
1

Program synthesis

In this introductory chapter, we characterize and formalize the key concepts
of this book, in particular computer programs. We also define the task of
program synthesis and determine the main factors that make it challenging.
Finally, we delineate several paradigms of program synthesis, among them
genetic programming.

1.1 The nature of computer programs

Computer programs are unique among other mathematical formalisms in
embodying algorithms, i.e. formal recipes for solving entire classes of prob-
lems. For instance, the greatest common denominator of any pair of inte-
gers can be calculated using the same short program. This makes programs
fundamentally different from entities that are ‘attached’ to a specific prob-
lem instance, e.g., a specific route is a solution to a particular traveling
salesperson problem.

Programs exhibit this characteristic because they are able to interact with
data, or, in other words, respond to input with some output. This is actually
more a necessity than an ability: programs need data to act upon. A pro-
gram that expects an input cannot be launched without it. A deterministic
program that does not take any input always produces the same output,
which, apart from exotic usage scenarios1, renders it useless.

A nontrivial program exhibits thus a spectrum of possible behaviors that
depend on the input to which it is applied. Informally, it does something
– a phrase that is hardly applicable to salesperson’s routes. No wonder we
tend to attribute programs with agency, saying that a program ‘accepts’,
1 For instance, rather than storing a large raster image of a complex fractal, it

may be more memory-efficient to store the program that generates that fractal
– a compelling example of Kolmogorov complexity.

© Springer International Publishing Switzerland 2016 1
K. Krawiec, Behavioral Program Synthesis with Genetic Programming,
Studies in Computational Intelligence 618,
DOI: 10.1007/978-3-319-27565-9_1

2 1 Program synthesis

‘chooses’, ‘waits’, ‘assumes’, ‘guarantees’, etc. Such anthropomorphisms feel
natural and will by this token occur in this book, even though this habit
has been sometimes criticized [27].

The expressive power of a program is conditional upon the programming
language in which it is written. Any Turing-complete programming lan-
guage is sufficient to express all computable functions, a class capacious
enough to embrace most known problems of practical and theoretical inter-
est. Even rudimentary programming languages are usually Turing-complete,
including esoteric languages that, for instance, comprise just one instruc-
tion [39]. Programs written in such languages can implement most conceiv-
able processes, from elementary arithmetic to simulating selected aspects
of human intelligence. In particular, nothing precludes one from writing a
program that manipulates other programs – interpreters, compilers, and
virtual machines are natural examples of this capability.

In this book, by a computer program (program for short) we mean a finiteprogram

discrete structure composed of elementary instructions (or statements) andinstruction

capable of performing computation. The representation of programs that
is most natural for humans is source code, i.e. text. For program synthesis,
the textual form is redundant and cumbersome to handle, so virtually all
approaches work with programs represented as abstract syntax trees (AST),abstract

syntax
tree abridged structures that contain only the effective elements of programs

and omit, among others, the delimiters that separate syntactic structures
in source code (like semicolons, parentheses, etc.).

The rules of forming syntactically valid (i.e. executable) programs from in-
structions in a given programming language are usually expressed as formalprogram-

ming
language grammars. A grammar distinguishes the programs that belong to a given

programming language from those that do not. In this book we consider
only syntactically valid programs, and it will be sufficient for us to identify
a programming language with a (possibly infinite) set P of programs and
abstract from the particular formalism that determines their validity.

We write p(in) = out to express that a program p ∈ P applied to an input
data (input for short) in produces an output data out (output) as the result
of execution. Inputs and outputs may be any formal objects representing
certain types, either simple (usually scalars, e.g., bits, Booleans, numbers) or
compound (usually data structures, e.g., lists, matrices, images). If program
input is a tuple, its elements will be referred to as input variables and
denoted by xis, i.e. in = (x1, . . . , xk).

The types associated with inputs and outputs determine the domain (I, O)domain

of a program, where I and O respectively denote the sets of valid input and
output values. The elements of I form admissible inputsadmissible input.
For instance, the Boolean domain used in many examples throughout this
book includes all programs with signatures of the form B

n → B, i.e. I = B
n

1.2 Program synthesis 3

and O = B, where B = {true, false}. An input that does not belong to B
n,

e.g., a real number, is not admissible for programs in this domain.

As shown by Alan Turing [182], there is no way to determine in general
whether a program terminates: the halting property is undecidable. For a
non-halting program, it becomes impossible to verify if it returns the desired
output for a given input, which is the key property in generative program
synthesis (Sect. 1.3). To mitigate this problem, in this book we limit our
interest to programs that halt. We also consider only deterministic programs.

1.2 Program synthesis

Writing computer programs is an activity that we habitually attribute to
humans. In spite of this, the attempts to automate the process of generating
computer programs, viz. synthesize them, date back to the early years of
computer science and artificial intelligence (see, e.g., [188] and Sect. 1.5).

We define the task of program synthesis (task for short) as an ordered pair program
synthesis
task(P , Correct), where P is a programming language and Correct : P → B

is a correctness predicate. Solving a task (P , Correct) consists in finding a correct-
ness
predicateprogram p ∈ P that fulfills Correct, i.e.:

p ∈ P : Correct(p), (1.1)

(cf. [120]). A program p such that Correct(p) is correct and forms a solution
to a program synthesis task.

Because we adopt a metaheuristic approach to program synthesis
(Sect. 1.5.3), it is important to explain how the notions introduced above
relate to it. While program synthesis corresponds to problem (like the
traveling salesperson problem mentioned earlier), a program synthesis
task with a specific P and Correct(p) corresponds to problem instance in
metaheuristic terminology. The working programs considered by a running
synthesis method are potential solutions and by this token are referred to
as candidate solutions, candidate programs, or search points. A solution to candidate

solutiona synthesis task corresponds to optimal solution, which we occasionally optimal
solutionrefer to as optimal program.

The correctness predicate Correct is responsible for telling apart the correct
and incorrect programs in P . As we detail later, there are several ways in
which program correctness can be verified, i.e. classes of correctness predi-
cates. For instance, the class exercised in this book involves confronting a
program with tests. A given class of correctness predicate is instantiated
by a task specification S, e.g., a specific set of tests. In most cases, the ref- task

specifica-
tionerence of Correct to specification will be clear from the context and thus

assumed implicit unless otherwise stated. Because we consider only halting
programs, the correctness considered here is formally the total correctness.

4 1 Program synthesis

In algorithmic realization, the mathematical ‘find such that’ statement in
(1.1) boils down to ‘generate’ or ‘synthesize’. We find the latter term more
adequate, as it emphasizes the fact that programs are assembled from
smaller entities (instructions) and that programming is by nature combina-
torial. This means that program synthesis lacks the concept of a variable
and sets it apart from conventional optimization, where candidate solutions
are usually fixed-length tuples of such variables. These arguments and past
literature [44] incline us to lean toward the term synthesis.

Posed in this way, program synthesis is a discrete search problem in thediscrete
search
problem artificial intelligence (AI) sense [156], with search states are programs in

P . Correct partitions the search space into the goal states and the non-
goal states, i.e. the programs sought and the remaining ones. In the most
conservative formulation, this is the only source of information available to
a method that performs program synthesis.

There is however an important feature that makes program synthesis a very
special search problem. In conventional search problems, a goal test verifies
an inherent property of a search state. For instance, to verify if a board state
in the peg solitaire puzzle is a goal state, one checks if the number of pegs
remaining on the board is one. In contrast, unless one reaches for formal ver-
ification methods (which are beyond the scope of this book), the correctness
of a program cannot be determined by inspecting its structure, i.e. its source
code. A program is correct if it behaves in the right way, i.e. if the I → O
mapping it meets the requirements defined by Correct. Correctness of a pro-
gram is intermediated by its interpretation (semantics), which is an extrinsic
property, i.e. it is not explicitly present in the symbols that represent the in-
structions nor in their combination within a program. This behavioral aspect
of program synthesis makes it nontrivial and will reverberate many times in
this book.

We consider only program synthesis tasks that are solvable. The necessarysolvable
synthesis
task condition for a task to be solvable is that the programming language is ex-

pressive enough, i.e. a finite program that meets Correct can be formulated
in that language, i.e. ∃p ∈ P : Correct(p). Expressibility of a programming
language is however not sufficient to guarantee solving a given synthesis task
with a given method. A synthesis algorithm can be inherently incapable of vis-
iting some regions of search space due to, e.g., certain search biases.

1.3 Specifying program correctness

Program synthesis can be alternatively seen as translation of a specification
S into a program p ∈ P such that CorrectS(p). The key difference between
these two entities is that specification is passive, i.e. can only be queried to
determine program’s correctness, while the resulting program is active in
being executable.

1.3 Specifying program correctness 5

A specification S defines the desired effect of computation, and as such can
be conveniently expressed using preconditions, i.e. conditions that constrain pre-

conditionthe set of program inputs, and postconditions, i.e. conditions that program post-
conditionoutput has to meet given the input data. Formally, for a program p : I → O

and a specification S = (precond, postcond):

p(in) ≡ out : postcond(in, out), where precond(in) (1.2)

where precond : I → B, and postcond : O → B. For instance, the specifi-
cation of a program that calculates the integer approximation of the square
root of a nonnegative number n can be phrased using pre- and postconditions
as follows:

• precond(n) = integer(n) ∧ n ≥ 0,
• postcond(n, m) = integer(m) ∧ n2 ≤ m ≤ (n + 1)2.

Specifying program correctness by pre- and postconditions is common not
only in theory [120] but also in practice, as epitomized by the growing
popularity of the design-by-contract paradigm in software engineering [127, design-

by-
contract133], where it is ofter realized using ‘requires’ and ‘ensures’ clauses.

There are two fundamentally different ways in which pre- and postcondi-
tions can be verified for a given program. The formal methods achieve that
without running the program, most commonly by constructing a formal
proof of program correctness. The theorem to be proven is in general of the
form:

∀in : precond(in) =⇒ ∃out : postcond(in, out) (1.3)

If a constructive proof of such theorem can be conducted, it will also deter-
mine what is the out value that satisfies the postcondition. A side effect of
conducting that proof is thus a synthesized program. This approach to pro-
gram synthesis task is rooted in Hoare logic and formal verification [52] (cf.
[120]).

Alternatively, the task can be specified by examples. In that case, the task
specification S takes the form of a finite list2 T of tests. Each test is an test

ordered pair (in, out), in ∈ I, out ∈ O, where in is program input, and out
is the corresponding desired output. desired

output

We assume that T is non-redundant, i.e. �(in1, out2), (in2, out2) ∈ T : in1 =
in2 ∧ out1 = out2, and coherent, i.e. �(in, out1), (in, out2) : out1 �= out2. In
genetic programming, tests are often referred to as fitness cases. A program
synthesis task posed in this way can be considered as a machine learning
(ML) task defined within the paradigm of learning from examples, with T learning

from
examples

2 In GP and machine learning literature, T is typically defined as a set. However,
maintaining a fixed ordering of tests in T becomes important at certain point
of our discourse, so we define T as a list.

6 1 Program synthesis

playing the role of a training set and each test corresponding to an example.
As in ML, T is not necessarily assumed to enumerate all possible program
inputs; in general, it may be considered a sample drawn from a (potentially
infinite) universe of tests T .

Given a set of tests T ⊆ T , we can define the correctness predicate as

CorrectT (p) ⇐⇒ ∀(in, out) ∈ T : p(in) = out, (1.4)

where p(in) denotes an application of program p to an input data in. The
vector of desired outputs out is alternatively referred to as target.target

Specifying correctness with examples is usually partial, because the desired
behavior is unspecified for any in : �(in, out) ∈ T . Formal specification is,
by contrast, usually complete and thus more general. Yet, formal correctness
predicates can be difficult to design without a strong mathematical back-
ground, and can sometimes be more difficult than writing the program in
question. On the other hand, though reasoning in terms of examples is nat-
ural for humans, a large number of examples may be required to specify the
desired behavior. In the search for alternatives, the notion of specification
is being recently extended to embrace other ways of expressing the desired
outcome of a synthesis process. In this context, program synthesis can be
rephrased more generally as the task of discovering an executable program
from user intent [44]. Recent interesting developments in this area include
expressing intent interactively [45] and writing incomplete programs to be
complemented by a synthesis system [167].

We propose to group program synthesis paradigms with respect to the work-
flow they implement. In the top-down specificiation-driven approach, it isspecifi-

cation-
driven
program
synthesis

the specification that drives the synthesis process. A synthesis algorithm
starts with the given specification S, analyzes it, and derives (usually de-
duces) a program from it. The derived program conforms by construction
to the Correct predicate, so it does not have to be verified for correctness.
Such a workflow is characteristic to, among others, systematic deductive
approaches to program synthesis [120] (see Sect. 1.5).

In the bottom-up, generative, or generate-and-test approach, the synthesisgenerative
program
synthesis process uses a generator of programs that works in a more ‘undirected’ way.

The generated candidate programs are verified using the Correct predicate
(which in such case can be considered as a form of oracle). The feedback
from the verification is subsequently used to produce the next, hopefully
better, candidate solution(s). Such generate-and-test workflow is of, among
others, genetic programming [79, 148], where an evolutionary algorithm
serves as a generator of programs, and program correctness is verified by
an evaluation function (Sect. 1.5.3).

An implication of adopting the top-down mode is that a program synthesis
method has to ‘understand’ the specification in order to translate it into

1.4 Challenges in program synthesis 7

a program. In contrast, such a capability is not essential for bottom-up,
generative approaches. The latter are thus more domain-independent, and
can be conveniently used with complex domain-specific languages, where
instructions may be intricate and have complex effect; the languages de-
signed for image analysis may serve as examples here [11, 90]. In a sense,
generative approaches assume that the synthesis task in question is too
complex to be solved analytically and has to be heuristically ‘datamined’
to gain some understanding of it, and so facilitate finding a solution. This
perspective is congruent with our vision of behavioral program synthesis
(Chap. 3), and is one of the reasons why this perspective is built upon the
generative stochastic metaheuristic of genetic programming.

1.4 Challenges in program synthesis

There are several reasons why program synthesis is challenging and robust
and scalable program synthesizers are yet to be seen. The most obvious one
is the size of the search space. The number of combinations of instructions
grows exponentially with program length, even if only some of them are syn-
tactically correct in a given programming language. This affects not only
the bottom-up methods that need to search that space directly, but also in-
directly the top-down approaches, because the size of program space is re-
flected in the number of paths in the proof space that need to be considered.

As an example, consider the task of synthesizing an m-ary Boolean func-
tion B

m → B represented as an expression tree, in which the program-
ming language comprises k binary (i.e. two-argument) instructions. There are(
n/2
k

)(
n/2
m

)
cat(n) programs represented as trees composed of n instructions,

where cat(n) is the nth Catalan number: cat(n) =
(2n
n

)
/(n+1) [180]. For sim-

plicity, let us assume that the task can be solved using a program that fetches
each of m input variables exactly once, i.e. such that forms a binary tree with
m leaves and m − 1 internal nodes. Even for the moderately difficult 11-bit
multiplexer (m = 11) [122] and k = 4 binary instructions, the above formula
results in the staggering 2.93 × 1011 programs – and this is a conservative
estimate of the size of the search space that needs to be explored.

The second challenge in program synthesis is that programming languages
are rich enough to express the same functionality in many ways. Formally,
the mapping from the space of programs P to the space of their behav-
iors (interpreted for instance as the outputs produced for all tests, like in
semantic GP, Chap. 5) is many-to-one. This non-injective characteristic
manifests also in the existence of multiple correct programs for a given task,
or, put in terms of search problems, in the existence of multiple goal states.
When a search problem of program synthesis is recast as an optimization

8 1 Program synthesis

problem (Sect. 1.5.3), this causes an evaluation function to be multimodal.multimodal
evaluation
function However, this is contingentalso on the structure of the search space induced by

search operators, as accurately commented for evolutionary algorithms (EA)
by Lee Altenberg:

The multiple-attractor problem is usually described as “multimodal-
ity” of the fitness function, but it must be understood that the
fitness function by itself does not determine whether the EA has
multiple domains of attraction – it is only the relationship of the
fitness function to the variation-producing operators that produces
multiple-attractors. [2, p. 4]

On one hand, multimodality increases the statistical odds of finding a solu-
tion; on the other, it makes it more difficult to prioritize the search in the pres-
ence of multiple potentially useful search directions. Also, multimodality may
be a sign of a program synthesis task being underconstrained, which is partic-
ularly likely when a correctness predicate involves few tests. In such cases, the
synthesized program is expected to generalize well beyond the training set ofgenerali-

zation tests. This presents a challenge on its own: how to ensure, for instance, that a
program meant to calculate the median of a list of numbers, synthesized from
a handful of tests, calculates the correct value for any input?

Expressibility of computer programs gives rise to yet another problem. In-
structions, the underlying components of programs, are abstract symbols
that do not mean anything on their own. Their meaning resides in semantics,semantics

materialized in the ‘substrate’ that provides for program execution (be it an
interpreter, compiler, or hardware). The semantics of individual instructions
is usually simple, and in generic programming languages may comprise lit-
tle more than elementary logic and arithmetic. Yet, because instructions can
be applied in different contexts (e.g., to various arguments, variables, subpro-
grams, etc.) and in various orders, their overall effect is hard to model. As a
consequence, the impact of a given instruction on the final computation out-
come is highly contextual – the interpretation of a given piece of code in a
program depends on its surroundings. This is particularly evident in imper-
ative programming languages (and virtually absent in the functional ones).
Put in terms of evolutionary computation, the underlying vehicle of GP, if
instructions in a program are likened to genes in a chromosome, then there
is strong epistasis between them (cf. Sect. 1.5.3).epistasis

The complexity and essential character of interactions between instructions
is such a prominent feature of programs that it inclined John H. Holland
to use them to illustrate emergence in his seminal work on this topic:emergence

Interactions play a central role in the study of emergence. A detailed
knowledge of the repertoire of an individual ant does not prepare us
for the remarkable flexibility of the ant colony. The capabilities of a
computer program are hardly revealed by a detailed analysis of the
small set of instructions used to compose the program. [56, pp. 38-39]

1.4 Challenges in program synthesis 9

Indeed, as we argued elsewhere [84, 5], a behavior of a program can be
considered its emergent property. Only a part of behavior (pertaining to
the program’s final outcome) matters for solving a synthesis task; what a
program does on its route to producing an outcome is – in a sense – irrel-
evant. Arbitrarily complex behaviors of programs emerge from a handful
of relatively simple instructions. In this light, it is not an overstatement to
equate a program, or even more a yet-imperfect program ‘in the making’,
with a complex system [131].

It may be useful at this point to confront the complexity of semantic effects
of program execution with a conventional AI-type search problem, the peg
puzzle mentioned in Sect. 1.2. The effects of peg moves (modifications of
the current solution) directly follow from the board structure and state.
They do not refer to any external ‘body of knowledge’, like semantics of
logic or arithmetic instructions in programming. Similar moves (e.g., moves
applied to the same peg) have usually similar effects. The evaluation func-
tion (the number of pegs left on the board) changes more or less gradually
with consecutive moves. Compared to computer programs, this is a really
straightforward environment.

The above-mentioned property of similar moves having similar effects is
closely related to the notion of locality in evolutionary computation (EC) locality

[154]. A problem is said to exhibit high locality if applying a move to a
candidate solution leads to solution with similar evaluation. High locality
facilitates designing search operators and is usually considered as a sign
of a problem’s simplicity. Consider a conventional optimization task, the
combinatorial traveling salesman problem (TSP). A candidate solution in
TSP is an ordering of cities to be visited, encoded as a permutation of
natural numbers. Similar permutations in TSP tend to represent similar
routes. A move that swaps two edges in a route may affect route length but
will not ‘ruin’ it, as all the remaining edges remain intact.

Computer programs are notorious for being anything but local in the above
sense [34, 85]. The mapping from program code to its behavior can be partic-
ularly complex: a minute modification of the former may cause a dramatic
change in the latter. On the other hand, a major change in a program may
be behaviorally neutral. In other words, conventional objective function in
GP is known to exhibit low fitness-distance correlation [181], i.e. it does not fitness-

distance
correla-
tion

correlate well with the measures of syntactic similarity between programs.
This applies to generic distance measures like edit distance (see, e.g., [140])
as well as to operator-based distance measures, like crossover-based dis-
tance proposed in [46]. Put in yet another way, fitness landscapes in GP
tend to be ‘rugged’.

These properties of programs has been aptly commented by Edsger
Dijkstra:

10 1 Program synthesis

In the discrete world of computing, there is no meaningful metric
in which “small” changes and “small” effects go hand in hand, and
there never will be. [27]

James Gleick phrased this characteristics in a more general way, but also
more evocatively:

Computer programs are the most intricate, delicately balanced and
finely interwoven of all the products of human industry to date. They
are machines with far more moving parts than any engine: the parts
don’t wear out, but they interact and rub up against one another in
ways the programmers themselves cannot predict. [40, p. 19]

In summary, program synthesis is a challenging task due to size of a search
space, its multimodality, externalized semantics of instructions, and com-
plex interactions between them. It is thus not surprising that it spawned
not one but several research paradigms presented in the next section.

1.5 Paradigms of program synthesis

In this section, we characterize the main paradigms of program synthe-
sis: deductive program synthesis (Sect. 1.5.1), inductive programming
(Sect. 1.5.2), and genetic programming (Sect. 1.5.3), the approach used
in this book. The former two paradigms are largely top-down according
to the taxonomy introduced in Sect. 1.3, while the latter one is purely
bottom-up and generative. Rather than providing a complete review, our
aim in this section is to position genetic programming in the context of
other paradigms.

1.5.1 Deductive program synthesis

In deductive program synthesis, one assumes that task specification isdeductive
program
synthesis complete, i.e. determines the desired output of a sought program for all

admissible inputs. The cornerstone of this paradigm is the Curry-Howard
correspondence [59], which proves a one-to-one relationship between pro-
grams in computer science and proofs in logic. By this virtue, deductive
program synthesis boils down to theorem proving, and involves transforma-
tion rules, unification, and resolution [120].

The key advantage of deductive synthesis is that the resulting programs
are correct by construction [28]. On the other hand, its usefulness directly
depends on effectiveness of theorem provers, which is nowadays still quite
limited. Moreover, achieving complete proof automation is challenging; this

1.5 Paradigms of program synthesis 11

is one of the reasons why, for instance, the Coq system, which famously
helped proving the four-color theorem, is advertised as a ‘proof assistant’
rather than a ‘theorem prover’ [32]. As a consequence, deductive synthesis
approaches do not scale well and, depending on the genre, are currently
capable of synthesizing programs no longer than a few dozen instructions.

The other challenge for deductive program synthesis stems, paradoxically,
from its complete nature. Specifying the desired behavior for all possible
inputs is natural for more formal program synthesis tasks, like the square
root function considered in Sect. 1.3. However, for many tasks the desired
behavior may be not explicitly given. Consider for instance a program that
implements a game strategy and should respond with an action (output)
to a given board state (input). As the ultimate game outcome is delayed
and conditional upon the behavior of an opponent, the most desirable move
(desired output) may be not known for a give board state.

Last but not least, even if a complete specification of behavior does exist,
it may be cumbersome or difficult for a human programmer to formalize
it. It may be thus more natural to express the desired outcome of program
synthesis by, e.g., providing examples of desired behavior. Such a process
is characteristic of inductive programming as described in the next section.

1.5.2 Inductive programming

Contrary to deductive program synthesis, in inductive programming task inductive
program-
mingspecification is not assumed to be complete: admissible inputs to a program

may exist for which the corresponding output is not given. Specification has
the form of a list of tests T , which do not have to enumerate all admissible
program inputs (1.4). A synthesis method is expected to perform induction,
i.e. synthesize a program that does not only passes the tests in T , but also
behaves ‘accordingly’ for the inputs not covered by task specification, i.e.
for tests in T \ T , where T is the universe of all tests (cf. Sect. 1.3). What
‘accordingly’ means depends on the given task and domain, and is often
not formalized. For instance, given only a handful of examples of people’s
full names, a synthesized program may be expected to correctly extract the
initials for any first, middle, and last name [45].

Such formulation of program synthesis entails generalization and clearly
resonates with learning. Indeed, the primary representative of inductive
programming is inductive logic programming (ILP, [162, 161]), recognized inductive

logic
program-
ming

nowadays as a branch of machine learning (see, e.g., [134, Ch. 10]. ILP deals
mostly with logic-based programming languages, in particular Prolog. Main
research efforts in ILP focus on learning from relational data, knowledge
discovery, and data mining.

12 1 Program synthesis

Inductive program synthesis bears also a certain similarity to learning from
examples, the arguably most popular paradigm of machine learning [134].program

synthesis
vs.
machine
learning

In a sense, program synthesis subsumes machine learning, as every (realiz-
able) classifier can be (and usually is) implemented as a computer program.
In this context, a machine learning induction algorithm can be treated as
a special form of program synthesizer. Nevertheless, the roads of program
synthesis and the mainstream of ML parted ways in the 1990s. ML focused
on specific (and often non-symbolic and thus non-transparent) representa-
tions of hypotheses (like decision trees, decision rules, bayesian networks,
etc.), and in exchange for that enjoyed the availability of efficient (though
usually heuristic) synthesis algorithms for inducing them. Program synthe-
sis, on the other hand, could not sacrifice its generality (and transparency
of the programs) without losing its primary mission. With the advent of
strongly non-symbolic paradigms in ML (e.g., support vector machines and
more recently deep neural networks), this chasm only got deeper, and today
few consider program synthesis as a form of ML.

1.5.3 Genetic programming

Genetic programming (GP) is a stochastic generate-and-test approach togenetic
program-
ming inductive program synthesis [79, 81]. It rephrases program synthesis as an

optimization problem and relies on the metaheuristic of evolutionary algo-
rithms [160, 33, 54], arguably one of the few key bio-inspired metaheuristic
approaches [168], to iteratively improve candidate programs. Remarkably,
GP has been an important paradigm of EC from the early days of this
discipline and many pioneering EC studies were dedicated to evolution of
executable structures3. For instance, as emphasized by Mitchell [131, chap.
9], much of John Holland’s early work on rule systems [55] was driven by
the urge to evolve executable objects.

GP shares its architectural underpinnings with other incarnations of the
evolutionary metaheuristic, like genetic algorithms (GA) and evolutionary
strategies (ES). This iterative search procedure, shown in Fig. 1.1, main-
tains a working set of candidate solutions P called population. The elements
of P are programs (candidate programs) and are sometimes referred to as
individuals. Initially, P is populated with randomly generated candidate
programs from the programming language of consideration, i.e. P ⊂ P .
The quality of each program p ∈ P is then assessed using an evaluation
function (which we will also occasionally call fitness for consistency withfitness

past work). If evaluation reveals an optimal program p∗, the search is ter-
minated and p∗ is returned as the outcome. Otherwise, a selection operator

3 An executable structure needs to interact with some external ‘stimulus’ for its
characteristics to be revealed. This definition embraces conventional programs
(Sect. 1.1), but also for instance analog circuits studied by Koza [81].

1.5 Paradigms of program synthesis 13

is applied to P , producing a subset P ′ ⊆ P of most promising programs
called parents. Next, search operators are applied to the elements of P ′,
resulting in offspring candidate programs, which form the next population
P to be processed by the subsequent iteration of the evolutionary loop.4

What follows then from this description and from Fig. 1.1 is that an evaluation
function plays the decisive role in a GP synthesis process. It is in the center of
focus of this book and we will come back to it later in this section.

Apart from evaluation, the course of an evolutionary run is determined by a
selection operator and search operators. A typical selection operator has the selection

operatorsignature sel : 2P → P and, when applied to a working population P , se-
lects a well-performing individual from it. In this book we use only ordinal ordinal

selection
operatorselection operators that interpret evaluation as a value on an ordinal scale

(not necessarily a metric scale). Such operators can be alternatively termed
non-parametric [117, p. 45]. The default selection operator in GP is tourna-
ment selection (TS). TS samples a low number k (usually k ∈ [2, 7]) of candi- tourna-

ment
selectiondate solutions from the population and returns the best of them. It became

the common method of choice in GP when it has been recognized that select-
ing solutions proportionally to fitness (fitness-proportionate selection) makes fitness-

proportio-

nate
selection

it likely for the best-performing candidate solution to dominate the entire
population.

Search operators are typically unary (mutation, P → P) or binary search
operator(crossover, P × P → P × P). The role of the former is to introduce mi-

nor changes in candidate solutions; the latter should recombine the parent
solutions so that the offspring share certain ‘traits’ with them. For instance
in so-called tree-based GP (detailed further in this section), mutation may
replace a piece of the parent’s AST tree with a randomly generated tree,
and crossover swap two randomly selected subtrees in parents’ ASTs. In GP,
mutation and crossover are often used in parallel, so that some offspring
stem from the former while some from the latter. In EC terms, these op-
erators together are supposed to provide for variation, which, along with
selection, forms the two cornerstones of evolution. All these operators are
usually stochastic, i.e. two applications of an operator to the same popula-
tion P will usually result in a different outcome.5

A GP algorithm thus performs a parallel, population-based search, and is
by this virtue expected to be relatively resistant to the risk of gravitating
to and getting stuck in local optima. For this reason, it subscribes to the
category of global search.

The above ‘vanilla GP’ can be modified and extended in many dimensions,
for instance by updating the population individual-by-individual (called
4 Populations and other collections of candidate solutions are formally multisets,

but we refer to them as ‘sets’ for brevity.
5 Technically, they are thus random variables or, more precisely, random func-
tions.

14 1 Program synthesis

Population

Evaluation

Selection

Variation

Termination

Evaluation
function

Initialization

Fig. 1.1: Conventional workflow of genetic programming.

steady-state evolution in contrast to the above generational evolution), in-
volving elitism, partitioning the population into islands, maintaining an
internal archive of well-performing candidate solutions, not to mention the
panoply of sophisticated selection and search operators. The reader inter-
ested in such extensions is referred to textbooks on GP [7, 81, 148] and the
online bibliography of GP papers [105].

All those components, however important and beneficial for GP perfor-
mance, are largely beyond the scope of this book, as our main focus is on
the evaluation function, which is arguably the ‘root cause’ of most decisions
made by a search algorithm. In GP, evaluation is based on the performance
of a candidate program, i.e. its conformance with the desired behavior as
specified by program synthesis task. However, the original formulation of
program synthesis as a search problem (1.4) cannot be directly implanted
into GP. Evolution, whether natural or simulated, is all about accretion,
i.e. gradual accumulation of improvements that give individuals a reproduc-
tive advantage. It is thus typically assumed that an evolutionary algorithm
needs a continuous, or at least multi-valued measure of a solution’s quality,
i.e. fitness, to drive the iterative improvement process. Therefore, virtually
all GP genres abandon the qualitative correctness predicate Correct in fa-
vor of evaluation function f with a codomain defined on a scale that isevaluation

function at least ordinal, and usually real-valued, i.e. f : P → R. Without loss of
generality, we will assume that f is minimized (if not stated otherwise),
even though this is somehow inconsistent with the etymology of the term
‘fitness’. Nevertheless, to minimize abuse of biological metaphor [168] and
for the more fundamental reasons we discuss in Sect. 2.5, we will restrain
from using the term ‘fitness’ unless it is historically justified.

The evaluation functions used in GP are usually consistent with Correct,consistent
evalu-
ation
function

i.e. can indicate an arrival at an optimal solution:

f(p) = 0 ⇐⇒ Correct(p). (1.5)

1.5 Paradigms of program synthesis 15

In other words, under a consistent evaluation function, the notion of optimal
solution converges with the notion of correct program. Given a consistent
evaluation function f , solving a solvable program synthesis task with GP
boils down to finding such p∗ that

p∗ = arg minp∈Pf(p). (1.6)

Contrary to popular belief, we claim that it is not obvious what is the ‘right’
evaluation function for a given task (or even class of tasks). The formula-
tion of program synthesis (1.1) is agnostic about that. Given a program
synthesis task, there will be usually infinitely many evaluation functions
that are consistent with its correctness predicate. This observation is im-
portant for this book and will ultimately lead us to the concept of search
driver presented in Chap. 9.

Nevertheless, it is commonly agreed that an evaluation function f should
express a program’s ‘degree of correctness’. GP methods typically calculate
such a degree based on program’s behavior on tests. Most commonly, f
takes the form of

fo(p) = |{(in, out) ∈ T : p(in) �= out}| (1.7)

where T is a nonempty finite list of tests (Sect. 1.3). fo counts thus the
number of tests failed (not passed) by p. Alternatively, fo(p) may count the
tests passed by p (a quantity known also as the number of hits), in which
case it would have to be maximized. In either case, fo is intended to capture
the ‘absolute’ quality of a program, and by this token is in the following
referred to as objective function. An objective function is the evaluation objective

functionfunction that ‘comes with the problem’ and is in this sense recognized as
the appropriate assessment method of candidate solutions. It is used in GP
by default, and to emphasize this fact we will alternatively refer to it as conven-

tional
evaluation
function

conventional evaluation function.

As signaled in Sect. 1.3, T is often taken from a larger (and sometimes
infinite) universe of tests T and forms in this sense a training set. (1.7)
becomes in such cases an estimate of the ‘true’ underlying evaluation, i.e.
the fraction of tests passed in entire T .

GP turns the original search problem of program synthesis into an optimiza-
tion problem. The means by which this is achieved is the relaxation of the
binary correctness predicate (1.4) into an ordinal evaluation function, in
the canonical case fo. In consequence, GP allows programs to be ‘partially
correct’. Behind this apparent oxymoron, there is evolutionary rationale re-
lated to the aforementioned accretion. Programs that pass only some tests
can be iteratively improved and ultimately become correct. Also, exact
conformance with the original specification is not critical in some domains.
A canonical example is symbolic regression , where GP seeks a nonlinear symbolic

regressionregression model by synthesizing programs that operate in a (typically)

16 1 Program synthesis

real-valued domain (i.e. here (I, O) = (Rn,R)). The evaluation function
commonly used for solving symbolic regression problems with GP is the
mean square error (MSE), equivalent up to ordering of candidate programs
to the Euclidean distance6:

fE(p) =
∑

(in,out)∈T

(p(in) − out)2. (1.8)

Confronting this formula with fo (1.7) reveals that fE ‘fuzzifies’ the concept
of passing a test. This observation will become relevant when defining test-
based problems (Sect. 4.1) and program semantics (Chap. 5).

Because we assumed earlier that P hosts all candidate programs of interest,
no additional constraints are necessary to delineate the search space in (1.6),
which makes it is an unconstrained optimization task. If, for instance, task
formulation requires the program being sought to not exceed certain length,
we assume that all programs in P by definition meet such a constraint.

The way in which a GP algorithm navigates a search space of programs is in
part determined by how they are represented. Past GP research delivered
several alternative program representations. There is the conventional tree-
based GP, where programs are represented as expression trees [79], usuallytree-

based
GP equivalent to ASTs. There is the linear GP, where programs are sequences

of instructions [6, 14]. Another program representations are nested lists
of instructions that operate on stacks (PushGP, [170]) and graphs of in-
structions, with edges determining the dataflow between them (Cartesian
GP, [129]). All these approaches vary only in program representation and
conform to the formalisms introduced above.

It should become clear at this point that GP is a methodology that reaches
well beyond program synthesis. In contrast to typical formal methods, GP
can for instance handle imperfect task formulations (e.g., inconsistent tests)
or noisy data. As a consequence, the list of human-competitive achieve-
ments of GP is impressive [80, 73]. It is commonly believed that GP’s
capabilities stem from a combination of two key elements. The first is repre-
senting candidate solutions as programs, either conventional or algorithms
for classification, regression, clustering, reasoning, problem solving, feature
construction, etc. This flexibility enables expressing solutions to virtually
any type of problems, whether the task in question is learning, optimization,
problem solving, game playing, etc. The second key element is the reliance
on the ‘mechanics’ borrowed from biological evolution, which is unques-
tionably a very powerful computing paradigm, given that it resulted in life
on Earth and development of intelligent beings. This hypothesis, though
never scrupulously verified to date, seems to be propelling the interest in
and progress of GP.
6 A GP run that employs tournament selection or other ordinal selection opera-

tor will proceed identically for MSE and the Euclidean distance.

1.6 Consequences of automated program synthesis 17

1.6 Consequences of automated program synthesis

Once one realizes the capacities of computer programs, it does not take long
to notice that the potential consequences of automated program synthe-
sis ‘in the large’ are profound. Automatically synthesized programs would
elevate the robustness of software and implicitly, that of many other tech-
nologies. Provably correct programs would make software certifiable, which
nowadays can be realized on a very limited scale and only in certain contexts
using, e.g., the Coq proof assistant [32]. Automatically generated software
would be cheap to produce and malware-free. It could be also paramount
with respect to non-functional properties like runtime, memory footprint,
or power consumption.

Remarkably, these benefits would stretch beyond the boundaries of pro-
gramming as currently practiced by humans. Automated program synthesis
could help solving tasks that are nowadays either conceptually too complex
to tackle, or economically not viable. A particularly useful application is
synthesis in programming languages that are difficult and cumbersome for
humans but used in practice for all sorts of reasons (legacy, efficient trans-
lation into machine language, etc.).

The future of program synthesis can be to some extend foretold by the tell-
tales of current developments. In the following, we touch upon two areas
of program synthesis that witnessed remarkable progress in recent years
and seem particularly promising: program improvement and end-user pro-
gramming. It goes without saying that this choice is subjective and other
avenues exist, but their full coverage is beyond the scope of this book.

1.6.1 Program improvement

Because synthesizing programs from scratch is challenging (Sect. 1.4), we
recently witness growing interest in methods that aim at improvement of program

improve-
mentprograms written by humans, more specifically of their non-functional prop-

erties like runtime, memory occupancy or power consumption. The key ad- non-
functional
propertiesvantage is that a human-written reference program determines the target

of the synthesis process. It can be used as a test generator to construct a
program synthesis task, or serve as a source of task specification, which can
be derived from it using formal methods (e.g., [19]). The former usage is
particularly valuable when supply of tests is limited, which is common in
some branches of program synthesis [45].

Improvement of non-functional properties has been approached on various
abstraction levels. On the level of machine language, it relates to rewrite
systems studied in compiler design and code optimization. For instance, in rewrite

systems[158], Schkufza et al. employed the Markov Chain Monte Carlo technique
to improve the runtime of programs written in machine code for a 64-bit

18 1 Program synthesis

x86 processor. The reference program is machine code written by a human
or compiled from a higher-level language. The Metropolis-Hastings algo-
rithm is used to stochastically generate new candidate programs from it.
The authors employ search operators similar to mutations in GP, randomly
modifying instructions’ opcodes, operands, replacing entire instructions, or
swapping them within a program. The optimization is driven by an evalu-
ation function that returns a weighted sum of estimated program runtime
and Hamming distance between the desired and actual output for a set
of tests. The experiment conducted on the benchmarks taken the famous
Hacker’s Delight volume [189] show an almost systematic reduction of run-
time (up to 40 percent), often accompanied with shortening of the resulting
code (e.g., from 31 to 14 lines in the case of of Montgomery multiplication
procedure). Remarkably, the observed speedups improve over the conven-
tional compilers run with the most intense optimization (e.g., gcc -O3).

At a higher abstraction level, Langdon et al. developed a GP framework
for manipulating source code written in C++ and applied it to several
domains. In [146, 147], they optimized the code of MiniSAT, a popular
Boolean satisfiability (SAT) problem solver and obtained accelerations of
execution greater than those elaborated by human programmers. In [107],
they achieved up to six-time reduction of execution time of a computer
vision procedure (stereo disparity estimation algorithm) written for the
CUDA architecture running on GPUs. In [108], they reported over 35 per-
cent speedup of registration procedures for magnetic resonance imaging.

At an even higher abstraction level, Kocsis and Swan [77] proposed a more
formal method that operates on ASTs and exploits the knowledge of data
types to improve programs. By making use of the well-known Curry-Howard
isomorphism between proofs and programs [59], they replaced a (tradition-
ally stochastic and non-semantics-preserving) GP mutation operator with
deterministic proof-search in the sequent calculus. They showed how this op-
erator can be used to automatically replace the singly-linked implementation
of a list with the more efficient implementation of a difference list. On the im-
plementation side, they used the reflection mechanism built-in to the Scala
programming language to search for amenable data types and accordingly
modify the AST trees of the original source code. The semantics-neutral char-
acter of this method makes it potentially applicable not only in GP (and in
typed GP in particular), but also in the formal and deterministic methods of
program synthesis.

1.6.2 Hybrid and interactive program synthesis

In its canonical formulation, program synthesis proceeds in an ‘off-line’
mode: a user prepares the specification, chooses the programming language
(or designs an ad-hoc one), passes them to the synthesis method, and waits

1.7 Summary 19

for a program to be synthesized. At the current state of advancement of
program synthesis, such usage scenario turns out to be far from realistic
for programs longer than toy examples. As contemporary techniques do not
scale well, preparing a specification and program synthesis may together
require more time than writing the program manually.

In response to this, hybrid and interactive approaches to program synthesis
have recently gained more attention. An example of the former can be sketch-
ing [167], where a user writes a partial program, i.e. a program that is
missing pieces of code while being otherwise syntactically correct. The
method fills in the gaps with pieces of code that complement the partial
program so that it becomes correct. By sharing the process of program
between a human and a machine, sketching intends to lower the computa-
tional complexity of program synthesis.

Interactive approaches to program synthesis assume that a human opera-
tor is willing to aid the synthesis process at selected stages. This is par-
ticularly useful in end user programming, intended to support users with end user

program-
minglimited programming capabilities. In such application scenarios, one often

cannot assume that a user has any level of understanding of programming
languages. A recent example is here Flash Fill [45], a technology recently
developed at Microsoft™ Research and deployed in the 2014 edition of Mi-
crosoft Excel™. Flash Fill allows a user to specify a desired transformation
of data in a spreadsheet by providing a few examples of what is the desired
effect of that transformation. Based on those examples, Flash Fill synthe-
sizes an ad-hoc data transformation program in a domain-specific language,
and applies that program to all data entries. By inspecting the outcome
and possibly correcting it, the user provides a more detailed feedback for
the method, which is used to fine-tune the synthesized program. Internally,
Flash Fill relies on a carefully customized domain-specific programming
language and uses machine learning techniques to select the hypotheses
(candidate programs) that are most likely to meet user expectations.

1.7 Summary

In this chapter, we characterized the key properties of programs, presented
and formalized the task of program synthesis, and delineated its main
paradigms. We also identified the main challenges one faces when attempt-
ing to synthesize programs automatically. These challenges limit the capa-
bilities of program synthesis methods. However, we claim that this is in
part due to certain design choices that are commonly followed in the gener-
ative methods like GP. In this book we focus on the limitations pertaining
to the way a search algorithm is informed about the qualities of working
solutions. The next chapter is entirely devoted to this aspect.

	1Program synthesis
	1.1 The nature of computer programs
	1.2 Program synthesis
	1.3 Specifying program correctness
	1.4 Challenges in program synthesis
	1.5 Paradigms of program synthesis
	1.5.1 Deductive program synthesis
	1.5.2 Inductive programming
	1.5.3 Genetic programming

	1.6 Consequences of automated program synthesis
	1.6.1 Program improvement
	1.6.2 Hybrid and interactive program synthesis

	1.7 Summary

