
4

Behavioral assessment of test difficulty

As argued in Sect. 2.2.2, one of the vices of conventional scalar evaluation is
symmetry: the same reward is granted for passing every test. Yet some tests
can be objectively more difficult than others in the sense of (2.2), i.e. harder
to pass by a randomly generated program. They may vary also with respect
to subjective difficulty, i.e. particular program synthesis methods may find
it more or less difficult to synthesize a program that passes a given test
(cf. Sect. 2.2.3). Conventional evaluation function (1.7), by simply counting
the failed tests, cannot address this aspect of program synthesis.

In theory, test difficulty can be obtained from domain knowledge or pro-
vided by a human expert. But human expertise and domain knowledge are
not always available or affordable, not to mention the extra effort required
in such scenarios.

In this chapter, we show how information on test difficulty can be conve-
niently acquired from an execution record and used to redefine an evalua-
tion function. This idea materialized originally in GP with the advent of
implicit fitness sharing [166], which we cover in Sect. 4.2. In subsequent
sections, we present the conceptual progeny of that approach: the methods
that scrutinize cosolvability of tests [94] (Sect. 4.3) and automatically derive
objectives from interaction matrices [112, 95] (Sect. 4.4). Before presenting
that material, we first introduce the test-based perspective on program syn-
thesis, which comes in particularly handy for this kind of considerations.

4.1 Test-based problems

Evaluation in GP can be alternatively phrased as candidate programs en-
gaging in interactions with tests. In that framing, the evaluation of a can-
didate program p depends on an interaction function g : P × T → {0, 1}, interac-

tion
functionwhich is an indicator function of the set of tests passed by p, i.e.

g(p, t) = g(p, (in, out)) = [p(in) = out], (4.1)
© Springer International Publishing Switzerland 2016 43
K. Krawiec, Behavioral Program Synthesis with Genetic Programming,
Studies in Computational Intelligence 618,
DOI: 10.1007/978-3-319-27565-9_4



44 4 Behavioral assessment of test difficulty

where [ ] is the Iverson bracket (2.4). The objective function fo (1.7) can
be then rewritten as

fo(p) =
∑

(in,out)∈T

g(p, (in, out)). (4.2)

For convenience, we will occasionally abuse notation and treat g as a logical
predicate, i.e. write g(p, t) when g(p, t) = 1 and ¬g(p, t) when g(p, t) = 0.

The outcomes of interactions of all programs in a given population P with
all tests from a given set T can be gathered in an interaction matrixinteraction

matrix

G = [gij = g(pi, tj) : pi ∈ P, tj ∈ T ]. (4.3)

Note that the ith row of G is the outcome vector for pi, i.e. oT (pi) (2.3),
or in other words the rightmost column of an execution record (Fig. 3.2).

Formalizing an evaluation function in terms of interactions is not par-
ticularly common in GP and more typical for coevolutionary algorithmscoevolut-

ionary
algorithm (CoEAs, [149]), where it originated in test-based problem [16, 24]. In a test-
test-
based
problem

based problem, one seeks an element or a combination of elements from
solution space S that conforms a given solution concept [30, 149]. The ar-
guably simplest example of solution concept is maximization of expected
utility, i.e. a candidate solution that maximizes the expected interaction
outcome, i.e. arg maxs∈S Et∈T g(s, t).

The number of tests in T is usually large or infinite, which makes it techni-
cally infeasible to elicit exact values of an evaluation function. This problem
can be addressed by sampling the tests to be used for evaluation, which
can be done in at least three ways. In the simplest scenario, a sample T is
drawn once from T and remains fixed throughout a run of a method; this
case resembles a typical GP setup the most. Alternatively, one may sam-
ple T from T repetitively, for instance in each generation [21]. The third
way is to let the tests coevolve with the candidate solutions in a CoEA
framework. Typically, candidate solutions and tests co-evolve in two sep-
arate populations S ⊂ S and T ⊂ T , respectively, interacting with each
other only for the purpose of evaluation. While the candidate solutions are,
as usually, rewarded for performing, the tests are rewarded for informing,
for instance for the number of pass-fail distinctions they make between
the current candidate solutions. The underlying rationale is that a CoEA
can autonomously induce a useful search gradient by assorting the tests,
and find good solutions faster or more reliably and/or at a lower computa-
tional cost compared to using all tests from T (where feasible) or drawing
them at random. Empirical evidence gathered in previous work on various
test-based problems suggests that this is indeed possible, provided proper
tuning of a CoEA [69, 175].

Though CoEAs are not explicitly used in the methods studied in this book,
the test-based framework is convenient for capturing the diversity of behav-
iors in an evolving population. Crucially, it allows to juxtapose not only the



4.2 Implicit fitness sharing 45

behaviors of programs, but also compare the characteristics of tests, which
is the idea behind the approaches presented in next sections.

4.2 Implicit fitness sharing

Implicit fitness sharing (ifs) introduced by Smith et al. [166] and further ex- implicit
fitness
sharingplored in GP by McKay [124, 123] originates in the observation that difficulty

of particular tests may vary. Let us reiterate after Sect. 2.2.2 that problems
with uniform distribution of test difficulty are less common than problems
where difficulty varies by tests, as the former is a special case of the latter.
The conventional objective function (1.7) is oblivious to that fact and grants
the same reward of 1 for solving every test in T , which may result in premature
convergence discussed in Sect. 2.4. In order to entice a search process to pass
the more difficult tests, one might want to increase the rewards for them. But
where to look for reliable information on test difficulty? The exact objective
difficulty (2.2) and subjective difficulty introduced in Sect. 2.2.2 are of little
use here: the former requires running all programs in P on a given test, and the
latter estimating the probability that a given synthesis algorithm produces a
program that passes a given test.

To estimate the difficulty of particular tests in T , ifs uses the outcomes of
their interactions with the candidate programs in the working population
P ⊂ P , and defines the evaluation function as follows:

fifs(p) =
∑

t∈T :g(p,t)

1
|P (t)| (4.4)

where P (t) ⊆ P denotes the subset of population members that pass test
t:

P (t) = {p ∈ P : g(p, t)}. (4.5)
Notice that P (t) corresponds to a column in an interaction matrix (4.3),
and |P (t)| is equal to a sum of such a column.

In contrast to evaluation functions considered so far, fifs is maximized.
The denominator in Formula 4.4 never becomes zero, because if p passes a
given t, then P (t) must contain at least p. The computational overhead of
calculating fifs is usually negligible, because to get evaluated, the programs
in P have to be applied to the tests in T anyway.

Example 4.1. Consider a population of three programs P = {p1, p2, p3}
evaluated on four tests T = {t1, t2, t3, t4}, with interaction matrix shown
in the left part of Table 4.1. Although p1 and p2 pass the same number
of tests, p1 is granted greater value of fifs because it passes the tests that
no other program in P passes. On the other hand, p2 is not unique in
P in its capability of passing t3. Thus, fifs(p1) > fifs(p2), even though
fo(p1) = fo(p2). �



46 4 Behavioral assessment of test difficulty

Table 4.1: Calculation of ifs evaluation for an exemplary population P
and four tests in T . The upper left 3 × 4 part of the table presents the
matrix G of interaction outcomes between P and T . The bottom row shows
the number of programs in P that pass a given test. The column marked
fo(pi) presents the conventional objective function, i.e. the number of failed
tests. The rightmost column shows the calculation of ifs evaluation, which
results from sharing the rewards for solving particular tests. Note that an
individual’s evaluation is simply the scalar product of its outcome vector
with the vector of inverted cardinalities of P (t)s.

G t1 t2 t3 t4 fo(pi) fifs(pi)
p1 1 1 0 0 2 1 + 1 + 0 + 0 = 2
p2 0 0 1 1 2 0 + 0 + 1

2 + 1 = 3
2

p3 0 0 1 0 3 0 + 0 + 1 + 0 = 1
|Pti | 1 1 2 1

The key characteristics of ifs is that it estimates difficulty from an evolved
population of programs, i.e. a sample that is biased by a specific selection
pressure. The term 1

|P (t)| in (4.4) is ifs’s measure of difficulty of test t, which
depends reciprocally, and thus non-linearly, on the number of programs that
pass t (contrary to objective test difficulty (2.2)). As a consequence, tests in
ifs can be likened to limited resources: individuals in a population share the re-
wards for solving them, where a reward can vary from 1

|P | to 1 inclusive. Higher
rewards are granted for tests that are rarely passed by population members
(small P (t)), and lower for the tests passed frequently (large P (t)). Alloca-
tion of rewards depends on the capabilities of the current population and is in
this sense relative rather than objective or subjective. Despite this transientrelative

test
difficulty nature, empirical evidence shows that fifs can substantially improve perfor-

mance compared to the conventional objective function fo [114, 98].

The relative nature of fifs makes it different from conventional evolutionary
algorithms, where an evaluation of a candidate solution is normally context-
free, i.e. does not depend on the other candidate solutions. ifs may thus
seem to resemble a coevolutionary algorithm (Sect. 4.1). However, in coevo-
lutionary algorithms, individuals interact with each other directly, while in
ifs there is no face-to-face competition between them. Interestingly, ifs
can be also remotely related to shaping, an extension of the conventional
reinforcement learning paradigm [173]: by varying the rewards for solving
particular tests, ifs can be said to modify its own training experience [175].

Because ifs increases the survival odds for candidate solutions that have
‘rare competences’, it is commonly considered as a diversity maintenancediversity

main-
tenance technique and a means of avoiding premature convergence. These char-

acteristics motivated also explicit fitness sharing proposed in [41], whereexplicit
fitness
sharing population diversity is encouraged by monitoring genotypic or phenotypic

distances between individuals. By allowing the same program to receive



4.3 Promoting combinations of skills via cosolvability 47

different evaluation in particular generations of an evolutionary run, ifs
may also facilitate escaping from local minima.

ifs assumes interaction outcomes to be binary: the tests that have been
passed by a program need to be clearly delineated from those that have not.
In real-valued domains, that concept is in a sense ‘fuzzified’ and programs
can perform better or worse on individual tests. In [98] we proposed a
generalized variant of ifs that ranks programs in a population with respect
to errors they commit on a given test and obtain so reliable information
on test difficulty. The method achieved top accuracy when confronted with
several other extensions of GP on a nontrivial real-world task of detection
of blood vessels in retinal imagining.

4.3 Promoting combinations of skills via cosolvability

A program’s capability in passing a given test can be likened to a skill. We skill

presented that perspective in Sect. 2.3. It reverberates with some earlier
works, albeit within very different formal frameworks (for instance produc-
tion rules, conditional programs, and analogical problem solving in [159]).
ifs defines evaluation as a sum of rewards for mastering individual skills. In
real world however, it is often the combination of skills that matters. Reach-
ing for a biological analogy, the skill of digging in the ground and the skill
of navigation may each on its own bring only marginal benefits for an ani-
mal. However, when combined, they enable finding previously-buried prey
and hence survival when food is scarce, an advantage which can be greater
than the sum of the constituent benefits. As another example, the overall
performance of a mobile robot may depend on multiple skills, including the
ability to maintain a straight-line trajectory, the ability to turn, and the
ability of position estimation. Each of these skills alone may be insufficient
to complete a given task, but together they may make that possible.

In ifs, the reward for passing two tests simultaneously amounts to the
sum of rewards obtained for passing each test individually (4.4). ifs cannot
thus model synergy, i.e. reward a combination of skills higher than the sum synergy

of skillsof rewards of its constituents. To model non-additive interactions between
skills, in [94] we introduced the notion of cosolvability. We call a pair of cosolva-

bilitytests (ti, tj) cosolvable by a program p if and only if p passes both of them,
cosolvable
testsi.e. g(p, ti) ∧ g(p, tj). The cosolvability matrix for a population P evaluated

on tests in T is a symmetric |T |×|T | matrix C, with the elements defined as

cij = |{p ∈ P : g(p, ti) ∧ g(p, tj)}|, (4.6)

We define then the cosolvability evaluation function fcs that rewards pro-
grams for solving pairs of distinct tests:



48 4 Behavioral assessment of test difficulty

Table 4.2: An interaction matrix G for an exemplary population of four
programs and for four tests (a), and the corresponding cosolvability matrix
C (b). Empty cells denote zeroes.

(a)

G t1 t2 t3 t4
p1 1 1 0 0
p2 0 0 1 1
p3 0 1 1 0
p4 1 0 0 1

(b)

C t1 t2 t3 t4
t1 a+d a d
t2 a+c c
t3 b+c b
t4 b+d

Table 4.3: Fitness values assigned to programs from Table 4.2a by particular
evaluation functions.

Evaluation function p1 p2 p3 p4
fo 2 2 2 2
fifs

1
a+d

+ 1
a+c

1
b+c

+ 1
b+d

1
a+c

+ 1
b+c

1
a+d

+ 1
b+d

fcs
1
a

1
b

1
c

1
d

fcs(p) =
∑

i<j,cij>0

1
cij

(4.7)

As fifs, fc is maximized. Similarity of this formula to (4.4) is not incidental:
cosolvability can be viewed as a form of second-order fitness sharing, it is
the rewards for solving pairs of tests that is shared.

Example 4.2. Consider four programs p1, p2, p3, p4 that perform on tests
t1, t2, t3, t4 as shown in the interaction matrix in Table 4.2a. Assume that
the population P contains a programs that produce the same outcome
vector as p1, i.e. a ‘behavioral clones’ of p1. Similarly assume b behavioral
copies of p2, c copies of p3, and d copies of p4. The cosolvability matrix C for
this population is shown in Table 4.2b. Note that co-occurrence of multiple
programs that have the same outcome vector is likely in a population of
programs that have been evolving for some time.

Table 4.3 presents the evaluations for programs p1 . . . p4 as assigned by par-
ticular evaluation functions: conventional fo (1.7), fitness sharing fifs (4.4),
and cosolvability evaluation function fcs (4.7). We note that fo does not
discern programs at all, no matter how often they occur in the population.
Whether fifs and fcs discern particular pairs of programs depends on the
numbers of occurrences of t1, . . . , t4, i.e. on of a, b, c and d.

Programs p1 and p3 allow us to demonstrate that fcs can produce different
ordering of individuals than fitness sharing. Let us see if fifs(p1) < fifs(p3)
and fcs(p1) > fcs(p3) can hold simultaneously. As it follows from Table 4.2,



4.3 Promoting combinations of skills via cosolvability 49

these two conditions are respectively equivalent to a + d > c + b and a < c,
which are fulfilled by infinitely many quadruples of a, b, c, d ≥ 0. Therefore,
fcs can order solutions differently from fifs and, in consequence, lead to
different outcomes of a GP run. �

Let us now investigate the ability of fifs to model synergy between skills.
Let T (p) denote the set of tests from T that are passed by p, i.e,

T (p) = {t ∈ T : g(p, t)}. (4.8)

T (p) corresponds to a row of an interaction matrix (4.3), in analogy to P (t)
(4.5) that corresponds to a column.

Consider two programs p, p′ such that T (p) ∩ T (p′) = ∅. Assume they are
crossed over and produce an offspring po that is their perfect ‘behavioral
mixture’, i.e. inherits all skills from them and does not have any other skills.
Formally,

T (po) = T (p) ∪ T (p′). (4.9)
It obviously holds that fo(po) = fo(p)+fo(p′), because fo simply counts the
passed tests. fifs is similarly additive and an analogous relation fifs(po) =
fifs(p) + fifs(p′) holds, though for this to be true we need to assume that
po, p, and p′ are members of the same population for which the subjective
difficulty of tests is estimated. For the sake of argument, we will stick to
this assumption this for the rest of this section.

In contrast to fo and fifs, cs is not additive in the above sense. The off-
spring not only inherits the scores earned by its parents, but also receives
additional rewards for passing the pairs of tests the parents have individu-
ally failed. In effect, it is guaranteed that fcs(po) > fcs(p) + fcs(p′). Thus,
cosolvability not only enables, but actually enforces synergy: an offspring
that inherits all skills from parents that have mutually exclusive skills is
by definition better than both of them taken together. Given the relative
nature of cosolvability, the actual differences in evaluation vary depend-
ing on the skills of other programs in a population, nevertheless the above
statement is guaranteed to hold.

Now consider two programs p, p′ such that T (p) �= T (p′) and fcs(p) >
fcs(p′), and a test t such that t /∈ T (p) ∪ T (p′). Assume that, as a result
of modification, both p and p′ acquire the skill of passing t, so that for the
respective resulting offspring programs o and o′ it holds T (o) = T (p) ∪ {t}
and T (o′) = T (p′) ∪ {t}. From the above analysis it follows that fcs(o) <
fcs(o′) is possible. Thus, o′ can gain more than o for passing the same test,
to the extent that it becomes better than o, even though its parent was
worse than the parent of o. Neither the conventional objective function fo
nor ifs allow for that; under both these evaluation functions, o is better
than o′.1
1 These observations hold for ordinal selection methods that care only about the

ordering of solutions (e.g., tournament selection). For selection methods that



50 4 Behavioral assessment of test difficulty

The above properties cause the dynamics of an evolutionary search under
fcs to be in general different from that of fifs and fo. The differences stem
not only from the co-occurrence of skills in a population, but also from
the sizes of P and T which determine the likelihood of ties on evaluation.
As we noticed in Sect. 2.1, fo can return only |T | + 1 distinct values, so
if |P | � |T |, ties on fo become likely. For ifs and cosolvability, a com-
plementary relationship holds: the greater the number of programs in P ,
there more likely it is that different tests are passed by different numbers
of programs and, as a consequence, programs are granted different evalua-
tions. In general, ties are thus less likely for ifs than for the conventional
evaluation function, and even less likely for cosolvability.

The synergistic nature and fine-grained codomain of fcs proved beneficial in
the empirical examination we reported in [94], where, with exception of one
out of eight benchmarks, it improved the likelihood of successful program
synthesis in comparison to fo and fifs. We are aware of only one technical
inconvenience of this approach: the size of cosolvability matrix is quadratic
with respect to the number of tests, so its memory occupancy may become
noticeable when the number of tests reaches the order of thousands.

A concept vaguely related to cosolvability was subject of the study by Lasar-
czyk et al. [109]. The authors proposed there a method of test selection that
maintains a weighted graph that spans tests, where the weight of an edge
reflects the historical frequency of a pair of tests being passed simultane-
ously. The graph is analyzed to select the ‘essential’ tests that are then
used to evaluate all individuals in population. Compared to that approach,
cosolvability is a simpler, parameter-free approach, which does not select
the tests but weighs pairs of them, and does that individually for each
evaluated program.

4.4 Deriving objectives from program-test interactions

The concept of interaction matrix (4.3) naturally leads to the idea ofPareto
coevolu-
tion Pareto coevolution [31, 137], where aggregation of interaction outcomes

is abandoned in favor of treating each test as an elementary objectiveelementary
objective and comparing candidate solutions with dominance relation, as we did in

Sect. 2.2.3 with lattices of outcome vectors (Fig. 2.1). A candidate solution
p1 dominates p2 if and only if it performs at least as good as p2 on all
tests, and strictly better on at least one test. For instance, p2 in Table 4.1
dominates p3 as it passes all the tests passed by p3 and t4, which p3 does

assume evaluation to be defined on a metric scale (like fitness-proportionate
selection), it becomes even easier for fcs to produce evaluations that imply
different selection probabilities than those of fifs.



4.4 Deriving objectives from program-test interactions 51

not pass. On the other hand, there is no dominance between p1 and p2 –
none of these programs is clearly better than the other.

In principle, dominance relation on tests (dominance on tests in the fol- domi-
nance
relation
on tests

lowing) can be directly used to determine the outcomes of selection in an
evolutionary loop of GP [88]. The arguably simplest selection operator of
this kind would, given a pair of programs, return the one that dominates
the other, or pick any of them at random in case of mutual non-dominance.
However, when the number of tests is large, dominance between candidate
solutions becomes unlikely, as there is high chance that each of compared
solutions passes a test that the other solution fails. The dominance relation
becomes sparse, with many pairs of candidate solutions left incomparable.
This in turn weakens the search gradient, and makes search process less
effective.

The limitations of dominance on tests as a means for selection of candi-
date solutions sparked search for alternative means of exploiting interaction
matrices. The breakthrough came with the observation that test-based
problems may feature an internal structure. Bucci [16] and de Jong [23] coordi-

nate
systemsintroduced coordinate systems that compress the elementary objectives

(each associated with a unique test) into a multidimensional structure of
underlying objectives (dimensions), while preserving the dominance rela- under-

lying
objectivetion between candidate solutions. Because some tests can be redundant,

the number of underlying objectives can be lower (and, interestingly, may
indicate the inherent complexity of a given test-based problem).

However, coordinate systems do not address the above problem of domi-
nance on tests being sparse (or becoming sparse in the course of search).
As a coordinate system perfectly preserves dominance, whenever the dom-
inance on tests is sparse, so it is in the dominance on the underlying ob-
jectives derived from them. Also, the number of underlying objectives can
be still high, even for simple problems like the game of tic-tac-toe, and
construction of a coordinate system is an NP-hard problem [64, 63].

These observations call for alternative ways of efficiently translating an
interaction matrix into a computationally tractable multi-aspect charac-
terization of candidate solutions. In [112, 95] we came up with the idea of
discovering approximate objectives by heuristic clustering of interaction out-
comes. The proposed method doc efficiently clusters an interaction matrix
into a low number of performance measures, which we refer to as derived
objectives, to clearly delineate them from the exact underlying objectives. derived

objectiveBy corresponding to a subset of tests, each derived objective captures a
‘capability’ that can be seen as a generalization of skills discussed earlier.

Technically, doc replaces the conventional evaluation stage of the GP work-
flow (cf. Sect. 1.5.3) with the following steps:



52 4 Behavioral assessment of test difficulty

1. Calculation of interaction matrix. We apply every program in the cur-
rent population P, |P | = m, to every tests in T, |T | = n, and obtain so
an m × n interaction matrix G (4.3).

2. Clustering of tests. We treat every column of G, i.e. the vector of inter-
action outcomes of all programs from P with a test t, as a point in an
m-dimensional space. A clustering algorithm of choice is applied to the
n points obtained in this way, and produces a partition {T1, . . . , Tk} of
the original n tests in T into k subsets (clusters), where 1 ≤ k ≤ n and
Tj �= ∅.

3. Calculation of derived objectives. For each cluster Tj , we average row-
wise the corresponding columns in G. The result is an m × k derived
interaction matrix G′, with the elements defined as follows:

g′
i,j = 1

|Tj|
∑

t∈Tj

g(pi, t) (4.10)

where pi is the program corresponding to the ith row of G, and j =
1, . . . , k.

The columns of resulting G′ matrix define the k derived objectives that
characterize the programs in P in the context of the tests in T . The jth
derived objective for a program pi corresponding to the i row of the derived
interaction matrix G′ amounts to

f j
doc(pi) = g′

i,j. (4.11)

Example 4.3. Figure 4.1 presents the example of doc deriving objectives
from a 4 × 5 interaction matrix G. The clustering algorithm partitions the
tests into k = 2 clusters {t1, t2} and {t3, t4, t5}. Averaging the correspond-
ing columns in G leads to the 4 × 2 derived interaction matrix G′. The
graph plots the programs’ positions in the resulting two-dimensional space
of derived objectives. �

The derived objectives constructed by doc form a compact, multi-aspect
evaluation of the candidate solutions in P , and serve as a basis for selecting
the most promising programs. Rather than devising an ad-hoc selection al-
gorithm, it is natural to employ here multiobjective methods like nsga-ii
[26]. Multiobjective selection allows programs that feature different behav-
iors (capabilities) coexist in a population, even if some of them are better
than others on the conventional objective function fo. In doc, a capability
can be identified with passing a specific group, or even class of tests. In
case of the parity-3 problem illustrated in Sect. 2.3, a capability could be



4.4 Deriving objectives from program-test interactions 53

G t1 t2 t3 t4 t5
p1 1 0 1 1 1
p2 0 0 1 1 0
p3 1 1 0 1 0
p4 0 0 1 0 0

(a)

G′ t{1,2} t{3,4,5}
p1 1/2 1
p2 0 2/3
p3 1 1/3
p4 0 1/3

(b)
t{1,2}

t{3,4,5}

1
0

0

1
p1

p2

p3p4

(c)

Fig. 4.1: An example of derivation of two search objectives from a matrix G
of interactions between four programs p1, . . . , p4 and five tests t1, . . . , t5 (a).
The tests (corresponding to the columns of G) are clustered into two clusters,
marked in colors, according to a distance metric (here: Euclidean distance).
The centroids of the clusters form the derived interaction matrix G′ (b), in
which each column defines a derived objective. The derived objectives form
new objective space, with programs’ locations shown in inset (c).

associated with passing all tests with the first input variable set to true.
See Sect. 9.8 for a more detailed description of nsga-ii.

Derived objectives bear certain similarity to the underlying objectives dis-
cussed at the beginning of this section [16, 23, 64, 63]. However, as Example
4.3 and Fig. 4.1 show, they are not guaranteed to preserve dominance: new
dominance relationships may emerge in the space of resulting derived objec-
tives. For instance, given the interaction matrix as in Fig. 4.1a, program p3
does not dominate p4, however it does so in the space of derived objectives
(Fig. 4.1c). As a result of clustering, some information about the dominance
structure has been lost. This inconsistency buys us however a critical ad-
vantage: the resulting dominance relation is more dense and thus likely to
impose a reasonably strong search gradient on an evolving population.

Although doc may lead to dominance in the space of derived objectives
where such relation was originally absent, in another work under review
[113] we show formally that derivation of objectives will always preserve
dominance if it already held for a pair of candidate solutions. Also, it cannot
reverse the direction of dominance that already existed in the original space
of outcome vectors.

Because clustering partitions the set of tests T (rather than only selecting
some of them), none of the original tests is ignored in the evaluation process.
In this sense, doc tends to embrace the entirety of information available
in an interaction matrix, which makes it different from and potentially
more robust than methods that select tests, like [109] reviewed briefly at
the end of Sect. 4.3. The more two tests are similar in terms of programs’
performance on them, the more likely they are to end up in the same



54 4 Behavioral assessment of test difficulty

cluster and contribute to the same derived objective. In particular, tests
characterized with identical outcome vectors are guaranteed to be included
in the same derived objective.

The only parameter of the method is the number of derived objectives k.
For k = 1, doc degenerates to a single-objective approach: all tests form
one cluster, and G′ has a single column that contains solutions’ evaluations
as defined by (1.7), normalized by |Tj | in (4.10). Setting k = n implies
G′ = G, and every objective being derived from a single test. As we showed
in [112], using k in the order of a few is most beneficial. Alternatively, the
choice of k can be delegated to the clustering algorithm [95].

Similarly to ifs and cs, evaluation performed by doc is contextual: all pro-
grams in P together determine the values of derived objectives. Objectives
are derived independently in every generation of a GP run and are thus
transient and incomparable across generations. This however does not pre-
vent them from driving search more efficiently than conventional GP and
ifs on most benchmarks, which we demonstrated in [95], and in coevolu-
tionary settings, where T varies from generation to generation [112].

4.5 Summary

In the context of behavioral evaluation and execution record (Chap. 3), ifs,
cs and doc all rely on the same source of information for evaluation: an
outcome vector resulting from the comparison of program output with the
desired output (Fig. 3.2). In contrast to the conventional objective func-
tion fo (1.7) that simply counts the zeroes (failed tests) in that vector for
the program which is being evaluated, these methods require simultaneous
access to outcome vectors of all programs in a population. Only then can
they assess the subjective difficulty of tests (ifs), estimate the subjective
odds for pairs of tests being simultaneously passed (cs), or group the tests
into meaningful clusters to form derived objectives (doc). In consequence,
they will in general lead to different selection outcomes (see Examples 4.1,
4.2, and 4.3).

There is however more information available in an execution record and in
the tests that define a program synthesis task. In particular, ifs, cs and
doc care only whether a test has been passed or not, and ignore what is
the actual program output and the desired program output. These more
detailed data open the door to more ‘inquisitive’ extensions of GP, with se-
mantic GP presented in the next chapter being an important contemporary
representative.


	4 Behavioral assessment of test difficulty
	4.1 Test-based problems
	4.2 Implicit fitness sharing
	4.3 Promoting combinations of skills via cosolvability
	4.4 Deriving objectives from program-test interactions
	4.5 Summary




