
9

Search drivers

In this chapter, we provide a unified perspective on the methods presented
in Chaps. 4–8, the key consequence of which is the concept of search driver
detailed in Sect. 9.3.

9.1 Rationale for the unified perspective

In Chaps. 4–7, we presented several evaluation methods for characterizing
candidate programs in GP. We summarize them in Table 9.1 and contrast
with the conventional GP for reference.1

The approaches are founded on various formalisms. They rely on different
parts of the execution record. Most of them evaluate programs in absolute
terms, but some are relative and contextual, i.e. their assessments depend
also on the other candidate solutions in a population. In the listed order,
they are conceptually more and more sophisticated, and tend to elicit more
information from an execution record. The last two listed methods can serve
as subprogram providers (Sect. 8.1), i.e. can identify potentially valuable
code pieces in evaluated programs.

These differences notwithstanding, all these alternatives to standard GP
have been designed with a more or less explicit intention of broaden-
ing the evaluation bottleneck and acquiring alternative (or additional) be-
havioral information from candidate solutions (programs). We postulate
that by this token they deserve a common conceptual umbrella, and from
now on we refer to the evaluation functions they define as search drivers. search

driver

1 Even though SGP does not involve alternative evaluation functions, it allows
the replacement of a problem-specific objective with a metric that, e.g., enables
more efficient search operators (cf. [143]). By this token, it is also included in
this table.

© Springer International Publishing Switzerland 2016 97
K. Krawiec, Behavioral Program Synthesis with Genetic Programming,
Studies in Computational Intelligence 618,
DOI: 10.1007/978-3-319-27565-9_9

98 9 Search drivers

Table 9.1: Summary of key properties of the approaches presented in
Chaps. 4–7. GP: genetic programming equipped with conventional objective
function. ifs: Implicit fitness sharing. doc: discovery of underlying objec-
tives by clustering. sgp: Semantic GP. pangea: Pattern-Guided Program
Synthesis.

Method Chap./ Evaluation Part of execution Objective Source
Sect. function record used

GP 1 fo (1.7) Outcome vector Yes
ifs 4.2 fifs (4.4) Outcome vector No [124]
Cosolvability 4.3 fcs (4.7) Outcome vector No [94]
doc 4.4 f j

doc (4.11) Outcome vector No [95]
sgp 5 d (5.3) Program semantics Yes [135]
Trace consistency 6 ftc (6.4) Traces (equivalence) Yes [100]
pangea 7 fe, fc (7.1,7.2) Traces (content) Yes [101]

As we argue in the following, search drivers are not required to objectively
assess candidate solutions in the context of given problem – this is what
the correctness predicate (1.1) is for. They are to guide search, meant as
an iterative improvement process, by creating a gradient toward better per-
forming solutions. The concept of search driver is thus a generalization of
evaluation function.

To get a better grip on this new concept, let us recall first that objective
function is not necessarily the best tool to guide a search (Sect. 2.2). On the
other hand, none of the evaluation functions in Table 9.1 can be claimed
universally best, as this would violate the No Free Lunch Theorem [193,No Free

Lunch
Theorem 192]. Thus, rather than looking for an imaginary ‘Holy Grail’ of evaluation

functions, we ask: can we characterize the minimal set of requirements
which, when met by a given evaluation function, make it a useful (even
marginally useful) tool to guide search? What is the minimal amount of
feedback an evaluation function must provide so that we may talk about
any guidance at all? Answering these questions in a rigorous manner will
help us delineate search drivers.

9.2 Design rationale

Heuristic search algorithms alternate two actions: generation of new candi-
date solutions (variation) and their selection (cf. Fig. 1.1):

. . .
o−→ Pi

sel−→ P ′ o−→ Pi+1
sel−→ . . . , (9.1)

where Pi ⊂ P is the state of population in the ith iteration of search, and
P ′ ⊂ Pi is the sample (a multiset in general) of candidate solutions selected

9.2 Design rationale 99

from Pi by the selection phase sel. The candidate solutions in P ′ form the
basis for creating new candidate solutions with o, which may internally
implement several specific search operators. The new candidate solutions
populate Pi+1.

Formula (9.1) is a succinct phrasing of an Evolutionary Algorithm (EA) and
virtually any iterative heuristic search algorithm. For instance, in a μ + λ
evolutionary strategy [151], |Pi| = μ + λ, and sel returns the μ best parents
from Pi, which are then augmented by λ offspring by o, leading so to Pi+1. In
local search, P ′ = {p} and Pi is a sample of p’s neighborhood. In an exhaus-
tive local search, o generates the entire neighborhood Pi+1 from the current
candidate solution p, and sel selects the best candidate from it. In stochastic
local search, o generates only a sample of neighborhood. Even random walk
conforms to (9.1): in that case, o generates a random candidate solution, and
sel is an identity function.2

Search operators in o may also utilize the evaluation outcomes, though in
conventional EAs it is usually not the case, and in the following we will be
agnostic about that aspect. For clarity, we also ignore for now initialization
and termination (Fig. 1.1).

Evaluation is not explicitly present in (9.1). We assume that sel is ‘informed’
by some evaluation process. Conventionally, an evaluation function f is glob-
ally defined, static, and absolute, like the objective function fo. The concept
of search driver originates in observations that these properties can be sub-
stantially relaxed:

Observation 1: The evaluations f(p) that guide sel’s decisions do not need
to be independent across the candidate solutions p ∈ Pi. f(p) may
change subject to removal of any other p′ ∈ Pi. This is the case when
evaluation is contextual, e.g., for ifs, cs, and doc in Chap. 4. In such
cases, f ’s domain is effectively Pn, where n is population size, and it
returns an n-tuple of evaluations of its arguments.

Observation 2: The implementation of sel usually involves multiple invoca-
tions of a selection operator, each returning a single candidate solution
from Pi picked from a relatively small sample P ′′ ∈ Pi of candidates,
while the characteristics of the remaining solutions in Pi \ P ′′ are irrel-
evant. At that particular moment, f does not even have to be defined
outside of P ′′. For instance, tournament selection cares only about the
evaluations of a few candidate solutions that engage in the tournament.

2 Formula (9.1) is actually expressive enough to embrace any search algorithm,
including exact algorithms like A∗, once we assume that Pi, rather than being a
subset of P , is a more general state of search process – a formal object that stores
the knowledge about the search conducted to a given point, like the prioritized
queue of states in A∗.

100 9 Search drivers

Observation 3: For selection, it is sufficient to make qualitative compar-
isons on f for the candidate solutions in Pi (or in a sample P ′′ ∈ Pi –
cf. Observation 2). The absolute values of f are irrelevant; it is orders
that matter. Tournament selection is again a good example here. More-
over, comparisons between candidate solutions do not necessarily need
to conform to the requirements of completer orders (in particular to
transitivity). Also, some candidate solutions can be arguably incompa-
rable. Algorithms that conduct search only by qualitative comparisons
are sometimes referred to as comparison-based algorithms [179].

These characteristics form the minimal set of properties of search drivers
posited in the beginning of Sect. 9.1. They are deliberately very modest: a
typical evaluation function, like the objective function fo, imposes a com-
plete ordering on all candidate solutions in P and thus conforms Observa-
tions 1–3 by definition. Apart from these properties, a typical evaluation
function has usually other characteristics that are not essential for search
algorithm as defined above, and are in this sense redundant. The chasm
between the characteristics of common evaluation functions and the actual
needs of a selection operator in a search process (9.1) as expressed in Ob-
servations 1–3 motivate the concept of search driver presented in the next
section. For clarity, our further argument will primarily focus on individ-
ual candidate solutions and local search algorithms. However, we will also
present how this considerations generalize to population-based algorithms.

9.3 Definition

A search driver for a solution space P is any non-constant functionsearch
driver

h : Pk → O
k, (9.2)

where k ≥ 1 is the order of the search driver driver, and O is a partially
ordered set with an outranking relation ≺ (precedence)3. When applied to a
k-tuple P of candidate solutions from P , h(p) returns a k-tuple of evaluations
(scores) from O. We assume that the scores oi ∈ h(P) correspond one-to-
one to the arguments pi ∈ P and are invariant under permutations of the
arguments in P . Accordingly, we allow for abuse of notation and write h(P)
even when P is not a tuple but a set. In the following, o1 ≺ o2 means that
o2 is more desirable than o1. One may alternatively say that h(P) returns a
partially ordered set (poset) (P, ≺).

Many of the search drivers considered in this book are behavioral. A behav-behavioral
search
driver ioral search driver can be always implemented with help of execution record,

because an execution record is the complete account of program execution
3
O should not be confused with O, the type of program output (Sect. 1.1).

9.3 Definition 101

(Sect. 3.1). In this light, such search drivers could be redefined as mappings
from a domain of execution records E to O; however, to embrace also the
non-behavioral search drivers, in the following we conform to the signature
in (9.2).

A search drivers with completely ordered codomain O will be referred to as
complete search drivers. The conventional scalar real- or integer-valued evalu- complete

search
driveration functions are examples of such drivers. The motivation for using partial

orders is to allow search drivers to abstain from deeming some solutions bet-
ter than others, which may be desirable when two solutions fundamentally
differ in characteristics. As complete orders are special cases of partial orders,
an evaluation function with the signature (9.2) that orders its arguments lin-
early is a search driver as well. On the other hand, search drivers generalize
evaluation functions.

A search driver is context-free if the scores it assigns to its arguments are context-
free
search
driver

independent, i.e. it can be expressed by a one-argument function f : P → O:

h(p1, . . . , pk) = (f(p1), . . . , f(pk)). (9.3)

Most of conventional evaluation functions f used in EC and GP are context-
free search drivers in this sense. Note that for context-free search drivers,
the order k is irrelevant. A search driver that is not context-free will be
referred to as contextual. Note that the signature given in (9.2) is necessary con-

textual
search
driver

to correctly define a contextual search driver: for instance, when defining
fifs(p) (4.4) we silently allowed for an abuse of notation, as fifs(p) depends
not only on p, but also on the other members of the population that p
belongs to (the context).

This definition of search driver follows the design rationale presented in the
previous section. Firstly, h evaluates a set of candidate solutions (or more
precisely a tuple) rather than individual solutions, and is thus contextual
(Observation 1). A candidate solution p may receive different evaluations
depending on the remaining elements of P , the argument of h(P). Formally,
h(. . . , pi, . . .) = (. . . , oi, . . .) and h(. . . , pj , . . .) = (. . . , oj , . . .) where pi = pj
does not imply that oi = oj , because the partial orders returned by h in
these two applications can be in general completely unrelated. Secondly,
the characteristics of the remaining candidate solutions in P do not have
to be known (nor even computable) at the moment of applying h to a
particular subset of them (Observation 2). Thirdly, the evaluations assigned
to particular elements of P are not only allowed to be qualitative, but also
only partially ordered (Observation 3).

Our rationale behind naming this formal object ‘search driver’ is twofold.
The word ‘search’ signals that the class of problems we are primarily inter-
ested in here are search problems, even if they are disguised as optimization
problems in GP. The ‘driver’ is to suggest that, other than creating some
search gradient, a search driver is not promising to necessarily reach the

102 9 Search drivers

search target (or detect the arrival at it) – in contrast to what the term
‘objective function’ suggests. In this sense, search drivers care more about
evolvability than about reaching the ultimate goal of search.

The contextual evaluation functions discussed in Chap. 4 (ifs, cs, and doc)
can be phrased as complete search drivers, which we illustrate this with the
following example.

Example 9.1. Refer to Example 4.1 of ifs evaluation and Table 4.1. The
fifs evaluation function applied there to population P = (p1, p2, p3) pro-
duces fifs(p1) = 2, fifs(p2) = 3/2, and fifs(p3) = 1 as the corresponding
evaluations. An equivalent order-3 search driver h can be defined as

h(p1, p2, p3) = (2, 3/2, 1). (9.4)

More generally,
h(p1, p2, p3) = (a, b, c), (9.5)

where a, b, c ∈ O could be abstract values ordered as follows: c ≺ b ≺ a.

Assume that we consider the differences on fifs for the pairs (p1, p2) and
(p2, p3) too small to deem any of the compared candidate solutions better.
In such a case, one could redefine the order in O so that so that only c ≺ a
would hold.

Last but not least, the order of a search driver does not have to be bound
with the size of population; an exemplary order-2 search driver for this
problem could be defined as

h(p1, p2) = h(p2, p3) = h(p1, p3) = (a, b), (9.6)

where a ≺ b. �

9.4 Search drivers vs. selection operators

A vigilant reader might have noticed that search drivers can be directly
used as selection operators. Indeed, h(p1, . . . , pk) is a k-tuple of values
(o1, . . . , ok) from O, and the maximal elements4 in (o1, . . . , ok) are obvi-
ous candidates for being selected. Should O be only partially ordered, the
selection between incomparable elements in O could be addressed by ran-
dom drawing.

Though these similarities might suggest equivalence of search drivers and
selection operators, we find it important to distinguish between these two
4 In general, the maximal elements in the sense of partial orders. A partially

ordered set may have arbitrary many maximal elements.

9.5 Universal search drivers 103

h

P

p1 p2 p3

p4 p5 p6

p7 p8 p9

P ′

p1 p3

p4

p8 p9

h(P ′)

p1 p3

p4

p8 p9

p3

Fig. 9.1: The process of selection involving a single search driver. The selec-
tion operator draws a sample P ′ of candidate solutions from the population
P . Search driver h is applied to P ′ and returns a partial ordering of the
elements of P ′, in which it may deem some pairs of candidate solutions
incomparable (e.g., p1 and p3). Finally, the selection operator makes a de-
cision about selection based on h, yielding p3.

concepts. A selection operator is a component of metaheuristic architec-
ture (9.1) that implements the entirety of preferences concerning naviga-
tion in the search space as well as the desired characteristics of solutions.
A single search driver, to the contrary, is an elementary source of infor-
mation, reflecting only selected characteristics of candidate solutions. This
distinction becomes particularly clear when using multiple search drivers
simultaneously (Sect. 9.8). Thus, selection should be seen as a higher-level
component that may engage one or more search drivers, applying them
to accordingly prepared (typically drawn at random) samples of candidate
solutions. We illustrate this principle in Fig. 9.1.

Search drivers differ from selection operators also in scope of application.
A selection operator is typically applied to entire working population. The
scope of search driver is determined by its order k, which we assume to be
usually low compared to population size (recall that in Sect. 9.1 we set out
to define the minimal feedback needed to effectively guide search).

Another difference is determinism. We define search drivers as deterministic
functions, leaving the non-deterministic aspect of selection to a selection op-
erator. In particular, we assume that it is the selection operator that is respon-
sible for drawing a randomized sample of candidates, which are then passed
to a search driver. Handling special cases with randomness (e.g., tie-breaking)
is also delegated to selection operator in our conceptual model.

9.5 Universal search drivers

Remarkably, our definition of search driver in (9.2) does not refer to a pro-
gram synthesis task. A search driver defines certain features of a solution,

104 9 Search drivers

whether in the context of a specific program synthesis task or in a more ab-
stract way. This is not incidental: we intend to embrace also the universal
search drivers that promote problem-independent characteristics of candi-universal

search
driver date solutions. Examples of universal search drivers for program synthesis

include, but are not limited to:

• Non-functional properties of programs like program length (size), execu-
tion time, memory occupancy, or power consumption.

• Input sensitivity. In cases where program input is a tuple of variables,
it might be important to synthesize programs that take them all into
account. There are two variants of this characteristic. A program can
be said to be syntactically sensitive to all variables if it fetches them all
(reads them in). A program is operationally sensitive if it can be shown
that for every variable vi there exists a combination of the remaining
variables such that the output of a program changes when vi is being
changed. A syntactically sensitive program does not have to be opera-
tionally sensitive. The latter property is usually more desirable, but the
former one is easier to verify.

• Evolvability. Given the iterative nature of search process, it is desirable to
promote candidate solutions that can be subsequently modified to make
further variation possible, and help reaching the optimal solution in a
longer perspective. In tree-based GP, evolvability is hampered by, among
others, bloat: standard search operators tend to extend deeper parts of
programs (close to program leaves), while such changes often have no im-
pact on the behavior of a program.

• Smoothness. In symbolic regression, programs are real-valued functions
that are often required to be smooth, i.e. the output of a program should
not change abruptly in response to modifications of the input.

Note that most of the above properties are behavioral, which is in tune with
the leading motif of this book. Also, some of them are inherently qualita-
tive; for instance, syntactic input sensitivity is basically a binary property.
Some other characteristics are more quantitative but naturally deserve ap-
proximate comparisons. For instance, minor differences of program length
are negligible in most applications: it really does not matter whether a sym-
bolic regression model has e.g., 38 or 39 instructions. Another scenario that
calls for tolerance is when the underlying measure is noisy. These examples
show that defining search drivers in a qualitative manner is practical.

Example 9.2. An order-2 search driver that maps the exact program length
onto a qualitative indicator can be defined as

h(p1, p2) =

⎧
⎪⎨

⎪⎩

(0, 1), if |p1| > |p2| + β

(1, 0), if |p1| < |p2| − β

(0, 0), otherwise

, (9.7)

9.6 Problem-specific search drivers 105

where |p| is the length of program p, β is the tolerance threshold, and 0 ≺ 1.
This search driver renders any two programs that differ in length by less
than β as indiscernible, and so imposes a complete order (pre-order to be
precise) on its arguments. Note that the outranking relation defined by h
is in this case intransitive.

Should it be more appropriate to use partial orders, the codomain could be
extended to O = {0, 1, φ}, where 0 ≺ 1would be the only outranking in O.
Then, the third case in (9.7) would return (φ, φ), so that minor differences
in program length would be interpreted as incomparability. �

9.6 Problem-specific search drivers

A problem-specific search driver is a search driver that refers to the speci-
fication of program synthesis task. The k-tuples returned by such a driver
depend not only on the k arguments (programs) but also on the Correct
predicate of a task of consideration (Sect. 1.2). We assume the dependency
on the latter to be implicit, unless otherwise stated.

The conventional objective function fo may be trivially cast as the following
complete, problem-specific, context-free search driver of an arbitrary order k:

h(p1, . . . , pk) = (fo(p1), . . . , fo(pk)). (9.8)

By (1.7), such a search driver depends on T , i.e. all tests that define a
given program synthesis task. Alternatively, we may consider a search driver
that counts program’s failures in an arbitrary subset of tests T ′ ⊂ T . For
instance, T ′ could have been determined by an underlying objective (4.10)
in the doc method presented in Sect. 4.4. A more sophisticated variant is
an order-2 search driver based on the inclusion of passed tests

h(p1, p2) =

{
(0, 1), if T (p1) ⊂ T (p2),
(φ, φ), otherwise

(9.9)

where we recall that T (p) ⊆ T is the subset of tests passed by program
p, and φ ∈ O is the special incomparable value (cf. Example 9.2). Such h
defines a partial order that implements the concept of measure on a set.
An extreme case is a search driver that depends on programs’ outcomes on
a individual tests in T , i.e. dominance on tests

h(p1, . . . , pk) = (g(pi, t), . . . , g(pk, t)), (9.10)

where we recall that g : P × T is an interaction function (see 4.1).

The repertoire of problem-specific search drivers is by no means exhausted
by the above examples. Virtually any evaluation function defined in past

106 9 Search drivers

studies can be recast as a search driver in an analogous way. On the other
hand, search drivers themselves represent a large class of functions. This
helps convey that, in a sense, there is nothing special about the conventional
test-counting objective function fo: it is just one of many possible search
drivers, but not necessarily the most effective one for a given program
synthesis task (or a class of tasks). This observation leads to questions on
quality of search drivers, which we address in the next section.

9.7 Quality of search drivers

We are ultimately interested in designing search drivers that perform well.
However, what does ‘perform’ mean for a search driver? A search driver is
just one component of iterative search algorithm, hidden inside the selection
step in (9.1). The overall performance of the algorithm depends not only on
the engaged search driver(s), but also on the selection operators, search oper-
ators, population initialization method, and possibly other components.

This suggests that it might be difficult, if not impossible, to investigate the
the quality of a search driver in isolation from the remaining components
of an iterative metaheuristic search algorithm5. Therefore, in this book we
assume that the best gauge of a search driver’s usefulness is its empirical
performance on actual problem instances. In accordance with this, we intro-
duce three categories of search drivers for a given class of iterative search
algorithms A (9.1) and a set of problems (e.g., a suite of benchmarks). To
this end, we define first the concept of random search driver.

An order-k random search driver h is a search driver such that, for anyrandom
search
driver given P and (. . . , oi, . . . , oj , . . .) = h(P) it holds

Pr(oi ≺ oj) = Pr(oj ≺ oi), (9.11)

that is, it is equally likely that h orders oi before oj and that it orders
them reversely. Note that in general Pr(oi < oj) ≤ 1/2 due to the potential
presence of incomparability.

The random search driver serves as a reference point for defining effective,
deceptive, and neutral search drivers:

• An order-k search driver is effective if it reduces the expected numbereffective
search
driver of iterations of A compared to the number of iterations of A equipped

with an order-k random search driver.
5 In the process of writing this book, we have undertaken an attempt of designing

a formal, algorithm-independent measure of search driver quality, based on
the concordance of solution orderings provided by search drivers with the first
hitting times of solutions. Unfortunately, the formalism required making many
unrealistic assumptions, so we decided to not present it here.

9.8 Employing multiple search drivers 107

• An order-k search driver is deceptive if it increases the number of itera- deceptive
search
drivertions mentioned above.

• An order-k search driver is neutral if it does not affect the number of neutral
search
driveriterations in a statistically significant way.

We are obviously interested in effective search drivers, and with this book
hope to pave the way for practical development and principled design
thereof. From now on, by ‘search driver’ we will mean an effective search
driver, unless otherwise stated.

We intentionally attribute deception to search drivers rather than to prob-
lems, even though the latter is prevailing in the literature. Recall that pro-
gram synthesis tasks we consider here are inherently search problems that are
only disguised as optimization problems (Sect. 1.5.3). A search problem can-
not be deceptive, because all it defines is a set of candidate solutions (states)
and the goal predicate (Correct in program synthesis). This the true, under-
lying information about the problem; no suggestion is being made that some
of the candidate solutions are ‘closer’ to the search goal than others (what-
ever ‘closer’ would mean in this context). It is only a search driver (or an
objective function in the more conventional setting) that can be deceptive in
the above sense.

An optimal order-k search driver is a search driver h∗ that maximizes, in optimal
search
driverthe above sense, the performance of a given search algorithm on a given set

of problems. This concept will serve us as a useful reference point in the
following.

9.8 Employing multiple search drivers

Effective search drivers can be informally divided into weak and strong de- weak
search
driver
strong
search
driver

pending on how much they reduce the expected number of iterations required
to reach the correct program. However, even weak drivers are assumed to per-
form significantly better than the random ones in the above sense.

Designing strong search drivers for program synthesis is difficult; if it was
not, program synthesis would be a solved problem. In contrast, weak search
drivers are by definition poor guides for a search process. Indeed, the studies
we conducted earlier [97, 101] suggest that many search drivers do not work
particularly well in isolation. However, given that search drivers may reflect
different qualities of candidate solutions (see examples in Sects. 9.5 and 9.6),
it is natural to consider using many of them.

There are many ways in which the judgments of multiple search drivers can
be translated into decisions made by selection operator (or, in a wider con-
text, the behavior of all algorithm components). We divide the techniques

108 9 Search drivers

that facilitate usage of multiple search drivers into sequential and parallel.
The sequential methods allow different search drivers to be used at varioussequential

usage of
search
drivers

stages of an iterative search process. In the simplest realization, the choice
of search driver is explicitly controlled by the method. For instance, an
analogous idea of alternating multiple evaluation functions (together with
problem instances) at regular time intervals has been exploited to induce
modularity in evolved neural networks [74, 75]. Interestingly, such proceed-
ing can be seen as yet another form of shaping which we touched upon inshaping

Sect. 4.2 [175].

Explicit control of the choice of search driver requires multiple design
choices: in which order they should be used, for how many iterations, and
whether they should take turns cyclically. Also, the transitions between par-
ticular search drivers suddenly change the ‘rules of the game’: adaptations
acquired under one search driver may turn out to be maladaptations un-
der subsequent search driver. Such ‘catastrophic events’ can be interesting
when trying to reproduce some biological phenomena in silico (like in [74,
75]), but are not necessarily useful in program synthesis.

In this book, we argue for using multiple search drivers in parallel, primar-parallel
usage of
search
drivers

ily because this is consistent with our stance that no single search driver
is a perfect means to control a search process, and thus no search driver
should be favored. Another motivation is the above-mentioned problem-
atic parameterization of sequential techniques. But even more importantly,
parallel usage of search drivers has other appealing features discussed in
below.

Partial independence. Assume n search drivers hi, i = 1, . . . , n. Let us de-
note by Di the event that hi orders two programs p1 and p2 discordantly
with the optimal search driver h∗, i.e.

Pr(oi1 ≺i oi2 ∧ o∗
2 ≺∗ o∗

1). (9.12)

Given the optimal nature of h∗, such discordance may result in an increase
of the expected number of iterations. The probability that any pair of search
drivers is simultaneously discordant with h∗ is less or equal the probability
that any of them is discordant. By the sum rule:

Pr(Di ∪ Dj) = Pr(Di) + Pr(Dj) − Pr(Di ∩ Dj), (9.13)

from which it follows that Pr(Di ∩ Dj) ≤ Pr(Di), as by definition Pr(Di ∪
Dj) ≥ Pr(Dj). Simultaneous availability of hi and hj lowers thus the risk
of mistakenly deeming one candidate solution less useful than another. The
greater the number of search drivers, the less likely it becomes for them to
be simultaneously discordant with the optimal search driver, and that like-
lihood is the lower the more independent are the search drivers in question.inde-

pendent
search
drivers

In the extreme case of n fully independent search drivers , the probability
of all of them being simultaneously discordant quickly vanishes with n:

9.8 Employing multiple search drivers 109

Pr

(
n⋂

i=1
Di

)

=
n∏

i=1
Pr(Di). (9.14)

On the other hand, the probability of all drivers being simultaneously
concordant is also decreasing with n. However, if the search drivers in
question are effective, they are likely to make more concordant decisions
than discordant ones, i.e. Pr(oi1 ≺i oi2) < 1/2, and the probability of at least
half of n drivers to be concordant is greater than 1/2. For the special case
of Pr(Di) = Pr(Dj), ∀i, j ∈ [1, n], that probability is determined by the
cumulative distribution function of binomial distribution. Thus, if partially
independent search drivers were to vote about a relation between a pair of
candidate solutions, they are more likely to make the right decision than the
wrong one.

Although designing a family of independent search drivers may be difficult,
a certain degree of independence comes ‘for free’ for the search drivers
summarized in Table 9.1 and examples given in Sects. 9.5 and 9.6, because
they peruse different aspects of program behavior. Some methods promote
independence on their own; for instance, the particular derived objectives
built by doc (Sect. 4.4) are based on disjoint subsets of tests, and may by
that token be partially independent.

The above argument is analogous to the motivations for committees of clas-
sifiers in machine learning (a.k.a. classifier ensembles) [12]. ML committees classifier

ensem-
blesare usually built to provide more robust predictions in the presence of noisy

data. Just as multiple search drivers are less likely to simultaneously commit
an error, so for the classifiers that vote about the output (decision class label
or continuous signal) to be produced for a given example.

More specifically, partial ordering of candidate solutions performed by a
search driver can be seen as an ordinal regression task (a partial one, to be
more precise). A search driver is thus a special case of regression machine,
and as such is characterized by certain bias and variance [38]. Bias represents
a driver’s inherent propensity toward certain realizations (models), while
variance reflects the variability of a model’s predictive accuracy. These
quantities are inseparable, a characteristics known as bias-variance tradeoff : bias-

variance
tradeoffa highly biased predictor tends to have low variance and vice versa. However,

by aggregating multiple low-bias, high-variance predictors, the variance can
be reduced at no extra cost to bias. This observation is the key motivation
for ensemble machines, and is naturally applicable also to search drivers.

Diversity. By using several search drivers of different nature in parallel, we
hope to provide for greater behavioral diversity in a population. Promot-
ing behavioral diversity entails genotypic diversity, i.e. diversity of program
code in the case of program synthesis. The importance of diversity mainte-
nance has been demonstrated in population-based search and optimization

110 9 Search drivers

techniques many times in the past, and was the major premise for de-
signing methods like implicit fitness sharing (Sect. 4.2). We find diversity
maintenance by means of behavioral search drivers particularly natural,
as opposed to, e.g., niching techniques [118] and island models [191] that
require parameter tuning.

Multimodality. Program synthesis tasks are often multimodal, i.e. featuremulti-
modality multiple optimal solutions, all of them conforming to the correctness predi-

cate. A single-objective search process may be biased in tending to explore
only selected basins of attraction of such optimal solutions. A search pro-
cess that follows multiple objectives in parallel may be more open to ex-
plore many such basins. By the same token, multimodality is an argument
against sequential usage of search drivers. Consider interlacing two search
drivers along iterations of search process; if one of them happens to drive
the search toward one optimum while another toward another optimum,
search may cyclically oscillate between these optima.

Moderate computational overhead.Different search drivers may share algorith-
mic components needed to compute them. In such cases, calculating multiple
search drivers rather than one does not necessarily incur massive overheads.
For instance in tc (Chap. 6) and pangea (Chap. 7), recording of a program
trace is a side effect of its execution and as such causes only moderate over-
head.

9.9 Multiobjective selection with search drivers

In conventional GP, a scalar evaluation function serves as the basis for a
straightforward selection operator (e.g., tournament selection). Simultane-
ous usage of several search drivers argued for in the previous section pre-
cludes direct application of such operators and requires special handling.
In the following we discuss several alternative means to that end, most of
which are only applicable when search drivers are complete, i.e. impose
linear (pre)orders on candidate solutions.

Fig. 9.2 presents an example of a selection process involving two search
drivers. As in the single-driver case (Fig. 9.1), the role of search drivers is to
provide recommendation (a partial order of the considered sample of candi-
date solutions P ′), while selection process is responsible for drawing P ′ and
final selection of the ‘winner’. Recommendations of particular drivers may
be contradictory: for instance, p1 and p3 are incomparable according to h1,
while h2 suggests that the former is worse than the latter.

The role of selection algorithm is to reconcile such discrepancies and appoint
the best candidate solution within the considered sample P ′. How to do

9.9 Multiobjective selection with search drivers 111

h2

h1

P

p1 p2 p3

p4 p5 p6

p7 p8 p9

P ′

p1 p3

p4

p8 p9

h2(P ′)

p1 p3

p4

p8 p9

h1(P ′)
p1 p3

p4

p8 p9

p3

Fig. 9.2: The process of selection involving two search drivers h1 and h2.
The selection operator has to reconcile the – partially contradicting – or-
derings provided by h1 and h2 to produce the final selection outcome, i.e.
p3. Consult Fig. 9.1 for an analogous single-driver example.

this appropriately and efficiently (particularly when the number of search
drivers large) is in itself an interesting research question, which we do not
address in this book. In the following, we discuss the possible aggregation
methods for the case when all search drivers in question are complete, i.e.
(pre)order the candidate solutions linearly.

Aggregation (scalarization). The arguably easiest way of handling multiple
search drivers is to merge them into scalar evaluation, to be interpreted later
by a single-objective selection method. If the codomains of search drivers in
questions happen to be defined on metric scales, this may boil down to ap-
plying an averaging operator like arithmetic mean. Another alternative, geo-
metric mean, is equivalent (up to an order) to the concept of hypervolume in hyper-

volumemultiobjective optimization. When search drivers range in different intervals
and have different distributions, rank-based aggregation can be used.

Scalar aggregation opens the possibility of using numerous conventional
selection operators. On the other hand, aggregation incurs compensation
(Sect. 2.2.2). Nevertheless, as we showed in [101], even a simple multi-
plicative aggregation of search drivers can offer substantial performance
improvements.

Lexicographic ordering. A common multiobjective selection technique that
avoids explicit aggregation is lexicographic ordering. This method expects lexico-

graphic
orderingthe search drivers to be sorted with respect to decreasing importance. Given

two candidate programs p1 and p2, they are first compared on the most
important driver. If this comparison is conclusive, e.g., p1 is strictly better
than p2 on that criterion, p1 is selected. Otherwise, the next driver with

112 9 Search drivers

respect to importance is considered. This process repeats until one of the
programs proves better. Should that not happen, p1 and p2 are declared
indiscernible. In other words, the consecutive drivers resolve the ties on the
previous ones.

Lexicographic ordering avoids direct aggregation, but in exchange for that
requires domain-specific ordering of search drivers. Also, it becomes effec-
tive only for discrete and coarse-grained objectives. If for instance the most
important search driver happens to feature many unique values, the remain-
ing search drivers have little to say.

Lexicase selection. An interesting recent method that builds upon lexico-
graphic ordering is lexicase selection [50]. The main difference with respectlexicase

selection to lexicographic approach is in the adopted ordering of search drivers which
is random and drawn independently in every selection act. This helps avoid-
ing overfocusing on some search drivers and diversifies the population. This
straightforward and parameterless method proved very efficient in [50], where
it was applied to tests, especially when the number of them was substantial.
However, when applied to a moderate number of search drivers, its diversifi-
cation capability and performance deteriorate [114].

In retrospect, lexicase selection can be seen as a test sampling technique. Such
techniques typically draw a random sample of tests T ′ ⊂ T in every generation
of GP run, and use only the tests from T ′ for evaluation in that generation.
Test sampling fosters diversity and improves performance, even when brought
to extremes, i.e. drawing just a single test in each generation [43]. Lexicase
selection ‘individualizes’ this process for particular selection acts.

Multiobjective selection. Multiobjective evolutionary algorithms offer sev-
eral methods that avoid the pitfalls of aggregation while still eliciting useful
information on search gradient. Usually, the underlying formalisms are dom-
inance relation and Pareto ranking. Of the multiobjective selection methods,
the Non-dominated Selection Genetic Algorithm (nsga-ii, [26]) is arguably
most popular. nsga-ii employs a tournament selection on Pareto ranks to
make selection choices. As a tie-breaker, it employs crowding, a measure
that rewards the candidate solutions that feature less common scores on
search drivers. The method is also elitist in selecting from the combined set
of parents and offspring, rather than from parents alone. nsga-ii is the se-
lection algorithm used in the experiment reported in Chap. 10. Many past
works in GP proved the usefulness of multiobjective approach; see, e.g.,
[25], where an ad-hoc multiobjective algorithm was used for simultaneous
promotion of diversity and reduction of program bloat.

9.10 Related concepts

There are several concepts in computational and artificial intelligence that
bear some resemblance to that of a search driver.

9.10 Related concepts 113

In EC, the concept that arguably resembles search driver is surrogate fitness. surrogate
fitnessAlso known as approximate fitness function or response surface [71], a sur- approxi-
mate
fitness
function
response
surface

rogate fitness function provides a computationally cheaper approximation
of the original objective function. Surrogates are particularly helpful in do-
mains where evaluation is computationally expensive, e.g., when it involves
simulation. They usually rely on simplified models of the process being sim-
ulated, hence yet another alternative name: surrogate models. In continuous
optimization, such models are typically implemented using low-order poly-
nomials, Gaussian processes, or artificial neural networks. Occasionally, sur-
rogate models have been also used in GP. For instance, in [51], Hildebrandt
and Branke proposed a surrogate fitness for GP applied to job-shop schedul-
ing problems. A metric was defined that reflected the behavioral similarity
between programs, more specifically how the programs rank the jobs. When-
ever an individual needed to be evaluated, that metric was used to locate
its closest neighbor in a database of historical candidate solutions and neigh-
bor’s fitness was used as a surrogate.

Search drivers diverge from surrogate fitness in several respects. Firstly, sur-
rogate functions are by definition meant to approximate the original objective
function. Search drivers are, to the contrary, based primarily on the evidence
that objective functions are not always the best means to navigate in a search
space. Given the deficiencies discussed in Sect. 2.1 and the experimental ev-
idence backing up the methods presented in Chaps. 4–7, why would one in-
sist on approximating an objective function? Secondly, search drivers are pri-
marily intended for search problems rather than optimization problems. This
leaves more freedom in their design, which do not have to ‘mimic’ an objective
function across the entire search space. Thirdly, in a program synthesis task,
a search driver is not required to be consistent with a correctness predicate
(1.5). In surrogate fitness, such consistency is essential.

Augmenting search with additional objectives is a part of the methodology
proposed in [76] under the name of multiobjectivization. The additional multi-

objec-
tivizationobjectives are introduced in that framework to make search more efficient,

turn the original single-objective problem into a multiobjective one, and
solve it using more or less off-the-shelf algorithms capable of handling mul-
tiobjective problems. An important assumption is that the extra objectives
convey some additional problem-specific knowledge. In contrast, many of
the search drivers discussed here essentially ‘rephrase’ the information that
is conveyed – albeit subject to losses discussed in Chap. 2 – by the con-
ventional objective function. The decomposition of scalar evaluation into
multiple objectives in doc (Sect. 4.4) is an example of such a proceed-
ing. Also, with search drivers we put more emphasis on having many, even
qualitative, information sources.

The concept that is close to both multiobjectivization and search drivers is
that of helper objectives [70], additional objectives used along with the orig- helper

objectivesinal (‘primary’) objective in multiobjective setting. According to the cited

114 9 Search drivers

work, helper objectives are meant to maintain diversity in the population,
guide the search away from local optima, and help creation of good building
blocks, meant as small components (schemata, to be more precise) that pos-
itively contribute to solution’s evaluation [41]. The author argues that they
should be ‘in conflict’ with the original objective function; for search drivers,
we formalized a related concept of partial independence in Sect. 9.8. Helper
objectives may change with time, i.e. only a subset of helper objectives is be-
ing used at any given time (dynamic helper objectives). The cited work also
addresses the issue of size of Pareto front in multiobjective setting: once the
number of candidate solutions with the same values of objectives exceeds the
niche count, candidate solutions are randomly removed so that this constraint
is not violated anymore. The approach was applied to job-shop scheduling and
traveling salesperson problems, producing encouraging results.

Search drivers diverge from helper objectives in several respects. Helper ob-
jectives are meant to be used primarily with optimization problems – that
is why the original objective function is always included as one of the objec-
tives. Search drivers address search problems, in particular program synthe-
sis, where achieving the sought solution is verified with a separate correctness
predicate, so discarding the original objective function is acceptable. Also, de-
signing helper objectives is similar to multiobjectivization in requiring sub-
stantial domain knowledge: for instance in application it to job-shop schedul-
ing in [70], helper objectives reflected the flow-times of particular jobs. Later
work also concerns job-shop scheduling [116] and confirms this deep immer-
sion in problem domain. Search drivers, to the contrary, are more generic, and
as we showed in Sect. 9.5, many of them are universal. Finally, search drivers
are more general than helper objectives in being allowed to impose only quali-
tative and partial relationships between candidate solutions (see also the sum-
mary of search drivers’ properties in Sect. 9.12).

In GP, several approaches have been proposed that aim at reducing the num-
ber of tests used for evaluation of candidate programs. In doing that, such
methods effectively replace the original objective with an alternative evalua-
tion function that can be sometimes likened to a search driver. The probably
oldest contribution in this category is dynamic training subset selection [37].
In [115], selection of tests was applied to the task of software quality classifi-
cation, in an attempt to reduce overfitting. In [43], this has been taken even
further, i.e. single tests have been used. Several variants of this approach stud-
ied in [42] consistently reduced overfitting compared to standard GP.

In AI, the concept that bears certain similarity to search driver is that of
heuristic function. Heuristic functions in algorithms like A∗ bound the ac-heuristic

function tual cost of reaching the search goal. Thy can be used to prioritize search and
often thereby lead to performance improvements. They can be designed by
relaxing the original problem, for instance, for an 8-puzzle problem, this can
be achieved by assuming that any two neighboring tiles can be swapped, and

9.10 Related concepts 115

counting the number of moves so defined. Interestingly, methods exist that
generate heuristic functions automatically given problem formulation [156].

In reordering the visiting of candidate solutions, heuristic functions indeed
resemble search drivers that may lead search in different directions than
that of the objective function. However, heuristic functions explicitly rely
on additional domain-specific knowledge that search drivers do without; ex-
amples include straight-line distance between cities in the famous Roma-
nian roadmap example in [156] or the cost function for the 8-puzzle example
mentioned above. Also, search driver is a more general formalism than
heuristic function: unlike the latter, it is not guaranteed to bound the orig-
inal objective function. As a consequence, algorithms that rely on search
drivers cannot enjoy the ‘comfort’ of A∗, which provably reaches an opti-
mal solution (goal state) provided it exists in the searched tree. Providing
analogous bounds in program synthesis is difficult due to the complex
genotype-phenotype mapping (Sect. 1.4). In the typical tasks approached
with the A∗-like algorithms, the effects of search moves on the objective
function are well understood, which facilitates designing efficient admissi-
ble heuristic functions. In program synthesis, a single move may change
program’s behavior almost arbitrarily.

In reinforcement learning (RL, [173]), the concepts of intrinsic rewards (or rein-
force-
ment
learning

intrinsic motivation) [8] and internal rewards [169] bear distant similarity
to search drivers. In nontrivial RL tasks, an agent often lacks external
‘incentives’ to explore and learn from an environment. Both methodologies
mentioned above assume that, in the absence of such incentives, an agent
would on its own ‘induce’ appropriate internal/intrinsic motivations and
follow them, escaping thereby the detrimental state of temporal ‘apathy’.
In a sense, intrinsic rewards and intrinsic motivations can be seen as an
agents’s emanation of curiosity.

Last but not least, behavior search drivers share motivations with novelty
search [110] (NS). In the spirit of open-ended evolution, often considered novelty

search
open-
ended
evolution

in artificial life community, novelty search discards search objectives alto-
gether and rewards individuals for being behaviorally different from their
peers in the current population and selected representatives of the search
history. This turns out to work well on deceptive problems, especially on the
problems where the mapping from genotypes to behaviors is strongly many-
to-one, and the resulting behavioral space is relatively small. In [111], the
authors applied novelty search to nontrivial GP benchmarks of maze navi-
gation and Artificial Ant. The algorithm diverges from the traditional GP
only in evaluation function. Prior to running evolution, an empty, unlimited-
capacity archive A is created. Each evaluated individual has a low probability
of being included in the archive. The evaluation of an individual in popula-
tion P is defined as

fns(p) = 1
k

k∑

i=1
dist(p, μi), (9.15)

116 9 Search drivers

where dist() is a behavioral distance measure, μi is the ith closest neigh-
bor of p in P ∪ A with respect to dist(), and k defines the size of the
neighborhood.

They key component of NS is the behavioral distance measure dist(). In
[111], it was based on the final location in the maze problem and the time-
wise distribution of food collections in the Artificial Ant problem. The au-
thors of [121], the probably first attempt to apply novelty search to generic
GP tasks, based dist() on behavioral descriptors closely resembling out-
come vectors defined in this book (2.3). The ith vector element is 1 if the
individual belongs to an assumed (low) percentile of programs that commit
the smallest error on a test; otherwise it is set to 0. Experimental assess-
ment of this configuration on three benchmarks did not yield particularly
conclusive results. Other works related to NS include, among others, [196]
and [195], where diversification was promoted by maximizing correlation
distance between time-wise behavior of GP programs representing trading
strategies.

In general, we anticipate NS to struggle when faced with more demanding
program synthesis tasks because of the size of behavioral space. Even in
the simplest case when tests can be only passed or failed, the number of
all possible behavioral descriptors grows exponentially with the number
of tests, and becomes staggering even for the small benchmarks typically
considered in GP (e.g., 264 for the humble 6-bit multiplexer; see Chap. 10).
One may doubt if simply enticing an evolving population to spread across
such a space is sufficient to locate the target solution.

Nevertheless, NS shares motivations with behavioral program synthesis:
Lehman and Stanley state that “The problem is not in the search algorithm
itself but in how the search is guided” [111, p. 842], which strongly resonates
with the arguments in this book. NS can be seen as the opposite extreme to
conventional search driven by the conventional objective function. Search
drivers sit in between these two extremes: they impose different search
gradients than the conventional objective function, yet, contrary to NS,
those gradients are not entirely detached from it.

9.11 Efficiency

Abandoning search objectives in favor of search drivers has measurable con-
sequences for more technical aspects of implementation. Below we discuss
such implications for the arguably most important technical aspect of pro-
gram synthesis – computation cost. In a typical GP run, the lion’s share
of computation is spent on running programs, i.e. applying them to tests.
No wonder the number of evaluated programs is the most common unit of
computational expense in GP.

9.11 Efficiency 117

In Sect. 9.8, we argued for using several search drivers in parallel, in a mul-
tiobjective setting. As some search drivers incur substantial overheads (e.g.,
classifier induction in pangea), this may seem computationally prohibitive.
However, the execution record stores the complete account of program exe-
cution for a considered set of tests. Once it has been computed for a given
program (which is not particularly expensive as demonstrated in Sect. 3.2)
most search drivers can be calculated from it at a moderate cost, because
the data they require (outcome vectors, program semantics, program traces
– see Table 9.1) can be immediately retrieved from the record (Fig. 3.2).
Therefore, if the number of tests is large or/and program execution is in
itself expensive, the total overhead resulting from using multiple search
drivers may become negligible.

Moreover, in some scenarios search drivers allow for substantial reduction
of computational expense. For instance, the convergence of execution traces
in Chap. 6 can be used to reduce the time spent on program execution: if
two traces merge (which the method has to detect anyway), i.e. program
execution leads to the same execution state for two tests, then from that
state on only one execution has to be conducted, as the other must proceed
in exactly the same way.
Opportunities for potential savings wait to be uncovered not only in the
internals of program execution, but also on the higher abstraction levels.
Consider an order-2 search driver h that completely orders the programs
according to the number of tests they pass. This search driver can be triv-
ially expressed using the objective function fo: h : P2 → {0, 1}2, where
0 ≺ 1 and

h(p1, p2) =

⎧
⎪⎨

⎪⎩

(0, 1), if fo(p1) > fo(p2)
(1, 0), if fo(p1) < fo(p2)
(0, 0), otherwise

(9.16)

(recall that fo is minimized). This formulation assumes that fo(p1) and
fo(p2) are calculated independently, which for a set of tests T requires
the total of 2|T | executions of p1 and p2. Now consider an algorithm that
iterates over T and applies p1 and p2 to a given t ∈ T simultaneously.
Let i ∈ [1, |T |] be the number (index) of the currently processed test, and
f
(i)
o (p) the number of tests failed so far. Note that as soon as the following

condition starts to hold

|f (i)
o (p1) − f (i)

o (p2)| > |T | − i, (9.17)

the loop over i can be terminated, because the outcomes for the remaining
|T |−i tests cannot compensate the already gathered evidence in favor of one
of the programs. In such a scenario, the total number of program executions
amounts to 2i, and may be substantially smaller than 2|T | above. Though
the actual benefits resulting from enhancements like this one are domain-
and problem-dependent, even a minor reduction of the number of program
executions may be beneficial in challenging program synthesis tasks.

118 9 Search drivers

9.12 Summary

This chapter described a preliminary attempt to crystallize the concept of
search driver, a generalization of evaluation function intended to meet the
needs of metaheuristic search algorithms and program synthesis in particu-
lar. Further effort is clearly required to get a better grip on it and possibly
lead to principled design of search drivers. Nevertheless, it should be clear
already at this point that search drivers exhibit common characteristics (cf.
Observations formulated in Sect. 9.2):

1. Search drivers are contextual. The role of a search driver is to provide
gradient within a relatively small set of candidate solutions. A search
driver is not required to provide such a gradient globally.

2. Search drivers provide qualitative, ordinal feedback. Absolute values are
irrelevant. What matters is the (partial or complete) order of candidate
solutions.

3. Search drivers do not have to relate to the original objective function,
and in particular do not have to correlate with it. Preferably, they
should approximate the optimal search driver.

4. Search drivers do not have to be consistent in the sense of (1.5), i.e.
to indicate the optimality of candidate solutions by achieving extreme
values at them (nor in any other way). This functionality is delegated
to a correctness predicate.

5. Search drivers may depend on the entire state of the search process meant
as the working population of candidate solutions (or even state in a
broader sense, for instance including candidate solutions visited in pre-
vious iterations).

6. As a consequence of (5), search drivers may be non-stationary, i.e. or-
der the same subset of candidate solutions differently in particular it-
erations of a search loop.

7. Search drivers can be weak, i.e. order relatively many candidate so-
lutions differently than an optimal search driver. Using many weak
drivers in parallel can make the search process effective by providing
sufficiently strong search gradient and diversity.

	9 Search drivers
	9.1 Rationale for the unified perspective
	9.2 Design rationale
	9.3 Definition
	9.4 Search drivers vs. selection operators
	9.5 Universal search drivers
	9.6 Problem-specific search drivers
	9.7 Quality of search drivers
	9.8 Employing multiple search drivers
	9.9 Multiobjective selection with search drivers
	9.10 Related concepts
	9.11 Efficiency
	9.12 Summary

