity gain while ensur-
ing minimum energy consumption or increasing the QoS requirements using same
amount of power under realistic conditions.

4 Relay Transmission

Relaying is widely acknowledged as a means to improve capacity and coverage in
Wireless Broadband Networks [32]. The properties of the relay concept and the
benefits that can be expected are as follows:

• Radio coverage can be improved in scenarios with high shadowing (e.g. bad urban
or indoor scenarios). This allows to significantly increase the QoS of users in areas
that are heavily shadowed. The extension of the radio range of BS by means of
relay allows operating much larger cells with broadband radio coverage than with
a conventional one-hop system.

• Using relaying can reduce the overall system-level energy consumption and pave
the way to public acceptance, while in the case of mobile terminals it has the
potential to increase battery lifetime.

• The fixed relay concept provides the possibility of installing temporary coverage in
areas where permanent coverage is not needed (e.g. construction sites, conference-
/meeting-rooms) or where a fast initial network roll-out has to be performed.

• The wireless connection of the relay to the fixed network substantially reduces
infrastructure costs, which in most cases are the dominant part of the roll-out and
operational costs; relay only requires amain supply. In cases where nomain supply
is available, relays could rely on solar power supply. A relay cellular network is
illustrated in Fig. 2.
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Fig. 2 Relay cellular
network

Macro eNB Relay UE

A standard-conformant integration of the relays into any MAC frame based system
would allow for a stepwise enhancement of the coverage region of an already installed
system. Investments in new BS can be saved, and any hardware product complying
with a wireless MAC frame based standard can be used without modifications.

An application of relay technology is the LTE-Advanced system. LTE-Advanced
promises to provide improved performance with the aim of achieving high speed,
high-capacity communication, and service capabilities beyond LTE. LTE Release-
10 includes all the features of Rel-8/9 and several new ones, the most important of
which are: carrier aggregation enhancedmulti-antenna support, improved support for
heterogeneous deployments, and relaying [6]. In LTE-Advanced, an important issue
in addition to achieving high-speed and capacity, is to provide greater throughput for
cell-edge users which could be accomplished by employing relay technology. Few
of the main reasons for choosing relay technology for the LTE-Advanced system are
given as follows.

• Lack of fairness: In a conventional cellular network (CCN), a base station (BS)
controls a number of mobile stations (MS) within its own coverage area and all the
terminals communicate directlywith theBS. The current conventional deployment
of cellular systems exhibit certain inherent problems such as low signal-to-noise-
ratio (SNR) at the cell edge, lack of fairness, coverage holes that exist due to
shadowing and non-line-of-sight (NLOS) connections.

• Energy consumption: TheCCNhas been primarily designed tomeet the challenges
of service quality. More recently, there is a growing focus on the importance of
energy consumption, both from an operational expenditure (OPEX) point of view
and froma climate change perspective.Over the past fewyears, the communication
industry has pledged to reduce carbon emissions of wireless networks by up to
50% by 2020 [33]. Minimizing energy consumption in LTE-Advanced network
has been at the forefront of system design, and architectural approaches which
recently have been proposed include femtocells, advanced spectrummanagement,
efficient power amplifier, antenna technologies, etc.

However, using relay technology can amplify the energy gain further. It can be con-
sidered as an extension of the specific base station/eNB, and it uses the base-station
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air interface resources; therefore it does not require a separate backhaul connection
while the femtocell and picocell act as separated base station using specific resources
and hence require a separate backhaul connection. Picocell and Femtocell differ from
each other in power range and capacity level [34].

Most existing work concentrates on single-point-to-single-point transmission;
how to allocate resources inmulti-point-to-single-point ormulti-point-to-multi-point
transmission, as in the multi-cell case needs further attention. Incremental time and
power may be used for resource allocation during relay transmission. How to min-
imize the total energy consumption to ensure greater energy-efficiency taking the
additional overhead into account is not known succinctly.

5 Energy Analysis: SISO Versus MIMO with Packet
Scheduling

Han et al. analyzed and demonstrated energy-efficiency of SISO andMIMO [35] and
use LTE standpoint as a case study. LTE already specified the Alamouti-based [36]
space-frequency block coding (SFBC) technique for MIMO. They also considered
spatial multiplexing (SM) as another MIMO approach. In SM, independent symbols
are transmitted over different antennas as well as over different symbol times. They
described for specific data rates, the energy-efficiency of SISO and MIMO schemes
employing different levels of modulation order and coding rates. In [35], the authors
described two types of energy analysis in the LTE system. These include:

1. Energy efficiency performance evaluation without considering overhead.
2. Energy efficiency performance evaluation with overhead.

The power level of the overhead shows a significant impact on the energy con-
sumption ratio (ECR) of all schemes at low spectral efficiency range as the power
required by transmitting user data is relatively low. As a result, the ECR of all
schemes for low spectral efficiency transmission is significantly increased. These
are the stepping stone of the energy efficiency analysis of SISO and MIMO.

Some of the open issues for multi-user and multi cell environments in MIMO
still require attention, such as how to utilize the spatial resource to maximize EE
while suppressing interference, since the existence of inter user and inter cell inter-
ference complicates the design of energy-efficient MIMO systems. Effective but
simple algorithms need to be developed to obtain a trade-off between complexity
and performance for MIMO-OFDMA system.

5.1 Energy Efficiency in SoA Packet Scheduling Techniques

The three major SoA resource scheduling algorithms which deal with downlink
packet transmission are here discussed herein, these include maximum carrier-
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to-interference ratio (MCI) [37], proportional fairness (PF) [38] and round robin
(RR) [39].

In the MCI method the users are scheduled to use radio resources based on maxi-
mum channel gain. This scheme is straight forward, in the sense that users are ranked
according to their experienced channel gain. In other words, the user with the best
channel quality indicator (CQI) has the highest ranking and is scheduled to utilize
the physical resource blocks (PRB) for the specific time. The user with the next best
CQI condition is then scheduled to utilize PRBs and so forth. The ranking ‘U ’ can
be found using the following equation:

U = arg max
u

(
βu,m(t)

)
for PRB m (1)

where β is the vector of experienced channel gain of UE, u, for one PRB, m, in
time t . The flowchart of the MCI scheduling is depicted in Fig. 3.

In order to perform scheduling, terminals send (in uplink) CQI to the BS. Basi-
cally in the downlink, the BS transmits the reference signal (downlink pilot) to the
terminals. These reference signals are used by the UE for measuring the CQI; a high
value for CQI means high quality channel condition. We should keep in mind that
CQI is reported per PRB. MCI scheduling [41] can increase the cell capacity at the
expense of fairness. For conventional cellular networks exploiting this scheduling
strategy, terminals located far from the base station (i.e. cell-edge users) are unlikely
to be scheduled.

Fig. 3 MCI packet
scheduling technique [40] Start

Rank CQIs of the 
user in the PRB

Highest CQI

Schedule User in 
the PRB

No

Yes
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In the PF algorithm, for PRBm, the highest ranked user u′ is scheduled to transmit
according to the following:

u′ = argmax
u

(
Ru,m(t)

Tu (t)

)
(2)

where, Ru,m(t) denotes the instantaneous achievable rate at PRB m and Tu(t) is the
user’s average throughput. The average throughput, Tu(t), is updated for each new
time interval (after all PRBs are allocated).

This scheduler aims to combine throughput efficiency with long term resource-
fairness. Practically, this scheduling policy provides the same fraction of resources
for all the users in the long-term perspective. However, in each time-instance users
are prioritized based on their normalized channel condition. The normalization factor
is the past profile of each user, i.e. the exponential averaged data rate. As in Eq. (2),
the numerator of this scheduling metric is in favor of the best-channel users, while
the denominator tries to balance resource-fairness by penalizing the users with good
past profile [39]. PF is throughput efficient and provides long term fairness through
equalizing the resources allocated to different users in the system. Figure4 depicts
the flowchart of the PF algorithm. This policy does not provide any explicit bound
on the QoS requirement of different users in the system [39].

In RR, the radio resources i.e., PRBs, are allocated to UEs in a round robin
fashion irrespective of channel condition. The first opted UE is served for a specific
time period and then these resources are revoked back and assigned to the next user
for another time period. The previously served user is placed at the end of the waiting
queue so that it can be served with radio resources in the next round. Newly arriving
requests are also placed at the tail of the waiting queue. This scheduling continues
in the same manner [39]. Thus every user is equally scheduled without taking the
CQI into account as illustrated in Fig. 5. The principal advantage of Round Robin
scheduling is the guarantee of fairness for all users, and it is easily implemented.
Since Round Robin does not take the channel quality information into account, it
results in low user throughput.

Fig. 4 PF packet scheduling
technique [42]
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Fig. 5 RR packet
scheduling technique [40] Start

Schedule the first 
user in the PRB

All users 
scheduled

No

Yes

Schedule the next 
user in the PRB

In [43], the performance of an LTE system with various packet scheduling algo-
rithms was studied from an energy-efficiency point of view. In this work, the perfor-
mance of various classical scheduling algorithms such as RR, PF and MCI was used
as a basis for the assessment of further innovative energy aware algorithms. They
also analyze gains in terms of the energy consumption index (with respect to Round
Robin scheduler). Figure6 presents a benchmark of different packet scheduling in
terms of EE in LTE system.

The paper [45] presents a link level analysis of the rate and energy-efficiency
performance of the LTE downlink considering the unitary codebook based precoding
scheme. The authors consider a multi-user environment to improve the performance
gain by exploiting multi-user diversity in the time, frequency and space domains, and
translating the gains to an energy reduction at the base station. Several existing and
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novel dynamic resource allocation algorithms were studied, such as PF, FCA (Fair
Cluster Algorithm), RSSA (Received Strength Scheduling Algorithm) and EG-DA
(Equal Gain Dynamic Allocation) among others, for the LTE system. The authors
mainly focus on the rate and power consumption performance of the 3GPP LTE-
OFDMA downlink system employing SU-MIMO. Both of the above mentioned
works employ standard transmission scheme using no coordination or cooperation
between cells.

On the other hand, someworks have already analyzed CoMP concepts. According
to [46], a gain in the downlink cell-edge throughput aswell as cell average throughput
can be achieved in LTE-Advanced networkwith the CoMP transmission architecture.
It refers to the possibility to coordinate the downlink transmission towards the same
user adopting multiple base stations.

Similarly, our works in [44, 47] show important benchmark EE analysis of dif-
ferent CoMP techniques. As presented in Fig. 7, the EE increases with the number
of users, which is due to multi user diversity, and is more improved in techniques
that exploit a larger number of users with more antenna diversity.

To clarify this, Joint Transmission (JT) and Dynamic Point Selection (DPS) are
more energy-efficient when compared to Coordinated Beamforming (CB) due to
greater antenna diversity of coherent transmission of multi antenna and base stations,
that is muted in the case of DPS. Both these techniques outperform CB thanks to
their capability to transmit more reliable bits per unit of energy consumed. From our
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own simulations, we observed that until a certain number of users are reached, EE
is virtually similar for both CB and DPS. Increasing the number of users beyond,
widens the EE gap between CB and DPS.

Figure8 shows the optimal EE for different scheduling policies in various CoMP
modes, where the number of users is 20. It is shown that RR in CBmode has the least
optimal EE. We also observe that the optimal EE value is increasing with CB, JT
and DPS, respectively, irrespective of scheduling. Transmitting only one transmitter
in each transmission time interval (TTI) improves the EE of the DPS.

The benchmark results above provides us the impetus to analyze three packet
scheduling methods in terms of EE for different CoMP techniques that include JT,
DPS, and CB.

5.2 Energy Efficiency Based Coordinated RRM for Multi-cell
Systems

Here we deal with coordinated RRM based on multi-cell scheduling. Wireless com-
munication networks are generally deployed and adapted according to the average
expected traffic load, by carefully designing the cell radius and the reuse factor.
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However, this static approach underperforms and fails to reach the accepted limits
in the context of spectral efficiency, in particular at low reuse rates; since there is
no mechanism in place for coordinating the sector bandwidth allocation to match
the instantaneous spatial distribution of the users, their QoS requirements, and link
quality.

In general, mobile user distribution within a cell and their channel condition are
responsible for the reuse factor selection. Thus, using a single reuse factor within
a cell is not particularly efficient. For instance, users that are close to their serving
BS can reuse resources since interference is low, whereas cell-edge users, which
are close to other sectors, should rely on an exclusive allocation of spectrum policy.
The scheduling policy, which determines the users to be served, impacts on the suit-
ability of the reuse factor and, therefore, the reuse factor determination should be
included in the scheduling process. The study in [48] demonstrated a large potential
for improvement in terms of spectral efficiency, but at the cost of increased informa-
tion overhead for coordinating sectors of adjacent antennas. However, it remains low
in comparison with the CoMP approach where full cooperation is utilized and, thus,
it can be seen as a practical approach. In EARTH [48], one coordinated RRM was
proposed for uplink scenario from the point of view of energy-efficiency. However,
nothing was done for downlink multi-cell scenario which is still an open issue.

6 Interference Management for Heterogeneous Networks

Heterogeneous networks phenomenon was proposed in LTE-Advanced framework
as a means to increase the spectral efficiency [49], and provide seamless coverage.
According to [50], a multi-tier network topology appears to increase system perfor-
mance due to the achievable radio link performance, providing a system-level gain
close to the theoretical limit of 3G. In this strategy, macro base stations are used
to provide blanket coverage, on the other hand, small low power base stations are
introduced to eliminate the coverage holes and at the same time increase the system
capacity in hotspots [49]. Recently these heterogeneous networks are investigated to
increase the energy-efficiency of the network, however this new scenarios requires
more stringent interference management.

The Interference problem can arise in difference forms. One type of interfer-
ence is defined as intra-cell interference, which is defined as the interference from
users within the same cell, whereas interference emanating from other cells refers to
inter-cell interference; both of which lead to reduced system coverage and degrade
the delivered QoS. Sometimes we misinterpret fading and interference. Fading is a
phenomenon that is created by the natural random process from different copies of
the signal after traveling through a time-variant multipath environment. In compari-
son, interference is mainly caused by artificially created signals that coexist with the
desired signal along the same physical dimensions: code, frequency, space and time.

The term interference cancellation is commonly used in the literature for signal
processing applications that exploit algorithms in which the “interference signals”
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can be estimated and emulated in a reliable way, and canceled from the desired
signal [51]. Various kinds of interference are present depending on the type of com-
munication systems, the source of interference, and who is being subject to such
interference. For instance, in WLAN [52], the interference occurs when neighboring
systems work in adjacent, or in the same frequency bands. This type of interfer-
ence is called inter-system interference; and, as expected, its reduction or complete
mitigation implies using complex and expensive devices.

One of the best known types of interference in wireless channels arises from
transmitting a finite alphabet symbol through a multipath or band-limited channel,
which is called inter-symbol interference [51]. Intersymbol interference had been the
subject of substantial research efforts during the last decades or so. As another exam-
ple, OFDM systems, experience inter-carrier interference that is caused by carrier
frequency offset and phase noise due to the imperfect nature of the transmitter and
receiver ends, thus causing the signal at a particular subcarrier to being affected by
the superposition of several other subcarriers. A cyclic prefix is designed to combat
this [53], different users might be assigned different subcarriers when OFDM tech-
nology is used as the multiple access technique, (i.e. OFDMA), hence, intercarrier
interference is also known as inter-user or multiple access interference.

One of the main objectives of energy-efficient BS cooperation is to ensure that
all the energy that is spent by the base stations is fully used to transport data [48].
In EARTH they demonstrated that interference can be seen as a waste of energy
if it is uncontrolled. Several methods were proposed for BS cooperation using the
backhaul links [48]. Depending on the capacity of these links, the cooperation can
be implemented in the data plane by using joint or distributed processing algorithms,
or in the control plane by coordinating the allocated resources for the users that
are impacted by the inter-BS interference. They denoted a mechanism based on
fractional frequency reuse (FFR) that exploits the reuse planning strategy. It consists
in adjusting dynamically the parameters of the FFR strategy depending on the density
of the served users. Still this system needs more research from an energy-efficiency
perspective.

Reference [54] describes the femto cellular networks from both the techni-
cal and business aspects. They also emphasized the challenges of implementing
these types of networks and focused on some potential research opportunities. It is
indicated in [54] that femto cellular networks must deal with additional timing and
synchronization, as well as interference management issues, which result in addi-
tional signaling overhead and potentially greater energy consumption. Thus, how to
design and manage energy-efficient femto cellular networks is still an open research
issue. Reference [55] emphasized one major problem for future research regarding
the interference of heterogeneous networks. How to manage interference and design
algorithms with respect to EE for heterogeneous networks. Since there will be more
transmitter sources and access points with heterogeneous deployment, there is the
potential greater interference and more frequent handoffs.
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7 Conclusions

In this chapter, we provided the state-of-the-art analysis on the current energy-
efficient approaches for 4G/OFDMA systems. We provided a brief overview of the
key engineering trade-offs in energy-efficient RRM design and then summarized
existing fundamental works and advanced techniques to promote energy-efficiency
for OFDMA based cellular networks. The discussions and the results in this chapter
will act as benchmark for comparison against the energy-efficient approaches to be
developed in subsequent chapters.
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Energy Harvesting Oriented Transceiver
Design for 5G Networks

Marco Maso

Abstract One of the biggest challenges for future wireless and cellular network
deployment is to achieve the expected overall spectral efficiency enhancement, all
the while minimizing both the additional capital expenditure for wireless opera-
tors and the carbon footprint of the information and communication technology
infrastructure. In this context, it appears more and more clear that energy efficiency
will be one of the key metrics to assess the performance of the future network.
Thus, it is of utmost importance that both wired and wireless devices are designed
for optimal energy efficiency, while satisfying the target performance for future
networks in terms of quality of service. In this chapter, we start by providing an
overview of this problem and discuss its implications for both the network and the
end user. Along similar lines, we discuss the potential of a very promising approach
to increase the energy efficiency of the network that has recently gained momen-
tum, i.e., energy harvesting. In particular, we focus our attention on two of the most
intriguing new technologies to provide energy to mobile devices, such as the so–
called wireless power transfer and simultaneous information and power transfer.
We introduce two wireless–empowered transceiver designs that can harvest energy
from the received signals to increase their energy efficiency. More specifically, we
first describe an orthogonal frequency division multiplexing transceiver capable of
harvesting in–band interference, discussing its potential as a means of realizing self–
sustainable transmissions and studying its performance. Subsequently, we propose
a self–interference harvesting full–duplex radio architecture and shows that it can
deliver both spectral and energy efficiency gains over its state–of–the–art counter-
parts. Our results confirm both the lack of optimization of the current technology in
terms of energy efficiency and the potential of the proposed approaches to increase
it. Naturally, our findings are far from being conclusive, and lot is yet to be done.
However, they offer a set of interesting arguments to substantiate the idea of energy
harvesting oriented transceiver design as a means to realize more energy efficient
future wireless and cellular networks.
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1 Introduction

The deployment of every newgeneration of cellular networks is typically preceded by
both an analysis of the issues affecting the current generation and the identification
of new technological challenges. In this context, a question about the paradigm
to adopt to shape the transition from the current to the next generation typically
arises: should the next step be an evolution or a revolution? The importance of this
question is extremely evident at the dawn of the development of the coming Fifth
generation (5G) network [43]. In this context, one of the biggest concerns for both the
telecommunication industry and the operators is related to the energy efficiency of
future networks. The reason is very simple. Let us take a step back for a moment and
focus on the world’s information and communication technology (ICT) ecosystem
as a whole.

A mid–range estimate of its annual electricity consumption is around 1500TWh.
In order to contextualize this impressive figure, it is sufficient to consider that this
quantity is actually equal to all the electric generation of Japan and Germany com-
bined, or alternatively to the consumption the global illumination system in 1985 [40].
Aa a matter of fact, ICT approaches 10% of the current world electricity generation,
or in other terms 150% of what is generated for global aviation.

The penetration of new technologies such as cloud computing, internet of things,
ubiquitous mobile internet and new devices such as tablets, smart phones or smart
watches, in all areas of human activity, will keep increasing at very high pace in
the coming years. The trend that will be experienced by ICT’s energy consumption
is not expected to be different. A constant annual increase will be ineluctable if
no adequate countermeasures are identified and implemented in the process. In this
context, it is evident that energy efficiency will be one of the key metrics to assess
the performance of future networks. Designing more energy efficient information
acquisition, processing and distribution strategies/algorithms for wired and wireless
networks has recently become a major challenge for researchers.

2 Why Energy Efficiency?

Several tests have been performed in the last years in order to quantify the contribution
of wireless networks to the energy efficiency (or rather inefficiency) of ICT [45]. The
results have been striking. Energy consumption in mobile networks is dominated by
the radio access network (RAN), which accounts for more than 50% of the total
consumed energy by ICT [20, 33]. The objective for 5G networks is to significantly
reduce this figure. A reduction of 90% in network energy usage is expected and up to
ten year battery life for low power machine–type devices is envisioned [51].

In this scenario, all the generations of the next network technology should be char-
acterized by a special attention to energy consumption reduction in order to improve
their sustainability. However, at present it is not clear how a net reduction of the power
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consumption could be achieved. Intuitively, this requirement is opposite to 5Gmajor
requirements on data rate [51]. In fact, the next network technology will possibly
make use of larger bandwidths and antenna arrays, higher carrier frequencies, and
greater complexity in terms of air interface and waveform design (e.g., filter–bank
based [14]). This could result in the deployment of more power hungry components
on top of pre–existing network equipment in an overlay fashion.

Accurate network planning will clearly play an important role in the process
of network energy consumption reduction. The current trend in this context is the
so–called network densification. According to this paradigm, the overall energy con-
sumption of the cellular networks could be greatly reduced, all the while increasing
the network spectral efficiency, if the average distance between the mobile user and
the base station (BS) is reduced [19]. The rationale behind this argument is that if
a massive deployment of BS were to be performed, then their size and power con-
sumption could be made substantially smaller as compared to a legacy macro–BS.
Unsurprisingly, such small form factor BS, commonly called small–cells, are already
deployed by operators worldwide [19].

Now, consider the power consumption of a current generation small-cell, i.e.,
around 6–10W. As previously said, the population of small-cells is forecast to grow
significantly in the coming years, i.e., their number should increase up to 100millions
by 2020 [13]. Assume now that the no new technologies were to be developed to
substantially reduce the power consumption of these devices. Thus, the 100 million
small-cells could consume up to 4.4TWh in 2020, de facto increasing the overall
energy consumption of the existing BS infrastructure by 5%, if no suitable counter-
measure were to be adopted [25]. Thus, we cannot expect to achieve the envisioned
network energy consumption reduction only by performing an accurate network
planning.

The aforementioned considerations sketch a rather clear picture. The identification
and development of novel paradigm–shifting technologies is by now paramount to
achieve the 5G target performance, and cannot be postponed. The importance of this
aspect is evident to researchers of both academic and industrial background. Efforts
in this direction are already being pursed within standards organizations. Cell size
adjustment schemes, power saving protocols, massive deployment of relays, use of
renewable energy sources are just some of the examples of solutions whose impact
on both spectral and energy efficiency of the network as a whole is currently under
evaluation.

2.1 The Impact of Energy Efficiency on the User Experience

It is a common belief that a more efficient network energy management would not
bring benefits only in terms of energy consumption of the RAN. Its potential and
effects can actually be seen at many levels. For instance, the main actors in a cellular
network, i.e., the mobile users, could certainly enjoy several benefits if their devices
were to operate with a higher energy efficiency. This could offer the possibility for
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both new business opportunities for the operators, e.g., thanks to a larger battery
lifetime that could keep each device active for a longer time, and a better end user
experience.

In an era in which the interactivity offered by the most popular wireless applica-
tions is constantly coupled with a higher power consumption, the limited lifetime of
current generation batteries is a crucial limitation for the mobile users [30]. Unfortu-
nately, the capacity of batteries for mobile devices increases at a much slower pace
as compared to the increasing trend of the energy requirements with respect to the
previous network generations. This energy bottleneck constrains the performance of
mobile user equipment, inducing a detriment in the overall user experience [23]. In
this context, the finite, and possibly short, lifetime of themobile devices is a hindering
factor for future large-scale deployments of highly performing 5G networks.

The development of strategies to cope with the aforementioned problem is a
prominent challenge for researchers in thewireless communication community. Very
active research lines are pushing towards the development of the new techniques to
extend the battery life of wireless devices. One of the main difficulties faced by
researchers in this domain is to achieve a device lifetime enhancement, without
increasing the size of the battery. In fact, a larger battery would necessarily reduce
both the portability and the commercial value of themobile device. This is not always
desirable and very often cannot be afforded by manufacturers. The ideal goal in this
sense, would be to design every aspect of the network, from the architecture to the
end user device, in order to achieve a self–sustainable system that can maintain itself
by independent effort.

3 Energy Harvesting

A very promising approach to move away from the energy bottleneck impasse advo-
cates the adoption of harvesting techniques at the mobile devices. The rationale
behind this approach is based on the observation that our environment provides a
plethora of virtually cost–free sources of energy. In general, energy can be transferred
and harvested in many ways. Notable examples of sources of energy to harvest are:

• Vibrational: energy can be harvested by exploiting the oscillation of a mass reso-
nantly tuned to the environment’s dominant mechanical frequency [44]. Interest-
ingly, mechanical stimuli of different frequency and amplitude can be experienced
in many situations.

• Photovoltaic: solar energy can be harvested both indoor and outdoor, even though
with different efficiencies, and offers a virtually inexhaustible sources of power
with little or no adverse environmental effects.

• Thermoelectric: energy canbe scavengedbyexploiting the temperature difference
between two objects or environments. In fact, a thermal gradient formed between
two dissimilar conductors produces a voltage. The fundamental limit to the energy
obtained from a temperature difference is given by the so–called Carnot cycle [7].
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• Wind: a green and renewable source of energy is provided by wind. The process to
harvest energy from the wind is typically based on electromagnetic, piezoelectric
and triboelectric mechanisms [41, 50, 61]

These sources are already exploited to scavenge power1 for human activities, hence
it seems legit to envision their exploitation in the context of wireless communica-
tions as well. Recent advancements in energy harvesting techniques offer a means
to achieve this goal. This is the result of decades of research efforts, which made
energy harvesting techniques grow from long–established concepts into devices for
powering ubiquitously deployed sensor networks and mobile electronics [44].

3.1 Wireless Power Transfer

A crescent attention has been lately devoted in the wireless communications com-
munity to another potential source of energy to harvest, i.e., radio frequency (RF)
signals. The intuition behind this interest is rather simple. Consider the current wire-
less network, populated by massively deployed radio transmitters which typically
broadcast a significant amount of RF energy to remote devices. If we forget for a
moment their primary role in the network and consider their physical behavior, we
clearly see that they actually represent an abundance of possible sources of energy,
available for harvesting. Thus, although commonly seen only as information carriers,
it is legit to wonder if the role of RF signals could be enlarged to encompass a new
dimension and act as energy bearers for the mobile devices. This intuition dates back
to Nikola Tesla, who first dreamed of electrical equipments ubiquitously supplied
by wireless power or ambient energy, by means of an out–and–out wireless power
transfer (WPT) [35].

Technological limitations postponed the implementation of WPT for several
decades, yet recent breakthroughs have shown that its actual realization is more than
just a dream. This allowed to open new research fronts for both the electronics and
wireless communications research community.Nowadays,WPTcanbeperformedby
means of several technologically different techniques. The main difference between
the possible WPT techniques lies in the nature of the propagation of the electromag-
netic wave whose energy is supposed to be harvested, i.e., non–radiative (i.e., in the
near–field region) and radiative (in the far–field region). As a matter of fact, the three
most prominent solutions to realize a WPT are the following:

• Magnetic resonance coupling: this technique exploits the non–radiative propaga-
tion of the wave in the near–field region and allows an effective reach ranging from
few centimeters to few meters. It is suitable for plug–in hybrid electric vehicles
(PHEV) and cell phone charging. Its efficiency ranges from around 30% to around

1The words power and energy are used interchangeably in this chapter, despite their conceptual
difference, for the sake of simplicity.
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90% for distance between the transmitter and the receiver varying between 0.75
to 2.25m [29].

• Resonant inductive coupling: this technique exploits the non–radiative propa-
gation of the wave in the near–field region and allows an effective reach ranging
from few millimeters to few centimeters. It is suitable for cell phone charging,
contact–less smart cards and passive RF identification (RFID) cards. Its efficiency
ranges from around 6% to around 90% for wave frequency between 10KHz and
30MHz, respectively [48].

• RF energy transfer: this technique exploits the radiative propagation of the wave
in the far–field region and allows an effective reach ranging from several meters to
several kilometers. It is suitable for wireless body andwireless sensor networks. Its
efficiency ranges from around 0.4% to over 50% for input power varying between
−40 and −5dBm, respectively [39].

The growing maturity of this technology opens the road for the definition of new
scenarios and paradigms for energy management in cellular and, in general, wireless
networks. This could lead to the deployment of wireless powered communication
networks (WPCN), in which the wireless nodes are supplied with wireless energy
harvesting and transfer capability [24]. In such a context,we could envision a scenario
where a wireless sensor can harvest energy from RF signals coming from ambient
sources (e.g., cellular BS and TV towers), or end users could replenish the battery of
their smart phones automatically,when in the proximity of awireless charging facility
(e.g., in a coffee shop), and without physical connections. In this context, harvesting
ambient RF energy seems has the potential of yielding not only a larger energy
efficiency but also longer network lifetime. Several studies have been performed to
assess its merit as compared to alternative forms of harvesting. Remarkably, recent
measurements campaigns have demonstrated for the first time not only the practical
feasibility of exploiting existing freely available sources of RF energy but also that
RF energy harvesting can indeed represent a competitive solution within urban and
semi–urban environments [47].

3.2 Simultaneous Information and Wireless Power Transfer

Many ambitious ideas and visions for the application of WPT to wireless networks
have been proposed in the research community. In this context, the idea of using
the same electromagnetic field to deliver both information and energy to the end
users/devices, realizing the so–called simultaneous wireless information and power
transfer (SWIPT), is certainly one of the most intriguing applications [16, 55]. From
a practical perspective, the energy transfer within the SWIPT falls into the category
of the RF energy transfer. In this context, the energy is captured by the receiver
and converted into functional direct current (DC) voltage by means of a specialized
circuit directly connected to a receiving antenna, called a rectenna [6]. This process
is generally referred to as RF to direct current (RF–to–DC) conversion. The most
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advancedmodels of rectenna can be adopted for both indoor and outdoor applications
and are able to deliver a remarkable RF–to–DC conversion efficiency, e.g., up to
almost 80% for certain configurations, [2, 49, 49, 56, 58].

By construction, SWIPT could enable both a simultaneous and efficient on-
demand delivery of information and energy to the wireless devices in the network.
This would result in a longer battery lifetime for the devices, and in a lower overall
net power consumption for the network. For these reasons, SWIPT is considered
an extremely appealing approach to tackle the problem of energy-constrained wire-
less networks. Information and energy flows can be transported within a SWIPT
according to two paradigms:

1. Orthogonal: the two flows are explicitly separated in one or more domains by
the transmitter, e.g., time and/or frequency.

2. Parallel: the two flows need to be separated by the terminal by means of specific
approaches [38, 63]:

• Power splitting (PS): the terminal splits the received signal into two streams of
different power, bymeans of an adjustable power divider [59, 64] for decoding
information and harvesting energy separately [65];

• Time switching (TS): the terminal switches between information decoding and
RF energy harvesting phase according to static or dynamic patterns [65].

In practice, each device in a SWIPT-based setting would have at least two options to
mitigate the depletion speed of its battery:

• Receiving both energy and information from another device;
• Recycling resources used in the transmission with other devices.

Despite its promises, some important technological issues still need to be addressed
in order for the SWIPT to become a viable alternative for future wireless network
deployment. Consider for instance the nature of the two transfers involved in the
SWIPT. The amount of information conveyed by an RF signal depends on the ability
of the receiver to correctly detect its variations. The extent of this ability hinges on
the ratio between the power of the signal and the power of all the disturbances that
affect its decoding, i.e., the so–called signal to interference plus noise ratio (SINR).
In practice, the information rate of a signal could be very high even if the power
of the latter was very low. The same is not true for the amount of energy that can
be extracted from an RF signal, which uniquely depends on its magnitude. Thus, a
trade–off exists between the amount of transferred energy and the information rate
in a SWIPT, and the “rate” of the two transfers cannot be maximized at the same
time.

A direct consequence of the previous observations is that an effective implemen-
tation of SWIPT will not be possible in the future, unless current wireless networks
were to be redesigned.Accordingly,many research issues related to the design, analy-
sis, and optimization of architectures and protocols for SWIPT–based networks arise
in this context. In this regards, examples of relevant topics include:
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• Modeling and analysis of large scale and relay–based energy harvesting networks
(e.g., multi–tier cellular networks);

• Optimization of the harvesting time for the devices;
• Definition of optimal scheduling policies for users data transmission and energy
harvesting;

• Design of energy cooperation strategies among harvesting devices;
• Design and optimization of self–sustainable transmissions and networks;
• Novel wireless–empowered transceiver architectures.

Remarkably, they are all already matter of intense both academic and industrial
research [60].

4 Interference Harvesting for Energy Efficiency

The full potential of WPT cannot be unveiled if we restrain our attention only to
SWIPT. As previously discussed, an inherent feature of dense and heterogeneous
networks is the likely presence of a plethora of RF signals, occupying large por-
tions of the spectrum. Such undesired signals are usually seen by mobile devices as
interference to mitigate. However, these signals may provide an abundance of free
resources, in the form of in–band or out–of–band RF energy, i.e., present inside
or outside the band occupied by the useful signal, respectively, that is wasted if
unharvested. For instance, a harvesting device capable of sensing the spectrum and
reconfiguring both its RF chain and antenna for the optimum voltage standing wave
ratio (VSWR) could effectively harvest out–of–band interference and prolong its
lifetime [58]. In this case, the harvesting would be simplified by the opportunistic
approach to spectrum access and usage that provides an explicit separation between
the useful and interference signal.

Unfortunately, the approaches developed for out–of–band interference harvesting
cannot be directly extended to the in–band case, where the useful and interference
signal coexist in the same band. Interestingly, strategies to realize this harvesting
are already subjects of current research [31, 36–38]. In particular, recent efforts in
the direction of self–sustainability, i.e., a condition in which each wireless device
receives from the BS both the information and the energy to retrieve it, have studied
this aspect for different network configurations and proposed the design of novel
wireless–empowered transceivers, obtaining encouraging results [36–38]. In this
context, in–band interference harvesting may actually be a key factor for realizing
self–sustainable transmissions in 5G networks.

4.1 Wireless–empowered Transceiver for Block
Transmissions

As previously said, in–band interference harvesting is a challenging process due
to the coexistence of both interference and useful signal in the same band. Latest
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communication standards, often based upon physical–layer strategies known as
block–transmission schemes, may offer a means to circumvent this problem. In these
strategies, the transmitted signal is constructed as a block with two sections: (1) a
useful signal component, and (2) a redundant signal, e.g., prepended in form of a
cyclic prefix (CP). Themain purpose of this redundancy is to combat the self–induced
in–band inter–block interference (IBI) and inter–symbol interference (ISI) that affect
the received signal. In particular, the CP is the only portion of such signal affected by
IBI at the receiver. This entails a neat separation between the self–induced in–band
interference and the useful signal. Accordingly, the structure of the received block
can be exploited to harvest the interference, as follows.

Let us first focus on the receiver and take a classic orthogonal frequency division
multiplexing (OFDM) reception as a reference model. After the time and frequency
synchronization of the received signal, the CP of each block is discarded and its
content and nature typically neglected. Now, consider a receiver architecture such as
the one in Fig. 1. Therein, the CP removal element used in the legacy OFDM receiver
is substituted by a CP retrieval element and an energy harvester (EH). Furthermore,
we note that the dashed gray lines are just symbolical illustration of the interaction
between the energy harvester and the digital signal processing (DSP) blocks of the
OFDM receiver. In this sense, they are meant to represent the additional energy
that can be used by the receiver to operate the DSP blocks, obtained as a result
of the harvesting operation. An important prerequisite for the OFDM interference
harvesting receiver to correctly work is the absence of sampling during the down–
conversion of the received signal in the RF chain. This ensures that the input signal
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to the receiver (RX) chain is still in analogue form. This way the EH could operate
on a signal that still carries its energy.

4.1.1 CP Retrieval Element

We first focus on the CP retrieval element, which has to provide the following
functionalities:

1. Analog–to–digital conversion (ADC): this functionality serves a two–fold pur-
pose. In practice, it is useful both to identify the position of the CP within a
received frame and to sample the useful part of the received signal once the CP
has been recovered in analogue form.Accordingly, since the state–of–the–art tim-
ing synchronization algorithms operate on digital signals, first the ADC samples
the received signal until the first useful frame is identified. Subsequently, it sam-
ples only the portion of the signal corresponding to its useful part, in order to
obtain a digital signal on which the OFDM DSP blocks can operate.

2. Timing synchronization: this functionality is necessary to identify both the
beginning of the frame and the portion of the latter corresponding to the CP of
each OFDM symbol. Without this operations it would be impossible to provide
an analogue version of the CP to the EH.

3. Frequency synchronization: this functionality is fundamental to preserve the
orthogonality of the sub–carriers in the OFDM system. Its main role is to esti-
mate the carrier frequency offset (CFO) and compensate it, such that inter–carrier
interference (ICI) does not arise during the subsequent OFDM DSP. As for the
timing synchronization, it should be noted that the frequency synchronization
algorithms operate on digital signals. Consequently, this operation can be per-
formed only after the ADC.

4. Cyclic prefix recovery: this functionality requires the signal to be in analogue
form. In practice, the CP is recovered after the first sampling performed by the
ADC, i.e., once the timing synchronization has been performed and the position of
the CP within the received frame can be deterministically identified. As a matter
of fact, the CP recovery operation can be performed by means of a controllable
and adjustable signal splitter and an appropriately dimensioned buffer.

4.1.2 Energy Harvester

Switching our focus to the EH, we start by observing that in general the performance
of a any EH can be quantitatively characterized by its energy conversion efficiency
η ∈ [0, 1]. Now, if we focus on the state–of–the–art research and manufacturing of
RF EH, we see that very technologically advanced and highly performing composite
components are available. In practice, state–of–the–art devices are already able to
deliver a remarkable conversion efficiency, i.e., η > 50%, if appropriately tuned and
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if the input power of the signal is sufficiently high. Now, let us consider the structure
and operations performed by a state–of–the–art EH [56–58]:

• First, the input signal is rectified by means of a device commonly referred to as
rectifier. In practice, this operation is performed by p–n junction diodes when RF
radiation is in the kHz-MHz low frequency range. Conversely, semiconductors
and devices with shorter transit times and lower intrinsic capacitances like GaAs
Schottky diodes are used to perform this operation when the RF radiation has
frequencies in the GHz-THz range [15];

• The rectified signal is then filtered by means of a low–pass filter to obtain a DC
voltage;

• Subsequently, a DC–to–DC converter, e.g., an unregulated buck–boost converter
operating in the discontinuous conduction mode, usually adapts the voltage levels
of the filter output to the level required by the application load, e.g., a storage
device.

• The obtained voltage by means of this procedure may charge a battery within a
range of few Volt.

At this stage, it is evident how an appropriate tuning of the EH corresponds to the
adoption of a diode operating at a suitable frequency. In practice, every EH can be
appropriately tuned as long as its components are suitably chosen.

Unlike traditional approaches for WPT, in which the frequency of the signal to be
converted is in the order of fewGHz [34, 42, 58, 63, 66], in the proposed receiver the
energy is harvested from a low frequency signal, e.g., intermediate frequency (IF)
or baseband, after the amplification provided by the RF front–end. This positively
impacts both the amount of energy harvested by the EH and its energy conversion
efficiency. In particular:

1. The distance-dependent path loss has a minor impact on the power of the signal at
the input of the EH as compared to state–of–the–art solutions. Thus, the potential
amount of energy harvested by a receiver such as the one depicted in Fig. 1 is
larger.

2. As previously discussed, in this case, which correspond to the so-called low
frequency and high power (LFHP) case, the rectifier is a p–n junction diode. In
particular, this device yields a half-wave rectification with an efficiency given by

η = 1

1 + vd
2vdc

; (1)

with vd and vdc defined as the voltage drop across the diode and the output rectified
DC voltage, respectively [15]. It is worth noting that the value of η typically
grows with the power of the input signal, when the power of the latter is within
the typical range of RF/IF signals [49, 57]. As a consequence, harvesting after
the amplification provided by the RF front–end ensures high energy conversion
efficiency.



78 M. Maso

4.1.3 Self–Sustainability of the Transmission

As a matter of fact, the receiver in Fig. 1 transforms the role of the CP from an
unavoidable redundancy into a useful source of energy. In this context, the CP can
be seen both as a means to implement the SWIPT and as a tool to perform a resource
recycling. In the first interpretation, the CP is the portion of the signal used by BS to
perform the WPT towards the OFDM receiver. In the second interpretation, the CP
carries a portion of the energy invested by the power amplifier (PA) in the RF chain to
amplify the received signal. In fact, the PA amplifies the entirety of the signal in the
RF chain, CP included. Quantitatively, the cost of this inefficiency for an OFDM
receiver is non–negligible, provided that the duration of the CP can be up to 20%
of the total symbol duration. As a consequence, by both retrieving and harvesting
the CP, the proposed receiver recycles resources otherwise wasted in legacy OFDM
receivers with the CP removal operation. In practice, the impact of the DSP on the
power consumption of the receiver is reduced. As a result, both the energy efficiency
of the device and its battery’s lifetime could be significantly increased. The ideal goal
in this sense would be to diminish the impact of the DSP on the receiver’s battery as
much as possible. This observation leads directly to the following definition.

Definition 1 Let PH and PC be the harvested and consumed power by the OFDM
interference harvesting receiver for its DSP, respectively. A fully self–sustainable
transmission is achieved whenever PH = PC. Similarly, a partially self–sustainable
transmission is achieved whenever PH = ψPC, with 0 < ψ < 1.

Naturally, realizing a fully self–sustainable transmission in terms of power con-
sumption of the OFDM DSP would strongly depend on both the adopted TX/RX
parameters and the quality of the DSP components at the OFDM RX. In this sense,
achieving a full self–sustainability may not be feasible. However, this does not pre-
vent to envision an adaptive approach to system parameters dimensioning in order
to maximize the achievable level of partial self–sustainability, as discussed in the
following.

4.1.4 Performance Evaluation

In this section the performance of the proposed interference harvesting OFDM
receiver is assessed bymeans of numerical simulations. For the sake of completeness,
we note that no assumption related to the link budget is made in our simulations.
Inappropriate choices in this sense could strongly undermine the relevance of the
obtained results. Thus, we will assume that the considered link may meet the link
budget requirements and perform correctly without being over–designed at extra
cost. This is a safe assumption considering the careful link budget analysis typically
performed in real systems to guarantee their operability. Naturally, the considered
setting could be suitably extended in order to account for a detailed link budget
model. However, this seems an unnecessary complication at this stage of our study.
In this regards, it is worth noting that this approach is by no means different from



Energy Harvesting Oriented Transceiver Design for 5G Networks 79

what is typically done in the context of research works related to DSP in wireless
communication literature, for the same reasons.

From the previous discussion, it is straightforward to infer that the amount of
energy that can be harvested from the CP clearly depends on the size of the latter.
However, an unnecessary increase of the CP size may result in a non–negligible loss
in terms of achievable rate of the information transfer. For this reason, in practical
settings, the system designer may want to set a CP size not greater than that root
mean square delay spread of the channel between the transmitter and the receiver. In
practice, this could minimize the spectral efficiency loss due to the presence of the
CP, all the while guaranteeing an IBI–free transmission.

Now, consider the link between a small–cell and its associated receiver. Assume
that the BS performs an OFDM transmission over M = {64, 128} sub–carriers, with
variable CP size K chosen from the set

[ ⌈
9M
128

⌉
, M

4

]
, according to the parameters

defined for LTE/LTE–A [1], and expressed in terms of baseband samples for sim-
plicity. In particular, we note that herein �x� denotes the smallest integer number not
smaller than x . Let the multi–path channel between the transmitter and the receiver,
whose sampled baseband channel impulse response has duration l + 1 taps, with
l = 5, be perfectly known at the transmitter and characterized by Rayleigh fading.
Accordingly, a CP size of K = l = ⌈

9M
128

⌉
samples would be sufficient to accommo-

date the channel impulse response, if perfect timing synchronization was achieved at
the receiver and the goal of the BS were the maximization of the transmission rate.

As previously said, increasing the CP size in this scenario would impact the
spectral efficiency of the considered link. In order to characterize the resulting loss
we define β as the ratio between the achievable spectral efficiency when K = l and
l < K ≤ M

4 , respectively, i.e., the measure of the portion of the maximum spectral
efficiency that can be achieved when the CP size increases. The variation of β as the
CP size varies is depicted in Fig. 2, for M = 64 and M = 128 and signal to noise
ratio (SNR) at the receiver of 10dB.

As evident from Fig. 2, the spectral efficiency loss for both the considered values
of M is slightly lower than 25%, when the CP is at its maximum size, i.e., K = M

4 .
This is a significant loss. However, as a matter of fact the CP is typically over–
dimensioned in real OFDM implementations w.r.t. the number of channel paths
[54], to compensate for practical imperfections and impairments. In other words, a
portion of the aforementioned spectral efficiency loss is already accounted for during
the system design, even when no energy–related consideration is made. Therefore,
it seems reasonable to assume a moderate level of flexibility in the choice of K in
real implementations, that is K > l. Now, if we admit such an over–dimensioning
and we focus on the lower part of the considered range of values of K , we see that
a CP size twice as long as l reduces a spectral efficiency loss to only 10%, i.e.,
β ≈ 90%. Interestingly, in such context, the benefit resulting from harvesting the
CP at the receiver could provide an additional and relevant motivation to relax the
constraint K = l, to favor a more flexible choice of the CP size and achieve more
efficient WPT.

Provided the rationality of the flexibility assumption, we switch our focus to the
amount of power that can be scavenged from the CP by the proposedOFDM receiver.
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Fig. 2 β as the CP size increases, M ∈ {64, 128} and SNR at the receiver of 10dB

For ease of representation, we measure this quantity by means of γ(K ) ∈ R, defined
as the level of self–sustainability of the transmission, i.e., the ratio between the power
obtained from the CP and the power consumed by the receiver to perform the DSP of
an OFDM block. This allows us to perform a set of Monte–Carlo simulations of the
target system, for all its considered parameter configurations, and study the average
achievable level of self–sustainability of the transmission, denoted by γ(K ).

Practically relevant values are assumed for both the total transmit power budget
at the BS, i.e., PT and the power consumption of the OFDM DSP at the receiver,
i.e., PC as per Definition1. Thus, we let PT ∈ [0.9, 2.25] W and PC = 500mW, in
compliance with realistic implementations i.e., [8, 10, 62]. Analogously, we let
η = 0.5 in order to mimic the performance of state–of–the–art commercial products
[49] and align our tests with what is typically done and assumed in the literature [34,
63]. In Fig. 3, γ(K ) is computed as a function of ϕ = PT

PC
∈ [1.8, 4.5], for ease of

representation, for several values of the CP size.
The results in Fig. 3 show that, given the considered parameters, remarkable levels

of average self–sustainability are achieved for M = 64. We observe that a full self–
sustainability of the transmission (i.e., γ(K ) ≥ 1) is achieved for ϕ ≥ 5, and for a
CP size lower than M

4 , i.e., the maximum allowed in modern standards. In particular,
we note that γ(K ) ≥ 1 also implies that the average power that is harvested by the
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Fig. 3 Average achievable level of self–sustainability, as K changes, N = 64

proposed OFDM receiver not only is sufficient to provide sufficient energy for the
DSP blocks to operate, but also offers the possibility to enjoy an energy surplus that
can be stored for future usage. This aspect could be a very relevant added value in
case of variable power consumption of the receiver, or if the latter moved rapidly
enough to experience shadowing events, i.e., random signal attenuation caused by
occasionally interposed obstacles between the antenna of the receiver and the BS.
Naturally, as expected, the full self–sustainability is a not achievable on average
for all the considered values of ϕ. Nevertheless, rather remarkable values of γ(K )

are achievable even for the lowest value of ϕ, i.e., around 40% for ϕ = 1.8 when
K = M

4 . At this stage, if we focus on the impact of a transition from higher to lower
values of ϕ, we observe that the CP size for which a level of self–sustainability is
achieved decreases as ϕ grows. In practice, a higher spectral efficiency would be
achieved while keeping the self–sustainability of the transmission constant.

Now, we increase the number of sub-carriers to M = 128 and perform the same
test as done for M = 64. A modification to the range of ϕ is in order for this test,
before computing γ(K ). In fact, the power consumption of the OFDMDSP increases
with the number of sub–carriers M [21]. In particular, as detailed in [21], if the
number of sub–carriers goes from M = 64 to M = 128, then the power consumption
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approximately grows by a factor 1.8. Thus, we rescaleϕ accordingly and depict γ(K )

in Fig. 4 for several values of the CP size.
The difference between the two cases is qualitatively negligible. Conversely, as

could have been expected, the same is not true from a quantitative point of view.
As a matter of fact, non–negligible values of γ(K ) are achievable in this case as
well, i.e., around 23 and 57% when K = M

4 for ϕ = 1 and ϕ = 2.5, respectively.
However, the OFDM transmission never achieves the full self–sustainability when
M = 128, regardless of the considered ϕ. In other words, a fully self–sustainable
transmission could be achieved in this case only if the transmit power at the BS, i.e.,
PT were higher. In particular, γ(K ) would be equivalent in the two considered cases
only if the power increase at the BS was sufficient to compensate for the greater
power consumption at the receiver, due to the larger number of sub–carriers over
which the OFDM transmission is performed. Interestingly, this condition does not
seem extremely unlikely in a real scenario. Consider a macro–BS and a small–cell
in a real system. Therein, the macro–BS must serve a greater number of users, cover
a larger cell and typically enjoys higher computational capabilities. Accordingly,
the bandwidth of its transmission, i.e., the number of adopted sub–carriers, can
be safely assumed to be larger than the bandwidth of the transmission performed
by the small–cell. Furthermore, we observe that by both construction and standard
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definitions, the transmit power of a macro–BS is typically larger than the transmit
power of a small–cell, i.e., up to 2 orders of magnitude [1]. Thus, it does not seem
unreasonable to assume that PT canmoderately growwith the number of sub–carriers
in a practical system implementation. Nevertheless, this should not downplay the fact
that a significant dependence of the feasibility of the full self–sustainability on the
number of sub–carriers is clear from the obtained results. In a scenario in which a
larger bandwidthwas adopted, and a constant PT were to be used, lower levels of self–
sustainability would be achieved by the OFDM transmission, with γ(K ) diminishing
as the number of sub–carriers increases. This highlights a potential limitation of the
proposed scheme, and offers interesting elements for future research on the subject.

4.2 Wireless–Empowered Transceiver for Full–Duplex
Communications

In the previous section we have discussed the design of an interference harvesting
OFDM receiver, and assessed its performance. Therein the harvested interference
was in the form of in–band IBI, i.e., an external source of interference. However, the
nature of the interference that can be harvested by a wireless–empowered transceiver
is certainly multifarious. In this sense, restraining our focus only to external sources
of interference could bring us to narrow the potential of this approach quite signif-
icantly. In order to substantiate this statement, in this section we provide an exam-
ple of another type of interference that can be harvested by a wireless–empowered
transceiver, and propose the corresponding transceiver architecture to perform this
operation. Accordingly, we depart from the previously discussed block transmis-
sion setting and switch our focus to another very promising technology for the next
generation of cellular networks, i.e., to so–called full–duplex (FD) radio.

4.2.1 Prior-Art and Problems of Current Full–Duplex Technologies

As a matter of fact, FD radios have been drawing a growing level of attention lately.
Their popularity is due to the promisingpotential that an adoptionofFD radios instead
of their legacy half–duplex (HD) counterparts seems to have in terms of network
spectral efficiency increase. In practice, the capability of performing simultaneous
bidirectional in–band communications makes this approach one of the most promis-
ing innovative solution to further enhance the performance of current networks. The
most attractive and challenging solution inside this family of radio devices is the so–
called in–band single antenna FD implementation. In this case, the device not only
transmits and receives simultaneously over the same time and frequency resource,
but also does it by means of the same antenna. The advantage of such a solution is
mainly economical. In fact, an in–band single antenna FD radio needs neither a sep-
arate RF circuitry for its TX and RX parts nor an additional antenna to realize the FD
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communication. This can positively impact the cost of the device. However, a very
severe problem affects such FD radio mainly due to practical hardware limitations,
i.e., the so–called self–interference (SI).

Main responsible for the presence of the SI is the non–ideality of the circulator
by means of which TX chain, antenna and RX chain are connected [12]. This non–
ideality results in the leakage through the circulator of a portion of the transmit signal
which, as a result, transits from the TX chain to the RX chain of the FD radio. In
this regards, we define αL as the ratio between the power of the leaked signal and
PT, TX power of the FD radio. The rest of the SI is given by the reflections that
signal transmitted by the antenna of FD radio experiences during its propagation in
the multi-path environment, before coming back to the antenna [26]. Nevertheless,
it should be noted that the difference in terms of magnitude between these two
components can be extremely relevant. In practice, the SI is very often dominated
by the signal leakage at the circulator.

If unmanaged, the SI can irreversibly compromise the performance of the radio
device. A two-fold consequence occurs as a result of its unavoidable presence:

• The signal received by the FD radio, referred to as desired signal henceforth,
typically experiences a significant signal to interference plus noise ratio (SINR)
reduction. In fact, the power of the SI could be several orders of magnitude larger
than the power of the desired signal, received by the FD radio severely attenuated
by thewireless propagation. This can significantly degrades the overall throughput.
A correct decoding of the desired signal may not be possible, unless the SI can be
significantly reduced, de facto nullifying the potential of the FD radio over a HD
counterpart.

• A non–negligible portion of the power invested by the FD radio to transmit the
signal, i.e., up to 10–15% [5, 26] in real implementations, is wasted with the
leakage. This implies that the radiated power by the antenna of the FD radio is
lower thanwhat it should theoretically be, net of both the inefficiency of the PA and
thermal dissipation in the TX chain. As a consequence, the FD radio experiences
a significant energy efficiency reduction, given that its power consumption could
be lower if the SI were not present.

In practice, the aforementioned spectral efficiency increase depends on how much
SI can be subtracted from the received signal [52]. The design of self–interference
cancellation (SIC) algorithms for in–band FD radios has been the subject of many
research efforts in the last years. Typically, SIC is partially/fully accomplished by
either digital [3, 27, 28, 32, 53] or analogue [5, 9, 22, 26, 46] signal processing. The
best performers in this sense are certainly the hybrid SIC algorithms that process the
signal both in the analogue and the digital domain [5, 22]. In particular the authors
in [5] propose a joint analogue–digital cancellation techniques for OFDM single
antenna FD radios. Therein, the SI is cancelled to the receiver noise floor, provided
that the FD radio is using a limited transmit power, herein referred to as PTh, above
which a residual SI remains and affects the performance of the device. As compared
to other state–of–the–art solutions, the quantitative result achieved by [5] in terms of
SIC is extremely remarkable. In fact, this algorithm, based on an accurate model of



Energy Harvesting Oriented Transceiver Design for 5G Networks 85

the impact of both linear and non–linear components on the SI affecting the reception
of the desired signal, delivers 110dB of SIC over a bandwidth of 80MHz. Motivated
by these achievements, practical implementations have been proposed to assess the
feasibility of FD transmissions in real–life scenarios [4, 12], confirming that real–
time FD radios can effectively operate in different environmental conditions.

Despite its evident potential and merit, the FD architecture proposed in [5] is far
from being perfect. In this sense, it has two main practical disadvantages. First, it is
worth recalling that the presence of the leaked signal contributing to the SI represents
an evident inefficiency in terms of energy management of the FD device. Second, it
should be noted that an implicit TX power limitation is imposed on the FD device to
preserve the excellent SIC capability of the proposed algorithms. In practice, for the
latter to be able to deliver their highest effectiveness, the difference between the TX
power of the FD radio and its noise floor, expressed in dB, should be lower or equal
than the maximum SIC that the architecture can deliver, e.g., 110 dB in [5]. It is
straightforward to see that if realistic values for the noise floor of modern equipment
are considered, i.e., typically ranging between−90 and−115dBm [17], the resulting
PTh could be rather low, especially for outdoor applications/implementations. This
would entail rather stringent upper bounds on both the achievable rate and the range of
coverage of the outgoing transmission. In this context, disposing of an FD transceiver
that could cope with the aforementioned issues would be highly desirable in view of
the possible adoption of the FD technology in 5G. Starting from these observations,
a novel FD architecture that can provide this features is proposed in the next section.

4.2.2 Self–Interference Harvesting in Full-Duplex Radios

Consider a FD radio as described in [5]. As previously discussed, such a devicewould
inevitably experience a performance detriment whenever PT > PTh. Interestingly,
an effective solution to this problem can be found by modifying the FD architecture
proposed in [5] as follows.

We first assume that the FD radiomay arbitrarily attenuate the signal coming from
the circulator such that the power of the SI component of the resulting signal is lower
thanαLPth. If this were possible, the full capability of the subsequent SIC algorithms
would be restored, and non–negligible SINR gains could be experienced by the
desired signal as compared to state–of–the–art solutions, thanks to the combined
effect of the aforementioned attenuation and SIC algorithms. Now, consider the FD
radio architecture illustrated in Fig. 5 where, differently from the state–of–the–art
architecture, a RF EH operating according to the PS paradigm [63] is added between
the circulator and the RX chain. This completely passive component does not require
additional energy expenditure for the FD radio to operate and consists of a cascade
of an adjustable power splitter followed by a rectifier performing the RF–to–DC
conversion. In the proposed FD architecture, the signal coming from the circulator
is split in two parts by the EH, referred to as information component (IC) and energy
component (EC) henceforth, for simplicity. In practice, IC and EC can be modeled
as attenuated versions of the received signal, with attenuating factor

√
σ and

√
1 − σ
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Fig. 5 Self–interference harvesting FD architecture

(with σ ≤ 1), respectively. We note that σ is usually known as the power–splitting
factor in the literature on SWIPT. After the split, the EC is suitably rectified as
previously said, to convert the received microwave power into DC power, i.e., by
means of a RF–to–DC conversion. Subsequently, it is fed as input to the DC–to–DC
converter to proceed according to the legacy harvesting process discussed in Sect. 4.1.
The interested reader may refer to [56], and references therein, for more detailed
information about this aspect.

We switch now our focus to the IC which, after the split, is fed as input to the RX
chain, where it is processed by state–of–the–art SIC algorithms and decoded [5]. If
we look at the operation performed by the EH on its input signal, we observe that the
IC is actually seen by the RX chain as an attenuated version of the signal coming from
the circulator. In this context, from the point of view of the RX chain, the EH can be
modeled as a component providing the aforementioned variable attenuation, despite
not technically being an attenuator. As a consequence, the full effectiveness of the
state–of–the–art SIC algorithms would be restored whenever σ ≤ PTh

PT
. Conversely,

residual SI with power
ρPPT N0

PTh
, where N0 denotes the noise floor of the device, would

occur in the RX chain whenever σ > PTh
PT
, in turn inducing a SINR reduction for

the IC.
At this stage, it is worth recalling that, by construction, the IC is composed of both

the SI and the desired signal.Hence, it is evident that the splitting operation performed
by the EH affects the power of the latter as well, whenever σ < 1, in turn reducing
its SNR as compared to what could have been measured between the circulator and
the EH. Consequently, a trade–off between the SINR increase and SNR decrease
exits, and σ should be optimized accordingly. We will discuss this aspect in the
following section. At this stage, it is worth observing that a further constraint needs
to be satisfied in order to guarantee the effectiveness of the operations performed in
the RX chain. This is due to the aforementioned upper bound in terms of input power



Energy Harvesting Oriented Transceiver Design for 5G Networks 87

for the circuitry of the RX chain, which can easily saturate if the input power exceeds
a certain threshold, e.g., due to an over–abundance of SI. In practice, if we let PS be
this value, this implies that the full theoretical operativeness of the RX chain of the
FD radio can be guaranteed whenever σ ≤ min{1, PS

PT
}, regardless of the power of

the residual SI.
Summarizing, the goal of the EH in the proposed architecture is two–fold. One the

one hand, it targets a suitable equivalent power reduction for the received signal such
that the subsequent SIC algorithms can operate on the IC at their full effectiveness.
On the other hand, it aims at recycling at least a portion of the wasted resources at
the circulator, i.e., the energy carried by the leaked signal, by harvesting the EC and
converting it into DC for charging the battery. Finally, it is worth observing that the
proposed architecture can be flexibly adopted, and provide interesting performance
enhancement, not only in purely FD scenarios, but also in hybrid half/full-duplex
scenarios. For instance, in the context of future 5G networks, this flexibility could
offer an effective solution to perform FD device–to–device (D2D) communications,
FD machine–to–machine (M2M) transmissions, FD–based in–band wireless back-
hauling solutions, just to name a few. This is an extremely appealing feature, espe-
cially considering the likely heterogeneity that will characterize the next network
technology.

4.2.3 Spectral and Energy Efficiency Increase

The performance of the proposed SI harvesting FD architecture is assessed following
the same method adopted to study the performance of the interference–harvesting
OFDM receiver in Sect. 4.1.4. Consider an outdoor scenario in which a FD BS,
implemented according to the proposed architecture, communicates with two HD
user terminal (UT), one served in the downlink and one in the uplink. We assume
that an OFDM transmission is performed in the downlink as in [5] and a single–
carrier frequency division multiplexing (SC-FDMA) is performed in the uplink, as
in LTE/LTE-A [1]. The number of sub–carriers over which the OFDM is performed
is M = 128, with CP size K = 16. Furthermore, the channels between the devices
(and the multi–path channel seen by the SI reflected by the environment towards the
antenna of the FD BS) are modeled as Rayleigh fading channels with l + 1 taps,
and l = 16. Finally, for simplicity, and without loss of generality we assume that
the distance between the BS and the two UTs is the same, i.e., d. The rest of the
parameters of the simulations, whose values are reported in Table1, are set in order
to frame a practically relevant and realistic scenario.

Before proceeding with our tests, we define two quantities that will be functional
for a compact representation of the results. Accordingly, we first let ξR be the ratio
between the achievable uplink spectral efficiency for the proposed FD architecture
and the achievable uplink spectral efficiency for the state–of–the–art solution. Sim-
ilarly, we define ξP as the ratio between the harvested power by the proposed FD
radio and the TX power of the device. In this context, we note that the proposed
architecture outperforms the state–of–the–art when ξR > 1 or ξP > 0. We start our
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Table 1 Parameters of the considered system

Parameter value/configuration

UT TX power 23dBm [18]

FD radio TX power PT ∈ [23, 40]dBm [18]

Distance between FD radio and UT d ∈ [0.1, 0.55]Km
Path-loss model ITU COST-231 Hata model (urban and suburban) [11]

Noise floor N0 = −90dBm [5]

SIC capability 100dB [5]

Leakage at the circulator −10dB [26]

analysis by computing ξR asσ varies, as function of the TXpower of the FDdevice. In
particular, we assume distance between the BS and the two UTs equal to d = 250 m.
Moreover, no markers will be used in the plot, for the sake of clarity. The results
of this test are illustrated in Fig. 6. We first observe that for σ = PTh

PT
, i.e., when the

optimal σ is adopted, ξR > 1 for all the considered values of PT. This result clearly
shows a first remarkable advantage brought by the proposed FD architecture over
the state of the art. In particular, it confirms that the proposed radio is able to cope
with a larger set of TX powers, all the while consistently outperforming the state–
of–the–art solution. Quantitatively, the spectral efficiency increase, at the considered
distance between the devices, ranges from 2% (for PT = 35dBm) and 24% (for
PT = 23dBm). In practice, the smaller PT the higher the resulting ξR. This result is
trivially due to the decreasing trend of the optimal σ as PT increases, by construction.
In other words, the attenuation induced on the desired signal becomes stronger as
the TX power increases. As such, the SNR loss experienced by the desired signal
is more severe when the TX power is high and the penalty paid in terms of spectral
efficiency increases. Naturally, this behavior strongly depends on the value of the
noise floor. A lower value of N0 would allow to compensate for the effect of a smaller
optimal σ, inducing higher values for ξR. In this sense, a FD radio with high quality
components would experience a more consistent performance enhancement as com-
pared to a lower quality counterpart, even if both were implemented according to the
proposed architecture.

At this stage, it is worth observing that the proposed approach does not yield any
downlink spectral efficiency increase over the state–of–the–art, when the same TX
power is adopted. In this regards, the only added value brought by the proposed FD
architecture is that it enables a more flexible choice of the TX power of the device.
Consequently, the FD radio can increase its power beyond PTh and increase the
downlink spectral efficiency, with a lower impact on the uplink spectral efficiency as
compared to the state–of–the–art solution. We now switch our focus to the behavior
of the system as the distance between the FDBS and the twoUTs varies. Accordingly,
we compute ξR as a function of the distance between the two devices in Fig. 7. As
before, only a subset of values of PT is considered, for ease of representation.
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Fig. 6 ξR as a function of σ, as PT varies

It is evident from Fig. 7 that a higher spectral efficiency of the uplink is achievable
thanks to the proposed FD architecture for all the considered values of d, i.e., ξR > 1,
∀d. In particular, we observe two trends. First, ξR is a non–decreasing function of d,
for all the considered values of PT. This behavior is straightforward to explain. In
fact, the larger the distance between the FD and the transmitting UT, the greater the
attenuation experienced by the signal in its propagation. In this context, the impact
of a more effective SIC increases as the SINR decreases, and the effectiveness of the
proposed architecture is naturally higher. The second trend observable from Fig. 7
is related to how ξR reacts to a variation of PT. In practice, the smaller PT the
higher the resulting ξR. This finding is compliant with what has been observed in the
previous test, and thus can be explained analogously. Quantitatively, the obtained
results show a remarkable spectral efficiency increase as compared to the state of the
art, ranging from 2.5% (for d = 100 m and PT = 35dBm) to 47% (for d = 550 m
and PT = 23dBm).

Our final study is related to the portion of the TX power that is actually recycled
by the proposed FD architecture as PT increases. In this regard, we note that the
optimal σ, i.e., σ = PTh

PT
, is adopted for each of the considered values of PT, and that

such value does not depend on d. Accordingly, and differently from the previous
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Fig. 7 ξR as a function of d, as PT varies

tests, only one curve in present in Fig. 8, where ξP is illustrated as PT varies in the
considered range.

As could have been expected after the previous results, ξP increases with PT.
Once again, this behavior is rather intuitive to explain, since a TX power increase
can only result in a smaller optimal σ, i.e., the majority of the signal reaching the EH
is harvested. Quantitatively, the FD radio can recycle around 2.5% of the TX power
(i.e., around 25%of the power of the leaked signal) for PT = 23dBm, and around 5%
of the TX power (i.e., around 50% of the power of the leaked signal) PT = 35dBm.
This performance may not look impressive at first glance, however it should be noted
that the energy recycling comes at no cost for the spectral efficiency of the uplink
(and thus of the downlink as well). As a matter of fact, this non–negligible portion
of the otherwise wasted energy can be collected and re–used thanks to the proposed
architecture, which realizes an energy saving. The extent of the saving increases with
the transmit power. This highlights the potential of the proposed FD architecture as a
means to increase both the energy efficiency of the device and the overall throughput
of the ongoing transmissions between the FD BS and the UTs.
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5 Conclusion

At the dawn of the deployment of the 5G network, energy efficiency is rightfully
considered as one of themost important metrics tomeasure the performance of future
wireless and cellular networks. In this chapter, we started from this consideration
to discuss the positive impact that energy harvesting oriented technologies, such
as WPT and SWIPT, may have on this metric. Subsequently, we introduced the
concept of energy–harvesting oriented transceiver design and discussed the new
perspectives that this approach can unveil, both in terms of potential reduction of
network energy consumption and increase of the quality of the user experience. Two
novel architectures have been proposed:

• Interference–harvesting OFDM receiver: this architecture aims at reducing the
impact of the OFDM DSP on the lifetime of the receiver’s battery. This goal
is achieved by replacing the CP removal element with a combination of a CP
retriever and an EH. This way, the energy carried by the CP, prepended to each
OFDM block by construction, can be harvested and either used to reduce the
overall net energy consumption of the OFDM DSP or stored. The potential of
the proposed architecture as a means to realize self–sustainable transmissions,
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in terms of energy consumption for the DSP, has been highlighted and discussed.
The advantages brought by the novel architecture have been numerically evaluated.
More specifically, the achievable levels of self–sustainability have shown a clear
dependence on the system parameters, e.g., the number of sub–carriers. In this
context, the definition of optimization policies for such parameters, in order to
guarantee target levels of self–sustainability of the OFDM transmission, is still an
open problem and certainly opens new interesting research opportunities.

• Self–interference harvesting full-duplex radio: this architecture aims at taking
a step beyond the state–of–the–art both in terms of spectral and energy efficiency
of the FD radio. This goal is achieved by introducing a parametric EH that har-
vests energy from part of the signal coming from the circulator. In particular,
from the point of view of the RX chain, this element provides a variable atten-
uation to the received signal. Interestingly, this gives the FD radio the flexibility
to transmit at higher TX power as compared to the state–of–the–art architecture,
all the while enjoying the full effectiveness of its hybrid SIC algorithms. Further-
more, this allows to recycle a portion of the energy of the leaked signal at the
circulator, otherwise wasted in state–of–the–art architectures, in turn increasing
the energy efficiency of the device. Our numerical results confirm the potential
of the proposed approach and motivate further research activities in the direction
of self–interference harvesting FD radios, especially in the context of multiple–
input/multiple–output (MIMO) systems.

The solutions and results presented in this chapter serve a two-fold purpose. On the
one hand, they confirm the lack of optimization of the current network technology
in terms of energy efficiency. On the other hand, they highlight the potential of the
proposed approaches for increasing this metric, and open new interesting research
directions. Naturally, our findings are far from being conclusive, and lot is yet to
be done. However, they offer a set of interesting arguments to substantiate the idea
of energy harvesting oriented transceiver design as a means to realize more energy
efficient future wireless and cellular networks.
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Cellular Networks
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Abstract This chapter investigates the collaboration between multiple mobile
operators for optimizing energy efficiency in cellular networks. Most of the works
in the literature optimize the performance of a given cellular network, without con-
sidering the existence of mobile networks belonging to other operators. This leads to
suboptimal results, compared to the case where the optimization of the joint perfor-
mance of mobile networks of multiple operators is considered. However, incentives
need to be created to allow multiple (and generally competing) operators to collab-
orate for the purpose of energy efficiency. Indeed, random collaboration can cause
certain unfairness among cooperative operators. Therefore, additional parameters
should be considered to perform a fair green networking between mobile operators.
This chapter aims to provide answers for similar situations. We start by investigating
the case of uniform cooperative mobile operators having the same objectives and we
establish cooperation decision criteria based on derived roaming prices and opera-
tors’ profit gains. Afterwards, we consider the case of non-uniform operators where
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a green operator focuses on exploiting the infrastructure of non-green operators to
achieve CO2 emissions saving. A two-level Stackelberg game is formulated to opti-
mize the utilities of both types of operators.

1 Introduction

Over the years, mobile user demand is witnessing an unprecedented rise that is lead-
ing to an enormous growth of energy consumption of wireless networks as well as
the greenhouse gas (GHG) emissions which are estimated currently to be around 70
million tons over a year [1]. The huge increase of number of connected terminals,
in addition to the deployed infrastructure necessary to serve them, impels network
companies to pay enormous bills which represent about 50% of their operating
expenditures (OPEX). Therefore, the reduction of the network energy consumption
and the limitation of their CO2 emissions and their energy expenses becomes more
and more attracting the researchers’ attentions [2]. Many studies were proposed
to develop green communication systems which can save energy consumption and
reduce CO2 emissions [3, 4]. Most of them tackle the radio access network part as
base stations (BSs) consumemore than 70−80% of the total power consumption [5].
Half of this energy is redundant especially during off-peak periods when these BSs
are underused [6]. To overcome this issue, new system level features were designed
to help decide which parts of the redundant BS should be turned off. Therefore, sub-
scribers, who were covered by an underutilized BS, will be served by another BS [7]
or even by other operator’s infrastructure [8] in the context of green mobile operator
networking.

Several schemes have focused first on the optimization of the energy consumption
of the radio access network part by turning off redundantBSs during low traffic period
while considering the network quality of service (QoS). In [9, 10], the BS ON/OFF
strategy is applied in order to eliminate underutilized BSs while optimizing QoS
utility functions. The authors of [11] proposed an efficient green planning method
based on the spatial and temporal traffic variations where the BSs needed to be
activated during a certain period of the day are identified since the network planning
phase. To turn off a BS, the authors of [12] calculated the joint Signal to Interference
plus Noise Ratio (SINR) corresponding to the sum of SINRs of all subscribers in the
network and compared it to a fixed SINR threshold: If it is higher than the threshold,
the selected BS to be switched off is underutilized and is maintained off. Another BS
sleeping strategy is presented in [13] where an approximate solution to the problem
was proposed. The main idea is to establish a relationship between the traffic load
(user arrival) and energy savings. An optimization problem aiming to minimize the
number of active BSs subject to two constraints: Maintaining the user connection in
the cell and covering the same initial area is solved.

Another approach to ensure energy savings for wireless cellular networks is to
investigate the energy-efficient communications while considering the dynamics of
the smart grid that depend on the traffic, real-time price and the pollutant level
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Fig. 1 Example of mobile
operator collaboration:
a without collaboration;
b with collaboration

(a)

(b)

associated with the generation of the electricity. The authors in [14] introduced the
use of coordinated multipoint communication (CoMP) to ensure acceptable QoS in
cells whose BSs have been shut down to save energy. Meanwhile, the active BSs
decide from which energy sources and how much energy they need to procure in
order to ensure the safe operation of the network. This is performed while taking
into account the pollutant level of each retailer and the proposed price. The scheme
proposed in [14] could reduce operational expenditure and CO2 emissions in green
wireless cellular networks.

Optimizing the joint utilities of different mobile networks serving the same area
provides more degrees of freedom for mobile operators to achieve green communi-
cation [7]. The fundamental idea was to completely switch off the equipment of a
service provider while serving the corresponding subscribers by another infrastruc-
ture belonging to another operator under some fairness constraints. In Fig. 1, we
illustrate an example of mobile operator collaboration where an operator (Opera-
tor 1 in red) exploits the other mobile operator’s infrastructure (Operator 2 in black)
to serve its subscribers while turning off its own BS and vice versa. However, this
operation would eventually require the introduction of certain incentives in order to
ensure fairness among competitive mobile operators. In literature, few research work
had focused on the mobile operator cooperation for green purposes. One of the first
studies in this field was proposed in [8, 15]. In [15], the authors identified four
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different sleeping strategy schemes such as balanced roaming costs and balanced
energy savings. The authors in [8, 16] have improved the operator cooperation prob-
lem by modeling it in a game-theoretical strategy that ensures energy saving by
eliminating lightly loaded BSs. In [17], the green collaboration between mobile
operators powered by multiple energy retailers existing in the smart grid is investi-
gated. A Stackelberg game theoretical approach is employed to model the smart grid
real-time pricing of the energy procurement.

However, the discussed solutions only examine one aspect of the problem each
time and do not include neither long term evolution advanced (LTE-A) nor the aspects
of renewable energy and collaboration expenses in the problem formulation. Further-
more, most of the proposed green networking schemes do not consider the collab-
oration cost. Indeed, although collaboration among mobile operators provide more
flexibility in achieving green performance compared to the traditional scenario, ran-
dom collaboration would be unfair for one or a group of operators. For instance, one
operator might turn off all the BSs and all the users are roamed to the infrastructure
belonging to competitive operators. Hence, the serving operator might suffer from
a high energy consumption while the first operator is enjoying its profit increase.
While this solution maximizes the overall objective of operators, the individual
objective distribution is not fair. Therefore, it is important to introduce some fairness
criteria during the cooperation process. These criteria will influence the collaboration
decision of operators. These fairness criteria can take different forms such as the col-
laboration under equal charge allocation where the total cost is equally shared among
operators [8]. Another fairness criterion could be the equal share of the collaboration
cost. In this case, only the cost due to collaboration is considered and shared among
operators. Note that these fairness criteria force operators to be a member of the col-
laboration group and share the cost with other competitive operators. In our study,
we propose a fairness criterion based on roaming prices defined by each operator
who is willing to serve users of competitive operators. The proposed method will
also allow operators to decide whether to enter in collaboration or not. This decision
is made after checking whether the total profit of this operator is affected due to
collaboration or not.

In this chapter, we propose to investigate the collaboration amongmultiple mobile
operators deploying LTE-A networks in the same area. The objective is to study the
interactions among competitive mobile operators collaborating together in order to
achieve green goals without compromising their profits and QoS. Two scenarios
are investigated in this chapter: The first one considers the case of uniform mobile
operators having the samegreen objectives,while the second one investigates the case
of non-uniform operators having different objectives. In the first scenario, a practical
and low complexity iterative algorithm is applied to determine the efficient active BS
combination that ensures energy saving while respecting the network QoS. The BSs
are assumed to be powered by either traditional retailer and/or renewable energy
equipment (e.g., solar panel or wind turbine) owned by mobile operators and placed
on BS sites. During this cooperation, extra charge can be added to operators that keep
their BSs active as they are serving other mobile operators’ subscribers. Therefore,
a fairness criterion for mobile operator cooperation based on their profits before
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and after cooperation is introduced. Finally, the roaming prices for all operators and
conditions for cooperation decision are also proposed.

Afterwards, we investigate the case of non-uniform mobile operators having
different objectives: One green operator (GO) that aims to achieve a tradeoff between
its profit and its network CO2 emissions and other non-green operators (NGOs) avail-
able to serve green operator’s users in order to enhance their profits. The GO’s BSs
are powered by either a traditional electricity retailer or renewable energy equip-
ment. We employ a two-level Stackelberg game that helps the GO (playing the role
of the follower) reduce its energy consumption and CO2 emissions by roaming some
of its users to one or many NGOs (playing the role of leaders). The GO can either
offload all the users of a BS and switch it off or just offload some of them. However,
during cooperation, extra charge will be imposed on the GOwhen exploiting another
NGO’s infrastructure to serve its subscribers. The NGO’s objective is to maximize
its own profits by attracting the maximum number of GO roamed users. In this
competition, the leaders focus on offering the best roaming prices while taking into
account multiple system parameters (e.g., energy cost and pollution level, service
fee, GO renewable energy availability, etc.). We solve this problem by achieving
the Stackelberg equilibrium and investigate the player behaviors for various system
parameters.

In our simulation result section, we investigate the impact of several parameters on
the system performance such as the traffic volume, availability of locally generated
green energy, and energy cost. We also show that mobile operator collaboration can
significantly contribute in reducing the carbon footprint of cellular networks.

This chapter is organized as follows. Section2 investigates the case of uniform
mobile operators collaboration. Section3 discusses the case of the collaboration
of non-uniform mobile operators. In Sect. 4, we present our simulation results for
both studied settings and provide some insights about the future challenges of green
networking. Finally, Sect. 5 summarizes the chapter.

2 Collaboration of Uniform Mobile Operators

In this section, we focus on the collaboration among uniform mobile operators hav-
ing similar goals, i.e., reduce their fossil fuel consumption. Each mobile operator
tries to turn off the maximum number of BSs in order to achieve energy saving but
without affecting the QoS. The QoS is maintained thanks to intra and inter oper-
ator collaboration. Indeed, the users previously connected to a turned off BS are
offloaded to neighbor BSs which belong either to the same operator or to a com-
petitive one. However, in order to avoid random collaboration, which might lead to
negative impacts on one of the operator performance, a fairness criterion based on
the roaming price is proposed. This criterion will determine whether collaboration
is beneficial for all operators or not. A thorough version of this work with additional
mathematical details is presented [18].
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2.1 System Model

We assume Nop mobile operators are deploying Nop LTE networks that satisfies the
traffic demands of its customers and covers a geographical area of interest.We denote
by N (n)

BS the number of BSs that are deployed uniformly by the mobile operator n
in that area, n = 1, . . . , Nop. We consider that the area is divided into cells of equal
size where a BS is placed in the center of each cell. The access scheme for the
LTE downlink (DL) is the orthogonal frequency division multiple access (OFDMA)
while in the uplink (UL), the single carrier frequency division multiple access (SC-
FDMA) is used. In fact, the DL and UL available spectrums are divided into NRB

resource blocks (RBs) that contain a fixed number of consecutive subcarriers (NRB =
N (UL)
RB = N (DL)

RB ). RBs are assigned to users according to the resource allocation
procedure followed by each operator. We assume that the mobile operators are using
different frequency bands such that there is no inter-operator inference. However,
intra-operator interference is taken into account (i.e., frequency reuse of 1 is assumed
within each operator’s network). In this section, the considered channel gain for
both directions (UL and DL) captures the pathloss, shadowing, and fading effects.
More details about the channel model and the data rate expressions in DL and UL
for LTE can be found in [4]. We assume that the subcarriers constituting a single RB
are subjected to the same fading and hence the channel gain on the subcarriers of
a single RB is considered to be the same. In addition, the fading is assumed to be
independent and identically distributed (iid) across RBs. In this section, we allocate
one UL RB and one DL RB for each user. First, we start by allocating DL subcarriers
in order to save BS power usage, since usually the DL traffic is much heavier than
UL traffic. Then, the DL and UL rates are computed using the typical Shannon rate
expression.

2.1.1 Energy Consumption Model for Base Stations

We consider that each BS is equipped with a single omni-directional antenna.
The consumed power of an active BS j belonging to mobile operator n, P (n)

j , can be
computed as follows [4]:

P (n)
j = a P (tx)

n, j + b, (1)

where the coefficient a corresponds to the power consumption that scales with the
radiated power due to amplifier and feeder losses, and the term b models an offset of
site power that is consumed independently of the average transmit power and is due
to signal processing, battery backup, and cooling. In (1), P (t x)

n, j denotes the radiated
power of the j th BS belonging to operator n and can be expressed as follows:

P (tx)
n, j =

N (DL)
RB∑

r=1

Pn,r , (2)
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where Pn,r is the power consumed per one RB and depends on the RB state. If the
RB r of BS j is allocated to a certain user, then Pn,r = Ptot

N (DL)
RB

, else Pn,r = Pidle ≈
0.19 dBm, [19]. If a BS j is completely switched off, we assume that its power
consumption P (n)

j = 0. To power its BSs, the mobile operator either procures energy
from a traditional electricity provider or uses renewable energy generators installed
on BS sites, e.g., solar panels or wind turbine. The amount of energy procured from
the fossil fuel retailer and the auto-generated amount of energy consumed by BS j of
mobile operator n are denoted by q(n, f )

j and q(n,g)

j , respectively, where f and g stands
for fossil fuel and green energy, respectively. The amount of green energy generated
locally varies from one BS to another depending on technical and environmental
reasons. For instance, the solar rating depends essentially on the size of photovoltaic
(PV) panels and whether they experience any shading during the day.

Note that the locally generated energy is free of charge whereas the electricity
procured from the external retailer is evaluated by π( f ) where π( f ) is the cost of one
unit of energy. That is, the fossil fuel, q(n, f )

j , procured by BS j belonging to mobile

operator n is equal to the total power P (n)
j consumed by this BS multiplied by its

operation time Δt minus the amount of renewable energy generated locally q(n,g)

j .
The objective of each mobile operator is to minimize the consumption of its fossil
fuel in order to reduce its energy cost.

2.1.2 Operator Services

In our study, we consider M different services are offered by mobile operators to
their subscribers. Each service is identified by the data rate thresholds R(UL)

m,th and

R(DL)
m,th for UL and DL, respectively, and a unitary price p(m) with m = 1, . . . , M .

We suppose that each subscriber associated to the network n is using one of the M
offered services. For simplicity, we assume that all mobile operators offer similar
services to their corresponding subscribers.

The main objective of this study is to formulate an optimization problem that
minimizes the total fossil fuel consumption of cellular networks operating in the same
area of interest. The BS ON/OFF strategy in a cooperative fashion will be applied
in order to achieve green goals. In this setting, we also aim to at least not degrade
the network QoS and the profit of each mobile operator but rather enhance them.
However, in some cases, although it helps in reducing theCO2 emissions, cooperation
might lead to a negative impact on the profit of one of themobile operators. Therefore,
we establish a fairness condition that indicates whether green networking is favorable
to operators or not. Finally, we compare the performance of our proposed scheme
with the traditional scenario where cellular companies operate individually without
cooperations.
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2.2 Green Uncooperative Operators

We start by evaluating the gain of applying the BS sleeping strategy separately for
each operator in terms of energy saving and profit. Let ε(n) be a binary vector that
indicates the states the nth mobile operator BSs during the period Δt . Its elements
ε

(n)
j indicates whether a BS j of cellular company n is turned off or not as follows:

ε
(n)
j =

{
1, if BS j is turned on,
0, if BS j is turned off.

(3)

The number of ones and zeros in this vector indicates the number of active and
inactive BSs, respectively. Thus, the fossil fuel consumption and the corresponding
total cost of the nth mobile operator, denoted by E (n) andC (n) respectively, are given
as follows:

E (n) =
N (n)
BS∑

j=1

ε j q
(n, f )

j , and C (n) = π( f )E (n). (4)

On the other hand, we compute the mobile operator profit provided by the operating
BSs in the area. It is exclusively computed from the number of served customers
and the corresponding service. In fact, during Δt , each mobile operator n is serving
N (n)

U mobile stations connected to the network and enjoying one of the M proposed
services. We denote by N (n)

out the number of users in outage during a period of Δt
where N (n)

out � N (n)
U . A user i using the mth service communicates successfully with

a BS if its UL and DL data rates, denoted by R(UL)
i and R(DL)

i , are higher than
the service data rate thresholds, R(UL)

m,th and R(DL)
m,th respectively. By denoting a binary

parameter γ
(n)
i , i = 1 . . . N (n)

U , we can express this assumption as follows:

γ
(n)
i =

{
1, if R(UL)

i ≥ R(UL)
m,th and R(DL)

i ≥ R(DL)
m,th ,

0, if R(UL)
i < R(UL)

m,th or R(DL)
i < R(DL)

m,th .
(5)

In other words, if γ (n)
i = 0, then the i th user fails to achieve its QoS duringΔt . Let the

vector γ (n) = [γ (n)
1 · · · γ (n)

NU
], then the number of ones and zeros in γ (n) corresponds

to the number of served users and the number of users in outage, respectively. Con-
sequently, only the served users pay the equivalent of the proposed service. Hence,
the profit P (n)

u of the nth mobile operator corresponding to its individual operation
in this area is expressed as follows:

P (n)
u =

N (n)
U∑

i=1

γ
(n)
i p(n,m)

i + Rop

(
N (n)

U

)
− C (n), (6)
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where p(n,m)
i is the unitary cost of the servicem used by the i th user of the nth cellular

company and Rop is a constant extra revenue due to fixed subscription fees paid by
themobile operator subscribers. Hence, the optimization problem for a single mobile
operator n is expressed as follows:

Minimize
γ (n),ε(n)

E (n) =
N (n)
BS∑

j=1

ε j q
(n, f )

j , (7)

Subject to:
N (n)
out (γ

(n))

N (n)
U

≤ Pout. (8)

The unique constraint of the problem is (8) which forces the percentage of users in
outage to be lower than an outage probability threshold Pout. This constraint is an
output of the resource allocation algorithm applied for a given ε(n). It is very complex
to find the optimal solution of this problem since the decision variables correspond
to large binary vectors that depend on N (n)

U and N (n)
BS . In [4], the authors proposed and

compared deterministic and heuristic algorithms used to solve similar optimization
problems for a singlemobile operator scenario. They showed that the low complexity
iterative algorithm achieves close performance to the evolutionary algorithms (e.g.,
genetic algorithm and particle swarm optimization approach) with a certain gain in
terms of computational time. Hence, we employ the iterative algorithm to solve the
formulated optimization problems in this section. Once optimization problem (7) is
solved for each mobile operator n, we can deduce the corresponding profit P (n)

u by
computing (6) which has to be at least maintained in case of cooperative operation.

2.3 Green Cooperative Operators and Cooperation Decisions

In the cooperative mode, mobile operators can exploit the existence of other com-
petitive providers in order to ensure energy saving and additional profit as well. In
fact, instead of keeping lightly loaded BSs on, the mobile operator can turn them off
and the subscribers may maintain their communication active using the radio access
network of another operator serving the same area and vice versa. We propose to per-
form this by solving the following optimization problem where BS sleeping strategy
is applied in order to achieve energy saving:

Minimize
γ (n),ε(n), n=1,...,Nop

Nop∑

n=1

E (n), (9)

Subject to:
N (n)
out (γ

(n,1), . . . , γ (n,Nop))

N (n)
U

≤ Pout. (10)
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Once this optimization problem is solved using the iterative algorithm presented
in [4], we obtain the optimal energy consumption under cooperative operation for
eachnetwork and thus the optimal vectorsγ (n,t) andε(n), n, t = 1, . . . , Nop.Compar-
ing to (8), we notice that, in the cooperative case, N (n)

out depends also on the allocation
over other mobile operators which are determined using γ (n,t), t �= n. Indeed, thanks
to the cooperation between mobile operators, some of users of mobile operator n can
be served by another mobile operator t and vice versa. For this reason, we have
introduced new binary vectors γ (n,t) of size 1 × N (n)

U that indicates whether a user
of mobile operator n is served successfully by mobile operator t or not. This way,
during the resource allocation algorithm, more degrees of freedom are provided for
all users because of the increase of the number of RBs in the DL and UL directions.
Thus, higher channel gains can be allocated and energy saving can be achieved.
However, random cooperation may lead to the increase of a certain mobile operator
profit at the expense of other competitive operators. This can cause a high energy
consumption and a very low profit for the active network. For instance, a mobile
operator A may switch off all its BSs while all its users are served by BSs owned by
mobile operator B which pays all energy bills. For this reason, we enforce fairness
by introducing the notion of roaming price that will allow any mobile operator to
decide whether to cooperate or not.

In our study, we assume that the roaming price, denoted by pnt , corresponding
to the cost of serving users belonging to another operator is equal for every pairs
of cooperative operators (n, t), i.e., pnt = ptn . In our framework, the profit of the
cooperative mobile operator n denoted byP (n)

c is expressed as follows:

P (n)
c =

N (n)
U∑

i=1

γ
(n,n)
i p(n,m)

i +
Nop∑

t=1
t �=n

N (n)
U∑

i=1

γ
(t,n)
i

(
p(n,m)

i − pnt

)

+
Nop∑

t=1
t �=n

N (t)
U∑

i=1

pntγ
(t,n)
i + Rop

(
N (n)

U

)
− C (n)

c , (11)

where the first term in (11) corresponds to the operator revenue coming from serving
its own users while the second term is the revenue coming from users served by
other mobile operators after paying the roaming cost. The third term in (11) is the
gain obtained from serving users belonging to other networks which depends on pnt .
Finally, Rop is the constant revenue and C (n)

c is the network energy consumption cost
obtained after solving (9)–(10).Amobile operator n cooperates only if its cooperative
profitP (n)

c is greater than or equal to the uncooperative profitP (n)
u expressed in (6).

Thus, the operators have to solve the following non-homogenous systemof Nop linear

inequalities with Np = Nop(Nop−1)
2 unknown variables:

P (n)
c ≥ P (n)

u ,∀n = 1, . . . , Nop. (12)
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We distinguish here two cases depending on the number of operators Nop:
–Nop = 2: In this particular case, we have two inequalities with one unknown

variable p12. For simplicity, let us denote A1 = ∑N (1)
U

i=1 γ
(1,1)
i p(1,m)

i + Rop

(
N (n)

U

)
−

C (1)
c + ∑N (1)

U
i=1 γ

(1,2)
i p(1,m)

i , A2 = ∑N (2)
U

i=1 γ
(2,2)
i p(2,m)

i − C (2)
c + ∑N (2)

U
i=1 γ

(2,1)
i p(2,m)

i , B =
∑N (2)

U
i=1 γ

(2,1)
i and D = ∑N (1)

U
i=1 γ

(1,2)
i . Then, the system of inequalities can be written

as follows

(B − D)p12 ≥ P (1)
u − A1,

(D − B)p12 ≥ P (2)
u − A2. (13)

Note that B corresponds to the number of users belonging to operator 2 served by
operator 1 while D corresponds to the opposite situation. Thus, the problem solution
depends on these variables. Indeed, if B = D, mobile operators do not need to impose
a roaming price to each other and their profits are equal to A1 and A2, respectively.
A simple comparison betweenP (n)

u andP (n)
c let them decide either they cooperate

or no. Else (i.e., B �= D), from (13), we distinguish two sets of possible solutions of
p12. If they are disjoint, cooperation is impossible. If there is an intersection interval,
the operator collaboration is favorable for energy saving and profit enhancement.
A fair choice of p12 is to maintain a close percentage change as follows:

P (1)
u − P (2)

u

P (1)
u

≈ P (1)
c (p12) − P (2)

c (p12)

P (1)
c (p12)

. (14)

–Nop ≥ 3: In this case, the system can be written in the following matrix form:

ANop×Np pNp×1 ≤ bNop×1, (15)

where A is a matrix that contains the coefficients of the system of linear inequalities
while b is a vector that contains constant terms. p is the decision vector that is
constituted by the roaming price pnt , n, t = 1, . . . , Nop. Each of the inequalities
determines a certain half-space while all the inequalities together determine a certain
region in the Np-dimensional space which is the intersection of a finite number of
half-spaces [20]. If this system admits a feasible solution (i.e., the system is said
compatible), the mobile operator can cooperate safely without degrading neither
their QoS nor their individual profits. If the system is incompatible, then the multi-
operator collaboration is impossible. A system is said compatible if and only if, its
concomitant system is compatible. Indeed, from the system (15), we can construct a
concomitant system involving Np − 1 unknowns after discarding the last unknown,
and for this new system, we can construct another concomitant system involving
Np − 2 unknowns and so on. This way, after a number of steps, we construct a system
consisting of inequalities of one unknown. Thus, the compatibility of the original
system is determined from the compatibility of the last constructed concomitant
system. Using the same steps detailed above, we can find a solution of the problem
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in case of compatibility. The set of solutions of this non-homogenous system can be
also determined via different methods. (For more details, see [20]).

3 Collaboration of Non-uniform Mobile Operators

After investigating the cooperation between uniform mobile operators having the
same green objectives, we propose to investigate the collaboration between a green
mobile operator and non-green operators with different utility functions. The green
mobile company aims to achieve a tradeoff between its carbon dioxide emissions
saving and its profit by exploiting the infrastructure of the non-green mobile com-
panies existing in the same area. For the uniform scenario, the roaming price was
based on mutual interests while in the non-uniform scenario, the non-green oper-
ators try to increase the roaming prices as much as possible in order to maximize
their own profits. In [21], we present a thorough version of this work including more
mathematical details.

3.1 System Model

We consider a geographical area served by Nop + 1 mobile operators. Each mobile
operator is deploying an LTE network with NBS BSs that satisfies the traffic demand
of its customers and covers the total area (i.e., N (1)

BS = · · · = N
(Nop)

BS = N (0)
op ; we set

the index of the GO to 0). We assume that each cell is controlled by Nop + 1 BSs,
each of which is owned by one operator. Thus, the BSs of the different operators are
identically distributed and each operator controls NBS of them. Although this is not
generally the case, this assumption is used to simplify the problem.

3.1.1 Energy Consumption Model for Base Stations

We adopt the same power model given in (1) but we define P (tx)
n, j , the radiated power

of the j th BS of mobile operator n, as a function of the number of users served by this
BS, denoted by N j , multiplied by a constant power and can be expressed as follows:

P (tx)
n, j = PTN j , (16)

where PT is a constant power and is defined such that

PT = Pmin

K
Rυ, (17)
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where Pmin denotes the minimum received power required by each mobile station
(i.e., it represents the user QoS), K is a parameter accounting for several effects
including BS antenna settings, carrier frequency and propagation environment, υ is
the path loss exponent, and R denotes the inter-cell distance. If a BS j is completely
switched off, we assume that its power consumption Pj = 0.

3.1.2 CO2 Emission Penalty Function

Recall that BSs are powered either from a traditional electricity provider or from
renewable energy generators installed on BS sites. The consumption of fossil fuels
causes a harmful impact on the environment due to the emission of GHGs. The
amount of this damage depends on the nature of the energy source. The CO2 emission
penalty function of a network can bemodeled as a quadratic function of the consumed
fossil fuel by a BS as it is given in [22]:

I =
NBS∑

j=1

α f

(
q(n, f )

j

)2 + β f q(n, f )

j , (18)

where α f and β f are the emission coefficients related to the energy source of the
electricity provider.

3.2 Utility Functions and Problem Formulation

In our framework, we investigate the cooperation between the non-uniform mobile
operators. We assume that one of them is considered as a green mobile operator.
Its objective is to minimize its network CO2 emissions, maximize its profit or achieve
a tradeoff between both objectives. The other mobile operators, denoted by (NGOn)
n = 1, . . . , Nop, are considered as traditional mobile operators having the goal of
the maximization of their own profit regardless of their impact on the environment.
The NGOs cooperate with the GO by offloading its users when needed. For instance,
GOmight switch off some of its BSs during low traffic period and the corresponding
subscribers can connect to the NGOs infrastructure. In return, NGOs may impose
on the GO to pay extra charge per number of roamed users. Thus, the GO aims to
determine the number of users per BS to be offloaded to the NGO networks in order
to maximize its objective while the NGOs seek the optimal roaming prices to impose
in order to attract GO users and maximize their profits. In the sequel, in order to
differentiate between the GO and NGO parameters, the notation x (GO) and x (NGOn)

will be used, respectively.
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3.2.1 Green Operator

The first objective of the GO is to maximize its profit, P (GO), expressed as

P (GO) =
NBS∑

j=1

p(GO)N (GO)
T, j −

Nop∑

l=1

π(r)
n N (r)

j,n − π(GO)q(GO, f )

j , (19)

where p(GO) denotes the service fee of the GO per user while π(r)
n corresponds to the

roaming price per user imposed by the nth NGO. N (GO)
T, j denotes the total number

of GO users covered by BS j and N (r)
j,n is the number of users belonging to GO

covered by BS j and served by NGO l. By definition, q(GO, f )

j = max(P (GO)
j Δt −

q(GO,g)

j , 0)where P (GO)
j = a PTN (GO)

j + b. Also, N (GO)
T, j = N (GO)

j +∑Nop

n=1 N (r)
j,n ,∀ j =

1, . . . , NBS. However, if all users of BS j are roamed to neighbor BSs of other
operators N (GO)

T, j = ∑Nop

n=1 N (r)
j,n (i.e., N (GO)

j = 0), then the BS j is turned off and

P (GO)
j = 0, Finally, π(GO) is the unitary cost of fossil fuels per kWh paid by the GO.

The GO’s second objective is to reduce the CO2 emissions, I (GO), defined in (18).
GO might target to achieve a tradeoff between both objectives. For this reason, we
introduce a Pareto parameter, denoted by ω, in its utility function U (GO) which will
be maximized using the following optimization problem:

max
N (r)

j,n

U (GO) = ωP (GO) − (1 − ω) I (GO) (20)

subject to: N (GO)
j +

Nop∑

n=1

N (r)
j,n = N (GO)

T, j , ∀ j = 1, . . . , NBS, (21)

0 ≤ N (r)
j,n ≤ N (GO)

T, j , ∀ j = 1, . . . , NBS, ∀n = 1, . . . , Nop. (22)

When ω → 1, we are dealing with the utility function given in (19). This cor-
responds to a selfish network operator that aims to maximize its own profit P (GO)

regardless of its impact on the environment. When ω → 0, we deal with the utility
function given in (18), which corresponds to an environmentally friendly network
operator that aims to reduce CO2 emissions regardless of its own profit. Other values
of ω constitute a tradeoff between these two extremes.

3.2.2 Non-green Operators

On the other hand, each NGO n tries to maximize its profit by serving as many
roamed users as possible. Its utility function U (NGOn) can be optimized using an
optimization problem formulated as follows
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max
π
(r)
n

U (NGOn) =
NBS∑

j=1

p(NGOn)N (NGOn)

j + π (r)
n N (r)

j,n − π (NGOn)q(NGOl , f )

j (23)

subject to π (r)
n ≥ aπ (NGOn) PTΔt, (24)

where q(NGOn , f )

j =
(

a PT

(
N (NGOn)

j + N (r)
j,n

)
+ b

)
Δt . Note that constraint (24) was

added to ensure that theNGOswill always choose a profitable roaming price. In other
words, if serving GO users is not beneficial, then NGOs will prefer to not cooperate.

3.3 Analysis of the Stackelberg Equilibrium

In order to solve the problem formulated in Sect. 3.2, we propose to model it as a
Stackelberg game where the GO plays the role of the follower and NGOs play the
role of the leaders. We apply a backward induction approach to derive the solution
of the Stackelberg Equilibrium.

3.3.1 Green Operator Level Game: The Follower

The objective of the follower is to determine how many users per BS are needed to
be roamed for NGO l in order to maximize its utility function. As the leaders aim to
maximize their utility functions anticipating the predicted response of the follower,
we should start first by deriving the best response of the follower with respect to the
numbers of roamedusers perBS N (r)

j,n, ∀ j = 1, . . . , NBS, ∀n = 1, . . . , L . It is known
that the problem solution is an integer solution; however, we propose to relax the
problem by transforming the integers to real non-negative variables. Then, we round
the obtained solution to find the exact number of roamed users. Thus, the number
of roamed users to the lth NGO can be obtained by computing the first derivative
of the Lagrangian function with respect to N (r)

j,n and equating to zero. We showed
in [21] that the second derivative of the utility function with respect to the number
of roamed users is negative. Thus, U (GO) is concave with respect to N (r)

j,n . Finally, the
optimal number of roamed users per BS is expressed as follows

N (r)
j,n

(∗) = min
{[

N (GO)
T, j −

Nop∑

k=1
k �=l

N (r)
j,k + bΔt − q j

a PTΔt
+ β f

2α f a PTΔt

+
(

ω

1 − ω

)
π (GO)

2α f a PTΔt
−

(
ω

1 − ω

)
π (r)

n

2α f (a PTΔt)2

]+
, N (GO)

T, j

}
, (25)

where min(., N (GO)
T, j ) and [.]+ = max(., 0) are added to fulfill constraints (21) and

(22), respectively. From the expression above, we can notice that the number of



112 H. Ghazzai et al.

roamed users per BS decreases with the increase of the NGO roaming price.
Moreover, we can see that this decrease depends on the GO’s Pareto weight. For
instance, when ω → 1, the GO is more and more concerned by its profit and thus
the decrease of the number of roamed users is more important.

3.3.2 Non Green Operator Level Game: The Leader

The objective of the leader l in this Stackelberg game is to maximize its profit by
attracting the maximum number of GO users. Therefore, the NGO l has to find
the best roaming price depending on the system parameters in order to optimize
its Stackelberg Equilibrium by injecting the relationship given in (25) in its utility
function and deriving its first derivative with respect to the roamed price π (r)

n and
equating it to zero. Hence, the optimal roaming price of NGO l is given as follows

π (r)
n

(∗) = max

{(
1 − ω

ω

) [
α f (a PTΔt)2

NBS

NBS∑

j=1

⎛

⎜
⎝NT, j −

Nop∑

k=1
k �=l

N (r)
j,k

⎞

⎟
⎠

+ α f a PTΔt

⎛

⎝bΔt −
NBS∑

j=1

q j

NBS

⎞

⎠ + a PTΔt

2
β f

]

+ a PTΔt

2

(
π (GO) + π (NGOn)

)
, aπ (NGOn) PTΔt

}
. (26)

Note that the max{. , aπ (NGOn) PTΔt} is added to ensure that the profit of a leader
will not decrease below its profit obtained without cooperation as it is given in
constraint (24). U (NGOn) is also concave with respect to π (r)

n as its second derivative
with respect to π (r)

n is also negative.
From expressions (25) and (26), it can be noticed that the determination of the

SE of the nth leader depends on the number of roamed users to the other (Nop − 1)
NGOs as well as their respective roaming prices. Therefore, we propose to employ
a fixed point algorithm to determine the optimal number of roamed users and the
corresponding roaming prices.

4 Results and Discussion

In this section, we investigate the performance of the proposed approach for uni-
form mobile operator collaboration detailed in Sect. 2. Then, we discuss the results
obtained for the non-uniform mobile operator collaboration setting.
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4.1 Performance of the Collaboration Between Uniform
Mobile Operators

We consider Nop = 2 mobile operators, denoted by A and B, serving a 5 × 5 (Km2)
LTE coverage area. A and B are placing uniformly N (1)

BS = 16 and N (2)
BS = 9 BSs,

respectively. We assume the nonexistence of inter-operator interference and both
networks are operating in disjoint 10 (MHz) bandwidths that are subdivided into
NRB = 50 RBs. The LTE and channel parameters are obtained from [19]. All BSs
and all mobile stations have the same power model with the same maximal transmit
power 46 dBm, a = 21.45 and b = 354.44 W. We set υ = 3.76, κ = −122.1 dB,
σξ = 8 dB and the tolerance Pout = 2%. The mobile station transmit power is set
to 23 dBm. In addition, we suppose that the network operators offer similar M = 3
services. Each one is characterized by its cost (unitary price) p(m), expressed in
monetary units (MU), DL andULdata rate thresholds (R(DL)

m,th and R(UL)
m,th respectively),

and the occurrence probability of the service as it is shown in Table1. The occurrence
probability of a given service corresponds to the percentage of users in the network
using that service.

Mobile operators are procuring energy either from electricity retailer, which
provides enough energy to cover the network operation, or from renewable energy
generated locally. We assume that amount of energy available at each BS varies
between 0 and 100 Watt which corresponds to the maximum amount of energy that
can be stored locally during the operation time Δt = 1 s. We set the unitary price of
the fossil fuel toπ( f ) = 0.1 (MU). Finally, we assume that N (1)

U = αN (2)
U , 0 ≤ α ≤ 1

and that mobile operators are engaged to serve 98% of the connected users simul-
taneously (i.e., Pout = 0.02). In our results, we compare our approach, denoted by
“coop”, with the traditional case, denoted by “uncoop”, when both cellular compa-
nies operate individually in addition to the case when all BSs are assumed to belong
to a single virtual network operator, denoted by “virtual”.

In Table2, we study the performance of mobile operator collaboration versus
the number of subscribers connected to the networks for α = 2

3 . In all scenarios,
the amount of renewable energy generated by the BSs is the same. We notice
that the proposed cooperative scheme achieves almost the same performance as
the virtual scenario by activating almost the same number of BSs and consuming
a slightly higher amount of fossil fuels. This small difference is due to the QoS
constraints separately imposed on each operator as it is given in (10) while, in the

Table 1 Service parameters

Services Service 1 Service 2 Service 3

p(m)(MU) 10 5 1

(R(DL)
m,th , R(UL)

m,th ) (kbps) (1000, 384) (384, 384) (64, 64)

Occurrence probability (%) 15 25 60
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Table 2 Approach performance versus total number of users (α = 2/3)

Number of A users N (1)
U 20 80 140

Uncoop. fossil fuels (kW) [Active BSs] 1.8 [4.3] 5.1 [10.7] 8.5 [16]
Coop. fossil fuels (kW) [Active BSs] 1 [2.7] 4 [7] 6.9 [11]
Virtual fossil fuels (kW) [Active BSs] 1 [2.7] 3.7 [6] 6.3 [9.2]
Uncoop. profit (kMU): A, B 0.10, 0.06 0.98, 0.62 1.86, 1.21

Coop. profit (kMU): A, B 0.12, 0.08 1.04, 0.68 1.96, 1.30

Roaming price (MU) 5.37 2.84 1.19

virtual scenario, there is only one constraint as it is a single big network. Compared to
the traditional case, an important energy saving is obtained thanks to cooperation. For
instance, for N (1)

U = 130, the fossil fuel consumption is reduced by more than 23%.
Concerning the profit, we notice that the results satisfy the condition imposed in (12)
that forces the cooperation profits to be higher than the individual ones by choos-
ing an appropriate roaming price. For instance, the gained profit when collaborating
is greater by 5% than the uncooperative case for both operators when N (1)

U = 70.
This is because with collaboration, mobile operators are offered more degrees of
freedom in order to reduce the energy cost and maximize their profit. To achieve this
gain, an appropriate choice of roaming price has to be determined by solving (12).
We can see that the higher traffic densities are, the lower the roaming price is. Finally,
our simulation experiments indicate that the percentage of successful cooperation is
97%. In other words, the probability that mobile operators decide to not cooperate
is ≈3%.

Figure2 investigates the impact of generating renewables by mobile operators on
the cooperation performance for N (1)

U = 50 and α = 2
3 . To do this, we introduce a

parameter βRE that represents the percentage of green energy generated by A while
100 − βRE corresponds to the percentage of green energy generated by B. In other
words, if βRE = 0%, then only B possesses renewables and vice versa. We assume
here that all BSs owned by an operator are storing the same amount of renewables.
In Fig. 2a, we plot the consumed fossil fuels. We notice that the operator that is
controlling renewable energy is able to reduce its CO2 emissions more when there is
no cooperation with a gain in terms of profit (Fig. 2b). However, when cooperating,
most of its BSs are kept active to servemost of the users of the competing provider (as
it is shown in Fig. 3a, 90% and 95% for α = 2

3 and α = 1
3 , respectively). However,

the optimal value is when βRE = 50%. At this equilibrium, all BSs of both operators
have the same characteristics and thus the BS selection set is larger. The curves are
unbalanced because of the difference in the number of connected users and the
number of available BSs per each operator. Finally, we can notice that the roaming
price is higher when A is controlling the renewable energy. Indeed, as the number
of subscribers of B is lower, A is forced to increase the roaming price in order
to maximize its profit when cooperating, while the inverse can be deduced for B.
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Fig. 2 a Consumed fossil fuels b Profit of mobile operators versus the distribution of green energy
over cellular networks βRE

Note that in all our simulations, the network QoS is satisfied for all operators, i.e.,
Pout = 2%.

It is inpractical to assume that the roaming price varies instantaneously and
dynamically with each channel in the network. It should have a pre-defined fixed
average value for a given traffic density, or range of traffic densities in the network
(e.g., there can be a price during the day corresponding to high density and another
during the night corresponding to relatively lower density). This value can be set
through collaboration agreements between mobile operators. The results derived in
these simulations are averaged over 1000 channel realizations using Monte Carlo
simulations. Hence, these results provide insights about the average roaming price
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that should be imposed between mobile operators for different traffic densities in
order to ensure mutual benefit.

4.2 Performance of the Collaboration Between Non-uniform
Mobile Operators

In this section, we present some numerical results for one-follower one-leader setting
and one-follower two-leaders setting as an example of the scheme proposed in Sect. 3.
We consider an area of interest where the Nop + 1 mobile operators are deploying
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Table 3 System parameters

Parameter Value Parameter Value

Pmin −120 dBm υ 3.76

K 0.0001 R 1000 m

(a, b) (7.84, 71.5) (α f , β f ) (0.02, 0.1)

NBS = 10 identical BSs. All the BSs are powered by traditional electricity providers
except theBSs of theGOnetworkwhich are also supplied via green energy equipment
deployed in BS sites. The amount of the auto-generated green energy differs form
a BS to another. This can be explained essentially by the fact that PV panels in BS
sites have different sizes and whether they experience any shading during the day.
Finally, we consider that p(GO) = p(NGOn) = 5MU,∀n = 1, . . . , Nop (MU stands for
monetary unit). In our simulations, we set the channel and power parameters as it is
detailed in Table3.

First, we investigate the one-leader one-follower scenario where only one NGO
is available to serve the users of the GO. In Table4, we study the coopera-
tion between the operators for three cases when π (GO) = 0.2 < π (NGO) = 0.4 and
π (GO) > π (NGO) = 0.4. For each case, we vary the Pareto weight ω representing the
behavior of the GO towards the environment and we provide some information about
the number of roamed users and the NGO roaming price. The amount of energy q (GO)

j

available in each GO’s BS and the number of users served by each BS N (GO)
T, j are also

given in Table4. We assume that N (GO)
T, j = N (NGO)

T, j . We can first deduce that there are
three categories of BSs in this roaming setting. BSs that offload all their users to the
NGO (e.g., j = 2, 6, 8): These BSs, having very low amounts of renewable energy,
prefer to be turned off instead of serving users using fossil fuel independently of the
value of π (GO). The second category is the BSs that do not offload any users as they
have sufficient amount of green energy to serve all of them (e.g., j = 4, 9, 10). The
final category encloses the BSs that offload some of their users depending on the
available amount of green energy (e.g., j = 1, 3, 5, 7). Another remark is that as ω

increases the roaming price π(r) decreases. Indeed, as it is more concerned by its
profit, the GO tries to avoid the maximum to pay extra roaming fees. Thus, NGO are
obliged to reduce their roaming price to attract GO users. We can see that the higher
π (GO) is, the higher π (r) is.

Let us now study the cooperation behavior case by case. When π (GO) < π (NGO),
we notice that as ω increases the number of roamed users decreases. In the case,
ω = 0.1, GO offloads the maximum number of users such that it minimizes its CO2

emissions. This means that most of GO users are either served by green energy or
by NGO infrastructure. When ω is close to 1, we can see that GO does no more
offload users since it prefers to serve them using its BSs even with fossil fuels as
its π (GO) < π (NGO). Now, if π (GO) > π (NGO), we can see as ω increases, the number
of roamed users increases too. In this case, the GO prefers to offload its users as its
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fossil fuel cost is more expensive than the NGO one and is more and more concerned
by its profit.

In Fig. 4, we investigate the performance of the proposed scheme for one follower
and two leaders scenario. In this case, we set ω = 0.6 which belongs to the Pareto
efficiency region as it is given inTable4 andwe setπ (GO) = 1.5 (MU) andπ

(NGO
2 ) = 1

(MU). Finally, we vary π
(NGO
1 ) between 0 and 2 (MU). In Fig. 4a, we investigate

the performance of all operators under the proposed cooperation mode (denoted
by Prop.) when varying the fossil fuel cost of NGO 1 by plotting their utilities
functions. Also, we compare them with the performance of the non-cooperation
mode (denoted by Trad.) where all operators serve their own users without roaming.
The figure shows that, thanks to their collaboration, all operators are able to enhance
their performance comparing to the traditional scenario. Indeed, independently of
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the value of π
(NGO
1 ), GO is able to double its utility function while NGO utilities

vary according to the NGO 1 fossil fuel cost. Indeed, as π
(NGO
1 ) increases, U (NGO1)

decreases until coinciding with the traditional case, while U (NGO2) increases with a
lower scale. NGO 2 exploits the high cost that NGO 1 is facing to provide a lower
roaming user price and thus attract more GO users as it is shown in Fig. 4b, c where
we plot the roaming prices and number of users, respectively. From these figures,
we can see that when NGO 1 cost is low, both roaming prices are low and NGO 1
is gaining most of the roamed users (about 260 users) while NGO 2 is serving about
95 GO users. As π

(NGO
1 ) increases, NGO 1 is loosing roamed users while NGO 2 is

serving more even if they provide the same roaming price. This is due to the fact that
NGO 1 is obliged to increase its roaming price to face the energy price increase and
NGO 2 exploits this to also increase its roaming price knowing that GO is interested
in reducing its CO2. However, we notice that GO is more interested in serving its
users as the roaming price is becoming more and more expensive.

4.3 Insights from the Results and Future Challenges

The results show that cooperation betweenmultiple operators can be beneficial, and it
could lead to a win-win situation for all parties. Operators can increase their revenues
from roamed subscribers,while cutting their operating costs by reducing significantly
their energy consumption. The selection of suitable roaming prices will allow the
serving operator to generate revenue from the roamed users, whereas the original
operator offloading its subscribers will be able to save energy costs by switching
off redundant BSs. In addition, the whole cooperation process is environmentally
friendly since it leads to reduced CO2 emissions, while respecting users QoS and
maintaining, even increasing, the operators profits. Throughout the operation of the
network, the roles of the operatorswill be reversed, depending on the network dynam-
ics. Hence, each operator will at certain times (or at different locations, at the same
time) save energy by switching off some of its BSs, while at other times (and/or
locations), it will be serving the roamed users of other operators.

In practice, thismulti-operator collaboration is in linewith the active research area
of network function virtualization (NFV) and service orchestration. In fact, mobile
virtual network operators (MVNOs) are a market reality, where a physical operator
lends its infrastructure (e.g., the mobile access network) to be used by several other
virtual operators. Having two existing operators unite the operation of their networks
for the benefit of all can thus be implemented in practice.However, themain challenge
is in pricing and billing issues. Operators need to find the best roaming price that can
lead to benefits for all involved parties. This requires an assessment of the value of the
savings obtained by switching a certain BS off and of the costs incurred by the new
serving operator to serve subscribers of other operators. Once studies are made to
estimate these values, suitable billing agreements can be signed between concerned
operators. The whole process remains transparent to subscribers, who will pay their
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bills to their initial operator, and will receive their expected QoS seamlessly across
the networks of the collaborating operators.

5 Summary

In this chapter, we investigated the performance of the green networking approach for
multi-operator collaboration for two different settings: The uniform mobile operator
collaboration and the non-uniformmobile operator collaboration. In thefirst scenario,
we have formulated an optimization problem that aims to reduce the total CO2

emissions by eliminating redundant base stations while respecting the network QoS.
We have also derived a system of linear inequalities to decide whether to cooperate
or not by determining the roaming price. Our approach leads to an important saving
in terms of fossil fuel consumption while it enhances the cooperative mobile operator
profit. In addition, it shows that the roaming price is inversely proportional to the
number of subscribers of the network as well as the number of BSs generating
renewables.

In this second scenario, we investigated the performance of a green networking
system where one green operator interested in minimizing its CO2 emissions coop-
erates with several non green operators interested in maximizing their own profits by
serving the green operator subscribers. The problem was formulated as a two-level
Stackelberg game that leads to the maximization of both player utility functions. A
Stackelberg equilibrium was derived and the optimal roaming prices and number
of offloaded users are determined. Our simulation results showed the behavior of
each mobile operator in this competition game and showed that the green operator
is able to ensure a significant reduction in terms of CO2 emissions compared to the
traditional case.

At the moment, collaboration between mobile companies are still not applied in
reality. Therefore, there is a pressing need to propose additional and new approaches
in order to encourage telecommunication leaders and regulators to discuss and focus
more on such approaches for possible implementation in next cellular network gen-
eration. The work can be extended and enriched by formulating differently the prob-
lem. Game theoretical approaches could be used to model the coalition and/or the
competition among mobile operators while including the dynamic traffic variation.
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An Integrated Approach for Functional
Decomposition of Future RAN

Zainab R. Zaidi, Vasilis Friderikos, Oluwakayode Onireti,
Jinwei Gang and Muhammad A. Imran

Abstract Software-defined radio access networks (SD-RAN), dense deployment of
small cells with possible macro-overlay for users with high mobility, decoupled sig-
naling and data transmissions, or beyond cellular green generation (BCG2) architec-
ture for enhanced energy efficiency, etc. are some of the very active research themes
and most promising technologies for future RAN architecture. In this chapter, we
present the idea of an integrated deployment solution for energy efficient cellular
networks combining the strengths of the above mentioned themes. While SD-RAN
envisions a decoupled centralized control plane and data forwarding plane for flexi-
ble control, the BCG2 architecture calls for decoupling coverage from capacity and
coverage is provided through always-on low-power signaling node for a larger geo-
graphical area; capacity is catered by various on-demand data nodes or small cells for
maximum energy efficiency. We identify that a combined approach bringing in both
decompositions together can, not only achieve greater benefits, but also facilitates the
faster realization of both technologies. We propose the idea and design of a signaling
controller which acts as a signaling node to provide always-on coverage, consuming
low power, and at the same time also hosts the control plane functions for the SD-
RAN through a general purpose processing platform. Phantom cell concept is also
a similar idea where a normal macro cell provides interference control to densely
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deployed small cells, although, our preliminary results show that the proposed inte-
grated architecture has much greater potential of energy savings in comparison to
phantom cells as a signaling controller is supposed to consume minimal power in
comparison with the normal macro cell BS.

1 Introduction

Continuous miniaturization of computing units will yield smarter and more capable
mobile devices with even greater demand for capacity. This growth is also a major
factor in predicted doubling of global ICT emissions from 2 to 4% by 2020 [1].
Addition of many small cells, with different architectural variations, emerged as a
major solution for enhancing capacity but only if interference and mobility are prop-
erly managed. Mobile communication systems witnessed growth at a much slower
pace than the user-end devices mainly due to inflexible and expensive equipment,
complex control plane protocols, and vendor specific configuration interfaces. Soft-
ware defined networking (SDN) suggests hardware agnostic programmable platform
for development of protocols, applications, etc., hiding all complexity of execution
through separation of control and data plane [3]. This decoupling will introduce
unparalleled flexibility for innovation and future growth andwill also reduce CAPEX
and OPEX through ideas like network virtualization.

Moreover, with the growth in user data, more and more base stations (BSs), cur-
rently consuming over 80% of the total network energy [1], are added into the sys-
tem substantially increasing the energy consumption and carbon footprint of cellular
networks. The state-of-the-art energy management schemes exploit the redundant
capacity during the low traffic scenarios and put a fraction of the BSs in sleep mode.
However, they might cause coverage holes and in order to achieve the real benefits
of energy management, it is needed to separate capacity and coverage via logical
decoupling of the data and control or signaling transmissions in the future systems,
also known as BCG2 or cell on-demand architecture [1]. The signaling nodes pro-
vide coverage and always-on connectivity and will be designed for low rate services,
for system access and paging, consuming very small fraction of power; whereas the
data nodes can only be used on-demand depending on the traffic. The decoupling
is expected to provide 85–90% energy saving potential compared to the current
systems [2].

Although, both of the approaches have different technical objectives, i.e., SDN
focuses on inducing flexibility through programmable hardware and BCG2 archi-
tecture tries to get linear relationship between energy consumption and user traffic.
The end goal, however, has a lot in common in terms of physical realization. The
centralized controller in the state-of-the-art proposals of SD-RAN, either resides in
the core network or in a centralized data centre [3], an idea migrated from Cloud
RAN (Radio Access Network). We argue that the signaling node providing coverage
and system access can also be a suitable host for the centralized controller, or virtual
big BS of [3], in SD-RAN containing major functionalities of control plane, such as,
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coordination and resource allocation, for a number of BSs in a geographical area. In
this chapter, we present the idea of a signaling controller which provides always-on
system access, contains control plane functionalities of interference management,
resource allocation, etc. Since, the control plane can be implemented using general
purpose processors; the signaling node does not need additional power consuming
elements and can still conform to the low-power consumption attribute as required
by the BCG2 architecture. The signaling controller can use dedicated microwave
links to connect to the BSs in its coverage area or fibre if cost-effective.

Moreover, SDN can also be viewed as the enabling technology for BCG2 archi-
tecture. Such basic architectural change in contemporary cellular systems is very
expensive to implement as it requires redesigning of several components and hard-
ware; a major reason to delay the decoupling for later standards after a full feasibility
investigation. A cellular SDN experimentation platform can, however, facilitates the
performance evaluation and quick implementation of BCG2 architecture. It is high
time to re-think the basic architecture of the cellular systems and not only make it
energy efficient but also make them flexible and amenable for future growth. These
two areas are getting huge interest of the research community and in our view their
intersection also creates a unique space with immense potential of performance
improvement.

Our architecture is inline to phantom cell concept [4] which was introduced for
realizing true potential of dense deployment of small cells as suggested for LTE
Release 12. In this idea, many small cells, called the phantom cells as they contain
only LTE user plane, are overlaid with a normal macro cell which provides inter-
ference coordination. However, a macro cell consumes over 100 times more power
than a pico/femto cell as described in the EU FP7 EARTH project [2] and keeping
it on all the time would lead to severe power inefficiency. In the proposed integrated
architecture however, the signaling controller is used instead of the macro cell which
is a low-rate signaling-only node consuming a small fraction of network energy. A
signaling controller can also host a logically separated data node but it can be treated
as any other data node in the area. Our simulation results show the exceptional poten-
tial of energy savings using our proposed architecture in comparison to phantom cell
concept.

Moreover, with less than 1% emissions, mobile telecom infrastructure is not
among the biggest polluters [1] and higher capacity and faster data rates are still the
high priority and valued design objectives for future mobile networks than enhanced
energy efficiency. However, our integrated approach provides improved energy effi-
ciency while facilitating dense deployments of small cells and functional decompo-
sition for software defined networking.

The rest of the chapter is organized as follows: in Sect. 2, we review SDN and
BCG2 themes and their salient features, the new integrated design is presented in
Sect. 3 along with the important outstanding issues. Prominent advantages of the
integrated architecture are presented in Sect. 4. Finally, Sect. 5 concludes the chapter.
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2 Background

2.1 BCG2 Architecture

The logical decoupling of data transmissions and control signaling paradigm is one
of the key directions being explored by GreenTouch1 under the project Beyond
Cellular Green Generation (BCG2) [1]. GreenTouch is a consortium of leading ICT
industry and academic expertsworking towards 1000 times enhanced network energy
efficiency compared to 2010 by delivering specific designs and recommendations by
2015. In BCG2 architecture, the signaling nodes are responsible for the coverage
and are usually assumed to deliver low rate services, such as, random access and
paging, over long ranges; whereas the data nodes can be activated and deactivated
depending on the traffic demand and it is designed for high rate and small ranges. The
decoupling is logical in nature and a single location can host both types of nodes. A
preliminary study ofBCG2 architecture is presented in [1], where it is shown, through
statistical modeling, that energy efficiency of current systems can be improved by
more than 50 times depending on the daily load profile. A set of studies regarding
the BCG2 architecture is performed under the EU FP7 IP project EARTH [2]. The
study shows that up to 85–90% saving potential is possible with this revolutionary
changed architecture compared to the current systems. The results from these studies
show the promise and potential of the BCG2 architecture. Although, considering the
transition cost involved in moving to a new cellular architecture, a comprehensive
feasibility study is necessary to clearly identify the cost-benefit trade-offs.

Coverage is also separated from data processing in a Cloud RAN architecture [5],
where a centralized BBU (Base Band Unit) pool serves several RRH (Radio Remote
Heads) in the area and not-in-service BBUs can be put in sleep mode to save energy.
The prohibitive aspects of Cloud RAN are the expensive fibre needed to connect
RRHs to the BBU pool and the high bandwidth requirements for this fronthaul.

Currently, the base stations consume over 80% of total network energy and are
designed for high-data rate services. During low-traffic scenarios, such as, night time,
they can only be put in sleep mode if there are redundant BSs covering the area,
which is the usual case in dense urban environment. The decoupling will provide
tremendous opportunity for improving energy consumption. Data nodes or the BSs
responsible for data transmissions can employ more efficient energy management
schemes with sleep modes and green radio technologies, such as optimized beam
forming, in the BCG2 architecture compared to the contemporary systems. They are
potentially the major power consumer.

An incoming session should be allocated to an active data node which can provide
the service, although it might not be the best BS for the job, as the incremental cost
for serving an additional session is much smaller then activating a BS [1]. However,
sending the transmission through a low SNR (Signal to Noise Ratio) path will affect
the spectral efficiency of the system. Moreover, the channel between data BS and

1http://www.greentouch.org/.

http://www.greentouch.org/
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the mobile terminal cannot be estimated before selection as done in the classical
approach. More sophisticated mechanisms are required to predict and estimate the
channel condition between the mobile terminal and any potential data BS. Signaling
nodes are responsible for providing coverage and always-on connectivity, paging the
mobile terminals, and providing access to themwhen required [2]. They are supposed
to be designed for low rate and long range transmissions and consuming low power.

2.2 Software Defined Radio Access Networks

While the definitions of SDN are still evolving, it mainly focuses towards decoupling
of the software-based control plane from the hardware-based data plane (e.g., packets
forwarding) of networking and switching pieces of equipment [3]. The logically cen-
tralized controllers contain the control logic to translate the application requirements
down to the data plane and are responsible in providing an abstract network view to
the application plane. Themajor issue is to create appropriatemapping of the existing
network functionalities to the decoupled control and forwarding planes. While a lot
of the work is done for wired or optical networks, some proposals are also presented
for cellular SDN architecture [3, 6].

For the radio access part of themobile communication system, themajor questions
are: 1—How to decouple the control plane from the base stations and 2—where
the control plane will be located? The centralized controller in the state-of-the-art
proposals of SD-RAN, either resides in the core network [6] or in a centralized data
centre [3]. The design in [6] tries to push all the control plane functionality into
a centralized controller in the core network and proposes the use of local switch
agents for scalability. The proposition in [3] is focused towards re-factoring the
control plane into a virtualized big base station controller for a geographical area
and local controllers within each base station for latency sensitive decision making.

The LTE architecture also distinguishes user plane, dealing with the data packet
forwarding, and control plane, focusing on signaling and management messages
and operations, using the same physical infrastructure. Both planes reside in the
firmware of the system. This demarcation is much clearly designed in mobile core
network EPC (Evolved Packet Core), but the radio access part of LTE consists of
only base station node, eNodeB, performing data forwarding and control functions.
The SDN based core network requires transporting the control plane into software
along with the control logic required for the data forwarding plane, e.g., routing
rules, mobility anchoring, etc. We also remark that user plane as defined by LTE is
not exactly the same as data forwarding plane of SDN and similarly both control
planes also differ slightly. In SDN, control plane relates to all control logic required
to manage the network, connections, and forwarding the data packets. From SDN’s
perspective, base stations, serving gateway (S-GW), and packet gateway (P-GW)
of LTE architecture are also performing some control plane functions along with
data forwarding in addition to the designated control plane nodes MME (Mobility
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Management Entity), HSS (Home Subscriber Server), and PCRF (Policy Control
and Charging Rules Function) [6].

Although not within the scope of SDN, but it is worthwhile to discuss an extreme
approach of re-designing radio access architecture, i.e., the Cloud RAN [5]. Cloud
RAN centralizes all functionalities, control as well as data plane, into a centralized
BBU pool, or a data center, for easier management and coordination while leaving
only antennas and some active RF components, i.e., RRH, on the cell sites. Cloud
RAN is proposed as a mechanism to realize small cell deployment in LTE through
proper coordination for interference management. LTE small cell, however, assumes
distributed control with self-organizing (SON) capabilities. The backhaul from the
cell site to the serving gateway (S-GW) could be through wired or wireless links
(http://scf.io/). On the other hand, Cloud RAN assumes a high bandwidth fibre link
between RRH and the centralized data centre, which is also the most prohibitively
expensive aspect of this proposal.

SoftRAN [3] observes that it is cost-effective to leave data plane functionality to
the base stations along with some part of control plane for delay-sensitive decisions,
but stressed on the coordination of closely-deployed BS in a dense network though a
centralized virtual big base station. The idea of bigBS or controller is very close to the
signaling node in the BCG2 architecture and motivates us to explore the integration
of both approaches. The authors of SoftRAN also presented a decomposition of
protocols for data plane realization in cellular network in an earlier publication [7].

2.3 The Phantom Cell Concept

The phantom cell concept is presented by DOCOMO [4], where the small cells,
called phantom cells as they are data-only BSs just containing LTE user plane, are
overlaidwith a normalmacro cell which provides interferencemanagement and hosts
both LTE user and control planes. Unlike Cloud RAN, phantom cell may perform
baseband processing and does not need high capacity link between phantom cell
and macro cell. The phantom cell uses new carrier type without cell-specific signal
and a special BS discovery procedure managed by macro cell. Since the channel
between UE (User Equipment) and potential phantom BS is unknown, the macro
BS stores mean SNR (Signal to Noise Ratio) map for each Phantom BS to select
the best one for a UE at a specific location [11]. In addition to training phases and
excessive memory requirements, this method assumes constant transmission power
and over-averaging of SNR values from UE which in fact can only measure SINR
(Signal to Interference and Noise Ratio) instead. Moreover, a macro cell consumes
over 100 times more power than a pico/femto cell [2] and keeping it on all the time
would lead to severe power inefficiency.

A summary of all the approaches is provided in the Table1 along with the respec-
tive design objectives, key themes and important related issues. The last row intro-
duces our integrated approach which combines the benefits of SD-RAN and BCG2.

http://scf.io/
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Table 1 Summary of architectural approaches for future mobile networks

Design concept Objective Key ideas Comments

BCG2 Energy efficiency Low-rate, low-power
always on signaling
nodes for coverage and
on-demand data nodes

Major transition from
current architecture

SD-RAN Flexible innovation Programmable control
plane and hard-ware
based data plane

Major paradigm shift
and concepts are still
evolving

Phantom cell Interference
management in dense
deployments

Phantom/small/data
cells and on-demand
with an always-on
macro cell for coverage

Macro cell consumes
100 times more power
than small cells, a major
cause of power
inefficiency

Cloud RAN Easier management and
coordination

Centralized baseband
processing with remote
radio heads as nodes

High capacity fronthaul
is required

Our approach Energy efficiency,
interference
management and
flexible innovation

Low-power, low rate
signaling controller for
coverage in a macro cell
area and hosting control
plane functionalities
with on-demand data
cells

Combined approach of
SD-RAN and BCG2
which is more energy
efficient than phantom
cell concept

3 The Integrated Architecture

The evolution of contemporary LTE into the new integrated architecture is shown in
Fig. 1. As depicted in [6], we also believe that the control plane of SDN based
core network should contain some functional capabilities currently residing in
S-GW (Serving Gateway) and P-GW (Packet Gateway), e.g., modification of rout-
ing rules, etc., along with the dedicated control nodes of EPC (Evolved Packet Core)
shown with green dashed lines in Fig. 1. The functional decomposition of S-GW
and P-GW is shown in Fig. 1 by means of control elements containing necessary
APIs to EPC control nodes and also control logic required for data forwarding.
These programmable control elements for routing modification etc., can be housed
in control nodes in future architectures with specific APIs only in S-GW and P-GW.
The interfaces between nodes in the core network, as shown in Fig. 1, are the same
as EPC; but in a programmable SDN domain, they most probably be realized as
software APIs. The data forwarding pipe is shown with a solid blue line passing
through both gateways into the internet.

The new radio access system includes signaling controller, shown with big tow-
ers in Fig. 1, for a larger geographical area containing several data BSs shown with
smaller towers in the figure. The eNodeB functionalities will be split between sig-
naling controller and data BSs. The data BS can only be used on-demand and if there
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Fig. 1 The new integrated architecture

is no active session, the data BS will be put in sleep mode as also shown in Fig. 1.
The control plane interfaces are shown with green dashed lines and the data paths
are shown with blue solid lines in Fig. 1. We propose that only signaling controller is
required to have an interface with MME (Mobility Management Entity), performing
similar functions as S1-MME of EPC. The data BS requires connections to S-GW
for data forwarding with the interface similar to S1-U of EPC.

Moreover, when mobile user is crossing the signaling controller coverage bound-
aries, a coordinated handover can be realized through communication between two
signaling controllers. The interface between two signaling controller is labeled as
X2 in Fig. 1, as it requires almost similar specifications as the interface X2 between
eNodeBs in LTE but excluding functions related to data transmission and tunneling.
Within the coverage area of a signaling controller, the handoff between data BS will
bemanaged by the single associated signaling controller, most probably as part of the
resource management function. The UE (User Equipment), also requires interfaces
to both signaling controller for system access and data BS for data transmissions. The
interfaces are similar to LTE-Uu interface which is defined to both control and data
traffic in LTE. The only new interface in our architecture is the connection between
signaling controller and the data BS, denoted as management interface in Fig. 1. This
interface is similar to X3 interface in phantom cell concept [4] though implemented
through software APIs. The management interface will be used for resource allo-
cation by signaling controller and periodic updates from data BS for interference
management. This connection can also be realized through dedicated wireless links
or by any other wired technology if available.
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Table 2 Combined requirements for signaling controller

SDN

1 Hosts control logic for RAN, i.e., interference management, resource management,
coordinated handover, etc.

2 Programmable on general purpose processors

3 Provides APIs to BSs and also to core network

BCG2

1 Provides signaling for system access and paging

2 Has interfaces to UE, data BSs, and core network

3 Performs resource allocation

4 Consumes low power

3.1 Signaling Controller

The major component of our new integrated architecture is the signaling controller
which performs the functions of a signaling node in BCG2 architecture and also
of the centralized controller for SDN based radio access network. The combined
specifications for the signaling controller conforming to the SDN principles and
BCG2 architecture are given in Table2. Since control plane implementation will be
done using general purpose processors, the power consumption of a signaling node is
not expected to substantially increase because of additional controller functionalities.

3.1.1 Resource Management and Assignment

In the BCG2 architecture, the possibility of sub-optimal channel allocation is one
of the major concerns [2], for two reasons: (1) the channel between data BS and
the mobile terminal cannot be estimated before selection as done in the classical
approach and more sophisticated mechanisms are required to predict and estimate
the channel condition between the mobile terminal and any potential data BS, such
as, location of the user, etc. (2) It is less costly to allocate an in-coming request to
an already active BS rather than waking up an inactive one; although it might not
have the best possible channel to the user. However, the signaling controller can, not
only null the ill effects described above but can actually optimize system capacity
and energy efficiency trade-off with efficient resource management and interference
mitigation using periodic updates from data BSs under its coverage and re-allocation
of resources if it improves the capacity/energy trade-off.

In order to predict channel between user and inactive BS, phantom cell concept
proposes to save SNR (Signal-to-Noise Ratio) map with each phantom cell [11].
In addition to the requirement of an initial training phase and excessive memory
requirements, this method assumes constant transmission power and over-averaging
of SNR values fromUEwhich in fact can only measure SINR (Signal to Interference
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Fig. 2 Probability of missed discovery of best BS with minimum distance (d) and best signal
strength (ss) methods for urban and suburban scenarios

and Noise Ratio) instead. We evaluated the performance of two methods of BS
selection, i.e., 1—with best signal strength and2—withminimumdistance to the user,
using real drive-test data from cellular networks in urban and suburban scenarios.
We collected around 1000 observations with GPS location and signal strengths of
nearby BSs. Although, the BSs were not small BSs but the data still provides insight
into the performance of both methods. We remark that in dense deployments, it
suffices if we select a BS among the top n best BSs by any possible method. We
calculatedmean signal strength over amovingwindowof 100 observations to find the
most consistent or best BS. The results in terms of probability of missed detection
are given in Fig. 2. We plotted the probability against the acceptable number of
best BSs. i.e., n = 1, . . . , 5. The results in Fig. 2 shows that both method are good
and comparable for suburban settings, although, for urban scenario, both has large
errors specially minimum distance selection has unacceptable performance. With
smaller distances between users and BSs in dense deployments and lesser chances
of obstacles in between, minimum distance discovery is expected to perform better
than the performance shown in Fig. 2. BS discovery while in sleep mode is still an
open problem and an important part of our on-going work.

Resource management is a multi-objective optimization problem which maxi-
mizes capacity ri (η) = log(1 + SINR(η)), where SINR(η) is signal to interference
and noise ratio, and minimizes power consumption pi (η) for all i users. If trans-
mission power is kept constant, the SINR(η) would depend on the specific resource
block allocation to closely spaced users. The optimization function is
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min
η

ECI(η) = min
η

{∑
i pi (η)∑
i ri (η)

}

where ECI(η) is the commonly used energy consumption index with units of W/bps
or J/bit [2] and η is the parameter vector. The parameter space is a 3D resource grid
containing the resource blocks, i.e., frequency carrier and time slot and data BSs.
Under the new structure, the resource block mapping to the data BS does not need to
be static and may be calculated by the resource management entity. Exploiting the
ideas developed under self-organizing networks, the resourcemanagement parameter
space can be extended to include BS variables, such as, transmission power, antenna
tilt, etc.

A very simplified case study is presented in Fig. 3 to explain our idea of optimal
resource management or re-allocation. Here one data BS is assigned 2 voice calls
(64Kbps each) and 1 video streaming session (384Kbps). The streaming video ses-
sion requires approximately 6 times more resource blocks than the voice calls. The
relative distances of each user are also given with the serving data BS for both sce-
narios in Fig. 3. If we ignore all other effects and assume that transmit power for each
resource block should compensate the respective path loss L ∝ dγ (urban path loss
exponent γ is 8), the required total transmit power needed for all resource blocks in
scenario 1 will be approximately 4.5 × 103 times more than the power consumption
for scenario 2 for the same required data rate and it saves a lot of energy if the systems
moves from scenario 1 to 2. Undoubtedly, the above described calculations are based
on a generic model; in a more realistic scenario issues regarding the actual deploy-
ment scenarios of the macro BS and more importantly allocation of the resources
for the sporadic, in its nature, control based traffic need to be considered in a more
detailed manner.
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Fig. 3 An example of optimal resource management
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3.1.2 Mobility Management

There are also some important implications in terms of managing mobility which
implicitly also relate to energy consumption. The two salient features of IP based
mobility management protocols, such as, fast handovers for MIPv6 [8], hierarchi-
cal MIPv6, and proxy MIPv6, are: 1—they are centralized and based on a mobility
anchor located within the network domain and 2—these mobility protocols do not
separate control and data planes. The former issue propelled discussions towards
the Distributed Mobility Management (DMM) [9] solutions where the anchoring is
done at the Access Point (AP) or BS; hence these functionalities are distributed at the
points of attachment of the mobile nodes. Decentralization would alleviate network
bottlenecks enabling better routing decisions at the same time. Nevertheless, clear
benefits of such decentralization would emerge especially for the cases where the
session duration time is significantly less than the cell residence time. The perfor-
mance for high mobility users and/or delay sensitive flows under a DMM framework
is very much topology dependant since the flows have to be tunneled form the old
AP to the new AP under DMM. Regarding the second salient feature, in order to be
compliant with an SDN-like separation of data and control planes and in the case
of DMM, the APs will act as forwarding plane anchors and mobility related control
functionalities will be logically centralized. In the proposed architecture these planes
are physically decoupled, as shown in Fig. 4, and therefore localized mobility control
will be required to take place via the signaling controller node. The signaling con-
troller node will acquire all the control functionalities of a Mobile Access Gateway
(MAG) and with control exchanges with the Local Mobility Anchor (LMA) will
encapsulate the IPv6 address of allocated data BS for the mobile node. As shown in
Fig. 4, the signaling node will act as an MAG for the mobile node which in essence
means it has to provide a proxy Care of Address (pCoA) from the pool of available
resources of the data BS in which the UE will be connected to (both in the case of
new calls and handover calls).

Fig. 4 Mobility management in the new architecture
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3.1.3 Inter Macro Base Station Handover
and Load Management

In the proposed, as well as, the nominal C/U wireless split architectures user han-
dover management between small cells that are associated (i.e., controlled) by dif-
ferent macro controllers entail a significant overhead in terms of handover signaling.
Signaling plane functionalities of the macro BS include, inter alia, the control plane
interface with the Evolved Packet Core (EPC) entities such as the Mobility Man-
agement Entity (MME) via the 3GPP standardized S1-MME interface. The C-plane
also includes all LTE signaling and control related functionalities. Such as for exam-
ple, the radio resource control (RRC—establishment, modification, and release of
mobile users Radio Resource Control (RRC) layers) network controlled mobility
and functionalities related to measurement, configuration and reporting.

For a handover between small cells that are managed by different controllers
both macro base stations will have to be involved in the handover process. This is
shown in Fig. 5 belowdepicting the case of a handover between two pico-cells that are
controlled by differentmacro-BSs. In addition to the overhead that this entail, an inter
macro base station handover might result in a potential poor handover performance
since, as mentioned above, macro controllers have limited information about the
channel conditions between the mobile user and the candidate small cell.

In order to ease the above two issues dynamic algorithms for small cell to macro
cell association would need to be implemented when deploying C/U based split
wireless networks with a significant high density of small cells. Also, and in addition
to the above mentioned system level aspects that need to be carefully taken into
account it has to be reiterated that in terms of handover management C/U split
architectures pose different set of problems compared to traditional cellular networks

Fig. 5 Inter macro-BS handovers and load balancing in C/U split wireless architectures
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since coverage of small cells can be non-continuous and scatteredwithin the coverage
area of a macro-controller.

The issue of handover management in such architectures influence some other
mechanisms in the network such as for example load balancing. In current cellular
networks macro cell load balancing is considered through various versions of the
‘cell breathing’ principle in which a base station adjusts the coverage area by chang-
ing its transmission power based on the load requirements. Another, in some sense
complementary, technique for load balancing is the so-called inter-cell steering. The
aim of steering is to decrease the coverage area of a cell which operates at high
utilization levels by increasing at the same time the coverage of adjacent cell with
relative low load profile. By doing this, load distribution could be adjusted between
neighboring cells. However, such load balancing actions should not be considered in
isolation since theymight cause increased levels of handovers among themacro cells.
For example in the case shown in Fig. 5 above depending on the number of small
cell handovers that can be controlled from different macro-BSs a trade-off should
be considered between balancing the scarce available resources of the macro-BSs
and the reduction of quality for handovers between small cells managed by different
macro-BS. Hence, inter macro cell handovers and load balancing are a pair of issues;
they strongly influence each other and should be considered jointly.

3.2 Data Base Stations

Data BS belongs to the data forwarding plane. Under the new structure, they require
to performbaseband processing and other transmission tasks as defined by the control
plane. They will only be used on-demand as they are the most energy consuming
component of the system. If not in use, they should be put in sleep mode to save
energy. The cost of activation and de-activation should also be considered along with
the activation delay while assessing the costs and benefits of the new architecture.

3.2.1 Cell Outage Management in New Integrated Architecture

Cell outage management is an autonomous process in self-organizing-networks
(SON) which entails cell outage detection (COD) and cell outage compensation
(COC). COD aims to autonomously detect outage cells, i.e. cells that are not oper-
ating properly due to possible failures, e.g. external failure such as power supply
or network connectivity, or even misconfiguration. On the other hand, COC refers
to the automatic mitigation of the degradation effect of the outage by appropriately
adjusting suitable radio parameters, such as the pilot power, antenna tilt and azimuth
of the surrounding cells.

Though individual COC and COD algorithms have been presented in literature
for conventional deployments, a complete COM framework is still missing for the
new integrated architecture [12–16]. The main difference in the COM framework of
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conventional heterogeneous network (HetNet) and the new integrated approach is in
their architecture. In the new integrated architecture, active high data rate UEs are
served by both the data and control BS, while the low rate UEs are served by only
the control BS. This implies that all UEs maintain connectivity with the control BS.
Furthermore, as a result of the split of the control and data planes, the control and
data cell outages are independent of each other; hence, the detection of a cell outage
in each plane is executed independently of the other. In the conventional HetNet,
control and data functionalities are provided to the UE by the same node, whereas
these functionalities are providedby separate nodes in the new integrated architecture.
Hence, in the conventional architecture outage to a node can be compensated by any
other node, whereas in the new integrated architecture, an outage to a node can only
be compensated by another node that provides the same functionalities.

Hence two distinct COD algorithms have to be developed to cope with the pecu-
liarities of data and control cells [17]. Since control cells tend to have a large number
of UEs, machine learning based anomaly detection schemes can be applied for con-
trol COD. Control COD thus can be implemented at the operation and maintenance
center (OMC) level. However, the same COD scheme cannot be applied for data
cells, as the number of users will not be large enough to constitute reliable training
models for underlying anomaly detection techniques. To overcome this problem, we
take advantage of the following peculiarities, about data cells, to develop a heuristic,
yet reliable data COD algorithm. The radio resource control (RRC) layers of all UEs
are handled by the control cells, as a result, the control base station (BS) is aware of:
(1) every UE-data BS association within its coverage, (2) the state of each UE (idle
or active), (3) every radio link failure between the UEs and data BSs, (4) every han-
dovers to other data BSs in its coverage and (5) data link handover from the data BS to
itself. Also, once the normal state of the control cells has been established, each UE
associated to the data cells can periodically report the reference signal received power
(RSRP) statistic between itself and its associated data cell to its serving control cell.
Hence, the control BS monitors the UE-data BS association and triggers the outage
detection when it discovers irregularities in UE-data BS association. Irregularities in
UE-data BS association occur when all UEs attached to a particular data BS changes
their association without any of the following: (1) prior handover initiation process,
(2) change in state of all the UEs, (3) radio link failure notification from all the UEs,
(4) the data BS going into sleeping mode. Once the outage detection is triggered, the
control BS can detect outage of the data BS by predicting the RSRP of all the UEs
that were associated with it prior to the outage using a prediction model such as Grey
Prediction Model [18].

Once the outage is properly detected, an online automatic COC scheme has to
be implemented to continue serving the UEs in the outage area. A reinforcement
learning (RL) algorithm which works by optimizing the coverage and capacity of
the identified outage zone, by adjusting the gains of the antennas through electrical tilt
and downlink transmission power of the surrounding BSs in that plane, is developed.
The proposedCOCalgorithm can be applied independently in each plane, as different
spectrum resources are allocated to each plane.
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Fig. 6 Cell outage management framework for the new integrated architecture

Figure6 shows our COM framework which has two distinct COD algorithms to
cope with the idiosyncrasies of the control and data cell. After the control or data
cell outage has been detected by the OMC or by the control BS, respectively, a RL
based COC scheme is implemented independently in both planes. The outputs from
the COC are the control parameters of the plane of interest, which are feedback to
the plane and rightly applied to the neighboring cells to the outage cell.

4 Advantages

4.1 Energy Efficiency

The major objective of phantom cell concept is to provide interference coordination
to dense deployments of small cells through amacro cell. Although, as themacro cell
also takes care of the coverage, the small or phantom cell can be put in sleep mode
if not in use. A macro cell consumes over 100 times more power than a pico/small
cell as estimated in EU FP7 EARTH project [2] reducing the energy efficiency of
phantom cell architecture. In Fig. 7, we show themean daily consumption of phantom
cell and our proposed architecture and compare it with the baseline scenario of all
active nodes. It is clear that the reduction in phantom cell consumption only becomes
prominent in very dense settings, whereas, our proposed architecture based on the
decoupling of signaling and data improves energy efficiency greatly.

The simple simulation scenario consists of 1 macro cell and a number of homo-
geneous small cells. In our architecture, the macro BS is a signaling controller which
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consumes negligible energy [1]. We assumed uniformly distributed small BS and
UEs in the macro cell radial range of 2km. The total number of UEs in peak hour
are assumed to be 10 times the number of BSs and proportional number of UEs are
calculated for each 2 hour slot of the day using daily traffic profile introduced by
EARTH [1, 2]. Each UE connects to the BS with lowest path-loss, i.e., minimum
distance. The BSs are assumed to have sufficient capacity to serve the allocated UEs.
The nodes without any associated user are assumed to be in sleep mode with zero
energy consumption. A better resource allocation algorithm can be designed for both
architectures to optimize the capacity/energy trade-off which should benefit both in
the similar manner. Moreover, sleep mode also consumes small amount of energy
[2] but it is ignored in this evaluation. The small cell BS consumption is normalized
to 1 watt.

The average daily energy consumption of phantom cell and our architecture is
shown in Fig. 7, where it is clear that the consumption of always-on macro cell in
phantom cell concept offsets the energy savings of small cells in sleep mode.We also
tried to estimate the average daily consumptionwhenmacro cell consumes 70%more
power than small cells. The results are labeled as All on-70 and Phantom cell-70,
whereas the results whenmacro cell’s consumptionwas 100 timesmore, as described
in [2], are labeled as All on-100 and Phantom cell-100. In both scenarios, phantom
cells become really beneficial in very dense deployments of small cells. In our on-
going work, we are estimating the energy requirements of a signaling-controller for
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clear identification of the margin of benefit. In Fig. 7, our proposed architecture is
slightly favored as the consumption of signaling controller is ignored, however, it
will be much smaller than the consumption of a normal macro cell, still making our
architecture the most energy efficient architecture for 5G which also comes with
unprecedented ability of interference management to realize true benefits of dense
deployments.

4.1.1 Power Consumption Comparison

A major figure of merit for BCG2 type architecture, while comparing with phantom
cell concept, is the reduction in energy consumption of the system when a signaling
controller is used instead of a normal macro base station to provide connectivity to
a macro-cell size area. Assume PT is the total power consumption of a base station.
According to the EARTH power model [19],

PT = NTRX

Pout
ηPA(1−σ f eed )

+ PBB + PRF

(1 − σDC)(1 − σM S)(1 − σcool)
,

where NTRX is the number of transceiver chains, Pout is the output power, PBB and
PRF are the power consumption values for baseband and RF units respectively. ηPA

is the power amplifier efficiency and, σDC ,σM S , and σcool are the loss factors (loss
factor = 1− efficiency) for the DC-DC power supply, main supply, and active cooling
respectively. σ f eed is the feeder loss.

While comparing the power consumption of signaling controller and a normal
macro base station, we note that PBB and PRF are the major dissimilar components
of the model. Any technological improvement in power amplifier, DC-DC, main
supply, and cooling components can enhance both types of base stations in the same
way. Moreover, we do not need MIMO antennas at a signaling controller due to very
low capacity requirements, i.e., NTRX = 1 for a signaling controller.

The modern baseband unit of cellular base stations comprises of multiple smaller
sub-units according to the required capacity of the base station for better energy
efficiency. Signaling traffic rate for a user will be in the neighborhood of 1–2 Mbps
with bandwidth 1–5MHz as opposed to 1.5–3Gbps peak user rate of LTE-Advanced.
The signaling controller will need order of magnitude less number of baseband
processing units than a normal macro base station. If PB B,m and PB B,s denote the
baseband power consumption values of a normal LTE-Advanced macro base station
with nB B,m baseband processing units and that of a signaling controller with nB B,s

baseband units respectively, then the excess baseband power consumption of a normal
macro base station can be estimated as PB B,m

PB B,s
= nB B,m

nB B,s
≤ (750 · · · 3 × 103).

Another estimate can be obtained through working out the power scaling for-
mulae given in [20] for a signaling controller with 5 MHz, single antenna, QPSK
modulation, coding rate 4/5, 100% time-domain duty-cycling and 100% frequency
occupation. The reference scenario is of a macro base station with 20MHz, single
antenna, 64 QAM modulation, coding rate 1 and 100% time-domain duty cycling



An Integrated Approach for Functional Decomposition … 141

and 100% frequency occupancy. Estimating PB B,m

PB B,s
using the GOPS (Giga Operations

Per Second) figures given in Table2 of [2]

PB B,m

PB B,s
= (850 + 0.1 × 1060)

( 20
20

)
(2) + 10

( 20
20

)
22 + 200 × 2

(480 + 0.1 × 1060)
(

5
20

)
+ 380

(
5
20

) ( 2
6

) ( 4
5

) = 2352

171.83
= 13.69,

where the macro base station in comparison is supposed to be using peak user rate of
64-QAM modulation, coding rate 1, 2 × 2 MIMO antennas, bandwidth of 20 MHz,
100% time-domain duty-cycling and 100% frequency occupation [20]. Assuming
40 GOPS/W (for 65 nm CMOS technology [20]), the absolute baseband power
consumption values are PB B,m = 58.8 W and PB B,s = 4.3 W.

According to [20], bandwidth, modulation, and coding rate has no effect on the
RF power scaling, however, RF power consumption linearly increases with the num-
ber of antennas considering 100% time-domain duty-cycling and 100% frequency
occupation. PRF,m

PRF,s
= 2, if 2 × 2MIMO antennas are used with normal macro base

station and signaling controller is supposed to be using a single antenna. From [20],
the estimated consumptions will be PRF,m = 11.4 W and PRF,s = 5.7 W.

Estimating PT,m

PT,s
as given in the above expression with the assumption of

Pout = 38.9 W (46 dBm) and ηPA = 31.1% [19] for both normal macro-cell
base station and signaling controller and ignoring feeder losses, we have PT,m

PT,s
=

2( 38.9
0.311+58.8+11.4)
38.9
0.311+4.3+5.7

= 2.9. The analysis concludes that a signaling controller can reduce

the power consumption by approximately 200% comparing with a normal macro-
cell base station providing coverage for the similar size area. Also note, that the
above analysis used power instead of energy consumption and if we consider the
energy savings when signaling controller provides very short-term signaling to a
larger macro-cell area and long-term data transmissions are handled by nearby small
cells, the difference between BCG2 and current architecture would become even
more distinctive.

4.2 Virtualization and RAN Sharing

Network function virtualization is one of the prime benefits of SDN where var-
ious virtual networks can use the same physical infrastructure. For example, the
signaling controller can be shared by various operators. Each can control its radio
resources with or without collaboration with other operators. RAN sharing has also
been proposed and practiced in 3GPP systems. The most comprehensive framework
is developed by NEC [10], which is based on minimum guaranteed reservation of
resources for each operator.

In our on-going work, we are developing the idea of opportunistic RAN sharing
with our proposed architecture. Opportunistic RAN sharing is a novel idea where
infrastructure and radio resources are opportunistically shared among operators only
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if it improves the capacity/energy efficiency trade-off which can then be mapped into
proportional gains for sharing operators. Since all access requests will be coming to
the signaling controller, it is much easier to design radio resource sharing algorithm
with optimal performance over a finer time scale. As an example, we consider night
scenario where around 15% of the traffic is expected compared to the peak load
[1]. Two operators in an area, each individually serving 15% of its subscribed users,
can provide service to all the clients with better utilization of the BSs and resource
blocks providing better capacity/energy trade-off. The gains can be shared among
the operators in proportion to their costs.

4.3 Enabling Technologies

BCG2 architecture proposes a basic structural change in contemporary mobile com-
munication system which requires re-designing of several components, such as,
mobility management, resource allocation, etc., affecting the whole system which is
the main reason to delay its implementation till the future standards. An SDN pro-
grammable control plane could be the enabling technology to realize cell on-demand
architecture by facilitating development and implementation of appropriate modi-
fications in protocols. On the other hand, signaling node as defined by the BCG2
architecture could be the best location to host the control plane for a particular geo-
graphical area of a radio access network.

The integration of SD-RAN and BCG2 architecture enables an energy efficient
mobile communication system with optimal capacity. The proposed architecture
provides clear demarcation of control and data plane specially in the radio access
part enabling the realization of various novel aspects of SDN, such as, network
virtualization and network function virtualization.

5 Conclusion

We present an integrated approach combining SDN based RAN and BCG2 architec-
ture, by means of a signaling controller which provides always-on system access and
contains control plane functionalities. The major takeaway message of this chapter
is that both visions carry more potential than the benefits they are aiming for; and a
union of both sets of requirements and specifications will result in an even richer and
more commercially viable design of mobile communication systems. Our architec-
ture is also very close to the phantom cell concept, although, our architecture has the
potential to reduce energy consumption over multiple order of magnitude in compar-
ison to phantom cells. Future avenues of research include a detailed functional view
of the architecture where various components such as mobility and topology control
can be envisioned within a Network Function Virtualization (NVF) paradigm in a
cloud empowered RAN.
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Cross-Layer Designs for Energy-Efficient
Wireless Ad-hoc Networks

Auon Muhammad Akhtar and Xianbin Wang

Abstract Energy consumption is an important design criteria for wireless networks,
not least because it directly impacts the cost of network operation and maintenance.
Already, the information and communication technology (ICT) industry is being
labeled as a substantial contributor to the total CO2 emissions on the planet. More-
over, due to the slow improvement in battery technology, battery-operated wireless
networks face a fundamental challenge, since there is an exponential increase in
the gap between the demand for energy and the offered battery capacity. For these
reasons, green ICT has become a critical issue world wide. This chapter adopts a
cross-layer approach for enhancing the energy efficiency of wireless ad-hoc net-
works. Initially, the chapter discusses the importance of cross-layered designs for
energy-efficient wireless networks. Following this, commonly used techniques for
modeling energy consumption in wireless networks are outlined. Lastly, cross-layer
designs based on cooperative physical layer network coding and hybrid automatic
repeat request (HARQ) are presented. In this cross-layered design approach, energy-
efficient transmission strategies are initially proposed for the physical (PHY) and
medium access control (MAC) layers. Then, these optimized strategies are utilized
as basic building blocks for energy-efficient routing at the network layer. All of the
theoretical results are verified through computer simulations.

1 Introduction

Over the last decade, mobile data traffic has witnessed an explosive growth [1]. One
of the important challenges resulting from this unprecedented growth is the increased
energy consumption of the wireless networks. As a figure of merit, it was reported
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in [2] that the data volume increases by a factor of 10 every five years, which cor-
responds roughly to an annual increase of around 16–20% in energy consumption.
This trend is set to continue, since recent forecasts suggest a further 10 fold increase
in data traffic between 2014 and 2019 [1]. In such scenarios, it comes as no surprise
that the ICT industry, in particular, the wireless industry, is being labeled as one of
the major contributors to the total CO2 emissions on the planet. To compound this
problem further, battery operated wireless terminals face the challenge of diminish-
ing battery life due to the exponential increase in the gap between the demand for
energy consumption, due to media-rich smart devices, and the slow growth in battery
technology. For these reasons, green communications and energy-efficient wireless
networks have become a critical research issue across the globe [3].

Traditionally, energy consumption in wireless networks has been investigated in
a layer wise manner, with particular emphasis on the physical (PHY) and medium
access control (MAC) layers. At the PHY layer, research has focused on various
design aspects, ranging from the modulation schemes to exploitation of the physi-
cal channel characteristics. For example, authors of [4] find the optimal modulation
schemes whichminimize the energy consumed in transferring a given amount of data
between the source and the destination nodes. Similarly, the authors of [5] derive the
optimal design parameters for M-ary Quadrature Amplitude Modulation (MQAM),
M-ary Phase Shift Keying (MPSK) and non-coherent Multiple Frequency Shift Key-
ing (MFSK), with the aim of minimizing energy consumption per information bit.
Both the aforementioned works take the transmitted signal power as well as the cir-
cuit power consumption into account while designing the optimized solutions. On
the other hand, the works in [6, 7] utilize distributed beamforming to achieve highly
directional transmissions, resulting in significant energy saving gains compared to
independent signal transmissions. More recently, the authors in [8] applied distrib-
uted beamforming in multi-source multi-destination clustered systems with the aim
of minimizing transmit power while maintaining a minimum signal-to-interference-
plus-noise-ratio (SINR) at the destinations. Other methods for energy-efficient PHY
layers look into the multi-antenna transmissions, coding, power control, adaptive
resource allocation, etc., [9].

The MAC layer plays a significant role in minimizing the overall energy con-
sumption. One of the major energy consuming components in a wireless system is
the radio itself, which is controlled by the MAC layer. Consequently, energy effi-
cient MAC layer algorithms mostly focus on appropriately turning a node’s radio
on or off, depending on the given situation [10]. For example, the authors of [11]
propose an energy-efficient MAC protocol for the battery operated wireless sen-
sor networks, whereby, the sensor nodes save battery power by periodically going
to sleep modes. On the other hand, the algorithm proposed in [12] minimizes the
energy consumption of sensor nodes while meeting the user-specified delay con-
straint in low-duty-cycle sensor networks. In [13], the authors propose a distributed
approach which extends the network lifetime by dynamically adapting various con-
trollable parameters, including MAC duty cycling, while maintaining a minimum
quality of service (QoS) within the network. In addition to the the aforementioned
functionality, the MAC layer also decides the schedule for packet transmissions. To



Cross-Layer Designs for Energy-Efficient Wireless Ad-hoc Networks 149

this end, the study in [14] proposes a scheduling scheme to optimize the energy con-
sumption of a multiuser multi-access system such that the QoS constraints, in terms
of packet loss rates, are fulfilled while the maximizing the advantages emerging from
multiuser diversity.

While the aforementioned algorithms and designs showed a lot of potential for
minimizing energy consumption, nevertheless, the fact they focused only on specific
layers of the protocol stack made them sub-optimal when the overall system design
was taken into consideration. Different layers can have conflicting requirements
for minimizing energy consumption. For example, while minimizing transmission
energy consumption at the PHY layer improves its performance in terms energy
efficiency, however, this improvement comes at the cost of increased transmission
attempts at the MAC layer, especially when the state of the channel between the
communicating devices is unknown or only partially known. For such reasons, opti-
mal energy consumption requires joint optimization across all layers. Consequently,
recent works on energy minimization have focused mainly on cross-layer designs to
improve energy efficiency [15, 16]. For example, the authors of [17] derive closed
form expressions for optimal transmission energy and frame length such that the per-
formance of the PHY and MAC layers is jointly optimized. On the author hand, the
work in [18] jointly optimized the performance of PHY and network layers where
distributed beamforming was utilized to minimize the energy consumption of the
PHY layer while a routing algorithm for the network layer was proposed which
worked in conjunction with the transmission strategy at PHY layer.

In this chapter, we present two cross-layered design algorithms which jointly
optimize the performance of multiple layers. The first algorithm jointly optimizes
the performance of the PHY and network layers. Cooperative physical layer network
coding (CPLNC) is initially utilized as an energy-efficient transmission strategy at
the PHY layer. Then, CPLNC is incorporated into energy-efficient routing at the
network layer and it is shown how the network and PHY layers can work in tandem
to improve the overall energy consumption of the system. The second algorithm
focuses on PHY, MAC and network layers and utilizes cooperative automatic repeat
request (ARQ) to improve energy efficiency. The energy consumption at the PHYand
MAC layers is optimized by finding a balance between the number of transmission
attempts at the MAC layer and the energy consumption per transmission attempt at
the PHY layer. To achieve this goal, relay nodes are employed and cooperative link
costs are derived. Then, routing algorithms are presented which utilize the derived
cooperative link costs as basic building blocks. The chapter presents in depth analysis
of the outlined methods and computer simulations are used to verify the performance
gains.

The rest of the chapter is organized as follows: Sect. 2 discusses in detail the
various design considerations that are taken into account when modeling energy
consumption in wireless ad-hoc networks. Section3 introduces a cross-layer design
method based on physical layer network coding, which jointly optimizes the per-
formance of the PHY and network layers. Theoretical and simulation results for the
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proposed approach are presented in the same section. Section4 presents a coopera-
tive ARQ based algorithm which jointly optimizes the performance of PHY, MAC
and network layers. Finally, Sect. 5 summarizes the chapter.

2 Modeling Energy Consumption in Wireless
Ad-hoc Networks

Energy consumption models, upon which the design of various energy efficient algo-
rithms is based, form a key component of the research on energy-efficient communi-
cations. Generally, the energy consumption models consist of a variable component
and a fixed component. The variable component of the model is based on the wire-
less channel conditions, e.g., distance-dependent pathloss, fading, shadowing, etc.
It reflects the energy consumed by the power amplifier at the transmitter side since
the radiated transmission power originates at the output of this power amplifier.
Accordingly, the variable component is also referred to as the transmission energy
consumption. On the other hand, the fixed component is used to model the energy
consumed by the electronic circuitry of the transmitter and the receiver devices. This
energy consumption results from the signal processing, coding/decoding, modula-
tion/demodulation, etc., at the transceiver devices. With these design considerations,
the general model for the energy consumed in transmitting a symbol between two
devices au and zv, separated by a distance xuv, can be written as

Euv = βxα
uv + 2E, (1)

where α reflects the pathloss exponent and E represents the aforementioned radio
electronics/hardware energy consumption at a transmitter or a receiverwith the factor
of 2 accounting for both of them. Finally, the scaling factor β is based on the physical
parameters for a given scenario.

It is quite obvious from (1) that the scaling factor β is an important element of the
overall energy consumption model. It can be used to capture the effects of a variety
of physical parameters. For example, it can be used to model the impact of channel
fading conditions. Specifically, for slow varying fading channels, where the chan-
nel coherence time is much larger than block coherence time and channel inversion
based power control is used at the transmitter [19], β can be used for modeling the
fading coefficients of the channel. On the other hand, β also incorporates the effect
of the specific modulation in use by the transceivers, as done in [4, 17, 24]. To this
end, the peak to average ratio of an M-ary modulation signal is an important design
criterion which is accounted for within β. Other than the aforementioned physi-
cal parameters, some other important transmission parameters that are incorporated
within β include the efficiency of the power amplifier, the targeted signal-to-noise-
ratio (SNR) at the receiver, the effect of receiver noise power and the wavelength of
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transmissions, channel coding rate, etc. A simplified example for β can be obtained
from the formulations presented in [18], where it is given as

β = γvPη

1

μ

[(
4π

λ

)2

x2−α
o

]

. (2)

In the above equation, γv and Pη account for the target SNR and receiver noise
power, respectively. The term μ represents the power amplifier efficiency, and 1/μ
implies that the overall energy consumption increases when μ is small while it
decreases for larger values for μ. Lastly, λ represents the wavelength while xo repre-
sents the reference distance for antenna far field. The term inside the large brackets
represents the constant terms from the free-space pathloss model utilized in [18].
Note that the free space pathloss formulation can be easily replaced by more accu-
rate models, depending on the specific scenario under consideration, but the general
structure of (1) still remains the same. Next, as far as the hardware energy con-
sumption is concerned, it is modeled by a constant value, which is obtained through
practical measurements. The measured values differ based on the chip design and
manufacturer-specific components installed on the communications devices.

At this stage, it is imperative to mention that Eq. (1) can be manipulated based on
the unit of the size of the signal being considered in the specific design. For example,
it can be used in its current form if the unit being considered is a symbol. On the other
hand, by multiplying the same equation with an appropriate scaling factor, it can be
used to represent the energy consumption per information bit. To this end, two use
cases of the above equation under different design units are presented in Sects. 3 and
4 of this chapter. More specifically, Sect. 3 utilizes (1) in its current form to represent
the energy consumption per transmitted symbol. The whole design presented in
Sect. 3 is based on this assumption. On the other hand, Sect. 4 manipulates the same
equation to model average energy consumption per information bit by multiplying
the equation by a factor of (N + Nc)/N , where N and Nc represent the number of
information and overhead bits, respectively.

As a concluding remark for this section, it must be pointed out that the discus-
sions made thus far in this section pertain to single hope point to point transmissions.
However, wireless ad-hoc networks utilize multiple modes for transmissions and
communications, for example, broadcast, multicast, multipoint to point transmis-
sions, multihop communications, etc. For broadcast and multicast transmissions, the
formulation in (1) remains the same as far as transmission energy is concerned. How-
ever, for the hardware part ofEuv above, the constantE is multiplied byNr + 1, where
Nr is the number of receivers while the additional 1 accounts for the transmitter. On
the other hand, for multipoint to point transmissions, the transmission energies of the
involved transmitters are simply added together while the constant term E is multi-
plied by Nt + 1, where Nt is the number of transmitting devices while the additional
1 accounts for the single receiver. Lastly, for multihop communications, the energy
consumption of all the hops are added together to get the overall energy consumption
of the multiphop path.
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3 Cross-Layer Design Using Physical Layer
Network Coding

Asmentioned previously, cross-layered designs for energy-efficient communications
are critical to optimizing the overall energy-efficiency performance of the wireless
ad-hoc networks. To this end, the current section introduces a cross-layered design
for energy efficient communications in wireless ad-hoc networks. The presented
approach jointly optimizes the performance of the PHY and network layers. To
achieve this goal, CPLNC is presented as an energy-efficient transmission strategy at
the PHY layer while CPLNC-based energy-efficient routing algorithms are proposed
to optimize the energy-efficiency performance of the network layer. CPLNC works
for slow varying channels, where the channel coherence time is much larger than
the block transmission time such that the channel gain and the phase delay can be
estimatedby the receiver and sent back to the transmitter. This enables the transmitters
to implement channel inversion based power control [19].

3.1 Cooperative Physical Layer Network Coding

Consider a scenario of three randomly placed nodes S, R and D, as shown in Fig. 1.
Source S transmits a packet of successive symbols, drawn independently from a
Binary Phase Shift Keying (BPSK) constellation, to D. During the transmission of
the first symbol, depicted as m1 in Fig. 1, R overhears and decodes the transmitted
data. During the subsequent time slots, S and R get synchronized and while S is
transmitting the remaining sequence of symbols, i.e., mk, k ≥ 2, with transmitting
power Ps, R repeatedly transmits the first symbol m1 with transmitting power Pr .
Here, Ps and Pr are the reduced transmission powers to be derived later in this
section. Synchronous transmission of S and R to D is such that when they transmit
the same symbol, the received sum power at the destination satisfies the minimum
SNR threshold of γth; whereas, when they transmit different symbols, the received

Fig. 1 A three node network and wireless broadcast advantage
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signals cancel each other out. This implies that equal powermust be received from the
two transmitting nodes. Since D has already decoded one of the transmitted symbols,
namely m1, it can decode the remaining symbols, i.e., mk, k ≥ 2, from the combined
received signal. When the same symbols are transmitted, the receiver SNR can be
given as γth = |√Pshsd+√

Pr hrd|2
Pη

, where hsd and hrd represent the channel coefficients
between S − D and R − D, respectively, Pη is the receiver noise power while Ps and
Pr represent the transmission power of S andR, respectively. Since the received power
due to transmission from each transmitter node is the same, i.e.,

√
Pshsd = √

Prhrd,
the aforementioned equation for receiver SNR can be written as γth = |2√Pshsd|2

Pη
, or

Ps = γthPη

4|hsd|2 . Similarly, Pr = γthPn

4|hrd|2 . Thus, using CPLNC, the general form for power
transmitted from node au to receiver rv is given as

Pu = γthPη

4|huv|2 (3)

From the derived values forPs andPr , one can already see that each of the transmitter
nodes only needs to transmit at 1/4 of its normal transmission power to achieve
the required SNR at the destination. After down conversion at the destination, the
received signal can be written as

Ω ′
d(t) = 1

2

√
γthPη(bs + br) + ηd(t), (4)

where bs and br are the BPSK modulated bits transmitted by S and R, respectively,
while ηd is the receiver noise. From (4), by focusing on the noiseless part of the
received signal, it can easily be seen that the baseband equivalent signal is nonzero
when the same symbols are transmitted and it is zero when the transmitted symbols
are different. Thus, it becomes trivial to derive Table1, which in effect, is the XNOR
logic function. In Table1, Id represents the demodulator output at D.

Table 1 Modulation/demodulation mapping

Mapping at transmitter Mapping at receiver

Generated bits Modulated bits Received
baseband

Output bit

S R S R D D

Is Ir bs br Ω ′
d Id

0 0 −1 −1 −√
γthPn 1

0 1 −1 1 0 0

1 0 1 −1 0 0

1 1 1 1
√

γthPn 1
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Next, it is imperative to quantify the gains that can be achieved by using CPLNC.
To this end, without loss of generality, it is assumed that the symbol period for each
symbol is normalized to one second.

Definition 1 The energy saving gain of the cooperative transmission over a non-
cooperative transmission, denoted by G, is defined as

G = Enc − Ec

Enc
, (5)

where Enc is the energy consumed by S in non-cooperatively transmitting the data
towards D while Ec is the energy consumption if CPLNC is used to transmit the same
data.

Assuming that the source S needs to transmit 	 symbols towards the destination
and by using the above definition, the energy saving gains that can be achieved by
using CPLNC, as compared to non-cooperative point to point transmissions in a
non-fading additive white Gaussian noise (AWGN) channel, can be written as [20]

G = 3(	 − 1)

4	

(
1 − dα

rd

3dα
sd

)
, (6)

where dsd and drd are the distances between S − D and R − D, respectively, while
α is the pathloss exponent. Figures2 and 3 present a three-dimensional view of the
achievable energy saving gains. For Fig. 2, the distances between S − D and R − D
were fixed at 100m while the number of transmitted symbols was varied between 2
and 100. On the other hand, for Fig. 3, the number of transmitted symbols was fixed
at 10, the distance between S − D was fixed at 100m while the distance between
R and D was varied from 10 to 100 m. In both cases, it can be seen that gains of
around 70% are achievable. At this stage, it is worth mentioning that the above
energy savings hold in the high SNR regime only since the performance changes
when the bit error rate is taken into account [20].

Fig. 2 Energy saving gain
as a function of the received
SNR and the number of
transmitted symbols
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Fig. 3 Energy saving gain
as a function of the received
SNR and the distance
between R and D

The performance of CPLNC in Rayleigh fading channels has also been analyzed
in [21]. To this end, it is important to note that, as shown in (3), the minimum power
required to satisfy the SNR requirement at the destination is inversely proportional
to the channel power gain. However, for channel inversion with zero outage in a
Rayleigh fading channel, infinite average power is required [19]. In order to transmit
with a finite average power, a node is restricted to transmit only when the channel
power gain is larger than a minimum threshold. Otherwise, an outage is declared.
Let δ indicate the probability of this outage. With this restriction, CPLNC can be
used only if R successfully overhears the first symbol and the channel gain between
R and D is greater than a minimum threshold. Let ρs represent the probability that
CPLNC is used.With these assumptions, the energy saving gain in a Rayleigh fading
channel can be approximated as [21]

G ≈ 3(	 − 1)

4	

⎛

⎝ (1 − δ)
2+ dα

sr
dα

sd

1 + dα
sd+dα

sr

dα
sd

δ

Γ

Θ
− dα

rd

3dα
sd

ρs

1 + δ

⎞

⎠ . (7)

In the above equation, dsr is the distance between the source and the relay,

Γ = Ei
( −(dα

sd+dα
sr)δ

dα
sd+(dα

sd+dα
sr)δ

)
and Θ = Ei(−δ), where Ei is the exponential integral func-

tion. Figure4 plots the energy saving gains that are achieved by using CPLNC in
a fading channel. The figure was obtained by implementing the scenario shown in
Fig. 1. Similar to Fig. 3, the distance dsd was fixed at 100 m. On the other hand,
the distances dsr and drd were set equal to each other and both were varied from
50 to 100 m. It can be seen that the Monte-Carlo simulations match nicely with
the theoretical values approximated by (7). The figure shows that depending on the
number of transmitted symbols and the inter-node distances, the achievable gains
range between 25.3 and 65%.
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Fig. 4 Energy saving gain
as a function of the received
SNR and the distance
between R and D [21]

3.2 CPLNC Based Energy Efficient Routing

The CPLNC scheme introduced in the previous subsection works purely at the PHY
layer. As a next step, we modify higher layer protocols to achieve cross-layered
designs for optimal energy savings. To this end,we focus on energy efficient routing at
the network layer and incorporate CPLNC into two power saving routing algorithms,
namely, power saving routing (PSR) and progressive power aware routing (PPAR),
introduced originally in [22] and [23], respectively. PSR and PPAR work on the
assumption that each node within the network knows its own location, the location
of its immediate neighbors and the location of the destination. In the following, the
modified versions of PSR and PPARare denoted byMPSRandMPPAR, respectively.

CPLNC is utilized after the selection of the optimal next hop destination by PSR
and PPAR. At each hop, the transmitting node S transmits the first symbol non-
cooperatively towards the next hop destination D. Due to the broadcast nature of
the wireless medium, this transmission is overheard by the neighboring nodes which
are located between the source and the destination of each hop. These overhearing
nodes report back to the sender about successful reception of the first symbol. The
algorithm then selects the overhearing node located nearest to the hop destination to
participate in the cooperation process. Following this selection, the algorithm decides
whether or not it is feasible to use CPLNC for the given hop. This decision is based
on threshold distances derived below:

Let the current, overhearing and destination nodes of each hop be denoted by
S, R and D, respectively. Under the assumption that S needs to transmit 	 symbols
towards D, the energy consumption for non-cooperative point to point transmission
is written as

Ewoc = 	(βdα
sd + 2E), (8)

where β is a constant scaling factor which reflects the effects of the power amplifier,
receiver noise power and the transmit frequency. On the other hand, E represents the



Cross-Layer Designs for Energy-Efficient Wireless Ad-hoc Networks 157

energy consumed by the transmitter or receiver circuitry and it is multiplied by 2 to
account for both, the transmitter and receiver radio electronics power consumption.

With CPLNC, there will be an initial non-cooperative transmission, followed by
	 − 1 cooperative transmissions. The energy consumed by the non-cooperative trans-
mission is the same as (8) above, except for the factor of 	 and the fact that there
is one transmitter and two receivers, i.e., E in (8) is multiplied by 3, instead of 2.
On the other hand, for the cooperative transmissions, the energy consumption can
be found by combining the S − D and R − D transmission powers, which can be
calculated by utilizing (3) [21]. Let this combined energy consumption be denoted
by Ewc. Additionally, CPLNC also consumes extra energy for the multicast trans-
mission when S informs R and D about the total number of symbols that are to be
transmitted. Using this information, R and D can calculate the number of times-
lots for which CPLNC is used and they can adjust their transmission and reception
parameters accordingly. Let the multicast energy consumption be denoted by Emc,
which is equal to the energy consumption of the first transmitted symbol, since there
are two receivers and one transmitter. With all this information, the algorithm uses
CPLNC if Ewc + Emc < Ewoc. By plugging in the values for Ewoc, Ewc and Emc in the
aforementioned condition, the source S can obtain the distance thresholds which can
be used to decide whether or not it is feasible to use CPLNC for a given transmission
cycle.

The performance of themodified routing algorithmswas evaluated by implement-
ing a network of randomly distributed nodes within a square area of 500 m × 500 m.
The source and destination nodeswere located in the diagonal corners of the network.
It was assumed that the transceiver devices consume 50nJ/bit of energy while the
power amplifier efficiency was set equal to 20%. The noise power was fixed at−101
dBm while the minimum required SNR threshold was set equal to 10 dB. Frequency
flat fading channel was considered which remained constant during a transmitted
frame but varied from one frame to another. Lastly, all the computational results
were verified by Monte-Carlo simulations using 108 samples.

Figure5 compares the performance of MPPAR with the baseline algorithm, i.e.,
PPAR. For this comparison, the number of transmitted symbols was fixed to 	 = 5
while the pathloss exponent was varied between 2 and 4. It can be seen from the
figure that, on average, MPPAR achieves energy saving of around 34 and 29% for
pathloss exponent values of 2 and 4, respectively. Interestingly, it is observed that the
energy saving decreases with increasing α. This has to do with the inherent nature of
PPAR, which transmits over longer distances when the channel gain is high and over
smaller distances when the channel gain is low. With increasing values of pathloss
exponents, the channel attenuation increases. Consequently, PPAR transmits over
shorter distances, and this ultimately effects the performance of MPPAR because
the probability of finding an overhearing node decreases when the distance between
S and D is small. In other words, the probability of using CPLNC also decreases,
thus, there is a drop in performance of MPPAR with increased pathloss exponent.

From the gain equations for CPLNC over a single hop, i.e., Eqs. (6) and (7), it
is straightforward to see that the energy saving increases with increasing number of
transmitted symbols. This observation also holds for the routing algorithms, as it is
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Fig. 5 Energy consumption
as a function of the number
of nodes in the network.
	 = 5 [21]

Fig. 6 Energy consumption
as a function of the number
of transmitted symbols.
α = 2 [21]

obvious from the plots shown in Fig. 6, where the energy consumptions of MPSR
and PSR are compared for a fixed α and a variable number of transmitted symbols.
It can be seen that for 	 = 50, MPSR minimizes the energy consumption by about
60% as compared to PSR.

4 Cross-Layer Design Using Cooperative Type-I ARQ

The previous section focused on a cross-layer design which jointly optimized the
performance of the PHY and network layers. This section goes a step further and
presents a cross-layer algorithm which jointly optimizes the performance of the
PHY, MAC and network layers. Specifically, the algorithm jointly optimizes the
performance of PHY and MAC layers by finding a balance between the number
of retransmission attempts required to successfully decode a transmitted frame and
the energy consumption per each transmission attempt. To this end, it is assumed
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that the network employs coded type-I automatic repeat request (ARQ) at the MAC
layer. With type-I ARQ, a frame is retransmitted if it is not decoded correctly at
the receiver. Cooperative type-I ARQ is presented where a relay node assists the
source node with its retransmission attempts. Following this, the energy efficiency
performance of the network layer is optimized by designing energy-efficient routing
algorithms which utilize cooperative ARQ as a basic building block. Unlike the
previous subsection, where the channel coefficients were known to the transmitters,
it is assumed that each transmitter only has partial channel state information (CSI),
i.e., it knows the distance to the intended receivers but does not know the actual fading
coefficients of the channel. Therefore, the source node uses an average transmission
energy per symbol for transmitting its signal. In such situations, it is not always
possible for the receiver to successfully decode the frame in a single transmission
attempt. Consequently, coded type-IARQ is employed to carry out the retransmission
attempts until the frame is decoded successfully.

4.1 Energy Consumption of Non-cooperative
Type-I ARQ Systems

This subsection presents a brief overview of the energy consumption in non-
cooperative type-I ARQ systems. In such systems, the source node itself carries
out all of the retransmission attempts, without any assistance from the nearby relays.
The total average energy consumption per information bit for such a system can be
found by deriving the average energy consumption per information bit for single
transmission attempt and multiplying it with the expected number of retransmis-
sion attempts. The average energy consumption per information bit, for transmission
between a transmitter au and receiver zv, can be written as [17]

Epb
uv = N + Nc

N
Aγvxα

uv + C, (9)

where N and Nc are the number of information and overhead bits, respectively, γv

is average received SNR, xuv is the distance between the two nodes with α as the
pathloss exponent. Finally,C represents the hardware energy consumption while A is
a constant scaling factor which depends on the peak to average ratio of an M-ary
modulation signal, transmit power amplifier efficiency, receiver noise power and the
channel coding rate.

The expected number of retransmissions, including the original transmission,
is a geometric random variable with a probability mass function given as PI(i) =
(FER)i−1(1 − FER), where FER is the frame error rate. For coded systems in a
quasi-static Rayleigh fading channel, the frame error rate is approximately equal to
the outage probability, where an outage occurs when the received SNR at the des-
tination is less than a minimum required threshold γth. The minimum threshold γth
depends on the channel code, the modulation scheme and the number of symbols per
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frame. It can be approximated as a linear function of log(N + Nc) and can modeled
as γth � kM log(N + Nc) + bM , where kM and bM are constants which depend on
the modulation scheme and the channel code [17]. Using the aforementioned SNR
threshold and the average received SNR of γv, the outage probability, and conse-
quently, the FER, can be approximated as [24]

FER � ρo
uv = 1 − exp

(
−γth

γv

)
, (10)

where ρo
uv represents the outage probability between au and zv. Using FER from (10)

in the probability mass function outlined above, the expected number of retrans-
mission attempts can be shown to be equal to 1/ exp(−γth/γv). Multiplying this by
(9) above, one obtains the total average energy consumption per information bit for
non-cooperative type-I ARQ as

Enpb
uv = 1

exp
(
− γth

γv

)
(

N + Nc

N
Aγvxα

uv + C

)
. (11)

It has been shown in [17] that (11) is convex in γv. Thus, the optimal target SNR
is found by minimizing (11) with respect to γv. Using this optimal target SNR, the
transmitter can adjust its transmission parameters to ensure a perfect balance between
the energy consumption for each transmission attempt and the average number of
transmission attempts required to successfully decode the source message at the
receiver.

4.2 Cooperative Type-I ARQ Systems

In cooperative type-I ARQ systems, a relay node assists the source node with its
retransmission attempts. This assistance is possible only if the relay is able to suc-
cessfully decode the source signalwhile the destination is unable to do so. The scheme
can be further illustrated with the scenario shown in Fig. 7, where the source, relay
and destination nodes are denoted by S, R and D, respectively. Due to the broadcast
nature of the wireless medium, R can overhear the S − D transmissions. After trans-
mitting the frame, the source awaits a positive or negative acknowledgement from
the destination. If the destination is unable to successfully decode the frame, it sends
out a negative acknowledgement (NACK), which is again intercepted by the relay R.
If R had successfully overheard and decoded the frame in the previous transmission
attempt, it retransmits this frame on behalf of S. Otherwise, the source retransmits
the frame itself. Thus, a source only has to retransmit its frame until either R or D
receives it successfully. In this setup, the energy saving is increased as compared to
the non-cooperative case since R is located closer to D than S.
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Fig. 7 A dual-hop network
consisting of a source, relay
and destination nodes [24]

In order to derive the total average energy consumption per bit for the aforemen-
tioned cooperative scheme, it is assumed that the distances between S − D, S − R and
R − D are denoted by xsd, xsr and xrd, respectively, as shown in Fig. 7. Furthermore,
it is assumed that ρs

sd, ρ
s
sr and ρs

rd denote the probabilities of successful reception for
the S − D, S − R andR − D links, respectively. Similar to the previous subsection on
non-cooperative ARQ, the first step is to calculate the average energy consumption
per information bit for each transmission that occurs within the cooperative setup. To
this end, it can be seen that either the source or the relay transmits the data towards
D. Let the energy consumption for these two transmissions be denoted by Epb

sd and
Epb

rd , respectively. Since both Epb
sd and Epb

rd are point to point transmissions, their for-
mulations remain similar to (9), except for the fact that target received SNR γv is
replaced by γc, which is different since it is optimized for cooperative transmission,
as discussed later in this subsection.

Next, in order to calculate the probability mass function for the expected number
of retransmission attempts, it is noted that the following sequence of events occurs
in cooperative transmissions:

1. S transmits its signal while R and D receive this signal.
2. If D successfully decodes the transmitted frame, the transmission cycle is com-

pleted and no retransmission attempts are required.
3. If D is unable to decode the frame while R is able to do so, R retransmits the

frame on behalf of S.
4. If both D and R are unable to decode the frame, S retransmits the frame.

With these design considerations as well as the above mentioned probabilities
of successful reception at R and D, the probability mass function of the expected
number of retransmission attempts can be calculated as [24]

P(ks, kr) = [
(1 − ρs

sr)
ks−1(1 − ρs

sd)
ks−1ρs

sd

]
δ[kr] (12)

+ [
(1 − ρs

sr)
ks−1(1 − ρs

sd)
ks(1 − ρs

rd)
kr−1ρs

srρ
s
rd

]
,

where ks and kr are the number of transmission attempts made by S and R, respec-
tively, while δ[·] is the dirac delta function. In the above equation, the first term
represents the scenario where the destination decodes the frame successfully after ks

transmission attempts by the source, while the relay fails during these ks attempts.
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The second term corresponds to the event that the relay decodes the frame success-
fully before the destination and after ks transmission attempts by S. Furthermore,
the destination decodes the frame successfully after kr transmission attempts by the
relay. Next, the success probabilities ρs

sd and ρs
rd for point to point transmissions

between S − D and R − D, respectively, can be obtained simply by subtracting the
outage probability of (10) from 1, with the only exception being the fact that γv is
replaced by γc, which represents the average received SNR for cooperative trans-
missions. Moreover, the probability ρs

sr can also be found in a similar way except for
the scaling factor which is induced due to the difference between xsd and xsr [24].
Having calculated all the aforementioned parameters, one can now calculate the total
average energy consumption per information bit for cooperative type-I ARQ as

Ecpb
sd =

∞∑

ks=1

∞∑

kr=0

P(ks, kr)(ksE
pb
sd + krEpb

rd ). (13)

By plugging in the values of the various parameters and after some rearrangement
of terms, the above equation can be written as

Ecpb
sd = 1

exp(− γth
γc

)

⎧
⎨

⎩

Aγc
(N+Nc

N

) [
2 exp

(
γth
γc

(
1
2 − xα

sr
xα

sd

))
sinh

(
γth
2γc

)
xα

rd + xα
sd

]

2 exp
(

γth
γc

(
1
2 − xα

sr
xα

sd

))
sinh

(
γth
2γc

)
+ 1

+ C

⎫
⎬

⎭

(14)

In (14), the first term represents the expected number of retransmission attempts
while the second term represents the average energy consumption per information
bit for a single transmission attempt. Figure8 shows that the theoretical results derived
above, i.e., Eq. (14), match perfectly with the Monte-Carlo simulations. To plot this

Fig. 8 Total average energy
consumption per bit for
cooperative transmission as a
function of γc [24]
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figure, the distance xsd was fixed equal to 100m while xsr and xrd were fixed at 50
meters. The rest of the simulation parameters were the same as those outlined in
[24]. From the figure, it can also be seen that the energy consumption per bit is
convex with respect to γc, therefore, the optimal SNR for cooperative transmission
can be found by minimizing (14) over γc. Intuitively, it can also be seen from (14)
that when γc = γv, the expected number of retransmission attempts with cooperative
transmission becomes the same as that for non-cooperative transmissions.

Next, to quantify the energy saving gains achieved by cooperative type-IARQwith
respect to the non-cooperative ARQ, the gain equation defined earlier in Definition
1 is reused, with the only difference being the fact that Enc and Ec are, respectively,
replaced byEnpb

uv from (11) andEcpb
sd from (14).With these replacements and by using

xsd for xuv in (11), the energy saving gain can be written as,

G =
⎛

⎝ Γ

Γ + exp
(

γth
γv

xα
sr

xα
sd

)

⎞

⎠

(
xα

sd − xα
rd

xα
sd + CN

Aγv(N+Nc)

)

, (15)

where it is assumed that γc = γv and Γ = exp
(

γth
γv

)
− 1. Equation (15) provides

some important insights about optimal relay selection in multihop wireless networks
and it can be used as a designmetric to that effect [24]. Figure9 verifies the analysis of
the achievable energy saving gains and also highlights the advantage of using coop-
erative ARQ with optimized γc. To implement this figure, the simulation parameters
were set to be the same as those for Fig. 8, apart from the distances between S − R
and R − D. More specifically, xsr was varied from 10m to 90m while xrd was set
to 100 − xsr. The figure provides some important insights that need further discus-
sions. First of, it can be seen that when γc = γv, the theoretical results of (15) match
perfectly with the simulation results. This verifies that (15) provides a very good

Fig. 9 Total average energy
consumption per bit for
cooperative transmission as a
function of γc [24]
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estimation of the achievable energy saving gains. Moreover, the figure also shows
that the gain is maximized by using the optimal γc, which is found by minimizing
(14) over γc. Overall, it can be seen that with the optimal γc, energy savings of more
70% can be achieved, depending on the inter-node distances.

4.3 Cooperative ARQ Based Energy Efficient Routing

Continuing with our cross-layer design approach, this subsection integrates coop-
erative ARQ with the routing algorithms at the network layer. To this end, two
energy-efficient routing algorithms are presented. The first algorithm, namely, coop-
erative cost-based shortest-path routing (CCB-SPR), utilizes cooperative ARQ as
a basic building block and calculates the optimal energy-saving route based on
the cooperative link costs. The second algorithm, called cooperation over non-
cooperative shortest path (CONSP), first calculates a shortest-path route by using
the non-cooperative routing (NCR) algorithm based on Distributed Bellmann-Ford
algorithm. Then, cooperative transmission is used on top of this non-cooperative
shortest path route.

4.3.1 CCB-SPR

With CCB-SPR, each node within the network initially calculates the cooperative
link costs for each of its neighbors. To this end, a transmitter node au first finds the
nearby nodeswhich are located between itself and a particular neighbor zv, i.e., it finds
the nodes that can successfully overhear the transmissions between au and zv. Using
each of these overhearing nodes as a relay, the node au calculates the cooperative
link costs by using the formula presented in Eq. (14). Following these calculations,
the overhearing node which gives the minimum cooperative link cost is selected to
participate in cooperative transmission towards zv. Lastly, au compares the selected
cooperative link cost with the link cost for direct transmission towards zv, calculated
by using Eq. (11), and the minimum of the two is selected as the final link cost
towards zv. A similar procedure is adopted by all other nodes within the network.
Once the link costs have been updated throughout the network, any shortest path
algorithm, such as Bellmann-Ford or Dijkstra’s algorithm, can be used to find the
optimal energy saving route between a given pair of source and destination nodes.

4.3.2 CONSP

As mentioned previously, the CONSP algorithm initially calculates the optimal non-
cooperative route between a given source-destination pair by using the distributed
Bellmann-Ford algorithm. Then, this non-cooperative route is divided into groups
of three consecutive nodes, as shown in Fig. 10. For each of these groups, the node
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Fig. 10 Optimal
non-cooperative route
between the source and the
destination. The figure shows
the division of the path into
groups of three nodes and
cooperative transmission
within each group [24]

located closest to the original source is designated as group source S, the one located
closest to the destination is designated as group destinationDwhile the one located in
themiddle of S andD is designated as group relayR. The group source S calculates the
link cost for cooperative transmission towards D using R. If this cooperative link cost
is lower than routing the data from S to D through R, then cooperative transmission
is used within the given group. Otherwise, the message is route non-cooperatively
within the group.

The performances of the aforementioned routing algorithms were evaluated
through Monte-Carlo simulations. To this end, a square area of 100 m × 100 m
was considered and between 10 and 100 nodes were distributed uniformly within
this square area. Moreover, the source and the destination nodes were placed in the
diagonal corners of the network. Figure11 plots the energy savings achieved by using
CCB-SPR and CONSP, as compared to NCR. As seen from this figure, CCB-SBR
outperforms both CONSP and NCR. This happens because CCB-SPR utilizes the
energy-efficient route which is optimized for cooperative transmissions. On the other
hand, CONSP is only restricted to transmitting cooperatively over a non-cooperative
shortest path route, which is not optimized for cooperative transmission. However,
the performance improvement of CCB-SPR, as compared to CONSP, comes at the
cost of increased route setup time since each node within the network is required
to calculate new link costs for each of its neighbors. On the other hand, CONSP
only has to transmit over a pre-selected non-cooperative route. Nevertheless, once
the optimal route has been selected, CCB-SPR takes lesser time than CONSP to
deliver the message to the destination since it requires lesser hops to reach the des-
tination [24]. Figure12 compares the route-setup time and the end-to-end latency of
CCB-SPR and NCR. It can be seen that NCR performs better in terms of route-setup
time while CCB-SPR has a lower end-to-end latency. Here, it must be emphasized
that the route-setup for NCR and CONSP are the same since CONSP only transmits
cooperatively over the route selected by NCR.
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Fig. 11 Energy saving gain
as a function of the number
of nodes within the network
[24]. N + Nc = 1000

Fig. 12 Route setup time
and end-to-end delay for
CCB-SPR and NCR as a
function of the number of
nodes in the network [24]

5 Summary

The chapter focused on cross-layer designs for energy-efficient communications in
wireless ad-hoc networks. Initially, the importance of cross-layered designswas high-
lighted. It was argued that treating a single layer at a time leads to sub-optimal solu-
tions. Following this, the chapter dwelled into the various parameters that have to be
taken into consideration when modeling energy consumption. A general energy con-
sumption model, which took both the transmission and circuit energy consumption
into consideration, was outlined and it was discussed how the general model could
be tailored for specific scenarios under consideration. After outlining the methods
for modeling energy consumption, the chapter presented two cross-layered design
algorithms. For these designs, a bottom-up approach was adopted, whereby, energy
efficient transmission strategies were introduced at the PHY layer and the protocols
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at the higher layers, i.e., MAC and network, were tailored to work in conjunction
with the transmission technique at PHY. To this end, the first approach was based on
CPLNC and it jointly optimized the performance of the PHY and network layers. On
the other hand, the second approach jointly optimized the performance of PHY,MAC
and network layers and it was based on a cooperative ARQ based transmission strat-
egy. The performance of CPLNC and cooperative ARQ was analyzed in detail and
the achievable energy saving gains were also derived. Lastly, computer simulations
were used to evaluate the performance of the two cross-layered algorithms.
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Abstract In this chapter, an energy efficiency analysis is performed in a wire-
less sensor network setup considering different communication schemes, includ-
ing direct non-cooperative transmission, decoded-and-forward cooperation, and
network-coded cooperation. The analysis is performed considering Nakagami-m
block fading, so that the influence of some line-of-sight is taken into account, while
the effect of the circuitry power consumption is also considered. The theoretical and
numerical results show that the use of network coding can be considerably beneficial
in terms of energy efficiency and that there exists an optimal number of cooperating
nodes that minimizes the energy consumption for a given distance. With network
coding and with an appropriate organization of cooperating nodes into clusters, the
energy efficiency is maximized, leading to energy savings of an order of magnitude
with respect to the direct non-cooperative transmission.
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1 Introduction

Recently, there has been a growing interest in ad hoc wireless networks composed
of low cost and small sized devices such as wireless sensor networks (WSNs) and
even machine-to-machine (M2M) networks [2, 29]. The typical devices in this case
are most likely powered by batteries, which are often not easy and cheap to replace
or recharge. Therefore, it is of paramount importance to increase the lifetime of
these devices by efficiently utilizing their limited power sources. Moreover, from an
environmental point of view, with the widespread deployment of WSNs and M2M
communications, it is highly desirable that batteries used by these devices last for
very long time, decreasing the impact of battery disposal.

A great part of the energy consumption of a wireless device is related to the
data transmission, with the transmit power being a function of the channel condi-
tions, range, target error rate, among other factors. In order to decrease the required
transmit power the most common alternative is to use diversity techniques, such as
channel coding [15] and multiple antennas [3, 25]. Alternatively, there is a recent
trend to exploit the broadcast nature of the wireless channel to improve the over-
all performance by means of cooperation [13, 23]. The decode-and-forward (DF)
cooperative protocol is one of the most adopted cooperative techniques [11, 13, 24,
27], in which the nodes often cooperate in pairs. In the first phase of the DF pro-
tocol (usually termed as broadcast phase) each user broadcasts its own information
through orthogonal channels, while in the second phase (commonly referred to as
cooperative phase) each user transmits the re-encoded information of its partner if
it could be correctly decoded in the first phase. By doing so the cooperating nodes
form a virtual antenna array that considerably improves the error performance seen
at the common destination.

Several recent works have also demonstrated the benefits of the classical cooper-
ative protocols (as the DF protocol) towards increasing the energy efficiency [7, 11,
24, 27]. However, as pointed out in [4, 17], in a more realistic scenario where the
energy consumption of the transmitter and receiver circuitry is taken into account,
there are situations where cooperation may be less energy efficient when compared
to the direct transmission. This is due to the fact that, as presented in [6], the energy
consumption of wireless networks is dominated by the transmit power only when
the nodes are relatively far from each other. When the distance between the nodes
decreases, the circuitry consumption becomes considerably more relevant in the
energy efficiency analysis.

The network coding technique was proposed as a new strategy to attain maximum
throughput inwired networks [1, 14], aswell as to improve robustness [12]. Recently,
this technique has been applied to wireless cooperative networks in order to improve
their error performance [20, 22, 30, 32], by increasing the system’s overall diversity
order beyond the cooperative protocols limits. In cooperative systems with network
coding, instead of just retransmitting the information of its partners, the cooperating
users are able to transmit linear combinations (over a finite field GF(q)) of not only
their partners’ but also their own information. In [32], it was shown that, if the linear
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combinations are performed over a large enough field, the system diversity order is
increased, improving the error performance. It should be mentioned that maximum
diversity order could only be obtained with high probability through random network
coding [9], by assuming infinitely large Galois Field, or through deterministic net-
work coding under the assumption that the cooperating users also hear their partners’
information at the cooperative phase [21].

In the scheme proposed in [32], called diversity network coding (DNC), each node
transmits in the cooperative phase linear combinations over GF(q) of all the infor-
mation received during the broadcast phase. A generalization of the DNC scheme,
called generalized DNC (GDNC), was proposed in [22], which may achieve simul-
taneously both code rate and diversity order higher than in the DNC scheme. A
feedback-assisted version of the GDNC scheme, called FA-GDNC, was proposed
in [20], aiming at increasing the average code rate without degrading the system error
performance. It is clear thus that network coding can improve the error rate perfor-
mance of cooperative networks, and therefore reduce the required transmit power for
achieving a given performance, potentially improving the energy efficiency, which
was also pointed out in [7].However, on the other hand, it is not clear if such savings in
the required transmit power are not surpassed by the additional circuitry consump-
tion, since in network-coded cooperative networks many nodes may collaborate,
increasing the overall number of transmissions/receptions performed throughout the
network.

The contributions of this chapter can be summarized as follows:

• We extend the preliminary results from [18, 19] and provide an extended analysis
and results comparing the performance of several wireless transmission schemes
in terms of energy efficiency (measured in J/bit), when taking into account, besides
the energy consumed by the transmission, the consumption of the transmitter and
receiver circuits;

• More specifically, we evaluate the energy efficiency of direct non-cooperative
transmission, classical DF cooperation and network-coded cooperation (GDNC
and FA-GDNC protocols);

• In the case of network coding cooperation, which may involve several nodes,
we discuss the optimal number of cooperating nodes that maximizes the energy
efficiency;

• The optimal number of cooperating nodes is then utilized to organize the network-
coded cooperative network into clusters for the sake of designing more energy-
efficient cooperative systems.

The rest of this chapter is organized as follows. Section2 presents the system
model and some fundamental concepts utilized for evaluating the energy efficiency
of network-coded cooperative wireless networks. Section3 discusses the energy effi-
ciency definition, the power consumption model and the efficiency of the direct
transmission and all the aforementioned cooperative protocols. Moreover, the opti-
mal number of cooperating nodes is also discussed and its impact on the energy
efficiency is demonstrated in Sect. 3. Section4 presents some numerical results and
Sect. 5 concludes the chapter.
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Notation: We use lowercase bold letters to represent vectors. Operators + and −
represent real number operations, while ⊕ is the binary sum (XOR), � and � are
the sum and subtraction operations over a non-binary field, respectively. P denotes
transmit power, whilePo stands for outage probability.

2 Preliminaries

2.1 System Model

Thiswork considers themultiple access part of a cooperativewireless network,where
M users have independent information to transmit to a common destination (D). A
frame is defined as a vector of length N symbols. The time period corresponding to
the transmission of one frame is referred as subslot. A time slot (TS) is defined as
the time period that comprehends M subslots. In other words, a TS corresponds to
M individual transmissions, performed in a round-robin fashion between the users
and through time-orthogonal channels.

Omitting the time index, the baseband codeword received by user j after a trans-
mission performed by the i th user can be written as

yi, j = √
Piγi, j hi, j xi + ni, j , (1)

where xi ∈ C
N and yi, j ∈ C

N are the transmitted and received packets, respectively,
both of length N , with i ∈ {0, . . . , M − 1} representing the transmitter index (and
also the subslot index) and j ∈ {0, 1, . . . , M} standing for the received index (M
corresponds to the destination). In (1), Pi is the transmission power, hi, j is the channel
gain due to multipath fading between users i and j , and ni, j ∈ C

N is the zero-mean
additive white Gaussian noise with variance N0/2 per dimension, N0 being the noise
power spectral density per Hertz. We consider that the pathloss γi, j between users i
and j is [8]

γi, j = Gλ2

(4π)2(di, j )α Mt N f
, (2)

whereG is the total gain of the transmit and receive antennas, λ is thewavelength, di, j

is the distance between the referred users, α is the pathloss exponent, Mt is the link
margin and and N f is the noise figure at the receiver [8]. The average signal-to-noise
ratio (SNR) can be written as

SNRi, j = Piγi, j

N0B
, (3)

where B is the bandwidth (in Hertz).
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Moreover, |hi, j | is assumed to follow a block-fading model with Nakagami-m
distribution and unitary energy, remaining constant within one subslot but changing
in an independent and identically distributed (i.i.d.) fashion (in both space and time)
between subslots. The choice for a Nakagami-m distribution is due to the fact that it
is capable of representing the channel behavior in several scenarios, ranging from the
total absence of line-of-sight (LOS) to scenarios with the strong presence of LOS.
We also consider that all the receivers have perfect channel state information (CSI),
but the transmitters do not have any CSI.

2.1.1 Outage Probability and Diversity Order

If we assume that the elements of xi are Gaussian distributed and that all channels
throughout the network experience the same average SNR, then the mutual informa-
tion MIi, j between xi and yi, j , for a band of 1 Hz, is

MIi, j = log2(1 + |hi, j |2SNR). (4)

An outage event occurs when MIi, j < r , where r corresponds to the attempted
information rate (in bits/s/Hz). The probability of such event is called outage prob-
ability, which, for Nakagami-m fading is [4, 8, 28]:

Po = Γ (m, mg)

Γ (m)
, (5)

where g = 2r −1
SNR and Γ (a, b) = ∫ b

0 ya−1e−ydy corresponds to the lower incomplete
Gamma function. For small values of b, it was shown in [28] thatΓ (a, b) � (1/a)ba ,
which allows us to approximate (5) for the high-SNR region as

Po � (mg)m

Γ (m + 1)
. (6)

The diversity order is another performance metric of interest, representing the
derivative of the outage probability with respect to the SNR, being mathematically
represented as [26]

D � lim
SNR→∞

− logPo,X

logSNR
, (7)

where Po,X is the overall outage probability of transmission scheme X.

2.2 Decode-and-Forward (DF)

In a wireless cooperative network, the users make use of the broadcast nature of the
wireless channel in order to act as relays to their partners, providing spatial diversity



174 O.K. Rayel et al.

and helping towards combating the fading inherent to this kind of channel [13, 22,
23, 30, 32]. In a cooperative scenario, the transmission round is usually divided in
two phases: The broadcast phase, where the nodes broadcast their own information
frames (IFs); and the cooperative phase, where the nodes transmit parity frames
(PFs) to the destination node, which are redundant frames composed of IFs from the
other nodes that were correctly received during the broadcast phase.

In the decode-and-forward (DF) cooperative protocol [13, 23], after broadcasting
a single IF in the broadcast phase, the nodes just retransmit the IF from its partner
(after decoding and re-encoding it) in the cooperative phase. In case of outage in the
interuser channel, each user just retransmits its own IF in the cooperative phase. The
outage probability achieved by such protocol can be shown to be [13]

Po,DF ≈ 0.5P2
o , (8)

which,when substituted in (7), leads to diversity order 2m, providing spatial diversity.
In the DF scheme, each node transmits twice per transmission round, one in the

broadcast phase and one in the cooperative phase, so that the total number of trans-
missions is given by 2M . In the broadcast phase, during each of the M broadcasts,
all the other M remaining nodes (M − 1 transmitting nodes plus the destination) try
to recover the transmitted IF, leading to an amount of M2 receptions. In the cooper-
ative phase, all the transmissions are addressed only to the destination, yielding M
receptions. Thus, the total number of receptions in the DF cooperative protocol is
M2 + M , as summarized in Table1 at the end of this section.

In order to perform a fair comparison between the direct non-cooperative trans-
mission and the cooperative protocols in terms of spectral efficiency, one must com-
pensate the half-duplexing loss inherent to the transmission of parities, by adjusting
the attempted rate in (5) according to the code rate of the cooperative protocol.
More specifically, in the DF scheme one has that the ratio between the number
of transmitted IFs and the total number of transmitted frames (referred to as code
rate) is

RDF = Numberof IFs

Numberof IFs+Numberof PFs
= M

2M
= 1

2
. (9)

Thus, one must transmit with rate r/RDF in order to perform a fair comparison to
the direct transmission.

2.3 Network-Coded Cooperative Communication

The network coding technique [1, 12], initially proposed to increase the through-
put in wired networks, has recently been applied to cooperative networks in order to
improve their performance against errors [22, 30–32]. In network-coded cooperative
networks, instead of just relaying individually the IFs of their partners in the cooper-
ative phase, the users are able to transmit linear combinations of all the available IFs,
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possibly performed over a non-binary field GF(q). The transmission of linear com-
binations enables each IF to be transmitted through a larger number of independent
channels, increasing the diversity order, provided that such linear combinations are
performed in a way that the destination is able to individually recover each IF from
the set of all received frames.

Several works consider scenarios where the coefficients from the linear combi-
nations are randomly chosen [1, 12]. In this kind of approach, it can be shown that
the probability of generating independent linear combinations tends to one for a suf-
ficient large finite field q, leading to a full rank transfer matrix. However, since the
complexity of the system as well as the amount of overhead increase with q [32], in
this work we focus on deterministic network coding [22, 30, 32].

2.3.1 Dynamic Network Coding (DNC)

In [31], the authors showed that the use of non-binary network coding is necessary
in order to achieve a diversity order higher than the binary network-coded (BNC)
cooperative protocol from [30], and proposed the so calledDynamicNetworkCoding
(DNC).1

Let us first consider a 2-user network where the interuser channel is not in outage
(which happens with probability 1 − Po) and considering that the IF and PF trans-
mitted by User 1 (resp. User 2) are given respectively by I1 and I1 � I2 (resp. I2 and
I1 � 2I2), the set of frames received at the destination node is equal to I1, I2, I1 � I2
and I1 � 2I2. It can be seen that the destination is able to decode the IFs I1 and I2
from any two out of the four received frames. Focusing on User 1 (the same result is
valid to User 2 due to the system symmetry), an outage event occurs when the direct
transmission of the frame I1 and at least two out of the three remaining frames are
not correctly decoded, which happens with probability [31]

PA = Po

[(
3

2

)
P2

o (1 − Po) + P3
o

]
≈ 3P3

o , (10)

where the approximation is valid for the high-SNR regime.
However, with probabilityPo the interuser channel may be in outage. Consider-

ing that the users retransmit their own IF in this situation, and that the destination
performs maximum ratio combining (MRC) [13, 26] after receiving multiple copies
of the same frame, the following outage probability is obtained [13, 26]

PB ≈ P2
o /2. (11)

1Later called Diversity Network Coding in [32].
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Thus, the overall outage probability for the IF of User 1 in this 2-user network
operating under the DNC scheme is [31]

Po,DNC(M =2) = PoPB + (1 − Po)PA ≈ 3.5P3
o . (12)

It can be seen from (12) that the diversity order isDDNC(M =2) = 3m, by insert-
ing (12) into (7).

The authors of [31, 32] also proposed an expansion of the DNC scheme to a
scenario with M cooperative users, which, operating under a fixed and low code rate
equal to

RDNC = Number of IFs
Number of IFs+Number of PFs

= M

M2
= 1

M
, (13)

is capable of achieving a diversity order equal to

DDNC = 2M − 1. (14)

2.3.2 Generalized Dynamic Network Coding (GDNC)

In [22], a generalization of theDNCscheme introduced in [32]was proposed, through
an association between network coding and classical error correcting codes. The
scheme from [22], referred to as generalized DNC (GDNC) was shown to be more
flexible in terms of code rate, and being capable of achieving simultaneously both
code rate and diversity order higher than the DNC scheme.

More specifically, through an analogy between the network transfer matrix and
the generator matrix of a linear block code, it was shown in [22] that there is an
equivalence between the system’s diversity order and the minimum Hamming dis-
tance of the aforementioned block code. Having in mind that the minimum distance
of a block code is upper bounded by the Singleton bound [16], and that this bound
increases as the code dimensions increases, the GDNC scheme considers that during
the broadcast phase each network user is able to broadcast a given number of k1
IFs, while transmitting an arbitrary number of k2 PFs in the cooperative phase, all of
them composed of linear combinations of all the available information, over a large
enough finite field GF(q), that satisfies the condition q ≥ M(k1 + k2) [22]. Figure1
illustrates the GDNC protocol.

In [22], it was shown that the outage probability of the GDNC scheme with
parameters (k1, k2, M) is given by

Po,GDNC ≈
(

k1 + k2 − 1

k2

)
PM+k2

o (for k2 ≥ 2), (15)

where
(k1+k2−1

k2

)
corresponds to the binomial coefficient. From (15) and (7), it can be

seen that the diversity order of the GDNC scheme is

DGDNC = m(M + k2), (16)
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Node 1

Node M

I1(1)

IM(1)

I1(k1)

IM(k1)

V1(1)

VM(1)

V1(k2)

VM(k2)

Time slot 1 Time slot k1 Time slot k1+1 Time slot k1+k2

Broadcast Cooperation

...
...

...
...

· · ·

· · ·

· · ·

· · ·
. . .

. . .

Fig. 1 GDNCschemeprotocol. Eachuser initially broadcasts k1 information frames Ii (t)during the
broadcast phase, and after that it transmits k2 parity frames Vi (t ′), composed of linear combinations
over GF(q) of its own information and of all the frames from its partners that were correctly decoded
during the broadcast phase. Each frame is transmitted at a different time subslot

which is achieved if a generator matrix from a maximum distance separable (MDS)
code is used as the network transfer matrix (coefficients of the linear combinations),
as for instance the well-known class of Reed-Solomon codes [22].

Since M(k1 + k2) frames are transmitted in the GDNC scheme, among which
only Mk1 effectively carry new information, one has that its code rate is

RGDNC = Mk1
Mk1 + Mk2

= k1
k1 + k2

, (17)

In the broadcast phase, during each of the Mk1 transmissions by a given network
user, all the other M network users (M − 1 cooperative users plus the destination) try
to decode the broadcasted information, keeping its receiver circuits active. During the
cooperative phase, all the transmissions are addressed only to the destination. Table1
presents a summary of the numbers of transmissions and receptions performed in
the GDNC scheme for each set of Mk1 IFs effectively transmitted to the destination.

2.3.3 Feedback-Assisted GDNC (FA-GDNC)

In both DNC and GDNC schemes, once the network code is designed, it remains the
same until the occurrence of a change in the network topology (a modification in the
number of users, for instance) and a new code is required.However, this characteristic
has a bad impact on the system rate: as the SNR increases, the probability that the
destination can correctly decode all the IFs received in the broadcast phase also
increases. In this case of successful decoding, the transmission of PFs would be no
longer necessary.

Since the number of IFs transmitted during the broadcast phase in the GDNC
scheme is Mk1, the probability that all these frames are correctly decoded by the
destination is given by

Pr{None inoutage} = (1 − Po)
Mk1 , (18)
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where Po is the outage probability of a single link for Nakagami-m fading, given
in (5).

Aiming at avoiding such waste of resources, an enhanced version of the GDNC
scheme was proposed in [20], which relies on the assumption that an error free feed-
back channel exists between the destination and the users, through which the users
are informed about the success/failure in the decoding process of the IFs transmitted
during the broadcast phase. Each message transmitted by the destination contains
only one bit, named outage bit (OUT), which is sent back after each broadcast phase.
OUT = 0 means that the destination correctly decoded all the Mk1 IFs, so new
IFs can be generated and transmitted, and PFs transmissions are no longer neces-
sary in the current cooperation round. According to (18), this event has probability
Pr{OUT= 0} = (1 − Po)

Mk1. Otherwise, OUT = 1 means that at least one out of
Mk1 information frames was not correctly decoded, which occurs with probability
Pr{OUT= 1} = 1 − Pr{OUT= 0}. In this case, each user transmits k2 parity frames,
according to the original GDNC scheme in [22]. Each of these PFs contains all the
IFs that the user could correctly decode during the broadcast phase.

Since all the users transmit k2 PFs only when at least one of the IFs is not correctly
decoded by the destination, the necessary condition for an outage event to occur in
the FA-GDNC is the same as in the GDNC scheme, such that the outage probability
and diversity order of the FA-GDNC scheme are also given respectively by (15)
and (16).

The main difference from the original GDNC scheme lies on the average code
rate. Since with the probability given in (18) there is no need to transmit parities, the
average code rate of the FA-GDNC scheme is

RFA-GDNC = Mk1

Mk1 + Mk2
(
1 − P̄o

Mk1
) = k1

k1 + k ′
2

, (19)

where P̄o = 1 − Po and k ′
2 = k2

(
1 − P̄o

Mk1
)
. It can be seen from (19) that, since

0 ≤ P̄o
Mk1 ≤ 1, RFA-GDNC is always greater than or equal to the GDNC scheme code

rate from (17). More specifically, we can see from (19) that RFA-GDNC → 1 as the
SNR increases. When the SNR decreases, RFA-GDNC → k1

k1+k2
. On the other hand,

for a fixed SNR and with the number of users increasing, one can see from (19) that

lim
M→∞ RFA-GDNC = k1

k1 + k2
, (20)

which means that, as the number of users increases, feedback becomes less and les
necessary. The number of transmissions and receptions performed in the FA-GDNC
scheme is presented in Table1.
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3 Energy Efficiency

After introducing the cooperative protocols, this work aims at evaluating their energy
efficiency when taking into account, besides the energy spent with the transmission
itself, the energy consumption of the transmitter and receiver’s circuitry. In what
follows we adopt as the performance metric the ratio between the overall energy
consumed and the amount of information transmitted, measured in J/bit.

3.1 Power Consumption Model

Weadopt the power consumptionmodel from [6],where the overall consumed energy
is given by

E = Pamp + Ptx + Prx

Rb
(J/bit), (21)

where Rb = r · B corresponds to the transmission rate (in bits/s), Ptx and Prx are
the power consumed respectively by the transmitter and receiver’s circuitry, which,
according to [6], depend on the power consumption of digital-to-analog converter
(DAC) PDAC, mixer Pmix, transmitter filters Ptx_filt, frequency synthesizer Psyn, low
noise amplifier (LNA) PLNA, intermediate frequency amplifier (IFA) PIFA, receive
filters Prx_filt and analog-to-digital converter (ADC) PADC, being given by

Ptx =PDAC + Pmix + Ptx_filt + Psyn,

Prx =Psyn + PLNA + Pmix + PIFA + Prx_filt + PADC.
(22)

In (21), Pamp = ξ

η
Pi corresponds to the power employed by the amplifier in the

transmission process, which depends on the transmission power Pi , as well as on the
ratio between the drain efficiency η of the amplifier and the peak-to-average ratio

ξ , which is ξ = 3
(√

M−1√
M+1

)
forM -QAM [6]. It is worth mentioning that, according

to [10], in networks with relatively low transmission rate (<1 Mbps), like sensor
networks, the energy consumption related to the channel encoding/decoding is very
small compared to the overall consumption and can be neglected.

From (21), one can see that, in order to minimize the energy consumption E for
a given rate Rb, one must minimize the power consumption of the amplifier (Pamp),
since both Ptx and Prx are fixed (hardware-dependent). In what follows we discuss
how the cooperative protocols presented earlier can be used to reduce the overall
energy consumption.
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3.2 Energy Consumption of the Direct Transmission

Manipulating (6), one can obtain the minimum transmit power necessary to achieve
a target outage probability P∗

o as

P∗
i,DT = m N0 B(2r − 1)

γi, j
m
√
P∗

o Γ (m + 1)
. (23)

Thus, after placing (23) in (21), we have that the energy consumption of the direct
transmission scheme can be written as

EDT =
ξ

η
P∗

i,DT + Ptx + Prx

Rb
(J/bit). (24)

3.3 Energy Consumption of the Cooperative Schemes

For the DF scheme, we find from (6) and (8) that the minimum power required to
keep the outage probability below a certain thresholdP∗

o,DF is

P∗
i,DF = m N0 B(2(r/RDF) − 1)

γi, j
2m

√
2P∗

o,DF Γ (m + 1)2
. (25)

Recall that r is adjusted according to RDF in (25) so that the effective spectral
efficiency, in information bits/s/Hz, is made equal to that of the direct transmission,
for a fair comparison among the two schemes.

Since the number of transmissions and receptions performed in the DF scheme
are respectively 2M and M2 + M (see Table1), the energy consumption (in J/bit) of
the DF scheme is equal to

EDF = RDF

Rb

[
2

(
ξ

η
P∗

i,DF + Ptx

)
+ (M + 1)Prx

]
. (26)

Note that the transmission rate Rb is also adjusted according to RDF due to fair
comparison purposes.

As presented earlier in this document, the diversity order of the DF scheme over
Nakagami-m fading channel is equal to 2m, reducing the required transmission
power, as can be seen in (25). In Sect. 4, it is possible to evaluate if this energy
savings at the amplifier is big enough to compensate for the additional transmissions
and receptions needed by the cooperative scheme.

Through a similar procedure, after isolating the transmit power from the out-
age probability and taking into account the number of transmissions and receptions
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according to Table1, it can be shown that the minimal transmit power and the energy
efficiency of the GDNC and FA-GDNC schemes become respectively

P∗
i,GDNC = m N0B(2(r/RGDNC) − 1)

γi, jΓ (m + 1)
1
m (P∗

o,GDNC/μ)
1

m(M+k2)

, (27a)

EGDNC = RGDNC

k1 Rb

[
(k1+k2)

(
ξ

η
P∗

i,GDNC+Ptx

)
+(Mk1+k2)Prx

]
(27b)

and

P∗
i,FA-GDNC = m N0B(2(r/RFA-GDNC) − 1)

γi, jΓ (m + 1)
1
m (P∗

o,FA-GDNC/μ)
1

m(M+k2)

, (28a)

EFA-GDNC = RFA-GDNC

k1 Rb

[
(k1+k ′

2)

(
ξ

η
P∗

i,FA-GDNC+Ptx

)
+(Mk1+k ′

2)Prx

]
, (28b)

where μ = (k1+k2−1
k2

)
. It is worthy mentioning that the energy consumption of the

feedback channel in the FA-GDNC scheme has been neglected.2

From (27) and (28), one can notice that the energy consumption of both GDNC
and FA-GDNC schemes depends on the number of cooperating nodes (M), besides
the distance between them (di, j ). In what follows we present some insights on the
optimal number of users that minimizes the energy efficiency of the GDNC and
FA-GDNC scheme for a given distance.

3.3.1 Optimal Number of Cooperating Nodes

By differentiating EGDNC(M) with respect to M , equating it to zero and isolating
M , it can be shown that the optimal (in the minimum energy consumption sense)
number of cooperating users for the GDNC scheme is

M∗
GDNC = max

{
2 ; ln(Ω)

2mW

(
1
2

√
Prx RGDNC ln(Ω)

m2Ψ

) − k2

}
, (29)

where W (·) corresponds to the Lambert-W function [5] and max{2 ; ·} limits the
minimum number of cooperative users to 2. Thus, from (29), it is possible to obtain
the number of users that minimizes the energy consumption of the network for a
given distance between them. This result can be used to create cooperative clusters,
arranging the network users in smaller sets, where they cooperate with each other
only within their associated clusters.

2Note that this is a reasonable assumption when the frame size is long enough, as discussed in [4].
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For the DF scheme, by the same procedure, it can be shown that the optimal
number of users that minimizes the energy consumption is M∗

DF = 2, regardless the
distance between the users. In the case of the FA-GDNC scheme, even though the
energy consumption from (28b) still depends on the number of users M , due to the
random nature of the code rate, it is hard (if possible) to obtain in a closed-form
equation the optimal number of users that minimizes the energy consumption.

4 Numerical Results

In what follows we present some numerical results related to the previous analysis.
The systemparameters are in accordance to [6], and shown inTable2. It is noteworthy
that, for a target outage probabilityP∗

o = 10−4, the high SNR approximation of (6)
can be shown to be tight.

In Fig. 2 the energy consumption (in J/bit) as a function of the distance (in meters)
for a network with M =2 cooperating users is presented, for the direct transmission,
cooperation with the DF protocol and the GDNC scheme, the latter with k1 = k2 = 2
(values chosen so that the code rate of the GDNC scheme is equal to that of the DF
scheme, and considering the restriction for k2 in (15)). Each scheme was evaluated
over Nakagami-m fading channels, with m = 1 (same as Rayleigh and referred to
as NLOS, presented in Fig. 2a) and with m = 2 (with some line of sight, referred
to as LOS, Fig. 2b). It can be seen that for short distances, the quadratic amount of
receptions of the cooperative schemes compromises their energy efficiency, and thus
the direct transmission becomes the most energy efficient scheme in this scenario.
However, as the distance between users increases, the consumption of the transmit
and receive circuits loses influence in (21). In this case, one can see that the GDNC
and FA-GDNC schemes are the most energy efficient, due to their higher diversity
order. More than that, feedback makes the FA-GDNC scheme slightly better than the
GDNC scheme, mainly when the channel is in better conditions (LOS). It can also be
noticed that the total absence of LOS between the users degrades more severely the
performance of direct transmission and theDF scheme than that of the network-coded
cooperative schemes.

Table 2 Parameters considered in the numerical results

Ml 40dB fc 2.5GHz M 4

N f 10dB B 10 KHz N0 −174dBm/Hz

G 5dBi r 1 b/s/Hz α 4

Ptx 97.9mW η 0.35 P∗
o 10−4

Prx 112.2mW



184 O.K. Rayel et al.

Fig. 2 Energy Consumption
(in J/bit) as a function of the
distance (in meters) for a
network with M =2
cooperating users,
considering direct
transmission (DT), DF
cooperation, the GDNC and
FA-GDNC schemes, the
latter two with k1=k2=2,
all suffering Nakagami-m
fading, with a m = 1
(NLOS); b m = 2 (LOS)
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The relationship between the energy consumption (in J/bit) and the number of
cooperative users M , while considering a fixed distance d = 50 m is presented in
Fig. 3, for the same schemes compared in Fig. 2.

One can see that, in the presence of LOS (Fig. 3b), the GDNC (the same holds
for the FA-GDNC) scheme outperforms the direct transmission when M < 600,
but tends to be less efficient for a larger number of users. Again, this is due to the
quadratic amount of receptions required in the GDNC scheme. It can also be noticed
in Fig. 3 that the GDNC scheme has an optimal value for the number of users, where
the energy consumption is minimum, depending on the presence or absence of LOS.
Besides that, it is possible to see that there is a large range of M for which the energy
consumption is not significantly affected. It can be seen that, despite being more
energy efficient than GDNC for a small number of cooperating users, the FA-GDNC
tends to the same energy consumption of the GDNC scheme as the number of users
increases, LOS existing or not.

In Fig. 4, the optimal value M∗ for the number of cooperative users is presented
as a function of the distance for both the GDNC and FA-GDNC schemes. The results
for the GDNC schemewere obtained both numerically from (27b) and analytically in
accordance to (29). For the FA-GDNC scheme, only the result obtained numerically
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Fig. 3 Energy Consumption
(in J/bit) as a function of the
number of cooperative users,
for d =50 m, considering the
direct transmission (DT), DF
cooperation, the GDNC and
FA-GDNC schemes, the
latter two with k1=k2=2,
all suffering Nakagami-m
fading, with a m = 1
(NLOS); b m = 2 (LOS)
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Fig. 4 Optimal value of the
number of cooperative users
as a function of the distance
for the GDNC scheme, with
k1 = k2 = 2, all suffering
Nakagami-m fading, with m
= 1 (NLOS) and m = 2 (LOS)
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from (28b) is presented. It can be seen that, as the distance between the nodes
increases, the number of users necessary to minimize the energy consumption also
increases. However, for a large range of distances this number is small, being feasible
in practice. It is also possible to see that the presence of LOS reduces the optimal
value M∗. Figure5 presents a 3D plot of the energy consumption as a function of
both the distance and the number of cooperative users, for the NLOS scenario. As
a general rule, we can conclude that the advantage of the GDNC scheme over the
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Fig. 5 Energy consumed by
the direct transmission
(NLOS) and GDNC (NLOS)
schemes in relationship to
the distance and the number
of cooperative users
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Fig. 6 Energy consumption
comparison of the GDNC
and FA-GDNC schemes with
k1 = k2 = 2 and M = 50,
both with the optimal
number of users—arranged
in clusters—as a function of
the distance, under
Nakagami-m fading, with
a m = 1 (NLOS); b m = 2
(LOS)
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direct transmission increases when the distance increases, and decreases with the
number of users.

In Fig. 6 we present the advantage of operating with the optimal value M∗ for the
number of users in comparison to a system operating with a fixed number of users
M = 50, for the GDNC and FA-GDNC schemes, both with k1 = k2 = 2. Thus, we
assume that the total number of users M can be rearranged in a number of clusters
with M∗ users only, maximizing the energy efficiency. From the numerical results
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one can see that, for all the range of considered distances, the optimization in the
number of cooperative users results in energy savings (the smaller the distance, the
higher the savings). Nevertheless, one can see that the presence or not of LOS is not
very significant under this metric.

5 Final Comments

In this chapter, we derived an energy efficiency analysis of a multiple access network
considering different communication schemes, including direct non-cooperative
transmission, decoded-and-forward cooperation, and network-coded cooperation,
all of them subject to Nakagami-m block fading, so that the influence of some line-
of-sight is taken into account. The effect of the circuitry power consumption was also
considered in the analysis, showing that the use of network coding can be consider-
ably beneficial in terms of energy efficiency and that there exists an optimal number
of cooperating nodes that minimizes the energy consumption for a given distance. By
the use of network coding and by the appropriate organization of cooperating nodes
into clusters the energy efficiency is maximized and energy savings of an order of
magnitude with respect to the direct non-cooperative transmission can be achieved.
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Energy Efficient Fundamental Theory
and Technical Approach

Liqiang Zhao, Kun Yang and Guogang Zhao

Abstract With the goal of mitigating the environmental impact of information and
communication technology (ICT) industry, “green” wireless communication tech-
nologies have drawn increasing attention from governments, academia and industry.
Hence, energy management technique becomes one of the key considerations in the
design of future wireless networks, especially for the inherently energy-constrained
wireless ad-hoc networks (WANs) discussed in this chapter. Many schemes, which
can be adopted at different layers of the protocol stack in order to accommodate the
energy awareness in WANs, have been proposed in the recent past. However, it’s
absolutely impossible to expect the unilateral reduction of energy consumption as
the only goal for the WANs since the diversiform energy-driven performance indi-
cators have to be guaranteed for system’s normal operation. Hence, recent research
works focus on providing energy-efficient solutions with regarding to the QoS guar-
antee. In this chapter, we firstly carry out a comprehensive analysis of the relevant
efficiency metrics as the fundamental evaluation, including the spectrum efficiency
in b/s/Hz, energy efficiency in b/s/Hz/W (or b/Joule/Hz), area spectrum efficiency
in b/s/Hz/km2, and distance-related efficiency in (b m)/s/Hz/W, while we give out
a comprehensive summary of optimization criteria for energy-efficient WANs. Sec-
ondly, we provide the taxonomy of various energy management schemes for the
WANs covering all the layers of the protocol stack, specifically including the physi-
cal layer, medium access control (MAC) layer, network layer and cross-layer design.
Importantly, we tend to discuss a range of energy-efficient MAC protocols proposed
for the WANs, especially carrier sense multiple access with collision avoidance
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(CSMA/CA), the basic MAC protocol for WANs, and its potential energy manage-
ment schemes. In each layer design, we note that the network energy consumption
is always related with other performance indicators we can’t ignore, for instance the
network lifetime, connection reliability, network throughput, and etc. By exploiting
the performance improvement potentials from the dependence among the original
protocols layer, we finally pay attention to the cross layer design. In one word, the
guiding study of fundamental theory goes together with the energymanagement with
a specific system target. Meanwhile, we point out the future research perspectives in
energy management for WANs.

1 Introduction

The development of high-throughput mobile communications systems is coming
with a significant energy cost, which is economically unsustainable and unsuitable
for future-proof communications. As one typical kind of network architecture tended
to be adopted in future widely such as Internet of Things (IoT), sensors networks and
so on, wireless ad-hoc networks (WANs) should also satisfy these rigorous energy
consumption requirements. Itwill be even trickier that theWANis an inherent energy-
constrained system as formed by a collection of isolated nodes with limited energy
resource, all of which have to achieve a complete wireless communication process by
mutual cooperation without the aid of any established infrastructure. Despite of the
transmission power (i.e., power consumed by radio transmitter dominating nodes’
power consumption), signal processing portions for node’s information reception,
and even other correlative hardware-level network operations, also consume remark-
able power [1, 2]. In one word, all the aspects associated with each network func-
tionality in the WANs are driven by the limited energy resource distributed in the
individual node.

Many schemes, which can be adopted at different layers of the protocol stack in
order to accommodate energy awareness in WANs, have been proposed in the recent
past [3]. However, it’s absolutely impossible to expect unilateral energy consump-
tion reduction as the only goal for the WANs since the diversiform performance
indicators have to be guaranteed for system’s normal operation. Furthermore, many
exciting literatures are dedicated to the energy efficiency of WANs, e.g., adopting
more efficient processor or optimization across protocol layers. However, a general
evaluation performance criterion must be addressed first of all. Hence, the concept
of “green” wireless communications have drawn increasing attention from govern-
ments, academia and industry.

Whilst a widely accepted definition of “green” wireless communications remains
an open problem, there is a general consensus that it is synonymous with energy-
efficient systems, leading to the open problem of green metrics. Indeed, the recent
white paper from the Federal Communications Commission (FCC) Technological
Advisory Council (TAC) alone refers to 25 different spectrum efficiency metrics,
and this is not an exhaustive list. In many cases, researchers use the b/s/Hz spectrum
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efficiency, b/s/Hz/km2 area spectrum efficiency [4] the b/TENUpower efficiency [5],
the b/s/Hz/W energy efficiency [6] and the (bm)/s/Hz/W distance-related efficiency
[7] to evaluate the communications systems. In the WANs, the famous solid works
by [8] and [9] give out an in-depth study to the WANs performance upper bound,
namely transport and transmission capacity respectively.

By no means should the efficiency metrics above be classified as less efficient,
since in the appropriate circumstances they are capable of considerably improving
the overall performance of the entire network. However, the appropriate choice of
the network optimization criteria based on different efficiency metrics can have a
profound effect on the overall network performance. The most outstanding exam-
ple happens in the design of WANs in network layer where various system targets
are companied with abundant metrics, reflecting the selection importance. There-
fore, above all, this chapter discusses the available efficiency metrics. To sum up,
the fundamental theory along with appropriate choice of green metrics based on
fickle physical scenario would offer the guiding for the future research on energy
management schemes.

In the physical layer, energy management mainly refers to the structure optimiza-
tion of battery systems, and furthermore how to enable all the hardware-level devices,
e.g., processors-related parts, to make full use of the energy supplied by battery. The
former tries to exploit the inherent batteries property to recover their chargewhenkept
idle in order to increase the amount of energy provided by the power source. Recent
research have illustrated that significant gain can be obtained in the total amount
of energy supplied by them and the lifetime of WANs can be extended, e.g., [10,
11]. For the latter, we also note that the major consumers of power in the devices
can lead to significant power saving potentials, e.g., by improving computational
efficiency. Meanwhile, the energy can be consumed more efficiently by introduc-
ing advanced processors components, e.g., power amplifiers. Despite of the devices’
self-improvement, this process may be related with higher layers information. For
instance, we can switch off nodes duo to the in-existence of transmit routing path for
saving energy based on routing information.

The performance of WANs depends highly on how the medium access control
(MAC) protocol is designed, and so far, most WANs are implemented using wireless
LANs (WLANs). IEEE 802.11x is one of the most influential WLAN standards, and
its basic MAC protocol, distributed coordination function (DCF), is based on car-
rier sense multiple access with collision avoidance (CSMA/CA), as one of typical
contention-based MAC protocols. Currently, CSMA/CA has been the facto MAC
standard of WANs, and is widely used in almost all of the testbeds and simulations
forWANs research. Up to now, sinceMAC protocols directly decide how the limited
wireless resources are shared among existing nodes, the continuous investment in the
MAC protocols ofWANs has been aiming at improving the efficiency of CSMA/CA,
and brings about a wealth of theoretical knowledge and practical engineering solu-
tions. In this chapter, we will introduce some kinds of energy management schemes
of ad hoc networks in MAC. mainly divided into three parts as follows: Firstly, we
discuss how the nodes can save energy on idle-time in MAC layer [26, 36]; Sec-
ondly, the relationship between transmission power and data arrival rate of nodes is



192 L. Zhao et al.

discussed [27, 28]; Finally, we introduce a heuristic MAC protocol to improve both
the energy and spectrum efficiency of CSMA/CA in WANs.

In fact, the energy consumed by signals’ transmission is always related to their
routing paths. Meanwhile the routing paths are also influenced by distance between
transmitter and receiver and geographic locations. Thus designing efficient energy
management schemes in routing layer can offer a potential energy saving space. For
example, a large amount of energy can be saved by dividing the original direct route
path with long distance into several paths by means of signal relay. In comparison,
some simple routing designs while ignoring energy consumption, e.g., only mini-
mizing hop count, may result in energy dissipation, in particular when the nodes
number in the network is small but the existence of traffic loads is heavy. Aimed at
this, many research works have proposed the energy-aware routing protocols [17,
18]. On the other hand, we note that the state of node mode is also closely bound up
with the energy consumption, e.g., four possible modes: transmit, receive, idle, and
sleep (the least amount of energy) for radio transceiver. In other words, we also need
to consider the nodes’ mode change resulted from routing path selection. To sum
up, the issue of designing appropriate and adjustable energy management solutions
located in routing layer is urgent to addressed to reduce energy consumption.

In addition to the realization of energy savings at various layers of the protocol
stack, some research, such as in [34] and [35], the authors suggest that instead of the
independent consideration of these layers, a cross-layer design solution provides an
efficientmethodology to implement energy consumption inWANs.The author in [34]
proposed an energy-efficient solution for addressing both transmit power control and
schedulingwhere the solution is implemented by the interaction between the physical
and MAC layers. In addition, the authors in [35] attempt to provide these solutions
with end-to-end delay QoS guarantees for sessions.

In this chapter as illustrated in Fig. 1, we firstly focus on the fundamental theory of
energy management in Sect. 2 by discussing diverse efficiency metrics which tends
to guide the following scheme design and performance optimization. Secondly, we
tend to introduce the design philosophy in each protocol stack severally from Sect. 3
to Sect. 5 and integrate them in the cross layer design in Sect. 6. Finally, we give out
the summary while pointing out the future possible design perspectives in WANs.

Fig. 1 Overall chapter structure and relationship for energy management in WANs
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2 Fundamental Theory on Energy Management

In this section, we beginwith the fundamental problems of energymanagement in the
WANs: what’s the meaning of energy-efficiency and what criterion we should obey
when optimizing the corresponding target. Currently, a widely accepted definition
of “green” wireless communications remains an open problem, there is a general
consensus that it is synonymous with energy-efficient systems. As the importance of
energy-efficient fundamental evaluation, many kinds of green efficiencymetrics have
been proposed in recent years as mentioned in last section. By no means should any
efficiency metric be classified as less efficient, since in the appropriate circumstances
they are capable of considerably improving the overall performance of the entire
network. However, the appropriate choice of the network optimization criteria based
on different efficiency metrics can have a profound effect on the overall network
performance. Therefore, above all, this section considers the available efficiency
metrics with analyzing their property mathematically in a comprehensive way to
make preparations for the evaluation and measurement, and then propose a general
optimization criterion with several system constraints.

2.1 Fundamental Evaluation: Efficiency Metrics

By the initial definition, efficiency is the ratio of the utility attained to the resources
consumed. Clearly, the notion of efficiency is closely related to the specific definition
of the utility and resources. In wireless communications, a user aims for successfully
transmitting his packets over a certain distance to the distant receiver under specific
QoS requirements, given the available resources. Hence, the radio utility metrics
should include the ratio of successfully transmitted packets, QoS metrics (such as
the throughput in b/s, delay and delay jitter in seconds, as well as the packet-loss-
ratio) and the transmission distance in meter. The resource metrics should include all
the radio resources consumed, which may be classified as time-, frequency-, space-,
code-, power-, and diverse other resources in WANs.

There has been a lot of work on the definition of radio efficiency, but many
researchers consider spectrum efficiency and energy efficiency as the principal effi-
ciency metrics [7]. The spectrum efficiency of a PtP (Point-to-Point) link is defined
as the number of bits per unit spectrum, which corresponds to bit-per-second-per-
Hertz (b/s/Hz) in the case of single-input single-output (SISO) systems. By contrast,
for multiple-input multiple-output (MIMO) systems it is equivalent to the bit-per-
second-per-Hertz-per-antenna (b/s/Hz/antenna) metric. Spectrum efficiency should
be carefully distinguished from the area spectrum efficiency (ASE) expressed in
[b/s/MHz/km2], because the latter takes into account the cellular frequency-reuse
factor [4]. On the other hand, a host of spread-spectrum methods intentionally sacri-
fice the b/s/Hz spectrum efficiency for the sake of achieving a better bit-per-second-
per-Hertz-per-Watt (b/s/Hz/W) energy efficiency. Moreover, [5] defines the power
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efficiency as the number of bits per thermal noise signal energy unit (TNEU), which
may be viewed as an enhanced energy efficiency metric. Moreover, inspired by the
initial definition of efficiency, we may define a distance-related efficiency metric,
namely the successfully transmitted bits multiplied by the transmission distance per
resource category in a specific domain, corresponding to (bit-meter)-per-second-per-
Hertz-per-W ((bm)/s/Hz/W) [7].

Then we are interested in the mathematical property of the efficiency metrics
above. Assuming Pt is the transmit power and d stands for the distance between the
transmitter and receiver. If the pathloss is evaluated as αdβ where α and β are the
pathloss factor, then we can get the signal to noise ratio (SNR) while B and n0 stand
for bandwidth and noise spectral density, i.e., S

/
n0B, based on Shannon-Hartley

theorem. Therefore, the spectrum efficiency of point-to-point (PtP) wireless link as
illustrated in Fig. 2 is quantified as the throughput per spectrum unit and given as

ηs = log2

(
1 + S

n0B

)
= log2

(
1 + Pt · αd−β

n0B

)
, b/s/Hz. (1)

Moreover, if the total amount of energy consumed at the transmitter is aPt + b
including the part of radio frequency aPt with b standing for the power consumed by

Fig. 2 Spectrum efficiency of PtP (Point-to-Point) link with respect to transmission power and
transmission distance
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Fig. 3 Energy efficiency of PtP link with respect to transmission power and transmission distance

power amplifiers, signal processing, the cooling fans in eNBs, where a is the radio
frequency efficiency factor, then we have energy efficiency in Fig. 3 expressed as

ηe = ηs

aPt + b
=

log2
(
1 + αPt

dβ n0B

)

aPt + b
, b/s/Hz/W. (2)

We also illustrate the definition of our proposed distance-related efficiency in Fig. 5
as follows:

ηg = ηe · d =
d · log2

(
1 + αPt

dβ n0B

)

aPt + b
, (bm)/s/Hz/W. (3)

When γs denotes the average SNR recorded at the receiver, we have the b/TNEU
power efficiency ηTENU = ηs/γs as showed in Fig. 4. Naturally, all the above four effi-
ciencies are dependent on both the transmission power and the transmission distance.
We can know that the higher the transmission power and the shorter the transmission
distance, the higher the receiver’s SNR, which increases the bandwidth efficiency.
The energy efficiency is a decreasing function of the transmission distance; but it is a
convex function of the transmission power. The power efficiency is also a monotone
function, hence the lower the transmission power and the longer the transmission
distance, the higher the power efficiency. Finally, the distance-related efficiency is a
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Fig. 4 Power efficiency of PtP link with respect to transmission power and transmission distance

two-dimensional convex function, which has a single peak value over the two argu-
ments. In the appropriate circumstances, all the efficiency metrics above are relevant
in terms of the overall performance of the entire network. However, the appropri-
ate choice of the network optimization criteria based on different efficiency metrics
can have a profound effect on system performance. Moreover, these definitions have
different mathematical features, which are also closely related to their usage as a
utility function in optimization problems. When furthermore extending efficiency
metrics into system-level evaluation, much more system factors may be related with
the resource utility while considering some factors resulting in the deterioration of
performance, such as the interference. On the other hand, in most practical commu-
nication scenarios characterized by various performance-limiting factors including
channel fading, interference as well as latency and complexity constraints, the actual
attainable bandwidth-, energy-, power- and efficiency are considerably lower than the
predicted values. Adaptive modulation and coding (AMC) is an appealing solution
for a wireless link to approach the above efficiencies [6]. Moreover, the authors of
[7] discusses the efficiencies of cellular networks, where all the detailed parameters
are illustrated in [7].

There is no doubt that both spectrum and energy resource are precious and scarce.
In recent years, many researchers are enthusiastic about optimizing both simultane-
ously or how to achieve tradeoff between them [6, 7]. Obviously, spectrum efficiency
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Fig. 5 Distance-related efficiency of PtP link with respect to transmission power and transmission
distance

is increasing with respect to SNR increase. However, the mathematical property of
energy efficiency is complex since it’s also influenced by the energy consumption
model at the end of radio transmitter, as showed in Fig. 6. When ignoring the impact
of non-transmission power, i.e., b = 0, energy efficiency is a decreasing function
with respect to SNR. In other words, it is completely impossible to achieve a syn-
chronous optimization of spectrum and energy efficiency. In comparison, if we add
the non-transmission power into our consideration (b �= 0), we find that energy effi-
ciency increases firstly and then decreases regarding to SNR. In other words, energy
efficiency becomes a convex function with an unique optimality. Hence, we can opti-
mize both of them in front of optimality and achieve a tradeoff behind it. In the next
section, we continue to introduce a general fundamental optimization criterions with
a specific efficiency metric and several system resource and users’ QoS constraints.

2.2 Fundamental Optimization Criterions

For the practical WAN, there exist diversiform network forms duo to the usage in
complex physical environment. As a matter of course, the standards do not explic-
itly specify the energy management in each protocols stack. Furthermore, this open
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structure facilities the creation of new innovative algorithms conceived for maximiz-
ing the system multiple performances. Most available energy management can be
modelled as a convex optimization problem for the sake of maximizing the system’s
utility under two constraints, i.e.,

argmax Efficiency = argmaxAchieved utility/
Consumed resources

S.T.1(satisfying the minimal QoS requirements)⎧
⎪⎪⎨

⎪⎪⎩

Bandwidth > Bandwidthmin

Delay < Delaymax

Jitter < Jittermax

PacketLossRate < PacketLossRatemax

S.T.2(satisfying the constraints of available resources)⎧
⎪⎪⎨

⎪⎪⎩

Allocated timeslots ≤ Available timeslots
Allocated subcarriers ≤ Available subcarriers
Allocated antennas ≤ Available antennas
Transmitted power ≤ Max transmission power

. (4)

As an original mathematical model above, we can introduce some related effi-
cient methods to achieve the optimal solution. For example, the game theory can
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be regarded as an efficient method in Refs. [12, 13]. More specifically, the former
solve an optimal energy efficient radio resource allocation problem in Low-Medium-
Altitude aerial platform based TD-LTE networks against disaster. In the absence of
constraints, the optimal system utility can be evaluated mathematically. However,
the optima may be inapplicable to practical communication systems. For example,
in [12, 13], the optimal transmission power values were obtained for achieving the
maximal system utility based on game theory. However, the optimal power valuemay
become negative or higher than the maximum value. Therefore, all the algorithms
exploitation should carefully consider the above two constraints.

3 Physical Layer Design

In this section, we tend to address two aspects in physical layer design includ-
ing processor management and battery system management. The former can make
processors operating efficiently with lower energy consumption. In the contrary, the
latter is aimed at increasing the power source supplied by the battery system.

3.1 Processor Management

The efficient processor design results in a significant improvement in the energy
saving. Some design approach include adjusting clock speed CPUs, disk spin down,
and flash memory. We give out some of the sources of power consumption in WANs
and the corresponding solutions to reduce power consumption as stated in [15].
Major sources of power consumption in WANs are the transmitters and receivers of
the communication module. The design of transceivers has a significant effect on
power consumption. Hence, much attention must be taken while designing them.
Meanwhile, switching off various units of the hardware while idling reduces energy
consumption. Instead of switching off fully, different operation stages may be dis-
cussed, and each of them has a different power requirement level. Other techniques
in this area are largely identical but with minor differences, paying attention the
structure design of hardware and switching devices adaptively, hence we don’t take
much space here.

3.2 Battery System Management

Battery system management stands for the design with mainly taking into account
of the battery and its internal characteristics. They try to maximize the amount of
energy provided by the power source by exploiting the inherent property of batteries
to recover their charge when kept idle. The lifetime of WANs covering each node
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is determined by the capacity of its energy source. Related work in [14] shows
that node’s lifetime can be extended by introducing techniques that make efficient
utilization of the battery power. As summarized in [25], the stochastic model of the
discharge pattern of batteries employs two key aspects affecting the node’s lifetime:
rate and the recovery capacity effect. To be specific, the authors of [14] illustrated
that a pulsed current discharge applied for bursty stochastic transmissions improves
battery lifetime. A battery subjected to pulsed current discharge possesses a higher
lifetime than one with equivalent continuous current discharge. In [11] and [14], a
model for battery pulsed discharge with recovery capacity effect is considered. The
model proposed consists of a batterywith a theoretical capacity and an initial nominal
battery capacity. Battery behavior is considered as a discrete-time Markov process
with the initial state and the fully discharged state 0. In [14] Chiasserini and Rao
studied the battery behavior under two different modes of pulsed discharge: binary
and generalized. Moreover, the battery system management can involve with other
layers together including MAC layer, network layer and etc.

4 Energy Management Schemes in MAC Layer

In this section, we turn our attention to the energy management schemes in MAC
layer and tend to discuss a range of energy-efficient MAC protocols proposed
for the WANs, especially carrier sense multiple access with collision avoidance
(CSMA/CA), the basic MAC protocol for WANs, and its potential energy manage-
ment schemes. So far, mostWANs are implemented using wireless LANs (WLANs).
However, its performance is significantly limited by the use of an energy-consuming
medium access control (MAC) protocol. IEEE 802.11x is one of the most influ-
ential WLANs standards, and its basic MAC protocol, distributed coordination
function (DCF), is based on carrier sense multiple access with collision avoidance
(CSMA/CA), one of typical contention-basedMACprotocols. Currently, CSMA/CA
has been the facto MAC standard of WANs, and is widely used in almost all of the
testbeds and simulations for WANs research. So, we will discuss the varieties of
energy management schemes in MAC layer. This section is a typical example to
cover both efficiency metrics and the communication mechanism.

4.1 Spectrum and Energy Efficient MAC Protocol for WANs

Asmentioned above,CSMA/CA is a probabilisticmedia access control (MAC)proto-
col inwhich a node verifies the absence of other traffic before transmitting on a shared
transmission medium, such as a band of the electromagnetic spectrum. CSMA/CA
uses a basic acknowledgment mechanism to verify successful transmissions, and
an optional request-to-send/clear-to-send (RTS/CTS) handshaking mechanism to
decrease collision overhead. In both cases, a binary exponential backoff mechanism
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is used. Before transmitting, a node generates a random backoff interval. The
maximum contention window(CW max) and minimum contention window(CW min)
are default values of CSMA/CA and value of contention window(CW ) is counted in
some algorithm between two above set values. The backoff time is slotted and the
number of backoff slots is uniformly chosen in the range [0, CW ]. At the first trans-
mission attempt, the contention window, CW , is set equal to a value CW min. After
each unsuccessful transmission, CW is doubled up to the maximum value CW max.
Once CW reaches CW max, it will remain at the value until the packet is transmit-
ted successfully or the retransmission time reaches retry limit. While the limit is
reached, retransmission attempts will cease and the packet will be discarded. There
are three main kinds of energy management schemes’ targets, including network
lifetime, decreasing transmission power to save energy, another is enhancing energy
efficiency (ηs) with consideration spectrum efficiency (ηe). Then we will introduce
three kinds of energy management schemes in the followings.

It has been proved thatηe andηs are inherently different andmay not bemaximized
simultaneously. However, all these results are derived for a PtP wireless link and it
does not consider any issue related with the MAC protocol. Hence, in the following
we shall evaluate the two efficiencies of CSMA/CA, the basic MAC protocol of
WANs. Starting from the model proposed in [29], we derive a formula that explicitly
relates the ηe and ηs to the transmission probability, which is also related to the
number of competing nodes and contention parameters (e.g., CW min, m, and r).

We consider a scenario composed of a fixed number n of competing nodes, each
operating in saturation conditions [29]. Let γ be the probability that a node transmits
in a randomly chosen slot; WTx, WRx and WLx be the average transmitting, receiving
and listening power respectively; Ptr be that there is at least one transmission in the
considered slot and Ps be that exactly one node transmits on the channel upon at least
one node’s transmitting. Where P̄ is the average payload size in bit, and the channel
bandwidth B is fixed at 20MHz in 802.11x. The analytical model given above is very
convenient to determine the optimal transmission probability γ ∗ for the maximum
efficiencies. Then, we get the following approximate solution of maximum ηe:

γ ∗ ≈ 1

n
4

√
4μWLx

3Tc (3WTx − 2WLx)
(5)

In the similar way, we can get an explicit formula of the optimal transmission
probability to achieve the maximal ηS , as follows:

γ ∗ ≈ 1

n

√
2δ

Tc
(6)

Furthermore, the ηe and ηs achieved by CSMA/CA in the case of the ACK access
method are shown in Fig. 7. We can observe that: firstly, both efficiencies are a
convex function over the transmission probability, but they cannot be maximized
simultaneously; secondly, the optimal value γ for the maximum ηe is close to that
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Fig. 7 Efficiencies versus the transmission probability

of the maximum ηs, so we can achieve the suboptimal, not the maximal, efficiencies
simultaneously, i.e., we can get a good tradeoff between two efficiency metrics. It
has been showed that the transmission probability (γ ) depends on the network size
and the contention parameters (CW min, m, and r) in [30], as follows:

γ =
⎧
⎨

⎩

2(1−2Ptr)(1−Ptr
r+1)

CW min((1−(2Ptr)
m+1)(1−Ptr)+(1−2Ptr)(1−Ptr

m+1))
2(1−2Ptr)(1−Ptr

r+1)
CW min((1−(2Ptr)

m+1)(1−Ptr)+(1−2Ptr)(1−Ptr
r+1)+2mPtr

m+1(1−2Ptr )(1−Ptr
r−m))

(7)

As n is not a directly controlled variable, the onlyway to achieve optimal performance
is to employ adaptive techniques to tune the values of contention parameters upon
estimating the value of n [30]. So given the values of m and r, from Eqs. 5, 6, and 7,
we can obtain the corresponding CW min for the maximum BE and PE respectively,
as shown in Fig. 8. We can observe that: firstly, both efficiencies of CSMA/CA are
highly dependent on the number of competing nodes and the minimum contention
window; secondly, themaximal efficiencies are very smooth, so even a nonnegligible
difference in the estimate of the optimal value CW min leads to similar energy and
spectrum efficiency values.

Through the above theoretical analysis, an enhanced MAC protocol to approach
both the suboptimal ηe and ηs by tuning the contention parameters upon estimating
the number of competing nodes is proposed. In order to estimate the number of
competing nodes in WANs precisely and timely, two estimation mechanisms are
used to track the competing terminals [31], i.e., auto regressive moving average
(ARMA) and Kalman Filters. A batch and sequential bayesian estimator is provided
in [32], and we also proposed a frame-analytic estimation mechanism [33]. And
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Fig. 8 Efficiencies versus the transmission probability

Table 1 Maximum efficiencies for the ACK method

Number of
competing
nodes

10 16 22 28 34 40

CWmin 51 49 84 81 117 113 150 145 184 177 217 209

BE (b/s/Hz) 0.168 0.167 0.167 0.166 0.166 0.166

PE
(b/s/Hz/W)

2.349 1.676 1.304 1.066 0.902 0.781

then based on Eqs. 5, 6, and 7, we can explicitly compute the optimal CW min that
each node should adopt in order to achieve the maximum energy efficiency or the
maximum spectrum efficiencywithin a considered network scenario, i.e., the number
of competing nodes n, as shown in Table1.

Therewith we choose a range of CW min where the two efficiencies are not less
than optimal value of maximum energy efficiency (MEE) and maximum spectrum
efficiency (MSE) respectively. Here we choose optimal value as 99% to simul-
taneously achieve high energy efficiency and spectrum efficiency. For instance,
[CW min,b1, CW min,b2] satisfies the required ηe and [CW min,p1, CW min,p2] satisfies
the required ηs. Then choose a value in the intersection of [CW min,b1, CW min,b2] and
[CW min,p1, CW min,p2], i.e. satisfying the following:

CW ∗
min ∈ [

CW min,b1, CW min,b2
] ⋂ [

CW min,b1, CW min,b2
]

(8)

In a word, firstly, each node estimates the number of competing nodes based on the
proposed frame-analytic estimation mechanism in [10]. Secondly, each node adjusts
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its minimum contention window to the estimated number of competing nodes based
on Table1 to get the BE and PE tradeoff. Adjusting CW parameters based on the
number of competing nodes has been presented many times in literature. However,
to our best knowledge, the utility function of all the works is to maximize signal-
to-interference-plus-noise ratio (SINR) or BE, and no one has considered how to
optimize both BE and PE simultaneously.

Then we perform the following simulations in MATLAB. Figure9 shows that the
two efficiencies of our proposed protocol are a little lower than those of MEE and
MSE respectively, and much higher than those of CSMA/CA. For instance, if there
are 40 contending nodes, the BE of CSMA/CA (i.e., 0.132b/s/Hz) is 23% lower than
that of our proposed protocol (i.e., 0.164b/s/Hz), and its PE is 0.46b/s/Hz/W while
ours is 0.74b/s/Hz/W. On the other hand, the ηs of the proposed protocol is only
2% lower than MSE, and its PE is 4% lower than MEE. Moreover, the CSMA/CA
becomes worse with the increasing number of nodes which makes higher collision
probability. The ηs of the other three protocols almost keeps constant or decreases
slowly, but their ηe decreases sharply, which is also due to the more collisions. For
instance, the ηe of CSMA/CA decreases 19% from 0.162 to 0.132b/s/Hz when
the contending nodes increase from 10 to 40, while its PE drops 78% from 2.11
to 0.46b/s/Hz/W. In our proposed protocol, the ηS keeps constant at 0.164b/s/Hz,
and the ηe drops 66% from 2.2 to 0.74b/s/Hz/W. Furthermore, simulation results
practically coincide with the analytical results in Table1.

Then, we evaluate the proposed protocol in multi-hop environment. Figures10
and 11 show he performance of energy and spectrum efficiency of the four protocol
when the traffic is unsaturated. The performance of CSMA/CA is worse than all the
other three protocols. For instance, Fig. 10 show that compared with CSMA/CA,

Fig. 9 Efficiencies of single hop WANs
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Fig. 10 Spectrum efficiency of multi-hop WANs

Fig. 11 Power efficiency of multi-hop WANs

our proposed protocol provides a 12% larger ηs. However compared with MSE,
thethe ηs of our proposed protocol is only 1% lower than MSE. Figure11 show that
our proposed protocol is 20% higher energy efficiency than traditional CSMA/CA.
Moreover, its energy efficiency is 2% lower than MEE.
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For a greener WANs, we carries out a comprehensive analysis of the spectrum
efficiency in b/s/Hz and the energy efficiency in b/s/Hz/W of CSMA/CA, the basic
MAC protocol for WANs. Previous works concluded that the spectrum efficiency
and energy efficiency are inversely proportional to each other if only considering
the physical layer of a wireless system. However, our analysis also show that the
maximum efficiencies are very smooth, even a non negligible difference in the esti-
mation of the optimal value of contention parameters to a similar efficiency value.
Hence we present a heuristic MAC protocol to approach both the suboptimal (not
optimal) energy efficiency and spectrum efficiency of CSMA/CA in WANs. Final
simulation results show that the BE and PE of the proposed protocol are much better
than CSMA/CA, and very close to the maximal efficiencies respectively. In the next
section, we also introduce some extended area including the processors and battery
management schemes.

5 Energy Management in Network Layer

Despite of the development of energy management techniques in hardware-level, the
other part of energy consumption associated with the actual communication through
the WANs still limits the performance improvement if the energy utilized in each
signal transmit path are not managed effectively. When aimed at a local scale, any
signal routing path has a significant impact on the nodes selected to relay signals and
other routing path. If we firstly consider an isolated routing path and optimize it for
maximizing energy saving, it may result in more relay nodes adopted in this path.
Then some nodes already involved with traffic excessively will tend to drop out from
the WANs over a period of time duo to the shortage of battery energy, which thus
reduces the effective connectivity number of WANs. In a similar way, switching off
the transmit mode of nodes for minimizing energy consumption at most of the time
is also not suitable. Therefore, the main design goal of energy management schemes
in WANs’s routing layer is not only to transmit data from a source to a destination,
but also to increase the lifetime of the network. In the physical environment, nodes
have to organize themselves to manage the energy all together, which is much harder
than controlling individual transmission path. Moreover when the transmit paths are
changed, the performance of WANs is also changed as it will result in a different
interference environment. To sumup, energymanagement techniques in routing layer
is very complex duo to the variability of physical environment and the in-existence
of one “best”, hence it is urgent to find more suitable and targeted system objective.
In this section, we tend to illustrate the various research achievements of energy
management schemes conducted in routing layer with classifying them in details,
still considered as an ongoing and open research area up to now.

Recently, a number of energy management based on routing protocols have been
discussed. In [16] the authors outline the key concepts of several proposed solu-
tions and provide an analysis of them. Reference [17] proposes five power-aware
metrics that can be used to classify routing protocols. In [18] the authors briefly
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summarize significant papers for each protocol layer and define several metrics for
studying energy saving routing protocols.Reference [19] addresses design challenges
of energy-efficient protocols in various layers and places especially on cross-layer
design of these protocols. By reviewing a number of recent papers extensively, this
section tends to classify them comprehensively.

5.1 Activity-Level Routing Protocols

To begin with, we note that the most straightforward method is reducing the energy
consumption for each individual transmit routing path against the actual transmis-
sion of data between nodes in the network, i.e., activity-level routing protocols. To
be specific, this method is mainly realized by source nodes’ routing decisions before
the delivery of a single data packet where it will calculate an optimized transmit
path especially including the selection pattern of relay nodes and make the power
consumption summation of each sub-path during the path minimized. Moreover, the
physical channel quality is closely associated with power consumption. Up to now,
there are two famous used power consumption models distinguished by the influ-
ence of channel fading [21]. Both have illustrated that in most cases communication
between two nodes tends to consume less energy if relay nodes can be used for signal
retransmission as showed in Fig. 12. Actually, this management is scoped in utilizing
intermediate nodes to hold a packet instead of sending directly between nodes over
large distances to reduce power consumption. Furthermore, it is worth noting that
reliability ofWANs should be considered as an important constraint when taking into
account of energy consumption. For example, the goal of the energy management
scheme in [20] is to route a packet along a path with minimum power consumption
while also ensuring reliable communication when a high achievable successful data
rate is obtained. Only the unicasting mode in the source node is discussed here, in
comparisonwhen broadcasting transmit mode is occupied, the ad hoc network layout
may be transformed into a cellular system with centralized control mode.

For the practical WANs, minimizing the energy consumption of each individual
transmit path should’t be considered as the unique goal, sincewhen the network traffic
is not distributed uniformly, a small subset of nodes with limited energy charged may

Fig. 12 Relay node for energy saving for a transmit path in WANs
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Fig. 13 Network separation duo to the dropout of nodes

drop out of networks in a short period of time, thus decreasing the effective connection
ratio of networks, i.e., potential network partition in Fig. 13. In order to reduce power
consumption while ensuring connection ratio, another category of routing path based
scheme has drawn much attention with the issues of increasing network life. To be
specific, this category tends to distribute the energy consumption among all nodes in
a more balanced way. If the route with the maximal energy saving is always chosen
for delivery, the subset of nodes along this route will be over-utilized and therefore
drained in a short period of time, which may lead to network partitioning. During
the realization process, this strategy is still based on each transmit path except for
traffic should be routed through nodes that have sufficient remaining energy instead
of selecting relay nodes just based on energy consumed. Currently, several hybrid
schemes combining both goals have emerged andmay be a more promising direction
in the future.

To sum up, both of energy management schemes mentioned in this subsection
are operated in routing-path manner with several system targets included. From the
other side, we find that the definition of efficiency metrics is the most fundamental
issue covering energy consumption, network lifetime and reliability. However, the
operation pattern of transmit path-level always limit the scope of strategy and thus
there exists performance improvement potentials.

5.2 Connectivity-Level Routing Protocols

In this subsection, we go forward one step by trying to reduce energy consumption
while ensuring effective connectivity for the overall WANs, i.e., connectivity-level
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routing protocols, which is essential to almost any operation for a wireless network.
However, there exist many complex relationships among the collection of transmit
routing path. As a typical example, the connections in WANs are too dense, it may
lead to severe interference at each receiver. In the comparison, when the density of
transmit path is too sparse, the network is sensitive to broken link path.

Moreover, the physical factors in the network are always associated with its struc-
ture or performance, thus influencing the realization possibility of routing strategies.
can be classified into topology control and passive energy saving [22, 23]. On one
hand, the nodes’ transmitting power (or transmitting range) can be adjusted to save
energy while maintaining effective network connectivity. The network topology is
formed by the links of each node in the network. In a wireless network, the number
of links a node has is mainly determined by its transmission power. By managing its
transmission power wisely, a node is able to not only maintain all necessary links,
but also to reduce its power consumption. Controlling the topology of a wireless
network by using adjustments to transmission power is presented in [22].

On the other hand, in WANs the radios utilized for communication consume
power not only when operating (transmitting and receiving), but also when idle or
listening [21]. This idle energy consumption is, over time, significant and cannot be
ignored [24]. We tend to save energy by simply turning off some idle nodes, since
energy consumption when a node’s radio is idle is not negligible. The general goal
of the protocols in this category is to turn off as many radios as possible while still
maintaining the necessary network connectivity. Given this, only one node must be
active in each cell, and all the other nodes can be put to sleep.

6 Cross-Layer Schemes of Energy Management

In this section, we tend to exploit the benefits of cross-layer information exchange,
such as the knowledge of the frame error rate in the physical layer, the maximum
number of retransmissions in theMAC layer and the number of relays in the network
layer. Here, each layer must cooperate to manage energy of ad hoc networks, where
we can build a module to process massages come from each layer as Fig. 14 shows.
For example, we can use messages from two layer such as MAC and physical layer
to reduce energy consuming [34].

In cross-layer design, detector need to collect parameters come from each layer
for estimating the system state accurately. As Fig. 15 shows, in TCP (Transmis-
sion Control Protocol) layer, we need to know the event type and end-to-end QoS
requirements so we can adopt the optimization strategy according to the prioritiza-
tion of events. In network layer, we can collect the information of network topology
(including nodes relative movement speed and acceleration, etc.) and in MAC layer
channel contention status and queue status information are useful. In physical layer,
the channel state and interference information are also can be used. Then, estima-
tor processes all information come from physical, MAC, Network and TCP layer
simultaneously and calculate system state. Each node of ad hoc networks can get
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Fig. 14 Cross-layer information exchange structure

Fig. 15 Cross-layer energy management schemes work in WANs

system state through information exchanging between nodes. However, in a large-
scale network such as vehicular ad hoc network (VANET), frequent communication
is not realistic. Therefore, in estimator each node need to estimate relative distance
and speed between nodes by some navigation devices or using incompletely coop-
erative game theory [35]. Next, optimizer, according to the system state, calculate
the best energy management strategies. Finally, controller adapt parameters of each
layer, such as event mark in TCP layer, routing algorithms in network layer, size
of contention window in MAC, the adaptive modulation and coding in physical, to
implement energy management schemes calculated by optimizer. We have provided
a basic framework of cross-layer schemes, and we implement it in [33], which esti-
mates the physical-specific and MAC-specific game state and adjusting the strategy
to enhance throughput without additional energy consumption.

As a typical example, the author in [34] introduces a cross-layer protocol to
increase throughput and decrease energy consumption during data transmissions.
In the network layer, the proportion of successful data transmissions is considered,
the number of channel contention events and the number of packets remaining in
a node’s queue in their proposed routing protocol. In the MAC layer, an adaptive
contention window design that dynamically adjusted the range of the CW based
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on the proportion of successful data transmissions is proposed, which improved
network throughput and energy consumption. The scheme considered the proportion
of successful data transmissions, the traffic load of nodes, and channel contentions
in the MAC layer were in the design of the energy-efficient routing protocol, which
efficiently decreased energy consumption during data transmission and prolonged
the network lifetime. Also, the routing path with a high proportion of successful data
transmissions was given a higher probability of using the channel, and the range
of the contention window is adjusted based on the proportion of successful data
transmissions.

7 Summary

In this chapter, we illustrate the research status for the complete paradigm of energy
management in WANs. First of all, the fundamental theory concentrated on the
system resources utilization and further give out the comprehensive understanding
of utility instead of reducing energy consumption unilaterally as the guiding role in
the corresponding energy management scheme design. However, how to define an
appropriate efficiency metric based on current system requirement and network type
is always an open issue. During the design of energy management at all the protocols
stack, the relationships between energy consumed and protocols decisions have been
focused on by most researchers. We must realize reducing energy consumption can’t
be regarded as the unique goal since some other important performance indicators
have to be guaranteed for system’s normal operation. Moreover, it’s very flexible to
define efficiency metrics in different level, e.g., link-level, device-level and network
level, etc., eachofwhich canhave adifferent target-level.Noteworthily an appropriate
choice of the optimization target based on different efficiency metrics can have a
profound effect on the overall network performance. Hence how to choice a better
one is always is a challenging task. In physical layer, we are not only focusing
on the energy management in battery system and hardware-level devices, but also
the links to the protocols in other layers. How to integrate the physical techniques
with other layers for a more promising design is still an urgent issue, besides the
optimization in itself. Compared with the relatively isolated solutions in physical
layer, in bothMAC and network layer, we begin to fucus on some overall solutions to
increase the system efficiency. For instance, both the spectrum efficiency and energy
efficiency are considered in WANs and some solutions are given out to improve
them at the same time. Meanwhile, the efficiency metric definition becomes more
significant and we have to pay more attention to the user’s QoS guarantee. It is
worthy to note thatwemust considermany systemperformance indicators besides the
energy consumption reduction or energy efficiency, e.g., network lifetime, network
connections quality, reliability. For instance, there is an inherent tradeoff amongmany
performance indicators, e.g., the tradeoff between lifetime and energy consumption.
Finally, we are engaged with excavating the potentials from dependency between
layers and illustrated some current techniques by cross-layer design. To sum up, it’s
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hard to find a best energy management strategy in the complexWANs environments,
how to achieve an efficient balance to make network operate with burdening more
traffic is a permanent issue.
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Dynamic Spectrum Leasing for Cognitive
Radio Networks—Modelling and Analysis

Maryam Hafeez and Jaafar Elmirghani

Abstract Incentive based dynamic spectrum leasing (DSL) has been suggested as
a type of cognitive radio (CR) based communication in which the legacy network
allows the cognitive radio nodes to utilize its spectrum for their communication
in exchange for cooperative relaying services. The key objective of this chapter
is to investigate the design space of a DSL empowered large scale CR network
(CRN) collocated with a point-to-point primary communication link. The ultimate
design objective is to improve both the network level energy efficiency and the
spectral efficiency through the exploitation of cooperation gains rendered by the
proposed optimally dimensioned DSL mechanism. This chapter presents a DSL
scheme where the CRs cooperatively relay the data of the primary network for a
duration of time. As a reward for the cooperation, the CRs are granted exclusive
access to the primary spectrum for some time. To harness maximum gains in terms
of energy efficiency (EE) for the primary network while maintaining its required
quality of service and spectral efficiency (SE) of the CR network, a comprehensive
model of DSL is presented. To this end, an accurate quantification of the random
locations of the CR nodes and the optimal division of leasing time between the
primary and secondary activities are two crucial factors. In this chapter, we consider
a large scale cognitive random network. The spatial dynamics are modeled by using
point process theory from stochastic geometry. Mutual agreement of the primary
and secondary nodes on the leasing time division is studied using a game theoretic
framework. The analysis indicates that DSL enables the primary to attain its required
transmission rate and from 20 up to 50 % of the total leasing time is also reserved
for the secondary activity. It is shown that the bargaining powers of the primary and
secondary networks strongly dictate the proportion of cooperation and leasing time.
Further, the EE of DSL based on the network geometry and optimal leasing time is
analytically characterized. The simulation results reveal that DSL operation under
such considerations can be significantly more energy efficient as compared to direct
communication. A closer look helps to ascertain that DSL with a sparse secondary
network can serve to be more than 10 times energy efficient while maintaining the
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same time-rate product as compared to direct communication for low CR densities.
Hence DSL based communication enables the primary to communicate at its desired
transmission rate and quality in an energy efficient manner and also enables the CR
network to exploit the licensed spectrum for its own communication. In short, DSL
is a useful technique for improving the efficiency of wireless communication with
direct application to future networks.

1 Introduction

Over the last few decades, wireless communication has witnessed an immense growth
in its technological sophistication and widespread deployment. It is been estimated
that a capacity expansion by a factor of 1000 is needed in the next generation (5G)
mobile networks [1]. In order to satisfy the sustained growth of mobile traffic, the
development of more sophisticated and flexible radio networks is fundamental. This
calls for additional spectral resources, planning/infrastructure deployment costs and
energy requirements for the network operations. In the recent past, significant rise in
the energy consumption of the communication networks has been recorded. Around
7.95 % rise in the energy demand of Telecom Italia network was observed in 2007. At
the same time, British Telecom contributed to about 0.7 % of the total UK’s energy
consumption [2, 3]. It is predicted that in comparison to 2007, CO2 equivalent
emissions of the communication network will increase by a factor of three until
2020. This corresponds to more than one third of the overall emissions in the UK
[4, 5]. These alarming statistics and the rising costs have motivated the research
and development community to target improving the energy efficiency of the mobile
communication network by a factor of 1000 per transported bit for the emerging 5G
networks [1].

A prime goal in the design of any wireless communication network is to maxi-
mize the spectral utilization while attaining the highest quality of communication.
Increasing bandwidth and/or power are the two main approaches that directly follow
from the Shannon’s capacity of a wireless channel to enhance the communication
rate [6]. Spectrum scarcity has already been recognized as one of the major problems
faced in the deployment of new technologies and in the enhancement of the capacity
of the existing ones. Moreover, the current energy consumption trends indicate that
if the communication systems continue to develop and spread at the same pace, a
significant portion of the total energy production of any country would be needed
to meet the requirements of future communication systems [7, 8]. At this juncture,
an ideal future wireless system would; (1) maximize the utilization of the existing
bandwidth, (2) minimize the power consumption while supporting a high quality of
communication.

Under-utilization of the electromagnetic spectrum due to the stringent spectrum
allocation schemes has become a well established fact in a very short time [9]. This
inefficient utilization of bandwidth is one of the main causes of the apparent free
spectrum extinction. CRs are envisioned to be a possible solution to this problem.



Dynamic Spectrum Leasing for Cognitive Radio Networks … 219

They co-exist with licensed networks and enable optimum utilization of spectrum
across both geographical and temporal domains. CRs dynamically exploit the spec-
tral resources of the legacy (primary) network without causing any intervention in
the primary network (PN) operations. Many different approaches to realize CRs
have been suggested in [10, 11]. However, these approaches only provide intermit-
tent/sporadic connectivity for the CRs without any QoS guarantees. Our goal here
is to analyze a CR based architecture that exploits the licensed spectrum for its own
utility and maintains the performance of the legacy network in terms of its communi-
cation rate while reducing the overall power consumption in the network. We aim to
study that how the relaying services of a few geographically suitable CRs procures
an exclusive spectral access to the entire CR network.

In contrast to passive spectrum sharing between a PN and a CRN (provisioned
through hierarchical access mechanisms), DSL employs an active approach to
improve the overall spectrum utilization through DSA [12]. This chapter is based on
studying DSL where the PN leases a part of its spectrum to another spectrum-less
network when the latter helps to improve the performance of the incumbent network.
The aim of the chapter is to study DSL as a unified model for the mutual benefit of
the incumbent spectrum users (primary users (PUs)) and non incumbent networks
(secondary users (SUs) e.g., CRs). The primary metrics of quantifying the benefits
of DSL are the spectral and energy efficiency of the network. This chapter explores
how a network without having a pre-owned license to access the spectrum can help
to improve the performance of a planned and deployed PN. It introduces a spectrum
leasing framework that reconsiders spectrum allocation rights and policies, improves
the current characterization by rigorously studying various degrees-of-freedom of the
network, and also incorporates tools to enable the modelling of the intelligent and
adaptive behaviour of such networks. It judiciously quantifies the service that a sec-
ondary network (SN) offers to get spectral access in return such that both primary
and secondary network meet their own objectives of improved spectral utilization. It
also studies how the proposed DSL schemes can help improve the energy efficiency
of the primary network. More specifically, under DSL enabled DSA:

1. The PN has a certain incentive for rewarding the CRN with access to its licensed
spectrum. Incentives can be either monetary or non-monetary in nature.

2. The PN can dynamically adapt the rewarding mechanism by observing changes
in its incentive. In other words, the PN can actively control the amount of spectral
resources it is willing to share across various dimensions of the Hertzian medium.
Note that the radio spectrum has a multi-dimensional nature, i.e., variations across
time, frequency, polarity, space, etc., all determine the available spectral resources.

3. The PN can ensure that the required quality of service (QoS) constraint for its
own users is guaranteed. Thus transparency in terms of the performance of the
PN is an intrinsic feature of DSL.

While it is easy to argue that DSL enabled CRNs have the potential to maximize
the spectral utilisation, it is not clear if the potential gains are harnessed at a cost of
increased energy consumption. This leads to the following design question:
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Is it possible to develop a DSL mechanism which maximizes the network level spectral
efficiency (which is a function of individual spectral efficiencies of the PN and the CRN)
while also ensuring an increase in the network wide energy efficiency?

Additionally, another related design issue stems from the fact that the existing lit-
erature on DSL, refrains from considering the impact of the network topology and
propagation uncertainties on the promised potential gains. Specifically:

Does DSL successfully deliver its promised spectral/energy gains under realistic channel
propagation conditions while considering the topological uncertainties due to varying spatial
dynamics of the CRN?

A practical DSL scheme that maximizes the spectral and energy efficiency of the net-
work over a wide dynamic range of signal propagation conditions and node locations
can be directly integrated in the design of future wireless networks. DSL provides
a framework to caste the mutual interest of a variety of entities in the network to
improve it overall performance by optimal division/allocation of available resources.
The DSL scheme presented in this chapter finds direct application in efficient resource
division in the 5G key concepts of carrier aggregation, license shared access (LSA),
device-to-device (D2D) communication and offloading in heterogeneous networks
etc. [13–15].

2 Research Objectives and Contributions

In this chapter, answers to the above-mentioned design issues/questions are investi-
gated by developing a framework to quantify the performance of both the PN and the
CRN under a proposed DSL mechanism. The aim of this chapter is to study how DSL
can be used as an energy efficient alternative for PN communication while improving
the spectral efficiency of the SN. The proposed DSL mechanism considers that in
a dense CRN deployment, cooperation of the CRs with the PN can be traded for
spectrum access opportunities. More specifically, the intrinsic distributed diversity
gain provided by a cooperative relaying protocol and reduced propagation loss due
to dense deployment can be treated as a resource which a CRN can offer to a PN to
sustain its operations i.e., maintaining its QoS while reducing its energy expenditure.
However, the improvement in the performance of the PN through cooperation comes
at a cost paid by the CRs in terms of their energy consumption. Consequently, the
CRs wish to trade the incurred cost for a spectrum access opportunity. Thus in a nut-
shell, the proposed DSL mechanism provides transmission opportunities to the CRs
if they in return help in improving the energy utility of the PN through inter-network
cooperation. Consequently by shrinking the transmission window of the PUs, during
the remaining time the spectral resources are reserved to provide access to the coop-
erating CRs. Such a DSL approach for a CRN communication where the services of
cooperative relaying by the CRs serve as an incentive for the PN spectrum leasing
resulting in improved EE of the PN and better SE of the CRN is the focus in this
chapter.
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In the proposed DSL mechanism, the PN leases its spectrum to the SN, which in
this chapter is a CRN, and forwards its data to the CRs for cooperative transmission.
The SUs/CRs relay the PN data during some fraction of the leasing time. For the
remaining leased time, the CRN exclusively uses the spectrum and carries out its own
communication. The share in time and bandwidth for the secondary communication
is the motivation for the CRs to cooperate with the PN. A PU is interested in maxi-
mizing the time for which the CR nodes relay its data. Greater negotiation power can
help the PN to ensure that for most of the time the CRs relay its data. On the other
hand, the CRs intend to schedule their own transmissions for most of the leasing time.
The reward for the cooperative relaying of a few CRs can ripple across the entire
CRN, enabling spectral access. However, the cooperating CRs need to negotiate with
the PN to get a certain duration of leasing time so that the entire CR network can
benefit from it. Such selfish yet rational behaviour of the PUs and SUs makes the
appropriate division of the leasing time very important for successful DSL operation.
An optimal division is described as a division which is mutually agreed upon and
satisfies the demand of both networks. A greater negotiation power can help each
network to procure more time for itself.

In this chapter, fundamental mathematical modelling and analysis of the proposed
DSL mechanism for CRN is pursued. Despite the wide scale applicability and poten-
tial benefits of service based DSL, contributions in the existing literature are very
limited. The following aspects of DSL for the CRNs need to be addressed:

1. In order to analyse a DSL empowered CRN, it is important to consider a realistic
network topology for both the PN and the CRN. The necessity of a realistic geom-
etry based network model manifests itself not only in topological considerations
but also in terms of the efficient selection of the cooperation areas under the DSL
mechanism. Unfortunately, it is common practice to ignore the network geometry
in order to simplify the analytical model. However, such simplifications come at
the cost of limited insights.

2. In order to ensure fairness and mutual satisfaction, it is important to divide the
leasing time in a way that both the PUs and the CRs agree to their share of time.
In previous studies, this division has been influenced more by the decision of the
primary network which needs to possess cross-network channel state information
(CSI) (i.e., CSI of the secondary network) to make the bargaining decisions. The
CRN needs to observe the primary action and only decides in reaction to primary
decision.

3. It is important to quantify how the division between cooperating and leasing
time is dictated by the negotiating power of the PN and the CRN. Unlike existing
studies, it is important to develop a comprehensive model to capture the scenarios
where one network exercises greater influence on the decision, yet attains mutual
agreement over the division of the leasing time and vice versa.

4. As mentioned earlier, the energy requirements of the design of any communication
system has become a key concern due to the rapid growth in energy consumption.
This warrants a formal analysis of the energy efficiency of leasing to measure its
viability.
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In summary, the main contribution of this chapter is to address the above mentioned
design issues for enabling DSL based spectrum sharing in large scale wireless net-
works.

3 Key Findings

In this chapter, tools from stochastic geometry and game theory are used to build a
quantitative framework for investigating the introduced design issues. The developed
framework explicitly incorporates the impact of randomness rendered by the channel
impairment process and geometry of the cooperation region on the DSL mechanism.
In turn, these considerations demonstrate that a desired data transmission rate with
a certain reliability can be provisioned for the PU links by leasing the spectrum to
the CR nodes occupying spatially suitable locations. As a reward for cooperation,
the entire CRN obtains access to the spectrum and thus the CRs can schedule their
transmissions at a reasonable rate among themselves. The provision of negotiation
between the PN and the CRN, over the division of leased time (reserved for coop-
eration with the PN and for the CRN communication) is ensured using the Nash
bargaining framework. Unlike existing literature, a mutual agreement based division
is attained that ensures proportional fairness for both networks. Also, the PN is not
required to have CSI knowledge of the CRN. The work quantifies how the individual
bargaining powers of the PN and the CRN can influence the division of cooperation
and leasing time. Furthermore, it is shown that for equal bargaining powers, out of
the total DSL operational time, 20–50 % of the time is reserved exclusively for the
CRN which otherwise is dormant. It is demonstrated that the entire CRN can benefit
from the leasing time that is procured by the cooperation of a few CRs with the PN.
The variety of possible divisions of the leasing time ensures the flexibility and wide
scale applicability of the considered DSL model. Moreover, the quantification of the
energy requirements of the legacy and the DSL networks are established which to
date was an open issue. The results indicate that DSL empowered networks can be
more than 10x energy efficient as compared to traditional networks. It is shown that
choosing a smaller cooperation area is more energy efficient for the PN. It is also
shown that DSL is spectrally efficient at the network level where the CRN improves
its spectral access considerably. At the same time, the QoS requirements for both the
PN and CRN can be guaranteed.

4 Previous Work

Our work addresses three research areas in wireless communications (specifically
CRNs); exploiting cooperative diversity, characterization of spectral leasing models
and energy efficiency of the architecture. Energy efficiency has been explored in
the context of cognitive radios by using adaptive modulation techniques [16] and
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optimal transmission duration estimation [17] in order to achieve power/bandwidth
efficiency. Recently, cooperative diversity in cognitive radio networks has gained
some attention. An overview of various possible ways of exploiting this diversity has
been suggested in [18]. The existing literature on dynamic spectrum leasing can be
characterized into three main types; (i) in which the incentive for leasing is based on
monetary rewards, [19, 20], (ii) where leasing is allowed as long as the interference
from the CRs is below an ‘interference cap’ [21, 22], (iii) where the incentive for
leasing is based on service rewards [23–25], which is the model on which this study
is based. For the first two types, numerous literary contributions exist, however, its
survey is out of the scope of this chapter. Our focus is based on the third framework
which was first explored by [23] where an analytical study of service based DSL is
provided and cooperative diversity of the secondary relays has been exploited. In [24]
the same framework is carried forward and applied in an ARQ based model where
a portion of the retransmission slot is leased by the legacy network to the relays for
their traffic in exchange for cooperative retransmission by the relays. In [25], the
authors consider an infrastructured hierarchical spectrum leasing approach. In their
work, they consider multiple primary nodes that select their respective individual
relays for cooperation.

Game theoretic tools have been widely used to determine the amount and time
for spectrum sharing. A comprehensive survey in [26] addresses the application of
different games to model dynamic spectrum sharing. Previously, in [23, 25], a linear
search based algorithm followed by a Stackelberg game was proposed to divide the
leasing time between the primary and secondary activities. However, it does not cater
for mutual agreement on leasing time division if (1) primary chooses a selfish time
distribution as the leader and (2) the secondary in turn plays suboptimal strategy to
hurt the interest of the primary in successive realizations of the game. The studies
regarding the energy efficiency of CRNs mostly consider a generic scenario where
spectrum sensing is employed. The study of the EE of DSL where nearest neighbor
based communication is employed for the CR network is not studied in the literature.

Our work differs from the above in the following ways. Firstly, these studies
abstract out the spatial geometry of the network. The impact of network geometry
and provision of negotiation over the leasing time is not studied in these papers. Here,
however, we investigate DSL in a geometric framework where the capacity of direct
and DSL based communication is studied in terms of the spatial characteristics of
the secondary network. Nash bargaining has been used for solving various problems
of resource allocation in wireless networks [27, 28] and it is shown to attain a Pareto
optimal solution that specifically discourages selfish behavior in the network. In [29]
and its extension [30], DSL with spatial and bargaining based modeling was studied
for spectral and energy efficiency gains for bidirectional communication. Physical
layer techniques like network coding and beamforming were introduced to harness
additional gains. However, in this work, the focus of the authors is to determine
the fundamental behavior of DSL for unidirectional communication. The authors
study the impact of bargaining powers of the two networks on the division of the
leasing time. Also, unlike previous studies where a fixed geometric setup for CR
receivers was considered, in this chapter a nearest neighbor based receiver model
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is considered. Nearest neighbor based receiver models find a direct application in
future device to device (D2D) networks. The impact of the selection of the area of
cooperation by the PN studied in this chapter is also a novel contribution. Finally, in
this chapter, the entire CR network benefits from the leasing time which is a reward
of the cooperative services of a few geographically suitable CR relays. To the best
of our knowledge, the bargaining powers based modeling for DSL where the entire
CR network communicates with nearest neighbors has not been carried out by any
previous study. We use this framework to enable the primary and secondary users to
reach a mutual agreement over the leasing time.

5 System and Network Model for DSL Empowered CRN

5.1 Network Geometric and Physical Layer Model

A primary link operating in the presence of a geographically co-located secondary
network is considered. For simplicity, it is assumed that the primary communication
link (Ptx , Pr x ) is formed by a primary receiver (Pr x ) located at the origin and a pri-
mary transmitter (Ptx ) located at a distance rp > 1 from Pr x . A region of ‘exclusion’
with radius ε is centred at the Pr x

1 to avoid excessive interference (see Fig. 1). Under
the legacy operation of the PN, any transmission by the CRs is strictly forbidden
within this exclusion area [31]. The secondary network is formed by the CR nodes,
whose locations form a stationary Poisson point process (PPP) � of intensity λ.
From the theory of PPP, the probability of finding k ∈ N CRs in an area A ⊂ R

2 is
given as

Pk = Pr {k nodes in A} = (λ |A|)k

k! exp (−λ|A|) , (1)

The average number of the CRs in an arbitrary region A with area |A| is quantified
as λ|A|. Each CR transmitter Stx communicates with an associated CR receiver
Sr x when spectral access is granted by the PN. In this chapter, it is considered that
the CR receivers are associated with their nearest CR transmitter. In other words,
‘nearest neighbour association’ is adopted for the transmitter-receiver pairing in the
CRN. Notice that such association mechanism indeed captures many emerging CR
deployment paradigms. Specifically, it captures overlaid cellular CRN where the CR
transmitters may be data aggregators for machine type communication or small cells
associated with MUs based on the average path-loss, etc.

Based on the relative distances from the Ptx and the Pr x , the nodes lying within a
radius rp between the two primary nodes are expected to best serve as the potential
relays for the PN in cooperation mode under DSL operation.2 It is considered that

1Primary’s exclusive region encapsulates those secondary nodes which are at such a small distance
from the PU that any transmission from them directly interferes with the PN communication.
2Such a selection is inspired by the optimal forwarding area selection techniques [32, 33].
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Fig. 1 Geometric model of the network

nodes within a radius ε from the Ptx or the Pr x are excluded from the cooperation
phase of the DSL. This particular constraint reflects that only the nodes lying in the
proximity of the half-way mark between the primary nodes can become cooperative
relays. The key motivation behind such selection is to minimize the energy penalty,
while balancing the average channel gain for the two hop communication. In other
words, the condition where the average channel gain for the first hop is significantly
larger than the second hop and vice versa are excluded. It is well known that an optimal
relaying strategy can be devised by selecting relays which balance the average gains
for both hops [32]. Consequently, the cooperation region, bounded by a sector, i.e.,
sec(θ, r) of radius rp − 2ε and an angle θ in radians, is considered to be the effective
area of cooperation in DSL operation mode. Formally, it can be denoted as,

Ac
(
θ, rp, ε

) = {
(r, θ) ∈ R

2 : ε < r ≤ rp − ε and θ ∈ [0, 2π ]
}
,

where ε ≥ 1. The selected relays also form a PPP �r ⊂ � with an average number
of CR relay nodes k = λ

∣
∣Ac

(
θ, rp, ε

)∣∣ in the region A
(
θ, rp, ε

) ⊂ R
2.

It is assumed that the wireless channel suffers from path-loss and small-scale
fading. For a distance r between any arbitrary pair of nodes, the channel between
them can be expressed as ahl (r) [34] where the fading power gain h is an independent
and identically distributed (i.i.d.) exponential random variable with a unit mean, a is a
frequency dependent constant and l(r) is the distance dependent path-loss function.
For the sake of simplicity, a is considered to be unity throughout the rest of the
discussion. The power-law path-loss function l(r) = min(1, r−α) is upper bounded
by unity which corresponds to the reference distance. Also, α > 2 is the operational
environment dependent path-loss exponent. The noise at the receiver front end, is
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considered to be additive white Gaussian noise (AWGN) with power σ 2. For a given
transmit power P and link distance r , the SNR at a receiver is given as

SNR = Phl (r)

σ 2
. (2)

Similarly, in the presence of co-channel interference, the received SINR is defined
by adding the aggregate received interference power I in denominator of Eq. 2.

5.2 MAC Layer Model and Bargaining Game

A primary system in which there is a certain rate demand (Rdir) for a sustainable
link operation at a desired reliability (ρ̃ = 1 − ρ) is considered. In other words,
the QoS demand for the PUs is completely characterized by the desired rate Rdir

and the percentage of time ρ̃ over which this rate can be guaranteed. To meet this
demand, the PU has a choice between continuing its communication in the legacy
mode through direct communication or through the cooperative relaying of CRs
via spectrum leasing mechanism. In direct communication, the primary transmitter
communicates with its corresponding primary receiver at a rate Rdir for a duration
T . The duration T corresponds to the duration of a temporal spectral resource such
as the length of a transmission frame. Under DSL operational mode, the primary
transmitter indicates its willingness to lease the spectrum for the same time duration
T to the CR nodes inside a certain cooperation region Ac

(
θ, rp, ε

)
. The choice of θ

and willingness to lease are indicated over a dedicated control channel.

5.2.1 Phases of DSL

The process of dynamic spectrum leasing can be divided into three sub intervals:

Broadcast The primary broadcasts its data to be relayed to the CR transmitters
for a time tps < T .

Cooperate During the second sub-interval, called the cooperation phase, k sec-
ondary nodes that are best suited for relaying on the basis of their geographical
location, cooperatively relay the data of the Ptx to the Pr x for a time tsp< T by
forming a distributed k-antenna array through ideal orthogonal distributed space
time coding (DSTC) [35]. The details of DSTC codebook and operational para-
meters can be found in [35] and [23].

Reimburse Out of the total leased time T , the last sub-interval is reserved for the
Stxi to carry out their own transmission to their respective receivers, Sr xi . In other
words, it is a fare that the primary has to pay in return for the relaying services
of the secondary. In this duration tss = T − tsp − tps , the primary refrains from
transmission and grants exclusive access to the secondary network.
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Fig. 2 Secondary nodes in
the cooperation region

Ptx
Prx

If the PN decides to seek the help of the CRs, it broadcasts a leasing beacon over the
control channel. This beacon contains the information of cooperation and exclusion
region θ , ε and the demand of relaying co-operation duration tsp.3 The concept of
an exclusion region is exploited for minimizing the interference to the PU and also
enhancing the cooperative transmission rate by selecting nodes within the exclusion
region that lie between the primary transmitter and its corresponding receiver as
shown in Fig. 2. The CR nodes employ listening mechanism over control channel.
Beacon enabled signalling is adopted for DSL to initiate and agree on the leasing
parameters. Listening only on the control channel is an energy efficient way for
the CRs to monitor the primary activity. In this approach, the CRs only listen to
short control messages, whereas, if the control channel is not used, then the CRs
have to monitor the entire PU activity to learn about possible spectrum availabilities.
The CRs are assumed to be aware of their location with respect to the primary
transmitter and receiver. Upon the reception of the leasing beacon, only those CRs
that lie within the desired cooperation region participate in cooperation. Based on
the leasing information and the potential cooperation cost, the CRs also establish
their reimbursement duration demand tss .4

The process of bargaining over the demand of tsp, and tss is executed and if the
negotiations are successful, a leasing agreement is reached. In DSL, during the first
interval tps , the primary transmitter broadcasts its data to be relayed to the CRs at
a low power, P̄p < Pp, since only geographically close CR relays need to receive
and relay the data. In the second interval, the CRs cooperatively relay the data to the
Pr x using DSTC for a duration tsp. As a result of the leasing agreement, the entire
CRN gets access to the spectrum for a duration tss . All the secondary nodes transmit
with the same power Ps during the cooperation and reimbursement phase. Ps is
significantly lower than the transmit power of the primary Ps � Pt . This maintains

3The PN is assumed to be aware of the average fading characteristics of its link with the secondary
transmitters.
4The primary is assumed to be aware of the average fading characteristics of its link with the
secondary transmitters.
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low energy consumption in DSL and also ensures that in the last phase of secondary
communication, the aggregate power of all the selected relay nodes does not increase
excessively to avoid very high interference.

5.2.2 Bargaining Game

During the process of leasing, the most crucial factor is the division of leasing time
between the above three phases. It is important that each operational element of the
network gets enough share of time to meet its transmission throughput requirements.
To ensure such a time division, a network level game is formulated where each
of player, i.e., primary network (player 1) and the secondary network (player 2)
engages itself in an arbitration for the time division over a control channel. As
stated, the primary user initiates the leasing process. In response, the secondary
users determine their demand and adopt a strategy according to the primary offer. If
the offer is acceptable, the game is concluded and leasing is successful. If the CRs
want to bargain further, another round of offer and respective response is played. In
case the negotiations are unsuccessful, the game ends and the leasing is not done. It is
further assumed that the CRs form a homogeneous network in terms of the hardware
platform, leasing time demands and they do not show malicious or selfish behaviour.

During the process of leasing, the primary has a bargaining power 
p. The bar-
gaining power of the primary determines the bias of the division of time in favour of
the primary’s demand. Similarly, the secondary CR network has a bargaining power

s. The provision of variable bargaining powers in the model makes it flexible and
adaptable to various real network settings. These include scenarios where the primary
network has greater inherent power to determine the division of leasing time. For
example, when the data traffic of the primary link is low or the channel conditions are
favourable, the primary might have a greater bargaining power. Similarly scenarios
where the CRs have a greater power can also be well studied using this model.

5.2.3 Assumptions

For simplicity and tractability of the analysis, it is assumed that the PN and the CRN
are aware of the CSI within their respective networks. A practical implementation
of such information exchange can be found in [36]. The CRs are aware of their
location with respect to the primary transmitter and receiver. Moreover, the PU and
the SUs are considered to be in perfect time synchronization with each other. Cost
effective methodologies for implementing time synchronization in ad hoc networks
have been suggested in [37], hence encouraging the proposal of the time sharing
based communication scheme introduced here. The control beacon signal by the PU
to initiate spectrum leasing can also be used for synchronization between the primary
and the secondary nodes.
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6 Analysis of DSL

6.1 Average Link Capacities Rdir, R ps, Rsp and Rss

Under conventional operation, the legacy network continues its communication over
the direct link with its respective receiver at a certain rate RQoS. Due to the small
scale fading, the communication link is subject to outage. Thus, enforcing a cer-
tain reliability constraint restricts the operational rates to a limited regime. In other
words, if ρ̃ = 1 − ρ is the reliability constraint, then the maximum rate which can
be sustained is given as

Rdir = sup
{

RQoS : pout(RQoS) ≤ ρ
}
, (3)

where pout(RQoS) is the link outage probability at a particular desired rate RQoS. The
performance of the direct link (Ptx , Pr x ) pre-dominantly is noise limited, since it is
assumed that there is no interference caused by the CRN to the primary transmission.
The instantaneous capacity RQoS of this link can be defined as,

RQoS = log2(1 + SNR), (bits/s) (4)

where SNR is as defined previously and h p is the channel power gain between
the source and the destination, Pp is the transmit power and l(rp) is the distance
dependent path loss between the nodes. The ρ-outage rate Rdir is defined as the
largest rate of transmission R such that the outage probability of the direct primary
link is less than ρ. For a conventional operation mode it can be quantified as follows:

Lemma 1 The ρ-outage rate, Rdir, for the link (Ptx ,Pr x ) is given as,

Rdir = log2

(

1 −
(

Pph pl
(
rp

)

σ 2

)

ln (1 − ρ)

)

, (bits/s) (5)

Proof The result can be derived following the same lines as in [29] Sect. IV
Lemma 1. �

When the spectrum is leased to the SUs, the cooperative link performance is dic-
tated by the attainable rate over the relay link, i.e., the cooperative channel capacity.
The cooperative channel capacity depends upon both (i) the transmission rate Rps

achieved between the primary transmitter and any selected relay during the first
leasing sub-interval and (ii) the rate Rsp between the selected relay nodes and the
primary receiver assuming that DSTC cooperation is employed. Also, as mentioned
earlier, nodes centred only in the effective area of communication, Ac(θ, rp, ε), are
considered for cooperation.
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Lemma 2 The average transmission rate from the primary transmitter to secondary
relay, R ps , is upper-bounded as,

R ps = log2

⎛

⎜
⎝1 +

⎛

⎝
exp

(
−λθ

2

(
rp − ε

)2 − 1
)

(rp − ε) − C

⎞

⎠

α

P̄p

σ 2

⎞

⎟
⎠ , (bits/s) (6)

where C = √
π

2λθ
exp

(
−λθ

2

(
rp − ε

)2
)

erfi
(√

2λθ
π

)
and erfi(x) is the imaginary

error function such that erfi(x) = 2
√

π
∫ x

t=0 exp
(−t2

)
dt.

Proof The result can be derived following the same lines as in [29] Sect. IV
Lemma 2. �

In the second phase of cooperation, the selected secondary relays form a
k = λAc(θ, rp, ε) antenna array and perform DSTC to send the data to the receiver
with a rate Rsp. The rate of communication when DSTC is employed for multiple
relay transmission to a common destination has been evaluated in [23, 35, 38, 39]. In
the context of the geometric modelling of dynamic spectrum leasing, the DSTC com-
munication rate is used and its mean value is determined considering the geometric
parameters.

Lemma 3 The average transmission rate, Rsp, when k secondary relays, i.e., k ∈
|�r | form an antenna array, where secondary relay i is located at a distance ri from
Pr x is given by

Rsp = log2

(
1 + λθ Ps

σ 2

(
(rp − ε)2−α − ε2−α

2 − α

))
, (bits/s) (7)

where, the secondary transmits with a power Ps, the channel gain between Stx and
Pr x is hspi .

Proof The result can be derived following the same lines as in [29] Sect. IV
Lemma 3. �

In the last phase of spectrum leasing, all the secondary transmitters communicate
with their respective receivers. A nearest neighbour model of the CR source desti-
nation pairs is considered in this chapter where each transmitter only communicates
with its nearest receiver [40] as shown in Fig. 2. It is of interest to know the average
transmission capacity of the

(
Stx,Sr x

)
link, Rss . In this case, all the secondary trans-

mitters in the CR network simultaneously communicate with their receivers in order
to utilize the leased bandwidth for their own transmission. In this phase, similar to the
direct communication, a realistic situation is considered under which the secondary
network also operates under a fixed QoS constraint RQoSs

.
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Lemma 4 The average rate, Rss , for the link (Stxi ,Sr xi ) where the channel power
gain between the source i and its destination (nearest neighbour) is exponential hssi ,
the transmit power Ps is given as,

Rss = π
3
2 λ

√(
2RQoss −1

)
/ Ps

σ2

exp

((
πλ

(
τ

(
RQoSs

) + 1
))2

4
(

2RQoss −1
)
/ Ps

σ2

)

(8)

× Q

⎛

⎝πλ
(
τ

(
RQoss

) + 1
)

√(
2RQoss −1

)
/ Ps

σ2

⎞

⎠ R̄th. (bits/s) (9)

where RQoss
is the desired threshold rate for secondary communication.

Proof The proof follows the same steps as in [41] in Sect. V. �

After computing the individual link transmission rates, the aim is to know the
overall transmission rate achieved in the DSL operational mode. It is assumed that a
decode and forward type single hop relaying mechanism is used in the cooperation
phase. The effective DSL capacity RDSL is then given as,

RDSL = min{R ps, Rsp}. (bits/s) (10)

6.2 Optimal Division of Leased Time for Cooperation
and Secondary Activity

The most critical factor in the operation of spectrum leasing is the optimal division
of the total leased time T between the time tsp reserved for cooperation with the
primary at a cooperative rate RDSL and the remaining time tss for the secondary
activity at a rate Rss . The goal of the primary node is to ensure that its rate and
quality of communication, Rdir and ρ-outage probability respectively, are maintained
by maximizing the time tps and tsp. The primary node can ensure that R ps attains
the QoS rate Rdir by a proper choice of tps such that tps R ps = T Rdir. However, the
remaining time (T ′ = T − tps) needs to be divided between phase two and three to
get tsp and tss .

The CR nodes intend to increase their benefits in terms of their spectrum utility
and throughput by having spectrum access for maximum time and compensating for
the cost of cooperation in relaying primary data. A very small fraction of tss will
discourage the secondary, impacting cooperation and the overall throughput of the
system suffers. On the other hand, prolonged tss will degrade the performance of
the legacy network in terms of its bandwidth efficiency which is not acceptable in
any case. Hence an intelligent division of time is very crucial for the operation of
the network. Also, the secondary network must cooperate in relaying primary data
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for a time tsp long enough so that the primary network maintains its communication
standards. Hence the problem boils down to an optimal division of leasing time T ′
between phases two and three of DSL.

An optimal time division can be conveniently casted in the framework of Nash
Bargaining: a game theoretic tool to model the situations of bargaining interactions.
The situation can be modelled as a two player game using the Nash bargaining
framework from cooperative game theory [42]. In this case, the primary transmitter
is the first player whose utility is directly dependent upon the cooperation time tsp

and increases as it increases. For simplicity, we define the utility of the primary and
the secondary node as;

U1(t) = tsp, (11)

and

U2(t) = tss, (12)

respectively, where tsp + tss =T ′.
Bargaining as a two player game is considered because every single secondary

node is representative of the utility of all the remaining secondary nodes as only the
average rate values and equal transmit powers for all CRs are considered. The Nash
bargaining framework is employed to model a situation in which the players negotiate
for their agreement on a particular point out of a set of joint feasible payoffs G. In this
particular case, G ≡ {g = (g1, g2) : gi = Ui (S), i = 1, 2; S ∈ S1 × S2}, where the
functions Ui (.) in this case of DSL are given in Eqs. 11 and 12. S is the strategy of
the i th player in terms of the time it demands i.e., tsp/tss from the strategy profile Si .
In Nash Bargaining, in case the negotiations render unsuccessful, the outcome of the
game becomes G = (g01, g02). It is a fixed vector known as the disagreement vector.
The whole bargaining problem can be described conveniently by the pair (G, g0).
A pair of payoffs

(
g∗

1 , g∗
2

)
is a Nash Bargaining solution if it solves the following

optimization problem

maxg1,g2 (g1 − g01)

p (g2 − g02)


s (13)

subject to
(g1, g2) ∈ G
(g1, g2) ≥ G0

.

If the set G is compact and convex, and there exists at least one g ∈ G such that
g > g0, then a unique solution to the bargaining problem (G, g0) corresponds to the
unique solution of the optimization problem [27, 42].5 Here 
p and 
s defined as{

p,
s ∈ [0, 1] |
p = 1 − 
s

}
correspond to the bargaining powers of the primary

and secondary network. Greater values of 
p and 
s correspond to higher bargaining
powers. Increasing the bargaining power of a player corresponds to greater weightage

5From Eqs. 11 and 12, the compactness and convexity of G can be seen.



Dynamic Spectrum Leasing for Cognitive Radio Networks … 233

of its preferences over the preferences of the other player. Increasing the power of
one player implies decreasing power of the other.

In this case, the fraction of leased time should be large enough to ensure that the
time-rate product of cooperation time tsp and cooperative rate Rsp is at least equal
or greater than the direct communication time T and rate Rdir product. During the
second sub-interval, a secondary node must have enough time to at least overcome
its cooperation cost cPs given its average transmission rate Rss . Here c is measures
the bits transmitted per unit of power consumed.

Theorem 5 The optimal proportion of time for cooperative relaying is

tsp =

pT ′ + 
s

(
Rdir

Rsp

)
− 
p

(
cPs

Rss

)


p + 
s
, (14)

where the disagreement vector is
(
t0p, t0s

) =
(

T Rdir

Rsp
, cPs

Rss

)
and secondary activity

time tss = T ′ − tsp.

Proof From the definition of Nash Bargaining solution, the time division problem
for a 2-player game can be written as

max
(

p log (U1(t) − g01) + 
s log (U2(t) − g02)

)
, (15)

subject to T ′ = tsp + tss .

From the definition of Nash Bargaining solution, the time division problem for a
2-player game can be written in a logarithmic form as above. Such representation of
the maximization problem ensures proportional fairness of the solution for both the
players. Here the minimum required time for both primary and secondary is given as

(g01, g02) = (
t0sp, t0ss

) =
(

T Rdir

Rsp
, cPs

Rss

)
, which is the least time required to meet the

respective objectives of QoS and cooperation cost compensation.The corresponding
Lagrangian for the above optimization problem can be written as,

L(tsp, λ1, λ2) = 
p log
(
tsp − t0sp

)+
s log (tss − t0ss)

− λ1
(
T ′ − tsp + −tss

)
.

The original maximization problem can be solved by replacing tss by T ′ − tsp and
using the first order necessary conditions,

δL

δtsp
= 
p

tsp − t0sp
+ 
s

tsp − T ′ − t0ss
= 0, (16)

This follows from the definition of the Nash Bargaining problem that there exists a
vector S such that the optimal value of the optimization problem is strictly positive.
Solving for Eq. 16 by using simple algebra, the result can be obtained as,
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tsp =

pT ′ + 
s

(
Rdir

Rsp

)
− 
p

(
cPs

Rss

)


p + 
s
,

where the above equilibrium solution gives the optimal share of cooperation time
tsp out of the total leased time T that ensures a cooperative data transmission rate
Rsp ≥ Rdir. It reserves the rest of the time for secondary user that at least allows the
secondary to utilize the spectrum to compensate for their transmission cost during
the cooperation phase. �

7 Performance Evaluation of DSL

In this section, the design space of the DSL enabled CRN is investigated by employ-
ing the analytical model developed in the previous section. In order to verify the
analysis and establish the validity of the assumptions made throughout, Monte Carlo
simulations for the large scale DSL based CRN are performed. In order to simulate, a
network radius of 200 m in which secondary nodes are Poisson distributed with mean
λ is considered. Direct communication under an outage constraint ρ at a transmit
power Pp is simulated. Similarly, the operational phases of DSL are simulated. For
each realization of the Poisson network, a Rayleigh distributed channel coefficient
is generated. The transmission rate at the receiver for each spatial instance of the
network is averaged for 104 different channel coefficients. This process is in turn
repeated for 104 realizations of Poisson distributed CR network with intensity λ and
the transmission rate is averaged. Secondary network communication under inter-
ference considerations is also studied in a similar fashion. All the simulations are
carried out in MATLAB. Normalized values for transmit powers Pp and Ps are used.
It is assumed that the secondary network operates at a low power profile i.e., ∼ 1

10th

of Pp. Similar power profiles can be found for devices like HeNB in LTE rel. 12 and
other examples in heterogeneous networks [43, 44].

Firstly, the average achievable transmission rates under both the normal and leas-
ing mode of network operation are studied as shown in Fig. 3a. The rate under normal
primary communication at a transmit power Pp increases with improving channel
conditions. Here, the reliability in terms of the probability of success (psuc = 1 − ρ)

of direct communication is assumed to be 90 %. The outage capacity, Rdir, defines
the target capacity for communication in the primary network Rth for all operational
modes i.e., direct and DSL. Under identical channel realizations, a demand for higher
service quality (smaller ρ) straightforwardly results in lower Rdir.

For the capacity analysis of DSL, the average achievable transmission rates in the
three phases of leasing are studied. The capacity of the primary to secondary commu-
nication in the first phase is strongly dependent upon the number of secondary nodes
present in the area of cooperation. As mentioned earlier, in this analysis, the lower
bound to this rate is studied by considering the average transmission rate between
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the primary transmitter and the farthest relay. For very low secondary density, e.g.,
λ < 0.01, the probability of finding a neighbour in the region of cooperation is
extremely low. For this reason, the capacity analysis for very sparse secondary net-
work is not possible. For higher λ, it can be seen from Fig. 3a that the average
transmission rate R ps is greater than Rdir. This phenomenon is a consequence of
cooperation region selection such that relays are located in close proximity to both
Ptx and Pr x . Hence greater rate is attained due to shorter distance between the relay
and Ptx . However, if the number of secondary users increases in the cooperation
region, the average distance between Ptx and the farthest node increases. Hence R ps

decreases when λ increases (lower line in Fig. 3a). However, the cooperative relaying
rate Rsp increases with increasing relay density due to the diversity gain. Increasing
λ increases the number of cooperating nodes, consequently, the rate Rsp � Rdir for
increasing values of λ.

Along with the analytically drawn results, achievable transmission rates under a
practical Poisson network are also shown in Fig. 3a. A PN with two nodes and a
CRN for various λ. are simulated in MATLAB. For each realization of the network,
exponential distributed channel power gain is generated. The successful transmission
probability at the rate RQoS/RQoSs

at the receiver for each spatial instance of the
network is averaged for 104 different channel coefficients. This process is in turn
repeated for 104 network realizations. The practical simulation results are indicated
by the lines running over the analytic results (analytic results are indicated with
markers). It can be seen that the practical simulations closely match the analytic
evaluation results. It validates the analytic formulation of DSL and the simplifying
assumptions made for the simplification of the analysis.

It is shown that the communication rate Rss also increases with improving SNR
values in Fig. 3b (here the desired QoS of the secondary network in terms of desired
rate R̄th is 0.5 bits/s). This is a consequence of the improved signal strength at the
receiver. As the density of the secondary nodes increases, the average transmission
rate increases. However, Rss tends to saturate with increasing SNR at higher values of
λ. It is a consequence of the interference limited behaviour of the channel. Increasing
interference due to increasing λ limits the increase in Rss . It is clear that increasing the
desired threshold rate R̄th causes the average rate to decrease because the decoding
threshold at Sr x is raised. Hence, a graphical illustration of this result is intentionally
skipped. The practical simulation results of Rss are also shown in Fig. 3b which
verifies the analytical derivations. It is to be noted that the rest of the results are
based upon the communication rates of direct and DSL communication, which have
been shown to be in a close agreement with each other. Therefore, the practical
simulations of the remaining results can safely be assumed to be accurate and hence
are skipped for the sake of brevity.

In order to intelligently exploit the diversity gains of DSL at low power, it is
important to determine the appropriate operational time of each phase of DSL. The
primary itself determines and communicates for time tps during the first phase such
that tps R ps = T Rdir. In Fig. 4a, the time tps reserved for Rps is shown. It can be
seen that it increases with increase in the secondary network density. This behaviour
follows from the lower transmission rate achieved with increasing λ as discussed
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earlier. Correspondingly, the time share of tsp and tss i.e., T ′ decreases with increasing
λ since a major portion of the time is reserved for primary to secondary transmission
in the first slot.

The optimal relation for the division of the remaining leased time T ′ is found in
Eq. 14 and shown in Fig. 4b over a range of SNR values. At low CR densities, more
time tsp is required to harvest the gains from cooperative relaying. As the number
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of cooperating CRs increases due to increasing λ, the time required for cooperative
relaying decreases. However, for higher λ, as discussed earlier, tps gets the major
share of time. Since more help of secondary nodes is required when the channel
conditions are not favourable, CRs are reimbursed more at low SNRs. As the SNRs
increases, tss decreases. However, tss is always long enough to satisfy the minimum
reimbursement required by the CRs. Overall, both tsp and tss assume low values at
higher λ due to greater tps requirement as explained previously.

Figure 5, studies the bargaining powers of the two players and its impact on the
division of time. It can be seen that the player with higher bargaining power is
able to procure more time to increase its utility. The primary can get up to ∼20 %
more time reserved for the cooperative relaying phase when its bargaining power
is improved to 0.8 from 0.5. Similar increase in the CR bargaining power results
in proportional increase in tss . The variety of possible divisions of the leasing time
depicts the flexibility and wide scale applicability of the bargaining solutions. It can
capture the scenarios where one player exercises greater influence on the decision.

8 Energy Efficiency of Spectrum Leasing Model

8.1 Analytical Quantification

In this section, the energy efficiency (EE) of the spectrum leasing model for cognitive
radio networks is defined and quantified. The energy efficiency is the number of bits
transmitted successfully across the channel per unit of energy consumed, given as,
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E E = nB

J
, (bits/J) (17)

where nB is the number of bits transmitted successfully and J is the energy consumed
in Joules.

Theorem 6 The energy efficiency of a licensed primary network employing direct
communication E Edir and while employing DSL, E EDSL in terms of the number of
successfully transmitted bits per unit energy can be given as

E Edir = ndir

T Pp
, and E EDSL = nDSL

tps P̄p + tsp Psk
, (18)

respectively, where ndir is the number of successfully transmitted bits in direct com-
munication, nDSL are the successfully transmitted bits over the cooperative link.

Proof The number of bits successfully transmitted in the transmission duration of
the direct link ndir is given as [34];

ndir = RdirT, (19)

where Rdir follows from the result in Lemma 1. In case the primary decides to lease
the spectrum, the number of bits successfully transmitted in spectrum leasing is
given as

nDSL = min
(
tps R ps, tsp Rsp

)
, (20)

where, R ps and Rsp have been determined in Eqs. 6 and 7, respectively. The total
energy consumed during direct communication is T Pp and that during DSL based
cooperation is tps P̄p + tsp Psk where the first term accounts for the energy consumed
in Ptx to Stx communication and the later for the energy consumption when k sec-
ondary transmitters cooperatively relay the data to Pr x for a duration equal to the
leased time tsp and then transmit their own traffic for a time tss . Similarly, we also
quantify the energy efficiency of secondary communication phase as

E Esec = nsec

Pstss
, (bits/J) (21)

where nsec = tss Rss . The total energy consumed when the secondary network com-
municates for a duration tss is Pstss . �

8.2 Analytic Results

Following the analytical results for Rdir, R ps , Rsp and Rss , the energy efficiency is
studied by observing both the direct link and DSL based communication over a
variety of SNR values as shown in Fig. 6a. As in the discussion on the achievable
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Fig. 6 Energy efficiency. a Direct communication EEdir versus DSL communication EEDSL,
Pp = 1, Ps = 0.1, T = 1, θ = π

4 . b Secondary Network EEsec, Ps = 0.1, time = tss

capacity and time division, the EE of direct and DSL communication is studied on
the basis of secondary network density. It is clearly evident that the energy efficiency
of DSL is significantly greater than that of the direct communication for smaller
values of λ. This is because the transmit power of the primary and secondary in DSL
mode is low. The selection of relays which are geographically closer to both Ptx and
Pr x help in achieving the same transmission rate in shorter time and hence lower
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power. Also, the cooperative relaying based diversity benefits significantly increase
the throughput at the primary receiver while maintaining a low transmit power. As
λ increases, the EE of DSL decreases mainly due to two reasons;

1. The throughput of the cooperative DSL communication decreases as the average
primary to secondary rate R ps decreases with increasing λ (see Fig. 3a). The
energy consumed in the first phase of DSL grows as the primary to secondary
link operation time tps increases.

2. Also, in the second phase of DSL, aggregate transmit energy is higher due to
increased number of relays.

It can be seen that the bargaining based leasing time division results in significantly
more energy efficient communication via DSL as compared to direct communication
when the secondary network is relatively sparse (i.e., λ ≤ 0.05).

In Fig. 6b, we study the EE of the secondary network in the third phase of leasing.
During this phase, the energy efficiency of the network improves with increasing
SNR. It attains a maximum value as Rss converges to a constant rate. Moreover, if
the number of secondary transmitters is increased, the aggregate energy consump-
tion is increased by the presence of greater number of interferes. Hence, the EE of
the secondary network EEsec decreases for high λ when DSL is operational in the
interference limited regime. Hence, DSL for sparse secondary network is the most
energy efficient solution for both primary and secondary networks.

Further, the effect of the angle θ of the sector of cooperation on the EE of DSL is
investigated. From Fig. 7, it can be seen that the EE of DSL degrades with increasing
the area of cooperation. This happens because increasing θ increases the number of
cooperators which in turn increases the aggregate transmit power used for cooper-
ation. Also, the probability of finding a farther neighbour increases as the area of
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cooperation increases and hence limits R ps in the first phase. For low values of θ ,
Rsp is low due to limited number of cooperators. However, low θ results in high R ps ,
thus, an improved energy efficiency is observed. For very low values of θ , DSL is
not viable because the probability of finding even a single relay is infinitely low. As
soon as the cooperation area is wide enough to find a few relays in it, DSL becomes
viable and most energy efficient.

Finally, the time rate product is analysed which determines the total number of
bits that can be transmitted during both modes for a time T . The simulation results in
Fig. 8 demonstrate the time-rate product of direct versus DSL communication. It can
be seen that DSL communication achieves exactly the same performance in terms
of the effective number of bits delivered to the primary receiver as compared to the
direct communication. It simply implies that by using DSL, the primary can transmit
the same amount of data as with direct communication. However, as discussed earlier,
this transmission is more energy efficient than direct communication when the CR
network is sparse. This result further verifies the practical viability and attraction for
the legacy network to operate in DSL mode.

The entire discussion can be summarized as follows. DSL based transmission
serves as an energy efficient alternative to direct communication when the secondary
network is sparse. For these low populated networks, the aggregate energy and time
requirements for cooperation and secondary network activity are low. Hence an
intelligent relay selection based on the spatial characteristics of the network and the
optimal leasing time division can help in exploiting the diversity gain of cooperative
relaying to enhance the performance of legacy communication. It also allows the
otherwise deprived secondary network to utilize its share in the bandwidth therefore
improving the overall spectral utilization of the network.
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9 Summary

In this chapter, a DSL scheme is presented that provides an elaborated implemen-
tation mechanism for dynamic resource sharing was presented. An analytical study
of dynamic spectrum leasing based on a geometrical framework was presented and
the relative link performances in terms of the achieved capacities in DSL and direct
communication were evaluated. A Nash bargaining based approach for the deter-
mination of the appropriate leasing time was introduced. It was demonstrated that
the proposed algorithm results in a division of time that satisfies the requirements
of both primary and secondary networks. Based on these operational features, the
energy efficiency was quantified and investigated through simulations. The results
indicate that DSL is more energy efficient in most of the practical SNR regimes,
hence making DSL a viable option for energy efficient communication. Such energy
efficient solution can be achieved only if a sparse CR network is considered with
DSL operation at a low transmit power as compared to that of the transmit power of
the direct communication. DSL is shown to be more than 10x more energy efficient
than direct communication when the CR density is low and/or the cooperation region
is small. With only a few cooperating CR nodes, the entire CR network gets exclu-
sive access to the spectrum. Hence DSL based communication enables the primary
to communicate at its desired transmission rate and quality in an energy efficient
manner and also enables the CR network to exploit the licensed spectrum for its own
communication.

The scheme presented in this chapter can be further extended to study the possible
delays incurred in the DSL communication. Also, the impact of the presence of any
greedy CRs in the network is also an open issue. It is interesting to also consider
individually autonomous entities in contrast to network level players in the game
formulation of DSL. The energy and spectral efficiency of DSL under the above
mentioned considerations is an important research question. In short, DSL is a use-
ful technique for improving the efficiency of wireless communication with direct
application to future networks.
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Abstract The concept of energy-aware communications has spurred the interest of
the research community in the most recent years due to various environmental and
economical reasons. It becomes indispensable for wireless communication systems
to shift their resource allocation problems from optimizing traditional metrics, such
as throughput and latency, to an environmental-friendly energy metric. Although
cognitive radio systems introduce spectrum efficient usage techniques, they employ
new complex technologies for spectrum sensing and sharing that consume extra
energy to compensate for overhead and feedback costs. Considering an adequate
energy efficiency metric—that takes into account the transmit power consumption,
circuitry power, and signaling overhead—is ofmomentous importance such that opti-
mal resource allocations in cognitive radio systems reduce the energy consumption.
A literature survey of recent energy-efficient based resource allocations schemes is
presented for cognitive radio systems. The energy efficiency performances of these
schemes are analyzed and evaluated under power budget, co-channel and adjacent-
channel interferences, channel estimation errors, quality-of-service, and/or fairness
constraints. Finally, the opportunities and challenges of energy-aware design for
cognitive radio systems are discussed.
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1 Introduction

Cognitive radio (CR) can considerably enhance the spectrum utilization efficiency
by dynamically sharing the spectrum between licensed/primary users (PUs) and unli-
censed/secondary users (SUs) [29]. This is achieved by granting SUs opportunistic
access to the white spaces within PUs spectrum, while controlling the interference
to PUs, i.e., overlay approach [29]. Alternatively, the SUs and PUs may coexist
in the same spectral band, i.e., underlay approach [29]. In other words, an overlay
coexistence scenario holds if the SUs are allowed to only access the vacant PUs
frequency bands. On the other hand, an underlay coexistence scenario holds if the
SUs can access occupied PUs frequency bands while meeting the PUs interference
thresholds. The performance of overlay approaches is limited by the mutual inter-
ference between SUs and PUs, while co-channel interference places stringent power
transmission limitations on the SUs transmission in underlay approaches.

In the past few years, energy-aware communications receive a lot of attention
from research and industrial communities due to the rising energy costs to operate
future wireless networks, ecological, and environmental reasons [16, 24]. Hence,
designing energy-aware CR systems is important to improve both the energy and
spectrum efficiencies. The performance of the energy-aware CR systems can be
improved by properly allocating the available resources while meeting the imposed
constraints, e.g., transmit power, interference, quality-of-service (QoS), and/or fair-
ness constraints. A major difference between CR and conventional systems is the
capability of the CR to sense the surrounding wireless environment. In fact, the avail-
able resources include transmit power and/or subchannels as in conventional wireless
systems in addition to other parameters related to the sensing process such as sensing,
transmission, and idle durations; number of SUs sensing the PUs spectrum; and/or
SUs assignment to sense the channel.

The available PUs spectrum can be sensed using SUs independently, i.e., single
node sensing; however, the performance is degraded by the hidden node problem1

[51].Oneway to improve the performance of single node sensing is to use cooperative
sensing where multiple SUs may cooperate to sense the spectrum [51]. Cooperative
sensing shows better sensing performance at the cost of increasing the consumed
energy in the sensing process.

The sensing process can be done periodically, i.e., at the beginning of each frame,
then the SU decides about its transmission based on the result of the sensing process.
For example, if the sensing outcome is that the PU is not using the channel, then
the SU can transmit; otherwise, the SU has to wait until the next frame to repeat
the process [32]. Another possible approach for spectrum sensing is the sequential
approach where the SU senses the channel sequentially and each time after sensing
the SU has to make a decision on whether to continue to sense the next channel or to
start transmission [40]. This approach is efficient as the SU does not wait for the next

1PUs may not be detected correctly due to many reasons including shadowing, deep fading, and/or
location.
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frame if the PU channel is not available; however, this is at the cost of consuming
more energy in the sensing process.

In this chapter, we provide an overview of the resource allocation problems in
energy-awareCRsystems. InSect. 2we summarize the commonlyused energy-aware
metrics for CR systems. Section3 discusses the parameters affecting the resource
allocation in energy-aware CR systems. Finally, future trends in energy-aware design
are discussed in Sect. 4.

2 Energy-Aware Metrics

Different energy-aware metrics are used to quantify the energy efficiency (EE) of
CR systems through considering various parameters that affect EE. A presentation
of such metrics is provided in the following sub-sections and summarized in Fig. 1.
For the reader’s convenance, all the symbols are defined when they first appear, as
well as in Tables1 and 2.

2.1 Energy Efficiency (EE) Metrics

The instantaneous EE is widely used when perfect channel-state-information (CSI)
is available. This is defined as the instantaneous transmission rate (or throughput)
divided by the instantaneous transmit and consumed circuitry power (or energy), and
is expressed in bits/joule (bits/J) [10, 12, 26, 35, 36, 45, 46, 50].

For instance, for multicarrier communication systems, if a single SU employs an
orthogonal frequency division multiplexing (OFDM) in order to access the available
spectrum, the instantaneous EE is defined as [36, 46]

Energy-Aware Metrics

Energy efficiency Energy consumption Utility metrics Other metrics

ηEE,inst

ηworst
EE,inst

ηEE,av

ηEC,inst

ηEC,av

Urate-loss

Urate−power

Urate−energy

Uenergy−reliability

ηgain

Fig. 1 Summary of EE-aware metrics
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Table 1 List of symbols

α Path loss exponent

β Cooperative sensing gain

γn Channel-to-interference-plus-noise ratio (CINR) of nth subcarrier

γk,n CINR for the nth subcarrier used by the kth SU

Δ Step of the power control

ζ Power amplifier efficiency

ηEE,inst Instantaneous EE

ηworstEE,inst Worst EE

ηEC,inst Instantaneous energy consumption

ηEC,av Average energy consumption

ηgain Cooperative sensing gain per joule per SU

ηinvEE,inst Inverse of instantaneous EE

ηinvEE,av Inverse of average EE

Λ Bit error rate

μ SU sleep rate

ν Censoring rate


m Density of mobile base station of the 1st tier network


s Density of small cell access points of the 2nd tier network

ρk,n Channel allocation indicator

σ 2
H Minimum mean square error

σ 2
n Noise variance

φidle
PU Probability that PU is not using the channel

φ
busy
PU Probability that PU is using the channel

φfa Probability of false-alarm

φmd Probability of mis-detection

φre
PU Probability that PU reoccupies the channel during the SU transmission

φn Posterior probability that the PU channel n is identified to be idle while it
is truly idle

φUE Probability that there is a user equipment within the coverage of a small
cell access points (SAP) unit

φs Success probability of a typical user within the coverage area of SAP

φn,fa Probability of false alarm of channel n

φidle
n Probability that channel n is idle

ηEE,inst = B
∑N

n=1 log2(1+ γn pn)

1
ζ

∑N
n=1 pn + pc

(bits/J), (1)

where B is the subcarrier bandwidth, N is the total number of subcarriers, ζ is the
power amplifier efficiency, γn is the channel-to-interference-plus-noise ratio (CINR)
for subcarrier n, pn is the power allocated to subcarrier n, and pc is the circuit power
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Table 2 List of symbols (cont’d)

B bandwidth

dPS Distance from the PU transmitter to the SU receiver

dSS Distance from the SU transmitter to the SU receiver

Ek,n energy consumed by the kth user to employ the nth channel

E idle
k Energy consumed by the kth user while being in idle state

E se Energy consumed by all the cooperative sensing SUs

E tr Energy consumed during the transmission

Ec Consumed energy

G path loss

Ĥn Estimate of the complex channel gain on subcarrier n

Jn Interference from all PUs to subcarrier n

K total number of SUs

K relay Number of relays

K se Number of sensing users

L (pn) Loss function of power consumed in subcarrier n

� Packet length

n Subcarrier index

N Total number of subcarriers

Nsamples Total number of samples

pn Power allocated to subcarrier n

pc Circuitry power consumption

pk,n Power allocated to the nth subcarrier employed by the kth SU

pse Sensing power

ptr Transmission power

pSU SU transmit power

pPA Power consumed in the power amplifier

pLNA Power consumed in low noise amplifier

pADC Power consumed in the ADC

psyn Synchronization power

pproc Processing power

prelay Average transmit power of a given relay

Qk Covariance matrix of kth SU

rk,n Rate of the kth user employing the nth channel

r Transmission rate

rk Rate of kth SU

t Total frame duration

tcsk,n Time required by the kth user to tune to the nth channel

t se Sensing duration

t tr Transmission duration

T is the total slot length

(continued)
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Table 2 (continued)

B bandwidth

Tsamples Sampling period

Urate-loss Rate-loss utility metric

Urate−power Rate-power utility metric

Urate−energy Rate-energy utility metric

Uenergy−reliability Energy-reliability utility metric

wk relative weight of the EE of the kth SU

consumption. In case of imperfect CSI on the link between the SU transmitter and
receiver, the instantaneous EE is defined as [12]

ηEE,inst = B
∑N

n=1 log2(1+ (|Ĥn|2G pn)/(σ
2
HG pn + σ 2

n +Jn))

1
ζ

∑N
n=1 pn + pc

(bits/J), (2)

where Ĥn is the estimate of the complex channel gain on subcarrier n, σ 2
H is the

minimum mean square error of the channel estimate, G is the path loss between the
SU transmitter and receiver, σ 2

n is the noise variance, andJn is the interference from
all the PUs to subcarrier n. On the other hand, if multiple SUs employ orthogonal
frequency divisionmultiple access (OFDMA) as the access technique to the available
spectrum, then the instantaneous EE is defined as [45]

ηEE,inst = B
∑K

k=1

∑N
n=1 ρk,n log2(1+ γk,n pk,n)

1
ζ

∑K
k=1

∑N
n=1 ρk,n pk,n + pc

(bits/J), (3)

where K is the total number of SUs, ρk,n is an integer variable that can be either 1
(if the nth subcarrier is occupied by the kth SU) or 0 (otherwise), γk,n is the CINR
for the nth subcarrier used by the kth SU, and pk,n is the power allocated to the nth
subcarrier employed by the kth SU. The aforementioned metrics improve the EE
of the whole system without guarantee on the achieved EE of individual users. The
following worst EE metric improves fairness (in terms of EE), as it maximizes the
EE of the user with the lower EE value. It can be defined as [50]

ηworst
EE,inst = min

k
wk

B
∑N

n=1(1− φmd) ρk,n log2(1+ γk,n pk,n)

1
ζ

∑N
n=1 pk,n + pc

(bits/J), (4)

where wk is the relative weight of the EE of the kth SU, being used to reflect certain
fairness between SUs and φmd is the posterior probability of miss-detection (i.e.,
when certain PUs bands are identified to be vacant while they are truly occupied).
Maximizing ηworst

EE,inst can be viewed as the maximization of the minimum (worst) EE
for all SUs to guarantee fairness between users. However, this comes at the expense
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of deterioration of the average EE of the system. To strike a balance between perfor-
mance and fairness, the following weighted average EE is additionally defined as

ηEE,inst =
K∑

k=1

wk
B

∑N
n=1(1− φmd) ρk,n log2(1+ γk,n pk,n)

1
ζ

∑N
n=1 pk,n + pc

(bits/J). (5)

For the single carrier (SC) single-input single-output (SISO) systems, the defin-
ition of the instantaneous EE may vary depending on the considered scenario. For
example, for a CR base station serving K users in a time synchronized manner on a
set of N channels, the instantaneous EE is defined to consider the energy consumed
in switching the SU RF chain from a frequency band in a certain frame to another
frequency band in the following frame as [10]

ηEE,inst =
∑K

k=1

∑N
n=1 ρk,n rk,n (t − tcsk,n)

∑K
k=1

∑N
n=1 ρk,n Ek,n + ∑K

k=1(1−
∑N

n=1 ρk,n)E idle
k

(bits/J), (6)

where rk,n is the rate of the kth user employing the nth channel, t is the total frame
duration, tcsk,n is the time required by the kth user to tune to the nth channel, Ek,n

is the energy consumed by the kth user to employ the nth channel (it is function of
transmission duration, channel switching duration, idling duration, transmit power,
channel switching power, idling power, and circuitry power), and E idle

k is the energy
consumed by the kth user while being in idle state (that is a function of idling power
and idling duration). For an SC multiple-input multiple-output (MIMO) broadcast
system, the instantaneous EE is defined as [35]

ηEE,inst =
∑K

k=1 rk

1
ζ

∑K
k=1 Tr(Qk) + pc

(bits/J), (7)

where rk is the rate of the kth SU, Qk is the covariance matrix of the kth SU signal,
and Tr(X) denotes the trace of matrix X.

When the instantaneous channel coefficients are not available, an average EE is
defined as the ratio of the average transmission rate (or throughput) to the average
transmit and consumed circuitry power (or energy) [2, 7, 40–42, 48]. For example,
for an SC SISO scenario where an SU overlays a PU and concurrent transmission is
required, the average EE is defined as [41]

ηEE,av = B log2(1+ Δ(dPS/dSS)α)

pSU
(bits/J), (8)

where Δ is the step of the power control, dPS and dSS are the distances from the
PU transmitter to the SU receiver and from the SU transmitter to the SU receiver,
respectively, α is the path loss exponent, and pSU is the SU transmit power. The
transmission rate in the numerator of (8) considers the signal-to-interference ratio of
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the SU link as pSU(1/dSS)α/pPU(1/dPS)α , where Δ = pSU/pPU and pPU is the PU
transmit power. For a single node periodic sensing, the average EE can be defined to
consider both the time duration and consumed power in the sensing, transmission,
and idling as [48]

ηEE,av = φidle
PU (1− (1+ w) φfa) t tr r

(pse − pidle) t se + T pidle + (ptr − pidle) t tr(φbusy
PU φmd + φidle

PU (1− φfa))

(bits/J), (9)

where φidle
PU and φ

busy
PU are the probabilities that the PU is not using the channel and

occupying the channel, respectively, and φfa and φmd are the probabilities of false-
alarm and mis-detection, respectively. t se and t tr are the sensing and transmission
durations, respectively, and pse and ptr are the sensing and transmission powers,
respectively. r is the transmission rate, the total slot length T (that includes idling,
sensing, and transmission durations) and w is a weight that reflects the loss of the
potential reward (i.e., number of transmitted bits). The transmission rate in (9) can be
expressed as the difference between the transmission reward φidle

PU t tr r (i.e., when the
SU correctly detects the PU’s absence, and hence, the SU transmits) and the waste
of potential reward φidle

PU (1+ w) φfa t tr r (i.e., when the SU falsely reports the PU’s
presence, and hence, the SU does not transmit). Additionally, the average consumed
energy consists of the following parts: (1) the energy when the SU successfully
detects the PU’s presence, and hence, the SU does not transmit with a probability
φ
busy
PU (1− φmd), (2) the energy when the SU mis-detects the PU’s existence, and

hence, the SU transmitswith probabilityφ
busy
PU φmd, (3) the energywhen the SU falsely

detects the PU’s existence, and hence, the SU does not transmit with probability
φidle
PU φfa and 4) the energy when the SU correctly the PU’s presence, and hence, the

SU transmits with probability φidle
PU (1− φfa). Similarly, the average EE is defined to

consider the SUcircuity power and the PUactivity during the SU transmission as [42]

ηEE,av = φidle
PU (1− φfa) t tr(1− φre

PU) r

(pse + pc) t se + ( 1
ζ

ptr + pc) t tr(φbusy
PU φmd + φidle

PU (1− φfa))

(bits/J), (10)

where φre
PU is the probability that the PU reoccupies the channel during the SU

transmission.
For a single node sequentially sensing n = 1, ..., N channels, the average EE is

defined as [40]

ηEE,av = E{∑N
n=1 φn t tr rn}

E{∑N
n=1 E se

n + E tr
n }

(bits/J), (11)

where φn is the posterior probability that the PU channel n is identified to be idle
while it is truly idle and E is the expectation operator. As can be seen, the numerator
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of (11) accounts for the average number of transmit bits, while the denominator
accounts for the total average consumed energy. In a cooperative sensing scheme,
the average EE can be defined to account for the total energy consumed by all SUs
in the sensing process as well as the energy required for transmission as [2]

ηEE,av = φidle
PU (1− φfa) r t tr

E se + E tr
(bits/J), (12)

where E se and E tr are the energies consumed by all the cooperative sensing SUs and
during the transmission, respectively.

It is worthy to mention that the inverse of either the instantaneous EE, i.e.,
ηinv
EE,inst = 1/ηEE,inst [26] or the average EE, i.e., ηinv

EE,av = 1/ηEE,av [1] can be used as
a measure of the EE.

2.2 Energy Consumption (EC) Metrics

The total instantaneous/average consumed energy in a given transmission can be also
used as an energy-aware metric, and it is measured in joule (J) [19, 25, 27, 31, 34,
47, 49].

For example, an energy-awaremetric that considers the transmit power in addition
to the the power consumed in the analog circuit component, bit resolution of the
analog-to-digital converter (ADC), and the input backoff of the power amplifier is
expressed as [19]

ηEC,inst = pPA t tr + (pLNA + pADC)(t tr + t se) (J), (13)

where pPA, pLNA, and pADC are the powers consumed in the power amplifier, low
noise amplifier, and ADC, respectively.

For a single node sensing, the instantaneous energy consumption of multiple SUs
sharing the spectrum with multiple PUs is expressed as [25]

ηEC,inst =
K∑

k=1

t trk ||pk ||22 (J), (14)

where pk is the transmit beamforming vector of the kth user. The average energy
consumption of a two-tier heterogenous network, where the 2nd tier network is
equipped with SAP with cognitive capabilities, can be expressed as [47]

ηEC,av = 
s


m
(psyn(t se + t tr) + φUE φs(pse t se + φmd pproc t tr)

+(1− φUE) φs(pse t se + φfa pproc t tr)) (J), (15)
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where 
m and 
s are the densities of mobile base station of the 1st tier network and
the small cell access points of the 2nd tier network, respectively, psyn and pproc are
the synchronization and processing powers, respectively, φUE is the probability that
there is a user equipment within the coverage of an SAP unit, and φs is the success
probability of a typical user within the coverage area of SAP.

For a cooperative sensing distributed CR sensor network, where the SU may turn
off its sensing and transmission capabilities in order to save energy, the average
energy consumption is expressed as [34]

ηEC,av = (1− μ)

(
K∑

k=1

E se
k + E tr

k (1− ν)

)

(J), (16)

where μ is the SU sleep rate, i.e., the probability that the SU is turned off and ν is
the censoring rate, i.e., the probability that the SU has no output from the sensing
process. The average energy consumption of another cooperative spectrum sensing
scheme where SUs can be considered as relays can be defined as [31]

ηEC,av = K relay Nsamples Tsamples prelay (J), (17)

where K relay is the number of relays, Nsamples is the total number of samples, Tsamples

is the sampling period, and prelay is the average transmit power of a given relay.

2.3 Utility Metrics

Utility functions can be used to measure the EE. For example, a utility function
that considers the subcarrier availability, and hence, the reliability of transmission
is defined as the difference between the SU transmission rate and its prospective
rate loss due to sensing errors or to the PU reoccupying the channel during the SU
transmission [28]

Urate-loss = B
N∑

n=1

log2(1+ γn pn) − φn L (pn) (bits/sec), (18)

whereL (pn) is a real-valued increasing concave and normalized average loss func-
tion of the power consumed in subcarrier n and φn denotes the probability that a
PU reoccupies channel n during the SU transmission or the probability that sensing
errors occur during the PU transmission. Hence, φn L (pn) represents the average
rate loss due to sensing errors or collision with PU transmission.

Another utility function that uses concepts of multi-objective optimization to
maximize the transmission rate with the least amount of transmit power is defined
as [11, 23]
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Urate−power = w1 B
K∑

k=1

M∑

m=1

log2(1+ γk,m pk,m) − w2

K∑

k=1

M∑

m=1

||pk,m ||2F
(dimensionless), (19)

where w1 and w2 are the relative weighting coefficients associated with the compet-
ing objectives, m = 1, ..., M denotes the index of the transmit stream, and ||.||2F is
the Frobenius matrix norm. Here, the weighting coefficients w1 and w2 include nor-
malization factors such that the competing objectives are within the same range, and
hence, the metric in (19) is dimensionless [11, 13]. It is worthy to mention that if the
circuity power is considered in this metric, the optimal EE solution can be achieved
at certain values of w1 and w2 [4]. Similarly, a utility function that maximizes the
transmission rate with the least amount of consumed energy in the sensing process
is defined as [43]

Urate−energy = w1

N∑

n=1

rn (1− φn,fa)φ
idle
n − w2 (t se pse K se + t se pidle (K − K se))

(dimensionless), (20)

where φn,fa is the probability of false alarm of channel n, φidle
n is the probability that

channel n is idle, and K se is the number of sensing users.

2.4 Other Metrics

Other additional dimensionless energy-aware metrics can be used, which capture
other aspects of the energy consumed in the transmission. A novel dimensionless
energy-aware metric is defined that captures the actual (and total) energy consumed
in transmitting (and receiving) one packet, average PU interference time, average
PU transmission time, and reliability of transmission as [39]

Uenergy−reliability = ptr�

ptr� + Ecr
(1− Λ)� (dimensionless), (21)

where � is the packet length in bits, Ec is the consumed energy of a node before
the actual transmission occurs, and Λ is the bit error rate. As can be seen, ptr�

represents the actual energy required to transmit one packet, ptr� + Ec is the total
energy spent to transmit and receive one packet, and (1− Λ)� accounts for the
reliability of transmission, i.e., all the � bits are received correctly.

A novel metric that captures the sensing gain of cooperative spectrum sensing is
defined as the cooperative sensing gain in dB per joule per SU [30]

ηgain = β

K se E se
(dB/J per SU), (22)
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where β is the cooperative sensing gain in dB and it is defined as the difference
between the mis-detection threshold and the probability of mis-detection of cooper-
ative spectrum sensing.

3 Energy-Aware Resource Allocation

In order to improve the energy efficiency performance of CR systems, different para-
meters contributing to the total energy consumption can be optimized, e.g., transmit
power, power consumed in the transmitter and receiver circuitry, allocation of sub-
channels, sensing duration, idle duration, transmission duration, sensing access strat-
egy, number of sensing SUs, and/or SUs assignment to sense the channel [1, 2, 7, 10,
12, 19, 23, 25–28, 30, 31, 34–36, 39–43, 45–50]. When the energy consumed in the
sensing process can be neglected, then transmit power, consumed circuitry power,
and/or frequency bands/subcarriers are optimized to improve the energy efficiency
performance of the CR networks [1, 10, 12, 23, 26, 28, 35, 36, 39, 41, 45, 46, 50,
52]. Otherwise, additional parameters have to be optimized such as sensing duration,
idling duration, transmission duration, sensing access strategy, number of sensing
SUs, and/or SUs assignment to sense the channel [2, 7, 19, 25, 27, 30, 31, 34, 40,
42, 43, 47–49], in addition to adjusting the previous parameters accordingly.

3.1 Sensing-Less Energy-Aware Resource Allocation

Energy-aware CR systems can be designed while neglecting the effect of the
energy spent in the sensing process. In such a case, transmit power [1, 28, 35,
36, 41, 46], signal-to-interference-plus-noise ratio (SINR) threshold [23], frequency
bands/subcarriers [9, 26, 45, 50], and/or packet length [39] are optimized separately
or jointly in order to improve the CR system energy efficiency.

3.1.1 Power Allocation of Multicarrier Systems

OFDM is recognized as an attractive modulation technique for CR networks due to
its spectrum shaping flexibility, adaptivity in allocating vacant radio resources, and
capability in monitoring the spectral activities of PUs [33]. The available spectrum
can be accessed by a single SU employing OFDM modulation [28, 35, 46] or by
multiple SUs employing OFDMA [26, 45, 50]. In case of a single SU accessing
the spectrum, the power allocated to each OFDM subcarrier should be optimally
allocated in order to improve EE. On the other hand, if multiple SUs access the
spectrum, the subcarriers assigned to different SUs should be additionally optimized.
In either case, a side-by-side frequency spectrummodel is adopted as shown in Fig. 2,
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Fig. 2 Side-by-side frequency spectrum model

where the available frequency spectrum is divided and licensed to multiple PUs that
do not necessarily use it all the time or at all the geographical locations [8].

In a simple overlay coexistence scenario, one SU is assumed to coexist adjacent in
the frequency domain with one PU [46]. To further simplify the scenario, perfect CSI
is assumed to be known between the SU transmitter and receiver pair, between the SU
transmitter and the PU receiver, and between the PU transmitter and the SU receiver.
This assumption is practically challenging; however, CSI can be obtained through
cooperation/feedback between the PUs and SUs with negligible error, especially at
high SNR [53]. The CR system uses the instantaneous knowledge of the CSI and
optimizes the transmit power in order to maximize ηEE,inst in (1) of the SU while
guaranteeing total power constraint to reflect the SU power amplifier limitations and
adjacent interference constraint to control the amount of the leaked interference to
the PU. The formulated optimization problem is non-convex and it is solved using
concepts of fractional programming, i.e., Dinkelbach method [22]. Results show that
the EE can be maximized at the expense of deteriorating the SU rate.

Towards a more practical scenario where the SU coexists with multiple PUs in the
overlay approach and guarantees certain QoS requirements, a minimum supported
rate is added to the optimization problem [36]. A novel method, namely the gener-
alized waterfilling factor aided search (WFAS), is proposed to solve the non-convex
optimization problem [36]. A simplified version of the WFAS method is further pre-
sented. This version has simpler structure when compared to the Dinkelbach method
in [46], i.e., the EE optimization problem is solved through the well-known rate max-
imization problem. Hence, the complexity order of the proposed simplified WFAS
is much lower than its counterpart in [46].

A more practical scenario of an SU coexisting with multiple PUs is when
the SU does not rely on perfect CSI knowledge [12]. Channel estimation errors on
the links between the SU transmitter and receiver pair are considered. Additionally,
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Fig. 3 Effect of perfect and imperfect sensing assumptions on the interference leaked to the mth
PU. Simulation parameters are as in [12]

the SU does not have perfect sensing capabilities and only knows the statistics of the
channels to the PUs receiver. The formulated optimization problem minimizes the
SU instantaneous EE (the inverse of (2)) while guaranteeing certain power budget,
minimum supported QoS, limited co-channel interference (CCI), and limited adja-
cent channel interference (ACI) constraints. The non-convex optimization problem
is transformed to an equivalent one and solved using Dinkelbach algorithm [22].
Numerical results show that increasing the channel estimation errors deteriorates the
EE. Additionally, the assumption that the SU has perfect sensing capabilities leads
to violation of the interference constraints in practice as can be seen in Fig. 3. In
other words, if the SU is assumed to sense the PUs activities perfectly, which is not
necessarily true in practical scenarios, then the interference received at the PUs can
exceed the predefined threshold. Hence, the practical case of the SU with limited
sensing capabilities should be considered.

A generalization to the previous scenarios is when the SU accesses the spectrum
in both overlay and underlay approaches [28]. In such a scenario, the SU is allowed
to use the frequency band of a PU (underlay) that is located at a distant geographical
location from the PU, and hence, it is required to transmit with lower transmit power
such that no harmful interference occurs to the co-channel PU. This is in addition
to the SU coexistence with PUs in unused adjacent frequency band (overlay). Due
to practical considerations, only knowledge of the distance-based path loss is taken
into account on the links between the SU transmitter and the PUs receivers. The SU
considers a risk-return model to maximize Urate-loss (18), where the power allocated
to a certain subcarrier is recognized as an investment, while loss of useful power
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when the PU reoccupies the band is recognized as a risk. The optimization problem
additionally imposes total transmit power, CCI, and ACI constraints. Optimal and
suboptimal algorithms are proposed to show the performance of the SU. It was shown
that valuable resources can be saved, e.g., battery life, by selectively allocating higher
power to underutilized subcarriers and lower power to subcarriers with high PUs
activities.

3.1.2 Power and Subcarrier Allocation of Multicarrier Systems

When multiple SUs are allowed to access the spectrum of multiple PUs [26, 45,
50], the aforementioned models can be extended as follows. An underlay downlink
scenario is considered where a cognitive base station and multiple SUs receivers
share the licensed spectrum of PUs [45]. The SUs access technology is assumed to
beOFDMAandperfectCSI is assumedbetween the base station and theSU receivers,
between the CR base station and the PUs receivers, and between the PUs transmitters
and the SUs receivers. The CR base station allocates the power and subcarriers of
the SUs in order to maximize ηEE,inst in (3) of the whole CR network subject to total
transmit power, ACI, and certain QoS of each SU (in terms of minimum supported
rate) constraints. The formulated problem is a mixed-integer programming problem
that is computationally hard to solve. In order to overcome the complexity burden,
the concept of time-sharing is adopted, i.e., two different SUs can share the same
subcarrier, and then a hypograph form is used to convert the resultant non-convex
optimization problem into a convex one, where a barrier method [17] is used to find
the solution.

Another possible scenario is when the available OFDMA resources (i.e., power
and subcarriers) are optimally distributed to enable communications between the
SU transmitter and receiver pairs [26]. An optimization problem is formulated for
each SU transmitter and receiver pair in order to minimize ηinv

EE,inst (the inverse of
(3)) of each pair, while guaranteeing acceptable interference to existing users (PUs
and SUs with already established connections) and minimum supported rate for
each SU pair. The proposed solution is named energy-efficient waterfilling solution,
where the optimality is obtained in the constraint interval. This is in contrast to the
classical waterfilling solutions to maximize the rate or margin, where the optimality
point is found at the constraint boundary. Numerical results show that for multiple
transmitter and receiver pairs employing OFDMA, the optimal EE solution for a
certain transmitter and receiver pair does not necessarily select the best subcarrier
for transmission. This is in contrast to spectral efficiency maximization problems,
where the optimal solution for a given pair selects the best subcarrier for transmission.

An upper bound on the performance is achieved when perfect CSI is assumed [26,
35, 45, 46]. In practical scenarios where perfect CSI is not available, the achieved
performance is expected to degrade. In fact, only knowledge of average channel
power gain on the links between the SUs transmitters to the PUs receivers is assumed
in [50]. The worst ηworst

EE,av and average ηEE,av EE metrics in (4) and (5), respectively,
are to be optimized while guaranteeing a predefined fairness between SUs. In order
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to maintain fairness between users, the lowest SU EE is maximized and in order
to improve the EE of the CR network as a whole, the summation of the weighted
SUs EE is maximized, i.e., average EE. The formulated optimization problems are
non-convex integer optimization problems that guarantee total transmit power and
per subcarrier average interference2 constraints and neglect ACI constraint. The
optimization problems are relaxed to convex ones, where a general concave envelope
function is used to find a near-optimal solution.

3.1.3 Power Allocation of Single Carrier Systems

Other systems that adapt the power may not employ OFDM(A) to access the avail-
able spectrum in CR networks [1, 23, 36, 41]. In such cases, single carrier for SISO
systems [41] orMIMO systems [1, 23, 36] can be used. For example, an interference-
limited spectrum sharing CR ad-hoc network is considered in [41], where simulta-
neous transmission between an SU pair and a PU pair is requested. A forbidden
transmission region around the PU receiver is defined, where no SU transmission is
allowed to guarantee the PU QoS. On the other hand, an effective cognitive region
is defined, where the SU transmission is allowed if and only if the QoS of the SU
can be achieved (in this case, a concurrent transmission between both the PU pair
and the SU pair is possible while meeting both users QoS). The step size of the SU
power control is adapted in order to maximize ηEE,av in (8) while neglecting the SU
circuitry power consumption. It was shown through simulation examples that the
concurrent transmission region can be expanded if power control is used.

Multiple SUs share the spectrum in an underlay fashion with a single PU in [23].
It is assumed that the SUs and the PU have MIMO capabilities. The target is to
maximize the transmission rate and the number of admitted SUs to use the spectrum
with the least possible transmit power. Accordingly, a MOOP problem is formulated
to maximize Urate−power (19) subject to peak power and interference constraints. The
formulated problem considers the effect of imperfect CSI (including quantization
and estimation errors) through adopting a normal-bounded channel imperfection
model [44]. In addition to the power, the SINR threshold is considered as one of
the optimization variables in order to have an efficient admission control without
additional integer variables. In other words, a certain data stream of a certain SU is
admitted for transmission if its received SINR is above a certain optimal threshold.
The MOOP problem utility function is combined into a single objective function
using the weighting summethod, where weighting coefficients are adopted to reflect
the relative importance of the competing rate and power. The resulting problem is
solved using concepts of semidefinite programming [17].

A MIMO boradcast scenario is considered in [35], where a single SU transmit-
ter and multiple SUs receivers are assumed to share the spectrum in an underlay
fashion with multiple PUs [35]. To maximize ηEE,inst in (7), an optimization prob-
lem is formulated subject to transmit power, interference, and minimum supported

2This is to guarantee PU protection in case of incorrect sensing of the channel.
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rate constraints. The problem is non-convex and in order to reach the optimal solu-
tion, it was transformed into a one-dimensional optimization problem with a quasi-
concave objective function that is solved using a golden search. Numerical results
show that the EE can be significantly improved at high SNR regime or for a large
number of SUs.

An uplink EE scheduling in CR networks is when an SU base station is serving a
number of SUs in a time-slotted manner [10]. At the beginning of each frame, each
SU gets a list of all the available frequency bands and estimates its capacity to each
idle band. The SUs send this information to the base station along with the number
of bits in its buffer. The CR base station assigns/schedules one SU to one frequency
band in order to maximize ηEE,inst in (6) of all SUs. The CR base station considers the
energy consumed in switching the SU RF chain from a frequency band in a certain
frame to another frequency band in the following frame. The formulated schedul-
ing optimization problem is solved by the Charnes-Cooper method [6] with high
computational complexity. Then, two suboptimal solutions are provided to reduce
the complexity. Results indicate that if there are many frequency bands to schedule,
then a significant improvement in the EE is achieved when compared to other works
in the literature that maximize the capacity. On the other hand, if there is a limited
number of frequency bands, then the achieved EE is comparable to other works that
maximize the capacity.

3.1.4 Packet Length Allocation

For a CR sensor network, increasing the packet size increases the network utilization;
however, this is at the cost of increasing the packet loss probability if thePUs reoccupy
the channel. On the other hand, reducing the packet size reduces the interference to
PUs; however, this suffers from extensive overhead. Accordingly, it is important
to find the optimal packet length that maximizes the EE of CR sensor networks.
An overlay CR sensor network is considered to operate in sleep or active mode
[39]. The sleep mode consists of ready, monitor, observe, and deep sleep periods,
while the active mode consists of periods of sensing, decision, handoff, transmit,
and receive. An optimization problem to maximize the Uenergy−reliability in (21) is
formulated subject to interference and maximum distortion level for PU reliable
detection constraints, and it is solved using sequential quadratic programming [15].
Results show that changes in the PU behavior in the target BER can significantly
change the optimal packet length.

3.1.5 Relays Placement

To enhance the EE of CR networks, a new architecture is introduced, namely, cogni-
tive capacity harvesting networks [52]. In such an architecture, SUs are not equipped
with cognitive capabilities in order to reduce their energy consumption, and the
sensing capabilities are moved to a set of relay stations. The optimal placement of
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the relay stations significantly affects the EE of the CR network. An optimization
problem is formulated to minimize the placement size subject to EE and spectrum
efficiency constraints. Due to the NP-hardness of the problem, a two step heuristic
algorithm is proposed to find a near-optimal solution. Results show that the proposed
heuristic algorithm outperforms the random placement and the number of required
relay stations are at most twice the number obtained from the optimal solution.

3.2 Sensing-Aware Energy-Aware Resource Allocation

The sensing process plays an important role in EE optimization in CR networks [7,
19, 25, 27, 30, 31, 34, 40, 42, 43, 47, 48]. Increasing the sensing time improves the
detection probability at the expense of consumingmore energy, whereas reducing the
sensing time results in more collisions with existing PUs due to false detection. Fur-
thermore, increasing the transmission time increases the CR network performance;
however, data loss may happen as PUs may reoccupy the channel at any point in the
SU transmission. For a fixed frame duration, reducing the transmission time directly
limits the network performance and leads to longer sensing duration, and hence,
wastes energy. A single SU can sense the available spectrum for possible opportu-
nities for its transmission [19, 25, 27, 40, 42, 47–49] or multiple SUs can perform
the sensing in a cooperative manner in order to improve the sensing performance at
the expense of spending more energy [7, 30, 31, 34, 43].

3.2.1 Single Node Sensing

Periodic Sensing:

For a single SU sensing the channel, a general time-slotted CR system is considered
where the frame is divided between sensing, transmission, and possible idling3 dura-
tions [48]. The sensing and transmission durations are optimized to maximize ηEE,av

in (9) subject to the probability of detection and maximum energy consumption con-
straints. Results show that shorter sensing durations can be achieved at the expense
of increasing the sensing power, while larger idling power requires longer sensing
durations. A more practical scenario is encountered when the PUs can reoccupy
the channel during the SU transmission [42]. Stringent QoS of the SU is assumed,
and hence, the successful transmission of the SU occurs if and only if the whole
frame is sent correctly. Consequently, the sensing and transmission durations are
optimized in order to maximize ηEE,inst in (10) subject to detection probability and
interference to PUs constraints. The optimization problem is non-convex, and a sub-
optimal alternate search algorithm is proposed to reach an acceptable solution. It was

3Idle duration is important when the SU has to stop its transmission when a PU reoccupies the
channel.
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shown through numerical evaluations that significant improvements in the EE can be
achieved by optimizing the sensing/transmission duration when compared to fixed
sensing/transmission duration techniques [32].

Another scenario of single node sensing is discussed for heterogenous networks
(HetNets) to improve their EE [47]. InHetNets,macro-cells are deployed to guarantee
coverage, being overlayed by small cells (i.e., micro-cells, pico-cells or femto-cells)
that offload traffic from the macro-cells in order to support local traffic demands
[5]. However, deployment of small cells base stations is accompanied by excessive
energy consumption [5]. Traffic demands may fluctuate over time, frequency, and
space; hence, sleep mode techniques can be used to reduce the energy consumption
[20]. To reduce the signalling overhead and hence improve the EE, a distributed
sleep mode that does not require user location information is proposed in [47]. This
is achieved by adopting small cell access points (SAPs) that have cognitive capabil-
ities to periodically sense the channel if a user is active within its coverage area. The
sensing time and probability are optimized to minimize ηEC,av in (15) in synchro-
nization, sensing, processing, and transmission, while considering random locations
of the users within the SAP coverage area. Results showed the tradeoff between the
energy consumption and the amount of traffic that can be offloaded frommacro-cells
and it was shown that the consumed energy linearly increases with the density of the
SAPs. Additionally, it was shown that knowledge of the interference environment
can lead to significant reduction of the SAPs energy consumption.

The energy consumption of a CR sensor network can be reduced by selecting
the operation mode, i.e., channel sensing, channel switching, and data transmission
[27]. The CR sensor network is assumed to sense the channel continuously in order
to identify vacant PU bands. In order to guarantee the PU protection, SUs need to
switch the channel as fast as possible if a PU returns to use the channel. To reduce the
switching time, the CR sensor network prepares a candidate channel called backup
channel. An algorithm that considers errors in the sensing process is proposed to
select the operation mode using the concepts from the partially observable Markov
decision process [37].

In an underlay approach, multiple SUs are assumed to share the spectrum with
multiple PUs [25] and both the SUs and PUs can be equipped with single or mul-
tiple antennas to access the spectrum. An uplink scenario is considered where the
SUs transmitters communicate with a single SU base station using the time divi-
sion multiple access protocol. The sensing time and the beamforming of the SUs is
optimized in order to minimize ηEC,inst in (14) for the SUs while satisfying transmit
power, interference to PUs, and QoS (in terms of minimum supported rate) for the
SUs constraints. The SU is assumed to have either perfect or imperfect CSI on the
links to the PUs receivers. In case of the availability of perfect CSI, the interference
constraints have to be satisfied in a deterministic way, i.e., for every channel realiza-
tion. In such case, closed form expression for the optimal solution can be reached
if the SUs are under-utilized and a heuristic sub-optimal solution is proposed if the
SUs are heavily-utilized. On the other hand, if perfect CSI is not available, the inter-
ference constraint has to be satisfied in a statistical way and the optimization prob-
lem is solved through decomposition [17]. Numerical results show that the energy
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consumption is significantly reduced compared to works that maximize the trans-
mission rate, with less generated interference to PUs.

Another perspective of minimizing the energy consumption in delay-constrained
CR systems is achieved when the SU adapts its transmission rate, i.e., reduces its
transmission rate under deep fading channel and increases the rate for good channel
conditions, in order to deliver a target payload [49]. The optimization problem is
formulated as a discrete-timeMarkov decision process [37], where a low complexity
algorithm is proposed to find the optimal policy. The results show that the impact of
energy overheads is more significant for delay-insensitive traffic when compared to
delay-sensitive scenarios.

For short range communications, the energy consumption in the transmitter and
receiver circuitry is more significant than the energy required for transmitting the
data [21]. Therefore, optimizing the sensing/transmission duration only is not suf-
ficient and other parameters affecting the energy consumed in the circuitry should
be optimized as well [19]. The optimization variables are the sensing duration, the
input backoff of the power amplifier, the power consumed in the low noise amplifier,
and the bit resolution of the ADC. During the sensing duration, only the energy con-
sumed in the SU receiver is considered, i.e., the energy consumed in the low noise
amplifier and ADC. On the other hand, during the transmission duration, the power
consumed in the power amplifier of the SU transmitter is additionally considered
[19]. The results show that for strong interference from the PU, less transmission
energy andmore circuit energy are required. Additionally, the SU receiver, especially
ADC, consumes more energy when compared to traditional systems, and hence, it is
preferable to operate the power amplifier of the SU transmitter at high input backoff
values to compensate for such energy loss.

Sequential Sensing:

Unlike periodic sensing [19, 25, 27, 42, 47–49], a sequential sensing approach
is optimized in order to maximize the average EE [40]. In sequential sensing, the
SU has to make a decision on whether to continue to sense the next channel or to
start its transmission, i.e., a sequence of decisions has to be made before the SU
transmission. Sequential sensing is efficient as it allows the SU to sense another
channel if the the current sensed channel is identified to be busy, instead of waiting
until the beginning of the next frame. The sensing-access strategies to be optimized
are the sensing strategy (i.e., when to stop sensing and start transmission), access
strategy (i.e., determine the transmit power level during the transmission), and the
sensing order (i.e., which channel to sense if the current channel is changed). The
formulated optimization problem is a stochastic sequential decision-makingproblem,
i.e., the decision maker has to decide at each state after observing the current system
state [14], that is difficult to solve directly. A sub-optimal solution can be reached by
transforming the problem into a parametric formulation that rewards the throughput
and penalizes the transmit power.Numerical results show that the sensing strategy has
a certain threshold, i.e., the SU transmits if the channel is good enough; otherwise, the
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Fig. 4 Cooperative sensing

SU should keep sensing. Additionally, the optimal power allocation has awaterfilling
structure and the optimal sensing order is to choose to sense a channel associated
with the maximum expected future net reward, i.e., average EE.

3.2.2 Cooperative Sensing

Using a single SU to sense the spectrum has its own difficulties and limitations
[19, 25, 27, 40, 42, 47–49], e.g., multi-path fading, shadowing, and hidden termi-
nal problem [51]. For example, consider Fig. 4 where CR 2 cannot receive the PU
transmission due to shadowing and CR 3 is located outside the PU transmission
coverage, and hence, not aware of its transmission. One possible way to overcome
these shortcomings is to use cooperative spectrum sensing, where more than one SU
is allowed to collaboratively sense the channel [51]. For example, in Fig. 4 CR 1
can sense the PU signal and share the sensing results with CR 2 and CR 3. One of
the main challenges of EE optimization in the cooperative sensing CR environment,
when compared to single SU sensing strategies, is to find the optimal number and
the assignment policy of SUs participating in the sensing process [7, 30, 31, 34, 43].

General Scheme:

A general cooperative sensing model can be considered as a two step process, where
the first step is to find the number and assignment of SUs to do the sensing and
the second step is to determine the sensing duration, detection threshold, etc. The
most challenging part of cooperative sensing is related to the first step [30, 43].
The more SUs participating in the sensing process, the higher the sensing accuracy.
However, this will be accompanied by an increase in the consumed energy in the
sensing process. Some SUs are better candidates for sensing if they are subject to
less noise or not in deep fading, and it is assumed that each SU can only be assigned
to sense one frequency band in a given time slot [30]. In this case, the optimization
problem reduces to finding the optimal number of SUs to sense the spectrum and
to find which SU is assigned to sense a certain channel. A greedy algorithm is used
to find the optimal solution and it was shown that significant performance gain is
achieved especially with a large number of SUs [30].
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Sensing and Relaying Scheme:

Another possible scenario for cooperative spectrum sensing is when SUs can be
considered as relays as well [31]. In this case and during a first phase, all relays
monitor the activity of a single PU and in a second phase, all relays amplify their
PU received signal and send it to a data fusion center. In such a scenario, the optimal
number of sensing/relays SUs, their amplifying gain, and the number of processed
samples are to be optimized in order to reduce the energy consumption subject to
the probabilities of false-alarm and detection constraints. In modeling the energy
consumption, the circuit energy consumption in the relays, in the fusion center, and
in the PUs are neglected under the condition that the transmission distance from the
PU to the relays and from the relays to the fusion center is large. The formulated
optimization problem is solved using an exhaustive search which is computationally
complex. In order to reduce the complexity, equal power allocation of the relays is
assumed and closed-form expressions for the optimal number of samples and the
number of relays were obtained. It was shown that for higher PU transmit power, a
reduced number of relays or samples is needed [31].

Sleep-Mode Based Cooperative Scheme:

Another scenario for distributed spectrum sensing is considered in [34], where the
target is to minimize ηEC,av in (16) subject to a minimum probability of detection
and a maximum false alarm probability constraints. In order to achieve this target,
a sleep mode rate and censoring thresholds are to be optimized. In the sleep-mode,
an SU turns off its sensing and transmission functions in order to save energy. On
the other hand, censoring thresholds define the detection thresholds where an SU is
confident of its sensing results. This can be explained as follows, if the output of the
energy detector is greater than a certain threshold, then the SU reports its sensing
decision as the PU exists; if the output of the energy detector is less than a certain
threshold, then the SU reports its sensing decision as the PU does not exist; and if
the output of the energy detector is between these two thresholds, the SU makes no
decision and enters the sleep-mode. The optimization problem is solved using the
alternating search algorithm [17] under two setups: the blind setup, when there is
no prior information about the PU presence and the information-aided setup, when
such information is available. The results indicate that when the energy consumed in
transmission exceeds the energy consumed in sensing the sleep rate is higher than its
counterpart when the the transmission and sensing energies are equal. Additionally,
the minimized energy consumption is reduced significantly and becomes almost
independent of the number of sensing users for a large number of users.

To conclude the sensing-aware energy-aware resource allocation section, different
sensing parameters directly affect EE ofCR systems and should be carefully selected.
For single node sensing time-slotted systems, the sensing duration plays a crucial
rule in maximizing the EE of the system. For instance, increasing the sensing time
improves the detection probability at the expense of consuming additional energy,
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while decreasing the sensing time reduces the energy wasted in the sensing process
but at the expense of more collisions with PUs. For cooperative sensing, the problem
is even more challenging, as the system designer needs to select the optimal number
of SUs to sense the PUs spectrum. For the short range communications when the
energy consumption in the circuitry is more than the transmission energy, optimizing
the sensing duration is not enough and optimizing the input backoff of the power
amplifier becomes crucial.

4 Challenges and Opportunities

The performance of cooperative spectrum sensing can be severely degraded by mis-
behaving SUs, i.e., malicious users, that provide false information about sensing to
the fusion center in order to have a wrong final decision and then use the spectrum
exclusively [18]. This is achieved by reporting that the spectrum is occupied such
that the fusion center produces a final decision that the spectrum is occupied and no
legitimate SUs should access the spectrum; then, the malicious SUs become the only
users to access the spectrum. A possible solution to this problem is that the fusion
center accepts only reported results from authenticated SUs. This authentication can
be achieved by transmitting extra bits for cryptographic purposes; however, addi-
tional energy has to be spent in these overhead bits. Then, the number of the security
bits has to be optimized in order to maximize ηEE,av in (12) [2]. An average EEmetric
that captures the influence of malicious users is formulated, i.e., the malicious users
tend to increase the false alarm probability, which decreases the successful amount
of bits transmitted, and hence, reduces the EE. The optimal number of security bits
depends on the fusion rate, fusion rule, number of malicious users, and number of
legitimate users. The optimal number of bits increases as the number of malicious
users increases, which decreases the EE.

Improving the SU connectivity comes mostly at a cost of increasing the energy
consumption in CR systems. One of the most recent approaches to boost the SU per-
formance is the use of improper Gaussian signaling, which creates more opportunity
than the traditional proper signaling schemes, to minimize its outage while satisfy-
ing PU QoS [3]. Thus, investigating the EE-SE trade-off optimization problem in
the underlying SU system is important in order to tune the SU power and circularity
coefficient to accomplish an acceptable balance between EE and SE.

Additionally, employing full duplex in CR is considered an efficient way to
improve the SE after the recent progress in self-interference cancelation. On the
other hand, this may not be the case as discussed in a generic MIMO wireless com-
munication system [38]. Since the CR has additional channel sensing cost, designing
energy-efficient full-duplex CR system is a challenging issue. To tackle this issue,
CRs need to operate with new adaptive full duplex modes and polices to accomplish
a balance between efficient sensing, SE, and EE.
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Another promising trend to improve the EE of future CR networks is through
energy harvesting CRs This is achieved by tapping energy from readily available
ambient sources, e.g., wind, solar, and radio frequency signals. However, knowing
the instantaneous energy arrival is crucial in order to optimize the performance of
energy harvesting CR networks. Energy arrivals can be assumed to be available in
order to simplify the optimization framework. However, such an assumption may
not be realistic; in this case, statistical knowledge about the energy arrival can be
assumed. It is expected that energy harvestingwill extend the lifetime ofCRnetworks
with improved EE performance.

References

1. Akin, S., Gursoy, M.C.: On the throughput and energy efficiency of cognitive MIMO trans-
missions. IEEE Trans. Wireless Commun. 62(7), 3245–3260 (2013)

2. Althunibat, S., Sucasas, V., Marques, H., Rodriguez, J., Tafazolli, R., Granelli, F.: On the trade-
off between security and energy efficiency in cooperative spectrum sensing for cognitive radio.
IEEE Commun. Lett. 17(8), 1564–1567 (2013)

3. Amin, O., Abediseid, W., Alouini, M.S.: Outage performance of cognitive radio systems with
improper gaussain signaling. In: IEEE International Symposium on Information Theory, pp.
1851–1855 (2015)

4. Amin, O., Bedeer, E., Ahmed, M., Dobre, O.: Energy efficiency—spectral efficiency trade-off:
a multiobjective optimization approach. IEEE Trans. Veh. Technol. (to appear)

5. Andrews, J.G., Claussen, H., Dohler, M., Rangan, S., Reed, M.C.: Femtocells: past, present,
and future. IEEE J. Sel. Areas Commun. 30(3), 497–508 (2012)

6. Bajalinov, E.B.: Linear-Fractional Programming: Theory,Methods,Applications andSoftware,
vol 84. Springer, New York (2003)

7. Ban, T.W., Choi, W., Sung, D.K.: Capacity and energy efficiency of multi-user spectrum shar-
ing systems with opportunistic scheduling. IEEE Trans. Wireless Commun. 8(6), 2836–2841
(2009)

8. Bansal, G., Hossain, M., Bhargava, V.: Optimal and suboptimal power allocation schemes
for OFDM-based cognitive radio systems. IEEE Trans. Wireless Commun. 7(11), 4710–4718
(2008)

9. Bayhan, S.,Alagoz, F.: Scheduling in centralized cognitive radio networks for energy efficiency.
IEEE Trans. Veh. Technol. 62(2), 582–595 (2013)

10. Bayhan, S., Eryigit, S., Alagoz, F., Tugcu, T.: Low complexity uplink schedulers for energy-
efficient cognitive radio networks. IEEE Commun. Lett. 2(3), 363–366 (2013)

11. Bedeer, E., Dobre, O.A., Ahmed, M.H., Baddour, K.: A multiobjective optimization approach
for optimal link adaptation of OFDM-based cognitive radio systems with imperfect spectrum
sensing. IEEE Trans. Wireless Commun. 13(4), 2339–2351 (2014)

12. Bedeer, E., Amin, O., Dobre, O., Ahmed, M., Baddour, K.: Energy-efficient power loading for
OFDM-based cognitive radio systems with channel uncertainties. IEEE Trans. Veh. Technol.
64(6), 2672–2677 (2015)

13. Bedeer, E., Dobre, O., Ahmed, M., Baddour, K.: Rate-interference tradeoff in OFDM-based
cognitive radio systems. IEEE Trans. Veh. Technol. (to appear)

14. Bertsekas, D.P., Bertsekas, D.P., Bertsekas, D.P., Bertsekas, D.P.: Dynamic Programming and
Optimal Control, vol. 1. Athena Scientific Belmont, MA (1995)

15. Boggs, P.T., Tolle, J.W.: Sequential quadratic programming. Acta numerica 4, 1–51 (1995)
16. Bolla, R., Bruschi, R., Davoli, F., Cucchietti, F.: Energy efficiency in the future internet: a

survey of existing approaches and trends in energy-aware fixed network infrastructures. IEEE
Commun. Surveys Tutor. 13(2), 223–244 (2011) (Second Quarter )



Energy-Aware Cognitive Radio Systems 271

17. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge
(2004)

18. Chen, R., Park, J.M., Hou, Y.T., Reed, J.H.: Toward secure distributed spectrum sensing in
cognitive radio networks. IEEE Commun. Mag. 46(4), 50–55 (2008)

19. Chen, Y., Nossek, J., Mezghani, A.: Circuit-aware cognitive radios for energy-efficient com-
munications. IEEE Wireless Commun. Lett. 2(3), 323–326 (2013)

20. Cheung,W.C., Quek, T.Q., Kountouris, M.: Throughput optimization, spectrum allocation, and
access control in two-tier femtocell networks. IEEE J. Sel. Areas Commun. 30(3), 561–574
(2012)

21. Cui, S., Goldsmith, A.J., Bahai, A.: Energy-constrained modulation optimization. IEEE Trans.
Wireless Commun. 4(5), 2349–2360 (2005)

22. Dinkelbach, W.: On nonlinear fractional programming. Manage. Sci. 13(7), 492–498 (1967)
23. Du,H.,Ratnarajah,T.:Robust utilitymaximization and admission control for aMIMOcognitive

radio network. IEEE Trans. Veh. Technol. 62(4), 1707–1718 (2013)
24. Ericsson, A.B.: Sustainable energy use in mobile communications. (2007)
25. Fu, L., Zhang, Y.J.A., Huang, J.: Energy efficient transmissions in MIMO cognitive radio

networks. IEEE J. Sel. Areas Commun. 31(11), 2420–2431 (2013)
26. Gao, S., Qian, L., Vaman, D.R.: Distributed energy efficient spectrum access in cognitive radio

wireless ad hoc networks. IEEE Trans. Wireless Commun. 8(10), 5202–5213 (2009)
27. Han, J.A., Jeon,W.S., Jeong, D.G.: Energy-efficient channel management scheme for cognitive

radio sensor networks. IEEE Trans. Veh. Technol. 60(4), 1905–1910 (2011)
28. Hasan, Z., Bansal, G., Hossain, E., Bhargava, V.: Energy-efficient power allocation in OFDM-

based cognitive radio systems: a risk-return model. IEEE Trans. Wireless Commun. 8(12),
6078–6088 (2009)

29. Hossain, E., Bhargava, V.: Cognitive Wireless Communication Networks. Springer, New York
(2007)

30. Huang, D., Kang, G., Wang, B., Tian, H.: Energy-efficient spectrum sensing strategy in cogni-
tive radio networks. IEEE Commun. Lett. 17(5), 928–931 (2013)

31. Huang, S., Chen, H., Zhang, Y., Zhao, F.: Energy-efficient cooperative spectrum sensing with
amplify-and-forward relaying. IEEE Commun. Lett. 16(4), 450–453 (2012)

32. Liang, Y.C., Zeng, Y., Peh, E.C., Hoang, A.T.: Sensing-throughput tradeoff for cognitive radio
networks. IEEE Trans. Wireless Commun. 7(4), 1326–1337 (2008)

33. Mahmoud, H., Yucek, T., Arslan, H.: OFDM for cognitive radio: merits and challenges. IEEE
Wireless Commun. Mag. 16(2), 6–15 (2009)

34. Maleki, S., Pandharipande, A., Leus, G.: Energy-efficient distributed spectrum sensing for
cognitive sensor networks. IEEE Sensors J. 11(3), 565–573 (2011)

35. Mao, J., Xie, G., Gao, J., Liu, Y.: Energy efficiency optimization for cognitive radio MIMO
broadcast channels. IEEE Commun. Lett. 17(2), 337–340 (2013)

36. Mao, J., Xie, G., Gao, J., Liu, Y.: Energy efficiency optimization for OFDM-based cognitive
radio systems: a water-filling factor aided search method. IEEE Trans. Commun. 12(5), 2366–
2375 (2013)

37. Monahan, G.E.: State of the art-a survey of partially observable markov decision processes:
theory, models, and algorithms. Manage. Sci. 28(1), 1–16 (1982)

38. Nguyen, D., Tran, L.N., Pirinen, P., Latva-aho, M.: Precoding for full duplex multiuser MIMO
systems: spectral and energy efficiency maximization. IEEE Trans. Signal Process 61(16),
4038–4050 (2013)

39. Oto, M.C., Akan, O.B.: Energy-efficient packet size optimization for cognitive radio sensor
networks. IEEE Trans. Wireless Commun. 11(4), 1544–1553 (2012)

40. Pei, Y., Liang, Y.C., Teh, K.C., Li, K.H.: Energy-efficient design of sequential channel sensing
in cognitive radio networks: optimal sensing strategy, power allocation, and sensing order.
IEEE J. Sel. Areas Commun. 29(8), 1648–1659 (2011)

41. Sanchez, S.M., Souza, R.D., Fernández, E.M.G., Reguera, V.A.: Rate and energy efficient
power control in a cognitive radio ad hoc network. IEEE Signal Process Lett. 20(5), 451–454
(2013)



272 E. Bedeer et al.

42. Shi, Z., Teh, K., Li, K.: Energy-efficient joint design of sensing and transmission durations for
protection of primary user in cognitive radio systems. IEEE Commun. Lett. 17(3), 565–568
(2013)

43. Sun, X., Tsang, D.: Energy-efficient cooperative sensing scheduling for multi-band cognitive
radio networks. IEEE Trans. Wireless Commun. 12(10), 4943–4955 (2013)

44. Wang, J., Palomar, D.P.: Worst-case robust MIMO transmission with imperfect channel knowl-
edge. IEEE Trans. Signal Process 57(8), 3086–3100 (2009)

45. Wang, S., Ge, M., Zhao, W.: Energy-efficient resource allocation for OFDM-based cognitive
radio networks. IEEE Trans. Commun. 61(8), 3181–3191 (2013)

46. Wang,Y., Xu,W., Yang,K., Lin, J.: Optimal energy-efficient power allocation forOFDM-based
cognitive radio networks. IEEE Commun. Lett. 16(9), 1420–1423 (2012)

47. Wildemeersch, M., Quek, T., Slump, C., Rabbachin, A.: Cognitive small cell networks: energy
efficiency and trade-offs. IEEE Trans. Commun. 61(9), 4016–4029 (2013)

48. Wu, Y., Tsang, D.H.: Energy-efficient spectrum sensing and transmission for cognitive radio
system. IEEE Commun. Lett. 15(5), 545–547 (2011)

49. Wu, Y., Lau, V.K., Tsang, D.H., Qian, L.P.: Energy-efficient delay-constrained transmission
and sensing for cognitive radio systems. IEEE Trans. Veh. Technol. 61(7), 3100–3113 (2012)

50. Xiong, C., Lu, L., Li, G.: Energy-efficient spectrum access in cognitive radios. IEEE J. Sel.
Areas Commun. 32(3), 550–562 (2014)

51. Yucek, T., Arslan, H.: A survey of spectrum sensing algorithms for cognitive radio applications.
IEEE Commun. Surveys Tutor. 11(1), 116–130 (2009)

52. Yue, H., Pan, M., Fang, Y., Glisic, S.: Spectrum and energy efficient relay station placement in
cognitive radio networks. IEEE J. Sel. Areas Commun. 31(5), 883–893 (2013)

53. Zhang, L., Liang, Y.C., Xin, Y.: Joint beamforming and power allocation for multiple access
channels in cognitive radio networks. IEEE J. Sel. Areas Commun. 26(1), 38–51 (2008)



Cognitive Radio Energy Saving
and Optimization

Yunfei Chen

Abstract In an ad hoc cognitive radio network, energy management is of paramount
importance, as it directly determines the lifetime of the cognitive radio as well as the
interferences to the licensed users for which the regulatory obligations of cognitive
radios must be fulfilled. When the transmission power is fixed, this boils down to
the management of the cognitive radio operation time consisting of a dedicated
sensing period and a transmission period. In this chapter, different energy saving
techniques that use non-coherent sensing, decision-feedback sensing, or censored
sensing to reduce the amount of total energy consumption incurred by sensing will
be investigated. We will also look into energy optimization techniques that minimize
the energy use by taking the physical layer sensing and upper layer throughput into
account. Extensive analysis and simulation will be provided to obtain useful guidance
on energy management in ad hoc cognitive radio networks.

1 Cognitive Radio Energy Saving

Cognitive radio has attracted great research interest in recent years, owing to its
promise in solving the so-called spectrum scarcity problem [1]. By sensing the radio
environment from time to time, cognitive radio is able to determine the availabil-
ity of the licensed bands and switch its operating frequency to the available bands
automatically. This allows the re-use of unoccupied licensed spectrum to improve
spectrum efficiency. Thus, current cognitive radios usually operate in two statuses:
spectrum sensing and data transmission. For example, in the proposed IEEE 802.22
standard [2], a dedicated quiet period is allocated for spectrum sensing to avoid any
interferences from other cognitive radios. Although this improves the sensing accu-
racy, it does lead to extra energy consumption due to the additional sensing period.
To improve the energy efficiency, in this section, we consider two energy-saving
techniques that perform sensing without dedicated sensing periods to remove the
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additional sensing period for less energy consumption as well as one energy-saving
technique that performs censoring before sensing to reduce the number of cognitive
radios involved in sensing and therefore to reduce the total energy use.

The spectrum sensing problem can be formulated as a binary hypotheses testing
problem as

H0 : ri[k] = Si[k] + ni[k]
H1 : ri[k] = ai[k] + Si[k] + ni[k] (1)

where ri[k] is the kth time sample received at the ith cognitive radio, Si[k] is the kth
sample of the interference from other cognitive radios received at the ith cognitive
radio, ai[k] is the kth sample of the possible licensed user signal received at the
ith cognitive radio, ni[k] is the kth noise sample received at the ith cognitive radio,
i = 1, 2, . . . , I index the number of cognitive radios in sensing and k = 1, 2, . . . , K
index the sample size used in each cognitive radio within a given period of time
or frame. The task of spectrum sensing is to determine which of H0 and H1 is true
based on the received samples ri[k]. The interference from other cognitive radios
Si[k] reduces the accuracy of spectrum sensing.

In traditional cognitive radios, spectrum sensing is performed in a dedicated sens-
ing period where all cognitive radios stop transmission such that Si[k] = 0, giving

H0 : ri[k] = ni[k]
H1 : ri[k] = ai[k] + ni[k]. (2)

This can be considered as coherent sensing. The coherence is achieved at the expense
of extra energy consumption during the dedicated sensing period. Hence, to improve
energy efficiency, one can perform sensing using (1) directly without any dedicated
sensing period. This can be considered as non-coherent sensing. Alternatively, one
may also use the estimated interference from other cognitive radios as

H0 : ri[k] = Si[k] + ni[k] − Ŝi[k]
H1 : ri[k] = ai[k] + Si[k] + ni[k] − Ŝi[k] (3)

where Ŝi[k] is the estimated value of the interference using data decisions. This can
be considered as decision-feedback sensing that also performs sensing without any
dedicated sensing period.

1.1 Non-coherent Sensing

In this case, the samples in (1) are used directly for spectrum sensing. The benefit
of doing this is two-fold: first, it reduces the energy consumption by not having a
dedicated sensing period and second, it can perform sensing at any time to reduce
collision with the licensed user. The disadvantage is the reduced sensing accuracy
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Fig. 1 Comparison of the
coherent and non-coherent
sensing schemes [3]
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due to the interference, which can be alleviated by choosing the sensing parameters
of K and I . Figure 1 compares the conventional coherent sensing with the new non-
coherent sensing. The actual detector of non-coherent sensing depends on different
assumptions of the licensed user signal.

1.1.1 Fast Fading Licensed User Signal

When the licensed user signal experiences fast fading, spectrum sensing can be
described as

H0 : ri[k] = Si[k] + ni[k]
H1 : ri[k] = hi[k]d[k] + Si[k] + ni[k] (4)

where hi[k] is the gain of the fast fading channel, d[k] is the transmitted signal of
the licensed user and other symbols are defined as before. Further, in a fast fading
Rayleigh channel, hi[k] is complex Gaussian with mean zero and variance 2σ 2

h . If
isotropic scattering is assumed, one has the covariance between hi[k1] and hi[k2]
at the ith cognitive radio as E{hi[k1]hi[k2]∗} = 2σ 2

h · J0(2π(k1 − k2)f0T) [4], where
k1, k2 = 1, 2, . . . , K , f0T is the normalized Doppler shift and J0(·) is the zero-th
order Bessel function of the first kind [5, Eq. (9.1.1)]. The fading gains at different
cognitive radios are independent such that E{hi1[k1]hi2 [k2]∗} = 0 for i1 �= i2. Also,
for additive white Gaussian noise, ni[k] is complex Gaussian with mean zero and
variance 2σ 2

n . The real and imaginary parts of ni[k] are circularly symmetric. The
noise samples at different cognitive radios are also independent.

Furthermore, the kth sample of interference at the ith cognitive radio can be
expressed as Si[k] = ∑I

j=1,j �=i Sj[k], where Sj[k] is the kth sample of the inter-
fering signal from the jth cognitive radio. Also, assume that the interfering sig-
nals are independent and Gaussian, and that they are identically distributed each
with mean E{Sj[k]} = 0 and covariance E{Sj[k1]Sj[k2]∗} = 2ε2 · sinc((k1 − k2)BT),
where square spectrum is assumed for easy manipulation, B is the signal bandwidth,
and T is the sampling period. Thus, one has Si[k] as complex Gaussian with mean
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zero and covariance E{Si[k1]Si[k2]∗} = (I − 1) · 2ε2 · sinc((k1 − k2)BT). The trans-
mitted signal of the primary user d[k] is deterministic, and it is the same for all
cognitive radios. Further, assume that it is a constant such that d[k] = d.

Using (1) and the likelihood ratio test, one can derive D = rHUr as the decision
variable, to be compared with the threshold T1, where r is the received sample vector,
(·)H is the Hermitian transpose operation, U is a IK × IK block matrix having I × I
blocks each with K × K elements given in [3] and T1 is the detection threshold to
be determined. Note that D is a quadratic form of Gaussian random variables, as
r are Gaussian random variables from (4). The probability of false opportunity is
defined as Pf .o. = Pr{H0|H1}. The larger the value of Pf .o. is, the more likely the
primary users will be interfered by the secondary users. Also, the probability of
missed opportunity is defined as Pm.o. = Pr{H1|H0}. The larger the value of Pm.o.

is, the poorer the performance of spectrum sensing will be. In spectrum sensing,
Pf .o. is often predetermined as Pf .o. = β according to the primary users’ tolerance to
interferences.

In order to determine T1, the probability density function (PDF) of D is required.
However, the exact PDF of D is difficult to obtain, if not impossible. Motivated
by the fact that D follows a Gamma distribution when U is an identity matrix,
a Gamma approximation to D is considered. The probability of missed opportu-
nity is Pm.o. ≈ 1 − gamcdf

(
gamcdf −1(Pf .o., k1, θ1), k0, θ0

)
using Gamma approx-

imation, where gamcdf (x, k, θ) is the cumulative distribution function (CDF) of
Gamma distribution with parameters k and θ , gamcdf −1(x, k, θ) is the inverse of
gamcdf (x, k, θ), and the parameters of k0, θ0, k1 and θ1 can be derived by match-
ing the first- and second-order moments of D with those of a Gamma distribution.
Figure 2 compares simulation results using the true distribution with that using the
Gamma approximation. The simulation is performed using 106 runs for each point.
The sample mean is calculated as P̄m.o. = ∑106

i=1 Pi
m.o./106, where Pi

m.o. is the proba-
bility of missed opportunity in the ith run. The upper limit (UL) and the lower limit

Fig. 2 Comparison of the
simulation result and the
Gamma approximation when
SNR = 0 dB, SIR = 0 dB
and BT = 1
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Fig. 3 Probability of missed
opportunity for different
values of K and f0T when
SNR = 0 dB, SIR = 0 dB
and BT = 1
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(LL) of the confidence interval (CI) are calculated as P̄m.o. + cσ̄√
106

and P̄m.o. − cσ̄√
106

,

respectively, where σ̄ 2 = ∑106

i=1(P
i
m.o. − P̄m.o.)

2/(106 − 1), c = 1.96 gives a confi-
dence level of 95 %. One sees that the Gamma approximation matches well with
the simulation in most cases considered. When f0T = 0.05 and K = 4, they have
noticeable difference.

Next, some numerical examples are shown for the new non-coherent sensing. In

the examples, define the average signal-to-noise ratio (SNR) as SNR = σ 2
h |d|2
σ 2

n
and the

average signal-to-interference ratio (SIR) from a single interferer as SIR = σ 2
h |d|2
ε2 ,

since 2σ 2
h = E{|hi[k]|2}. Also, the parameters are set as σ 2

h = 1/2 and d = 1, while
σ 2

n and ε2 change according to the average SNR and the average SIR, respectively.
Also, Pf .o. = 0.01 is used. Figures 3 and 4 compare the performances of coherent
sensing and non-coherent sensing under different conditions. As expected, there

Fig. 4 Probability of missed
opportunity for different
values of SNR when
SIR = 0 dB, K = 2,
f0T = 0.05 and BT = 1
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is always a performance degradation due to the interferences from other cognitive
radios in non-coherent sensing. However, the diversity gain or the decreasing rate of
the probability of missed opportunity with respect to the number of cognitive radios
remains the same for coherent and non-coherent sensing schemes, which is desirable.
Moreover, this performance degradation can be reduced by controlling the system
parameters, either decreasing the values of SNR or K , or increasing the value of f0T .
Thus, one can save the energy of cognitive radio by not having a dedicated sensing
period while achieving performances similar to coherent sensing.

1.1.2 Slow Fading Licensed User Signal

Next, consider the case when the licensed user signal experiences slow fading. In
this case, the hypothesis test is similar to (4), except that hi[k] is replaced by hi,
which is the constant fading gain of the licensed user signal at the ith secondary
user that does not change with time k. This is equivalent to setting f0T = 0 in fast
fading channels. Compared with the fast fading channel, the dependence of the
channel gain on the time k does not exist in this case. Thus, using the likelihood
test, one has the decision variable as D = 1

2 rHG + 1
2 GHr, to be compared with the

threshold T2, where the symbols can be found in [3]. One sees that D is a linear
form of Gaussian random variables. Thus, D is also Gaussian. One has Pm.o. = 1 −∫

q(m1
σ0

− q−1(1 − Pf .o., 0, 1), 0, 1)p(h)dh as the probability of missed opportunity,
where q(x, 0, 1) is the CDF of a standard Gaussian random variable with mean 0 and
variance 1, q−1(x, 0, 1) is its inverse, h = [h1, h2, . . . , hI ], p(h) is the joint PDF of
h, dh = dh1dh2 · · · dhI , m1 and σ0 are calculated as the mean of D when H1 is true
and the variance of D when H0 is true.

Figures 5 and 6 compare the performances of coherent sensing and non-coherent
sensing under different conditions. Again, non-coherent sensing is inferior to

Fig. 5 Probability of missed
opportunity for different
values of M and BT in slow
fading channels when
SNR = 0 dB and SIR = 0 dB
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Fig. 6 Probability of missed
opportunity for different
values of SNR in slow fading
channels when SIR = 0 dB,
M = 2 and BT = 0.05
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coherent sensing in all the cases considered, due to the extra interferences from other
cognitive radios after removing the dedicated sensing period. However, the diversity
gain of non-coherent sensing remains the same as that of coherent sensing. Also,
one may choose appropriate system parameters to achieve the same performance as
coherent sensing.

In [3], the case when the interferences from other cognitive radios are indepen-
dent has been investigated. Here, the case when the interferences from other cognitive
radios are totally correlated has been investigated. Together they give the upper and
lower bounds of the spectrum sensing performances for interferences with arbitrary
correlation in non-coherent sensing. These performance bounds will be useful guid-
ance in cognitive radio system designs.

1.2 Decision-Feedback Sensing

In the above subsection, the received samples containing interferences from other
cognitive radios are used directly for energy saving, following the removal of the
dedicated sensing period. Alternatively, one may “clean” these samples by removing
interferences from other cognitive radios in the samples for higher accuracy while still
saving energy, as in (3). This requires us to feedback the data decisions from relevant
cognitive radios to the spectrum sensing operation and remove the interferences
caused by these cognitive radios using the data decisions.

A previous work using this idea assumed that the data decisions are always correct
such that the interferences from other cognitive radios can be completely removed
[6]. This is too ideal. In reality, errors in the data decisions will occur such that the
interferences from other cognitive radios cannot be completely removed. Then, the
sensing accuracy using these slightly “contaminated” samples in (3) will be reduced.



280 Y. Chen

This reduced accuracy will then degrade the cognitive radio data transmission
performance in the next transmission due to possible undetected interferences from
the licensed user. This causes even more errors in data decisions. Eventually, the
whole performance may be degraded by accumulated errors over several transmis-
sions. This effect occurs only when multiple transmissions are considered. During
this process, the licensed user may change its status from presence to absence or the
other way around.

Thus, this subsection studies decision-feedback sensing assuming practical deci-
sion errors in multiple data transmission frames. The effect of different modula-
tion schemes used by cognitive radios is investigated. The investigation shows that
decision-feedback sensing initially outperforms coherent sensing by benefiting from
using a larger sample size but as the data transmission goes on and the decision
errors accumulate, it eventually underperforms coherent sensing. Thus, there exists
a threshold for the number of the transmissions below which decision-feedback sens-
ing not only performs better than coherent sensing but also saves energy for operation
without dedicated sensing period.

To start with, a few assumptions need to be made. In particular, the cognitive radios
operate on the basis of L consecutive transmissions or frames. Each transmission lasts
a duration of To. During these L transmissions, the occupancy status of the licensed
user changes dynamically, defined by its channel holding time. The probability that
the licensed user changes its occupancy status during the lth transmission is given by
pλ(l) = F (lTo) − F

(
(l − 1) To

)
, using the probability mass function (PMF) of the

channel holding time [7], where F (t) is the cumulative distribution function (CDF)
of the channel holding time, in this case, is assumed exponential such that F (t) =
1 − e−λt [8], and l = 1, 2, ......L index the transmissions. It is further assumed that
the licensed user does not change its occupancy status during the data transmission.
Also, for simplicity, one sensing cognitive radio and one interfering cognitive radio
are assumed. Based on these assumptions, we can study the performance of decision-
feedback sensing.

The cognitive radio decodes the received samples first. Since the decoding process
is not ideal, interferences cannot be completely removed. The sensing accuracy using
these samples will therefore be adversely affected. This further degrades the decoding
performance. Following these steps, we study the decoding process first.

The kth received sample in the lth transmission at the sensing cognitive radio in
(1) can be rewritten as r[k + lK] = p · a[k + lK] + S[k + lK] + n[k + lK], where
p = 0 indicates H0 when the licensed user is absent, p = 1 indicates H1 when the
licensed user is present, a[k + lK] is the licensed user signal sampled at the kth
time in the lth frame, S[k + lK] is the interfering cognitive radio signal sample at
the kth time in the lth frame with s[k + lK] = −√

εb or s[k + lK] = +√
εb, εb is

the bit energy of the cognitive radio signal and n[k + lK] is the Gaussian noise
sample with mean zero and variance σ 2

n , k = 1, 2, . . . , K , K = T0
T is the total num-

ber of samples in one frame and T is the sampling interval. Compared with (1),
the index of i is dropped for convenience because only one interfering cognitive
radio is considered. In this section, consider only binary phase shift keying such
that only the real parts of the samples are needed for sensing and decoding, giving



Cognitive Radio Energy Saving and Optimization 281

R[k + lK] = p · A[k + lK] + S[k + lK] + N[k + lK], where R[k + lK] = Re{r[k +
lK]}, A[k + lK] = Re{a[k + lK]} and N[k + lK] = Re{n[k + lK]}.

The signal is decoded. Denote the a priori probabilities of −√
εb and +√

εb as
P(−√

εb) and P(+√
εb), respectively. When the licensed user is absent, the error rate

of each sample can be derived as EH0 = Q
(√

2γs
)
, where γs = εb

σ 2
n

is the cognitive
radio SNR. Assume that out of the K transmitted samples in the lth transmission,
q0(l) symbols are −√

εb and g0(l) of the q0(l) symbols are incorrectly decoded as
+√

εb. Similarly, assume that k0(l) symbols out of the K − q0(l) transmitted +√
εb

are incorrectly decoded as −√
εb. Thus, when PU is absent, the conditional overall

error rate for all samples can be derived assuming independent samples. Similarly,
when the licensed user is present, the error rate of each sample can be derived

as EH1 = Q
(√

2γs

1+γp

)
, where γp is the licensed user SNR. Assume that out of the

K transmitted samples, q1(l) of them are −√
εb and g1(l) of the q1(l) samples are

incorrectly decoded, and that k1(l) out of the K − q1(l) +√
εb are incorrectly decoded.

Thus, when PU is present, one can also derive the conditional overall error rate for
all samples.

After the cognitive radio signal is decoded and deducted from the received sam-
ples, they will be used for spectrum sensing. Using the previous assumptions, spec-
trum sensing becomes a binary hypothesis testing problem as

H0 : Dl =
g0(l)∑

k=1

(−2
√

εb + N[k + lK])2 +
k0(l)+g0(l)∑

k=g0(l)+1

(2
√

εb + N[k + lK])2

+
K∑

k=g0(l)+k0(l)+1

N[k + lK]2

H1 : Dl =
g1(l)∑

k=1

(A[k + lK] − 2
√

εb + N[k + lK])2

+
k1(l)+g1(l)∑

k=g1(l)+1

(A[k + lK] + 2
√

εb + N[k + lK])2

+
K∑

k=g1(l)+k1(l)+1

(A[k + lK] + N[k + lK])2 (5)

Using the Gaussian approximation based on the central limit theorem, the mean and
variance of the decision variable in (5) for H0 and H1 can be derived as

{
m0(l) = K(1 + 4g0(l)

K + 4k0(l)γs

K )

σ 2
0(l) = 2K + K(

16g0(l)

K + 16k0(l)γs

K )
(6)
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and {
m1(l) = K(1 + γp + 4g1(l)γs

K + 4k1(l)γs

K )

σ 2
1(l) = 2K + K(4γp + 16g1(l)γs

K + 16k1(l)γs

K )
(7)

respectively. The conditional probability of detection is Pd(l)(T , q1(l), g1(l), k1(l)) =
1
2 erfc( T3−m1(l)√

2σ 2
1(l)

), where T3 is the detection threshold. The conditional probability of

false alarm can be derived as Pf (l)(T , q0(l), g0(l), k0(l)) = 1
2 erfc

(
T3−m0(l)√

2σ 2
0(l)

)
.

After spectrum sensing, the following frame will be used for data transmission
if no licensed user is detected. The probability when the lth frame is idle and the
probability that the lth frame is busy but is mis-detected can be derived. Using all these
derivations, the total achievable throughput of the L frames can finally be derived as
R = ∑L

l=1 (P0(l)C0 + P1(l)C1), where C0 = ln(1 + γs), C1 = ln(1 + γs/(1 + γp))

and other symbols can be explained in [9]. Next, some sample numerical examples
will be shown to compare decision-feedback sensing with coherent sensing, as shown
in Figs. 7, 8, 9 and 10. More detailed discussions could be found in [9].

Figure 7 shows the throughput for each frame. One sees that the throughput
decreases when the frame index increases for decision-feedback sensing, as expected,
as the probability that the lth frame can be used for data transmission depends on
the sensing results of the previous l − 1 transmissions. Due to mis-detection or false
alarm, this probability decreases when l increases and therefore, the average through-
put becomes smaller. On the other hand, the throughput of coherent sensing remains
the same, as it does not accumulate any decoding errors. Also, the sensing accuracy
decreases when the errors in decisions occur. Thus, the decrease of the throughput
in the case when there is error is faster than that without error.

Figure 8 shows the total throughput of the L transmissions. Although they all
increase with the value of L, the total throughput in coherent sensing increases lin-

Fig. 7 Comparison of the
individual throughputs of
decision-feedback sensing
and coherent sensing when
γp = −5 dB and γs = 0 dB
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Fig. 8 Comparison of the
total throughputs of
decision-feedback sensing
and coherent sensing when
γp = −5 dB and γs = 0 dB
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Fig. 9 Comparison of ROC
curves for static channels
when γp = −5 dB and γs = 3
dB for the Lth frame
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early, while that in decision-feedback sensing approaches an upper limit. A threshold
below which decision-feedback sensing has a larger throughput than coherent sens-
ing can also be seen. The existence of the threshold is due to the dependence of the
sensing performance on the accumulation of the decision errors over frames.

Figures 9 and 10 show the receiver operating characteristics (ROC) curves. One
sees from these figures that decision-feedback sensing has a better sensing perfor-
mance than the coherent sensing. This is due to the fact that coherent sensing only
uses samples in the dedicated sensing period, while decision-feedback sensing can
use all samples in the cognitive radio operations. For the same predetermined proba-
bility of false alarm, one sees that decision-feedback sensing has higher probability
of detection. Also, the case without errors serves as a performance upper bound.
Moreover, the sensing accuracy decreases when QPSK is used, as it incurs a larger
probability of error which leads to more accumulated interferences in the samples.
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Fig. 10 Comparison of ROC
curves for fading channels
when γp = −5 dB and γs = 3
dB for the Lth frame
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The above decision-feedback sensing has aimed to “clean” the received samples
using data decisions. It is worth mentioning that there are other schemes that use
statistics of the interferences to “clean” the received samples based on specific char-
acteristics of orthogonal frequency division multiplexing (OFDM) signals [10–12].
These characteristics are inherent in the cognitive radio signals and thus can be used
to lower interference power or cancel interference but they are only applicable to
OFDM signals.

1.3 Censored Sensing

The previous two subsections have investigated non-coherent sensing and decision-
feedback sensing as alternatives to the traditional coherent sensing to save the energy
consumed by the dedicated sensing period. Another way of saving energy is to reduce
the number of cognitive radios involved in spectrum sensing. In existing sensing
schemes, all I cognitive radios will send their samples in (1) or decisions based on
these samples to a fusion center. Thus, if the transmission of the K samples or the
decision at each cognitive radio consumes an energy of EC , the total energy consumed
by sending them for sensing will be I ∗ EC . The idea of censored sensing is to do
a quality check on the received samples ri[k] and only use those samples that meet
some criterion and therefore, saves energy by not sending all available samples or
decisions to the fusion center.

Censored detection have been used in ad hoc networks before [13–16]. In par-
ticular, [13] analyzed the censored sensing using the “OR” rule for both perfect
and imperfect control channels, [14] analyzed the censored sensing using the “no-
send” information, [15, 16] proposed censoring for cyclostationarity detection. These
works derived either the analytical expression for the probability of detection, or the
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probability of false opportunity but not both and only considered an upper limit.
Although the lower limit is approximately zero for some applications, it is non-zero
in general and therefore, it is necessary to derive analytical expressions for both
probability of detection and probability of false opportunity by taking into account
the upper limit as well as the lower limit.

In this subsection, we derive analytical expressions for the probability of detection
and the probability of false opportunity for censored sensing based on the Neyman-
Pearson rule. Unlike the existing sensing schemes that use local decisions from all the
cognitive radios for an overall decision, the censored sensing compares the samples
with two pre-determined but optimized limits and only forward local decisions where
the samples are either smaller than the lower limit or larger than the upper limit. In
this case, both non-zero upper limit and non-zero lower limit are examined. We
consider two typical decision fusion rules “OR” and “AND” where each cognitive
radio sends a binary local decision to the fusion center. The study indicates that the
censored sensing outperforms the existing sensing schemes when the optimum upper
and lower limits are used to censor the samples before using them to make the local
decisions. The performance gain depends on various parameters. In addition, the
number of decisions forwarded to the fusion center is reduced and therefore, saves
energy.

Consider the received samples in (2), where we assume that sensing is performed
within a dedicated sensing period to simplify the analysis of censoring. Again, con-
sider binary phase shift keying such that only the real parts of the signals in (2) are
used for spectrum sensing, giving

H0 : Ri[k] = Ni[k]
H1 : Ri[k] = Ai[k] + Ni[k]. (8)

where Ai[k] and Ni[k] are Gaussian with means zero and variances σ 2
a and σ 2

n , respec-
tively. Then, the ith cognitive radio makes a local decision by using the traditional
method of energy detection by comparing decision variable Di with a threshold
of Tcoh. It can be easily derived that Di follows a Gamma distribution with shape
parameter K

2 and scale parameter 2
K under H0, and it follows a Gamma distri-

bution with shape parameter K
2 and scale parameter 2

K (1 + γp) under H1, where

γp = σ 2
a

σ 2
n

is the licensed user signal SNR. Thus, one has P(i)
d = Gamcdf (Tcoh,

K
2 , 2

K )

and P(i)
f .o. = Gamcdf (Tcoh,

K
2 , 2

K (1 + γp)), where the Gamma cumulative distribution

function (CDF) is Gamcdf (x, k, θ) = ∫ x
0

tk−1e−t/θ

	(k)θ k dt, and 	(·) is the complete Gamma
function.

In the decision fusion “AND” rule, the overall decision is H0 only when all the
local decisions from all the cognitive radios are H0. Using these, Tcoh under the
Neyman-Pearson criterion can be derived as Tcoh = TAND = Gaminv(β1/I , K

2 , 2
K (1 +

γp)), where P(i)
f .o. = β and Gaminv is the inverse of Gamcdf . The overall prob-

ability of detection in this case using the decision fusion “AND” rule is Pd =
[Gamcdf (Gaminv(β1/I , K

2 , 2
K (1 + γp),

K
2 , 2

K )]I .
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Similarly, using the decision fusion “OR” rule, the detection threshold under the
Neyman-Pearson criterion is Tcoh = TOR = Gaminv(1 − (1 − β)1/I , K

2 , 2
K (1 + γp))

and the overall probability of detection is Pd = 1 − [1 − Gamcdf
(Gaminv(1 − (1 − β)1/I , K

2 , 2
K (1 + γp),

K
2 , 2

K )]I , as the overall decision in the “OR”
rule is H1 only when all the individual decisions are H1.

The above traditional method uses local decisions from all cognitive radios. This
energy consumption can be reduced by using only a few of them. Thus, one has

Di = 1

Kσ 2
n

K∑

k=1

(Ri[k])2 < L1 ⇒ H0

Di = 1

Kσ 2
n

K∑

k=1

(Ri[k])2 > L2 ⇒ H1. (9)

In this case, a binary local decision will be sent from the cognitive radio to the fusion
center only if the samples satisfy Di < L1 or Di > L2. Otherwise, the cognitive radio
is not involved in spectrum sensing to save energy.

If the “AND” rule is used, the overall decision is H0 only when all the individual
decisions from the selected users are H0. Thus, one has

Pf .o. = Pr{H0|H1} =
[

Gamcdf (L2,
K

2
,

2

K
(1 + γp))

]I

−
[

Gamcdf (L2,
K

2
,

2

K
(1 + γp)) − Gamcdf (L1,

K

2
,

2

K
(1 + γp))

]I

Pd = Pr{H0|H0} =
[

Gamcdf (L2,
K

2
,

2

K
)

]I

−
[

Gamcdf (L2,
K

2
,

2

K
) − Gamcdf (L1,

K

2
,

2

K
)

]I

(10)

where the second terms in these equations represent the probability that all values of
Di fall between L1 and L2 such that no decision will be sent for fusion. Solving the
equation for L1 and using the solution in the expression of Pd , ,Pd can be maximized
with respect to L2 with L2 > TAND.

If the “OR” rule is used, the overall decision is H1 only when all the individual
decisions from the selected users are H1. In this case, one has

Pf .o. = 1 −
[

1 − Gamcdf (L1,
K

2
,

2

K
(1 + γp))

]I

+
[

Gamcdf (L2,
K

2
,

2

K
(1 + γp)) − Gamcdf (L1,

K

2
,

2

K
(1 + γp))

]I
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Pd = 1 −
[

1 − Gamcdf (L1,
K

2
,

2

K
)

]I

+
[

Gamcdf (L2,
K

2
,

2

K
) − Gamcdf (L1,

K

2
,

2

K
)

]I

. (11)

Again, the second terms represent the probability that all Di fall between L1 and L2

such that all samples are excluded from spectrum sensing. By solving the equation
for L2 and using L2 in Pd , it becomes a function of L1 which can be maximized with
respect to L1 and L1 satisfies L1 ≤ TOR.

Several observations can be made from the above equations for the decision fusion
rules. First, if L1 = L2, one can obtain L2 = TAND and L1 = TOR from the first sube-
quations in (10) and (11), respectively. Using L2 = TAND and L1 = TOR again in
the second subequations in (10) and (11), respectively, one obtains the results for
the conventional spectrum sensing using the “AND” rule and the “OR” rule given
before. Thus, the censored sensing is a generalization of the conventional sensing
without censoring using the decision fusion rules. Second, let L1 = 0 in (11), one
has the probability of detection for the conventional sensing using the “AND” rule.
Let L1 = L2 in (11), one has the probability of detection for the conventional sens-
ing using the “OR” rule. Thus, by choosing L1 between 0 and L2 and using the
“OR” rule, one can achieve sensing performances between that of the conventional
“OR” rule and that of the conventional “AND” rule. Similarly, let L2 = ∞ in (10),
one has the probability of detection for the conventional “OR” rule. If one lets
L1 = L2 in (10), one has the probability of detection for the conventional “AND”
rule. Again, by choosing L2 between L1 and ∞ and using the “AND” rule, sensing
performances between that of the conventional “OR” rule and that of the conven-
tional “AND” rule can be developed. This adds flexibility to the cognitive radio
design. Finally, the average number of individual decisions sent to the fusion cen-
ter equals k̄ as given by I[1 − Gamcdf (L2,

K
2 , 2

K ) + Gamcdf (L1,
K
2 , 2

K )] in H0, and
I[1 − Gamcdf (L2,

K
2 , 2

K (1 + γp)) + Gamcdf (L1,
K
2 , 2

K (1 + γp))] in H1, while in the
conventional sensing, the number of transmitted decisions is always I . Thus, the cen-
sored sensing saves energy by sending less decisions, especially when the difference
between L1 and L2 is large.

Next, some sample numerical results using the decision fusion rules are shown.
For the results using the data fusion rule, one is referred to [17]. In the examples,
we set K = 1 and the probability of false opportunity β = 0.01. The value of L2 is
tested from TAND to 20γp with a step size of 0.001 to find the optimum Pd in (10), and
the value of L1 is tested from 0 to TOR with a step size of 10−10 to find the optimum
Pd in (11).

Figure 11 compares the conventional sensing and the censored sensing using the
“AND” rule for different values of γp. Their sensing accuracies are graphically indis-
tinguishable. However, the censored sensing reduces the number of local decisions.
This is reflected by Fig. 12, where the probability of detection per user is compared.
The performance gain is considerable in this case. Thus, censored sensing improves
energy efficiency.
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Fig. 11 Pd versus γp for
censored sensing using the
optimum limits and the
conventional sensing for the
“AND” rule
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Fig. 12 Pd per user versus
γp for censored sensing
using the optimum limits and
the conventional sensing for
the “AND” rule
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Figure 13 compares the conventional sensing and the censored sensing using the
“OR” rule. In this case, the censored sensing has a large performance gain over the
conventional sensing. The performance difference between I = 10 and I = 5 for the
conventional sensing is too small compared with the performance gain of the censored
sensing over the conventional sensing. Thus, they are graphically indistinguishable.
From Fig. 14, the performance gains are even larger when the probability of detection
per user is compared.

Finally, Figs. 15 and 16 show the found optimum values of L1 and L2 used to
calculate the probability of detection in Figs. 11, 12, 13 and 14. The optimum value
of L2 increases with γp and I , while the optimum value of L1 is very close to 0 but is
not 0 in the cases considered.
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Fig. 13 Pd versus γp for
censored sensing using the
optimum limits and the
conventional sensing for the
“OR” rule
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Fig. 14 Pd per user versus
γp for censored sensing
using the optimum limits and
the conventional sensing for
the “OR” rule
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2 Cognitive Radio Energy Optimization

In this section, we investigate energy optimization problems for cognitive radios by
taking both physical layer sensing and upper layer control into account. The opti-
mization problem is explained as follows. On the one hand, the number of cognitive
radios determines the sensing accuracy in the physical layer. As shown in [18] and
many other works, the probability of detection for sensing increases when the num-
ber of cognitive radios increases. On the other hand, the number of cognitive radios
also affects the throughput in the upper layer. For example, in IEEE 802.11 networks,
its saturated throughput in distributed coordination function mode decreases as the
number of cognitive radios increases [19], as a result of more overheads and packet
collisions. Thus, the number of cognitive radios is a key design parameter for energy
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Fig. 15 Optimum values of
L1 and L2 versus γp for
censored sensing for the
“AND” rule
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Fig. 16 Optimum values of
L1 and L2 versus γp for
censored sensing for the
“OR” rule
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efficiency and network efficiency. In [20], a linear combination of the detection prob-
ability and the resource usage efficiency was optimized with respect to the number
of cognitive radios. The usage efficiency is a general metric of the physical layer
resources, and it does not give any information on the network performance. Thus,
in this section, we will try to find an optimum number of cognitive radios that can
balance the needs for physical layer sensing accuracy as well as upper layer saturated
throughput.

Assume that the cognitive radios communicate with their base station using
the IEEE 802.11 WLAN protocol. This protocol has different coordination func-
tions but if the distributed coordination function is used, the saturation throughput
in the upper layer, defined as the ratio of the average payload information in a
slot time to the average length of the slot time, has been derived as [19, Eq. (13)]
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J = QsQtr E{Q}
(1−Qtr)α+Qtr QsTs+Qtr(1−Qs)Tc

for I cognitive radios, where Qs is the probability of a

successful transmission given by Qs = Ip(1−p)I−1

1−(1−p)I , Qtr is the probability of transmis-

sion in the interested slot time given by Qtr = 1 − (1 − p)I , p is the probability that
each cognitive radio activates in the slot time given by p = 2(1−2c)

(1−2c)(M+1)+cM(1−(2c)m)
,

c is the conditional collision probability given by c = 1 − (1 − p)I−1, E{Q} is the
average size of the packet payload, α is the duration of the empty slot time, Ts is the
average time of a successful transmission, Tc is the average time of a busy channel,
M is the size of the contention window used in the protocol, m is the maximum
backoff stage and I is the number of cognitive radios to be optimized. Essentially,
this throughput is a function of the number of cognitive radios and it determines the
transmissions of binary local decisions or samples from cognitive radios to the fusion
center.

This throughput applies to conventional networks. However, for cognitive radio
networks, the transmitted payload information could be useless or even harmful if a
wrong sensing decision is made in spectrum sensing. For example, if the cognitive
radios consider the licensed user to be absent while it is actually present, the trans-
mission of payload from cognitive radios to fusion center or base stations will be
considered as interferences to the licensed user. Thus, we have to take the physical
layer sensing into account to define an effective throughput as

Je = Pd · J(d) + Pe · J(e) (12)

where Pd is the probability of detection, Pe = 1 − Pd is the probability of missed-
detection, J(d) is the throughput when a correct decision is made, and J(e) is the
throughput when a wrong decision is made. In the IEEE 802.22 draft standard, Pd =
0.9 and Pe = 0.1 are used [21]. Thus, Je = 0.9J(d) + 0.1J(e) in this case. However,
in other applications, Pe may be much smaller than Pd . In these applications, the
second term in (12) may be ignored in the optimization. Next, the probability of
detection needs to be obtained.

Assuming the Neyman-Pearson detection rule and following similar methods to
those in [20], the probability of detection in shadowing channels can be derived as
Pd = P(H0)(1 − Pf ) + P(H1)Q

(−√
γpΔ + Q−1(Pf )

)
, where P(H0) is the probabil-

ity with a licensed user, P(H1) is the probability without licensed user, Pf is the prob-
ability of false alarm, Q(x) = 1√

2π

∫ ∞
x e−t2/2dt is the Gaussian Q-function, Q−1(·)

is its inverse, γp is the licensed user signal-to-noise ratio, and Δ = 1T × V−1 × 1,
1 = [11 · · · 1]T , [·]T represents the transpose operation, and V is the normalized
covariance matrix of the noise samples. Also, the probability of detection in Rayleigh
fading channels with unknown channel gains has been derived in [20], while the aver-
age probability of detection in Rayleigh fading channels with known channel gains

is Pd = P(H0)(1 − Pf ) + P(H1)
∫

Q
(
−√

hHΣ−1h + Q−1(Pf )
)

p(h)dh.

The above results assume data fusion where samples are sent directly from cog-
nitive radios to the fusion center. One can also use decision fusion where local deci-
sions are sent to simplify the sensing structure, similar to those in censored sensing.
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In shadowing channels, one has Pd = P(H0)(1 − Pf ) + P(H1)QI

(
− √

γp + Q−1

(P1/I
f )

)
for the “AND” rule and Pd = P(H0)(1 − Pf ) + P(H1)[1 − (1 − Q(−√

γp +
Q−1(1 − (1 − Pf )

1/I)))I ] for the “OR” rule. Similarly, with unknown Rayleigh gains,
one has Pd = P(H0)(1 − Pf ) + P(H1)Gamcdf I(Gaminv(P1/I

f , 1, 2 + 2γp), 1, 2)

and Pd = P(H0)(1 − Pf ) + P(H1)[1 − (1 − Gamcdf (Gaminv(1 − (1 − Pf )
1/I , 1,

2 + 2γp), 1, 2))I ] for the “AND” and “OR” rule, respectively, and the average prob-
ability of detection in Rayleigh fading channels with known channel gains can be
derived as by averaging them over γp. Using these equations, the effective through-
put of the cognitive radio network in different channel conditions using different
decision rules can be examined.

Next, some numerical examples are shown for the effective throughput. In these
examples, assume that J(d) = J and J(e) = 0. The (i, j)th element of the covari-
ance matrix is given by V(i, j) = e− aD

I−1 |i−j| , where i, j = 1, 2, . . . , I , a = 0.1 and D
denotes the length of the range over which cognitive radios are distributed [22]. Thus,
the channel samples are either correlated with a finite value of D or independent with
an infinite value of D. For convenience, we use the same system parameters as those
given in [19, Table II]. Also, let P(H0) = 0.3 and P(H1) = 0.7.

Figure 17 shows Je versus I in shadowing channels using data fusion. Several
observations can be made. First, the effective throughput first increases quickly when
I increases abut then decreases slowly when I further increases. There exists an
optimum value of I in the cases considered. Second, comparing D = 100 m with
D = ∞, one sees that Je for independent shadowing is larger than that for correlated
shadowing. Figure 18 shows the corresponding optimum values of I . It monotonically
decreases as γp increases for data fusion, while it first increases then decreases for
the decision fusion rules.

Fig. 17 Je versus I in
shadowing channels when
data fusion is used,
γp = 0 dB and Pf = 0.01
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Fig. 18 The optimum I
versus γp in shadowing
channels with independent
samples for different values
of Pf and different decision
rules when M = 128 and
m = 3
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Fig. 19 Je versus I in
Rayleigh fading channels
with independent known or
unknown channel gains for
different decision rules when
γp = 0 dB, Pf = 0.01,
M = 128 and m = 3

I
0 10 20 30 40 50 60 70 80 90 100

J e

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

unknown gains, data
unknown gains, AND
unknown gains, OR
known gains, data
known gains, AND
known gains, OR

Figure 19 shows Je versus I in Rayleigh fading channel. Again, Je first increases
then decreases as I increases, indicating that there exists an optimum number of I .
The data fusion rule has the highest effective throughput. Also, when the channel
gains are unknown, the “OR” rule has the lowest effective throughput, while when
the channel gains are known, the “AND” rule has the lowest effective throughput.
Figure 20 shows the optimum value of I versusγp. From this figure, the optimum value
decreases monotonically for known channel gains, while it increases then decreases
for unknown channel gains for Pf = 0.01 and Pf = 0.001. There is an upper limit
of 4 for the optimum I .
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Fig. 20 The optimum I
versus γp in Rayleigh fading
channels with independent
known or unknown channel
gains when M = 128 and
m = 3
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3 Conclusions

In this chapter, several energy-saving and energy-optimization techniques in ad hoc
cognitive radio networks have been investigated. First, non-coherent sensing and
decision-feedback sensing have been studied, where the dedicated sensing period
has been removed to save energy, at the cost of reduced sensing accuracy. However,
it can be seen that, for non-coherent sensing, although the sensing accuracy has been
reduced, the diversity gain of sensing remains and a similar accuracy to the conven-
tional sensing can still be achieved by choosing appropriate sensing parameters. For
decision-feedback sensing, its performance is actually better than the conventional
sensing initially and only starts to degrade when more decision errors are accumu-
lated. This implies that decision-feedback sensing is more suitable for short bursty
transmissions, which offers energy-saving as well as performance-improvement. For
longer periods of transmissions, the disadvantages of decision-feedback sensing may
outweigh the benefits of decision-feedback sensing. Then, censored sensing has been
studied. From this study, it can be seen that performing censoring before sensing
offers performance gains in terms of probability of detection as well as reduces
energy consumption. The reason is that it excludes very noisy samples from the
sensing operation and therefore, offers higher accuracy. After this, energy optimiza-
tion that takes both physical layer sensing and upper layer throughput into account
has been examined. The examination has shown that there does exist an optimum
choice of the number of cognitive radios involved in spectrum sensing in terms of
energy efficiency. This number depends on a few important system parameters. From
these studies, energy saving and optimization in cognitive radio networks are chal-
lenging but can bring a lot of benefits, and in some cases both performance and
energy benefits. Thus, it is important to design proper cognitive radio techniques to
achieve these benefits. In the future, works can focus on the dynamic topology of
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ad hoc networks as well as the use of these energy saving and energy optimization
techniques in emerging networks such as wireless relaying.
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Visible Light Communications for Energy
Efficient Heterogeneous Wireless Networks

Mohamed Kashef, Muhammad Ismail, Mohamed Abdallah,
Khalid A. Qaraqe and Erchin Serpedin

Abstract The necessity of having energy efficient wireless communication
networks emerges because of the related environmental and economical benefits.
Achieving energy efficient wireless communications using visible light communica-
tions (VLC) has been recently studied due to its transmission properties. Moreover,
the integration of VLC and radio frequency (RF)-based wireless networks has shown
improved data rate and reliability for the mobile users. In this chapter, we investigate
the energy efficiency of the integration of VLC and RF wireless networks. We formu-
late and solve the energy efficiency maximization problem by allocating the power
and bandwidth of a heterogenous RF/VLC wireless network. We study the impact
of various system parameters on the network performance. Numerical results are
presented to demonstrate the performance gains of the hybrid system and to quantify
the impact of the system specifications on the achieved energy efficiency. Moreover,
several challenging issues due to the RF/VLC integration are addressed.
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1 Introduction

Achieving energy efficient communications is motivated by the increasing energy
consumption of wireless communication networks caused by the high demand for
wireless communication services. The annual energy consumption of a mobile ser-
vice operator is around 50–100 GWh [1]. From an environmental viewpoint, the
CO2 emissions of the telecommunications industry represent 2 % of the total CO2

emissions worldwide and are expected to reach 4 % by 2020 [2].
Advances in the field of lighting and illumination, especially in solid state lighting,

allow light emitting diodes (LEDs) to dominate the future lighting market. LEDs have
been introduced to be used in illumination due to their superior properties over the
existing light sources. Huge energy saving is achieved by exploiting LEDs as it
consumes five times less power than the fluorescent light sources and twenty times
less than the conventional light sources [3, 4]. The advantages of LEDs over the
existing lighting technologies also include their long life time, their improved color
rendering capability, and their environmental benefits [5]. The share of LEDs in the
illumination market is expected to evolve dramatically during the current decade [6].

The capability of the LEDs light intensity to be modulated at high frequencies has
motivated exploiting LEDs for wireless data transfer through what is referred to as
visible light communications (VLC) [7]. The use of LEDs in communications does
not affect their main functionality of illumination by guaranteeing that modulation
does not generate flickering. The flicker threshold of human eye is typically less than
3 kHz such that flickering is avoided by modulating the light with frequencies which
are greater than this flicker threshold [8]. Moreover, LEDs already exist in numerous
electronic devices and hence exploiting them for communication purposes can be
realized using the existing devices. The receiver for VLC signals is a photo sensitive
detector that demodulates the light signal into an electrical signal. Thus, data transfer
is performed using intensity modulation and direct detection (IM/DD) [9], which can
be practically obtained by a number of pulsed modulation schemes [10].

The increased demand for wireless data services with the limited radio frequency
(RF) spectrum makes it essential to investigate alternative wireless technologies.
VLC is introduced as a wireless technology to augment the existing RF technologies
due to its superiority over RF technology in certain aspects [11]. The visible light
spectrum is huge, unlicensed, and currently unused that allows data transfer with high
rates over this spectrum. The signal isolation of VLC systems because of its property
of not penetrating through walls allows easy separation of communication cells and
enhance communication security. VLC systems are built using simple and cheap
components and have no electro-magnetic interference (EMI) to the existing wireless
devices. The major limitations for VLC systems are performance degradation in
absence of line of sight (LOS), and the noise increase due to the ambient light sources.
Hence, VLC systems are more suitable to augment the existing RF networks than to
completely replace them.



Visible Light Communications for Energy Efficient … 301

The applications of VLC systems are more concentrated in indoor environments
where lights are switched on including industrial areas, medical environments, air-
ports, and shopping centers. High data rate transmission in crowded areas is a major
VLC application that has been proven by real-time systems. The first high speed
VLC demonstration was of the European project OMEGA at February 2011 [12].
There are also some standardization efforts that have been worked on to allow the
availability of VLC-enabled devices. Currently, Infrared Data Association (IrDA)
group and an IEEE group work on the standardization process that the first standard,
IEEE 802.15.7, was published September 2011. Other attractive environments for
VLC applications are EMI-sensitive environments like aircraft cabins and hospitals.
A different approach for exploiting VLC is navigation and localization in indoor
environments as shopping centers where the LEDs light sources can be connected to
users VLC (smart phone) for guiding and advertising about various stores or products
based on users location. The market for indoor localization is expected shortly to
reach $5 billion [13]. Various additional potential applications of VLC techniques
have been proposed including broadband indoor communication, and military appli-
cations that demand anti-jamming. In [14], the use of LEDs in communications is
reviewed where comparisons to other communication techniques are presented. The
VLC has shown many advantages including their cheap transmitters and receivers,
low power consumption, and good safety features. A more detailed comparison of
the performance of VLC systems against RF communication systems indicates bet-
ter area spectral efficiency is achieved for VLC systems [15]. Additionally, VLC
has been introduced as an energy efficient wireless technology that exploits the illu-
mination energy, which is already consumed for lighting, in data transmission with
high achievable data rates. In [3], the improvement in energy efficiency of VLC data
transmission is demonstrated as a result of using white LEDs for both illumination
and communication.

Furthermore, wireless networks with different technologies can work together to
enhance the overall system performance using heterogeneous networks principles.
Such enhancements are achieved because of the diversity in fading channels, propa-
gation losses, and the available resources at different networks. However, such gains
can be only achieved by tackling the major challenge of developing resource allo-
cation algorithms that assign the power and bandwidth among the heterogeneous
networks to achieve different service requirements. Particularly, the ongoing work
on fifth generation (5G) wireless access aims to achieve higher system data rates, net-
work capacity, and reliability of communications [16]. Moreover, it aims to achieve
lower latency, and energy consumption. In [16, 17], the suitability of VLC technol-
ogy to serve indoor communication in future 5G networks was demonstrated. The
main factors that help this idea are the availability of the huge visible light spectrum
bandwidth, the non-exitance of the interference towards the existing RF transmis-
sions, the spatial reuse capability the visible light characteristics, and the low cost
for data transmission.

VLC and RF communication systems can work together to take advantage of the
benefits yielded by both systems to enhance the communication energy efficiency
while maintaining good reliability. In this chapter, we investigate the problem of
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resource allocation in a heterogeneous RF/VLC communication system from an
energy efficiency viewpoint. We study the energy efficiency of an indoor hetero-
geneous network composed of a single RF access point (AP) and a single VLC AP
transmitting to a number of MTs located in the coverage region of both APs. The VLC
system employs its illumination power for data transmission while consuming addi-
tional power for data processing. On the other hand, the RF communication system
consumes both data processing and transmission powers. We formulate and analyze
the problem of maximizing the heterogeneous network energy efficiency constrained
by the required data rates for the MTs and the maximum allowable transmission pow-
ers for the APs. MTs are equipped with multi-homing capability and can receive data
from both VLC and RF communication systems. We compare the performance of
the heterogeneous network consisting of VLC and RF communication systems to
the benchmarks represented by an RF only network and a heterogeneous network
composed of two RF communication systems. We compare the energy efficiency of
these systems to quantify the impact of using mixed RF/VLC systems on the network
energy efficiency.

2 Related Work

2.1 Energy Efficiency in VLC Networks

A major advantage of employing VLC is achieving high data-rates while the power
consumption of the system is low [3]. Hence, optimizing VLC systems transmission
parameters is commonly used in literature to enhance some performance measure
such as the achievable rate, and the spectral efficiency because the consumed power
is low due to the VLC system nature. The optimization of the energy efficiency of
VLC systems by controlling the data transmission parameters has been considered
in few papers. In [18], the transmission parameters of a pulse position modulation
(PPM) scheme are controlled to minimize the total power consumption of a VLC
system while achieving a certain communication and brightness requirements. These
transmission parameters are the DC bias and amplitude range of the data sent using
the PPM scheme. The transmission parameters control has reduced the consumed
power significantly compared to the conventional fixed PPM modulation depths.

In [19], a solar cell is used to receive low-frequency VLC signals to implement a
green VLC system. The proposed system is considered as an environment friendly
as it exploits the power resulting from the solar cell and does not need an extra
photo-detector for data reception. Moreover in [20], an intelligent lighting system
that exploits VLC was introduced. In this system, location information of the lighting
sources and a number of light sensors are transferred using VLC to achieve certain
illumination requirements while minimizing the consumed electricity. It was shown
that the proposed VLC-based strategy can achieve higher energy savings and faster
illumination response to the environmental changes.
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2.2 Energy Efficient Heterogeneous Networks

Employing multiple radio interfaces in communication systems has proven to
enhance energy efficiency in RF communication systems. In [21], the cooperation
between mobile terminals (MTs) is exploited by allowing the MTs to transmit their
data efficiently to base stations using space-time coding over multiple radio inter-
faces. Also, MTs are used to relay source data using multiple radio interfaces in [22].
Moreover in [23], the authors have discussed the enhancement in the energy effi-
ciency of MTs equipped with multi-homing capabilities where the MTs are allowed
to aggregate the available resources from different networks in a downlink commu-
nication scenario.

Cooperation in VLC networks between multiple VLC nodes has not been inves-
tigated comprehensively yet. Cooperation in VLC systems has been considered in
[24] where the total rate of a VLC network contains multiple interfering transmit-
ters is improved by employing cooperative transmission power control. Additionally,
few papers have discussed the complementary use of VLC and RF communication
systems to achieve throughput and reliability gains. In [25, 26], the authors have dis-
cussed the potential benefits of the RF/VLC combination and the optimal handover
techniques and have shown that lower data transfer delay and higher data rates can
be achieved because of the nodes ability to switch their access between the VLC and
RF networks. The hybrid simultaneous use of VLC and RF systems has been dis-
cussed in [27, 28] where the authors investigate the feasibility and potential benefits
of RF/VLC hybrid systems in enhancing the throughput and increasing the coverage.

2.3 Employing VLC in 5G Networks

Various VLC benefits include the low energy consumption and the low interference
are gained beside the currently reported high data rate of 3.5 Gb/s [29]. Due to the
requirements of 5G networks to have ubiquitous connectivity and hence achieving
high data rates for very dense networks, they need to be energy efficient to reduce
the total cost per transmitted bit [30]. A promising proposal to achieve this goal is
employing small communication cells that exploit low-cost base stations and have
short-distance communication links [31]. VLC technology represents an excellent
candidate to satisfy the requirements of having small cells with low energy cost per
transmitted bit [32].

3 System Model

We consider an indoor downlink scenario in which M MTs equipped with VLC
receivers and RF receivers are communicating with a single RF AP and a sin-
gle VLC AP as shown in Fig. 1. Examples of RF wireless communication net-
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Fig. 1 Illustration of the
APs coverage areas

works include cellular networks (e.g., femto-cells). The set of MTs is denoted by
M = {1, 2, . . . , M}. All MTs are in the coverage areas of both APs. Each MT has
multi-homing capabilities that allow simultaneous association with both networks
and enable the MTs to aggregate the available resources from both networks to
provide services with high performance requirements such as improving network
capacity [23].

3.1 VLC System Model

The single-user VLC system transmitter and receiver models are shown in Fig. 2 as
well as the signal flow through the system to calculate the electrical signal to noise
power ratio at the receiver which controls the performance of the VLC system.

At the transmitter side, the driving current of the LED expressed in Amperes
(Amp) is denoted by x and is proportional to the modulated data of the source.
The driving power is denoted by Pdr and is calculated as the average of the squared
driving current x2. In a multi-user system, the mth MT is allocated a proportion of
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Fig. 2 VLC single-user transmitter and receiver models

Pdr that is denoted by Pvlc,m . These proportions of the driving power Pvlc,m are to
be controlled while optimizing the system performance. The output of the LED is an
optical intensity signal which is proportional to the driving current, when operating
in the LED dynamic range, and is denoted by x (t)

opt = kx where k (Watt/Amp) is the
proportionality factor of the electrical to optical conversion and is determined by the
LED characteristics. The average optical transmitted power is denoted by P (t)

opt and
is calculated as follows

P (t)
opt = x (t)

opt, (1)

where (.) is the average of the signal. This optical transmitted power determines the
illumination level of the LED.

At the receiver of the mth MT, the received optical signal x (r)
opt,m represents the

light intensity at the photo-sensitive detector, and it is expressed as follows

x (r)
opt,m = Gvlc,m x (t)

opt,m, (2)

where Gvlc,m is the VLC channel power gain between the VLC AP to the mth MT.
The photo-detector has a responsivity ρ (Amp/Watt) and converts the received optical
signal into an electrical current which is proportional to the optical intensity. The
received electrical signal, which is denoted by x (r)

m , is calculated as follows

x (r)
m = ρx (r)

opt,m . (3)

The average electrical power of the received signal is calculated as follows

Pelec,m =
(

x (r)
m

)2
,

Pelec,m = (
kρGvlc,m

)2
Pvlc,m . (4)
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3.2 RF/VLC Heterogeneous System

The maximum bandwidths of the VLC and RF systems are denoted by Bvlc,max and
Brf,max, respectively. The bandwidth of the VLC system is usually limited by the
used LED and photo-detector bandwidths. The mth user is assigned a bandwidth
of Bvlc,m and Brf,m by the VLC and RF communication systems, respectively. The
transmission powers allocated to the mth MT by VLC and RF APs are Pvlc,m and
Prf,m , respectively. The total transmission power of an AP is constrained by the
maximum allowed power, and it is denoted correspondingly by Pvlc,max and Prf,max.
The fixed powers needed by the APs are denoted by Qvlc and Qrf. These fixed
powers include the powers used for circuits’ operation and data processing before
transmission. The value of Qvlc includes also any required power to compensate for
the losses in the LED efficiency due to data transmission.

The data rates achieved by the mth MT are denoted by Rvlc,m and Rrf,m , respec-
tively, where the sum of the data rates of the mth MT is constrained to be larger than
or equal to a required minimum data rate Rmin,m .

The power gains of the channels between the mth MT and the RF and VLC
APs are denoted by Grf,m and Gvlc,m , respectively. The channel power gain for the
RF communication system captures both the channel fading and path loss. For the
VLC system, the channel power gain captures LOS path loss for the optical wireless
signal. The distances between the APs to the mth MT are denoted by drf,m and dvlc,m .
The thermal noise power spectral density affecting the RF receivers is denoted by
N0,rf, and is given by N0,rf = kbT , where kb stands for Boltzmann’s constant and T
denotes the ambient temperature. The noise power spectral density affecting the VLC
receivers is dominated by the light shot noise and is denoted by N0,vlc. It is shown
in [33], Chap. 2, that the noise affecting VLC systems can be well approximated by
Gaussian noise independent of the received signal. The characteristics of the channel
models can be found in [15].

The RF communication path loss, denoted by PL, typically takes the form

PL[dB] = A log10 (drf,m) + B + C log10

(
fc

5

)
+ X, (5)

where fc is the carrier frequency in GHz, A, B and C are constants depending on
the propagation model, and X stands for an environment specific term. For the LOS
scenario, A = 18.7, B = 46.8 and C = 20. For the non-LOS (NLOS) scenario, A =
36.8, B = 43.8, C = 20 and X = 5(nw − 1) in case of light walls or X = 12(nw − 1)

in case of heavy walls, where nw denotes the number of walls between the AP and
the MT [15]. The channel power gain is defined as

Grf,m = 10−PL[dB]/10. (6)

We denote the channel power gain in the presence of LOS by GLOS
rf,m and for the NLOS

scenario by GNLOS
rf,m . For VLC systems, the channel power gain is given in [15] by
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Gvlc,m = (n + 1) cosn(φm)Am cos(θm)

2πd2
vlc,m

, (7)

where Am stands for the physical area of the photodetector at the mth MT, φm

denotes the angle of irradiance from the LED to the mth MT, n is the order of the
Lambertian emission defined by the LED’s semi-angle at half power Φ, which is
n = ln(1/2)/ ln(cos(Φ)), and θm represents the angle of incidence.

The LOS availability probabilities for RF and VLC systems are defined as the
probability that there are no obstacles in the communication link between the MT
and the corresponding AP, and are denoted by ρrf and ρvlc, respectively. In the
case of RF transmissions, the channel path loss exponent increases with the LOS
absence as discussed earlier. For the case of VLC, the signal is degraded significantly
in the absence of LOS that may result in unsuccessful data transmissions. In this work,
we assume that the NLOS VLC transmissions are unsuccessful that we focus only
on the system performance with LOS transmissions.

4 Energy Efficiency Maximization Problem

In this section, we formulate the energy efficiency maximization problem, where
energy efficiency is defined as the total achieved data rate per unit power consumption.

The average received electrical signal to noise power ratios for the mth MT corre-
sponding to the RF and VLC systems are denoted by γrf,m and γvlc,m , respectively,
and are expressed as [15]

γrf,m = Prf,m Grf,m

Brf,m N0,rf
, (8)

γvlc,m = Pvlc,m

(
kρGvlc,m

)2

Bvlc,m N0,vlc
, (9)

where the value of Grf,m can be substituted by GLOS
rf,m or GNLOS

rf,m to obtain the corre-
sponding γ LOS

rf,m and γ NLOS
rf,m for the LOS and NLOS channels. Also, the value of γvlc,m

is calculated by dividing the received electrical power in (4) by the noise power.
The achieved data rates by the mth MT exhibited by different networks are denoted

by Rvlc,m and Rrf,m , respectively. Using the multi-homing capability, the sum of the
achievable data rates of the mth MT via the VLC and RF APs should not be less than
the required data rate Rmin,m . The expected values of the achievable data rates from
each AP are calculated over the probability mass function of LOS availability and
are calculated as follows

Rrf,m = Brf,m

(
ρrf log2

(
1 + γ LOS

rf,m

)
+ (1 − ρrf) log2

(
1 + γ NLOS

rf,m

))
, (10)

Rvlc,m = Bvlc,mρvlc log2

(
1 + γvlc,m

)
. (11)
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The total achieved data rate in the heterogeneous RF/VLC network is denoted by
RT and its value is calculated as follows

RT =
∑

m∈M
Rvlc,m +

∑

m∈M
Rrf,m . (12)

The total consumed power for communication is denoted by PT and its value is
calculated as follows

PT = Qvlc + Qrf +
∑

m∈M
Prf,m . (13)

where the first term in (13) represents the consumed power for the VLC AP and
is calculated using the fact that the transmission power is the optical power used
for illumination by design, and hence only the fixed power consumption Qvlc is
accounted for as a power cost. The second and third terms represents the RF power
consumption which accounts for both the processing and transmission powers.

We study the resource allocation problem to maximize the energy efficiency of
the heterogeneous network over the assigned transmission powers and bandwidths
to the MTs by the APs. The hybrid RF/VLC network energy efficiency is denoted by
η = RT/PT. The user total achieved data rates, i.e., Rvlc,m + Rrf,m are constrained
by the minimum required data rates for the MTs. For each AP, the total transmission
power consumption, i.e.,

∑
m∈M Pvlc,m and

∑
m∈M Prf,m , is constrained by the

maximum allowable transmission power. The total allocated bandwidth of each AP
is constrained by the maximum allowable bandwidth as well. Given these constraints,
the problem is formulated as follows

max
Pvlc,m ,Prf,m ,Bvlc,m ,Brf,m

η

s.t. Rvlc,m + Rrf,m ≥ Rmin,m, ∀m ∈ M,
∑

m∈M
Pvlc,m ≤ Pvlc,max,

∑

m∈M
Prf,m ≤ Prf,max,

∑

m∈M
Bvlc,m ≤ Bvlc,max,

∑

m∈M
Brf,m ≤ Brf,max,

Pvlc,m, Prf,m, Bvlc,m, Brf,m ≥ 0, ∀m ∈ M. (14)

The problem (14) is referred to as concave-convex fractional program [34] since
the numerator of the objective function is concave with respect to the decision vari-
ables and the denominator is affine. The concavity of the numerator of the objective
function can be proven by calculating the Hessian matrix of RT with respect to the
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optimization variables. We found that both the diagonal elements of the Hessian
matrix are negative and the principal minors are 0.

5 Numerical Results

In the following, we assess the performance of the proposed resource allocation
strategy. We compare the energy efficiency of the proposed mixed RF/VLC hetero-
geneous networks to two benchmark systems. We refer to the proposed system in
the following results by ‘RF-VLC’. We compare it to a system consisting of a single
RF wireless network, which is denoted by ‘RF-Only’, and hence no multi-homing is
performed, and we also compare it to a system comprising two RF APs over different
frequency bands and which will be denoted by ‘RF-RF’, and hence multi-homing is
achieved only over RF links. In the system with two RF APs, one of the RF systems
is assigned a bandwidth equal to that of the VLC system to ensure a fair comparison.

In the following results, we set Rmin,m = 2 Mbps, Prf,max = 1 W, Qrf,max = 6.7 W,
Qvlc,max = 4 W, N0,rf = 3.89x10−21 W/Hz, N0,vlc = 10−21 W/Hz, Brf = 10 MHz,
Bvlc = 20 MHz, k = 10 W/A, ρ = 0.8 A/W, and M = 4. The VLC AP is located
such that the MTs are uniformly-distributed and randomly located such that the
distance to the AP is in the range between 1.5 and 2 m. The RF AP is located such
that the MTs are randomly and uniformly-distributed located such the distance to the
AP is in the range between 1 and 1.5 m. Note that the RF AP practically has a larger
coverage region which is covered by multiple VLC APs. In this work, we consider
the performance of the MTs which are in the common coverage region of a single
VLC and a single RF APs. The VLC system maximum power is the product of the
number of LEDs used at the VLC source by the maximum power driving each LED,
and we set the number of LEDs to 38 with the maximum power to drive a LED to
300 mW. The value of the maximum driving power is set to generate around 900
lumens from the VLC source which is practically a suitable value for lighting. The
values of the VLC and RF systems are obtained from [15] and [35], respectively.

In Fig. 3, we show the energy efficiency of the different systems against the number
of MTs. The performance of the RF-VLC system is significantly better than the
performance of the RF-only system because of the multi-homing capability of the
MTs and the energy efficient nature of the VLC systems. Using multi-homing, MTs
can have links with better channel conditions with at least one AP, leading to high
achieved data rates and low power consumption. Also, the performance of the RF-
VLC system is better than that of the RF-RF system because of the low cost of VLC
AP power consumption compared to the RF communication systems. The power
consumption in RF systems is the sum of the fixed and transmission powers, while in
VLC systems, the power is due only to the fixed power component since no power is
dedicated for transmission as its transmission power is already used for illumination.

In Fig. 4, we show the energy efficiency performance versus the fixed power
consumption of the VLC AP to investigate the impact of any increased power con-
sumption in the VLC network. The energy efficiency of RF-VLC system is equal to
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Fig. 4 Energy efficiency against the fixed power of the VLC system

that of the RF-RF system when the fixed power is 6 W which is nearly equal to the
fixed power of an RF AP. As a result, the integration of a VLC system in a hetero-
geneous networking with RF communication will not be beneficial if the VLC AP
fixed power is high compared to an equivalent RF AP.

We study in Fig. 5 the effect of the number of LEDs on the energy efficiency
of the RF-VLC system. Increasing the number of LEDs allows higher transmission
power for the VLC system which motivates the MTs to obtain most of their required
data service from the VLC AP, reducing the transmission power consumption of RF
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AP, and hence improving the overall energy efficiency. Also, the figure shows that
introducing the VLC network even with a small number of LEDs (only 5 LEDs)
enhances the energy efficiency significantly.

In Fig. 6, we consider the case in which the LOS availability probabilities for
RF and VLC systems are equal. We show the energy efficiency versus the LOS
availability probability. The performance for the RF-VLC system is better than the
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Fig. 6 Energy efficiency against the LOS availability probability in VLC and RF systems
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Fig. 7 Energy efficiency against the LOS availability probability in RF systems

benchmarks when the probability of LOS availability in the VLC system is higher
than 0.7 because of the good energy efficiency properties of the proposed RF-VLC
system. Also, the slope of the curve of the RF-VLC energy efficiency is higher than
those of the benchmark systems because of the significance of the LOS availability
to the VLC system compared with the RF systems.

Finally in Fig. 7, we discuss the effect of LOS availability probability in the
RF system on the energy efficiency of the RF-VLC heterogeneous system when
ρvlc = 1. In the RF-VLC system, the users exploit the less costly VLC energy for
data transmission and exploit the RF transmission power when required. As a result,
the enhancement of the performance with the increase of LOS availability probability
presents a smaller slope than the RF benchmarks.

6 Challenging Issues

In the previous section, we have illustrated the improvement in the energy efficiency
of an indoor downlink communication scenario integrating VLC and RF communi-
cation systems. To obtain greater benefits through this integration, there are a number
of challenges that still remain unanswered. To overcome these challenges, further
studies are required to deal with the users’ spatial distribution, the APs’ position plan-
ning, the unlicensed nature of VLC frequency band, the joint power and subcarrier
allocation, and the impact of mobility. These issues are next discussed.
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6.1 MT Spatial Distribution

High data rates in optical communication systems can be achieved when there is an
unobstructed LOS between a transmitter and a receiver. The rate is reduced signifi-
cantly in the absence of LOS. The obstruction of LOS can be due to the user lying
outside the FOV of the VLC AP or due to existing objects such as furniture and
walls. Therefore, the drop of the data rate can occur abruptly as soon as the LOS is
obstructed, which is not the case for the RF networks where the signal quality typi-
cally degrades in a predictable continuous pattern. This specific feature of the VLC
networks makes the performance sensitive to the probability of the LOS availability,
which depends on the specific MT spatial distribution.

In particular, due to the abrupt change in the VLC signal quality, the probability
of the LOS availability can vary significantly with any slight change in the location
of the users. Thus, the exact knowledge of the spatial distribution of the MTs is a
crucial parameter in assessing the performance of VLC systems. Using the same
justification, the resource allocation problem in heterogenous networks integrating
RF and VLC systems is highly affected by the spatial distribution of the MTs. Hence,
allocating network resources in the RF and VLC networks assuming knowledge of
the MTs spatial distribution can achieve better energy efficiency by, for example,
usage of lower energy transmissions for the regions with a high density of MTs.
As a result, examining the MTs’ spatial distribution and the techniques to employ it
in resource allocation problems plays an important role in the system design stage.
Moreover in case that there are uncertainties about users’ locations, there is a need to
design a resource allocation strategy that is robust to such uncertainties. An example
depicting the effect of user location on the performance of the cooperative VLC
networks is discussed in [24], where it was shown that a small error in the user
location information can degrade significantly the data rate.

Furthermore, VLC systems are characterized by non-uniform coverage areas [15].
Dark and light spots are identified within the VLC coverage region, based on the loca-
tions of the light sources and the illumination requirements. The achieved data rate
at these dark spots is relatively low. By examining the spatial distribution of MTs
and studying the expected required rates of the users located in the dark spots, more
RF transmission power can be allocated to MTs in the dark spots while allocat-
ing more VLC transmission power to the light spots. An improved VLC coverage,
and hence better reliability, can be obtained depending on the LED characteristics.
Specifically, the field of view (FOV) of the used LEDs determines the coverage area
of the light sources. Hence, increasing the FOV allows more coverage but introduces
also more interference in the VLC network. Such interference can jeopardize the
achieved energy efficiency. Thus, further investigation is required on the impact of
users’ spatial distribution on the resulting energy efficiency. Also, the resource allo-
cation problem should consider the joint effects of VLC non-uniform coverage and
the MTs spatial distribution.
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6.2 APs Position Planning

As discussed, the MTs’ spatial distribution affects the network planning for the VLC
and RF systems. One of the major design issues is the APs’ placement planning. The
selection of the positions of the VLC and RF APs in both systems can considerably
affect the system performance. While the RF AP placement is considered mainly by
the communication requirements, the VLC AP is constrained by both the illumination
and communication requirements [36].

In addition, the transmission powers in both VLC and RF communication systems
are highly affected by the path loss, and hence finding the optimal placement of the
APs can highly benefit the achieved energy efficiency. Further research is needed
for the joint placement optimization of RF and VLC APs to improve the energy
efficiency while maintaining the communication and illumination requirements.

6.3 Unlicensed VLC Spectrum

Although it is beneficial that the visible light spectrum provide access to several
hundred Tera-Hertz of unlicensed spectrum, communication over the light spectrum
can be exposed to different types of interference due to using any light source. The
visible light spectrum is wide enough to allow high data rates and in indoor scenarios
light does not penetrate walls and hence any portion of the visible light spectrum can
be exploited inside some closed indoor spaces. Being unlicensed allows exploiting
the spectrum for various services using different communication schemes. On the
other hand, being unlicensed does not allow reserving certain portions of the spectrum
for communication purposes only and hence any light source or light reflection is
considered as an interference source in VLC networks. This problem can be addressed
by employing coding approaches in VLC systems. However, this solution affects the
energy consumption in VLC systems due to the extra processing requirements. By
integrating both VLC and RF systems, interference mitigating solutions that exploit
data transmissions over the two used spectra can improve energy efficiency, and it
requires a further investigation.

6.4 Joint Power and Subcarrier Allocation

Orthogonal frequency division multiple access (OFDMA) is used in both VLC and
RF communication systems to enable high data rates by mitigating the inter-symbol
interference (ISI) effects. Consequently, OFDMA is a good signaling scheme for
energy efficient VLC and RF communication networks. In this context, subcarrier
and power allocation should be jointly optimized between the VLC and RF systems
to enhance the system performance. The problem of jointly allocating the OFDMA
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subcarriers and power levels for different users has been discussed before in litera-
ture. The existing works mainly focus on homogeneous network scenarios. Further
extensions are required for an integrated VLC and RF heterogeneous wireless sys-
tem. In such a scenario, the main challenges are the required coordination between
the VLC and RF systems, and the different channel characteristics in both systems.
Furthermore, computational complexity should be addressed as the joint resource
allocation is an NP-hard mixed integer programming problem [37].

6.5 Mobility of Users

VLC systems present channels with slow dynamics but their quality significantly
depends on LOS availability between the transmitter and the receiver. Thus, the
reliability of data transmission is affected heavily by the user mobility in case of
indoor scenarios with many obstacles facing the light signals. The MTs mobility can
cause frequent service dropping. On the other hand, RF channels are usually highly
dynamic but do not require the LOS availability between the transmitter and the
receiver. Consequently, one major challenge facing the resource allocation problem
for designing an energy efficient heterogenous VLC and RF communication network
is to deal with the user mobility impact such that there is no abrupt dropping in the
users’ perceived quality.

7 Conclusions and Future Research

The research in the area of energy efficient communications has been motivated by
environmental and financial considerations. Integrating RF and VLC APs in hetero-
geneous wireless networking environment has shown promising improvements in
the achieved energy efficiency. The multi-homing capability of the MTs in a het-
erogeneous network with VLC and RF APs allows users to benefit from the huge
unlicensed bandwidth of the visible light spectrum and the low cost of the transmis-
sion power. It also allows for an improved VLC system reliability, as RF commu-
nications are employed in the absence of VLC LOS. Future research should deal
with many unresolved challenging issues. These issues include studying the spatial
distribution of the MTs and its impact on the different network parameters selection,
and investigating the problem of joint power and subcarrier allocation.
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A VANET Based Electric Vehicle Energy
Management Information System

Muhammad Awais Javed, Jamil Yusuf Khan and Duy Trong Ngo

Abstract Electric vehicles (EVs) are an integral part of the future transportation sys-
tems due to enhanced fuel and energy conversion efficiency. The success of electric
vehicle technology requires an efficient charging management system that ensures
their timely fueling. To support such a service, vehicular ad hoc networks can be used
to implement an information system for EV energy management. For this purpose, it
is essential for the electric vehicles to reliably and timely exchange information with
the information/control servers using infrastructure nodes (INs) deployed at different
geographical locations. As the INs may be located farther away from the vehicles,
robust multi-hop packet transmissions are required. In this chapter, we present the
design considerations for an information system for EV energy management. We
propose a vehicle-to-infrastructure and infrastructure-to-vehicle (V2I-I2V) informa-
tion transmission system that efficiently delivers packets for EV energy management
services by mitigating the broadcast storm and hidden node problems. Moreover, the
proposed system provides a signaling mechanism to select the shortest path for the
downlink I2V transmissions, a challenging task due to the mobile nature of vehicles.
Simulation results show that the developed system offers a low delay and reduced
number of packet transmissions for different vehicle densities and mobility condi-
tions.
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1 Introduction

Electric Vehicles (EVs) are envisaged to dominate the transportation systems in the
near future. Reduction of dependence on the fossil fuels, less emission of carbon
dioxide and green house gases, higher efficiency of electric vehicle engines and
the possibility to charge vehicles from renewable energy sources are some of the
key benefits of electric vehicle systems [1, 2]. By adopting electric vehicles for
traveling, the consumption of conventional energy resources can be reduced. This
could increase the life time of other energy sources and help mitigate any possible
future energy crisis. Vehicles are also a major source of green house gas emissions
in the world. Using electric vehicles will be a big step towards a cleaner environment
[3]. Studies have also shown that the electric vehicle engine is more efficient in terms
of fuel efficiency [4]. Also, electric vehicles may be used in conjunction with many
renewable sources, hence solving the issue of dependency on one fuel source [5].

One of the key issues related to EV deployment is how to design its charg-
ing/energy management systems. Since an EV could take longer time to recharge
compared to the refueling of a conventional vehicle, a city wide or an area based
charging infrastructure management system is required. It is therefore necessary to
develop an information system that can interact with the mobile EV fleet and the spa-
tially distributed charging stations with different occupancy levels. For example, in
future, we may see charging station providers supply energy using multiple sources
where price and availability of energy could be time and location dependent. EVs
could also be used as an energy storage device when peak/average generation capac-
ity exceeds the consumption load in certain areas. The primary challenge in enabling
an electric vehicle information system (EVIS) is to efficiently and timely provide
the vehicles with the desired service information such as the nearest charging station
location, a lower cost station, quicker charging availability, etc.

To enable these energymanagement services, it is necessary to develop an electric
vehicle information system (EVIS) that can interact with the mobile EV fleet and
the spatially distributed information/control servers. Such a system should be able
to support the data exchange from vehicles to infrastructure (V2I) on the uplink
channel and from infrastructure to vehicles (I2V) on the downlink channel. In a
VANET, infrastructure nodes (INs) in the form of road side units are deployed at
strategic locations as shown in Fig. 1. Using an IN as a relay, a vehicle who intends
to query an online energy management service sends request/query messages to the
information server. Since the IN may be located outside the transmission range of
a vehicle, multi-hop wireless transmissions are required for the information from
the vehicle to reach the IN. Using the backbone network, the IN then relays request
messages from the vehicle to the central information server (CIS). The CIS processes
the request and sends a response message back to the vehicle via the IN.

The dissemination of service messages in an EVIS faces two technical challenges.
First, the multi-hop transmissions in a VANET may suffer from the broadcast storm
and the hidden node collisions [6, 7]. In this situation, a large number of packet losses
mayhappen. Second, the vehiclemayhavemoved closer to another INduring the time
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Fig. 1 A vehicle information transmission system

it waits for the response message from the CIS. Keeping track of the vehicle mobility
on the downlink is thus required in order to select the shortest communication path.

In this chapter, we use simulations to analyze the performance of a proposed
EVIS for energy management services in an urban road traffic topology. Here we
propose to use the TSM protocol [6] to efficiently transmit the service messages on
both uplink and downlink. We also propose a location register signaling mechanism
between vehicles and INs. The purpose is to keep track of vehicle mobility and to
select the shortest communication path for the downlink response messages. Using
an OPNET-based simulation model, we evaluate the delay and the required number
of transmissions for both downlink (request) and uplink (response) messages. Our
simulation results confirm a significant improvement in the downlink delay with the
proposed location register signaling mechanism.

The rest of this chapter is organized as follows: Sect. 2 presents a review of the
current standards in vehicular ad hoc networks. Section3 briefly explains various
techniques for information dissemination in a VANET. Section4 explains the com-
munication architecture for the EVIS and the proposed packet transmission technique
for the downlink and uplink messages. Section5 evaluates the performance of the
proposed technique using an OPNET simulation model in an urban road traffic.
Finally, Sect. 6 concludes the chapter.
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2 Review of Vehicular Ad hoc Network

Vehicular ad hoc networks utilize wireless communications between vehicles to real-
ize numerous applications for traffic safety and comfort [8, 9]. Using vehicle to vehi-
cle and vehicle to infrastructure communications, vehicles get information about the
neighborhood traffic. Each vehicle is equippedwith a wireless transceiver in the form
of an on-board unit (OBU). Infrastructure nodes are placed at various geographical
locations and are known as road side units (RSU). Cooperative collision avoidance,
emergency braking and warning notification in the case of an emergency are the
key safety applications offered by this system [10, 11]. Additionally, many traffic
management and infotainment applications can also be implemented using vehicular
networks. Some of these applications include efficient route guidance, multi-player
games over the Internet, electric vehicles energy management and optimal traffic
signal timing.

The research in vehicular communication gained popularity when the U.S Fed-
eral Communications Commission (FCC) allocated 75MHz of bandwidth in the
5.9GHz band for vehicular communication. This bandwidth was named Dedicated
Short Range Communications (DSRC) spectrum [12]. Due to the popularity ofWire-
less LAN, an amended version of IEEE 802.11 was approved to be used for vehicular
communication [13]. This launched a series of projects and research efforts to stan-
dardize vehicular communication. The Wireless Access in Vehicular Environments
(WAVE) and theEuropeanTelecommunications Standards Institute (ETSI) laid down
a set of proposals for vehicular networks [14, 15]. These standards define the appli-
cation and communication requirements, protocol architecture and services provided
by the vehicular communications.

The WAVE and ETSI standards are shown in Figs. 2 and 3 respectively. Both the
standards allocate spectrum for vehicular applications in the 5.9GHz range. While
the 75MHz allocated in the WAVE standard is divided into 7 channels, ETSI divides
the 50MHz spectrum into 5 channels. One of the channels in both standards is
reserved for safety applications whereas the remaining channels are used for service
applications.

In the WAVE standard, the MAC and PHY layer functionalities are provided by
the IEEE 802.11p standard. The physical layer is similar to that of the IEEE 802.11
standardwith the channel bandwidth reduced by half and hence, all timing parameters
are doubled [16]. This is done to provide better protection against increased fading
associated with the vehicular environment. The MAC layer is based on the IEEE
802.11e standard that uses CSMA/CA protocol to coordinate multiple access.

Since the WAVE standard proposes the use of multiple channels (control and
service), the IEEE 1609.4 provides channel coordination and channel routing mech-
anism [17]. The Logic Link Layer (LLC) forwards the packet from the trans-
port/network layer to the appropriate channel. At the transport/network layer, the
TCP/UDP is used along with IP for non-safety messages. On the other hand, safety
messages employ the WAVE short message protocol (WSMP) to transmit priority
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Fig. 2 WAVE standard

messages with a low overhead. The resource manager, security services andmanage-
ment services are defined in IEEE 1609.1, IEEE 1609.2 and IEEE 1609.3 standards
respectively [18–20].

In the ETSI standard, the MAC and PHY layer incorporates different ad hoc and
infrastructure based wireless technologies [21, 22]. For example, it allows the use
of IEEE 802.11p, Wi-Fi, 3G and LTE. Such an integrated communication solution
enables a large number of vehicular applications. Another difference in the physical
layer of the ETSI from theWAVE standard is the use of different power spectral den-
sity values in accordance with the European regulations. At the Network and Trans-
port layers, various protocols could be used such as TCP/UDP, IP and geographical
routing based on the application requirements. The Facilities layer manages various
tasks that are needed by several ITS applications. Finally, the ETSI standard also
provides mechanism for management and security.
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Fig. 3 ETSI standard

The WAVE standard defines a single type of safety message known as the basic
safety message (BSM). This is a periodic message generated at a frequency of 1–
10Hz and used for cooperative awareness [23]. On the other hand, the ETSI standard
uses two types of safety messages known as the cooperative awareness message
(CAM) and the Decentralized Environmental Notification Message (DENM) [15].
While CAM is a periodic safety message similar to the BSM, DENM is an event-
driven message generated in case of an emergency. The latter is transmitted to certain
vehicles in a geographical area that could require the emergency information. The
CAM or BSM are single-hop messages whereas DENM could use multiple hops to
inform the relevant vehicles about the emergency.
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3 Protocols for Inter-vehicle Communications

Applications supported by VANETs rely on the efficient dissemination of multiple
traffic types to support various applications. For applications such as cooperative
awareness, periodic single-hop safety messages are transmitted on the control chan-
nel. Other applications including warning notification and electric vehicle informa-
tion system requires multi-hop transmissions on both control and service channels.
The protocols for inter-vehicle communications in literature can be grouped into two
broad categories, i.e., single-hop and multi-hop as shown in Fig. 4.

3.1 Single-Hop Protocols

Single-hop protocols efficiently transmit periodic safety message that are needed
for cooperative awareness. Due to the stringent packet transmission requirements of
safety messages, collisions due to hidden nodes severely degrade the packet recep-
tion rate [7]. To overcome this problem, single-hop protocols use different medium
access techniques such as Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA), Time Division Multiple Access (TDMA), Space Division Multiple
Access (SDMA), Busy Tone Multiple Access (BTMA) and Code Division Multi-
ple Access (CDMA). The strengths and weaknesses of each of these techniques are
presented in Table1.

The CSMA/CA protocol is the default MAC scheme in the IEEE 802.11p stan-
dard. It is popular due to its simplicity and multi-service capabilities. This technique
has been shown to maintain a high packet success rate in dense traffic. However, it
does not provide guaranteed channel access [15]. TDMA overcomes this problem of
guaranteed channel access, hence reducing the idle time. However, distributed time
slot allocation in a mobile ad hoc network is a challenging task. SDMA techniques

Fig. 4 Protocols for inter-vehicle communications
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Table 1 Strengths and weaknesses of medium access techniques for single-hop communications
in VANET

MAC Technique Strengths Weaknesses

CSMA/CA Simplicity No guaranteed channel access

Distributed communications

Multi-service capabilities

Default IEEE 802.11p MAC

High packet success rate in
dense traffic

TDMA Guaranteed channel access Distributed time slot allocation

Reduced idle time Reduced reception rate in

dense networks

SDMA Reduced hidden node
collisions

Bandwidth underutilization

BTMA Reduced hidden node
collisions

Separate channel for busy tone

Prioritized messages Expensive implementation

CDMA Robust against jamming Distributed code allocation

Robust against interference Complex receiver

use geographical location to allocate time slots, however bandwidth underutilization
is the main disadvantage [7]. BTMA uses busy tone mechanism to reduce the hidden
node collisions, however its down side is the requirement of a separate busy tone
channel. CDMA is a robust technique against jamming and interference, yet distrib-
uted code allocation and complex receive design makes it impractical to be used in
a vehicular network.

Based on CSMA/CA, many techniques exist in literature that adapt the transmis-
sion parameters to improve the quality of service for different vehicular applications.
These techniques include transmit power, packet generate rate, data rate, carrier sense
range and contention window control [24–38].

3.2 Multi-hop Protocols

Multi-hop transmission techniques are used to propagate information beyond the
transmission range in VANETs. For example, in a warning message dissemination
scenario, the warning vehicle notifies the vehicles within a geographical area about
the emergency situation. The main goal of the multi-hop protocols is to deliver
the emergency information with a high success rate, minimum delay and minimum
transmission overhead. However, hidden nodes and broadcast storm could result
in a large number of packet collisions, causing an increased delay and number of
transmissions.
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To overcome the above problems, several multi-hop protocols have been
proposed. They can be grouped into two categories, namely contention-based and
relay reservation-based. The techniques proposed in this category use a contention
mechanism to disseminate warning messages based on the distance between the
receiver and the source node. Each vehicle that receives the warning message cal-
culates a wait time or a probability of transmission which is inversely proportional
to its distance from the source vehicle [39]. In this way, vehicles that are at a longer
distance from the source vehicle are selected as the next relay vehicles and they
transmit the warning message. All other vehicles that receive the duplicate warning
message cancel their intention to rebroadcast. Distributed Vehicular broadcast (DV-
CAST) [40], Contention Based Forwarding (CBF) [41] and Opportunistic Broadcast
[42] are other popular protocols that use contention-based relay selection mecha-
nism. In the second category of multi-hop protocols, the protocols use the relay
reservation mechanism with the help of control packets to suppress the broadcast
storm. Urban multi-hop (UMB) [43], Smart Broadcast (SB) [44] and Time-slotted
Multi-hop (TSM) [6] are some protocols proposed in this category.

Related to electric vehicle information systems, [45] proposes a smart manage-
ment system for electric vehicle recharge. The proposed scheme aims to optimize the
use of distributed energy resources and control EV charging. Using a combination
of IEEE 802.11p and LTE, simulation is carried for two different charging station
assignments to evaluate the service delay. The work of [46] presents an algorithm
for optimized electric vehicle charging route selection that improves the energy uti-
lization and travel costs. Similarly, [2, 47] also proposed optimized charging route
calculation algorithms. Most of the work in the literature is directed towards finding
parameters for an optimal EV service. However, to the best of our knowledge, the
performance of electric vehicle information system is not evaluated.

4 Electric Vehicle Information Systems

In this section, an Electric Vehicle Information System (EVIS) architecture to sup-
port energy management service is presented. As shown in Fig. 1, electric vehicles
(EVs) equipped with a wireless transceiver (OBU) are traveling on a two-way road.
Separated by a certain distance Di , infrastructure nodes (INs) in the form of road side
units are placed. INs are connected with a central information server (CIS) using data
links of a communication technology such as a fixed broadband network or a high
data rate wireless link. In this architecture, EVs and INs are connected via VANET
communication links. It is assumed that all EVs are equipped with a DGPS unit that
supplies the position information to INs. Also, INs are aware of the position of other
INs located in the neighborhood area. The description of each node and its operation
in the proposed EVIS is detailed as follows.



328 M.A. Javed et al.

4.0.1 Electric Vehicles

While traveling on the road, Electric vehicles may require a number of energy man-
agement services such as location, the number of customers and the optimal choice
of charging station, etc. To request a particular service, an EV contacts the CIS by
sending an event-driven service request message using the nearest IN, as shown in
Fig. 1. The purpose of the service request message is to ask the CIS to provide EV
with the information about that service. The EV to CIS communication is supported
by an IN using a multi-hop V2I link and a fixed cellular hop.

4.0.2 Infrastructure Nodes

Infrastructure nodes are in continuous communication with the CIS which updates
it about different available EV services such as the location of different charging
stations in the vicinity, the number of customers in each of the station and the special
discounts offered. To update EVs with the information about different services, IN
could periodically broadcast service information on the service channel (i.e., one of
the many available SCHs available in VANETs).

Another function of the IN is to respond to a service request message by an EV.
Upon receiving a service request, an IN forwards the request to the CIS and the
corresponding reply is sent back to the EV via an IN. Due to vehicle mobility, an
EV may move out of the coverage range of the IN when the reply is returned. Based
on the reply message delay, the CIS may decide to return the reply to a number of
neighboring INs who can simulcast the message.

4.0.3 Central Information Server

A Central information server is connected with all available EV service providers
using a backbone network, receiving live updated information about different ser-
vices. This information is periodically transmitted to each IN. For example, for an
EV charging station application, the CIS finds the optimal charging station loca-
tion when an EV charging request message is received through the IN. Based on
desired selection criteria and an optimization algorithm, the CIS informs the IN of
the selected station.

4.1 Service Messages in an EVIS

4.1.1 Request/Response Messages

Request/Response messages are exchanged between the vehicles and the CIS, using
an IN as a relay node. On the uplink, vehicles transmit the service request messages to
acquire information about a particular service from the CIS. After the CIS processes
the request, it transmits the service response message back to the vehicles via an IN.
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4.1.2 Location Register Messages

These messages are used to update the CIS about the position of the vehicle who
initiates the request message. Depending on the vehicle speed and response time of
the CIS, the vehicle may have moved a significant distance while waiting for the
response message, as shown in Fig. 1. Consequently, the information of the closest
IN is outdated at the time of response message transmission. Since the mobility of a
vehicles depends on a number of factors such as road types and traffic conditions, it
is difficult to accurately predict its position at the time when the response message
is generated.

To overcome this problem, we propose that the vehicles who initiate a service
request transmit location register messages. Once a vehicle moves a certain distance
Dm , a single location register message is transmitted to the CIS using the nearest IN.
When the responsemessage is ready, the CIS uses the latest location register message
by that vehicle to select the nearest IN. This proposal improves the response time
because the shortest communication path on the downlink is utilized.

4.2 Segment Leader Selection

To improve the efficiency of multi-hop service messages, we propose to divide the
urban road into fixed size road segments and to select a segment leader per seg-
ment as a potential relay node. By allowing only the segment leaders to forward
the service messages, the broadcast storm is prevented and the number of transmis-
sions is reduced. Using the periodic safety messages, we choose the vehicle with a
longest remaining time in a given segment as the initial segment leader. Before the
segment leader leaves the segment, it appoints the next segment leader—the vehicle
with the current longest remaining time in that segment. A detailed description of
the segment leader selection procedure and its implementation can be found in our
previous work [6].

4.3 Multi-hop Time-Slot Reservation Mechanism

Since there are multiple vehicles transmitting different types of service messages on
the service channel, hidden node collisions may be present and thus significantly
degrade the quality of communication. To reduce such collisions, we propose to use
the time slot reservation mechanism for the service messages. The proposed time
slot structure is depicted in Fig. 5. Each time interval T is divided into two time slots
Ts and Tr . While Ts is reserved for the request/response messages, Tr is used for
the location register messages. Each of these two time slots is further divided into a
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Fig. 5 Structure of a time slot in the proposed multi-hop broadcast protocol

number of multi-hop time slots whose structure is shown in Fig. 5. As the sizes of
the request/response and location register messages are different, so are the sizes of
the multi-hop time slots in Ts and Tr .

The proposed time-slot reservation mechanism involves following phases:

4.3.1 BACKOFF

At the start of a multi-hop time slot, each vehicle who intends to send a service
message takes a random BACKOFF. Then, the vehicle with the smallest backoff
value transmits aCLEARmessage in the next phase to reserve themulti-hop time slot.

4.3.2 CLEAR

In this phase, a CLEAR packet is sent at a transmission range of Rt by the vehicle
whose backoff timer expires first. The CLEAR packet reserves the remaining of
the multi-hop time slot for the vehicle by letting other vehicles know of an upcom-
ing service message transmission. As a result, other vehicles suspend their service
messages until the start of the next multi-hop time slot.

4.3.3 DATA

After the CLEAR packet, the DATA (i.e., the service message) is sent at a half
transmission range of Rt/2. The purpose is to notify the upcoming transmission to
all hidden nodes located within two transmission hops from the service message
sender. The DATA can be either a request/response message or a location register
message. Depending on the DATA size, the size of multi-hop time slot can vary.

4.3.4 CONTENTION

The CONTENTION phase selects the segment leader farthest from the service mes-
sage sender as the next relay node. This is implemented using distance-based wait
time approach. All segment leaders who receive the service message initiate a wait
time that is inversely proportional to the distance between the servicemessage sender
and receiver. The farthest segment leader has the shortest wait time and hence acts
as a relay vehicle.
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4.3.5 ACK

The relay vehicle selected from the last phase (i.e., the farthest segment leader)
transmits an ACK packet. The purpose is to request other potential relay vehicles to
abandon their intention of transmitting a service message.

5 Performance Evaluation of Electric Vehicle
Information System

In this section, performance of the proposed time-slotted protocol for EVIS is eval-
uated for urban scenarios. We develop a network simulation model using OPNET
Modeler 16.0. We consider a bi-directional urban road traffic scenario with a total
size of 3.6km × 2.4km, and develop a model in MATLAB to simulate the traffic
mobility. We separate X INs by a distance Di within the road area. The number of
transmitting vehicles that send a query message to CIS is varied between 1 and 20.
The CIS response time is taken as 60 s.

The 40-byte location register message is sent by vehicles who initiate a service
request message once they have moved a distance of 50m. The background traffic
is the data traffic required for other periodic services and it is sent by every vehicle
to the nearest IN at the rate of 1Hz. To represent a medium fading intensity, we
assume Nakagami-m fading with m = 3. The practical parameters used in our simu-
lations are listed in Table2. Unless stated otherwise, we set vehicle density ρ = 180
vehicles/km2 and allow the vehicle speeds to be in the range of 40–70 km/h. The pro-
posed TSM protocol is compared with two other well known multi-hop techniques,
namely, DV-CAST [40] and SB [44]. As mentioned in Sect. 3, DV-CAST uses con-
tention based multi-hop technique where as the SB protocol belongs to the relay
reservation category. These two protocols are selected to compare TSM protocol
with a technique in each category of multi-hop protocols.

Figure6 plots the average number of uplink (service request) transmissions as the
number of transmitting vehicles (i.e., vehicleswho send a requestmessage to theCIS)
varies. As seen from the figure, the required number of transmissions increases as
more vehicles transmit. The average number of transmissions for the uplinkmessages
are 20, 27, and 31 when there are five transmitting vehicles for the proposed TSM,
SB and DV-CAST protocols, respectively. This figure increases to 104, 124 and 131,
respectively, as the number of transmitting vehicles is 20.

In Fig. 7, we display the uplink delay for the three protocols under consideration.
It is clear from the figure that the TSM protocol exhibits the lowest delay among
the three schemes. Specifically, when the number of transmitting vehicles is 20, the
uplink delay of TSM, SB and DV-CAST protocols is 63ms, 74ms and 76ms, respec-
tively. This improvement is due to the reduced number of potential relay vehicles
by the TSM protocol with the help of the segment leader mechanism. In addition,
the time slot reservation mechanism ensures an interference-free transmission of the
service messages. As a result, the TSM protocol requires the smallest number of
transmissions for the uplink messages (Fig. 8).
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Table 2 Simulation parameters

Parameter Value

Urban road Road area 3.6 km × 2.4 km

No. lanes 2 (one per direction)

Vehicle Density 90–180vehicles/km2

Speed 10–40 and 40–70km/h

Service message Size 500 bytes

Data rate 6Mbps

Transmission range 300m

No. of transmitting vehicles 1–20

Background traffic Size 500 bytes

Data rate 6Mbps

Transmission range 300m

Generation freq. 1Hz

Location register Size 40 bytes

Transmission range 300m

message Generation frequency 1 every 50m

IN and CIS No. of INs 3

Di 1km

CIS response time 60s

parameters IN transmission range 300m

Multi-hop T 100 ms

Ts 95ms

Tr 5ms

time slot Tmslot 1ms

Fading model Nakagami-m (m = 3)

Reception Rx th −91dBm

Background noise −99dBm

To evaluate the performance of the downlink messages, we compare our TSM
protocol with and without the location register (LR) messages. The results are also
compared with the SB technique. In Fig. 10, the average number of required trans-
missions are plotted. As seen, the location register mechanism significantly reduces
the number of transmissions required. This is due to the updated exchange of loca-
tion register messages between transmitting vehicles and the CIS, which selects the
nearest IN to transmit the downlink response message. Particularly, the location reg-
ister technique reduces the number of required transmission by 17% compared with
the scenario when the LR mechanism is not used. To provide an indication of the
number of time slots required for the downlink messages by the multi-hop TSM
protocol, Fig. 9 plots the cumulative distribution function (CDF) when there are 20
transmitting vehicles. Since the number of time slots are discrete values, the CDF
plot is also discrete and shows the variability in the time slot allocation.
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Fig. 6 Average number of required transmissions for uplink messages at ρ = 180 vehicles/km2

Fig. 7 Uplink delay for ρ = 180 vehicles/km2

The downlink delay is displayed in Fig. 10. With location register mechanism
included, the downlink delay is improved up to 16ms when the number of transmit-
ting vehicles are 20. This enhancement comes from the smaller number of required
transmissions when the location register mechanism is used. The reason behind the
improvement is that the CIS gets an updated information about the vehicle mobility
and chooses the nearest IN when transmitting the downlink response message. As a
result, the request/response messages are transmitted in less than 72ms.

To evaluate the effect of road traffic on the performance of EVIS, we plot the
downlink delay with the location register mechanism at different vehicle densities
and speeds in Figs. 11 and 12. As the vehicle density increases, the downlink delay
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Fig. 8 Average number of required transmissions for downlink messages at ρ = 180 vehicles/km2

Fig. 9 CDF plot of the number of time slots required for downlink messages by the TSM protocol,
assuming 20 transmitting vehicles and ρ = 180 vehicles/km2
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Fig. 10 Downlink delay for ρ = 180vehicles/km2

Fig. 11 Downlink delay performance of the proposed technique at different vehicle densities

also grows. This is due to a higher network load caused by the periodic background
traffic generated by every vehicle. In particular, when the number of transmitting
vehicles is 20, the downlink delay is 49, 61 and 72ms at a vehicle density of 90, 135
and 180vehicles/km2, respectively.

Figure12 plots the downlink delay at two different vehicle speed values. As can
be seen, the downlink delay is improved as the vehicle speed increases. This is
because at higher speeds, vehicles who transmit the query message move faster to
another IN when the response message is ready. With 20 transmitting vehicles, the
downlink delay at the vehicle speed of 10–40km/h and 40–70km/h is 99 and 72ms,
respectively.
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Fig. 12 Downlink delay performance of the proposed technique at ρ = 180 vehicles/km2 and
different vehicle speed

6 Conclusions

Themain goal of this chapter is to present the communication architecture of an elec-
tric vehicle information system (EVIS) for energymanagement services in aVANET.
We have started the chapter by introducing the research challenges in implement-
ing an EVIS. Such services require the exchange of request and response messages
between a vehicle and the central information server using an infrastructure node.
We have then reviewed the current standards and protocols in the literature for inter-
vehicle communications. To efficiently transmit themulti-hop servicemessages in an
EVIS, we have presented a time-slotted technique that actively deals with the broad-
cast storm and the hidden node collisions. To select the shortest path for the downlink
transmissions, we have proposed a location register signaling mechanism that helps
select the nearest IN. Finally, simulation results show performance improvements of
the proposed information transmission system in some key performance areas.
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RF Energy Harvesting Communications:
Recent Advances and Research Issues

M. Majid Butt, Ioannis Krikidis, Amr Mohamed and Mohsen Guizani

Abstract Green radio communications has got a lot of attention in recent years due
to its telling effects on telecom business and environment. On the other side, energy
harvesting (EH) communication has emerged as a potential candidate to reduce the
communication cost by tackling the problem in a contrasting fashion. While green
communication techniques focus on minimization the use of radio resources, EH
communication relies on environment friendly techniques to generate energy (from
the renewable resources) and effective use of created energy conditioned on the
fact that there is always energy available when required. Thus, the focus migrates
from minimization of energy to optimal time domain distribution of energy and this
causes a paradigm shift in radio resource allocation research. Instead of just focus-
ing on average and maximum power constraint, the packet/energy arrival processes
and packet/energy buffering interact in a challenging way to open new research
opportunities. This chapter summarizes the major research work in the area of radio
frequency (RF) energy harvesting resource allocation. First, we discuss the funda-
mental concepts related to energy harvesting communications. Then, we review the
recent developments in this area and outline the major research challenges for the
research community. We address the cooperation aspect of energy harvesting, which
has emerged as an interesting area of research. Wireless powered communication
networks allow energy and information transfer from the radio frequency waves and
provide sustainable networks. Finally,we discuss awireless powered relay network in
detail and show the performance comparison of different relay selection techniques.

1 Introduction

Green communication has attracted a lot of attention due to rising electricity cost
for network operation and its adverse effects on the environment because of CO2

emissions. It is predicted that the overall Information and Communication (ICT)
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Fig. 1 Shares of energy
sources in total global
primary energy supply in
2008 [9]. a Energy
contribution from the
different sources. b Energy
contribution for the
renewable energy sources.
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footprint will almost double or triple between 2007 and 2020 [7, 42]. In a mobile
network, base stations alone are responsible for 80 percent of the network’s power
consumption [30].

The cost of operating a site in a remote area is extremely high due to difficulties
in installation and maintenance. In some areas, the sites are operated by generators
requiring a continuous supply of fuel and the cost of transportation of fuel is a
significant part of the operational cost due to difficult terrain. Energy harvesting
(EH) has emerged as a promising solution to reduce the cost of network operation
and increase its sustainability. The research community has started to show some
interest in deploying sites based on energy harvesting from natural sources like the
sun and the wind. Figure1 shows the breakdown of energy sources in 2008 in global
primary energy supply [9]. Although, traditional means of energy still dominate yet
renewable energy (RE) sources contribute about 13% of the total energy supply. It
is worthwhile to mention that the capital cost of EH solutions is greater than the
traditional continuous power supply or generator counterpart, but the running cost
compensates the cost in a few years of operation.

EH brings a few associated challenges for the network designers. The traditional
power supply from the grid provides an uninterrupted energy supply for commu-
nication. In contrast, EH communication has to deal with a time dependent energy
supply. For example, the sun light is available throughout the day but not at night.
In this case, the harvesting period is constant for a long time. However, energy har-
vested by wind and other sources may not follow this long pattern of harvesting and
harvesting periods may vary stochastically. In contrast to traditional communication
system design for energy efficiency by maximizing the use of favorable channel
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Sources
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Fig. 2 The block diagram for a typical EH communication system

conditions, EH communication focuses on smart use of energy such that energy is
always available for future use. This conversation of energy and adaptation of com-
munication systems according to EH profiles such that energy expenditure is always
less than the stored energy at any time is termed as neutrality constraint or causality
condition in literature [3, 20]. Thus, energy profile (energy arrival process) impacts
the underlying communication scheme enormously.

Figure2 shows block diagram for a typical energy communication system. The
system design depends on the energy harvesting profile (source), the data trans-
mission requirements and storage buffer. The storage structure defines the storage
management system for the harvested energy. For example, EH systems can be
designed by considering ideal/non-ideal storage of energy (buffer). Similarly, the
arrived energy can be modeled by using either online or offline assumptions. Offline
schemes are of interest when the amount of harvested energy, channel conditions
and the amount of incoming data for all transmission intervals are known in advance
while online allocation schemes are only based on causal information regarding the
channel conditions, harvested energy and the amount of data to be transmitted. Based
on the fact that the EH profile and the channel conditions are random in nature and
cannot be predicted in advance, online allocation schemes are more realistic in this
case. However, offline schemes are important to provide performance upper bounds
for the practical online schemes.

In the rest of this chapter, we introduce the fundamentals of radio resource allo-
cation in EH communication. Then, we mainly focus on the energy harvesting com-
munication where energy is harvested from radio frequency (RF) waves. We provide
example of a system design where relay selection is performed for a single source,
single destination system.

2 Modeling Energy Harvesting

EH profile model is one of the crucial and important factors in designing the resource
allocation mechanisms for EH systems. The EH profile defines the harvested energy
at an EH node as a time critical function. Depending on the types of different sources
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of energy which have significant environmental influence, one has to be very careful
while designing the EH profile models in different scenarios. The energy sources
can be categorized as fully deterministic and non-deterministic. The energy arrival
from the sources can either be anticipated or it can be unpredictable as in the case of
solar or wind energy sources. Although there are several natural sources for EH such
as wind power, solar energy, vibrational energy, geothermal energy, hydroelectric
power, bio fuels, natural gas, nuclear energy yet, the main renewable energy sources
considered for wireless communications are solar and wind power. However, these
EH sources need to be managed properly before utilizing the harvested energy. For
example, practically there is no energy output at night from any solar cell. Therefore,
solar energy which is harvested during day time can be stored in a storage buffer
for later use when there is no available energy to harvest in the system. Thus, load
profile controllers can play a vital role according to the availability of the harvested
energy. To ensure that the neutrality constraint is met, not only we rely on the profile
of the available energy, but we need to model and implement it in an efficient way
as well.

A deterministic system model is the one where the model parameters such as
energy arrival time and rate for EH profile are always considered to be determined
and this type of model always produces unique outputs from a specific initial state.
However, we cannot always consider the arrival process deterministic and have to
model it as a stochastic or non-deterministic process. Traditionally, the approach of
modeling EH profile treats stochastic process as a function of one or more determin-
istic attributes such as energy arrival time, amount of energy, etc., whose outputs are
random variables or non-deterministic quantities and having certain probability dis-
tributions. Since EH nodes can replenish their supply of energy in an un-predictable
way, they require more sophisticated energy arrival process modeling.

In the next section, we review the most common energy harvesting profile models
employed in the literature.

2.1 Markovian Model

A Markov chain is a discrete-time process where the future behavior (state) only
depends on the present (state) and not on the past. For example, at time epochs
n = 1, 2, 3, ... the Markov process changes from the current state i to the next state
j in a systemwith transition probability pi j . In a discrete-timeMarkov chain process,
state transitionmechanisms can be expressed by using a transition probabilitymatrix.
Many queuing models are in fact Markov processes. As the energy arrival process
of an EH node can be characterized as a queuing model, Markov model is used
extensively in the literature. For example, the energy state of an EH node is modeled
as a discrete-timeMarkov chain in [45]. In this model, Yang et al. choose the Poisson
process as the energy model and transfer it into a Bernoulli process for a slotted
CSMA/CA system. Each state in the model, e(t) ∈ {0, 1, . . . N − 1} denotes the
amount of energy on a certain time slot. The authors assume that an EH node can
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transmit only when its energy exceeds the threshold energy and the energy to sense
the channel status (busy or idle) is smaller than the recharging rate, so that the EH
node can get positive net energy gain while it keeps listening and recharging.

2.2 Storage Capacity Considerations

The EH profile model without storage buffer is not suitable in the application of
wireless networks. As the natural source of energy like sun or wind cannot be con-
tinuously supplied to an EH node, it is wise to store the finite energy in a finite storage
buffer periodically. Most of the models mentioned in the literature consider a lim-
ited/infinite capacity storage buffer like a battery in their proposed designs. The main
purpose of storing harvested energy is to minimize the delay in data transmission
and to extend the energy sustainability of the wireless node.

We discuss example of an EH profile model which employs both Markovian
model and energy storage [24]. Let us consider a single hop transmission over a
replenishable sensor network. The stationary time-continuous Markov chain model
is introduced to provide optimal transmission policy for wireless sensor nodes with
different energy budgets to maximize the average reward. For an N-state Markov
process, the reward is modeled as a physical quantity or economic unit relevant to
the transition from one state to another. Figure3 shows this Markov process of a
sensor having its energy replenished from both replacement (Poisson) process and
recharging (Poisson) process.

Another power management model is proposed in [14] with a two-stage algo-
rithm. The authors assume known, but varying channel states and harvesting instants.
However, the coherence time for the channel is considerably shorter than the con-
stant harvesting period. Due to fairly long harvesting interval, the authors consider
constant available harvested power for a transmission time slot in the first stage of
the algorithm and apply power control as a function of channel gain to maximize
the average data rate. In the second stage, constant power for the first phase is opti-
mized by modeling energy neutrality operation as a function of the harvested power
to maximize the average rate for the first stage.

0 1 2 3 N….

α
α

α

β β β α + β

λN,1 λN,2 λN,3 λN,N

Fig. 3 Hybrid EH model for the energy state information based on Markov process [24] where α

and β are old battery replacement rate and recharging rate, respectively
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Another model in [33] defines the ambient energy supply by a two-state Markov
chain where “GOOD” and “BAD” states correspond to an abundance and scarcity
of ambient energy, respectively. The amount of energy at time m + 1 is defined as

Em+1 = min{Em − Qm + Bm, cmax }, (1)

where Bm is the energy arrival process, Qm is the action process and cmax is the battery
capacity. Qm = 1, if the current data packet is transmitted. Bm ∈ {0, 1}, models the
randomness in the energy harvested in slot m, i.e., either one energy quantum is
harvested, or no energy is harvested at all. In this model, the authors assume that
each position in the storage buffer can hold one energy quantum and the transmission
of one data packet requires the expense of one energy quantum.

Most of the recent work on communication systems with EH capability assumes
that EH is the only source of energy. However, the concept of hybrid energy sources
has also drawn interest. In general, a hybrid energy source is defined as a combination
of a constant energy source, e.g., power grid, diesel generator, etc., and an EH source
which harvests energy from the sun, wind, etc. Thus, allocating power for such a
communication system is a challenging problem. For a point-to-point communication
link, both offline and online power allocation schemes for an EH transmitter with a
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Fig. 4 Power consumption against harvesting rate in Joules (normalized by one harvesting interval)
for the case where all the data packets have arrived before the transmission begins [2]. The results
show that harvested energy is efficiently utilized for transmitting a given number of data packets
over a finite number of transmission intervals by maximizing the power consumption rate from the
harvester
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hybrid energy supply have been proposed in [2]. The aim of this work is to minimize
the amount of energy drawn from the constant energy source, such that the harvested
energy is efficiently utilized for the transmission of data packets over a finite number
of time slots. For thework in [2], Fig. 4 illustrates the performance gain quantitatively
for the case where the data packets to be transmitted arrive in the system before the
transmission begins and no packets arrive during the transmission. It is evident that
the offline power allocation scheme performs better than the Dynamic Programming
(DP) based online power allocation scheme. For the high harvesting rate, the offline
scheme makes efficient use of the harvested energy whereas the online schemes may
under-utilize the harvested energy and result in a lower consumption of the harvested
energy.

3 Wireless Energy Transfer

Energy cooperation has emerged as an attractive research area in EH wireless sys-
tems where the EH network nodes share their energy resources to enhance the sys-
tem energy efficiency. Like relay networks where user cooperation is introduced to
enhance the system throughput by exploiting the broadcast nature of wireless com-
munications, similar techniques are employed in EH systems by sharing the energy
as well as information among the various nodes in the network. Thus, in addition to
other natural harvesting sources like solar or wind, RF signals can also be used as a
potential source of EH in wireless communication.

First, we survey the EH works where wireless energy transfer technique has been
incorporated to prolong the network life time or develop an energy efficient system
[1]. RF-based EH is quite suitable for low-power applications. RF signals that carry
energy can be used as a carrier for transporting information at the same time [47].
This is termed as simultaneous wireless information and power transfer (SWIPT) in
the literature. Zhang et al. study SWIPT by considering simplified scenarios with
only one or two active user terminals in the network at any given time [47]. The
authors investigate two practical receiver designs, termed as time switching and
power splitting, for a three-node multiple-input multiple-output (MIMO) broadcast
system where the EH and information decoding (ID) receivers harvest energy and
decode information separately from the signal sent by a common transmitter. In the
time switching protocol, the receiver spends some time for EH and the remaining
for information processing while in the power splitting protocol, the receiver uses
a part of the received power for EH and the remaining for information processing.
Zhang et al. further focus on the power splitting scheme for a point-to-point single-
antenna flat-fading channel in [26]. The authors propose a scheme called dynamic
power splitting (DPS), where the receiver is capable of dynamically adjusting the
power split ratio for ID and EH based on the known CSI at the receiver. They assume
that the transmitter has a conventional constant power supply, whereas the receiver
harvests energy from the received signal sent by the transmitter. For the single-input
single-output case, the authors show that to achieve the optimal rate-energy trade-off,
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a fixed amount of the received signal power should be allocated to the information
receiver and the rest of the power should be allocated to the energy receiver when the
fading channel gain exceeds a given threshold [47]. For the single-input multiple-
output case where the receiver is equipped with multiple antennas, they extend the
result for DPS by considering a uniform power splitting scheme.

A more practical receiver design for SWIPT is studied in [48] for a point-to-
point wireless link where three special cases namely time switching, static power
splitting and on-off power splitting of DPS are investigated. The time switching
scheme proposed in [47] is further investigated in [27] for a point-to-point single-
antenna flat fading channel. Two energy efficient resource allocation algorithms for
multi-carrier systems employing hybrid information and EH receivers are proposed
in [35, 36]. This work has been extended in [37] by introducing an algorithm for
power splitting receivers where the authors consider both continuous and discrete
power splitting ratios. Data multiplexing of the users on different sub carriers is also
incorporated in the algorithm design.

The resource allocation algorithm design for secure multiuser multiple-input
single-output (MISO) systemswith concurrentwireless information and power trans-
fer is discussed in [38, 39], where the authors formulate an optimization problem
with the objective ofminimizing the total transmit power constrained byQoS guaran-
tees in terms of minimum SINR at the desired receiver and minimum power transfer
to the idle legitimate receivers. Secure communication in MISO SWIPT systems
is also studied in [28] where a multi antenna transmitter sends information to one
information and multiple energy receivers simultaneously. The secrecy rate for the
information receiver is maximized for the constraints on minimum received energy
by the energy receivers. As compared to a perfect CSI case in [28, 38, 39], the chan-
nel uncertainty case for MISO SWIPT is addressed in [8]. SWIPT in a multiuser
OFDM system is also discussed in [49] where the users harvest energy and decode
information using the same signals received from a fixed access point. In a recent
work, SWIPT in a MISO multicast network is studied [18].

In the context of wireless energy transfer, wireless powered communication net-
works refer to the protocol of separate transmission of wireless energy and infor-
mation. For example, energy from an access point is transferred to the terminals in
downlink transmission and information scheduling is performed in uplink transmis-
sion as shown in Fig. 5. Ju et al. in [19] propose a protocol termed “harvest-then-
transmit”, where in the first phase, wireless energy is broadcasted by the hybrid
access point to all the users in the downlink. Then in the second phase, the users send
their independent information to the hybrid access point in the uplink using their
individually harvested energy by time-division-multiple-access. The authors mainly
focus on maximizing the uplink throughput of the wireless powered communication
networks by optimally allocating the time for the downlink wireless energy transfer
by the hybrid access point and the uplink wireless information transmissions by dif-
ferent users. Solution of this problem reveals an interesting new phenomenon in the
wireless powered communication networks. Ju et al. termed it as “doubly near-far”
phenomenon. It depicts that when a far user receives less amount of wireless energy
from the hybrid access point than a nearer user in the downlink, then it has to transmit
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Fig. 5 Wireless power
networks with energy
transfer in downlink and
information transfer in
uplink
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with more power in the uplink for achieving the same information rate. It occurs due
to doubly distance-dependent signal attenuation in both the downlink and the uplink.
The authors propose a new performance metric referred to as common-throughput
to overcome the doubly near-far problem. This metric consists of an additional con-
straint which indicates that all users should be allocated an equal rate in their uplink
wireless information transfers without considering the distance to the hybrid access
point. This work has been extended to the case of multi-antenna systems in [25]. A
similar work in [44] maximizes the transferred power to the users in downlink for a
signal to noise and interference constraint for the multi-antenna settings. The rate-
energy tradeoff for a SWIPT based multiuser wireless system is investigated in [23]
for different collaboration schemes between the transmitters. In contrast to “harvest-
then-transmit” protocol in [19], “harvest-use-store” architecture is proposed in [46]
which helps to combat energy loss to storage device inefficiency.

EH from RF radiations is also investigated in [21] where a large scale network
utilizing SWIPT is considered, in which the transmitters are connected to a power
grid and the receivers employ the power splitting technique. The author studies the
performance of the network by modeling the random location of nodes according to
a homogeneous Poisson point process and derives the outage probability as well as
the average harvested energy as a function of the power splitting ratio with the help of
tools from stochastic geometry. Two protocols are examined, a non-cooperative and
a cooperative, and it is shown that the cooperative protocol can significantly improve
the performance of the system and achieve a better trade-off between the outage
probability and the average energy transfer. Additionally, for the non-cooperative
protocol, an optimization problem is formulated and solved which minimizes the
transmitted power under the outage probability and EH constraints. Figure6a, b show
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the fundamental trade-off between information decoding and EH; the interference
degrades the outage performance while it increases the average harvested energy.

A stochastic geometry approach for wireless energy transfer has also been stud-
ied in [15]. The authors model an uplink cellular network where the mobiles are
recharged via microwave radiation by power stations. The base stations and power
stations form independent homogeneous Poisson point processes and the mobile
users are distributed uniformly in the corresponding cells with respect to the base
stations. Using this model, the authors derive trade-offs between the network para-
meters. Specifically, under an outage constraint, it is shown that the minimummobile
transmission power increases super-linearly with the decreasing density of the base
stations.

4 Wireless Energy Powered Relay Selection

Relay selection based on wireless energy transfer has received a lot of attention in
the literature. A relay node performs SWIPT operation from the RF signals from the
source and relays the information to the receiver. In [5], multiple source-destination
pairs which communicate through an EH relay in a wireless cooperative network are
considered. By assuming that the battery of the relay is large enough to accumulate a
large amount of power for transmissions, the authors investigate how the power can
be distributed efficiently among the receivers. Four scenarios are taken into account:

1. The relay transmits to the i th destination by only using the energy harvested
from the i th source. This results in the outage performance decaying at a rate
log(SNR)/SNR.

2. The relay distributes the accumulated power harvested from the sources evenly
among the transmissions. This results in the outage probability decaying at a rate
1/SNR.

3. The relay prioritizes the transmissions to receivers with a better channel (water
filling principle). This scenario achieves optimal performance.

4. The relay allocates transmission power to each receiver according to a bid each
receiver submits to the relay (auction based power allocation scheme). This sce-
nario achieves a better trade-off between the system performance and the com-
plexity.

RF-based EH relays are also investigated in [34]. An amplify-and-forward wire-
less cooperative network is considered, where the relay nodes harvest energy by
employing one of the two relaying protocols: a time switching protocol and a power
splitting protocol. A performance analysis for the throughput is derived for both
delay-limited and delay-tolerant transmission modes and a comparison of the two
protocols is provided with details of the effect of various system parameters. Wire-
less energy cooperation for the delay-limited communication system has also been
studied in [40] with the objective of minimizing the loss probability due to violation
of the packet delay deadline.
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A three-node cooperative amplify-and-forward network is discussed in [22]where
the relay node performs either harvesting or relaying operation according to a greedy
switching policy based on the residual energy in the relay node. The energy transfer
throughRF signals between the source and the relay node is the key factor to establish
the energy cooperation in this proposed system. The charging/discharging mode of
the relay’s battery is represented by a finite Markov chain and the performance is
evaluated in terms of outage probability. In addition, the authors show that the greedy
switching policy is an efficient solution by demonstrating that its performance is
close to the performance of an optimal switching policy which incorporates a-priori
knowledge of the channel coefficients for the whole transmission period.

A study for relay selection methods in an RF-based EH network with N relays
is made in [32]. The relays are used for transmitting information to a designated
receiver and for transmitting energy to a designated RF energy harvester. For the
case N > 2, two relay selection methods are developed and analyzed in terms of the
achievable trade-off between the outage probability and the average energy transfer
as well as the trade-off between the ergodic capacity and the average energy transfer.
Furthermore, for the case N = 2, an optimal relay selection method is developed
which provides the maximum capacity and the minimum outage probability for a
given energy transfer constraint as well as the maximum energy transfer for a given
capacity or outage probability constraint.

In [11], for a simplemulti-hopwireless communication system, an energy cooper-
ation technique is discussed where the source and the relay nodes can harvest energy
from natural sources. The authors assume that the source node can transfer a por-
tion of its energy to the relay node. There is a separate wireless energy transfer unit
installed in the source node which helps to send a portion of its energy to the relay
so that the relay can forward more data. The relay here operates in full duplex mode.
When the source transfers δi amount of energy to the relay through the wireless
energy transfer unit, this amount of energy enters the energy queue at the next time
slot. Thus, the queues of the relay are updated with one slot delay with respect to the
queues of the source. Similar work in [10, 12] discuss a two-way communication
channel where users can harvest energy from nature and the energy can be transferred
in one-way from one of the users to the other by assuming that both users know the
energy arrivals in advance.

Another cooperative transmission strategy for multiple source-destination pairs
and one EH relay is proposed in [6]. In this strategy, the authors discuss the coop-
erative communication in two different phases. In phase one, each source sends its
message to the relay and their power is shared under the total power constraint. In
phase two, the relay first tries to decode the message and then carries out EH if there
is any power left after decoding. Finally it delivers the correctly decoded message to
the destination. In this model, the sources communicate with the relay via orthogonal
channels, and no direct source-destination link is assumed. Similar work for direct
and cooperative communication is also discussed in [17] where the performance
of the transmission techniques is analyzed in terms of outage probability. Several
transmission models are proposed for both direct and cooperative communication
by considering the energy gathering and the energy salvage techniques during trans-
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mission. For a multi-access relay model, the transmit power allocation and energy
transfer policies that jointlymaximize the sum-rate are discussed in [43]. The authors
consider all the nodes as EH nodes which are used for data transmission and they
term this approach as bi-directional energy cooperation. Although Tutuncuoglu et al.
derive the solution for the sum-rate maximization problem for multi-source model,
they also consider special cases such as the single source model with a forward
energy transfer capability for the same problem.

To demonstrate SWIPT based relay selection, we discuss a specific example in
the next section, where relay selection is performed for a systemwith relays powered
by RF signals from the source node.

4.1 System Model and Problem Formulation

We consider a Decode-and-Forward (DF) strategy based relaying communication
systemwhere a sourcenodeScommunicateswith adestinationnodeD in thepresence
of N relays, represented by symbol L as shown in Fig. 7 [4]. The communication
from the source to relay and relay to destination takes place in two orthogonal time
slots where duration of each slot is denoted by T . We assume a fixed transmit power
Ps at the source and a broadcast channel for the source-relay communication phase
is considered.

Source (S)
(D)

L1

L2

L3

LN

Hybrid Relays

hS1

hS2

hS3

hSN

h1d

h2d

h3d

hNd

Fig. 7 Systemmodel for relay selection with a single source, single destination and multiple relays
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The relay nodes are hybrid, i.e., they have the ability to harvest energy as well
as retrieve the information from the source signal, but only one function can be per-
formed in a given time slot t . The relay selected at time t to forward information to the
destination is not available to harvest energy or forward information from
the source at time slot t + 1 due to assumption of orthogonal communication on
the S → L and L → D links. However, the relays other than the selected one are
free to receive data/energy, thereby mimicking a full-duplex relaying system [16].
The harvested energy is stored in a battery of an infinite capacity and the energy
stored in the battery is assumed to increase and decrease linearly.

We assume independently and identically (iid) distributed fading channels on the
S → L and L → D links which follow block fading model. The received signal
yi (t) at the relay node Li is expressed as:

yi (t) = 1√
d2

i

√
Pshsi x(t) + n(t) (2)

where x(t) and di denote the normalized information signal from the source and the
distance between the transmitter and relay i , respectively. di is assumed to be unity
throughout this work without loss of generality. n(t) ∼ Z(0, σ 2) is the Gaussian
noise with zero mean and variance σ 2 while the channel gain coefficient for S → Li

link is represented by hsi .
The rate Rsi (t) provided on the S → Li link in a time slot t is given by

Rsi = 1

2
log2

(
1 + |hsi |2 Ps

σ 2

)
. (3)

Similarly, the rate Rid on the Li → D link is given by,

Rid = 1

2
log2

(
1 + |hid |2 Pr

σ 2

)
. (4)

Pr is the relay transmit power and hid denotes the channel gain coefficient for the
Li → D link.

For a DF relaying strategy in a grid powered cooperative relay system, the outage
probability that a rate R is not supported by the system is given by

Pout = Pr
(
min(Rsi∗ , Ri∗d) < R

)
(5)

= Pr
{
min

(1
2
log2(1 + |hsi∗ |2 Ps

σ 2
), (6)

1

2
log2(1 + |hi∗d |2 Pr

σ 2
)
)

< R
}

where Li∗ denotes the selected relay node. For an energy harvesting DF relay system,
(5) is a lower bound on outage probability because additional outages occur due to
power limitation of the energy harvesting relays.
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The energy harvested by the i th relay node during a single time slot is given by
[34, 48]

Eh
i = ηPs |hsi |2 T (7)

where 0 < η ≤ 1 is the energy conversion efficiency which depends on the receiver
circuit hardware and antenna sensitivity.

4.2 Problem Settings

We express the relay selection problem with the goal to minimize the outage prob-
ability and formulate the outage probability minimization problem for a multiple
relay network:

minπ Pout (8)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

N = c1, c1 ∈ N

Ps = c2,

R ≥ 0

Rsi = 1
2 log2(1 + |hsi |2 Ps

σ 2 )

Rid = 1
2 log2(1 + |hid |2 Pr

σ 2 )

Eh
i = ηPs |hsi |2 T

(9)

where π is the relay selection scheme and c1 and c2 are the constants representing
a fixed number of relays in the system and fixed source power, respectively. As the
network is operated by the energy harvested from the source RF signals, there must
be sufficient (or at least one) charged relay nodes in a given time slot to be able to
forward the signal successfully in order to avoid the outage event. Thus, there is a
tradeoff between the number of relay nodes in EH mode and the number of nodes
available for information transfer for a given transmission. The larger the number of
nodes in EH mode, the more inefficient is the use of L → D link for information
transfer in the current time slot, but more energy is available for information transfer
in future. This is the main reason that EH communication focuses on meeting the
neutrality constraint in contrast to making the best use of available resources using
opportunistic communications solely in the current time slot.

5 Relay Selection Schemes

We assume that the CSI is not available both at the source and the relay for the S → L
link. Similarly, the CSI is not available at the destination node for the L → D link. In
relation to availability of the CSI at the relay node on the L → D link, we consider
two cases which govern the relay selection strategy:
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• The CSI at relay is causal and not available.
• The CSI is known at relay node before transmission on the L → D link.

The proposed schemes act in a centralized manner as they are based on the shared
information of the stored energy levels for the relays and the CSI on the L → D
links (when available).

5.1 Single Relay Selection (SRS)

First, we assume that the CSI is not available at the relay for transmission to the
destination and therefore, the selected relay transmits with a fixed power Pr . The
forwarding relay is selected solely based on the stored energy at the relay nodes as
no other information is available to be exploited. In this case, only a single relay node
Li∗ is selected out of N nodes to decode and forward the information. We take this
case as a baseline and compare results with our scheme in the next section. Similar
to [29], the node Li∗ with the maximum stored energy from the N candidate nodes
is selected such that:

i∗ = argmax
i

(
E store

i (t) − Er
)+

(10)

where Er is the energy spent due to transmission with fixed power Pr and E store
i (t)

denotes the stored energy for the relay Li at time t . The notation x+ represents
max(x, 0). Note that the relay selection is performed before the signal reception
from the source and therefore, all other relays can harvest energy from the received
RF signal using harvesting circuit. If E store

i (t) < Er ,∀i , no node is selected and all N
nodes harvest energy. For the case Rsi∗ < R, node i∗ is unable to decode information
from the source and results in an outagewithoutmaking a transmission on the L → D
link.

All the nodes except Li∗ harvest energy depending on the received signal strength
from the source such that

E store
j (t + 1) = Eh

j (t) + E store
j (t), j 	= i∗ . (11)

As mentioned in Sect. 4.1, the selected node i∗ is not a candidate for selection in time
slot t + 1 for the both proposed schemes and therefore, the energy update is only
meaningful for time slot t + 2. Note that E store

i∗ (t + 1) = E store
i∗ (t).

Thus, the corresponding stored energy after transmission for the node i∗ is
given by,

E store
i∗ (t + 2) = E store

i∗ (t + 1) − Er . (12)

If we increase N , we havemore relays to choose i∗ for data transfer to the destination.
This results in decrease in outage.
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5.2 Multiple Relay Selection (MRS)

In this case, we assume that the CSI is known at the relay node for transmission to the
destination. However, signal from the source is received in time slot t and transmitted
to the destination in time slot t + 1. On one side, it is important to select a relay for
forwarding with relatively high stored energy. On the other side, it is important to
exploit availability of CSI on the L → D link for optimal power allocation, but it is
available only at time t + 1. Based on the available information in two successive
time slots, we propose a 2-step relay selection policy where contrast to SRS, multiple
relays are selected in first step.

In the first step, a subset Γ of M relays is selected out of N relays such that

Γ M×1 = {i : E store
i ≥ γM} (13)

where γM defines the stored energy of the node with M th largest stored energy.
Equation (13) states that Γ contains elements with M largest stored energies out of
N relays. As the fading distribution is iid and the CSI for the next time slot is not
available at time t , the selection is based on the known stored battery condition for the
relays. All the nodes i ∈ Γ (attempt to) decode the information from the source and
cannot harvest energy in time slot t while rest of the N − M nodes harvest energy.
We limit the cardinality of the set Γ to a fixed value M ≤ N where M is a system
parameter to be optimized.

Then, a set Λ is selected out of M nodes that can retrieve the information from
the signal on the S → L link such that

Λ = {i : i ∈ Γ, Rsi > R} (14)

As the CSI at relay nodes in Λ is available at the time of transmission in time slot
t + 1, a single relay Li∗ from the set Λ is selected such that

i∗ = argmax
i∈Λ

(
E store

i (t + 1) − Ei
r (t + 1)

)+
(15)

where Ei
r (t + 1) results from power allocation Pi

r (t + 1) and given by,

Pi
r = (22R − 1)σ 2

|hid |2 (16)

If E store
i (t + 1) < Ei

r (t + 1),∀i ∈ Λ, no node is selected for transmission which
results in outage, but avoids energy loss due to unsuccessful transmission from
node i∗.

If E store
i∗ (t + 1) ≥ Ei∗

r (t + 1), the stored energy for node Li∗ is updated such that

E store
i∗ (t + 2) = E store

i∗ (t + 1) − Ei∗
r (t + 1) (17)
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The rest of the nodes harvest and the stored energy depending on the received signal
strength from the source is given by,

E store
j (t + 1) =

{
Eh

j (t) + E store
j (t), j /∈ Γ

E store
j (t), j ∈ Γ, j 	= i∗ .

(18)

We notice that parameter M controls the outage probability for a fixed N . There is
a tradeoff associated with selection of M . Increasing M makes the relay selection in
(15) more opportunistic due to large cardinality of setΛ and more freedom in choos-
ing i∗ in (15). However, note that all i ∈ Γ do not harvest energy and their storage
level remains the same. In this work, we assume no leakage factor but practically,
there is a leakage in storage for every node in each time slot even if the node is not
transmitting. Large M implies that less number of nodes are charging their batteries
and therefore, the storage at system level keeps on decreasing and causesmore outage
(network failure). Therefore, there is an optimal M ≤ N for the proposed scheme
which maximizes the performance.

Given that we have MRS policy π(M, N ) for relay selection, the parameter opti-
mization problem is formulated by

M∗(R, η) = arg min
π(M,N ),0<M≤N

Pout (19)

with the same constraints as in (9). The value of M∗ depends on the number of relays
in the system N and energy harvesting efficiency η.

5.3 Numerical Results

We assume independent Rayleigh fading channels with mean 1 for the channels
on the both S → L and L → D links. 20000 iterations are performed to compute
outage probability numerically for the simulation results. The relays are assumed to
be equidistant from the source with d equals one. Signal to noise ratio (SNR) on the
S → L link is 10 db with σ 2 = 1.

Figure8 shows the outage probability for the SRS scheme when N is fixed. As
the CSI is not available at the relay node, Pr is fixed to 10 dBW. As expected, the
outage probability increases as R increases. The number of relays N and energy
harvesting efficiency η are important factors to characterize the scheme. For a fixed
value of N , a decrease in η results in decreased harvested energy for the relay nodes.
When η is decreased initially, Pout remains the same as for N = 5 case with η = 0.5
and η = 0.4, which implies that at least a single node is always available with enough
harvested energy. However, if η is too small, the probability that no relay has enough
energy to make a successful transmission increases as evident for the case N = 5,
η = 0.2 in Fig. 8. When η is very small, the outage is observed even for very small
R as the selected relay must have enough energy to transmit with power Pr = 10
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Fig. 8 Outage probability for the SRS scheme for different N and η values

dBW regardless of R. This region can be termed as power limited region where the
outage performance is dominated by the harvested energy as compared to the large
rate region where the channel distribution determines the outage behaviour and the
power limitation effect almost vanishes.

The same effect is observed with small N where the effect of small η is even
more pronounced as N − 1 relays harvest energy in a single time slot. Limiting N
exaggerates the power limitation effect due to poor energy harvesting efficiency. As
η in practically available systems is too low, it is important to have large N to reduce
the effect of small η. For example, N = 20 in Fig. 8 improves outage performance
considerably at small R as compared to N = 5 case when η = 0.2.

Figure9 shows the outage performance for the MRS case. As the CSI is known
at the relay node for transmission on the L → D link, Pi

r is determined by (16).
For a fixed N , we plot the outage probability curves for different values of M and
determine the optimal value M∗ numerically. As discussed in Sect. 5.2, the outage
probability for M > M∗ is not optimal due to sub-optimality in energy harvesting
from the RF signals while M < M∗ results in too small group of candidate relays to
exploit multiuser diversity significantly in time slot t + 1 on the L → D link. For the
numerical example with N = 10, M = 5 provides the optimal outage performance.

Figure10 compares SRS and MRS schemes for the same value of N . MRS out-
performs SRS scheme even for M = 1 case thanks to power allocation according
to available CSI at relay on the L − D link. However, the performance improves
considerably when M = M∗ for the MRS scheme.
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6 Radio Resource Allocation: Challenges and Potential

A key aspect that affects the link performance of EH wireless nodes is the energy
profile, which models the availability of energy with time. In other words, we can
define the energy profile as a statistical analysis of available energy during a specific
course of time. During the analysis of EHprofile, the following common assumptions
have been made:

• Infinite energy and data storage to store unlimited energy/data.
• Ideal storage buffer without any leakage due to inefficiency in storage.
• The profile of the harvested energy is known in advance (offline).

These assumptions influence the performance of an EH profile greatly. For instance,
ideal and infinite energy buffer should not be the appropriate selection for practical
implementation of such systems. Though this issue has been addressed in [2, 22],
it would be interesting to investigate the performance without making idealistic
assumptions for more complex EH wireless communication applications.

Energy profile and its parameters (transmit energy per measurement to the energy
profile, battery capacity of theEHnode, etc.), in general, depend on the characteristics
of the device physics. One of the important factors for allocating resources is to tune
these parameters accurately. Various analytical models have been considered to tune
these parameters for the EH profile. For example, the Markov model is one of the
most common techniques used in the literature [13, 31, 41]. For possible future
research scope, we need to think of modifying the proposed models by incorporating
the multiple levels of harvested energy for a given time interval.

Recent work on EH has produced some useful analysis techniques and novel algo-
rithms for managing resources with uncertainty about their availability. For example,
EHcognitive radio and cognitive relays bring interesting challenges in terms of analy-
sis. The interaction between energy queues and data queues makes the analysis of
such systems very involved. Mechanisms such as, dominant system approach and
moment generating functions are promising tools to tackle these type of problems.
However, such mechanisms only promise to provide upper/lower bounds on the
estimated delays and require further investigation.

EH cognitive radio has the potential benefit of an uninterrupted lifewithout requir-
ing external power cables or periodic battery replacements. There are open issues
regarding optimal spectrum sensing policies under energy causality and collision
constraints that need to be investigated deeply. For example, the issues related to
bursty data traffic, finite battery capacity, inefficiency in storing energy in the bat-
tery, and temporal correlation of energy sources for designing the spectrum access
policy need to be investigated carefully.

An interesting topic for future work is the employment of base station coopera-
tive systems to exchange energy. In a cooperative system, the base stations exchange
information via wireline backhaul links to coordinate their transmissions and thus,
reduce interference. In an EH setting, the base stations could be self-powered using
conventional energy sources and would also exchange energy through power lines



360 M.M. Butt et al.

to achieve sustainability of the network. Moreover, they could utilize SWIPT and
transfer energy to a receiver by coordinating through their cooperative system and
thus, allocating their resources efficiently. An additional approach would be to con-
sider full duplex mode and study the effects on the battery charging and resource
allocation.

In the domain of wireless energy transfer, one of the key challenges is to think
about simultaneous information collection and power transfer. In the literature, we
find that this technique can be implemented by exploiting the broadcast nature of
wireless channels. In that case, proper receiver architecture designs for SWIPT can
play a vital role. Moreover, the development of new signal processing techniques for
SWIPT such as simultaneous information and energy transfer in the spatial domain
are very important.

Another main challenge in energy cooperation is the low wireless energy transfer
efficiency due to path-loss effects. A number of different directions have been pro-
posed to address this issue. Most of the previous discussion in this chapter considers
point-to-point and two-hop communication systems which are not practical since
the path-loss effects increase with distance. Therefore, a reasonable approach to this
challenge is the study of multi-hop communication systems which utilize SWIPT.
Furthermore, massive MIMO systems have also been proposed to improve the wire-
less energy transfer efficiency by exploiting large array gain due to the large number
of antennas deployed at the transmitter. Also, new network architectures such as cel-
lular networks where mobiles and sensors are charged by dedicated power stations
are desirable.

In wireless networks, the presence of signal interference is inevitable. However,
the exploitation of this interference is beneficial in EH systems. The development
of new techniques to exploit the interference are essential. For example, it has been
shown that the interference alignment technique can be applied to use the interference
as energy rather than discarding it. Also, the use of full duplex radio in all the
aforementioned directions is desirable as it can essentially double the energy transfer.
A well known disadvantage of the full duplex mode is the loop interference caused
by the output and input antennas but as mentioned above, the exploitation of this
extra interference will benefit an EH system even more.

7 Conclusions

Energy harvesting is a promising research area that addresses the issue of limited
network lifetime for energy-constrained wireless networks. The recent prominence
on green communications also indicates a strongmotivation and desire for developing
energy harvesting based communication systems. However, considerable research
effort still needs to be given to investigate various problems in order to make energy
harvesting based wireless communication more practically feasible. Specifically, the
techniques of allocating resources for energy harvesting devices largely differ from
the conventionally powereddevices. The fundamental rule thatmanages the operation
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of an energy harvesting network is the energy neutrality constraint. Themain problem
of being too conventional in allocating the harvested energy to the energy harvesting
nodes simplywaste the harvested energy.On the other hand, applying a too aggressive
approach in allocating the resources leads to energy harvesting nodes unnecessarily
starve of the energy for a longer period of time. After reviewing the fundamental
building blocks of an EH system, we mainly focus on wireless energy transfer based
communication in this chapter. First, we briefly review (without being exhaustive)
the recent literature in this area and then, present example of a wireless energy based
relay selection problem. Finally, we outline the main result challenges in energy
harvesting wireless communication and introduce some open research issues.
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EMrise: An Energy Management
Platform for WSNs/WBANs

Nanhao Zhu and Athanasios V. Vasilakos

Abstract Due to reliance on batteries, energy consumption has always been of
significant concern for sensor node networks. This work presents the design and
implementation of a house-build experimental platform, named EMrise (Energy
Management System for Wireless Sensor Networks) for the energy management
and exploration on wireless sensor networks. Consisting of three parts, the SystemC-
based simulation environment of EMrise enables the HW/SW co-simulation for
energy evaluation on heterogeneous sensor networks. The hardware platform of
EMrise is further designed to facilitate the realistic energy consumptionmeasurement
and calibration as well as accurate energy exploration. In themeantime, a generic GA
(genetic algorithm) based optimization framework of EMrise is also implemented to
automatically, quickly and intelligently fine tune hundreds of possible solutions for
the given task to find the best suitable energy-aware tradeoffs.

Keywords Wireless sensor networks · Energy consumption · Energy manage-
ment/evaluation · Simulation · SystemC · Measurement · Optimization · Genetic
algorithm

1 Introduction

With the great development in embedded systems and wireless communication tech-
nologies, wireless sensor networks (WSNs) have gained worldwide attention and
have been developing rapidly in the past decade. Wireless sensor networks are large-
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Fig. 1 Sensor node hardware architecture

scale networks with low-cost, small-size, low-power and limited processing sensor
nodes deployed in various kinds of environments.As the basic part ofWSNs, a typical
sensor node comprises several components: microcontroller, transceiver, sensor and
power supply (Fig. 1). By combining these different components into a miniaturized
device, these sensor nodes become multi-functional and have been applied to a wide
variety of application scenarios: medical and health care [1], environment and eco-
logical monitoring [2], home and building automation [3], industrial monitoring [4]
and battlefield [5]. Thus, such highly diverse scenarios impose application-specific
requirements on WSN design and distinguish them from conventional networks.

Generally, WSNs are easy to achieve great scalability and a wide range of den-
sities, due to the low cost and small dimensions of sensor nodes. In the meantime,
specific sensor network protocols and algorithms with self-organizing capabilities
are usually designed and applied to sensor nodes, so the whole sensor network is
low-maintenance and tolerant against communication failure and topology changes
which could be caused by node malfunction, node mobility or energy depletion of
the nodes. Furthermore, sensor nodes can also be deployed in harsh environments
with self-organized network to carry out given tasks in unmanned manners.

However, further and potential applications are limited due to inherent WSN
disadvantages. For instance, the limited processing ability and low data rate of sensor
nodes cannot guarantee high performance in some scenarios especially for real-
time applications. Short communication range can cause energy waste and network
inefficiency, since multi-hop communications are always required for data transport
between source node and sink node. The severe energy constraints also lead to a
worse observation: the improvement of data processing ability by using powerful
processors are not expected, since the energy will be depleted very quickly and
renders the network useless on the given task. Limited energy also means it is not
possible to also maintain the operation of multi-hop communications for a long
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time. Meanwhile, sensor nodes are expected to be used heavily in many remote area
applications, where the frequent changing or recharging of batteries is inconvenient.

Hence, an energy-efficient sensor network is necessary to carry out the work in
such conditions. Taking energy consumption as the major consideration, while not
undermining other network performances, is therefore desired as the priority strategy
in the design of current wireless sensor networks.

2 Related Works

The emerging field of wireless sensor networks and their applications promises a
higher quality of life in many aspects of our daily activities, but the strict energy
constrains stated above significantly limit their functionality expansions and possible
applications, which makes energy consumption one of the most critical concerns in
WSNs. Therefore, energy consumption analysis and evaluation is a critical process
in the design and implementation of the energy-efficient sensor network.

In recent years, great efforts which have been made on energy saving manage-
ment for wireless sensor networks can be grouped into three categories: (1) simu-
lation/emulation based approach for energy consumption calculation and analysis;
(2) hardware based method for real-world energy measurement and calibration; (3)
optimization based strategy for the exploration of energy-efficient behaviors and
configurations.

First of all, as a useful tool for the energy analysis and management on wire-
less sensor networks, simulation/emulation based method is widely accepted and
commonly used, it can provide a more realistic model for the evaluation of energy
consumption rather than the oversimplified and idealizedhypotheses that are assumed
in the mathematics based theoretical models. Although relatively slowly, it offers the
tradeoff between accuracy and efficiency. General simulation tools like NS-2 [6],
OMNeT++ [7], Prowler [8], written respectively in C++, Java and MATLAB, pro-
vide satisfactory efficiency at the early design stages, since the models are usually at
a high abstraction level to facilitate the testing and verification of algorithms, proto-
cols and strategies. However, only a relative coarse energy consumption evaluation
can thus be expected due to the lack of realistic low level models. Emulation tools
like TOSSIN [9], ATEMU [10] and Avrora [11] can compensate this drawback on
energy consumption evaluation but at the cost of efficiency, and they are basically
limited to specific hardware platforms and operating systems (TOSSIN is used for
sensor nodes with TinyOS [12] operating system, both ATEMU and Avrora are used
for AVR microcontroller based node platforms).

From the aspect of hardware based method, an increasing number of research
works have already focused on energy consumption in real-world sensor nodes. A
detailed energy consumption analysis based on the MICAz mote [13] is presented in
[14], several benchmarks are used for energy estimation, battery charge effect and
battery lifetime are also considered. Authors in [15] present AEON (Accurate Pre-
diction of Power Consumption) and evaluate detailed energy profiling on a MICA2
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sensor node [16]. Elaborate energy consumption data on the TelosB mote [17] is
provided based on the authors’ measuring methodology and power consumption
measuring system (PCMS) in [18]. Sensor NodeManagement Devices (SNMD) [19,
20] is presented with detailed performance parameter configuration for the energy
data measurements.

In the view of optimization based energy management strategy, corresponding
research works have been done from both hardware and software: (1) From the
hardware perspective, better energy efficiency can be achieved by optimizing the
power consumption of related hardware components [21–26]. (2) From the soft-
ware perspective, the optimization method can be grouped into three categories: the
development of new communication protocols (MAC and routing) for optimization,
the adoption of energy-aware management methods for optimization, and the con-
figuration/exploration of the optimal set of existing protocols for optimization [25,
27–29].

3 Motivation

Despite the tradeoff can be achieved between accuracy and efficiency with simu-
lation/emulation based method for energy management and evaluation on wireless
sensor networks asmentioned above,without hardware-based instruction levelmodel
for energy evaluation only unrealistic result can be acquired by simulation method.
Meanwhile the inefficient and platform-specific based emulation method cannot be
considered as a better solution. Since SystemC [30] is a system-level and hard-
ware description language offering support for HW/SW co-simulation, concurrency,
modeling at different abstraction levels as well as other flexible and diverse model-
ing advantages, it is therefore regarded as a good alternative to model and simulate
WSNs for accurate, flexible and quick energy evaluation.

Although measurements from large-scale of sensor nodes are hard to acquire
and sometimes these nodes are placed in harsh and inaccessible areas, the hardware
based measurements from real world testbed nodes are still considered necessary
and significant since they offer a more realistic environment to the real deployment
and are able to calibrate and improve the accuracy of energy evaluation. Research
works mentioned above can only provide simple energy measurements on specific
node platforms and with costly measurement equipment (high-performance oscil-
loscope [15, 31], acquisition cards [18, 32]) on the sensor nodes to sample the
varying low currents and voltages, which limit the scale of deployment for energy
measuring beyond the lab environment. Therefore, the building of a cost-effective,
multi-functional and measurement reliable hardware platform is currently required.

Compared with the hardware measurement method and software simulation
method for optimization, in spite of the efficiency provided by software based sim-
ulation, the exhaustive and full simulation process on all the possible configura-
tions of the protocol are not only time-consuming, but also unnecessary most of the
time. Thus, an approach that can effectively and automatically select an appropriate
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protocol parameter setting out of hundreds or thousands of possible options is
urgently needed. With the fast and intelligent search ability, Genetic Algorithms
(GAs) [33] enables the fine tuning of parameter space of the protocol to find the
most suitable configuration for energy saving and management.

4 The Design and Implementation of EMrise

Based on the limitations and suggestions of the three aspects mentioned above, our
EMrise (Energy Management System for Wireless Sensor Networks) is proposed
in this chapter. Section4.1 describes the design and implementation of EMrise_SS
(EMrise_Simulation System) which is a SystemC-based simulation environment at
the system-level and transaction-level, and the energy performance of several differ-
ent sensor motes under various case scenarios are also investigated by EMrise_SS
in this section. Section4.2 presents EMrise_MS (EMrise_Measurement System),
a cost-effective and flexible hardware based energy measurement platform for the
calibration andmanagement of realistic energy data. Section4.3 focuses on the intro-
duction and design of EMrise_OpS, a generic and genetic algorithm based optimiza-
tion framework for the optimized energy management on WSNs. Finally, Sect. 5
concludes this book chapter and discusses the possible future works.

4.1 EMrise_SS (EMrise Simulation System)

EMrise_SS, also known as iWEEP_SW [34], is a system-level, transaction-level and
energy-aware SystemC based generic sensor network simulation which implements
several popular commercial off-the-shelf (COTS) low data rate based sensor node
models including the Telos series (e.g., TelosB [17], Tmote Sky [35], Shimmer node
[36]), the MICA series (e.g., MICA2 [16], MICAz [13]), and a house-built high
data rate and ultra-low power testbed node iHop@Node [37] (PIC16F microcon-
troller with nRF24L01+ transceiver, maximum data rate up to 2Mbps). Four MAC
protocols are integrated and modeled in EMrise_SS which are unslotted and slotted
CSMA/CA protocols in IEEE 802.15.4 [29], as well as Enhanced ShockBurst (ESB)
and ShockBurst (SB) protocols [38] embedded in the high data rate iHop@Node.

4.1.1 The Framework of EMrise_SS

EMrise_SS is composed of SystemC defined components, ports, channels, inter-
faces and connections shown in Fig. 2. Components correspond to basic hardware
modules such as microcontroller, transceiver, sensor and battery as well as various
kinds of peripherals. Each component in EMrise_SS is modeled as an individual
module of SystemC. In these hardware component models, the sensor is modeled

http://dx.doi.org/10.1007/978-3-319-27568-0_5
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Fig. 2 EMrise_SS framework

to generate sensed data periodically from physical or environment conditions. The
microcontroller (MCU) collects these analog data and converts them into digital sig-
nals by the built-in Analog to Digital Converter (ADC). The converted digital data
are then sent to the transceiver according to different application scenarios and com-
munication strategies. The transceiver (Radio) takes the responsibility of over-the-air
packet transmission and reception, as well as clear channel assessment (CCA). The
energymodule functions as a power consumptionmonitor which can track and assess
the energy consumption of other hardware components at different abstraction levels
from bit-accurate/cycle-accurate to transaction-accurate based on designer’s require-
ments. In the timermodule, several sub-timer components can be defined for different
purposes such as timer for sample interval, timer for each transmission interval, pro-
tocol related timer, etc. For some other peripherals such as the memory model and
UART model inside the MCU, their modeling levels are optional, which depend on
the detailed design requirements. In addition, the network module is also modeled
as a component since it is inherited from the TLM-based SystemC Network Simula-
tion Library (SCNSL) [39], which is used to establish network topology, implement
packet transmission and handle network collisions.

Channels are responsible for the communications between different components,
such as the internal bus of the microcontroller connecting CPU core and peripherals,
the SPI (Serial Peripheral Interface) bus connecting microcontroller and transceiver.
The channels’ implementations are not mandatory and they are always abstracted
to simplify the development process according to the designer’s requirements. Each
component and channel can have one or more interfaces to distinguish and specify a
set of functions (or transactions), which are used to interact with the relevant com-
ponents or channels. Like interfaces, multiple ports can be defined by components
and channels, and they are utilized to specify the types of the interfaces, so each
function-specific port can be connected to the related component or channel as long
as the corresponding interface is implemented by that component or channel [40].
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Fig. 3 Generic packet format

Fig. 4 IEEE 802.15.4 packet frame format

In addition, in EMrise_SS framework, thewhole sensor network systemmaintains
two data items for packet frames. One is a generic packet format for Enhanced
ShockBurst (ESB)/ShockBurst (SB) protocol-based sensor node network and the
other is for IEEE 802.15.4 based sensor network, which are presented in Figs. 3 and
4 respectively.

4.1.2 Microcontroller Modeling

Detailed model of the microcontroller is presented in Fig. 5. The microcontroller
component defines the sensordata_read_if interface consisting of a single Sensor-
DataRead transaction (or function) which allows the microcontroller to first read
data from the target sensor module and then convert these analog data into digital
data by the built-in Analog to Digital Converter (ADC). In some application scenar-
ios, if an external ADC is needed for a more accurate and quicker conversion, the
microcontroller defines another extADC_read_if interface. This is maintained by an
extADC_read transaction (function) that emulates the process whereby the micro-
controller reads convertedADCvalues through its digital I/O port pins or through SPI
pins from an external ADC chip. The microcontroller component also links ADC’s
extADC_config_if interface by the defined output port on the microcontroller side,
which is composed of a single extADC_config transaction to receive configuration
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Fig. 5 EMrise_SS MCU model

information from microcontroller. Moreover, the extADC_readSensor_if interface
and extADC_readSensor transaction defined on the external ADC are used to acquire
sampled sensor data. Considering that cycle-by-cycle based energy consumption on
the sensor node would be evaluated in later work, the above interfaces and transac-
tions can be easily extended to incorporate detailed communication mechanism and
device driver code implementation.

Another two transactions named IRQdetect and CCAchecking, which are defined
by IRQdetect_if and CCAchecking_if, is responsible for interrupts detecting from
transceiver and clear channel assessment processes respectively. Several timer trans-
actions can be defined for varying functions such as the examples that are shown
in Fig. 5. In addition, interactions between the microcontroller and transceiver are
handled via SPI, considering that SPI communications between the microcontroller
and transceiver are bidirectional. Hence, the SPI communication interface defines
two transactions named SPIdata_μrecv and SPIdata_μsend on the microcontroller
and transceiver components respectively. On the other hand, the operation of the
microcontroller is performed with a finite state machine (FSM) in approximate-
timed manner. A generic microcontroller model shown in Fig. 5 acts as the basic
modeling for other specific microcontrollers.
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Modeling of PIC16

Developed byMicrochip, MiWi [41] as a wireless networking protocol stack is espe-
cially designed for PIC microcontroller families from PIC16 to dsPIC33. Currently,
only the non-beacon mode of IEEE 802.15.4 is implemented as MiWi’s MAC layer,
and our PIC16F microcontroller is modeled following MiWi’s unslotted algorithm
as a FSM in previously mentioned µIDLE, µTX and µRX states, and divides these
three states into many sub-states, which is shown in Fig. 6.

In Fig. 6, the microcontroller first performs a random backoff duration and checks
the channel status. If the channel is detected to be busy, and the number of CCA
attempts is larger than the protocol parametermacMaxCSMABackoffs, then aChannel
Access Failure (CAF) is reported. If on the other hand the number of CCA attempts
is smaller than macMaxCSMABackoffs, the microcontroller will go back for a new
round of random backoff process. When the channel is indicated as free by CCA,
the microcontroller will trigger over the air transmission to send a packet to the
transceiver. After the transmission of an ACK required data packet, the protocol will
make themicrocontroller wait within a fixed time period (0.864ms or 54 symbols) for
theACK frame confirmation. If ACK is received in time, this transmission is regarded
as successful. Otherwise, the packet retransmission process will start. A Collision
Failure (CF) occurs only after failure to receive ACK frame macMaxFrameRetries
times, which might be caused by collisions of data packets or collisions between data
packets and the ACK frame. In addition, as long as there are pending data packets in
theMCU, theywill be uploaded to the transceiver immediately, once the transmission
process is over (no matter whether a success or a failure), which is to guarantee the
timeliness and reliability of data transmission.

Fig. 6 Unslotted CSMA/CA algorithm model
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Modeling MSP430

Compared with PIC16F, a powerful 16-bit MSP430 microcontroller is widely used
in some current COTS (commercial-off-the-shelf) sensor motes such as the previous
mentioned Telos, Tmote Sky and Shimmer nodes. A complete MAC protocol stack
of IEEE 802.15.4 such as TKN15.4 [42] can be implemented in the TinyOS operating
system on these popular sensor motes, which integrates both slotted and unslotted
CSMA/CA algorithms (used in beacon-enable and non-beacon enablemodes respec-
tively). Hence, the MSP430 microcontroller component in EMrise_SS is modeled as
a slotted and unslotted compatible FSM in the µIDLE, µTX and µRX states shown
in Fig. 7.

Compared with the unslotted algorithm, the slotted CSMA/CA algorithm needs
to be accurately timed, where a beacon packet broadcast by the coordinator at the
beginning of the defined superframe [29] time period is used for synchronization
between coordinator and sensor motes. After the reception of the beacon packet,
sensor motes with enough packets will start a slotted-based CSMA/CA algorithm.
This requires that the backoff period boundaries should be aligned with the super-
frame slot boundaries (simulation logs starting with ‘#####’ in Fig. 19 show that
the backoff period boundaries are accurately aligned with slot boundaries). Note
that before each new backoff period there is a time evaluation process of checking
whether remaining CSMA/CA can be undertaken before the end of the contention
access period (CAP). If the number of backoff periods is less than the remaining
number of backoff periods, the slotted algorithm will continue this backoff delay

Fig. 7 Slotted and unslotted CSMA/CA model
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under the condition that two CCA analyses, the frame transmission and acknowl-
edgement can be completed before the end of the CAP. Otherwise, it must wait until
the start of the next superframe CAP. If the number of backoff periods is greater than
the number of remaining backoff periods, the slotted algorithm shall first pause the
backoff countdown at the end of CAP and then resume it at the beginning of the CAP
of next superframe. Except for the time evaluation mechanism, another difference
between the slotted and unslotted algorithms is that two times of idle channel checks
before packet transmission are required for the slotted algorithm.

4.1.3 Transceiver Modeling

The behavior of the RF transceiver is handled via two interfaces. As mentioned
previously, the SPIdata_μsend_if interface is defined on the transceiver component
and consists of a single transaction SPIdata_μsend, which manages events from
the microcontroller such as receiving configuration commands and payload data.
The Netdata_rInput_if interface defines the transaction Netdata_rInput that allows
the transceiver to detect network related events such as the validation of incoming
packets from the RF channel and the transaction Netdata_channelstatus can perform
CCA operation. If the communication protocol is embedded in hardware, then some
protocol-related timer transactions are also required such as ACKwaiting transaction
and auto retransmission delay (ESB mode). A typical transceiver is modeled shown
in Fig. 8.

A specific feature of transceiver model in EMrise_SS is that its configuration is
based on register settings like real hardware, which means that related registers are
defined in each specific transceiver model. With the register configuration mecha-
nism, the simulation of the network becomes flexible because different nodes could
keep their own settings during the whole simulation process shown in Fig. 9. The
final results could be acquired from each node to evaluate the performance of such
a heterogeneous configured network scenario.

Fig. 8 Typical transceiver model
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Fig. 9 Advantage of register configuration mechanism

Modeling of CC2420

The CC2420 is a 2.4 GHz IEEE 802.15.4 compliant RF transceiver chip with a max-
imum data rate of 250Kbps. CC2420 is designed to support low power applications,
it provides on-chip packet handling by means of automatically adding a preamble
sequence, frame check sequence and frame delimiter to the data packet. It also pro-
vides data buffering, clear channel assessment, link quality indication and packet
timing information, all of which reduce the load and power consumption on the host
microcontroller. Since for CC2420 based sensor motes (e.g., Telos, Tmote Sky and
Shimmer), MAC algorithms for channel access are programmed by software and
embedded in the microcontroller, the CC2420 acts only as a TX/RX device for trans-
mission and reception of the IEEE 804.15.4 format based data packet. Therefore, the
model of CC2420 in EMrise_SS employs the generic model presented in Fig. 8.

Modeling of nRF24L Transceiver Series

DesignedbyNordicSemiconductor, the nRF24 transceiver series [43] represent ultra-
low-power RF chips that provide available solutions for 2.4 GHz ISM band wireless
applications. As a typical type in nRF24 family, nRF24L01+ supports Enhanced
ShockBurst (ESB) with a maximum data rate of 2Mbps and backwards compatible
with ShockBurst (SB). Designed both by Nordic, ESB is a baseband MAC protocol
engine embedded in transceiver chips with some basic channel access mechanisms,
while SB is only a simple TX/RX protocol without any channel access algorithm.
ESB and SB protocol has been modeled in EMrise_SS via a finite state machine
shown in Fig. 10.
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Fig. 10 Enhanced ShockBurst and ShockBurst model

4.1.4 Network Modeling

The network model is derived and modified from the SystemC Network Simulation
Library (SCNSL). In network modeling, SystemC provides primitives such as con-
currency mechanism as well as events that are used to simulate network transmission
and reception behaviors. Before the start of simulation (in the elaboration process),
nodeProxy class objects are instantiated with the same number of node instances
in the SystemC entrance function sc_main(). The use of nodeProxy is to decouple
each node implementation of the network simulation, and each nodeProxy instance
uploads some significant information to the network object, including node identity,
two-dimensional position information, TX output power and receiver sensitivity.
Combined with the channel model, these parameters are used to reproduce the net-
work scenario and perform network connection assessment. At present, two types of
channel model are supported in EMrise_SS, which are free space propagation model
[44] and human’s on-body Line Of Sight channel model. The most fundamental free
space model in EMrise_SS is presented as follows.

Pr = Pt · Gt · Gr · λ2

(4π D)2
(4.1)

where Pr is the receiver power sensitivity measured in dBm, Pt represents TX output
power at transmitter, D is the distance (m) between the transmitter and receiver in
two dimensional space, Gr and Gt are antenna gains of the receiver and transmitter
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respectively (it is common to select Gr = Gt = 1), and λ denotes the wavelength,
calculated as

λ = c

fc
= 3 × 108 (m/s)

2.4 × 109 (Hz)
= 0.125 (m) (4.2)

When simulation is initiated by sc_start() function, the over-the-air transmission
time of the data packet and ACK frame will be calculated in the network model,
and a waiting period is thus required for each transmission. After this time, the
network model will distribute the packets to the receiver nodes within the radio
transmission range. However, if collisions occur, no packets will be received. The
collision scenario is simulated by checking the numbers of active transmitters that
are interfering at a given receiver. If the number is greater than one, then packet
transmission is considered as a failure because of the collision.

4.1.5 Sensor Modeling

A generic sensor model can be designed in 3 ways. The first is periodic data gen-
eration, which samples the signals of the physical environment by an application
defined time interval (sampling period). The second is to read data from an input
file where this file can be a designer-specific data input file at the early design stage,
if the actual sensor has not yet been chosen. This input file can also be the actual
measurements from experiments. The third way is to model the sensor in a specific
function.

In this work, sensor component modeling is mainly focused on the generic model
development for periodic data sensing which consistent with the high-level design
philosophy of EMrise_SS.

4.1.6 Energy Modeling

As a significant part of EMrise_SS, the energy model plays an important role in
energy consumption calculation and therefore it must be well designed and opti-
mized to adjust accurate, realistic and flexible energy consumption evaluation. The
characteristics of design method of the energy model is illustrated as follows.

Elaborate Lib and Register Based: An energymodel is developed to incorporate
an elaborate library with the current consumption of different operation modes of
each hardware component. The working mechanism of this energy model is register-
based. In the EMrise_SS energy model, the hardware registers of each component
are mapped into the energy model as the mirrors, and the updates of these values are
synchronous with the corresponding register prototypes in related hardware com-
ponents, as shown Fig. 11. Developers and researchers can benefit greatly from this
design method. Since the tracing of the correct energy value is always consistent
with the change of component configuration during the whole simulation process,
the energy model is therefore flexible enough to adjust scenarios where the hardware
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Fig. 11 Workflow of energy model

configurations need to be changed during the simulation. In that sense, the energy
model is able to proceed without any interruptions to the whole simulation process,
and no re-compilations are required for the new scenarios after configuration changes.

Energy Evaluation for Multi-abstraction levels: The energy model in
EMrise_SS is able to trace the energy consumption at different abstraction levels. If
the energy evaluation is focused on high-level, the change in operation state of each
hardware component is linked to the energy model, and then the duration and current
consumption of each state can be identified for the energy consumption calculation
by applying the following basic formula.

E = P∗t = (V ∗ I )∗t (4.3)

If the energy evaluation is at low-level, the energy model can track each executed
instruction in different operation states, record their execution time and associate
them with corresponding current loads in the energy library for the accurate energy
estimation.

Calibrated Energy Support: The energy model incorporates calibrated energy
values from real-world measurements for realistic and accurate energy evaluation.
These measurements can be acquired from any COTS sensor motes and in-house
testbed motes. However, accurate power consumption data are not easy to extract
from product specifications, since a sensor mote is composed of various chips and
some chips need additional peripherals to guarantee running operation. These periph-
erals on chip modules and sensor mote boards can cause extra energy consumption
(nRF24L01+module in Sect. 4.2.2). Thus, the calibrated energymodel in EMrise_SS
becomes necessary.

Transition State Energy Consumption: The energy model considers state tran-
sitions in each hardware component, because each transition introduces extra cost to
the overall energy consumption that cannot be ignored. So the total energy consump-
tion is calculated by adding the individual energy consumption of each operation state
of every hardware component as well as the energy consumption of each transition
state of every hardware component.
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Multi Performance Metrics: The energy model supports various performance
metrics and can be calculated in mW, mJ, mAh. On the other hand, if using a specific
battery module measured in capacity, then the lifetime performance can be estimated
in minutes, hours, days, months or years.

4.1.7 Case Studies for Energy Evaluation and Management

In this section, EMrise_SS is used for the energy evaluation andmanagement on four
mote type based networks (Telos, MICAz, MICA2 and iHop@Node) under different
case scenarios. Detailed energy information and comparison data are presented and
analyzed for the corresponding mote platform in each case scenario. The impact of
sensing start time and payload collecting strategy on the energy performance are
studied, while the energy consumption of ESB and SB can be refer to [34].

Sensing Start Time

Due to the spatially distributed characteristic of sensor node networks and cheap
manufacturing of hardware components, it is difficult to guarantee the same start
up time or clock period for each sensor node. Therefore, energy consumption with
simultaneous sensing start time and random sensing start time (each node starts sens-
ing first data at a random instant between the beginning of the simulation experiment
and the first sample interval) are analyzed via a medical application scenario which
belongs to the field of Wireless Body Area Networks (WBANs) [45].

A typical health monitoring based network for human body area [1, 46] (Fig. 12)
is studied to explore the impact of sensing start time on the energy consumption of
sensor network. Consisting of 3–10 nodes, the network is attached to the human body
for different physiological signal monitoring purpose (10Hz for temperature sensor,
50Hz for glucose sensor, 100Hz for ECG-electrocardiogram). Three types of sensor
mote platforms applied in the simulation experiments are iHop250K (iHop@Node
with 250Kbps), Telos (250Kbps) and MICAz (250Kbps). For other parameter set-
tings, a 2 byte payload is used to store 12 bits of sensed data. The default 0dBm

Fig. 12 Sensor node
deployment on human body



EMrise: An Energy Management Platform for WSNs/WBANs 383

output power is selected on the transceiver for over-the-air packet transmission. The
packets format of Telos andMICAz are shown in Fig. 4. The packet format of Shock-
Burst (SB) shown in Fig. 3 is applied by iHop250K (1 byte preamble, 3 byte address
as network id, 1 byte CRC, 4 bytes payload field including 2 bytes source node id
and 2 bytes real payload data). Since only the unslotted CSMA/CA based MiWi
communication protocol is supported by iHop@Node, both Telos andMICAzmotes
also need to apply the same unslotted CSMA/CA for the comparison. Four parame-
ters of the unslotted algorithm are set as default values, which are 3, 5, 4 and 3 for
macMinBE, macMaxBE, macMaxCSMABackoffs and macMaxFrameRetries respec-
tively. In addition, each case runs for the same simulation time (4 seconds in this
work) with different seeds to generate random backoff slot numbers, and the average
value of 50 times of runs are employed.

Taking the results of Telos mote for analysis, Fig. 13 reveals that the case with
random start time is more energy-efficient. Compared with the random start sensing
case, simultaneous sensing consumes more energy due to protocol overhead. This is
because all sensor nodes start data sensing at the same time under the simultaneous
case, and before over-the air-transmission 2BE−1 (BE initialize as macMinBE) unit
backoff periods are required. However, when macMinBE is initialized to a smaller
value (e.g., default value 3), it is easy for different sensor nodes to get the samenumber
of backoff slots (0–7). Thus, with the same sensing start point and the same/similar
backoff period, the transmission time of many packets can overlap with each other,
which causes serious packet collisions during a short period of time and therefore
extra energy is consumed.On the contrary, the transmissions of the packets are spread
out and channel competition is light with random sensing start time. Much energy
is saved since it is more likely that packets can be successfully delivered with no
collisions and therefore taking low protocol overhead.

Fig. 13 Impact of random
sensing start time on energy
compariso
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Packet Collecting Strategy

A typical lab-sized network (with a size of about 20 sensor nodes [47]) is under
investigation with payload collecting strategy for energy evaluation. The comparison
experiments are made on iHop250K,MICAz and Telos-based networks. In the first
experiment, a packet with a 2 byte payload is transmitted every 10ms, then a 4
byte payload packet every 20ms, a 6 byte payload packet every 30ms until the
transmission of a 20 byte payload packet every 100ms. Each experiment runs for
the same time (10s) and the average value of 50 runs is adopted. The results are
presented in Fig. 14.

Since the increasing payload data can be attached to the same size of packet over-
head andwhen this data collecting strategy is used, fewer data packets are transmitted
when the same amount of payload data is required. Therefore, the energy wasted in
packet overhead under frequent transmission conditions can be greatly saved, while
energy cost is also reduced with fewer ACK frames. Fewer transmission also saves
the energy wasted in active mode due to possible packet overflow preventing the sen-
sor node entering into sleep mode. Besides, the experimental results show the packet
loss probability drastically reduces from 96.3% in the 2-byte, 90.1% in 4-byte cases
to 3.98% in the 20-byte case for both MICAz and Telos (MICAz and Telos share
the same protocol model). For iHop250K, this rate is from 93.9% in the 2-byte case,
36.0% in the 4-byte case, and is reduced to 1.97% in the 20-byte case.

Although the payload collecting method can conserve energy, it has some draw-
backs. When the channel is of low quality with a high bit error rate (BER)/packet
error rate (PER), longer data packets are more likely to subsume errors and necessi-
tate retransmissions. This will definitely cause extra energy consumption and longer
packet latency.

Fig. 14 Energy consumption under payload collecting strategy
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4.2 EMrise_MS (EMrise Measurement System)

EMrise_MS, known as iWEEP_HW [34, 37], is the hardware based energymeasure-
ment and management platform that is made up of a multi-channel energy measure-
ment device (MEMD) and energy data management software platform (EDMSP) to
be able to measure the energy related data of iHop@Node, MICA mote, Telos mote
and other similar sensor motes. For MEMD, it can provide simultaneous measure-
ments on different components of a sensor node or simultaneous measurements on
several different nodes by using its multiple channel advantage. For EDMSP, it offers
an easy to use GUI to help users manage and save energy data from the sensor node.

4.2.1 IHop@Node Testbed Node

In order to explore energy performance of future sensor network which has high
data rate and ultra-low power features, iHop@Node [34, 37] is designed and built by
Microchip PIC16F88 [48] microcontroller with 0.93–1.30mA current load in active
mode and 0.3–0.5µA in sleep mode, as well as high data rate (2Mbps/1Mbps) ultra
low power transceiver Nordic nRF24L01+.

iHop@Node has a small-dimension of 4.1′′ × 2.4′′ and it also has multi-layer
architecture design, which means that the microcontroller layer, transceiver layer,
sensor layer and other components layer (e.g., LEDs, external memory) are all sep-
arate and can be fed either by the same power supply or by different supplies. When
different power supplies are adopted, each hardware component is considered as
an independent load under test and detailed energy information can be measured
respectively and synchronously by usingMEMD. Compared with the software based
functional components decomposition approach [18], this means is at hardware level
and provide much more reliable results.

4.2.2 MEMD

Without introducing side-effects to the sensor node hardware or software for energy
measurements, and saving cost from using expensive measurement equipment such
as oscilloscope and acquisition card [18]. A dedicatedMEMD (MultichannelEnergy
Measurement Device) is therefore designed and implemented.

Figure15 is a simple architecture of one channel of MEMD. A shunt resistor
(Rsense) of the known value is used between power supply and sensor node for
energy consumption measurements, the voltage drop (Vsense) across the resistor
will be amplified as the final measured energy usage data (Vout). Then, a 10-bit
ADC chip [49] is employed to sample this Vout, and the sampled values can further
be stored in the buffer of PIC18 [50]. The sampled data can be saved continuously
in the whole buffer and then sent out in a buffered sampling mode. Alternatively, the
data can also be sent out immediately after each sampling, in an unbuffered sampling
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Fig. 15 Architecture of MEMD (one channel)

mode. To simplify the development, we use commercial virtual COM port module
UR232R [51] for the communication between PIC18 and data terminal. Serial UART
signals generated by the MCU is able to be sent over UB232R to data terminal for
later evaluation and analysis. However, a large amount of raw measurements are
likely to cause memory problem if the experiments run for a long time.

With the multi-layer architecture design of iHop@Node, MEMD can measure
energy consumption on each hardware component separately and synchronously
as shown in case 1 of Fig. 16a). While for case 2, instead of separate hardware
components, MEMD is used to measure the energy consumption of four indepen-
dent sensor motes. In Fig. 16b), the MEMD prototype is presented. Channel 1 of
MEMD is responsible for the energy measurement of nRF24L01+ transceiver of

Fig. 16 MEMD prototype
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Table 1 MEMD capabilities

MEMD capabilities√
Four channels for sampling energy usage data√
Synchronous energy usage data sampling√
10-bit resolution for ADC value√
1900 samples buffers (each channel)√
Configurable gain (by tuning R1 and R2 in schematics)√
150 KHz buffered sampling rate√
5.5 KHz unbuffered sampling rate√
Measurement range 0 ∼ 40mA√
Configurable data rate via virtual COM port interface (UB232R module)

iHop@Node, channel 2 is for PIC16 microcontroller energy measurements, channel
3 can be attached to the sensor chip for energy measurement, and channel 4 is used
for other hardware components such as LEDs or external memory. All the channels
run samplings simultaneously, and measurements are stored in respective microcon-
trollers via buffered sampling mode for high speed. These data will be sent and saved
separately in data terminal according to the channel number for later evaluation. In
addition, the cost of this MEMD is much lower than an oscilloscope, an acquisition
card and recently proposed Sensor Node Management Device (SNMD) built by KIT
[52]. Table1 lists the detailed measurement capabilities of MEMD.

4.2.3 EDMSP

Compared with [53, 54], which provide SD or MMC card memory interfaces for
energy measurement storage, EMrise_MS provides an alternative means for energy
data saving and management.

Since huge storage space is needed for the collection of raw measurements, the
on-board memory card based method cannot even support the experiment running
for several minutes or hours. Therefore, saving measurements onto hard disk with
TB capacity level would be a better choice. Thus, EDMSP is built to facilitate the raw
measurement sampling process as well as the data sending to PC process for storage
and future evaluation. A GUI-based Energy Data Management Software Platform
(EDMSP) is designed and presented in Fig. 17.

The implementation of EDMSP is based on the well-known CSerialPort class
[55] developed by MFC and Windows API. Many configurable parameters can be
set via EDMSP GUI such as port number, baud rate, data bit and stop bit. Once
the selected COM port receives data, the number of received data will be recorded
and shown on the configuration table, in the meantime the data values will also be
shown in the display window. Since EDMSP supports multi-type display functions,
the received data can be presented in decimal value, hex value, voltage value, current
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Fig. 17 EDMSP

value and even power consumption value when the corresponding display check-box
is selected. Other specific functions can also be easily extended to EDMSP according
to users’ requirements. Further, all the displayed energy values can be printed out
into a TXT file for the convenience of subsequent data processing and evaluation.

4.2.4 Measurements

In this part, MEMD and EDMSP are applied for the measurements and calibration
of the iHop@Node testbed. The current consumption measurements of iHop@Node
are presented in Fig. 18 on both PTX and PRX devices. Since themicrocontroller and
transceiver are typically the most power consuming parts, the measurement results
are mainly focused on these two parts in order to simply the investigations.

Fig. 18 PTX and PRX measurements
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Figure18a represents the process of PTX device under Enhanced ShockBurst
mode, where the iHop@Node testbed is configured as 2Mbps and 0dBm output
power. Each operation step in the figure is marked with a corresponding number for
the clarity of illustration.

Interval 1: The PIC16 microcontroller is in active mode, while the nRF trans-
ceiver is in power down mode. The microcontroller demands about 1.4mA current
consumption, and the transceiver consumes about 0.8–0.9mA current. During the
whole experiment, the PIC16 microcontroller runs in active mode all the time.

Interval 2 and 4: During interval 2, the microcontroller sends commands via SPI
to the transceiver to configure it from the power down mode to the standby mode.
For interval 4, the microcontroller sends a 10 byte payload to the nRF transceiver’s
TXFIFO also by SPI. Both intervals show that SPI communication will not increase
the current consumption of PIC16 microcontroller.

Interval 3: After reception of SPI commands from microcontroller, the crystal of
nRF transceiver starts up and the transceiver enters into standby mode from power
down mode. The maximum current consumption for this interval can reach about
1.83mA.

Interval 5: The CE (Chip Enable) signal is set high for at least 10µs, which
triggers the transceiver first into the transition state TX_Settling. After 130µs in
this TX_Settling state, the transceiver will automatically enter into the TX mode for
packet transmission. An average current consumption for this 130µs settling state
is given in the product specification. Based on the measurement results, there are
actually two steps consuming different currents in this transition state. In the first
50µs, the increase rate of current consumption is slower than the last 80µs, which
is probably because in the first 50µs the transceiver only performs packet assembly,
while for the next 80µs many internal components of the transceiver are turned on
for over the air packet transmission. Therefore, a muchmore rapid increase in current
consumption can be detected during the second step.

Interval 6: With the ESB mode, the nRF transceiver will automatically enter
into RX_ACK mode waiting for the acknowledgement packet. A transition state
RX_Settling is therefore required to make the transceiver from PTX to PRX. Since
the current consumption in RX_Settling is lower than that consumed in TX and RX
states, so the consumed current during interval 6 will first reduce and then increase.

Interval 7 and 8:After the successful of receptionACKframe, the nRF transceiver
automatically returns to standby mode. During interval 8, the microcontroller sends
a command via SPI to configure the transceiver into power down mode.

Figure18b represents the process of periodical listening of PRX device.
Interval 1: The transceiver is in RX mode for channel listening and is ready to

receive possible incoming packets. The microcontroller works is in active mode.
Interval 2: CE is set low by the microcontroller, and the transceiver returns to

standby mode.
Note that the nRF24L01+ transceiver is integrated into a module with an onboard

3.3V regulator, RP-SMA 2.4GHz antenna and some peripheral circuits, so as shown
in Table2, the measured current values of nRF24L01+ are much greater than those
listed in the product specification. This is especially true in power down and standby
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Table 2 Measurements of iHop@Node (oscilloscope: Tek 1012B)

iHop@Node Vout
(scope) (V)

Vout
(MEMD)
(V)

Error of
Vout

Current
(scope)
(mA)

Current
(MEMD)
(mA)

Current
datasheet

PIC16 (sleep) 0.048 0.047 0.001V;
2.08%

0.13 0.12 0.5µA

PIC16 (active) 0.36 0.35 0.01V;
2.80%

1.399 1.34 1.2mA

PIC16 (SPI) 0.36 0.35 0.01V;
2.80%

1.399 1.34 N/A

PIC16 (UART) 0.36 0.35 0.01V;
2.80%

1.399 1.34 N/A

PIC (instruction) 0.36 0.35 0.01V;
2.80%

1.399 1.34 N/A

nRF (power
down)

0.23 0.21 0.02V;
8.70%

0.89 0.82 0.9µA

nRF (Standby) 0.24 0.22 0.02V;
8.33%

0.93 0.85 26µA

nRF (Startup)
max

0.48 0.47 0.01V;
2.08%

1.86 1.83 0.4mA
(ave)

nRF
(TX_Settling)
max

2.24 2.23 0.01V;
0.45%

8.70 8.66 8.0mA
(ave)

nRF
(TX@0dBm)

2.84 2.80 0.04V;
1.41%

11.03 10.88 11.3mA

nRF
(RX_Settling)
max

2.76 2.75 0.01V;
0.36%

10.72 10.68 8.9mA
(ave)

nRF
(RX@2Mbps)

3.85 3.82 0.03V;
0.78%

14.96 14.84 13.5mA

modes, because significant current loads are required by other hardware components
on the module except for the nRF24L01+ chip itself. Table2 also shows that SPI and
UART communications in the microcontroller do not consume extra energy. This is
also true for the instruction execution ofmicrocontroller, where the instructions under
investigation are AND, OR, XOR, ADD, DIV, MUL, WHILE and FOR loop [56].
Besides, the measured current consumption in the sleep mode of microcontroller is
found to be significantly different (three orders of magnitude) from the values in
the specification. This discrepancy could be related to some other scenarios: (1) The
enable/disable of interrupt, SPI, ADC and Timer functions on the MCU chip (about
0.2mA current consumption can be saved if these functions are disabled). (2) The
enable/disable of watchdog function. (3) The configuration of I/O ports.
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In addition, considering other popular sensormotes, such asTelos, ShimmerNode,
Tmote (TelosB), MicaZ, Mica2 and N@L, the measurement range of the proposed
MEMD and EDMSP is still available to use.

4.3 EMrise_OpS (EMrise Optimization System)

In this section, iMASKO [57], a generic GA-based optimization framework, is inte-
grated into EMrise system and regarded as EMrise_OpS. Due to the global search
and intelligent properties of genetic algorithms (GAs), EMrise_OpS is able to auto-
matically and effectively fine tune hundreds of possible solutions to find the best
tradeoff solution.

In order to facilitate the configuration of EMrise_OpS and make the process of
simulation and optimization visualizable, a MATLAB based GUI has been designed
to link both EMrise_SS and EMrise_OpS. The GUI is shown in Fig. 19, where all
the corresponding parameters can be set easily via the interface. For EMrise_OpS,
it is designed to be very generic of use. The fitness function in EMrise_OpS can
be of multiple types as long as it provides parameter space inputs and performance
metrics outputs. Thus, results from other well-knownWSN simulators such as NS-2,
OMNeT++ andProwler can also be used under the evaluation of EMrise_OpS, even if
the detailed implementation and knowledge of such simulations are unknown. In this

Fig. 19 MATLAB-based GUI
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work, we use EMrise_SS simulation results as the fitness function in EMrise_OpS.
A path loading for the selecting of different types of fitness function is therefore
provided on the GUI (in the mid-left of GUI).

For the other information such as the description of GAs, the architecture of
EMrise_OpS, multi-objective optimization and detailed case studies can be referred
to [57].

5 Conclusion

In this book chapter, the design and implementation of a house-build platformEMrise
is presented for the energy management and evaluation of WSNs. Benefiting from
SystemC-based simulation, EMrise is able to support energy consumption evaluation
and exploration of heterogeneous sensor network at system-level and transaction-
level. With a cost-effective and flexible hardware measurement platform, simula-
tion/emulation models can be calibrated and verified for the accurate energy pre-
diction. In addition, a generic genetic algorithm-based optimization framework is
also integrated in the EMrise for the fast, multi-objective and multi-scenario energy
optimization.

For the future better work, more detailed simulation models and communication
protocols models will be integrated into EMrise for more realistic energy evaluation.
The re-design of hardware platform in a smaller size will also be necessary for
the practical use on more sensor node measurements. Besides, the integration of
other optimization algorithms will help the exploration of more efficient methods of
achieving energy-aware and manageable WSNs.
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Abstract The evolution of mobile networks from the introduction of the first gener-
ation systems until today, and the forecasts for the next decade [1], clearly indicate a
growth of both the network itself in terms of installed equipment and carried traffic in
terms of transmitted bits. The deployment of new generation systems upon existing
ones unavoidably increases the energy consumption, even if new systems are more
efficient than the older ones. More consumption means more costs, i.e., less margins
for the operators, and greater carbon footprint from the entire Planet. On the other
hand, for operators, it would not be possible to dismiss old generation systems in lieu
of the new ones, due to the presence of legacy terminals in the network. For these
reasons operators need to perform accurate assessment of the energy performance of
2G, 3G and 4G networks by looking in perspective at the evolution of the network in
terms of traffic growth, change of paradigms/business models, introduction of next
generation networks (i.e. 5G) and so on. This book chapter focuses on the energy
efficiency aspects relevant for a sustainable evolution of mobile networks towards
5G from an operator perspective. The conducted analysis will cover both network
deployment aspects, equipment evolution, introduction of energy efficiency features,
cost analysis, network-level energy efficiency assessment and related standardization
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1 Acronyms

3GPP 3rd Generation Partnership Project
BCH Broadcast Channel
BS Base Station
BW Bandwidth
CAGR Compound Annual Growth Rate
CD Component De-activation
CSRS Cell-Specific Reference Signals
DMRS DeModulation Reference Signal
DTX Discontinuous Transmission
EE Energy Efficiency
eNB Evolved NodeB
GSM Global System for Mobile Communications
HSPA High Speed Packet Access
LTE Long Term Evolution
M2M Machine-to-Machine
MBSFN Multicast-Broadcast Single-Frequency Network
MIMO Multiple Input Multiple Output
OFDM Orthogonal Frequency-Division Multiplexing
OPA Operating-Point Adjustment
PDCCH Physical Downlink Control Channel
PSS Primary Synchronization CHannel
QoS Quality of Service
RAN Radio Access Network
RAT Radio Access Technology
SSS Secondary Synchronization CHannel
UMTS Universal Mobile Telecommunications System

2 Introduction and Motivation

This chapter contains a summary of some possible actions that could be considered
by the operator for the evolution of mobile networks from an Energy Efficiency
and sustainability perspective.1 To this end, mobile network’s evolution towards 5G
is analysed by taking into account the energy consumption of the Radio Access
Network (RAN) when considering different load conditions (based on actual daily
traffic profiles extracted from live network) and different years (according to current
traffic forecasts). Thus, the study here reported provides an overview of different

1The present description is also extracted from the work performed in 2014 in the framework of
Task A1406 “Energy Efficient experimental analysis for network operation” of the 5GrEEn project
(EU project funded by EIT ICT Labs)”.
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“what-if” scenarios towards 2020 and beyond, as useful insights for operators aiming
at analysing evolutionary steps of their mobile networks.

For the sake of clarity, in this chapter neither details regarding specifications of
future 5G system, nor how new radio interfaces should perform are presented and
discussed. On the contrary, the impact of network-wide actions on the overall energy
consumption is analysed, regardless of the particular air interface to be defined for
5G systems. In this sense, in order to elaborate these “what-if” scenarios, it is not
necessary to wait for the standardization of 5G new air interface. Instead, network-
level energy efficiency assessments are essential to establish evolutionary trends
and operators needs in terms of energy efficiency, that may lead to future design
requirements for the upcoming 5G platforms.

In order to estimate the energy consumption of a future network, a model of the
power consumption related to future Base Stations (BSs) is needed. To this end,
following the methodology used in [3], results from the EARTH project [4] have
been used, considering different power models for different types of BSs. Evolution-
ary power models have also been derived for each Radio Access Technology (RAT)
through the years, providing an essential framework for network-level EE assess-
ments. Moreover, as many different features which may be implemented within the
mobile network might have different time scales), the evaluations have been decou-
pled as follows:

• at shorter time scale (i.e., milliseconds) micro sleep has been considered and
assessed with a MATLAB-based system-level simulator;

• at higher time scale (i.e., from minutes to years), progressive network renewal
with traffic steering features and phase-off policies has been evaluated by using
a specific evaluation tool fed by actual traffic coming from the live network.

To be specific, for the latter set of features the aim was to assess energy efficiency
performance at network level, also by taking into account the work performed by
the Environmental Engineering Technical Committee of the European Telecommu-
nications Standards Institute (ETSI TC EE) that has recently introduced a set of
specifications on energy efficiency. These important standards are based on homo-
geneous clusters’ evaluations, that may be easily extrapolated at country-level [5] to
provide useful information to the operator on the possible evolutions of the mobile
networks in the view of future 5G systems.

In next sections the main characteristics of the reference system considered for
network-level energy efficiency assessment are described, in accordance with typical
mobile operator network assumptions. Then a brief overview of the energy efficiency
metrics considered for the evaluations is reported, together with elaborated BSs’
power models, as essential analytical tools for the evolutionary energy efficiency
assessments. Finally, some energy efficiency features selected as effective for the
network-level energy efficiency improvement are described and the related cluster-
level energy efficiency performance are showed and discussed.
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3 Reference Scenario, Metrics and Power Models

In this section the main characteristics of the reference system considered for
network-level energy efficiency assessment are described, in accordance with typical
mobile operator network assumptions. Then a brief overview of the energy efficiency
metrics considered for the evaluations is reported, together with elaborated BSs’
power models, as essential analytical tools for the evolutionary energy efficiency
assessments.

3.1 Description of Baseline Reference System

Energy consumption for the mobile operator is a practical problem involving not
only new technologies and RATs but also legacy networks, hence an evaluation of
5G systems from a green perspective should necessarily go with a comprehensive
assessment through the years (from today to 2020 and beyond) of the energy effi-
ciency performance of the overall network. In addition to that, the operator will have
to carefully evaluate the opportunity and convenience of new RATs’ introduction in
future systems to satisfy the increasing traffic demand.

Since multi-RAT environments should always be evaluated with realistic traffic
assumptions and in accordance with methodologies currently considered as refer-
ences for operators, the assumed baseline system is characterized by the following
aspects:

• presence of 2G, 3G and 4G (in which potentially higher order MIMO systems and
Carrier Aggregation are taken into account) and introduction of 5G (modeled in
terms of capacity and energy performance);

• alignment with methodology currently under discussion (and finalization) in the
framework of ETSI TC EE (EEPS subgroup) for the definition of the ES 203 228
specification,2 in which clustered assessments based on measurements from the
live network are considered;

• homogeneous layout within assessed clusters of network sites, as an easy way
to model the network in contrast with exhaustive assessment methods (often too
costly);

• performance evaluated by considering commonly accepted energy efficiency met-
rics, by exploiting the outcomes of EARTH project [4] and current standardization
work in ETSI TC EE.

2The specification also defines metrics for RAN energy efficiency and methods for assessing (mea-
suring) energy efficiency in live networks. The covered technologies are GSM, UMTS, LTE, but
the methodology can be easily applied to new radio interfaces also.
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3.2 Energy Efficiency Performance Metrics

Energy efficiency and power consumption are the most widely used power con-
sumption metrics in the literature. Among the available, two main energy efficiency
metrics can be considered:

bit/Joule: this is the most commonly used efficiency metric,3 in particular for
the evaluation of a single wireless link. Its use has naturally been extended for
performance assessment of the whole wireless access network [6, 7]. Let � denote
the bit/Joule efficiency of the network, then it can be written as below:

� = Cnet

Pnet

where, Cnet is defined as the aggregate network capacity in [bit/s] and Pnet is the
total power consumption of the network in [W].

W/km2: another widely accepted energy efficiency metric is the area power
consumption denoted by � [6, 7]. It relates the total power consumption of the
network Pnet to the size of the covered area A and is given by

� = Pnet

A

Note that the optimal energy efficiency is achieved when the bit/Joule metric is
maximized or the power per unit area W/km2 is minimized.

Figure1 demonstrates the variation of both the bit/Joule and W/km2 metrics with
respect to the number of BSs when the capacity requirement is not considered. It can
be observed that bit/Joule is monotonically increasing with network densification,
while, on the contrary, theW/km2 metric indicates that reduced transmit power cannot
compensate the additional power consumption for idle state. Therefore, the W/km2

metric increases with the number of BSs after reaching the optimum point. This
suggests thatmaximizing the energy efficiency is not always equivalent tominimizing
the energy consumption. That is the reason why the capacity requirement must be
considered in order to prevent contradictory conclusions with different performance
metrics. Otherwise the usage of bit/joule might be misleading, since adding more
capacity into the network will always reflect an increase in energy efficiency.

Within this chapter both the described metrics (bit/Joule and W/km2) can be
applied to all simulations described in Sect. 5. In particular, performances evaluations
reported in Sect. 5.2 (intra-sector traffic steering) are devoted to the minimization of
area power consumption: in fact, while results provided by the tool are expressed
in terms of bit/Joule, “what-if” scenarios analyzed in this section are compared in
terms of power consumption of a single cluster of network sites, which is the same
for every simulation

3Even if the [bit/J] is a well-known efficiency metric, common practice in network performance
evaluations is to use in alternative a consumptionmetric expressed in [J/bit], as suggested byEARTH
project in [6].
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Fig. 1 Bit/Joule (blue
curve), area power
consumption (red curve)
versus number of BSs [7]

3.3 Power Models

In order to estimate the energy consumption of a future network, amodel of the power
consumption related to future BSs is needed. To this end, following the methodology
used in [3], results from the EARTH project [4] have been used. One of the major
contributions of theEARTHprojectwas thework performed to derive different power
models for different types of BSs. Since the EARTH project derived BSs’ power
models for 4G (LTE) only, similar models for 2G (GSM) and 3G (UMTS Rel.′99
and HSPA) BSs have been derived by selecting the closest equivalent EARTHmodel
in terms of system bandwidth (BW), output power and so on. This assumption seems
to be reasonable due to the fact that BSs’ hardware is becoming more and more
multi-standard. Nowadays multi-RAT capable hardware is already available on the
market and, when they will be deployed in large scale, it is expected that they will
be able to provide additional and significant energy saving. However, in this study,
these gains are not taken into account thus all BSs are assumed to be single-RAT.

3.3.1 EARTH Power Models

The EARTH project derived classes of power models corresponding to state-of-
the art BSs manufactured in the years 2010 and 2012. These models are denoted
as “EARTH class 1” and “EARTH class 2”, respectively. In addition, the EARTH
project derived a class of power models representing BSs’ hardware manufactured
during2012 includinghardware improvements that have beenproposedby the project
and these models are denoted as “EARTH class 3”. The “EARTH improvements”
introduced in the “EARTHClass 3” models are Operating-Point Adjustments (OPA)
and Component De-activation (CD) (refer to [4, 8] for further details). Different
power models for 1.4, 5, 10 and 20MHz BWs and for Class 1, 2 and 3 are depicted
in Fig. 2.
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Fig. 2 Example of EARTH
power models for different
BWs (1.4, 5, 12 and 20MHz)
and classes (1, 2 and 3)

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

1800

Relative RF Output Power [%]

B
S

 P
ow

er
 C

on
su

m
pt

io
n 

[W
]

EARTH Power models: Macro 40W, 2Tx

EARTH Class 1, 1.4 MHz
EARTH Class 1, 5 MHz
EARTH Class 1, 10 MHz
EARTH Class 1, 20 MHz
EARTH Class 2, 1.4 MHz
EARTH Class 2, 5 MHz
EARTH Class 2, 10 MHz
EARTH Class 2, 20 MHz
EARTH Class 3, 1.4 MHz
EARTH Class 3, 5 MHz
EARTH Class 3, 10 MHz
EARTH Class 3, 20 MHz

3.3.2 Power Consumption of Future Radio Base Stations

A follow-up of EARTH work on power models has been performed also by Green-
Touch consortium, that developed an evolutionary power model for future BSs (for
further details please see [9, 10]). Nevertheless, while this power model is more
focused on detailed technological aspects of the radio components (especially in the
view of assessing future LTE and 5G BSs), our goal is to consider different RATs
(including legacy equipment) in accordance with the operator needs to evaluate the
overall power consumption. For that reason the EARTH work has been considered
as a starting point to derive also 2G and 3G power models toward 2020.

Here the power consumed by a typical BS installed during 2012 is assumed to be
in line to the EARTH Class 1 of power models. Remember that the EARTH Class 1
represents a state-of-the art BS of 2010, which is assumed to represent a typical BS
deployed two years later, i.e., in 2012. Since there is always a distribution of BSs
installed in every year, how good the typical BS is represents the only interesting
aspect, rather than how good the best one is. With a similar reasoning, the EARTH
class 2models are assumed to be used to represent a typicalBS installed during 2014,
even though it corresponds to a state-of-the art BS of 2012. The EARTH improve-
ments that are included in the EARTH Class 3 models are assumed to be available
from the year 2016. For the intermediate years we assume an 8% improvement per
year, which is in accordance with historical improvements also used in [11].

Combining this, power model parameters for a typical future 3G site are derived,
as shown in Fig. 3. As a reference, in the leftmost bar, the consumption of one of the
most common 3G BS in today’s deployed networks is shown. It is an Ericsson RBS
3202 with 3 sectors and one 5MHz carrier per sector (denoted as (1/1/1) in Fig. 3)
which was a state-of-the-art BS approximately 10years ago. Future 3G BS’s power
consumption is derived by considering the EARTH power model of a macro BS,
5MHz BW, 1 transmit antenna, 20 W RF power per sector, 3 sectors per site and an
average RF load of 20%.

For 4G (LTE), a power model according to a macro BS, 10 MHz BW, 2 transmit
antennas, 40WRF power per sector, 3 sector/site and an average RF load of 20% has
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Fig. 4 Assumed evolution of power consumption for a typical future 4G (LTE) site

been assumed. The corresponding power consumed by a future LTE BS is depicted
in Fig. 4. Note that for LTE power consumption in Fig. 4 higher RF output power
and 2 transmitters per cell have been considered, which explains why the LTE power
consumption is larger than the corresponding 3G one in Fig. 3.

3.3.3 BS Power Models for Different RATs and Different Years

The power models presented above are useful in order to estimate the average energy
consumption in a typical radio BS that carries an average traffic volume. In order to
derive models that can be used in load adaptive studies, slightly more detailed power
models are needed. Using the same methodology as described above, BSs’ power
models as a linear function defined by a numerical triplet A, B and C can be derived
and described, where A is the sleep power, B is the idle power and C is the maximum
power of the BS.

For the considered RATs the following assumptions have been taken into account:

• LTE: 10 MHz BW, 2 TX, 40 W/sector, 3 sectors/site
• HSPA: 5 MHz BW, 1 TX, 40 W/sector, 3 sectors/site
• GSM: 1.4 MHz BW, 1 TX, 40 W/sector, 3 sectors/site
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Furthermore, the “EARTH improvements” are assumed to be available from 2016,
just as done above. From 2016 on, per-year 8% improvement for the parameters
A and B only is considered, as assumed in EARTH deliverable D2.1 [11]. For the
maximum power of the BS (parameter C of the power model) any improvement is
assumed to bemade. This average annual improvement (taken as baseline continuous
improvement) can be attributed to the technology scaling of semiconductors, as well
as to improved RATs. With these assumptions, load dependent power models for
LTE (Fig. 5), HSPA (Fig. 6) and GSM (Fig. 7) for the years 2012, 2016 and 2020 are
derived.

The power consumption of a BS is determined by using the previously reported
RAT-based power models; in principle, as can be seen in [3], the power model of a
BS is a set of parameters describing the BS’s power consumption Pin as a function

Fig. 5 LTE BS’s power models for 2012, 2016 and 2020

Fig. 6 HSPA BS’s power models for 2012, 2016 and 2020
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Fig. 7 GSM BS’s power models for 2012, 2016 and 2020

Fig. 8 Power model:
parameters as explained
in [3]

of the RF output power Pout (refer to Fig. 8). The mathematical expression which
relates the power consumption Pin to the output power Pout is:

Pin =
{

NT R X · P0 + NT R X · �P · Pout 0 < Pout ≤ PM AX

NT R X · Psleep Pout = 0

where PM AX denotes the maximum RF output power at maximum load, NT R X is the
number of transceiver chains, P0 is the linearmodel parameter representing the power
consumption at the zero RF output power, �P is the slope of the load-dependent
power consumption and Psleep is the sleep mode power consumption (i.e., the BS’s
power consumption achieved when there is nothing to transmit, so fast deactivation
of the BS’s components is selected).

By assuming that Pout varies linearly with the throughput and by denoting with
x the normalized throughput with respect to the capacity (i.e. peak throughput) of
each considered RAT, the original EARTH formula is modified as follows:



Energy Management in Mobile Networks Towards 5G 407

Pin =
{

NT R X · P0 + NT R X · �P · PM AX · x 0 < x ≤ 1
NT R X · Psleep x = 0

The above expression has been obtained by exploiting these equalities:

⎧
⎪⎪⎨

⎪⎪⎩

A = NT R X · Psleep

B = NT R X · P0

C = NT R X (P0 + �P · PM AX ) = N T R X · P0 + NT R X · �P · PM AX

= B + NT R X · �P · PM AX

Hence, the formula to be used in order to compute the BS’s power consumption
(according to the selected power model) as a function of the normalized traffic infor-
mation is:

Pin =
{

B + (C − B) · x 0 < x ≤ 1
A x = 0

The latter formula has been used in all performed simulations, whose results will be
shown later in Sect. 5.2.

Apowermodel for future 5GBSshas also beenderived for performance evaluation
when considering 2G/3G phase-off and contextual 5G progressive introduction: to
this end, the powermodel of a 2010 picoBShas been considered as a starting point for
5G RAT power models: in fact, the assumption is that 5G will be initially introduced
as a small cell capacity layer. Then, it can be assumed an yearly improvement of
8% for A and B power model’s parameters only (as previously stated), the power
model’s parameters of a theoretical 5G BS (A, B and C values) are determined and
reported in the following Table1.

Table 1 Future (2020) theoretical 5G BS’s power model

5G BS’s power model

Year A [W] B [W] C [W]

2010a 8.60 13.60 14.64

2011 7.91 12.51 14.64

2012 7.28 11.51 14.64

2013 6.70 10.59 14.64

2014 6.16 9.74 14.64

2015 5.67 8.96 14.64

2016 5.21 8.25 14.64

2017 4.80 7.59 14.64

2018 4.41 6.98 14.64

2019 4.06 6.42 14.64

2020 3.74 5.91 14.64
aA, B and C obtained considering NTRX = 2, PMAX = 0.13 W, P0 = 6.8 W, � P = 4, Psleep = 4.3 W
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4 Energy Efficiency Features

Today’smobile networks are designed and deployed based on the peak traffic demand
and kept active regardless of the low utilization during different times of the day.
Even at the peak hours there are few cells that experience high load [8]. In order
to scale the power consumption to the traffic dynamicity, adaptive network opera-
tion features can be considered, which are practical to apply and demonstrate even
in today’s mobile network operator sites. In this section, first of all different kind
of Discontinuous Transmission (DTX) techniques are described and categorized in
order to give an overview of the different possible features applicable to the mobile
networks, then showing in more detail one of these techniques, namely micro DTX.
Finally traffic steering techniques are described as energy efficiency enablers for
operators, especially in multi-RAT environments and in the view of the future intro-
duction of 5G systems.

DTX has been used for a long time in mobile terminals to achieve long battery
life. The idea is to only transmit when there is a need and, otherwise, putting the
transmitter in a low power state. At network side this technique is referred to as
cell DTX and it is based on the hardware component de-activation feature which
facilitates low power states. Two cell DTX versions can be distinguished: fast cell
DTX and long cell DTX.

Fast cell DTX acts on slot/subframe level and exists in some different versions as
well. Cell micro DTX (described in Sect. 4.1) is already possible in LTE Rel-8 and it
means that when there is not any user data to transmit the radio is put intoDTX (micro
sleep) among transmissions of Cell-Specific Reference Symbols (CSRS). This tech-
nique is illustrated in Fig. 9 below, which reports the structure of an LTE downlink
radio frame with 10 subframes showing CSRS for one antenna port, Physical Down-
link Control CHannel (PDCCH) region with a size of one OFDM symbol, Primary
and Secondary Synchronization Signals (PSS and SSS, respectively) and Broadcast
CHannel (BCH).

In the other version, which is also referred to as MBSFN-based DTX, Multicast-
Broadcast Single-Frequency Network (MBSFN) subframes are used to make room
for longer sleep periods, since CSRS are not transmitted in these subframes, as
depicted in Fig. 10, where a LTE downlink radio frame with 6 MBSFN subframes is
shown. This is also possible in LTE Rel-8.

Finally, a cell short DTX is possible, in which the CSRS are assumed to be
removed and replaced by DeModulation Reference Signal (DMRS), hence leaving
room for even longer sleep periods, as shown in Fig. 11. This is not possible in the
today’s LTE standard, but may be in the future, see e.g. [12]. All these fast cell DTX
versions are most effective in low load scenarios, but there is not any drawback at
high load either.

On the other hand, long cell DTX acts on a slower time scale and in principle
it refers to the cell being put into a low-activity mode [13]. As such it can be seen
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Fig. 9 LTE downlink radio frame. Only micro DTX is possible

Fig. 10 LTE downlink radio frame configured with 6 MBSFN sub-frames

Fig. 11 Proposed LTE downlink radio frame without CSRS. Short DTX can be applied

as a cell sleep (on/off functionality) and it could be based on a deeper sleep state
(lower power consumption) than the low power state considered above for the fast
cell DTX versions. One use case or strategy for long cell DTX is in relatively densely
deployed networks, where there is good coverage (dense urban, urban, suburban).
Then capacity nodes can be put in long cell DTX during low-traffic periods. Hence,
long cell DTX can be seen as an enabler/tool for many network management actions,
such as small cell and multi-RAT management, but also macro cell management, as
discussed in [13]. In principle, long cell DTX can be activated when there is not
traffic demand or, alternatively, when, in periods of low traffic, cells are at low load
and then traffic steering techniques are easily applicable without many “ping-pong”
effects during the day. These techniques are considered in Sect. 4.2 as an enabler
of great energy efficiency potential for operators, especially in multi-RAT network
environments.
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4.1 Micro DTX

In this section, short term sleep solutions (called micro DTX, or sometime referred
as micro sleep4) are described; they have been proposed in [14] and they allow for
dynamic sleep mode operations at the BS on a short time resolution, e.g., millisec-
ond level.

In order to evaluate the power consumption of a BS under micro sleep, a cell is
assumed to be either in active state, i.e., there is at least a user requesting a service,
or in idle state, i.e., there is not any active user. Based on the linear model presented
in the previous sections, a cell consumes considerable amount of power even when
there is not any user in the cell, i.e., B = P0. However, by means of BS’s hardware
improvements, a cell can be put intoDTXmodeduring idle state, aiming at decreasing
the baseline power consumption to A = Psleep = δ · P0, where 0 ≤ δ < 1. Based on
these assumptions, the average power consumption of the kth cell Pk with load ηk ∈ η

can be written as [15]:

Pk = ζ · Pk · ηk + (1 − δ) · P0 · ηk + δ · P0

where Pk denotes the power spectral density per minimum scheduling resource unit
in the kth cell and ζ represents the portion of the transmit power dependent power
consumption due to feeder losses and power amplifier. Note that δ = 1 represents
the case where the BS does not have the DTX capability and therefore consumes
Pk = ζ · Pk · ηk + P0. In this case cell load only impacts the transmission-related
power consumption, i.e., ζ · Pk · ηk .

MicroDTX enables node-level power consumption adaptation in accordancewith
traffic variation in a very short time scale (millisecond level) avoiding any network-
level cooperation scheme. The energy saving potential of this feature has been dis-
cussed in the scientific literature [14, 16]. However, a quantitative analysis to evaluate
the achievable savings has not been performed extensively. As an example, valid for
all cell sleep modes, the interaction between network planning, cell load levels and
actual deactivation time of the cells is an important aspect to be considered. In fact,
energy saving obtained by means of sleep modes, in particular micro sleep, is closely
related to the initial network deployment, essentially because network density deter-
mines the cell load levels in the network itself which, in turn, impact the deactivation
time of each cell with micro sleep capability. Therefore, micro sleep should be taken
into account at the planning stage, in order tomaximize the achievable energy saving.
These evaluation results will be showed in Sect. 5.1.

4In principle, the two terms could be distinguished (being the “micro sleep” the underlying HW
functionality, and “micro DTX” the SW feature utilizing that HW functionality for energy saving).
Anyway since they are used jointly and then relative to the same Energy Efficiency feature, for
simplicity, both terms are used indifferently in the following.
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4.2 Intra-sector Traffic Steering

Another energy efficiency feature is intra-sector traffic steering; basically the traffic
carried by either 2G, 3G or both RATs’ frequency layers within a sector is steered
towards the 4G frequency layers of the same sector and, as a consequence, the emptied
2G and/or 3G layers can be deactivated. This is done in order to exploit the higher
capacity of the 4G RAT and its more energy-efficient equipment compared to the
2G/3G one, in the view of achieving as much energy saving as possible.

Here below are described two possible design conditions (and related traffic
thresholds) to be satisfied at the same time for the implementation of the intra-sector
traffic steering:

Condition C1:

• candidate 2G/3G layers for traffic steering are identified according to sector load:
their traffic (normalized with respect to the peak throughput of each considered
RAT) must be less than or equal to a predefined threshold th1(e.g., 50%).

• If steering is performed the empty layers are switched-off (i.e. the value of power
consumption of those layers is the one that can be achieved when a sleep mode is
activated).

Condition C2:

• the candidate 4G layers able to handle the original 2G/3G traffic, are chosen in such
a way that theywill not saturate their capacity after traffic steering. This means that
the 4G normalized traffic must remain less than or equal to a predefined threshold
th2 (e.g., 90%).

where it must be highlighted that both the thresholds th1 and th2 can be set according
to the operator preference and the values here considered are just exemplary ones.

In the following, a detailed explanation of the intra-sector traffic steering working
principle is reported.

Let’s consider all traffic data information of all RATs’ frequency layers within
a single sector (e.g., s1) of a tri-sectorial site, indicated as t0,s1

(1) vector. This is a
6 elements row-vector in which the first two elements are the traffic information
in charge of the 2G frequency layers, the third and fourth elements are the traffic
information of the 3G frequency layers and the last two elements are related to the
traffic on the 4G frequency layers. It must be specified that the above vector contains
non-normalized traffic information whilst the superscript (1) refers to the considered
time sample (i.e., 1st time sample).

t0,s1
(1) =

[
t (1)
0, f 2G_1 t (1)

0, f 2G_2 t (1)
0, f 3G_1 t (1)

0, f 3G_2 t (1)
0, f 4G_1 t (1)

0, f 4G_2

]

The vector indicating how the traffic of the considered sector is distributed after
traffic steering is indicated as t(1)

1,s1: this vector can be obtained by relating t(1)
0,s1 to

a 6-by-6 permutation matrix M(1)
s1

which represents the mathematical form of the
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energy efficiency feature for the considered sector (s1) at the specified time sample
(1st one). In formula:

t1,s1
(1) = t0,s1

(1) · M(1)
s1

=
[
t (1)
1, f 2G_1 t (1)

1, f 2G_2 t (1)
1, f 3G_1 t (1)

1, f 3G_2 t (1)
1, f 4G_1 t (1)

1, f 4G_2

]

The permutation matrix M(1)
s1

and, consequently, the post-steering traffic vector

t1,s1
(1), is computed iteratively, by checking that the two conditions C1 and C2 are

satisfied when steering the traffic from the 2G/3G (or both RATs) frequency layers
towards the 4G ones.

At the beginning of the algorithm (i.e., 1st step of the iterative process) the per-
mutation matrix M(1)

s1
is equal to the 6-by-6 identity matrix, i.e.:

M(1)
s1

= M(1)
1

= I
6

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

where the subscript “1” refers to the 1st step of the iterative algorithm.
Let us indicate with x (1)

0, f XG_i the normalized pre-steering traffic data on the i th
frequency layer of the XG RAT (X = 2, 3, 4) at the 1st time sample. Similarly,
x (1)
1, f XG_i indicates the normalized post-steering traffic data on the i th frequency layer
of the XG RAT (X = 2, 3, 4) at the 1st time sample.

Let us now suppose that the traffic data originally handled by the 2G frequency
layers can only be hypothetically steered and managed by the 4G ones, provided that
conditions C1 and C2 are satisfied.

This means that, at the 2nd step of the algorithm, the normalized traffic data of
the first 2G frequency layer (i.e., x (1)

0, f 2G_1) must be less than or equal to th1 and, at
the same time, the normalized post-steering traffic data in charge of one between the
two 4G frequency layers (i.e., x (1)

1, f 4G_1 or x (1)
1, f 4G_2, chosen according to post-steering

saturation level) must be less than or equal to th2. In formula:

if
{

x (1)
0, f 2G_1 ≤ th1 AND

(
x (1)
1, f 4G_1 ≤ th2 OR x (1)

1, f 4G_2 ≤ th2

)}
→ t (1)1, f 4G_i = t (1)0, f 4G_i + t (1)0, f 2G_1

If the above statement is fulfilled the traffic data of the first 2G frequency layer
is steered towards one (and only one) of the two available 4G frequency layers.
Assuming that the first 4G frequency layer can accept the traffic originating from the
first 2G layer, the permutation matrix at the 2nd step of the algorithm (i.e., M(1)

2
) is

expressed as:
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and, consequently, the post-steering non-normalized traffic data vector of the con-
sidered sector at the 2nd step of the iterative process is:

t1,s1_step2
(1) = t0,s1

(1) · M(1)
2

=
[
0 t (1)1, f 2G_2 t (1)1, f 3G_1 t (1)1, f 3G_2 t (1)1, f 4G_1 + t (1)0, f 2G_1 t (1)1, f 4G_2

]

The possibility to steer the traffic data of the second 2G frequency layer towards one
(and only one) of the available 4G frequency layers must now be analyzed. Again,

if
{

x (1)
0, f 2G_2 ≤ th1 AND

(
x (1)
1, f 4G_1 ≤ th2 OR x (1)

1, f 4G_2 ≤ th2

)}
→ t (1)1, f 4G_i = t (1)0, f 4G_i + t (1)0, f 2G_2

Assuming that the first 4G frequency layer does not accept the traffic originating
from the first 2G layer, but the second 4G layer does, the permutation matrix M(1)

3
at the 3rd step of the algorithm (which is the final step, since traffic steering for the
2G frequency layers only is performed) is expressed as:

and, consequently, the post-steering non-normalized traffic data vector of the con-
sidered sector at 1st time sample is:

t1,s1_step3
(1) = t1,s1

(1) =
= t0,s1

(1) · M(1)
3

=
[
0 0 t (1)1, f 3G_1 t (1)1, f 3G_2 t (1)1, f 4G_1 + t (1)0, f 2G_1 t (1)1, f 4G_2 + t (1)1, f 2G_2

]

Finally, the above expression shows that both the 2G frequency layers of the con-
sidered sector, for the 1st time sample, can be switched-off since their traffic is now
jointly managed by the 4G layers.

The overall algorithm must be performed for the remaining sectors, leading to
a set of permutation matrices M(1)

s_i
(with s_i = 1, . . . , N , where N represents the

number of sectors within the cluster of network sites) for the 1st time sample only;
the same approach must be followed for the remaining R − 1 time samples, with R
indicating the total number of time samples within the observation period.
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5 Energy Efficiency Assessment

In the following subsections performance evaluations are presented, respectively, for
micro sleep and intra-sector traffic steering.

5.1 Micro Sleep

In Sect. 4.1 it has been stated that micro sleep (here below also referred to as cell
DTX) should be taken into account at the planning stage, in order to maximize the
achievable energy saving. Here numerically demonstration of how the incorporation
of this feature at the planningphase increases the achievable energy saving is reported;
this has been accomplished by comparing the deployment for the lowest daily energy
consumption R∗ for:

i. Case 1: δ ∈ [0, 1) → cell DTX is incorporated with clean-slate network
deployment;

ii. Case 2: δ = 1 → cells do not have DTX capability.

Figure12 depicts the daily average area power consumption as a function of cell
range for both cases (assuming δ = 0.1 for Case 1). In this simulation, a mobile
network with regular hexagonal layout, consisting of 19 sites equipped with a single
omni-directional antenna with 15dBi antenna gain and cell range varying between
100 and 800m, has been considered. The simulated system operates at 2GHz with
10MHz BW. The Okumura-Hata pathloss model for an urban area based on 3GPP
specifications [17] with 8dB user noise figure has been utilized. Users are randomly
distributed over the area with a density of ρ = 1000 users/km2. To account for the
traffic fluctuations α (t) during a day, an approximated daily pattern based on the
downlink trafficmeasurements presented in [17] has been considered, by also assum-

Fig. 12 Daily average area
power consumption as a
function of cell range for δ =
0.1, δ = 1 and
rmin = 8 Mbps [15]
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ing that user behaviour is unchanged. Here each user demanding � = 18MB within
a duration of one hour is considered, which corresponds to a peak area traffic demand
of 40Mbps/km2, a reasonable estimate for 2015 [14]. For the proposed algorithm
ζ = 4.7, P0 = 130W based on [17] and νmax = 6 bps/Hz (νmax being the system’s
spectral efficiency) have been set. Moreover, Quality-of-Service (QoS) constraints
are defined as Pmin = −70 dBm, rmin = 8Mbps (rmin being the minimum data rate
demand) [17].

FromFig. 12 it can be observed that when cell DTX is incorporated at the planning
stage, higher densification tends to be preferred, which also brings significant energy
savings. This is mainly due to the fact that lower cell load levels taken into account
in Case 1, which create long deactivation periods originating from densification, can
be efficiently exploited by cell DTX.

Normally, operators would design their networks for minimum network deploy-
ment cost, i.e., with as fewBSs as possible. Assuming, however, that themain interest
here is to obtain the most energy-efficient network deployment regardless of costs,
the BSs’ density that provides the lowest daily energy consumption in the considered
cases has been found.

Finally, Fig. 13 displays how the new energy-efficient network incorporating cell
DTX performs with respect to the daily area power consumption. To this end, three
distinct cases have been considered:

(1) network deployment without cell DTX (blue bar, Case 2);
(2) no cell DTX considered in the network planning phase, but it is in operation

(green bar, Case 2);
(3) network deployment with cell DTX (red bar, Case 1).

From Fig. 13 it can be noted that cell DTX brings striking energy savings (from blue
to green bar) even when the network was not planned considering cell DTX. How-
ever, designing the network under the assumption that cells can be put into DTX
mode during idle state results in additional 42% saving, at the cost of deploying

Fig. 13 Daily area power
consumption variation for
δ = 0.1. [15]
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Fig. 14 Example of daily traffic profiles extracted from the live network (Downlink BW, 3 HSDPA
sectors)

around 110% more BSs. Furthermore, the resulting network deployment signifi-
cantly improves the user QoS, due to the reduction of the overall network load. It can
be concluded that, if the objective is to obtain themaximum energy savings, networks
have to be designed taking into account that network deployment and operation are
closely related. In other words, it can be stated that when modernizing and rolling
out new technology, e.g. 5G, DTX capability should be taken into account in the
network planning in order to maximize the energy savings.

5.2 Intra-sector Traffic Steering

In this section, simulation results related to the intra-sector traffic steering technique
are shown and analyzed.5 Energy efficiency performance have been assessed by
considering a homogeneous cluster of mobile network sites and by using actual
traffic profiles extracted from the live network, thus an energy consumption analysis
has been done in realistic conditions. The set of data traffic profiles related to a BS
currently running in the operator’s mobile network was extracted by means of a
network monitoring system with fixed time resolution. In particular, for each sector,
a single data sample automatically provided by the monitoring system represents
the average value of a specific Key Performance Indicator (KPI) over a 15min time
interval (e.g., for traffic profile in Fig. 14, a single sample represents the amount of
data transferred in 15min), hence a daily profile is represented by 96 consecutive
values. Each sample is also averaged over the 5 working days of the week, in order to
filter effects due to spurious data peaks and to increase the reliability of the provided
profile.

An example of the data profiles used in the energy efficiency performance eval-
uations is reported in Fig. 14: in the plot, HSDPA downlink BW for the 3 sectors is

5These results have also been initially reported in [18], even if with less details on the considered
methodology (which is described in this chapter with a more rigorous approach).
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Fig. 15 System layout
considered for network-level
energy efficiency assessment

showed only, even if other traces can be extracted from the live network in order to
analyze other KPIs.

The trend of extracted data profiles in Fig. 14 shows a typical daily oscillation
of the traffic, consistent with average profiles available in literature [17, 18], but
with the important difference that while literature curves are averaged over an entire
network, data profiles used for the reported performance assessment are related to a
single site, in order to better highlight particular burst effects of the traffic variation.
The resulting curves are then suitable for a specific evaluation of the site’s energy
consumption, based on actual traffic load. Moreover, these profiles are also suitable
for the evaluation of other energy efficiency features (e.g. like those proposed in [19]
and ON-OFF schemes tested in [20] with commercial BSs).

Network-level energy efficiency assessment has been performed by evaluating the
energy consumption of a homogeneous cluster of 19 tri-sectorial macro sites located
in an urban environment, all equippedwith twoGSM frequency layers (900 and 1800
MHz), UMTS,HSDPA and twoLTE frequency layers. This system layout is depicted
in Fig. 15, where the traffic of the whole cluster has been generated by replicating the
traffic information extracted from the site located in the actual operator’s network
through a set of perturbation factors. These factors are chosen in such a way that the
resulting traffic distribution among all 19 sites in the cluster is, on average, as much
homogeneous as possible. Traffic profiles of voice connections have been converted
into “Equivalent Data Traffic” (i.e., from Erl to kbps), in order to jointly manage
voice information with data traffic within the BS’s power model formula.

In addition, aiming at assessing the yearly energy efficiency performance evalu-
ations for traffic data evolution from 2014 to 2024, the November 2014s Ericsson
Mobility Report [21] has been considered, by applying a Compound Annual Growth
Rate (CAGR) of 40% for mobile traffic growth.

Finally, to better exploit 4G capacity and its possible improvements (e.g., intro-
duction of Carrier Aggregation, higher order MIMO), the amount of the total annual
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Table 2 Year-by-year evolution of the non-normalized traffic data information on all RATs fre-
quency layers related to a single sector of a site

Year 2G@ f2G_1 2G@ f2G_2 3G@ f3G_1 3G@ f3G_2 4G@ f4G_1 4G@ f4G_2

2014 A B C D E F

2015 A B C D E(1) F(1)

2016 A B C D E(2) F(2)

2017 A B C D E(3) F(3)

2018 A B C D E(4) F(4)

2019 A B C D E(5) F(5)

2020 A B C D E(6) F(6)

2021 A B C D E(7) F(7)

2022 A B C D E(8) F(8)

2025 A B C D E(9) F(9)

2024 A B C D E(10) F(10)

Table 3 Peak throughput values for all considered RATs

RAT Peak throughput (maximum capacity’/for
traffic data normalization [Mbps]

2G 1.2a

3G Rel.’99 0.384

3G HSDPA 21.100

4G 150 (years: 2014 → 2018)

300 (years: 2019 → 2020)

600 (years: 2021 → 2022)

1200 (years: 2023 → 2024)
aEstimated in order to globally take into account Equivalent Voice Traffic, GPRS and EDGE traffic

traffic increase has been equally split between the two 4G frequency layers. There-
fore, if the 2014 non-normalized traffic data information on all RATs frequency layers
related to a single sector is represented by letters from A to F as reported in the first
row in Table2, the yearly evolution of the traffic information will be computed as:

X (n) = X (n−1) + �(n)

�(n) = 0,4·(A+B+C+D+E (n−1)+F (n−1))
2

X = E, F

As the power model formula requires the traffic information to be normalized with
respect to the peak throughput value (i.e., maximum capacity) of each considered
RAT, the 4G capacity must reflect the annual increase of the traffic demandwithin the
network, thus simulations have been run by considering RATs’ maximum capacity
values as in Table3.
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Table 4 BSs’ power models weighted combinations when evaluating the cluster’s daily average
energy consumption in the considered baseline scenarios

Year BLS#1 BLS#2 BLS#3

Business as usual Network renewal in
2017

Continuous network
renewal

2014 100% PM2012 100% PM2012 100% PM2012

2015 100% PM2012 100% PM2012 100% PM2012

2016 100% PM2012 100% PM2012 100% PM2012

2017 100% PM2012 75% PM2012 & 25%
PM2016

75% PM2012 & 25%
PM201S

2018 100% PM2012 50% PM2012 & 50%
PM2016

50% PM2012 & 50%
PM201S

2019 100% PM2012 25% PM2012 & 75%
PM2016

25% PM2012 & 75%
PM2015

2020 100% PM2012 100% PM2016 100% PM2016

2021 100% PM2012 100% PM2016 75% PM2016 & 25%
PM2020

2022 100% PM2012 100% PM2016 50% PM2016 & 50%
PM2020

2023 100% PM2012 100% PM2016 25% PM2016 & 75%
PM2020

2024 100% PM2012 100% PM2016 100% PM2020

4G capacity improvement and subsequent increase of the power model’s parameters
values (i.e., A, B and C) can be modelled as:

Capacity4G = 150 · N
2 [Mbps]

X4G
∗ = X4G · N

2 [W]
X = A, B, C
N = 2, 4, 8, 16

where N is a parameter associated to the network feature allowing for the 4G capacity
improvement and related power model’s parameters increase (e.g. MIMO order or
number of basebands to put together in Carrier Aggregation).

Performance of three baseline systems over the years from 2014 to 2024 have been
assessed, in which different BSs replacement plans are considered and any kind of
traffic steering option is taken into account (see Table4):

1. Business as Usual: annual traffic increase from 2014 to 2024 and BSs’ power
models of the year 2012 (baseline power model).

2. Network renewal in 2017: annual traffic increase from 2014 to 2024 with network
equipment replacement starting from 2017, by considering BSs’ power models
of the year 2016 and whose completion is due by 2020. The cluster’s daily aver-
age energy consumption for traffic volumes from 2017 to 2019 is computed as
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Fig. 16 Daily average energy consumption and data traffic within the considered cluster of mobile
network sites

a weighted sum of energy consumptions obtained separately with both power
models of 2012 and 2016, as a consequence of the stepwise BSs’ replacement.

3. Continuous network renewal: annual traffic increase from 2014 to 2024 and con-
tinuous network equipment replacement to be carried out in two distinct phases:

a. from 2017 to 2020, by considering progressive introduction of newBSswhose
power consumption is computed as in baseline system labelled as “Network
renewal in 2017”. From 2021 to 2024, instead, the BSs’ power model of the
year 2016 is only considered;

b. from 2021 to 2024, by considering progressive introduction of newBSswhose
power consumption is computed by also considering the power model of the
year 2020. In this case, the cluster’s daily average energy consumption is
computed as a weighted sum of energy consumptions obtained separately
with both power models of 2016 and 2020, as a consequence of the stepwise
BSs’ replacement.

Figure16 reports the daily average energy consumption (in kWh) related to the
considered cluster of mobile network sites for the three baseline systems under eval-
uation. Daily data traffic (in Pb) is also shown.

As can be observed, main improvements in terms of energy savings, with respect
to the “Business as Usual”, can be achieved when considering network equipment
replacement as supposed in “Network renewal in 2017” (i.e. by progressively replac-
ing older BSs with new ones whose power consumption is modelled by means of
the power model of the year 2016). In other words, a complete network equipment
replacement in 2017 with BSs performing better in terms of power consumption will
result in high savings also in subsequent years. Furthermore, a possible decision on
a second round of network equipment replacement from 2020 can be postponed at a
time when sufficiently high energy saving can be reached, thus motivating a second
round of network investment. Besides, in 2020 or later on, the introduction of a new
5G RAT would represent another investment concurrent to the renewal of legacy
equipment: that is the reason why it is not likely to foresee at this time baseline



Energy Management in Mobile Networks Towards 5G 421

Fig. 17 Performance comparison of energy consumptions obtained by means of different traffic
steering options with respect to the baseline system #1 (“Business as Usual”)

Fig. 18 Performance comparison of energy consumptions obtained by means of different traffic
steering options with respect to the baseline system #2 (“Network renewal in 2017”)

#3 as the most probable scenario, due to the possible presence of two concurrent
investments, which are not necessarily affordable for the operator.

As a consequence, the “Network renewal in 2017” can be considered as the best
solution, since it provides short term benefits with less costs when compared to the
“Continuous network renewal” one; furthermore a 40% energy saving with respect
to the “Business as Usual” can be achieved in 2020, even if energy consumption of
these baselines in 2020 is still higher than one in 2014.

Regarding frontline systems’ evaluation, in the following Figs. 17, 18 and 19
evolutionary comparisons of different steering solutions with respect to the evaluated
baseline systems (“Business as Usual”, “Network renewal in 2017” and “Continuous
network renewal”) are reported, respectively.

As it can be observed, all the three pictures above show comparable trends and,
in particular, the benefits of applying traffic steering from a single legacy RAT (2G
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Fig. 19 Performance comparison of energy consumptions obtained by means of different traffic
steering options with respect to the baseline system #3 (“Continuous network renewal”)

Fig. 20 Cluster’s energy consumption performance obtained by jointly considering network
renewal in 2017 and traffic steering options with respect to the baseline system #1 (“Business
as Usual”)

or 3G) to 4G are similar, due to similar performance of the legacy RAT (according
to the considered power models). Furthermore, by jointly steering the traffic of both
2G and 3G RATs towards 4G, additional energy savings can be reached, with similar
trends in terms of energy consumption decrease.

It is noteworthy to state that these traffic steering solutions do not require any
investment for the network operator and theymay be implemented since 2014, allow-
ing for short term benefits’ achievement.

In Fig. 20 cluster’s energy consumption obtained by jointly considering network
renewal in 2017 (as indicated in Table4) and traffic steering options implemented
since 2014, with respect to “Business as Usual” baseline system, is presented.

As expected, the combinationof both traffic steering and stepwise network renewal
permits to achieve short term benefits in terms of energy consumption byminimizing,
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Fig. 21 Cluster’s energy consumption performance obtained by jointly considering network
renewal in 2017 and 5G introduction with contemporary phase-off of legacy RATs in 2021, with
respect to both baseline systems #1 (“Business as Usual”) and #2 (“Network renewal in 2017”)

at the same time, the investment for the network operator. The holistic solution, of
course, is still able to satisfy all the traffic demand in the network, allowing for huge
energy savings with respect to the “Business as Usual” baseline system (38% for
2G/3G traffic steering and 40% for 2G&3G traffic steering, respectively, in 2024),
even if power consumption in 2024 is still higher, in absolute terms, than the one in
2014. This can represent a motivation for 5G introduction, in order to further save
energy by considering 4G offloading towards the new RAT, satisfying the additional
traffic.

The last analyzed frontline scenario is the one in which the introduction in 2021
of the new 5GRATwith contextual phase-off of a legacy one, i.e. 2G or 3G, is jointly
considered together with a BSs replacement plan as thought in “Network renewal
in 2017” baseline system. Evolutionary performance of this scenario from 2014 to
2024 are shown in Fig. 21 and are compared with the ones related to both “Business
as Usual” and “Network renewal in 2017” baseline systems.

Cluster’s non-normalized traffic data evolution from 2014 to 2024 has been mod-
eled as reported in Table5, where the 2G phase-off is considered (the 3G phase-off
case is similar); to this end, the availability of two 5G frequency layers is assumed.

Basically, a CAGR of 40% for mobile traffic growth is still considered and the
amount of the total annual traffic increase is now equally split between the two new
5G frequency layers, that is:
for 2021

G = A + �

H = B + �

� = 0, 4 · (A + B + C + D + E (6) + F (6)
)

2
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Table 5 Year-by-year evolution of the non-normalized traffic data information on all RATs fre-
quency layers in a single sector of a site when introducing 5G and phasing-off 2G in 2021

Year 2G@f2G_1 2G@f2G_2 3G@f3G_1 3G@f3G_2 4G@f4G_1 4G@f4G_2 5G@f5G_1 5G@f5G_2

2014 A B C D E F – –

2015 A B C D E(1) F(1) – –

2016 A B C D E(2) F(2) – –

2017 A B C D E(3) F(3) – –

2018 A B C D E(4) F(4) – –

2019 A B C D E(5) F(5) – –

2020 A B C D E(6) F(6) – –

2021 2G phase-off C D E(7) F(7) G H

2022 C D E(8) F(8) G(1) H(1)

2023 C D E(9) F(9) G(2) H(2)

2024 C D E(10) F(10) G(3) H(3)

Table 6 Maximum throughput values for all considered RATs in phase-off scenarios

RAT Peak throughput (maximum capacity) for
traffic data normalization [Mbps]

2G 1.2a

3G Rel.’99 0.384

3G HSDPA 21.100

4G 300 (from 2021 on)

5G 1000 (from 2021 on)
aEstimated in order to gtobally take into account Equivalent Voice Traffic, GPRS and EDGE traffic

while, from 2022 to 2024

X (n) = X (n−1) + �(n)

�(n) = 0, 4 · (
C + D + E (6) + F (6) + G(n−1) + H (n−1)

)

2
X = G, H

Regarding traffic data normalization, the considered peak throughput values (i.e.,
maximum capacity) for all considered RATs are reported in Table6.

When 5G is deployed, the power consumption of remaining RATs (2G/3G and
4G) is still computed by considering BSs’ power models of the year 2016 (according
to the BSs replacement plan as in “Network renewal in 2017”).

The introduction of the 5G RAT in substitution of a legacy one, i.e. 2G or 3G,
allows for energy saving thanks to the elimination of a technologically obsolete
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RAT. Furthermore, the partial 4G traffic offloading towards the 5G RAT provides
additional energy savings since 2021, following the network renewal of the legacy
network started in 2017. With 5G fully on-field in 2024 and 2G/3G RAT phased-off,
a reduction of nearly 50% of the cluster’s energy consumption can be achieved with
respect to the 2014 energy consumption.

6 Summary and Conclusions

In this chapter few selected techniques and actions that the network operator should
consider for the mobile network’s evolution towards 5G from a sustainability point
of view have been presented and assessed. To this end, the energy consumption of
the RAN when considering different load conditions (obtained by means of actual
daily traffic profiles extracted from the live network) and different years (according to
current traffic forecasts) has been taken into account. This study has been conducted
in order to provide an overview of different “what-if” scenarios towards 2020 and
beyond, as useful insights for operators aiming at analysing evolutionary steps of
their mobile networks in the view of the introduction of future 5G systems.

In particular, in order to estimate the energy consumption of a future network, a
model of the power consumption related to future BSs needed. Thus, following the
methodology used in [3], results from the EARTH project [4] have been adopted, by
considering different power models for different types of BSs. Evolutionary power
models have also been derived for each RAT through the years, providing an essen-
tial framework for network-level energy efficiency assessments. Moreover, many
different energy efficiency features to be possibly implemented within the mobile
network have been analysed and, due to the different time scales of these features,
their evaluation has been decoupled as follows:

• at shorter time scale (i.e., milliseconds) micro sleep has been considered and
assessed by means of system-level simulations;

• at higher time scale (i.e., fromminutes to years), progressive network renewal with
traffic steering options and legacy RATs’ phase-off policies has been evaluated by
using a specific evaluation tool fed by actual traffic coming from the live network.

Regarding the first set of features, the maximum achievable energy saving when
enabling cell micro sleep in mobile networks has been assessed, also considering
the fact that the achievable energy saving is closely related to the initial network
deployment. To this end, cell DTX has been incorporated within the planning stage
of the network and theBSs’ density that provides the lowest daily energy consumption
satisfying certain coverage and QoS requirements has been determined. It has been
shown that, if the DTX feature is taken into account in the planning stage of the
network, the energy consumption can be reduced by means of denser deployment of
lightly loaded cells. The drawback of such a solution is the additional deployment
cost. In future works, the investigation regarding the optimum network deployment



426 D. Sabella et al.

that minimizes the total network cost, also considering its energy consumption and
incorporating cell DTX with sector sleep feature, are planned to be evaluated.

Finally, for the second set of energy efficiency features, different traffic steering
strategies applied to different legacy RATs and RAT-based power models’ evolution
through the years have been considered. Therefore some “what-if” scenarios related
to the introduction of a new 5G RAT have been evaluated, always by considering
cluster-level energy efficiency performance (i.e., by taking into account the recent
introduction of ETSI EE specifications, based on homogeneous clusters’ evaluations
that may be easily extrapolated at country level). An evolution of this study may
include the full implementation of the methodology introduced in ETSI ES 203228
specification [5], allowing for a complete assessment of different clusters of sites, thus
providing country-wide energy efficiency evaluations. In addition, a possible future
step could take into account the introduction of the resource pooling in Cloud-RAN
systems (and a complete power model including all elements in C-RAN architecture)
as well as the Machine-to-Machine (M2M) infrastructure effects on the evolutionary
energy consumption of the overall mobile network.
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Index Coding: A Greener Door
for Wireless Networks

Mohammad Asad Rehman Chaudhry and Zakia Asad

Abstract Wireless networks are at the heart of telecommunication technology.
Energy constrained wireless devices in the high-data-rate communication era are
pushing energy efficiency to the top of the priority list for the network design. Improv-
ing the throughputwithout compromising energy efficiency aswell as spectrumusage
is pivotal for greener wireless networks. This chapter focuses on the Index Coding
problem that presents an important class of practical problems in wireless networks.
The IndexCoding problem opens up a green door for the communication paradigm in
wireless networks. This chapter not only provides a comprehensive overview of the
Index coding problem abut also presents its mathematical formulation, taxonomy, as
well as several solution techniques.

1 Introduction

The footprint of wireless networks is indispensable in modern day life. Wireless
networks rely on energy constrained mobile devices including smartphones, tablets,
laptops, and wearables to promote an “always-on” lifestyle. The constraint on energy
is further topped up by the growth of high-data-rate applications for mobile devices.
Increasing prevalence of energy-constrained wireless devices has fueled the efforts
for development of energy-efficient and environmental friendly “green” networks.

A perceived nuisance associated with wireless networks is that the nodes that are
not the intended receivers can also overhear the communication. This happens due to
the broadcast nature of the wireless medium. The broadcast nature, however, can be
used to improve energy efficiency and throughput in wireless networks by allowing
the sender to code different packets together.
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Coding techniques—for example the IndexCoding and theNetworkCoding—can
optimize a network’s resource-utilization by minimizing the volume of the commu-
nication, compared to the contemporary routing based approaches, without com-
promising on the rate of information exchange. The reduction in the volume of the
communication can translate into an efficient utilization of the wireless spectrum as
well as energy savings. For instance, authors in [1] show that the coding techniques
offer a constant factor improvement in energy efficiency for fixed wireless networks.
[1] also show that for dynamic wireless networks the advantage is bounded by a
logarithmic factor depending on the number of nodes in the network. Similarly, the
coding based techniques can achieve minimum energy consumption in wireless ad
hoc networks [2]. Moreover, a coding based approach has been used to increase the
bandwidth efficiency for reliable broadcast in wireless networks [3]. Similarly, the
coding based techniques can construct minimum-energy multicast in wireless net-
works [4]. Furthermore, for multiple unicast networks, coding has been shown to
save 25% more power as compared to the pure routing [5]. Aside from the potential
in better throughput, security, robustness, and energy efficiency, the coding based
techniques have shown potential in recovering losses from half-duplex relays in
5G networks [6]. Hence, coding based techniques can play a vital role in achiev-
ing greener wireless networks by improving energy efficiency as well as overall
resource-utilization.

Consider the following example to understand the benefits that the coding has to
offer for wireless networks.

Example 1 (Energy Efficiency Using Coding) Consider a wireless network consist-
ing of two nodes n1, n2 and a relay r as shown in the Fig. 1. The nodes n1, n2 can not
communicate directly, and need the help of the relay to exchange data. Furthermore,
the transmissions are done in rounds, one in each time slot. The traditional approach
requires four transmissions in the system, one in each round. Specifically, two trans-
missions to deliver the packet a from node n1 to node n2, as firstly n1 transmits the
packet a to the relay, and then the relay transmits this packet to n2. Similarly, two

Fig. 1 Energy efficiency using coding in a wireless network of two nodes and one relay



Index Coding: A Greener Door for Wireless Networks 431

transmissions are required to deliver the packet b from the node n2 to the node n1.
However, by using coding the number of transmissions in the network can be reduced
from four to three. More precisely, in case of the coding based approach, the relay
r firstly receives the packet a from n1 and waits until it receives the packet b from
n2. After receiving both the packets, the relay creates a combined packet a + b and
broadcasts it to both the nodes. Note, it results in a total of three transmissions in the
network. Each node, after receiving the packet a + b, can decode its required packet.
For example, n1 already has packet a and it can use (a + b) − a to decode the packet
b, and similarly n2 can decode the packet a. The reduction in the number of trans-
missions in the network translates into 25% reduction in the energy consumption
or 25% less utilization of the bandwidth depending on the use-case, without any
decrease in the rate of information exchange.

This chapter focuses on the IndexCoding problem. The IndexCoding problem can
be considered as one of the basic problems in information theory [7–12]. The Index
Coding problem can be seen as a multi-client network problem in which only one
link in the communication network has finite capacity. In fact, the Index Coding and
the Network Coding problems have been shown to be two equivalent problems.More
precisely, it has been shown that, for each instance of the Index Coding problem,
there is a corresponding instance of the Network Coding problem and vice versa [13,
14]. In addition to this, the Index Coding problem is also related to the Interference
Alignment problem [15].

The Index Coding problem is defined for wireless networks comprising of a relay,
and a set of clients. Each client is interested in a certain subset of the packets available
at the relay, and might have a (different) subset of the packets available as the side
information. The relay can broadcast the packets or encoding thereof. The goal is
to find a scheme that requires the minimum number of transmissions to satisfy the
requests of all the clients. By minimizing the number of transmissions, the Index
Coding helps to achieve energy efficiency, as well as an optimal resource-utilization.

2 The Index Coding Problem

The Index Coding problem recently attracted significant interest from research com-
munity due to its theoretical as well practical significance. On theoretical side the
IndexCoding problem captures the limits of information exchange rates. On the prac-
tical side, its applications range from the satellite communications to the data cen-
ters. The Index Coding problem has been recognized to encompass many important
applications like multi-way relay networks [16], sensor networks [17, 18], vehicular
networks [19], big data processing [20], and interference management [21].
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2.1 Model

An instance of the Index Coding problem is defined by a relay (coding server), a
set of m clients C = {c1, . . . , cm}, a set of n packets P = {p1, . . . , pn} that need to
be delivered to the clients. Each client ci requires a set of packet, Wi ⊆ P, known
as its want set. Each client ci might have access to some side information, Hi ⊆ P,
known as its has set. The relay can transmit the packets in P, or their combinations
(coded packets) to satisfy the demands of all the clients over an error-free broadcast
channel. Each transmission xi by the relay is specified by a function f over packets
in P, and the coefficients from a finite field αi = {αj

i} ∈ GF(q):

xi = n
f

j=1
(α

j
i · pj). (1)

The Index Coding problem is defined as:

Problem 1 (The Index Coding Problem (ICq)) Find a scheme that minimizes the
number of transmissions from the relay such that each client ci can decode all the
packets in its want. The optimal solution is denoted by OPT(ICq).

Remark 1 Without loss of generality, it can be assumed that for each packet pi ∈ P
there exists at least one client cj ∈ C such that pi ∈ Wj.

Remark 2 Without loss generality, it can be assumed that for each client ci ∈ C it
holds that H(ci) ∩ W (ci) = ∅.
Remark 3 If a client ci ∈ C requires more than one packets then without loss of
generality it can be equivalently represented by multiple clients c1i , c2i , . . . , such
that each client cj

i requires only one packet and the “has” set H(cj
i) of each client

c1i , c2i , . . . is identical to that of ci. It easy to verify that the resulting instance has the
same set of feasible solutions as the original problem.

Example 2 (An Instance of the Index Coding Problem) The Fig. 2 depicts an instance
of the Index Coding problem. The instance consists of a relay node with four packets
p1, . . . , p4 destined for four clients c1, . . . , c4. Each client ci requires the packet pi,
and has access to some side information (shown as Hi in the Fig. 2). Using con-
temporary approach, the relay needs to broadcast all the four packets p1, . . . , p4.
However, if the relay deploys an Index Coding based solution then the demands of
all the clients can be satisfied with only two transmissions. The transmissions are
p1 ⊕ p2, and p3 ⊕ p4. Where α1 = {1 1 0 0}, and α2 = {0 0 1 1} (both α1 and α2

∈ GF(2)), and the function f is “addition over GF(2) (binary XOR)”. Therefore,
the Index Coding reduces the number of transmissions by from 4 to 2 resulting in
50% lesser transmissions or 50% energy savings compared to the contemporary
approach. Note, each client can decode its required packet from the coded packets it
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Fig. 2 An instance of the
Index Coding problem

received using the side information available to it. For example c1 can decode p1 by
performing the following operation:

(p1 ⊕ p2) ⊕ p2 (2)

2.2 Relation to the Field Size

It is interesting to note that the optimal solution to the Index Coding problem depends
on the field size, i.e., by changing field size the minimum number of transmissions
required to satisfy all clients can change [22]. This dependence on the field size is
elaborated by the following examples.

Example 3 (Effect of the Field Size on the Optimal Solution to the Index Coding
Problem) This example presents an instance of the Index Coding problem where
increasing the field size decreases the number of transmissions by the relay. Consider
an instance of the Index Coding problem with four packets p1, p2, p3, p4, and twelve
clients c1, c2, . . . , c12. Corresponding want and has sets for each client are shown in
the Fig. 3. It can be verified that the |OPT(IC2)| = 3. Specifically, when the coding
operations are performed over GF(2) the relay needs to broadcast at least three
packets which are x1 = p1 ⊕ p3, x2 = p2 ⊕ p3, and x3 = p4, where ⊕ refers to the
addition overGF(2). However, when the coding operation are performed overGF(3)
then the relay needs to broadcast only two packets which are x1 = p1 + p3 ⊕ p4, and
x2 = p2 + p3 ⊕ 2p4, where + refers to the addition over GF(3).

As described in the Example 3 the optimal solution to the Index Coding problem
depends on the field size but this is not a monotonic dependence, i.e., the larger field
size does not necessarily means lesser number of transmissions by the relay. The
following example elaborate this non-monotonic dependence on the field size.

Example 4 (Non-monotonic Relationship Between the Field Size and the Optimal
Solution to the Index Coding Problem) Consider an instance of the Index Coding
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Fig. 3 An instance of the
Index Coding problem for 4
packets and 12 clients. This
instance showcase that the
optimal solution to the Index
Coding problem can be
changed by varying field size

problem with seven packets p1, p2, p3, p4, p5, p6, p7, and 18 clients c1, c2, · · · , c18.
Corresponding want and has sets for each client are shown in the Fig. 4. It can be
verified that |OPT(IC3)| = 3, where the relay transmits the following three packets
(+ refers to the addition over GF(3)):

x1 = p1 + p4 + p5 + p7 (3)

x2 = p2 + p4 + p6 + p7 (4)

x3 = p3 + p5 + p6 + p7 (5)

Fig. 4 An instance of the
Index Coding problem for 7
packets and 20 clients. This
instance showcases the fact
that the optimal solution to
the Index Coding problem is
not monotonic with the field
size. It can be verified that
clients c16, c17, and c18
cannot decode the packets in
their want set based on only
three transmissions, i.e., x1,
x2, and x3 given by Eqs. 6, 7,
and 8 respectively
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However, for all GF(2k), i.e., the fields with even characteristic, the relay needs
to transmit at least four packets i.e.,|OPT(IC2k )| = 4 for all k. Specifically, the relay
transmits the following four packets (⊕ refers to the addition over GF(qk))

x1 = p1 ⊕ p4 ⊕ p5 ⊕ p7 (6)

x2 = p2 ⊕ p4 ⊕ p6 ⊕ p7 (7)

x3 = p3 ⊕ p5 ⊕ p6 ⊕ p7 (8)

x4 = p4 ⊕ p5 ⊕ p6 (9)

3 Taxonomy of the Index Coding Problem

This section describes the taxonomy of the Index Coding problem. The Index Coding
problem can be classified based on following characteristics:

• Coding Methodology:

– Linear Coding: A solution scheme to the Index Coding problem is said to be
linear if for each transmission the function f (defined in the Sect. 2.1) defines a
linear operation. An example of a linear coding scheme can be a scheme where
each transmission xi = ∑n

j α
j
i · pj.

– Non-linear Coding: A non-linear coding scheme for the Index Coding prob-
lem is characterized by a solution using a non-linear function f (defined in the
Sect. 2.1). An example of a non-linear coding scheme can be xi = ∏n

j α
j
i · pj.

• Solution Granularity:

– Scalar Solution: In a scalar solution to the Index Coding problem each packet
is coded as a whole. For the instance of the Index Coding problem shown in
the Fig. 5, the scalar-linear solution requires three transmissions i.e., p1 ⊕ p2,
p3 ⊕ p4, p5.

– Vector Solution: In a vector solution for the Index Coding problem each packet
pi is subdivided into � smaller size subpackets p1i , . . . , p�

i . Then, each transmit-

ted packet, xi = n
f

j=1
(α

j,k
i · pk

j ), is a combination of the subpackets {pj
i| 1 ≤ i ≤

n, 1 ≤ j ≤ �}, rather than the original packets. With a vector coding scheme, the
goal is to find an encoding schemes that minimize the ratio of μ

�
, where μ is the

number of times a combination of subpackets is transmitted.
It is interesting to note that compared to the scalar solution the vector solu-
tion can further reduce the volume of communication. For an instance of the
Index Coding problem shown in the Fig. 5, the vector-linear solution requires
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Fig. 5 An instance of the
Index Coding problem for 4
packets and 4 clients. For
this case the scalar solution
would yield 3 transmissions,
whereas a vector solution
results in 2.5 transmissions

2.5 transmissions (μ

�
= 2.5) whereas the scalar-linear solution requires 3 trans-

missions. Specifically, each packet pi is divided into two sub-packets p1i and p2i
(i.e., � = 2). Then, the following five linear combinations of the subpackets are
transmitted: p11 ⊕ p12, p22 ⊕ p13, p23 ⊕ p14, p24 ⊕ p15, and p25 ⊕ p21.

• CodeDensity: The solution to the IndexCoding problem can be classified based on
the code density, i.e., the maximum number of packets that can be coded together
in each transmission. Higher code density can be computationally expensive both
in terms of encoding and decoding. Imposing a constraint on the code density can
be helpful to achieve practically efficient solutions.

– Sparse Solution: A solution to the Index Coding problem is referred to as
γ − sparse if the relay is restricted to code no more than γ packets in any
transmission. For an instance of the Index Coding problem given in the Fig. 6,
the optimal 2 − sparse solution results in two transmissions, i.e., p1 ⊕ p2 and
p3 ⊕ p4.

– Dense Solution: A solution to the Index Coding problem is referred to as dense
if the code density is unrestricted. For an instance of the Index Coding problem
given in the Fig. 6, the optimal dense solution results in one transmission, i.e.,
p1 ⊕ p2 ⊕ p3 ⊕ p4.

• Objective Function: The IndexCoding problem has been proven to be not onlyNP-
hard but NP-hard to approximate as well [7, 11, 22, 23]. This motivates the need to
investigate the Index Coding problem from a complementary perspective. Specif-
ically, the objective of the Index Coding problem is to “minimize” the number
of transmissions whereas the the objective of the Complementary Index Coding
problem is to “maximize” the number of saved transmissions. It is interesting
to note that there are several well-known NP-hard problems whose complemen-
tary problems exhibit significantly different behavior in terms of approximation.
For instance, the problems of finding the minimum chromatic number of a graph
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Fig. 6 An instance of the
Index Coding problem for 4
packets and 4 clients. A
2-sparse solution to the
Index coding problem yields
2 transmissions, whereas a
dense solution results in only
one transmission

(graph coloring) is in-approximable but its complementary problem of maximiz-
ing the number of colors saved (color saving problem) (see e.g., [24]) has good
approximation algorithms.

– Minimization: Let μ be the number of transmissions, then the goal of the Index
Coding problem is to minimizeμ. For the instance of the Index Coding problem
given in the Fig. 6, the optimal solution to Index Coding problem with the
minimization objective needs only one transmission, i.e., p1 ⊕ p2 ⊕ p3 ⊕ p4.

– Maximization: Let μ be the number of transmissions, then the goal of the Index
Coding problem with the complementary objective function is to maximize
n − μ, i.e., tomaximize the number of saved transmissions. The optimal solution
for the instance of the IndexCoding problemgiven in Fig. 6with complementary
objective saves 3 transmissions.

• Demand of the Clients:

– Multiple Unicast: In a multiple unicast instance of the Index Coding problem
each packet is required by just one client, i.e., Wi ∩ Wj = φ ∀i, j. Example 2
presents a multiple unicast instance of the Index Coding problem.

– Multiple Multicast: An instance of the Index Coding problem where a packet
can be required by more than one clients is referred to as a multiple multicast
instance. Examples 3 and 4 both present multiple multicast instances of the
Index Coding problem.

• Side-information available at the clients:

– Uni-priori: An instance of the Index Coding problem is uni-priori if |Hi| = 1 ∀i
[25]. An instance of the Index Coding problem shown in the Fig. 6 is an example
of a uni-priori Index Coding problem.

– Multi-priori: An instance of the Index Coding problem is multi-priori if a client
can have an arbitrary number of packets in its Has set. Example 2 is an instance
of a multi-priori Index Coding problem.
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4 Relationship of the Index Coding Problem
to the Matrix Completion Problem

This section shows the relationship between the Index Coding problem and a well-
known mathematical problem known as the Matrix Completion problem.

The Matrix Completion problem, referred to as the MC problem, is concerned
with determining whether or not a completion of a partial matrix exists that satisfies
some prescribed properties.

Problem 2 (The MC Problem) Let A = {aij} be an m × n matrix over a finite field
GF(q) that satisfies the following conditions:

1. For each row i there exists only one entry aij such that aij = 1,
2. Each element aij 	= 1 is either zero or is an unknown xij.

Let X = {xij} be the set of all unknowns. The objective is to assign values to X from
a finite field that minimize the rank of A.

For an instance I for theMC problem, theminimum achievable rank ofA is denote
by OPT(I).

The next two lemmas show that the ICq problem and the MC problem are equiv-
alent.

Lemma 1 Let I be an instance of the ICq problem. Then, an instance I ′ of the MC
problem can be efficiently constructed in a polynomial time, such that OPT(I) =
OPT(I ′).

Proof Given the instance I of the ICq problem, the instance I ′ of the MC problem is
constructed as follows. The matrix A has |C| rows, and |P| columns. For each client
ci ∈ C there is a row in r(ci) in A, and for each packet pi ∈ P there is a column κ(pi)

in A. Then,

• aij = 1, for row r(ci) and column κ(pj) if pj ∈ Wi;
• aij = X, for row r(ci) and column κ(pj) if pj ∈ Hi;
• aij = 0, otherwise.

The matrix A for the instance of the Index Coding problem from the Example 2
is given below:

M =

⎡

⎢
⎢
⎣

1 X 0 X
X 1 X 0
0 X 1 X
X 0 X 1

⎤

⎥
⎥
⎦ (10)

Next, in order to show that OPT(I) ≤ OPT(I ′), let us assume thatΦ = {αi} be an
optimum solution to I . Furthermore, the linear subspace generated by vectors in Φ

is denoted by 〈Φ〉. Note that for each client ci ∈ C there must be a vector αi ∈ 〈Φ〉
that has the following properties:
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1. Let pj be a packet in Wi, then α
j
i = 1

2. For each packet pj ∈ P \ {Wi∩i)} it holds that αj
i = 0

Then, for each client ci ∈ C, the unknown values are set in a row of A that corre-
sponds to ci according to the vector αi ∈ 〈Φ〉 that corresponds to ci. Since each row
vector in A belongs to the linear subspace spanned by φ, it follows that

OPT(I ′) = rank(A) ≤ |φ| = OPT(I).

Finally, to show thatOPT(I ′) ≤ OPT(I), assume thatX ′ = {x′
ij}beoptimal assign-

ment of unknown values in A that is an optimal solution to the instance I ′ of the MC
problem. Also, let A′ be a matrix formed from A by substituting the unknown values
in A according to X ′. The matrix A′ has rank OPT(I ′), thus there are OPT(I ′) rows
of A′ which are linearly independent. Let Φ be the set of encoding vectors formed
by OPT(I ′) independent rows of A′. It is easy to verify that Φ is a feasible solution
of to the instance I of the ICq problem, hence OPT ≤ OPT(I ′).

Lemma 2 Let I ′ be an instance of the MC problem. Then, an instance I of the ICq

problem can be efficiently constructed in a polynomial time, such that OPT(I) =
OPT(I ′).

Proof Follows the same lines as the proof of Lemma 1.

5 Hardness Results for the Index Coding Problem

This section focus on NP-hardness of the Index coding problem in general setting.
Later parts of this section present some insightful results related to the computational
complexity of the Index Coding problem under different settings as presented in [7,
11, 12, 22, 23].

Theorem 1 The Index Coding problem ICq is NP-complete for any finite field GF(q).

Proof Let G(V, E) be an undirected graph with n vertices v1, . . . , vn, let GF(q) be
a finite filed, and let A be an n × n matrix over GF(q) that satisfies the following
requirements:

Aij =
{
1 if vi = vj

0 if vi is adjacent to vj
(11)

Then, A fits G.
For some field GF(q) and an undirected graph G(V, E), |V | = n, Let A (G, q)

be a set of matrices over GF(q) fitting G, i.e.,

A (G, q) := {A ∈ GF(q)n×n | A fits G}.
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In [26] it was proven, through the reduction from the problem of graph coloring
(for definition of graph coloring please see Sect. 6.2.1), that for any finite fieldGF(q),
it is NP-hard to check whether or not A (G, q) contains a matrix of rank three. This
implies, in turn, that it is NP-hard to determine whether the MC problem has a
solution of size 3. It has been shown in Sect. 4 that the MC problem and the Index
Coding problem are equivalent. Thus, by Lemmas 1 and 2 it holds, in turn, that the
problem of determining whether there exists a feasible solution of size 3 or less to
the ICq problem is intractable.

Moreover, it has been shown that the Index Coding problem is not only NP-
hard but APX-hard as well, i.e., a (1 + ε) approximation—for ε ≥ 0—of an optimal
solution can not be found in the polynomial time unless P = NP [7, 11, 12, 22, 23].

Furthermore, the authors in [27] have analyzed the computational complexity of
the IndexCoding problemwith the complementary objective under different settings.
Specifically, it has been shown that under themultiple unicast settings efficient scalar-
linear, and vector-linear solutions can be constructed in the polynomial time with
approximation ratios of Ω(

√
n · log n · log log n), and Ω(log n · log log n) respec-

tively. Moreover, constructing the scalar-linear solution under the multiple multicast
settings is not only NP-hard, but NP-hard to approximate as well within a ratio of
n1−ε for any constant ε > 0.

The computational complexity of finding a sparse solution to the Index Coding
problem under different settings has been analyzed in [11]. Specifically, finding a
sparse solution is NP-Complete. Furthermore, constructing a sparse solution with
the complementary objective is quasi-NP-hard to approximate within a factor of
O(log1−ε n) for any constant ε > 0. Moreover, under the multiple unicast settings an
efficient scalar-linear solution with an approximation ratio of 2 − 1√

n
, and an optimal

vector-linear solution can be constructed in the polynomial time. Additionally, a
scalar-linear solution, having an approximation ratio of 1√

n
, with the complementary

objective can be constructed in the polynomial time.

5.1 Bounds on the Green Gain

The green gain Γ is defined as the ratio between the minimum number of trans-
missions without coding and the minimum number of transmissions with coding,
i.e.,

Γ = n

OPT(ICq)

The lower and upper limits on the green gain are given below ([22]):

n

n − ϕ
≤ Γ ≤ φ + 1 (12)

where φ = maxci∈C |Hi| and ϕ = minci∈C |Hi|.
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6 Solution Techniques

In this section several solution techniques to the Index Coding problem are presented.
Specifically, the Sect. 6.1 presents a SAT based technique that provides an optimal
solution to the Index Coding problem. Moreover, the Sect. 6.2 presents several effi-
cient solutions to the Index Coding problem.

6.1 An Optimal Solution to the Index Coding Problem
Using Boolean Satisfiability Problem

This sectionprovides anoptimal solutionby formulating the IndexCodingproblemas
a Boolean Satisfiability (SAT) problem [10]. The presented SAT based formulation
of the Index Coding problem for GF(2) (referred to as the IC2 problem) can be
efficiently solved by SAT solvers such as Chaff or Minisat [28, 29]. Although the
formulation given in this section is specific to GF(2), but it is possible to extend it
for the general finite fields.

In order to check whether it is possible to satisfy all the clients byμ transmissions,
it is first required to check whether there exist μ encoding vectors α1, . . . , αμ of size
m, and m decoding vectors β1, . . . , βm of size μ that allow each client to decode the
packet in its want set. Recall that αi 0 ≤ i ≤ μ is the vector of encoding coefficients
for the packet xi transmitted in round i, i.e., xi = ∑n

j=1 α
j
i · pj. For the decoding

purposes each client ci ∈ C uses a corresponding decoding vector βi to decode the
packet in Wi. To be specific, each client ci computes the following linear combination
of the packets.

μ∑

i=1

xj · β
j
i =

μ∑

j=1

β
j
i

n∑

t=1

αt
j · pt

=
n∑

t=1

pt

μ∑

j=1

αt
j · β

j
i =

n∑

t=1

rt
i pt (13)

where ri = ∑μ

j=1 αt
j · β

j
i is a linear combination of the packets in P received by

the client ci. Note that a client ci can decode the original packets under following
conditions:

1. rj
i = 1 if pj ∈ Wi;

2. rj
i = 0 if pj /∈ {Hi ∪ Wi}, i.e., the packet pj belongs to neither has set nor want set
of ci.

The above two conditions give rise to the following constraints on {αi} and {βi}:
∑μ

j=1 αt
j · β

j
i ≡ 1 ∀ci ∈ C and pj ∈ Wi (14)
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∑μ

j=1 αt
j · β

j
i ≡ 0 ∀ci ∈ C and pj /∈ {Hi ∪ Wi} (15)

The constraints given in the Eqs. 14 and 15 can be efficiently transformed into a
SAT problem by substituting the summation and multiplication over GF(2) by the
XOR (⊕) and AND (∧) operations respectively using the boolean variables {αi} and
{βj} as given below:

⊕μ

j=1

(
αt

j ∧ β
j
i

)
≡ 1 ∀ci ∈ C and pj ∈ Wi; (16)

⊕μ

j=1

(
αt

j ∧ β
j
i

)
≡ 0 ∀ci ∈ C and pj /∈ {Hi ∪ Wi}. (17)

The SAT problem given by formulae 16 and 17 is not in conjunctive normal
form (CNF) required by most of the SAT solvers. A straightforward conversion
of formulae 16 and 17 into equivalent CNF form may results in an exponential
number of variables. Accordingly, in order to perform an efficient transformation the
Tstein transformation [30] is used. Such a transformation guarantees that the CNF
transformation is linear in the size of the original formulae.

For the Tseitin transformation an additional variable is defined for each non-
literals subformula including the original formula. To understand the Tseitin trans-
formation, consider the boolean formula given by 18.

(z1 ∧ z2) ⊕ (z3 ∧ z4) ⊕ (z5 ∧ z6) (18)

Firstly, five additional variables—A, B, C, D, and E—are introduced for the for-
mula 18 as given below:

A = (z1 ∧ z2)︸ ︷︷ ︸
B

⊕ (z3 ∧ z4)︸ ︷︷ ︸
C

⊕ (z5 ∧ z6)︸ ︷︷ ︸
D︸ ︷︷ ︸

E

(19)

Secondly, the formula 19 is transformed as below:

A ∧ (A ↔ (B ⊕ E)) ∧ (E ↔ (C ⊕ D))

∧(B ↔ (z1 ∧ z2)) ∧ (C ↔ (z3 ∧ z4))
∧(D ↔ (z5 ∧ z6))

(20)

Note that there are two types of subformulae in the formula 20, one represented
by A ↔ (B ⊕ C), and the other represented by A ↔ (B ∧ C). Each subformula of
type A ↔ (B ∧ C) is transformed into the CNF form as follows.

A ↔ (B ∧ C)

= (Ā ∨ B) ∧ (Ā ∨ C) ∧ (A ∨ B̄ ∨ C̄)
(21)
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Similarly, each subformula of type A ↔ (B ⊕ C) is transformed into the CNF
form as follows.

A ↔ (B ⊕ C)

= (Ā ∨ B ∨ C) ∧ (Ā ∨ B̄ ∨ C̄)

∧(A ∨ B ∨ C̄) ∧ (A ∨ B̄ ∨ C)

(22)

The CNF transformation of the boolen formula 18 is given below:

A ∧ (Ā ∨ B ∨ E) ∧ (Ā ∨ B̄ ∨ Ē) ∧ (A ∨ B ∨ Ē) ∧ (A ∨ B̄ ∨ E)

∧(Ē ∨ C ∨ D) ∧ (Ē ∨ C̄ ∨ D̄) ∧ (E ∨ C ∨ D̄) ∧ (E ∨ C̄ ∨ D)

∧(B̄ ∨ z1) ∧ (B̄ ∨ z2) ∧ (B ∨ z̄1 ∨ z̄2)
∧(C̄ ∨ z3) ∧ (C̄ ∨ z4) ∧ (C ∨ z̄3 ∨ z̄4)
∧(D̄ ∨ z5) ∧ (D̄ ∨ z6) ∧ (D ∨ z̄5 ∨ z̄6)

(23)

6.2 Computationally Efficient Solutions

Both the ICq problem and the boolean satisfiability (SAT) problem areNP-Hard prob-
lems, therefore using SAT based solution for finding an optimal solution for large
instances is practically intractable. This opens the possibility of devising heuris-
tic algorithms that can provide a near-optimal behavior. Accordingly, this section
presents several solutions techniques and compare their performance.

6.2.1 Reduction to Graph Coloring

This section describes a graph coloring based solution to the Index Coding problem
[10]. It has been shown in the Sect. 5 that the scalar-linear solution to the Index
Coding problem under multiple unicast setting is related to problem of finding the
minimum chromatic number of an undirected graph G(V, E) also referred to as
graph coloring problem. This section presents a scheme to find a solution to the
Index Coding problem using graph coloring. This section assumes, without loss of
generality (refer to Remark 3), that the want set of each client is of cardinality one.

Some of the terminologies and problem definitions used in the this section and
the subsequent sections are given below.

Definition 1 (Graph Coloring Problem) Given a graph G(V, E) with a vertex set
V and an edge set E assign a color to each vertex v ∈ V such that for any edge
(v, u) ∈ E, the vertexes v and u are assigned a different color, and total number of
the colors used is minimum.

Definition 2 (Complementary Graph) Given a graph G(V, E), its complementary
graph Ḡ(V̄ , Ē) is constructed as following:
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• V̄ = V
• Ē = {e(u, v)|e(u, v) /∈ E}
Definition 3 (Clique) Given a graph G(V, E), a clique is a set of vertices V ′ ⊆ V
such that ∀(u, v) ∈ V ′, there exists an edge e(u, v) ∈ E.

Definition 4 (Clique Partition Problem) Given a graphG(V, E), partition V into the
minimum number of disjoint subsets V1, V2, . . . , Vk , such that each Vi, 1 ≤ i ≤ k, is
a clique.

To solve the Index Coding problem under multicast setting using graph coloring
problem, a dependency graph is defined as:

Definition 5 (Dependency Graph) Given an instance I of the ICq problem, a depen-
dency graph G(V, E) is defined as follows.

• For each client ci ∈ C there is a corresponding vertex vci in V
• Each two vertices vci and vcj are connected by an edge if one of the following
holds:

– Wi = Wj, i.e., Clients ci and cj have identical want sets;
– Wi ⊆ Hj and Wj ⊆ Hi.

Lemma 3 Let V̂ ⊆ V be a clique in G(V, E), then all clients that correspond to
nodes in V̂ can be satisfied by one transmission, which includes a linear combination
of all packets in their want sets.

Therefore, the number of transmissions for an instance of the Index Coding prob-
lem can be minimized by solving a clique partition problem for the corresponding
dependency graph. The Graph coloring and the clique partitioning problems are
interchangeable [31, 32] as follows.

Lemma 4 Clique partitioning problem for graph G(V, E) is equivalent to the graph
coloring problem for the complementary graph Ḡ(V̄ , Ē).

Hence, the number of transmissions for an instance of the Index Coding problem
can be minimized by solving a graph coloring problem for the complementary graph
of the corresponding dependency graph. The graph coloring based solution for the
Index Coding problem is given in the Algorithm 1.

The Fig. 7 shows the relationship between the clique partitioning problem and the
graph coloring problem for the instance of the Index Coding problem given in the
Example 2. Specifically, the Fig. 7a shows the dependency graph, and its correspond-
ing clique partitions are shown in the Fig. 7c. The Fig. 7b shows the complementary
graph of the dependency graph shown in the Fig. 7a, and its corresponding graph
coloring is given in the Fig. 7d. The packets corresponding to the same colored ver-
tices are coded together, i.e., p1+p4 and p2 + p3. These two packets can satisfy the
demands of all the four clients.
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Fig. 7 a A dependency
graph for the instance of the
Index Coding problem given
in Example 2.
b Corresponding
complementary graph.
c Clique partitioning for the
dependency graph shown in
(a). d Graph Coloring for the
instance in (b)

Algorithm 1 GC: A graph coloring based algorithm for the Index Coding problem
Require: An instance of the Index Coding problem
1: Construct an Dependency Graph G(V, E)

2: Create a complementary graph Ḡ(V̄ , Ē)

3: Find graph coloring for G, let χ be the number of colors and let V̂i be the set of vertices with
same color i

4: for i = 1 : χ do
5: Construct a packet that satisfy all clients corresponding to vertices in V̂i byXORing the packets

in their want sets.
6: end for

6.2.2 Sparsest-Set Clustering Based Heuristic

Given the NP-hard nature of the Index Coding problem, the optimal solutions do not
scale well with the number of clients. For example as shown in [10] that the optimal
SAT-based solution can be used efficiently for only a limited number of clients.
Similarly, the solution that uses the coloring heuristic can be used efficiently for a
larger number of clients, but its time complexity grows considerably with the number
of clients. This section presents a heuristic for solving the Index Coding problem for
instances consisting of larger number of clients. The presented technique is based on
the “divide-and-conquer” approach where the Index Coding problem is partitioned
into smaller subproblems consisting of disjoint set of clients. The subproblem are
solved separately. The solution for the original problem is the union of the solution
obtained from individual subproblems.

An important decision in the partition-based approach is to perform an effective
partitioning (clustering) of the clients such that each partition can be solved indepen-
dently. Note that is it desirable to find a clustering in which the clients belonging to
different groups have as few packets common in their has andwant sets as possible to
avoid compromising on the green gain. Such a partition is referred to as sparsest-set
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clustering, and has been shown to be computationally efficient as compared to the
techniques given in the Sects. 6.1 and 6.2.1 [10]. The sparsest-set clustering works
on an auxiliary graph as defined below:

Definition 6 (Auxiliary Graph) Construct a directed graph G′(V ′, E′) as follows:

• For each client ci ∈ C there is a corresponding vertex vci in V ′
• A pair of vertices vci and vcj is connected by an arc (vci , vcj ) if one of the following
holds:

– Wi = Wj, i.e., clients ci and cj have identical want sets;
– Wi ⊆ Hj.

The goal of sparsest-set clustering is to partition the auxiliary graph G′(V ′, E′)
into several clusters of almost equal size such that the total number of the edges that
connect different clusters is minimized. The greedy heuristic given in the Algorithm
2 recursively divides the given auxiliary graph into clusters until the clusters of a
desired size are obtained. More specifically, the input vertex set V ′ is partitioned
into two subsets V ′

1 and V ′
2 of equal size (in an arbitrary way). Then the proposed

algorithm continue swapping the vertices in two subsets V ′
1 and V ′

2 until any vertex
in V ′

1 (V ′
2) has no more neighbors in V ′

2 (V ′
1) than in V ′

1 (V ′
2). Each partition thus

obtained is then solved recursively.

Algorithm 2 Partition: A sparsest-set clustering based partition of the Index Coding
problem
Require: V ′, desired cluster size θ

1: Partition V ′ in two sets, V ′
1 and V ′

2 arbitrarily
2: if ∃ v ∈ V ′

1 that has no more neighbors in V ′
2 than in V ′

1 then
3: V ′

2 = v ∪ V ′
2, and V ′

1 = V ′
1 \ v

4: end if
5: if ∃ v ∈ V ′

2 that has no more neighbors in V ′
1 than in V ′

2 then
6: V ′

1 = v ∪ V ′
1, and V ′

2 = V ′
2 \ v

7: end if
8: if |V ′

1| ≤ θ AND |V ′
2| ≤ θ then

9: Partition(V ′
1,θ = |V ′

1|
2 )

10: Partition(V ′
2,θ = |V ′

2|
2 )

11: end if

Time Versus Green Gain Tradeoff

It is interesting to note that the smaller clusters improve the time complexity at the
cost of the green gain. The green gain using clustering based approach might be
lesser than the green gain while solving the instance as a whole. To elaborate further,
consider an instance of the Index Coding problem shown in the Fig. 6. Focus on the
scenario when the instance is clustered in to two subproblems, namely s1 and s2. s1
consists of the clients c1, and c2, and s2 consists of the clients c3, and c4. It is interesting
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to note that solving each subproblem separately results in computational efficiency
[10]. However, on the other end, solving each subproblem separately results in lower
green green gain. Specifically, the sparsest-set clustering based solution requires two
transmissions which are p1 + p2 corresponding to s1, and p3 + p4 corresponding to
s2, resulting in a green gain of 2. However, solving the same instance as a whole can
satisfy all the clients with one transmission p1 + p2 + p3 + p4 resulting in a higher
green gain of 4.

6.2.3 Color Saving Based Heuristic for the Index Coding Problem with
Complementary Objective

This section describes a heuristic solution for efficiently solving Index Coding prob-
lem with complementary objective. Recall that the complementary objective of the
Index Coding problem is to maximize the number of unused colors. The scheme
presented in this section that utilize the concept of color saving on a graph [10]. The
color saving problem is defined as follows:

Definition 7 (Color Saving) Given a graphG(V, E) the objective is to assign a color
to each vertex such that for any edge (v, u) ∈ E the vertices v and u are assigned
different colors, and total number of the unused colors is maximized. Where the
number of unused colors is the difference between the number of vertices in the
graph and total number of the colors used for the coloring.

The steps of the color saving based scheme are given in the Algorithm 3. The
algorithm greedily finds cliques of size 3, and then finds all the cliques of size 2
in the remaining graph (using maximum matching). Each clique corresponds to a
packet that can satisfy the clients corresponding to that clique (Lemma 3). Let C3 be
the number of clique of size 3 and C2 be the number of clique of size 2 identified
by the Algorithm 3, then the algorithm saves 2 ∗ C3 + C2 transmissions compared to
the contemporary routing based approaches. More precisely for each clique of size
σ , σ − 1 transmissions are saved.

Algorithm 3 CSCIC: A color saving based algorithm for the Index Coding problem
with complementary objective
Require: An instance of the Index Coding problem
1: Construct an Dependency Graph G(V, E) as described in Sect. 6.2.1.
2: while ∃ a clique of size 3 in G(V, E) do
3: Find a clique {vi, vj, vk} of size 3 in G(V, E)

4: Create a packet that satisfies all clients in {vi, vj, vk}
5: V := V \ {vi, vj, vk}
6: end while
7: Compute a maximum matching of G(V, E)

8: For each pair {vi, vj} in the matching create a packet that satisfies all clients in {vi, vj}, i.e.,
Wi + Wj

9: Create a new packet for each one of the remaining vertices of V .
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Fig. 8 Steps of the
Algorithm 3 for the instance
of the Index Coding problem
given in the Fig. 6

For an instance of the Index Coding problem shown in the Fig. 6, the steps of
the Algorithm 3 are shown in the Fig. 8. The algorithm results in two transmission
p1 + p2 + p3 and p4. The number of transmissions saved is 2.

7 Conclusion

This chapter focuses on green optimization for an important class of problems in
wireless networks by employing coding techniques. In particular, we address the
Index Coding problem where the objective is to satisfy the demands of all the clients
in aminimumnumber of transmissions by the relaywithout compromising on the rate
of information exchange. Some potential applications of the Index Coding include
the improved energy efficiency, and optimal spectral usage for the wireless cellular
and ad hoc networks. We provide an in depth analysis of the Index Coding problem
in terms of the relationship to the other problems, dependence on the field size, and
performance bounds on green gain and computational complexity. Furthermore, we
presents a number of technique to the Index Coding problem covering a wide spec-
trum of the solutions varying from the optimal to computationally efficient heuristics.
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