
Studies in Computational Intelligence 618

Krzysztof Krawiec

Behavioral
Program
Synthesis
with Genetic
Programming

Studies in Computational Intelligence

Volume 618

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Studies in Computational Intelligence” (SCI) publishes new develop-
ments and advances in the various areas of computational intelligence – quickly and
with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in
computational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence,
cellular automata, self-organizing systems, soft computing, fuzzy systems, and
hybrid intelligent systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the world-wide distribution,
which enable both wide and rapid dissemination of research output.

More information about this series at http://www.springer.com/series/7092

http://www.springer.com/series/7092

Krzysztof Krawiec

Behavioral Program
Synthesis with Genetic
Programming

123

Krzysztof Krawiec
Poznan University of Technology
Institute of Computing Science
Poznan
Poland

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence
ISBN 978-3-319-27563-5 ISBN 978-3-319-27565-9 (eBook)
DOI 10.1007/978-3-319-27565-9

Library of Congress Control Number: 2015957229

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

To my dearest wife Alex and our amazing daughters:
Faustyna, Dominika, and Michasia

Foreword

It is always encouraging to see research that I have followed each year for
multiple years be elegantly motivated, synthesized and communicated in
the form of a monograph. This book is no exception. Prof. Chris Kraw-
iec herein ties together an impressive set of threads that were initiated at
different times and later became more sophisticated, nuanced and woven
together into a thesis about program synthesis and how it can be impres-
sively advanced by leveraging newly revealable information about program
behavior. I strongly recommend the book to those with introductory or
advanced experience in genetic programming and other means of program
synthesis. It opens a fresh door to graduate students in evolutionary compu-
tation seeking insights into the compelling but exasperating research topic
that is genetic programming.

I was introduced to the idea of evolutionary-inspired automatic program
synthesis in 1991 when, as a graduate student, I read an early paper by
John R. Koza on “genetic programming”. Excited, I devoted all the passion
and energy of a wet-eared graduate student into trying to contextualize
it with respect to adaptive search in general and with respect to repre-
sentation in evolutionary algorithms. Over the years genetic programming
advances in topics such as theoretical foundations, representation choices,
bloat, symbolic regression and machine learning have kept my enthusiasm
strong while also propelling the development of a vibrant, capable research
community.

In 2013 I found myself lucky to host Chris at MIT as a short-term member of
the ALFA group for some months of his sabbatical. I was eager to collaborate
with him because he was making progress in a key “nut” of genetic program-
ming that had been, to that point, hard to crack: how to use the meaning
and semantics of a candidate program to influence program synthesis. The re-
search community was routinely using impoverished metrics related solely to
performance (rather than behavior) as a largely unquestioned design choice.
Because of this genetic programming was not close to being a robust program

VIII Foreword

synthesis approach, capable of reliably producing programs for problems of
arbitrary difficulty.

Chris has aptly, in this monograph, pinpointed this design deficiency as
“the evaluation bottleneck”. In his GECCO 2013 publication with Jerry
Swan, he has shown how one could use an “execution record” to improve
the evaluation information of a program by detecting execution patterns
using machine learning. I will always consider it good fortune that Chris
and I were able to connect so well intellectually and work together during
his sabbatical to develop an extension of that technique that won us the
best paper award at GECCO’14. In this volume, Chris takes the behavioral
perspective further, providing it with solid formal footing and combining
with the novel concept of search driver.

A fundamental idea of the monograph is that programs are complex enti-
ties that behave in rich ways and their behaviors can be analyzed to make
program synthesis more effective. Characterizing programs with scalar fit-
ness that reflects only the final program outcome misses that opportunity.
Potentially, all information resulting from program execution can be put to
use to make program synthesis more scalable. With that, the horizon for
genetic programming shifts dramatically. While it is imperative to remain
modest about progress to date, the advances in this monologue allow us
to scratch beyond the surface toward program synthesis ’in the large’, i.e.,
synthesis of Turing-complete programs and solving difficult problems.

I am sure that readers will learn a lot from this volume as did I, enjoy!

MIT, Cambridge, MA, Una-May O’Reilly
March 2015

Preface

To measure is to know.

Lord Kelvin

The number of programmable devices in the world is currently in the order
of billions and grows at an immense pace.1 They operate on various hard-
ware platforms, different operating systems, and feature an untold number
of software modules written in hundreds of programming languages.

This ubiquity and versatility of programmable devices creates growing
demand for software that needs to be commissioned, designed, written,
tested, integrated, deployed, and maintained. No wonder software engineer-
ing nowadays belongs to the most demanded professional skills, also in the
domains historically not associated with computer science (CS), like biol-
ogy, medicine, or psychology. CS is an integral part of curriculum not only
in universities, but also in high and elementary schools.

Despite the manyfold increase of the number of CS graduates in recent
decades, the growing supply of CS professionals still does not meet the de-
mand, even though software development is much more efficient nowadays
and routinely supported by tools that the IT specialists in the past could
have only dreamed of. Integrated development environments, debuggers,
profilers, testing frameworks, and other computer-aided software engineer-
ing tools are indispensable in today’s software engineer’s toolbox. Yet, de-
spite all these aids, software development is still a challenging and resource-
demanding process, in part because contemporary software artifacts can be
orders of magnitude more complex than they used to be in the past.

1 There were 1.2 billion computers worldwide in 2011 and 6.7 billion mobile
cellular subscriptions in 2013 (wolframalpha.com), and the number of PCs in
use is likely to pass the 2 billion mark in 2015 (worldometers.info).

http://wolframalpha.com
http://www.worldometers.info/computers/

X Foreword

This book originates in the belief that the extent of computer support in
software development can be pushed even further by means of the arguably
the most advanced aspect of computer-supported software development,
namely in automated program synthesis. Program synthesis offers the pos-
sibility of programs being more or less automatically generated from spec-
ifications given in various forms. Once of interest only to academics, it has
recently gained momentum and we witness the dawn of its usage on a com-
mercial scale (e.g., [45]). Systems capable of automated program synthesis
are still in their infancy, but their capabilities are growing fast. Ultimately,
program synthesis ‘in the large’ can help close the gap between the efficiency
of human developers and the growing market demand, not to mention the
possibility of solving a range of conceptually challenging and interesting
problems.

For anyone familiar with computer programming, automation of program
synthesis may seem unrealistic. No wonder many have expressed reserva-
tions about it. Edsger Dijkstra, the programmers’ greatest guru, stated
once that

(. . .) computing science is – and will always be – concerned with
the interplay between mechanized and human symbol manipulation,
usually referred to as ‘computing’ and ‘programming’ respectively.
An immediate benefit of this insight is that it reveals ‘automatic
programming’ as a contradiction in terms. [27]

Though Dijkstra may appear to question program synthesis, a deeper in-
sight suggests otherwise. Indeed, the above-mentioned interplay with a
human is important, because in the beginning there must be an ‘intent’,
i.e., somebody has to specify somehow what the resulting program should
do. But the history of computer science demonstrates that intent can
be expressed in many ways. In the early days of programming, humans
were forced to express intent directly in low-level computer-readable ma-
chine languages. The subsequent generations of programming paradigms,
through imperative, object-oriented, declarative and functional program-
ming, pushed up that human-computer interface to higher abstraction lev-
els. As a result, an implementation of a complex software artifact in modern
programming languages may require a handful of statements. And the ex-
ploration of novel ways of intent specification continues. To process data in
a spreadsheet, users can nowadays express their intent by giving examples
of desired outcome [45]. Control flows can be specified visually, e.g., in the
Scratch environment [119]. And it is only human imagination that could
put an end to exploration of ways in which humans might ‘commission’
software.

In this context, program synthesis appears to be simply yet another stage in
the above succession; an abstraction level where expressing intent does not

Foreword XI

resemble programming anymore. This is clearly the case when, for instance,
the desired program behavior is given by a set of examples, an approach
that is common in practice and followed also in this book.

We can be deliberately provocative and take these considerations even fur-
ther, asking: does programming really need human intent in the first place?
In the end, the universe is abundant with emergent phenomena that ques-
tion the need of intent. Life on Earth is a clear manifestation of that: no
living creature has been designed, yet life with its evolutionary adapta-
tions meets, to a greater or lesser extent, the ‘requirements’ imposed by an
environment.

The evolutionary methodology of genetic programming, the program syn-
thesis methodology used in this book, demonstrates that programming can
do away without humans. Programs can emerge as an outcome of inter-
actions of a synthesis method with some form of ‘environment’. The final
result of such a process may be not different from a program designed by
a human (and sometimes can outperform it in certain respects). The time
has come to seriously consider the possibility of computer systems that
autonomously program themselves. The growing body of literature on and
achievements of contemporary program synthesis cited in this volume forms
a strong evidence for this claim.

Nevertheless, this optimism does not obliterate the fact that program syn-
thesis is a nontrivial task. For several reasons that will be detailed in this
volume, the current capabilities of program synthesis methods are still quite
limited. These limitations and other challenges form the main motivation
for this book, which proposes several directions to address them.

Scope

The scope of this book is heuristic program synthesis, where the goal is
to automatically generate a program that meets a given set of require-
ments, provided either as a set of tests (examples) or constraints con-
cerning program input and output (a.k.a. contracts). We focus on the
generate-and-test approach to program synthesis, of which the primary
representative is nowadays genetic programming (GP) [79], a bio-inspired
methodology of program induction based on the metaheuristic of evolution-
ary computation (EC).

Program execution involves complex interactions between the components
of a program (e.g., instructions) and the data they operate on. Usually, only
the final outcome of that process, i.e., program output, is used to guide the
process of program synthesis. In GP, obtaining such a guidance usually
involves aggregating the errors committed by a program on particular tests

XII Foreword

into a single scalar value that forms program evaluation. Such a design
brings about ‘evaluation bottleneck’: the rich characteristics of the complex
process of program execution are forced into a scalar value of evaluation
function, which necessarily involves information loss.

We claim that relying exclusively on conventional evaluation function is
more a habit than a necessity. The main motivation for this book is the
observation that more information can be easily gathered from program
execution and used to aid program synthesis. Evaluation has the potential
of providing extensive information on program behavior ; in the end, it is
that behavior that determines if a program meets the requirements posed
by a program synthesis task. Nothing precludes for instance scrutinizing
program output for particular tests, or examining program actions on the
level of individual instructions. The approaches presented here aim at better
exploitation of such information for the sake of making program synthesis
more effective. We achieve this is by characterizing programs with respect
to multiple aspects and turning the single-objective problem of program
synthesis (as it is normally posed in GP) into a multiobjective one.

To frame these ideas in a principled way, we come up with the concept of
search driver, a formal object with at least minimal capability of guiding a
search process. A search driver is not obliged to conform to the entirety of
requirements normally imposed on evaluation functions, and, among others,
may examine only selected aspect(s) of programs’ behavioral characteris-
tics. The main conclusion is that guiding search with several search drivers
that are ‘weak’ in the above sense can be more efficient than using one con-
ventional evaluation function. This thesis is corroborated with theoretical
analyses and experimental investigations.

Contributions

The main contributions of this volume include:

• Identification of evaluation bottleneck in GP and analysis of its origins
and consequences,

• The framework of behavioral program synthesis, unifying the develop-
ments in several threads of past GP research,

• The concept of execution record, a complete and universal account of
program behavior for a given set of tests,

• The concept of search driver, a generalization of evaluation function
and a source of ‘weak’ guideline for a search process, meant mainly to
be used in connection with other search drivers,

• Methods of behavioral program synthesis that elicit more information
from evaluated programs, broaden so the above-mentioned evaluation

Foreword XIII

bottleneck, and use the information acquired in this way to perform a
better-informed and directed search,

• New experimental evidence for the viability of behavioral program syn-
thesis.

A material upshot of this book is a publicly available software library that
implements selected components presented in this book and is intended
to ease further development of behavioral GP methods in the community
(Chap. 10).

Organization and characteristics

This book provides a consolidated birds-eye perspective on the approaches
to program synthesis that reach beyond the conventional GP template. To
accomplish this mission and quickly engage the reader in discussion on
the key issues, we spend relatively little time on introductions, keeping
them at minimum. We start with providing the essential background for
program synthesis in Chap. 1 and identifying the main challenges that limit
the capabilities of contemporary program synthesis in Chap. 2. Chapter 3
introduces the formalisms for capturing program behavior and formulates
the main postulate of this book in Sect. 2.6, providing so a footing and
unified framework for the methods discussed in the following chapters.

In Chaps. 4–8, we take the reader on a journey though several behavior-
based approaches to behavioral program synthesis, including implicit fitness
sharing and related techniques (Chap. 4), semantic genetic programming
(Chap. 5), trace consistency analysis (Chap. 6), and pattern-guided seman-
tic programming (Chaps. 7 and 8). Most of these chapters report new or
recent concepts and results; however, for completeness, we include also more
mature approaches and show how they subscribe to are compatible with
the vision of behavioral program synthesis.

Chapter 9 bridges the methods presented in Chaps. 4–8 by identifying and
formalizing the concept of search driver. In doing so, it provides concrete
tools to realize the behavioral program synthesis proposed in Chap. 3. In
Chap. 10 we conduct an experimental comparison of the techniques dis-
cussed in the previous chapters (albeit smaller experiments are scattered
across the book as well). We close this volume with ‘grand vision’ of be-
havioral perspective and discussion about its implications for program syn-
thesis and beyond in Chap. 11, and final remarks and identification of
promising avenues for future research in Chap. 12.

We find it appropriate to warn the reader what this book is not about.
This monograph is not a textbook of program synthesis, nor a systematic

XIV Foreword

review of the state-of-the-art of this discipline. Rather than that, it cov-
ers selected recent development in program synthesis, particularly as seen
from the perspective of genetic programming. Neither should this volume
be considered as a representative and unbiased source of knowledge of ge-
netic programming or evolutionary computation. A reader interested in a
broader perspective is referred to, among others, [106], [148], [117], and
other comprehensive sources of knowledge in these disciplines. For a cover-
age of more recent advances in EC, we recommend [13].

As any other work on program synthesis, this book can be said to deal
with metaprogramming: the algorithms considered here, once implemented,
become computer programs that generate computer programs. We took
special care to avoid confusion between these two levels of abstraction,
consistently referring to the entities at the former level as ‘algorithms’,
‘methods’, while reserving the terms ‘computer program’ and ‘program’
exclusively for the latter level. Also, with GP being a special case of evolu-
tionary algorithm, and an evolutionary algorithm being a metaheuristics,
we find it appropriate to employ terminology common in all these areas. In
that vein for instance ‘programs’ are ‘candidate solutions’ and the overall
error committed by a program is an example of an ‘evaluation function’.
The reader is let known about these synonyms each time a new concept is
introduced. However, we strive to avoid excessive reliance on bioinspired
terminology and evolutionary metaphor, with the exception of a few well-
grounded terms like ‘mutation’ and ‘crossover’.

While taking care of precision of formalisms and notation, in most cases
we do not explicitly delineate definitions from the continuous text. To ease
the navigation, the key concepts are marked with margin notes and listed
in the Index of terms.

Acknowledgements

This book is about soulless (and actually bodiless as well) machines, but
everything that is told there originated in the minds of concrete people. This
work would never see the light of day if it was not for my dear colleagues
and collaborators, many of whom I am privileged to call my friends. By
this token, my gratitude goes, in no particular order, to:

• Una-May O’Reilly of Massachusetts Institute of Technology, who ac-
companied me at the development of the key concepts of behavioral
program synthesis,

• Jerry Swan of University of York, with whom we designed the concep-
tual framework of pattern-guided genetic programming,

Foreword XV

• Alberto Moraglio of University of Exeter, with whom we developed the
key concepts of semantic genetic programming and geometric semantic
genetic programming,

• My postdocs and PhD students at Poznan University of Technology:
Wojtek Jaśkowski, Bartek Wieloch, Marcin Szubert, Tomasz Pawlak,
Karolina Stanislawska, and Paweł Liskowski, for sharing many great
scientific adventures with me,

• Armando Solar-Lezama of Massachusetts Institute of Technology, with
whom we ‘transplanted’ the pattern-guided program synthesis into the
information theory context,

• Paweł Lichocki of Google, who helped me to develop the concept of
cosolvability,

• Roman Słowiński of Poznan University of Technology, for continuous
support and mentoring,

• Wolfgang Banzhaf of Memorial University of Newfoundland, Canada,
for a great deal of inspiration and encouragement.

Credits go also to William B. Langdon of Univesity College London and
Steven M. Gustafson of General Electric Research, who maintain the online
genetic programming bibliography [105]. This invaluable repository was of
immense help when researching for related work.

The research that has cumulated in the composition of this book has been
financed from multiple funding sources, including the Polish-American Ful-
bright Commission, DS91507, EP/J017515/1, and Polish National Science
Centre grant no. 2014/15/B/ST6/05205. This book has been written and
typeset with LATEX, and I implemented the software needed for experi-
mental part of this work in Scala, an elegant and powerful programming
language designed by Martin Odersky of École Polytechnique Fédérale de
Lausanne and his team. I am indebted to the authors and contributors of
these frameworks.

Poznań, Poland Krzysztof Krawiec
August 2015

http://www.scala-lang.org/

Contents

List of Acronyms . XXI

1 Program synthesis . 1

1.1 The nature of computer programs . 1

1.2 Program synthesis . 3

1.3 Specifying program correctness . 4

1.4 Challenges in program synthesis . 7

1.5 Paradigms of program synthesis . 10

1.5.1 Deductive program synthesis . 10

1.5.2 Inductive programming . 11

1.5.3 Genetic programming . 12

1.6 Consequences of automated program synthesis 17

1.6.1 Program improvement . 17

1.6.2 Hybrid and interactive program synthesis 18

1.7 Summary . 19

2 Limitations of conventional program evaluation 21

2.1 Evaluation bottleneck . 21

2.2 Consequences of evaluation bottleneck 22

2.2.1 Discreteness and loss of gradient 23

2.2.2 Compensation . 24

2.2.3 Biased search . 24

XVIII Contents

2.3 Experimental demonstration . 28

2.4 Discussion . 30

2.5 Related concepts . 31

2.6 Summary and the main postulate . 33

3 The framework of behavioral program synthesis 35

3.1 Program traces and execution records 35

3.2 Realization of execution record . 38

3.3 Summary . 41

4 Behavioral assessment of test difficulty 43

4.1 Test-based problems . 43

4.2 Implicit fitness sharing . 45

4.3 Promoting combinations of skills via cosolvability 47

4.4 Deriving objectives from program-test interactions 50

4.5 Summary . 54

5 Semantic Genetic Programming . 55

5.1 Program semantics . 55

5.2 Semantic Genetic Programming . 58

5.3 Geometric Semantic Genetic Programming 59

5.3.1 Approximate geometric crossover 62

5.3.2 Exact geometric crossover . 63

5.4 Summary . 65

6 Synthesizing programs with consistent execution traces . 67

6.1 Information content of execution states 67

6.2 Trace consistency measure . 70

6.3 Trace consistency for non-linear programs 73

6.4 Summary . 75

Contents XIX

7 Pattern-guided program synthesis . 77

7.1 Motivation . 77

7.2 Discovering patterns in program behavior 79

7.2.1 Transforming an execution record into an ML dataset 81

7.2.2 Classifier induction . 83

7.2.3 Evaluation functions . 84

7.3 Discussion and related concepts . 87

7.4 Summary . 88

8 Behavioral code reuse . 89

8.1 Identification of useful subprograms . 89

8.2 Archiving subprograms . 91

8.3 Reuse of subprograms . 92

8.4 Discussion . 93

8.5 Summary . 94

9 Search drivers . 97

9.1 Rationale for the unified perspective . 97

9.2 Design rationale . 98

9.3 Definition . 100

9.4 Search drivers vs. selection operators . 102

9.5 Universal search drivers . 103

9.6 Problem-specific search drivers . 105

9.7 Quality of search drivers. 106

9.8 Employing multiple search drivers . 107

9.9 Multiobjective selection with search drivers 110

9.10 Related concepts . 112

9.11 Efficiency . 116

9.12 Summary . 118

XX Contents

10 Experimental assessment of search drivers 119

10.1 Scope . 119

10.2 Program synthesis tasks . 123

10.3 Combinations of search drivers . 124

10.4 Configurations with subprogram archives 126

10.5 Importance of subprogram selection . 129

10.6 Contextual search drivers . 130

10.7 Discussion . 131

11 Implications of the behavioral perspective 133

11.1 Conceptual consequences . 133

11.2 Architectural implications . 138

11.3 Summary . 141

12 Future perspectives . 143

12.1 The prospects . 143

12.2 Closing remarks . 146

Index . 149

List of Acronyms

AST Abstract Syntax Tree

CoEA Coevolutionary Algorithm

DSL Domain-Specific Language

EA Evolutionary Algorithm

EC Evolutionary Computation

GP Genetic Programming

GSGP Geometric Semantic Genetic Programming

GSGX Geometric Semantic Crossover

GSGM Geometric Semantic Mutation

IFS Implicit Fitness Sharing

ILP Inductive Logic Programming

MAD Mean Absolute Deviation

MDL Minimum Description Length principle

ML Machine Learning

MSE Mean Square Error

NFL No Free Lunch theorem

NS Novelty Search

RL Reinforcement Learning

SGP Semantic Genetic Programming

TS Tournament Selection

TSP Travelling Salesperson Problem

1

Program synthesis

In this introductory chapter, we characterize and formalize the key concepts
of this book, in particular computer programs. We also define the task of
program synthesis and determine the main factors that make it challenging.
Finally, we delineate several paradigms of program synthesis, among them
genetic programming.

1.1 The nature of computer programs

Computer programs are unique among other mathematical formalisms in
embodying algorithms, i.e. formal recipes for solving entire classes of prob-
lems. For instance, the greatest common denominator of any pair of inte-
gers can be calculated using the same short program. This makes programs
fundamentally different from entities that are ‘attached’ to a specific prob-
lem instance, e.g., a specific route is a solution to a particular traveling
salesperson problem.

Programs exhibit this characteristic because they are able to interact with
data, or, in other words, respond to input with some output. This is actually
more a necessity than an ability: programs need data to act upon. A pro-
gram that expects an input cannot be launched without it. A deterministic
program that does not take any input always produces the same output,
which, apart from exotic usage scenarios1, renders it useless.

A nontrivial program exhibits thus a spectrum of possible behaviors that
depend on the input to which it is applied. Informally, it does something
– a phrase that is hardly applicable to salesperson’s routes. No wonder we
tend to attribute programs with agency, saying that a program ‘accepts’,
1 For instance, rather than storing a large raster image of a complex fractal, it

may be more memory-efficient to store the program that generates that fractal
– a compelling example of Kolmogorov complexity.

© Springer International Publishing Switzerland 2016 1
K. Krawiec, Behavioral Program Synthesis with Genetic Programming,
Studies in Computational Intelligence 618,
DOI: 10.1007/978-3-319-27565-9_1

2 1 Program synthesis

‘chooses’, ‘waits’, ‘assumes’, ‘guarantees’, etc. Such anthropomorphisms feel
natural and will by this token occur in this book, even though this habit
has been sometimes criticized [27].

The expressive power of a program is conditional upon the programming
language in which it is written. Any Turing-complete programming lan-
guage is sufficient to express all computable functions, a class capacious
enough to embrace most known problems of practical and theoretical inter-
est. Even rudimentary programming languages are usually Turing-complete,
including esoteric languages that, for instance, comprise just one instruc-
tion [39]. Programs written in such languages can implement most conceiv-
able processes, from elementary arithmetic to simulating selected aspects
of human intelligence. In particular, nothing precludes one from writing a
program that manipulates other programs – interpreters, compilers, and
virtual machines are natural examples of this capability.

In this book, by a computer program (program for short) we mean a finiteprogram

discrete structure composed of elementary instructions (or statements) andinstruction

capable of performing computation. The representation of programs that
is most natural for humans is source code, i.e. text. For program synthesis,
the textual form is redundant and cumbersome to handle, so virtually all
approaches work with programs represented as abstract syntax trees (AST),abstract

syntax
tree abridged structures that contain only the effective elements of programs

and omit, among others, the delimiters that separate syntactic structures
in source code (like semicolons, parentheses, etc.).

The rules of forming syntactically valid (i.e. executable) programs from in-
structions in a given programming language are usually expressed as formalprogram-

ming
language grammars. A grammar distinguishes the programs that belong to a given

programming language from those that do not. In this book we consider
only syntactically valid programs, and it will be sufficient for us to identify
a programming language with a (possibly infinite) set P of programs and
abstract from the particular formalism that determines their validity.

We write p(in) = out to express that a program p ∈ P applied to an input
data (input for short) in produces an output data out (output) as the result
of execution. Inputs and outputs may be any formal objects representing
certain types, either simple (usually scalars, e.g., bits, Booleans, numbers) or
compound (usually data structures, e.g., lists, matrices, images). If program
input is a tuple, its elements will be referred to as input variables and
denoted by xis, i.e. in = (x1, . . . , xk).

The types associated with inputs and outputs determine the domain (I, O)domain

of a program, where I and O respectively denote the sets of valid input and
output values. The elements of I form admissible inputsadmissible input.
For instance, the Boolean domain used in many examples throughout this
book includes all programs with signatures of the form B

n → B, i.e. I = B
n

1.2 Program synthesis 3

and O = B, where B = {true, false}. An input that does not belong to B
n,

e.g., a real number, is not admissible for programs in this domain.

As shown by Alan Turing [182], there is no way to determine in general
whether a program terminates: the halting property is undecidable. For a
non-halting program, it becomes impossible to verify if it returns the desired
output for a given input, which is the key property in generative program
synthesis (Sect. 1.3). To mitigate this problem, in this book we limit our
interest to programs that halt. We also consider only deterministic programs.

1.2 Program synthesis

Writing computer programs is an activity that we habitually attribute to
humans. In spite of this, the attempts to automate the process of generating
computer programs, viz. synthesize them, date back to the early years of
computer science and artificial intelligence (see, e.g., [188] and Sect. 1.5).

We define the task of program synthesis (task for short) as an ordered pair program
synthesis
task(P , Correct), where P is a programming language and Correct : P → B

is a correctness predicate. Solving a task (P , Correct) consists in finding a correct-
ness
predicateprogram p ∈ P that fulfills Correct, i.e.:

p ∈ P : Correct(p), (1.1)

(cf. [120]). A program p such that Correct(p) is correct and forms a solution
to a program synthesis task.

Because we adopt a metaheuristic approach to program synthesis
(Sect. 1.5.3), it is important to explain how the notions introduced above
relate to it. While program synthesis corresponds to problem (like the
traveling salesperson problem mentioned earlier), a program synthesis
task with a specific P and Correct(p) corresponds to problem instance in
metaheuristic terminology. The working programs considered by a running
synthesis method are potential solutions and by this token are referred to
as candidate solutions, candidate programs, or search points. A solution to candidate

solutiona synthesis task corresponds to optimal solution, which we occasionally optimal
solutionrefer to as optimal program.

The correctness predicate Correct is responsible for telling apart the correct
and incorrect programs in P . As we detail later, there are several ways in
which program correctness can be verified, i.e. classes of correctness predi-
cates. For instance, the class exercised in this book involves confronting a
program with tests. A given class of correctness predicate is instantiated
by a task specification S, e.g., a specific set of tests. In most cases, the ref- task

specifica-
tionerence of Correct to specification will be clear from the context and thus

assumed implicit unless otherwise stated. Because we consider only halting
programs, the correctness considered here is formally the total correctness.

4 1 Program synthesis

In algorithmic realization, the mathematical ‘find such that’ statement in
(1.1) boils down to ‘generate’ or ‘synthesize’. We find the latter term more
adequate, as it emphasizes the fact that programs are assembled from
smaller entities (instructions) and that programming is by nature combina-
torial. This means that program synthesis lacks the concept of a variable
and sets it apart from conventional optimization, where candidate solutions
are usually fixed-length tuples of such variables. These arguments and past
literature [44] incline us to lean toward the term synthesis.

Posed in this way, program synthesis is a discrete search problem in thediscrete
search
problem artificial intelligence (AI) sense [156], with search states are programs in

P . Correct partitions the search space into the goal states and the non-
goal states, i.e. the programs sought and the remaining ones. In the most
conservative formulation, this is the only source of information available to
a method that performs program synthesis.

There is however an important feature that makes program synthesis a very
special search problem. In conventional search problems, a goal test verifies
an inherent property of a search state. For instance, to verify if a board state
in the peg solitaire puzzle is a goal state, one checks if the number of pegs
remaining on the board is one. In contrast, unless one reaches for formal ver-
ification methods (which are beyond the scope of this book), the correctness
of a program cannot be determined by inspecting its structure, i.e. its source
code. A program is correct if it behaves in the right way, i.e. if the I → O
mapping it meets the requirements defined by Correct. Correctness of a pro-
gram is intermediated by its interpretation (semantics), which is an extrinsic
property, i.e. it is not explicitly present in the symbols that represent the in-
structions nor in their combination within a program. This behavioral aspect
of program synthesis makes it nontrivial and will reverberate many times in
this book.

We consider only program synthesis tasks that are solvable. The necessarysolvable
synthesis
task condition for a task to be solvable is that the programming language is ex-

pressive enough, i.e. a finite program that meets Correct can be formulated
in that language, i.e. ∃p ∈ P : Correct(p). Expressibility of a programming
language is however not sufficient to guarantee solving a given synthesis task
with a given method. A synthesis algorithm can be inherently incapable of vis-
iting some regions of search space due to, e.g., certain search biases.

1.3 Specifying program correctness

Program synthesis can be alternatively seen as translation of a specification
S into a program p ∈ P such that CorrectS(p). The key difference between
these two entities is that specification is passive, i.e. can only be queried to
determine program’s correctness, while the resulting program is active in
being executable.

1.3 Specifying program correctness 5

A specification S defines the desired effect of computation, and as such can
be conveniently expressed using preconditions, i.e. conditions that constrain pre-

conditionthe set of program inputs, and postconditions, i.e. conditions that program post-
conditionoutput has to meet given the input data. Formally, for a program p : I → O

and a specification S = (precond, postcond):

p(in) ≡ out : postcond(in, out), where precond(in) (1.2)

where precond : I → B, and postcond : O → B. For instance, the specifi-
cation of a program that calculates the integer approximation of the square
root of a nonnegative number n can be phrased using pre- and postconditions
as follows:

• precond(n) = integer(n) ∧ n ≥ 0,
• postcond(n, m) = integer(m) ∧ n2 ≤ m ≤ (n + 1)2.

Specifying program correctness by pre- and postconditions is common not
only in theory [120] but also in practice, as epitomized by the growing
popularity of the design-by-contract paradigm in software engineering [127, design-

by-
contract133], where it is ofter realized using ‘requires’ and ‘ensures’ clauses.

There are two fundamentally different ways in which pre- and postcondi-
tions can be verified for a given program. The formal methods achieve that
without running the program, most commonly by constructing a formal
proof of program correctness. The theorem to be proven is in general of the
form:

∀in : precond(in) =⇒ ∃out : postcond(in, out) (1.3)

If a constructive proof of such theorem can be conducted, it will also deter-
mine what is the out value that satisfies the postcondition. A side effect of
conducting that proof is thus a synthesized program. This approach to pro-
gram synthesis task is rooted in Hoare logic and formal verification [52] (cf.
[120]).

Alternatively, the task can be specified by examples. In that case, the task
specification S takes the form of a finite list2 T of tests. Each test is an test

ordered pair (in, out), in ∈ I, out ∈ O, where in is program input, and out
is the corresponding desired output. desired

output

We assume that T is non-redundant, i.e. �(in1, out2), (in2, out2) ∈ T : in1 =
in2 ∧ out1 = out2, and coherent, i.e. �(in, out1), (in, out2) : out1 �= out2. In
genetic programming, tests are often referred to as fitness cases. A program
synthesis task posed in this way can be considered as a machine learning
(ML) task defined within the paradigm of learning from examples, with T learning

from
examples

2 In GP and machine learning literature, T is typically defined as a set. However,
maintaining a fixed ordering of tests in T becomes important at certain point
of our discourse, so we define T as a list.

6 1 Program synthesis

playing the role of a training set and each test corresponding to an example.
As in ML, T is not necessarily assumed to enumerate all possible program
inputs; in general, it may be considered a sample drawn from a (potentially
infinite) universe of tests T .

Given a set of tests T ⊆ T , we can define the correctness predicate as

CorrectT (p) ⇐⇒ ∀(in, out) ∈ T : p(in) = out, (1.4)

where p(in) denotes an application of program p to an input data in. The
vector of desired outputs out is alternatively referred to as target.target

Specifying correctness with examples is usually partial, because the desired
behavior is unspecified for any in : �(in, out) ∈ T . Formal specification is,
by contrast, usually complete and thus more general. Yet, formal correctness
predicates can be difficult to design without a strong mathematical back-
ground, and can sometimes be more difficult than writing the program in
question. On the other hand, though reasoning in terms of examples is nat-
ural for humans, a large number of examples may be required to specify the
desired behavior. In the search for alternatives, the notion of specification
is being recently extended to embrace other ways of expressing the desired
outcome of a synthesis process. In this context, program synthesis can be
rephrased more generally as the task of discovering an executable program
from user intent [44]. Recent interesting developments in this area include
expressing intent interactively [45] and writing incomplete programs to be
complemented by a synthesis system [167].

We propose to group program synthesis paradigms with respect to the work-
flow they implement. In the top-down specificiation-driven approach, it isspecifi-

cation-
driven
program
synthesis

the specification that drives the synthesis process. A synthesis algorithm
starts with the given specification S, analyzes it, and derives (usually de-
duces) a program from it. The derived program conforms by construction
to the Correct predicate, so it does not have to be verified for correctness.
Such a workflow is characteristic to, among others, systematic deductive
approaches to program synthesis [120] (see Sect. 1.5).

In the bottom-up, generative, or generate-and-test approach, the synthesisgenerative
program
synthesis process uses a generator of programs that works in a more ‘undirected’ way.

The generated candidate programs are verified using the Correct predicate
(which in such case can be considered as a form of oracle). The feedback
from the verification is subsequently used to produce the next, hopefully
better, candidate solution(s). Such generate-and-test workflow is of, among
others, genetic programming [79, 148], where an evolutionary algorithm
serves as a generator of programs, and program correctness is verified by
an evaluation function (Sect. 1.5.3).

An implication of adopting the top-down mode is that a program synthesis
method has to ‘understand’ the specification in order to translate it into

1.4 Challenges in program synthesis 7

a program. In contrast, such a capability is not essential for bottom-up,
generative approaches. The latter are thus more domain-independent, and
can be conveniently used with complex domain-specific languages, where
instructions may be intricate and have complex effect; the languages de-
signed for image analysis may serve as examples here [11, 90]. In a sense,
generative approaches assume that the synthesis task in question is too
complex to be solved analytically and has to be heuristically ‘datamined’
to gain some understanding of it, and so facilitate finding a solution. This
perspective is congruent with our vision of behavioral program synthesis
(Chap. 3), and is one of the reasons why this perspective is built upon the
generative stochastic metaheuristic of genetic programming.

1.4 Challenges in program synthesis

There are several reasons why program synthesis is challenging and robust
and scalable program synthesizers are yet to be seen. The most obvious one
is the size of the search space. The number of combinations of instructions
grows exponentially with program length, even if only some of them are syn-
tactically correct in a given programming language. This affects not only
the bottom-up methods that need to search that space directly, but also in-
directly the top-down approaches, because the size of program space is re-
flected in the number of paths in the proof space that need to be considered.

As an example, consider the task of synthesizing an m-ary Boolean func-
tion B

m → B represented as an expression tree, in which the program-
ming language comprises k binary (i.e. two-argument) instructions. There are(
n/2
k

)(
n/2
m

)
cat(n) programs represented as trees composed of n instructions,

where cat(n) is the nth Catalan number: cat(n) =
(2n
n

)
/(n+1) [180]. For sim-

plicity, let us assume that the task can be solved using a program that fetches
each of m input variables exactly once, i.e. such that forms a binary tree with
m leaves and m − 1 internal nodes. Even for the moderately difficult 11-bit
multiplexer (m = 11) [122] and k = 4 binary instructions, the above formula
results in the staggering 2.93 × 1011 programs – and this is a conservative
estimate of the size of the search space that needs to be explored.

The second challenge in program synthesis is that programming languages
are rich enough to express the same functionality in many ways. Formally,
the mapping from the space of programs P to the space of their behav-
iors (interpreted for instance as the outputs produced for all tests, like in
semantic GP, Chap. 5) is many-to-one. This non-injective characteristic
manifests also in the existence of multiple correct programs for a given task,
or, put in terms of search problems, in the existence of multiple goal states.
When a search problem of program synthesis is recast as an optimization

8 1 Program synthesis

problem (Sect. 1.5.3), this causes an evaluation function to be multimodal.multimodal
evaluation
function However, this is contingentalso on the structure of the search space induced by

search operators, as accurately commented for evolutionary algorithms (EA)
by Lee Altenberg:

The multiple-attractor problem is usually described as “multimodal-
ity” of the fitness function, but it must be understood that the
fitness function by itself does not determine whether the EA has
multiple domains of attraction – it is only the relationship of the
fitness function to the variation-producing operators that produces
multiple-attractors. [2, p. 4]

On one hand, multimodality increases the statistical odds of finding a solu-
tion; on the other, it makes it more difficult to prioritize the search in the pres-
ence of multiple potentially useful search directions. Also, multimodality may
be a sign of a program synthesis task being underconstrained, which is partic-
ularly likely when a correctness predicate involves few tests. In such cases, the
synthesized program is expected to generalize well beyond the training set ofgenerali-

zation tests. This presents a challenge on its own: how to ensure, for instance, that a
program meant to calculate the median of a list of numbers, synthesized from
a handful of tests, calculates the correct value for any input?

Expressibility of computer programs gives rise to yet another problem. In-
structions, the underlying components of programs, are abstract symbols
that do not mean anything on their own. Their meaning resides in semantics,semantics

materialized in the ‘substrate’ that provides for program execution (be it an
interpreter, compiler, or hardware). The semantics of individual instructions
is usually simple, and in generic programming languages may comprise lit-
tle more than elementary logic and arithmetic. Yet, because instructions can
be applied in different contexts (e.g., to various arguments, variables, subpro-
grams, etc.) and in various orders, their overall effect is hard to model. As a
consequence, the impact of a given instruction on the final computation out-
come is highly contextual – the interpretation of a given piece of code in a
program depends on its surroundings. This is particularly evident in imper-
ative programming languages (and virtually absent in the functional ones).
Put in terms of evolutionary computation, the underlying vehicle of GP, if
instructions in a program are likened to genes in a chromosome, then there
is strong epistasis between them (cf. Sect. 1.5.3).epistasis

The complexity and essential character of interactions between instructions
is such a prominent feature of programs that it inclined John H. Holland
to use them to illustrate emergence in his seminal work on this topic:emergence

Interactions play a central role in the study of emergence. A detailed
knowledge of the repertoire of an individual ant does not prepare us
for the remarkable flexibility of the ant colony. The capabilities of a
computer program are hardly revealed by a detailed analysis of the
small set of instructions used to compose the program. [56, pp. 38-39]

1.4 Challenges in program synthesis 9

Indeed, as we argued elsewhere [84, 5], a behavior of a program can be
considered its emergent property. Only a part of behavior (pertaining to
the program’s final outcome) matters for solving a synthesis task; what a
program does on its route to producing an outcome is – in a sense – irrel-
evant. Arbitrarily complex behaviors of programs emerge from a handful
of relatively simple instructions. In this light, it is not an overstatement to
equate a program, or even more a yet-imperfect program ‘in the making’,
with a complex system [131].

It may be useful at this point to confront the complexity of semantic effects
of program execution with a conventional AI-type search problem, the peg
puzzle mentioned in Sect. 1.2. The effects of peg moves (modifications of
the current solution) directly follow from the board structure and state.
They do not refer to any external ‘body of knowledge’, like semantics of
logic or arithmetic instructions in programming. Similar moves (e.g., moves
applied to the same peg) have usually similar effects. The evaluation func-
tion (the number of pegs left on the board) changes more or less gradually
with consecutive moves. Compared to computer programs, this is a really
straightforward environment.

The above-mentioned property of similar moves having similar effects is
closely related to the notion of locality in evolutionary computation (EC) locality

[154]. A problem is said to exhibit high locality if applying a move to a
candidate solution leads to solution with similar evaluation. High locality
facilitates designing search operators and is usually considered as a sign
of a problem’s simplicity. Consider a conventional optimization task, the
combinatorial traveling salesman problem (TSP). A candidate solution in
TSP is an ordering of cities to be visited, encoded as a permutation of
natural numbers. Similar permutations in TSP tend to represent similar
routes. A move that swaps two edges in a route may affect route length but
will not ‘ruin’ it, as all the remaining edges remain intact.

Computer programs are notorious for being anything but local in the above
sense [34, 85]. The mapping from program code to its behavior can be partic-
ularly complex: a minute modification of the former may cause a dramatic
change in the latter. On the other hand, a major change in a program may
be behaviorally neutral. In other words, conventional objective function in
GP is known to exhibit low fitness-distance correlation [181], i.e. it does not fitness-

distance
correla-
tion

correlate well with the measures of syntactic similarity between programs.
This applies to generic distance measures like edit distance (see, e.g., [140])
as well as to operator-based distance measures, like crossover-based dis-
tance proposed in [46]. Put in yet another way, fitness landscapes in GP
tend to be ‘rugged’.

These properties of programs has been aptly commented by Edsger
Dijkstra:

10 1 Program synthesis

In the discrete world of computing, there is no meaningful metric
in which “small” changes and “small” effects go hand in hand, and
there never will be. [27]

James Gleick phrased this characteristics in a more general way, but also
more evocatively:

Computer programs are the most intricate, delicately balanced and
finely interwoven of all the products of human industry to date. They
are machines with far more moving parts than any engine: the parts
don’t wear out, but they interact and rub up against one another in
ways the programmers themselves cannot predict. [40, p. 19]

In summary, program synthesis is a challenging task due to size of a search
space, its multimodality, externalized semantics of instructions, and com-
plex interactions between them. It is thus not surprising that it spawned
not one but several research paradigms presented in the next section.

1.5 Paradigms of program synthesis

In this section, we characterize the main paradigms of program synthe-
sis: deductive program synthesis (Sect. 1.5.1), inductive programming
(Sect. 1.5.2), and genetic programming (Sect. 1.5.3), the approach used
in this book. The former two paradigms are largely top-down according
to the taxonomy introduced in Sect. 1.3, while the latter one is purely
bottom-up and generative. Rather than providing a complete review, our
aim in this section is to position genetic programming in the context of
other paradigms.

1.5.1 Deductive program synthesis

In deductive program synthesis, one assumes that task specification isdeductive
program
synthesis complete, i.e. determines the desired output of a sought program for all

admissible inputs. The cornerstone of this paradigm is the Curry-Howard
correspondence [59], which proves a one-to-one relationship between pro-
grams in computer science and proofs in logic. By this virtue, deductive
program synthesis boils down to theorem proving, and involves transforma-
tion rules, unification, and resolution [120].

The key advantage of deductive synthesis is that the resulting programs
are correct by construction [28]. On the other hand, its usefulness directly
depends on effectiveness of theorem provers, which is nowadays still quite
limited. Moreover, achieving complete proof automation is challenging; this

1.5 Paradigms of program synthesis 11

is one of the reasons why, for instance, the Coq system, which famously
helped proving the four-color theorem, is advertised as a ‘proof assistant’
rather than a ‘theorem prover’ [32]. As a consequence, deductive synthesis
approaches do not scale well and, depending on the genre, are currently
capable of synthesizing programs no longer than a few dozen instructions.

The other challenge for deductive program synthesis stems, paradoxically,
from its complete nature. Specifying the desired behavior for all possible
inputs is natural for more formal program synthesis tasks, like the square
root function considered in Sect. 1.3. However, for many tasks the desired
behavior may be not explicitly given. Consider for instance a program that
implements a game strategy and should respond with an action (output)
to a given board state (input). As the ultimate game outcome is delayed
and conditional upon the behavior of an opponent, the most desirable move
(desired output) may be not known for a give board state.

Last but not least, even if a complete specification of behavior does exist,
it may be cumbersome or difficult for a human programmer to formalize
it. It may be thus more natural to express the desired outcome of program
synthesis by, e.g., providing examples of desired behavior. Such a process
is characteristic of inductive programming as described in the next section.

1.5.2 Inductive programming

Contrary to deductive program synthesis, in inductive programming task inductive
program-
mingspecification is not assumed to be complete: admissible inputs to a program

may exist for which the corresponding output is not given. Specification has
the form of a list of tests T , which do not have to enumerate all admissible
program inputs (1.4). A synthesis method is expected to perform induction,
i.e. synthesize a program that does not only passes the tests in T , but also
behaves ‘accordingly’ for the inputs not covered by task specification, i.e.
for tests in T \ T , where T is the universe of all tests (cf. Sect. 1.3). What
‘accordingly’ means depends on the given task and domain, and is often
not formalized. For instance, given only a handful of examples of people’s
full names, a synthesized program may be expected to correctly extract the
initials for any first, middle, and last name [45].

Such formulation of program synthesis entails generalization and clearly
resonates with learning. Indeed, the primary representative of inductive
programming is inductive logic programming (ILP, [162, 161]), recognized inductive

logic
program-
ming

nowadays as a branch of machine learning (see, e.g., [134, Ch. 10]. ILP deals
mostly with logic-based programming languages, in particular Prolog. Main
research efforts in ILP focus on learning from relational data, knowledge
discovery, and data mining.

12 1 Program synthesis

Inductive program synthesis bears also a certain similarity to learning from
examples, the arguably most popular paradigm of machine learning [134].program

synthesis
vs.
machine
learning

In a sense, program synthesis subsumes machine learning, as every (realiz-
able) classifier can be (and usually is) implemented as a computer program.
In this context, a machine learning induction algorithm can be treated as
a special form of program synthesizer. Nevertheless, the roads of program
synthesis and the mainstream of ML parted ways in the 1990s. ML focused
on specific (and often non-symbolic and thus non-transparent) representa-
tions of hypotheses (like decision trees, decision rules, bayesian networks,
etc.), and in exchange for that enjoyed the availability of efficient (though
usually heuristic) synthesis algorithms for inducing them. Program synthe-
sis, on the other hand, could not sacrifice its generality (and transparency
of the programs) without losing its primary mission. With the advent of
strongly non-symbolic paradigms in ML (e.g., support vector machines and
more recently deep neural networks), this chasm only got deeper, and today
few consider program synthesis as a form of ML.

1.5.3 Genetic programming

Genetic programming (GP) is a stochastic generate-and-test approach togenetic
program-
ming inductive program synthesis [79, 81]. It rephrases program synthesis as an

optimization problem and relies on the metaheuristic of evolutionary algo-
rithms [160, 33, 54], arguably one of the few key bio-inspired metaheuristic
approaches [168], to iteratively improve candidate programs. Remarkably,
GP has been an important paradigm of EC from the early days of this
discipline and many pioneering EC studies were dedicated to evolution of
executable structures3. For instance, as emphasized by Mitchell [131, chap.
9], much of John Holland’s early work on rule systems [55] was driven by
the urge to evolve executable objects.

GP shares its architectural underpinnings with other incarnations of the
evolutionary metaheuristic, like genetic algorithms (GA) and evolutionary
strategies (ES). This iterative search procedure, shown in Fig. 1.1, main-
tains a working set of candidate solutions P called population. The elements
of P are programs (candidate programs) and are sometimes referred to as
individuals. Initially, P is populated with randomly generated candidate
programs from the programming language of consideration, i.e. P ⊂ P .
The quality of each program p ∈ P is then assessed using an evaluation
function (which we will also occasionally call fitness for consistency withfitness

past work). If evaluation reveals an optimal program p∗, the search is ter-
minated and p∗ is returned as the outcome. Otherwise, a selection operator

3 An executable structure needs to interact with some external ‘stimulus’ for its
characteristics to be revealed. This definition embraces conventional programs
(Sect. 1.1), but also for instance analog circuits studied by Koza [81].

1.5 Paradigms of program synthesis 13

is applied to P , producing a subset P ′ ⊆ P of most promising programs
called parents. Next, search operators are applied to the elements of P ′,
resulting in offspring candidate programs, which form the next population
P to be processed by the subsequent iteration of the evolutionary loop.4

What follows then from this description and from Fig. 1.1 is that an evaluation
function plays the decisive role in a GP synthesis process. It is in the center of
focus of this book and we will come back to it later in this section.

Apart from evaluation, the course of an evolutionary run is determined by a
selection operator and search operators. A typical selection operator has the selection

operatorsignature sel : 2P → P and, when applied to a working population P , se-
lects a well-performing individual from it. In this book we use only ordinal ordinal

selection
operatorselection operators that interpret evaluation as a value on an ordinal scale

(not necessarily a metric scale). Such operators can be alternatively termed
non-parametric [117, p. 45]. The default selection operator in GP is tourna-
ment selection (TS). TS samples a low number k (usually k ∈ [2, 7]) of candi- tourna-

ment
selectiondate solutions from the population and returns the best of them. It became

the common method of choice in GP when it has been recognized that select-
ing solutions proportionally to fitness (fitness-proportionate selection) makes fitness-

proportio-

nate
selection

it likely for the best-performing candidate solution to dominate the entire
population.

Search operators are typically unary (mutation, P → P) or binary search
operator(crossover, P × P → P × P). The role of the former is to introduce mi-

nor changes in candidate solutions; the latter should recombine the parent
solutions so that the offspring share certain ‘traits’ with them. For instance
in so-called tree-based GP (detailed further in this section), mutation may
replace a piece of the parent’s AST tree with a randomly generated tree,
and crossover swap two randomly selected subtrees in parents’ ASTs. In GP,
mutation and crossover are often used in parallel, so that some offspring
stem from the former while some from the latter. In EC terms, these op-
erators together are supposed to provide for variation, which, along with
selection, forms the two cornerstones of evolution. All these operators are
usually stochastic, i.e. two applications of an operator to the same popula-
tion P will usually result in a different outcome.5

A GP algorithm thus performs a parallel, population-based search, and is
by this virtue expected to be relatively resistant to the risk of gravitating
to and getting stuck in local optima. For this reason, it subscribes to the
category of global search.

The above ‘vanilla GP’ can be modified and extended in many dimensions,
for instance by updating the population individual-by-individual (called
4 Populations and other collections of candidate solutions are formally multisets,

but we refer to them as ‘sets’ for brevity.
5 Technically, they are thus random variables or, more precisely, random func-
tions.

14 1 Program synthesis

Population

Evaluation

Selection

Variation

Termination

Evaluation
function

Initialization

Fig. 1.1: Conventional workflow of genetic programming.

steady-state evolution in contrast to the above generational evolution), in-
volving elitism, partitioning the population into islands, maintaining an
internal archive of well-performing candidate solutions, not to mention the
panoply of sophisticated selection and search operators. The reader inter-
ested in such extensions is referred to textbooks on GP [7, 81, 148] and the
online bibliography of GP papers [105].

All those components, however important and beneficial for GP perfor-
mance, are largely beyond the scope of this book, as our main focus is on
the evaluation function, which is arguably the ‘root cause’ of most decisions
made by a search algorithm. In GP, evaluation is based on the performance
of a candidate program, i.e. its conformance with the desired behavior as
specified by program synthesis task. However, the original formulation of
program synthesis as a search problem (1.4) cannot be directly implanted
into GP. Evolution, whether natural or simulated, is all about accretion,
i.e. gradual accumulation of improvements that give individuals a reproduc-
tive advantage. It is thus typically assumed that an evolutionary algorithm
needs a continuous, or at least multi-valued measure of a solution’s quality,
i.e. fitness, to drive the iterative improvement process. Therefore, virtually
all GP genres abandon the qualitative correctness predicate Correct in fa-
vor of evaluation function f with a codomain defined on a scale that isevaluation

function at least ordinal, and usually real-valued, i.e. f : P → R. Without loss of
generality, we will assume that f is minimized (if not stated otherwise),
even though this is somehow inconsistent with the etymology of the term
‘fitness’. Nevertheless, to minimize abuse of biological metaphor [168] and
for the more fundamental reasons we discuss in Sect. 2.5, we will restrain
from using the term ‘fitness’ unless it is historically justified.

The evaluation functions used in GP are usually consistent with Correct,consistent
evalu-
ation
function

i.e. can indicate an arrival at an optimal solution:

f(p) = 0 ⇐⇒ Correct(p). (1.5)

1.5 Paradigms of program synthesis 15

In other words, under a consistent evaluation function, the notion of optimal
solution converges with the notion of correct program. Given a consistent
evaluation function f , solving a solvable program synthesis task with GP
boils down to finding such p∗ that

p∗ = arg minp∈Pf(p). (1.6)

Contrary to popular belief, we claim that it is not obvious what is the ‘right’
evaluation function for a given task (or even class of tasks). The formula-
tion of program synthesis (1.1) is agnostic about that. Given a program
synthesis task, there will be usually infinitely many evaluation functions
that are consistent with its correctness predicate. This observation is im-
portant for this book and will ultimately lead us to the concept of search
driver presented in Chap. 9.

Nevertheless, it is commonly agreed that an evaluation function f should
express a program’s ‘degree of correctness’. GP methods typically calculate
such a degree based on program’s behavior on tests. Most commonly, f
takes the form of

fo(p) = |{(in, out) ∈ T : p(in) �= out}| (1.7)

where T is a nonempty finite list of tests (Sect. 1.3). fo counts thus the
number of tests failed (not passed) by p. Alternatively, fo(p) may count the
tests passed by p (a quantity known also as the number of hits), in which
case it would have to be maximized. In either case, fo is intended to capture
the ‘absolute’ quality of a program, and by this token is in the following
referred to as objective function. An objective function is the evaluation objective

functionfunction that ‘comes with the problem’ and is in this sense recognized as
the appropriate assessment method of candidate solutions. It is used in GP
by default, and to emphasize this fact we will alternatively refer to it as conven-

tional
evaluation
function

conventional evaluation function.

As signaled in Sect. 1.3, T is often taken from a larger (and sometimes
infinite) universe of tests T and forms in this sense a training set. (1.7)
becomes in such cases an estimate of the ‘true’ underlying evaluation, i.e.
the fraction of tests passed in entire T .

GP turns the original search problem of program synthesis into an optimiza-
tion problem. The means by which this is achieved is the relaxation of the
binary correctness predicate (1.4) into an ordinal evaluation function, in
the canonical case fo. In consequence, GP allows programs to be ‘partially
correct’. Behind this apparent oxymoron, there is evolutionary rationale re-
lated to the aforementioned accretion. Programs that pass only some tests
can be iteratively improved and ultimately become correct. Also, exact
conformance with the original specification is not critical in some domains.
A canonical example is symbolic regression , where GP seeks a nonlinear symbolic

regressionregression model by synthesizing programs that operate in a (typically)

16 1 Program synthesis

real-valued domain (i.e. here (I, O) = (Rn,R)). The evaluation function
commonly used for solving symbolic regression problems with GP is the
mean square error (MSE), equivalent up to ordering of candidate programs
to the Euclidean distance6:

fE(p) =
∑

(in,out)∈T

(p(in) − out)2. (1.8)

Confronting this formula with fo (1.7) reveals that fE ‘fuzzifies’ the concept
of passing a test. This observation will become relevant when defining test-
based problems (Sect. 4.1) and program semantics (Chap. 5).

Because we assumed earlier that P hosts all candidate programs of interest,
no additional constraints are necessary to delineate the search space in (1.6),
which makes it is an unconstrained optimization task. If, for instance, task
formulation requires the program being sought to not exceed certain length,
we assume that all programs in P by definition meet such a constraint.

The way in which a GP algorithm navigates a search space of programs is in
part determined by how they are represented. Past GP research delivered
several alternative program representations. There is the conventional tree-
based GP, where programs are represented as expression trees [79], usuallytree-

based
GP equivalent to ASTs. There is the linear GP, where programs are sequences

of instructions [6, 14]. Another program representations are nested lists
of instructions that operate on stacks (PushGP, [170]) and graphs of in-
structions, with edges determining the dataflow between them (Cartesian
GP, [129]). All these approaches vary only in program representation and
conform to the formalisms introduced above.

It should become clear at this point that GP is a methodology that reaches
well beyond program synthesis. In contrast to typical formal methods, GP
can for instance handle imperfect task formulations (e.g., inconsistent tests)
or noisy data. As a consequence, the list of human-competitive achieve-
ments of GP is impressive [80, 73]. It is commonly believed that GP’s
capabilities stem from a combination of two key elements. The first is repre-
senting candidate solutions as programs, either conventional or algorithms
for classification, regression, clustering, reasoning, problem solving, feature
construction, etc. This flexibility enables expressing solutions to virtually
any type of problems, whether the task in question is learning, optimization,
problem solving, game playing, etc. The second key element is the reliance
on the ‘mechanics’ borrowed from biological evolution, which is unques-
tionably a very powerful computing paradigm, given that it resulted in life
on Earth and development of intelligent beings. This hypothesis, though
never scrupulously verified to date, seems to be propelling the interest in
and progress of GP.
6 A GP run that employs tournament selection or other ordinal selection opera-

tor will proceed identically for MSE and the Euclidean distance.

1.6 Consequences of automated program synthesis 17

1.6 Consequences of automated program synthesis

Once one realizes the capacities of computer programs, it does not take long
to notice that the potential consequences of automated program synthe-
sis ‘in the large’ are profound. Automatically synthesized programs would
elevate the robustness of software and implicitly, that of many other tech-
nologies. Provably correct programs would make software certifiable, which
nowadays can be realized on a very limited scale and only in certain contexts
using, e.g., the Coq proof assistant [32]. Automatically generated software
would be cheap to produce and malware-free. It could be also paramount
with respect to non-functional properties like runtime, memory footprint,
or power consumption.

Remarkably, these benefits would stretch beyond the boundaries of pro-
gramming as currently practiced by humans. Automated program synthesis
could help solving tasks that are nowadays either conceptually too complex
to tackle, or economically not viable. A particularly useful application is
synthesis in programming languages that are difficult and cumbersome for
humans but used in practice for all sorts of reasons (legacy, efficient trans-
lation into machine language, etc.).

The future of program synthesis can be to some extend foretold by the tell-
tales of current developments. In the following, we touch upon two areas
of program synthesis that witnessed remarkable progress in recent years
and seem particularly promising: program improvement and end-user pro-
gramming. It goes without saying that this choice is subjective and other
avenues exist, but their full coverage is beyond the scope of this book.

1.6.1 Program improvement

Because synthesizing programs from scratch is challenging (Sect. 1.4), we
recently witness growing interest in methods that aim at improvement of program

improve-
mentprograms written by humans, more specifically of their non-functional prop-

erties like runtime, memory occupancy or power consumption. The key ad- non-
functional
propertiesvantage is that a human-written reference program determines the target

of the synthesis process. It can be used as a test generator to construct a
program synthesis task, or serve as a source of task specification, which can
be derived from it using formal methods (e.g., [19]). The former usage is
particularly valuable when supply of tests is limited, which is common in
some branches of program synthesis [45].

Improvement of non-functional properties has been approached on various
abstraction levels. On the level of machine language, it relates to rewrite
systems studied in compiler design and code optimization. For instance, in rewrite

systems[158], Schkufza et al. employed the Markov Chain Monte Carlo technique
to improve the runtime of programs written in machine code for a 64-bit

18 1 Program synthesis

x86 processor. The reference program is machine code written by a human
or compiled from a higher-level language. The Metropolis-Hastings algo-
rithm is used to stochastically generate new candidate programs from it.
The authors employ search operators similar to mutations in GP, randomly
modifying instructions’ opcodes, operands, replacing entire instructions, or
swapping them within a program. The optimization is driven by an evalu-
ation function that returns a weighted sum of estimated program runtime
and Hamming distance between the desired and actual output for a set
of tests. The experiment conducted on the benchmarks taken the famous
Hacker’s Delight volume [189] show an almost systematic reduction of run-
time (up to 40 percent), often accompanied with shortening of the resulting
code (e.g., from 31 to 14 lines in the case of of Montgomery multiplication
procedure). Remarkably, the observed speedups improve over the conven-
tional compilers run with the most intense optimization (e.g., gcc -O3).

At a higher abstraction level, Langdon et al. developed a GP framework
for manipulating source code written in C++ and applied it to several
domains. In [146, 147], they optimized the code of MiniSAT, a popular
Boolean satisfiability (SAT) problem solver and obtained accelerations of
execution greater than those elaborated by human programmers. In [107],
they achieved up to six-time reduction of execution time of a computer
vision procedure (stereo disparity estimation algorithm) written for the
CUDA architecture running on GPUs. In [108], they reported over 35 per-
cent speedup of registration procedures for magnetic resonance imaging.

At an even higher abstraction level, Kocsis and Swan [77] proposed a more
formal method that operates on ASTs and exploits the knowledge of data
types to improve programs. By making use of the well-known Curry-Howard
isomorphism between proofs and programs [59], they replaced a (tradition-
ally stochastic and non-semantics-preserving) GP mutation operator with
deterministic proof-search in the sequent calculus. They showed how this op-
erator can be used to automatically replace the singly-linked implementation
of a list with the more efficient implementation of a difference list. On the im-
plementation side, they used the reflection mechanism built-in to the Scala
programming language to search for amenable data types and accordingly
modify the AST trees of the original source code. The semantics-neutral char-
acter of this method makes it potentially applicable not only in GP (and in
typed GP in particular), but also in the formal and deterministic methods of
program synthesis.

1.6.2 Hybrid and interactive program synthesis

In its canonical formulation, program synthesis proceeds in an ‘off-line’
mode: a user prepares the specification, chooses the programming language
(or designs an ad-hoc one), passes them to the synthesis method, and waits

1.7 Summary 19

for a program to be synthesized. At the current state of advancement of
program synthesis, such usage scenario turns out to be far from realistic
for programs longer than toy examples. As contemporary techniques do not
scale well, preparing a specification and program synthesis may together
require more time than writing the program manually.

In response to this, hybrid and interactive approaches to program synthesis
have recently gained more attention. An example of the former can be sketch-
ing [167], where a user writes a partial program, i.e. a program that is
missing pieces of code while being otherwise syntactically correct. The
method fills in the gaps with pieces of code that complement the partial
program so that it becomes correct. By sharing the process of program
between a human and a machine, sketching intends to lower the computa-
tional complexity of program synthesis.

Interactive approaches to program synthesis assume that a human opera-
tor is willing to aid the synthesis process at selected stages. This is par-
ticularly useful in end user programming, intended to support users with end user

program-
minglimited programming capabilities. In such application scenarios, one often

cannot assume that a user has any level of understanding of programming
languages. A recent example is here Flash Fill [45], a technology recently
developed at Microsoft™ Research and deployed in the 2014 edition of Mi-
crosoft Excel™. Flash Fill allows a user to specify a desired transformation
of data in a spreadsheet by providing a few examples of what is the desired
effect of that transformation. Based on those examples, Flash Fill synthe-
sizes an ad-hoc data transformation program in a domain-specific language,
and applies that program to all data entries. By inspecting the outcome
and possibly correcting it, the user provides a more detailed feedback for
the method, which is used to fine-tune the synthesized program. Internally,
Flash Fill relies on a carefully customized domain-specific programming
language and uses machine learning techniques to select the hypotheses
(candidate programs) that are most likely to meet user expectations.

1.7 Summary

In this chapter, we characterized the key properties of programs, presented
and formalized the task of program synthesis, and delineated its main
paradigms. We also identified the main challenges one faces when attempt-
ing to synthesize programs automatically. These challenges limit the capa-
bilities of program synthesis methods. However, we claim that this is in
part due to certain design choices that are commonly followed in the gener-
ative methods like GP. In this book we focus on the limitations pertaining
to the way a search algorithm is informed about the qualities of working
solutions. The next chapter is entirely devoted to this aspect.

2

Limitations of conventional program
evaluation

In Sect. 1.4, we identified several challenges for program synthesis, among
others the vastness of search space and the intricate way in which program
code determines the effects of computation. In this chapter, we identify and
discuss the consequences of the conventional approach to program evalua-
tion in generative program synthesis. Though focused mostly on the gener-
ative paradigm of GP, some of the observations made here apply to other
generative synthesis approaches.

2.1 Evaluation bottleneck

As introduced in Sect. 1.5.3, the evolutionary search process in conventional
GP is driven by an evaluation function (fitness) f(p) applied to candidate
programs p ∈ P . Evaluation typically boils down to counting the number
of tests failed or passed by p. For convenience we repeat here the formula
for the conventional evaluation function, i.e. the objective function (1.7):

fo(p) = |{(in, out) ∈ T : p(in) �= out}|. (2.1)

Assessing candidate solutions using a scalar performance measure has sev-
eral merits. First of all, it is in a sense minimal – it is hard to imagine a
simpler way of informing a search algorithm about the solutions’ character-
istics. It is also compatible with the conventional way of posing problems in
optimization and machine learning. Last but not least, it eases separation of
generic search algorithms from domain-specific evaluation functions, which
is so essential for metaheuristics. No wonder that this ‘design pattern’ is so
common that we rarely ponder over its other consequences.

Unfortunately, there is a price to pay for all these conveniences, a price that
stems from the inevitable loss of information that accompanies scalar evalua-
tion. Programs are complex combinatorial entities and program execution is
© Springer International Publishing Switzerland 2016 21
K. Krawiec, Behavioral Program Synthesis with Genetic Programming,
Studies in Computational Intelligence 618,
DOI: 10.1007/978-3-319-27565-9_2

22 2 Limitations of conventional program evaluation

a nontrivial process. Yet, in conventional GP all what is left of that process is
a single number, i.e. the number of failed tests for discrete domains (1.7) or
a continuous error in the case of regression problems (e.g., (1.8)).

The main tenet of this book is that the conventional scalar evaluation de-main
claim
of this
book

nies a search algorithm access to detailed behavioral characteristics of a
program, while that information could help to drive the search process more
efficiently. This observation can be alternatively phrased using the message-
passing metaphor typical for information theory. A search algorithm and an
evaluation function can be likened to two parties that exchange messages.
The message the algorithm sends to the evaluation function encodes the can-
didate solution to be evaluated. In response, the algorithm receives a return
message – the evaluation. In a sense, the evaluation function compresses
a candidate solution into its evaluation. And compressing all information
about program behavior into a single number is inevitably lossy.

To illustrate the chasm between the richness of program behaviors and
the paucity of scalar evaluations, consider again synthesis of Boolean pro-
grams. Assume for the sake of argument that we identify program behavior
with the combination of outputs it produces for all tests (as in semantic
GP, Chap. 5). There are 22k such behaviors of k-ary Boolean programs.
For the 11-bit multiplexer example considered in Sect. 1.4), this is 22048.
On the other hand, the objective function for this problem assumes only
211 + 1 = 2049 distinct values (0 to 2048 inclusive), i.e. can be represented
with 11 bits (excluding the correct program). To believe that a search al-
gorithm can efficiently search a space of 22048 behaviors by obtaining 11
bits of information for each visited candidate solution is very optimistic, if
not naive – and recall that we consider the Boolean domain, arguably the
simplest one. It is hard to resist quoting the classic reflection on the size of
the Universe:

Gigantic multiplied by colossal multiplied by staggeringly huge is
the sort of concept we’re trying to get across here. [1]

The existence of this evaluation bottleneck is confirmed by practice. Forevaluation
bottleneck instance, even though contemporary GP algorithms manage to synthesize

11-bit multiplexers, the parity problem with the same number of variables
is for them very difficult and hardly ever gets solved.

2.2 Consequences of evaluation bottleneck

In this section, we discuss the implications of scalar evaluation that origi-
nate in the aggregation of outcomes of multiple interactions of a program
with the tests. Such aggregative functions prevail in generative program

2.2 Consequences of evaluation bottleneck 23

synthesis, but have been also intensely studied in test-based problems [16,
24] (Sect. 4.1). A function that counts the failed tests (2.1) is the most com-
mon, additive representative of that class. The error functions commonly
used in symbolic regression (like MSE (1.8) or Mean Absolute Deviation,
MAD) also belong to this class, as does the less common multiplicative
aggregations.

2.2.1 Discreteness and loss of gradient

Many evaluation functions used in GP are by nature discrete. The objective
function fo that counts the failed tests is quite an obvious example here
(2.1): fo can assume only |T | + 1 unique values. When candidate programs
pass the same number of tests, fo fails to provide a search gradient. This is
particularly likely when T is small, which is often practiced in GP to reduce
computational cost. However, having many tests does not necessarily solve
this problem either, because programs in the population improve and with
time it becomes more likely for them to pass the same number of tests. Also,
in some domains and for some problems, achieving certain values of fo is
more likely than others; for instance the parity problem (see Chap. 10 for
definition) is notorious for many programs having fo that is a power of two.
In such situations, the evaluation function (and consequently a selection
operator) ceases to differentiate candidate solutions, the search gradient is loss of

gradientlost, and search becomes purely random.

Increasing the number of tests is not necessarily beneficial for yet another
reason. Consider a set T of T = 10 000 tests and two program synthesis
tasks defined for that problem, with evaluation functions based on ran-
domly drawn subsets T1, T2 ⊂ T of, respectively, 100 and 1 000 tests. T2
is ten times larger, so the values of an evaluation function that drives the
corresponding search process are more precise, i.e. estimates better the true
performance. But in the presence of a rugged fitness landscape (Sect. 1.4),
better precision may be insignificant, and an evaluation function based on
T1 may perform equally well.

The problem of discreteness in principle does not apply to evaluation func-
tions that aggregate continuous interaction outcomes (e.g., (1.8)), typically
used in regression problems. However, due to the many-to-one mapping
from programs to evaluations and limited number of tests, there are usu-
ally many programs that implement the same real-valued function. Such
candidate solutions will receive identical evaluation and become indistin-
guishable, or worse, the presence of rounding errors will render one of them
slightly better, leading to an unintended search bias.

24 2 Limitations of conventional program evaluation

2.2.2 Compensation

Another consequence of adopting an aggregative objective function like the
objective function fo is compensation: all programs that pass the same num-
ber of tests are considered equally fit, no matter which particular tests they
pass. In other words, such a function is symmetric with respect to tests1.
This characteristic ignores the fact that some tests can be inherently more
difficult than others: in a given programming language P , more programs
may exist that pass a test t1 than programs that pass some some other test
t2. Following [69], we can formalize the difficulty of a test t = (in, out) ∈ T
for a programming language P as

diff (t) = diff ((in, out)) = Pr(p ∈ P : p(in) �= out). (2.2)

We further refer to this quantity as to objective test difficulty. diff (t) isobjective
test
difficulty thus the probability that a program randomly picked from P passes test t.

Alternatively, one might define subjective test difficulty, i.e. the probabilitysubjective
test
difficulty of passing a test by a program synthesized by a given search algorithm.

Nevertheless, objective test difficulty diff (t) is more universal and can be
estimated even if P is large or infinite [69].

It is interesting to realize that encountering in the real world a problem
with diff varying across tests in T is actually more likely than all tests
being equally difficult. This is evidenced not only in program synthesis,
but also in test-based problems (Sect. 4.1), e.g., in games [176].

2.2.3 Biased search

Discreteness and compensation are inherent properties of aggregative eval-
uation functions. More subtle consequences of scalar evaluation come to
light only when considering the entirety of the program synthesis process.
In the following, we demonstrate the interplay of characteristics of search
operators with an objective function. To that end, we employ the formalism
of outcome vector , i.e. the vector of the outcomes of program’s interactionsoutcome

vector with particular tests:

oT (p) = ([p(in) = out])(in,out)∈T , (2.3)

where [] is the Iverson bracket, defined for a logical predicate α as

[α] =

{
1, if α is true
0, otherwise

(2.4)

The ith element of oT (p) is 1 if p passes the ith test in T , and 0 otherwise.
As signaled earlier, T needs to be a list, not a set, for oT to be well-defined.

2.2 Consequences of evaluation bottleneck 25

000

001 010 100

011 101 110

111

Fig. 2.1: The lattice of outcome vectors for an abstract problem featuring
three tests. Value 1 denotes passing a given test, 0 – failing it. Blue arrows
mark the dominance relation between outcome vectors.

Notably, an outcome vector is the first non-trivial behavioral descriptor thebehavioral
descrip-
tor reader encounters in this book.

For a given T , the set of all possible outcome vectors forms a special case
of partially ordered set (poset), a lattice. The lattice has 2|T | nodes; Figure poset

lattice of
outcome
vectors

2.1 presents an example for three tests. The top element in the lattice cor-
responds to the target of search (1.4) and groups optimal solutions, i.e. pro-
grams that pass all tests and thus achieve fo(p) = 0. The bottom element
correspond to the worst solutions (fo(p) = |T |). The outcome vectors in the
intermediate layers have evaluation varying from |T | − 1 (second layer from
the bottom) to 1 (second layer from the top). A generate-and-test program
synthesis method like GP will usually start with the programs occupying mid-
dle levels in the lattice, and progress toward the top node.

Any program interacting with the tests in T can be unambiguously as-
signed to one and only one node in this lattice based on its outcome vector.
Multiple programs may occupy the same node in the lattice due to the map-
ping from programs to their behaviors being many-to-one (Sect. 1.4). For
most programming languages P , some behaviors of programs in P are more
common than others. As a result, the distribution of programs over lattice
nodes is usually highly non-uniform (see [106, Chap. 7] for an example for
the Boolean domain).

The arcs in Fig. 2.1 illustrate the dominance relation between outcome
vectors. An arc connects a node o1 to o2 if and only if every test passed in
o1 is also passed in o2 and there is exactly one test in o2 that is not passed in
o1. However, these arrows have little to do with possible moves of a search

1 Unless it differentiates their importance in some way (e.g., by weighing)

26 2 Limitations of conventional program evaluation

000

001 010 100

011 101 110

111

000

001 010 100

011 101 110

111

000

001 010 100

011 101 110

111

Fig. 2.2: Transition graphs on outcome vectors for three abstract prob-
lems, each featuring three tests. Contrary to Fig. 2.1 where arrows mean
dominance, here they mark the changes of outcome vectors (behavioral,
phenotypic changes) resulting from modifications applied to programs by
a search algorithm (genotypic changes).

algorithm. How a given program synthesis algorithm traverses such a lattice
is in general unrelated to the dominance relation. The reason for that is
the highly non-local genotype-phenotype mapping discussed in Sect. 1.4. A
search operator may not be able to improve a current candidate program
(with an outcome vector in o2) by augmenting it with the capability of
solving yet another test while preserving that capability for the already
passed tests (so that it ends up in o1). On the other hand, the same search
operator may be capable of flipping multiple elements of the outcome vector
of a given program in a single application, moving a program several levels
up, down, or sideways in the lattice.

Therefore, in the figures that follow we drop the dominance edges and
represent only the transitions between outcome vectors as induced by a
given search operator. Though the spatial arrangement of nodes remains
the same, these posets are not lattices anymore and will be referred to
as transition graphs. Similar graphs have been previously considered intransition

graph [60], however without taking into account the spatial arrangement of nodes
resulting from stratification of evaluation.

Example 2.1. Consider a hypothetical task with such a transition graph
shown in Fig. 2.2a. The arrows mark the possibility of transitions between
outcome vectors. For instance, the arc from the node labeled 010 to the
node labeled 110 indicates that there exists a program with the outcome

2.2 Consequences of evaluation bottleneck 27

vector 010 such that it can2 be modified by the considered search operator
so that its outcome vector changes to 110. Note that in general one should
not expect the arrows to be mirrored: a search operator may be unable to
revert the effects of its application.

It does not take long to realize that the problem shown in Fig. 2.2a is easy:
the transitions are aligned along the gradient of the objective function fo, so
even a straightforward search algorithm (e.g., greedy search) should easily
traverse the path from 000 to 111. Now consider the problem shown in
Fig. 2.2b: here, the transition from 101 to 110 is not accompanied by an
improvement (fo remains to be 1). Because the evaluation function imposes
only a vertical gradient in the graph, if a search algorithm that accepts
only strict improvements happens to visit 101, it will get stuck there. This
does not seem to be much of a problem for stochastic search algorithms
like GP, which could still move from 101 to 110 by pure chance. Consider
however the problem shown in Fig. 2.2c. Once a search process reaches
the combination 110, further progress can be made only by moving to 010,
which implies the deterioration of fo from 1 to 2. Only search algorithms
capable of accepting such deterioration will be able to overcome this trap.
Again, stochasticity of GP will occasionally permit that, but the likelihood
of such an event may vary, and such transition graphs are in general harder
to traverse than those shown in Figs. 2.2a and 2.2b. �

To an extent, the above graphs are related to fitness landscapes [194]. Fit- fitness
landscapeness landscapes visualize a scalar evaluation function stretching over a solu-

tion space P arranged with respect to the neighborhood induced by a search
operator. The case in Fig. 2.2a is characteristic for a unimodal fitness land-
scape devoid of plateaus, i.e. neighboring solutions with the same fitness.
The case in Fig. 2.2b reveals presence of some plateaus (e.g., (011,101,110)),
and the one in Fig. 2.2c features traps (110,101) and can be thus charac-
terized as deceptive.

This is however where the analogy with fitness landscapes ends. A point
on a fitness landscape corresponds to one candidate solution. The nodes in
Fig. 2.2 correspond to behavioral equivalence classes induced by outcome behavioral

equi-
valence
class

vectors. By this token, they provide more detailed behavioral information
and can prospectively allow for identifying more nuanced structures and
challenges to them. Recall however that a single node gathers here mul-
tiple programs (some of them possibly syntactically different) that have
the same behavior. That behavior is the only thing they have in common:
some of those programs may be able to undergo certain modifications of a
search operator, while some not. In this sense, these graphs paint an overly

2 ‘Can’, because the outcome of an application of a stochastic search operator
to a given program is non-deterministic.

28 2 Limitations of conventional program evaluation

optimistic picture about the possible traversals in the space of outcome
vectors.3

2.3 Experimental demonstration

The examples in Fig. 2.2 are intentionally simple and abstract from a spe-
cific domain. In practice, the behavior of a given search algorithm on a given
problem is more complex. The transitions between outcome vectors, rather
than being possible or impossible, become more or less likely due to various
biases of search operators. In GP, another reason for that is the stochastic
nature of search operators. It is thus justified to ask: are the characteristics
discussed above and exemplified in Fig. 2.2 purely hypothetical or do they
occur in real-world domains? To answer this question, we experimentally
construct analogous graphs for selected real-world problems.

We consider the Boolean domain and programs composed of instructions
{and, or, nand, nor}. To construct a graph, we first generate a sample of
10 000 000 random programs of depth up to 8 using the conventional ramped
half-and-half method [79]. For each generated program p, we mutate it, ob-
taining a program p′, calculate the outcome vectors o(p) and o(p′), and
collect the statistics of transitions between outcome vectors over the entire
sample. We employ the subtree-replacing mutation operator commonly em-
ployed in GP [148], which uses ramped half-and-half with depth limit 8 to
generate random subtrees.

Figure 2.3 visualizes the resulting transition graph for the Boolean 3-bit
multiplexer problem (mux3). In this problem, program input comprises
three variables: the first one serves as the ‘address line’ that decides which
of the remaining two input variables should be passed to the output –
this is the desired behavior of a correct program. Given three tests, the
objective function (1.7) varies from 0 to 8 inclusive. Even though mux3 is
trivial for contemporary program synthesis methods, this small domain is
already quite rich in terms of program behavior: there are 28 = 256 possible
outcome vectors (and thus nodes in the lattice), and the central layer of
the lattice features

(8
4
)

= 70 nodes. For this reason, Fig. 2.3 shows only the
three top layers of the lattice, i.e. the outcome vectors that correspond to
evaluation 0 (optimal solutions, one node in the top layer), 1 (

(8
1
)

= 8 nodes
in the second layer) and 2 (

(8
2
)

= 28 nodes in the third layer). The topmost
layers are critical for the success of program synthesis, as in practice search
often gets stuck with one or two failing tests and therefore does not make

3 This leads to an interesting observation concerning the nodes without improv-
ing outgoing arrows: although many programs that occupy them are syntacti-
cally different, they are all hard to improve.

2.3 Experimental demonstration 29

Fig. 2.3: The top three layers of the transition graph on outcome vectors
for the mux3 problem. See [82] for the complete figure.

further progress. The reader is invited to download the image of the entire
lattice provided online at [82] to conveniently zoom into details.

The spatial arrangement of the nodes in Fig. 2.3 is analogous to that in
Fig. 2.2. This time however the widths of the arrows vary and reflect the
estimated probability of transitions. Given a node o, the widths of the
outgoing arcs are proportional to the probabilities of mutation moving a
program with outcome vector o to successor nodes. For clarity, we do not
draw the arcs corresponding to neutral mutations (which would start and
end in the same node) and arcs that account for less than 1 percent of
outgoing transitions.

Because we are not going to inspect specific outcome vectors, we do not
label the nodes with them but with the estimated log-odds of improvement.
For a given node, the label is

−
⌊

log10
n−

n+

⌋
, (2.5)

where n− is the number of non-improving moves outgoing from that node,
and n+ is the number of improving moves outgoing from the node. For
instance, a label ‘2’ indicates that the odds of non-improving moves to the
improving ones is of the order of 102 : 1, i.e. 100 : 1. The ∞ symbol labels
the nodes for which no improving move has been found in the sample.

The log-odds clearly increase with improving evaluation fo, i.e. with the
decreasing number of failed tests (1.7). As observed in typical GP runs,
with closing to the target (corresponding to the top node of the graph), it
becomes harder to make improving moves. This trend becomes even more
evident when confronted with the lower layers not shown in print. Never-
theless, the chances of reaching the optimal solution in this example are
clearly not negligible, as evidenced by the large number of the arcs in-
coming to the top node of the lattice. This is due to simplicity of mux3.

30 2 Limitations of conventional program evaluation

Fig. 2.4: The top three layers of the transition graph on outcome vectors
for the par3 problem. See [82] for the complete figure.

In Fig. 2.4, we present an analogous graph for the much harder par3 prob-
lem, where a correct program should return true if and only if the number
of input variables that have the value true is even. The graph, generated
using the same instruction set and identical settings as for mux3, features a
substantially different structure of arcs. The log-odds of the orders between
1 and 2 occur already one layer lower than for mux3. In the second layer
from the top, all nodes are marked by ∞ and all the outgoing arrows point
downwards: no program with these outcomes vectors in the considered sam-
ple underwent an improving mutation.

As a side remark, it is interesting to note that, for binary output domains
(|O| = 2), there is one-to-one correspondence between the outputs of a
program (true, false) and test outcomes (0, 1). Therefore, other things be-
ing equal, Figs. 2.3 and 2.4 present, as a matter of fact the same transition
graph, however with node locations permuted spatially, so that layers group
the nodes that have the same evaluation in a given problem. More generally,
this graph is common for all 3-bit Boolean problems.

2.4 Discussion

The conclusion following from Figs. 2.3 and 2.4 is that programs’ odds for
being improved vary by orders of magnitude. Moreover, the outcome vectors
that offer the highest chance of further improvement are not necessarily the
easiest ones to attain. For instance, the nodes labeled with 1 in the second
layer of Fig. 2.3 (10 : 1 odds of non-improving transitions) do not seem to
feature more incoming arcs than the less attractive nodes, i.e. those labeled
with 2 (odds 100 : 1).

Scalar evaluation performed by the objective function does not reveal such
differences. Programs with outcome vectors in the same graph layer receive

2.5 Related concepts 31

the same evaluation and render themselves indistinguishable. Conventional
evaluation functions combined with biases of search operators favor certain
paths of accretions of skills, meant here as capability to pass particular tests. skill

As a result of that bias, certain outcome vectors become particularly easy to
attain. If a given outcome vector does not offer an opportunity for further
improvement, it forms a counterpart to the conventional notion of local opti- local

optimummum. In a longer run, the programs with easy-to-attain outcome vectors tend
to prevail in a population, causing it to converge prematurely. premature

conver-
genceStochastic approaches to program synthesis like GP are in principle resis-

tant to premature convergence, because a well-designed stochastic search
algorithm visits in the limit all points in the reachable search space. How-
ever, guarantees ‘in the limit’ are of little use in practice. In general, GP
does not scale well with the growing number of tests and complexity of a
synthesis task. It seems thus justified to address the above issues by making
the search algorithm more aware about the differences in program behavior .
This is the revolving theme of this book, and the following chapters review
and propose practical means to this end.

Another upshot is that it is not the number of tests passed, but the particu-
lar combination of them that may be critical for a search algorithm to solve
a program synthesis task. The interplay of scalar evaluation function with
the characteristics of search operators may lead to a situation in which a
candidate solutions may need to first master some skills before attempting
to master others. This intuition gave rise to some of the GP extensions pre-
sented in the next chapters. It was also present in the studies on test-based
problems and coevolutionary algorithms [16, 24, 149].

2.5 Related concepts

The limited capability of scalar evaluation functions has been identified in
many branches of computational intelligence and beyond. Within evolution-
ary computation, this problem is usually tackled with techniques. Implicit diversity

main-
tenancefitness sharing (Sect. 4.2) and novelty search (Sect. 9.10) are among them.

Other approaches include niching [118] and island models [191].

The realization of the limited ‘informativeness’ of the evaluation function
has also surfaced beyond evolutionary computation. Deep learning, respon- deep

learningsible for the recent progress in the field of artificial neural networks is, at
least to some extent, motivated by this observation. Let us quote here one
of the most often cited papers in that domain:

Training a deep network to directly optimize only the supervised
objective of interest (for example the log probability of correct
classification) by gradient descent, starting from random initialized

32 2 Limitations of conventional program evaluation

parameters, does not work very well. (. . .) What appears to be key
is using an additional unsupervised criterion to guide the learning
at each layer. [185]

The ‘additional unsupervised criterion’ is intended to provide an extra (or
alternative) guidance for a learning algorithm (an analog to search algo-
rithm in GP). In the cited work, it helps to learn higher-level representa-
tions of input data while preserving their key features. Interestingly, this
is analogous to the approach we proposed in [100] and present in Chap. 6,
where evolving programs are promoted for preserving the relevant informa-
tion contained in tests at intermediate stages of program execution (which
may be likened to hidden layers in a multilayer neural network). Crucially,
in doing so we do not actually specify what a program should produce at an
intermediate execution state. In this sense, we guide thus a search process
in an unsupervised way, as in the above quote.

Last but not least, it may be illuminating here to adopt for a moment
the biological perspective, the source of inspiration for EC and GP. The
possibility of an evaluation function failing to efficiently drive a search
process should not come as a surprise, because fitness in biology is not
meant to drive anything: it is a figment of the conceptual framework in
which we phrase the evolution in Nature. Fitness reflects the reproductive
success of a given individual (see, e.g., Sect. 2.2 in [139]), and as such is
known only a posteriori, once the parents have been selected (for absolute
fitness) or once the statistics on the descendants of the current individuals
are known (for relative fitness). And although it summarizes the entirety of
individual’s skills that are relevant for gaining an evolutionary advantage,
it cannot be reverse-engineered: it is virtually impossible to guess from a
fitness value which skills made a given individual successful.

This observation is related to the fact that the natural evolution does not
optimize for anything; rather than that, it opportunistically improves the
skills (and combinations thereof) that increase the odds of survival (or
comes up with completely new skills). For this reason, the EC paradigm
that should be considered the closest to the biological archetype is4 that of
coevolutionary algorithms, where individuals (or species, or individuals and
their environments) impose selective pressure on each other, rather than
such a pressure originating in some external objective function (Sect. 4.1).

Another biological aspect worth mentioning here concerns the relationship
between the aggregative nature of conventional evaluation functions used
in EC and gradualism, the cornerstone of classical Darwinism (see also the
comments on accretion in Sect. 1.5.3). As gradualism posits that progress
in natural evolution is slow and steady, so passing each new test gives an

4 Apart from the open-ended evolution, which is however less common for EC
and more for artificial life.

2.6 Summary and the main postulate 33

individual in EC only a minute evolutionary advantage (unless the num-
ber of tests is low, which is of no interest here). However, even if indeed
the biological evolution was gradual in this sense (though it has been ques-
tioned many times), we posit that enforcing an analogous approach in EC
is not necessarily effective. Humans rarely solve problems gradually, case
by case. Instead, they identify regularities and perform conceptual leaps
via inductive or deductive reasoning. Interestingly, the temporal dynamics
of this process can be likened to punctuated equilibria, i.e. long periods of punct-

uated
equilibriano improvement interlaced with sudden rises in fitness, observed both in

natural evolution and EC [186].

2.6 Summary and the main postulate

This chapter gathered the evidence that evaluation bottleneck resulting
from reliance on conventional scalar evaluation functions has detrimental
consequences, including loss of search gradient and premature convergence.
Arguably, there are domains where an evaluation function is by definition
‘opaque’ and makes this bottleneck inevitable. For instance, in Black Box
Optimization, the value of the evaluation function is the only information
on candidate solutions available to a search algorithm. Similarly, hyper- hyper-

heuristicsheuristics [18] usually observe the domain barrier that parts the search domain
barrieralgorithm from a problem.

However, it might be the case that the need of such separation is more an
exception than a rule when considering the whole gamut of problems we
tackle with metaheuristics. In many domains, there are no principal reasons
to conceal the details of evaluation. This is particularly true for program
synthesis, where an act of evaluating a candidate program produces detailed
information that can be potentially exploited. There are at least two levels
of detail involved in there. Firstly, a program interacts with multiple tests.
Secondly, a program’s confrontation with a single test involves executing
multiple instructions, each of them having possibly nontrivial effects.

The main claim of this book is that the habit of driving search using an main
claimobjective function alone (especially a scalar one) cripples the performance

of search algorithms in many domains (in particular in generative program
synthesis), and it should be abandoned in favor of more sophisticated and
more informative search drivers. By providing search algorithms with more
detailed information on program behavior we hope to broaden the evalua-
tion bottleneck and improve their performance.

It may be worth mentioning that evaluation bottleneck is also awkward
in architectural terms, i.e. when looking at a program synthesis system
as a network of interconnected components, shown for GP in Fig. 1.1.
Why compress evaluation outcomes in one component (evaluation function)

34 2 Limitations of conventional program evaluation

and then force another component (e.g., selection operator) to ‘reverse-
engineer’ them? There are no other reasons for this other than the conven-
tion inherited from metaheuristic optimization and excessive adherence to –
not necessarily accurate, as we argued in Sect. 2.5 – evolutionary metaphor.

In the following chapters, we present two mutually non-exclusive avenues
toward that goal. The first, represented in this book by semantic genetic pro-
gramming (Chap. 5), consists of designing search operators that produce off-
spring in a more ‘directed’ way. The other approach is exercised here more
extensively and aims at alternative multifaceted characterizations of program
behavior. This philosophy is embodied by implicit fitness sharing and related
methods (Chap. 4), which analyze convergence of execution traces (Chap. 6),
and pattern-guided program synthesis (Chap. 7). The next chapter intro-
duces the common formal framework that unifies those approaches and fa-
cilitates their presentation.

3

The framework of behavioral program
synthesis

In the previous chapter, we identified evaluation bottleneck, and showed
that the information lost in aggregation of interaction outcomes can be
essential for the success of a program synthesis process. In this chapter, we
set out to present behavioral program synthesis, a new paradigm of program behavioral

program
synthesissynthesis which, in a sense, puts program behavior before its source code.

Behavioral program synthesis does not offer any specific algorithm or even
an algorithm template. In tune with [168] (see also Sect. 11.2), we see
it rather as a consistent toolbox of interlinked formalisms that can be
used in different contexts. The key concepts of behavioral program syn-
thesis are program trace and execution record, which facilitate design of
better-informed program synthesis algorithms presented in the subsequent
chapters.

3.1 Program traces and execution records

The list of shortcomings of conventional objective functions presented in
the previous chapter suggests that it may be worth to look for alternative
means of characterizing program performance. Such means should better
inform a search algorithm about other aspects of program behavior and so
broaden the bottleneck of scalar evaluation.

As a matter of fact, several existing extensions of the traditional GP
paradigm build upon this observation. For instance, program semantics in
GP is a vector of program outputs for particular tests (Chap. 5) and thus
provides more information about program behavior than the conventional
scalar evaluation. Behavioral descriptors like this are tailored to the needs
of a particular approach. A program semantic in GP holds program output
for every test, because this is the information required by and sufficient for
semantic-aware search operators.
© Springer International Publishing Switzerland 2016 35
K. Krawiec, Behavioral Program Synthesis with Genetic Programming,
Studies in Computational Intelligence 618,
DOI: 10.1007/978-3-319-27565-9_3

36 3 The framework of behavioral program synthesis

Contrary to this model, we propose that evaluation should provide a com-
plete account of program behavior, and to leave it up to the other compo-
nents of a search algorithm to decide which pieces of that information to
use. The means for this is the execution record, which reports the course of
program execution for all tests available to evaluation function. To present
this formalism, we must delve deeper into program execution process.

We assume that programs are run in a certain execution environment (en-execution
environ-
ment vironment for short). The execution environment comprises all components

that can be affected by program and such that their state is well-defined
between execution of consecutive instructions. In conventional hardware ar-
chitectures, environment would include the accessible memory (RAM and
processor registers) and all stateful I/O devices. In program synthesis prac-
ticed with GP, the environment is typically more humble. In tree-based
GP, which typically implements functional programming and is thus free of
side effects, the environment is simply the value returned by the currently
executed node of an expression tree. In linear GP [14], statements affect reg-
isters and the environment would comprise them all. In the PushGP system
[170], execution environment includes code stacks and data stacks [101].

Regardless of the programming paradigm and program representation, at
any given moment of program execution, the environment is in a certain
execution state (state for short). Program execution consists of an iterativeexecution

state application of program interpreter(interpreter for short) to the states of anprogram
interpreter environment. Execution of consecutive instructions of a program generates

a sequence of states, called program execution trace (trace for short). Aprogram
execution
trace trace of a program p applied to an input in can be denoted as

p0(in), p1(in), p2(in), p3(in), . . . (3.1)

Here, pi(in) stands for the state of the environment after executing i steps
of program p. In particular, p0(in) denotes the initial execution state, which
directly depends on the input in submitted to the program. How in specif-
ically determines p0(in) depends on the particular programming paradigm.
For instance, in tree-based GP, in determines the state of all non-constant
terminal nodes in a program tree. In Push, in determines the data placed
on the working stacks.

If, as we assumed in Sect. 1.1, a program halts for a given input, its trace is
finite, and the last state determines the output of a program. The particular
interpretation of ‘determines’ depends on the programming paradigm. For
tree-based GP, the last state is the value returned by the root node of a
program tree, because this is where the data flow terminates. In linear GP
and PushGP, the definition of program output is more arbitrary; typically,
whatever a program has left on the top of one of the data stacks (in PushGP)
or in a designated register (in linear GP) is interpreted as its output.

3.1 Program traces and execution records 37

A program trace of a halting program applied to an input in can be thus
presented in a more complete way as:

in → p0(in), p1(in), p2(in), p3(in), . . . , p$(in) → out (3.2)

where the mapping in → p0(in) determines the initial execution state based
on the input in, and p$(in) → p(in) determines program output out based
on the final execution state p$(in). The dollar symbol marks the last state
of trace, whatever its actual length is.

In general there is no one-to-one correspondence between the instructions
and the states in a trace of a program. A trace can be longer or shorter
than the program it originated from; the former may be due to loops or
recursion, and the latter due to conditional statements. Traces are thus
strictly behavioral and should not be confused with execution paths in
ASTs or block diagrams.

With program trace defined, we are ready to formalize an execution record.
Given a list of m tests T , the execution record of a program p is the list of execution

recordtraces obtained by applying p to every test (ini, outi) ∈ T , i.e.

p0(in1), p1(in1), p2(in1), . . . , p$(in1)
p0(in2), p1(in2), . . . , p$(in2)
. . .
p0(inm), p1(inm), p2(inm), p3(inm), p4(inm), . . . , p$(inm)

(3.3)

where pi(inj) is the ith element of the trace generated by applying p to
the jth test in T . As usually, we assume that p halts for all inputs in T .
Observe that trace lengths may vary with tests.

Let us emphasize that an execution record does not hold any traces, but the
traces that are implicitly linked to each other by the underlying program.
On the other hand, the execution record is not bound to any specific pro-
gram synthesis task, and thus agnostic about correctness predicate, desired
outputs (target), and objective function. It depends only on the program
and the list of inputs that come from the tests of consideration T .

An execution record forms the full account of program behavior for the
inputs in T . There is nothing about program behavior that could not be
deduced from it1. It is trivial to show that execution record allows comput-
ing, amongst other things, the conventional objective function. Inspecting
the final execution states in every trace in (3.3) allows us to rephrase fo
(Eqs. 1.7 and 4.2) as

fo(p) = |{(in, out) ∈ T : p$(in) �= out}|. (3.4)

1 Unless we consider non-functional properties not reflected in program traces
like execution time.

38 3 The framework of behavioral program synthesis

−

∗

x1 x1

+

x2 x1

p0 p1 p2 p3

p4 p5

p6

(a)

T in out

x1 x2 y
t1 2 3 2
t2 1 0 0
t3 3 1 5
t4 0 1 0

(b)

p0 p1 p2 p3 p4 p5 p6

t1 2 3 2 3 4 5 -1
t2 1 0 1 0 1 1 0
t3 3 1 3 1 9 4 5
t4 0 1 0 1 0 1 -1

(c)

Fig. 3.1: An exemplary program (a), a list of tests T , each comprising two
input variables x1 and x2 (b), and the execution record resulting from apply-
ing the program to the tests in T (c). The annotations atop the instruction
nodes in (a) mark the corresponding columns in the execution record ((c).
The desired output in T is grayed out to emphasize that execution record
is oblivious to it. See Fig. 3.2 for different illustration of (b) and (c).

The confrontation of fo with the richness of execution record makes us real-
ize again that the conventional evaluation function provides only a very crude
summary of program behavior. In the following chapters, we base several al-
ternative measures on execution record and use them to drive search.

3.2 Realization of execution record

The execution record is intentionally generic to allow embracing different
program representations. When applied to a particular genre of GP, it needs
to be tailored to its specifics, which may involve certain simplifications.

Execution of a single instruction of a program is usually highly local in
terms of effects. In imperative programming languages it may modify a
single variable, leaving all other components of the execution environment
intact. In functional programming, it affects only the value returned by the
currently executed function. The following example illustrates the conse-
quences of this characteristics.

Example 3.1. Figure 3.1 presents a tree-GP program, a list of four tests, and
the corresponding execution record. The input part of every test comprises
two input variables x1 and x2. The program in question is an expression
(does not feature loops nor conditional statements), thus the states in the
execution record correspond one-to-one to program instructions. Because
instructions have no side effects here, the ordering of their execution is only
partially determined by the structure of program tree. The only constraint

3.2 Realization of execution record 39

is that the arguments of an instruction have to be computed prior to its
execution; the order of arguments’ execution is irrelevant. There are thus
many ways in which such functional programs can be executed. In Fig. 3.1,
we assume execution order from bottom to top, and from left to right.2

In this example, execution states are equivalent to values returned by in-
structions. There is no other information that a state needs to store in order
to capture the effects of computations conducted within the corresponding
subtree.

Note that an execution record contains also the input parts of the tests, as
input data get reflected in the initial states p0 of traces. In Fig. 3.1, the four
initial states in every trace hold the copies of the input variables x1 and x2. �

Example 3.1 presented the technical details of constructing an execution
record in tree-based GP. This process will vary for other GP paradigms;
the reader is referred to [101] for analogous explanations for PushGP [170].
Nevertheless, in all genres of GP, subsequent execution states are often re-
dundant with respect to their predecessor: for instance in PushGP, an single
instruction will usually affect only top elements of selected stacks. Therefore,
execution states considered in this book will reflect only the most recent
computation – typically the outcome of the most recent instruction. Such
‘differential’ implementation of an execution record has also the technical differen-

tial
execution
record

advantage of reducing the memory footprint, while still reflecting the entirety
of effects of computation.

Traces in a given execution record may vary in length (3.3) as a result of
conditional statements, loops, or recursion. However, some of the methods
presented in this book require traces to be aligned so that the states in alignment

of
execution
traces

traces correspond to each other, i.e. reflect the environment at the same
stage of execution for particular inputs. To meet this requirement, in the
following we consider only expressions, i.e. non-recursive programs that
are free of conditional statements and loops3. For expressions, execution
states correspond one-to-one to program instructions, and an execu-
tion record can be represented as a two-dimensional array (rather than a
list of lists (3.3) where rows correspond to tests and columns to instructions:

2 This observation suggests alternative ways of defining traces: not as linear
structures, but for instance as trees that reflect the structure of a program.
However, for clarity and consistency with the past work, we adopt the list-
based representation for traces.

3 This assumption is however not particularly severe, given that contemporary
work in GP focuses on such programs anyway

40 3 The framework of behavioral program synthesis

Fig. 3.2: Visual glossary of the terms related to execution record, for the
execution record and tests from Fig. 3.1. The execution record comprises
the columns from p0 to p$ inclusive.

p0(in1) p1(in1) p2(in1) . . . pl(in1)
p0(in2) p1(in2) p2(in2) . . . pl(in2)

...
...

...
...

...
p0(inm) p1(inm) p2(inm) . . . pl(inm)

, (3.5)

where l denotes program length.

When it comes to implementation, an execution record can be acquired in
at least two ways. The most obvious approach is to ‘instrument’ a program,
i.e. place traps (breakpoints) in its source code, and make a snapshot of the
environment every time execution reaches a trap. The alternative method
requires access to the source code of interpreter that runs the programs.
Interpreter code usually contains a loop that realizes the actual control
flow by fetching program instructions and executing them one by one. By
modifying that loop, one can halt the execution after every such a cycle, and
intercept the current execution state. As a matter of fact, this functionality
is built-in into quite many software and hardware platforms in order to
support debugging.4,5

4 A hardware-level implementation is a trap flag, present in virtually every CPU.
When set, it causes CPU to halt after executing each instruction. A software-
level example is the trace() function in the R programming language that
allows setting a callback function to be invoked after every execution cycle
(see www.r-project.org).

5 Note that if a GP interpreter is stateless, execution state needs to include also
some notion of instruction pointer so that it is known from where to resume
execution. In some GP paradigms, a form of instruction pointer is already
built-in. In PushGP [170], the code yet to be executed is stored on the CODE
stack. On the other hand, tree-GP interpreters are typically implemented via
recursion and have no explicit instruction pointers.

http://www.r-project.org/

3.3 Summary 41

3.3 Summary

This chapter concludes the introductory part of this volume. To summarize
the main concepts of behavioral program synthesis, in Fig. 3.2 we present
a ‘visual glossary’ for an exemplary program and execution record. This
presentation emphasises that there are at least five qualitatively different
conceptual levels for characterizing program behavior, which correspond
to various behavioral descriptors considered throughout this book. We list behavioral

descrip-
torthem here along with the data types they represent, assuming m tests and

domain (I, O):

1. Program correctness, B,

2. Scalar evaluation, R,

3. Outcome vector (a row in an interaction matrix), Bm,

4. Output vector (program semantics in Chap. 5), Om,

5. Execution record, T m×n, where n is the length of a program (and the
corresponding aligned execution record), and T is the type of trace
elements (or a placeholder for multiple types if required).

The order of these behavioral descriptors reflects the increasing amount of
behavioral ‘capacity’, i.e. amount of information conveyed regarding pro-
gram behavior. For this reason, the vector-based behavioral descriptors (3
and 4) are placed in between scalar evaluation (1) and execution record
(which is technically a matrix (3.5)). Program semantics is richer than an
outcome vector as it holds the actual output of a program, while an out-
come vector reveals only if particular tests have been passed or failed. Note
that 1, 2 and 3 are problem-specific (depend on the target), while 4 and 5
are not (do not involve the target).

In subsequent chapters we demonstrate how execution records broaden the
evaluation bottleneck and facilitate the opening of the ‘black-box’ of evalu-
ation. However, their potential can be leveraged only if a search algorithm
can exploit it. The question to be answered is thus: how can the particular
components of an iterative program synthesis algorithm benefit from the
availability of execution record? We answer this question for two stages of
evolutionary workflow: selection (Chaps. 4, 6 and 7) and search operators
(Chaps. 5 and 8). In perspective, execution records will allow us to con-
struct search drivers, the other core concept of this book to be formalized
in Chap. 9. The order of the chapters reflects the increasing conceptual
sophistication of methods and the amount of information they scrutinize
in an execution record.

4

Behavioral assessment of test difficulty

As argued in Sect. 2.2.2, one of the vices of conventional scalar evaluation is
symmetry: the same reward is granted for passing every test. Yet some tests
can be objectively more difficult than others in the sense of (2.2), i.e. harder
to pass by a randomly generated program. They may vary also with respect
to subjective difficulty, i.e. particular program synthesis methods may find
it more or less difficult to synthesize a program that passes a given test
(cf. Sect. 2.2.3). Conventional evaluation function (1.7), by simply counting
the failed tests, cannot address this aspect of program synthesis.

In theory, test difficulty can be obtained from domain knowledge or pro-
vided by a human expert. But human expertise and domain knowledge are
not always available or affordable, not to mention the extra effort required
in such scenarios.

In this chapter, we show how information on test difficulty can be conve-
niently acquired from an execution record and used to redefine an evalua-
tion function. This idea materialized originally in GP with the advent of
implicit fitness sharing [166], which we cover in Sect. 4.2. In subsequent
sections, we present the conceptual progeny of that approach: the methods
that scrutinize cosolvability of tests [94] (Sect. 4.3) and automatically derive
objectives from interaction matrices [112, 95] (Sect. 4.4). Before presenting
that material, we first introduce the test-based perspective on program syn-
thesis, which comes in particularly handy for this kind of considerations.

4.1 Test-based problems

Evaluation in GP can be alternatively phrased as candidate programs en-
gaging in interactions with tests. In that framing, the evaluation of a can-
didate program p depends on an interaction function g : P × T → {0, 1}, interac-

tion
functionwhich is an indicator function of the set of tests passed by p, i.e.

g(p, t) = g(p, (in, out)) = [p(in) = out], (4.1)
© Springer International Publishing Switzerland 2016 43
K. Krawiec, Behavioral Program Synthesis with Genetic Programming,
Studies in Computational Intelligence 618,
DOI: 10.1007/978-3-319-27565-9_4

44 4 Behavioral assessment of test difficulty

where [] is the Iverson bracket (2.4). The objective function fo (1.7) can
be then rewritten as

fo(p) =
∑

(in,out)∈T

g(p, (in, out)). (4.2)

For convenience, we will occasionally abuse notation and treat g as a logical
predicate, i.e. write g(p, t) when g(p, t) = 1 and ¬g(p, t) when g(p, t) = 0.

The outcomes of interactions of all programs in a given population P with
all tests from a given set T can be gathered in an interaction matrixinteraction

matrix

G = [gij = g(pi, tj) : pi ∈ P, tj ∈ T]. (4.3)

Note that the ith row of G is the outcome vector for pi, i.e. oT (pi) (2.3),
or in other words the rightmost column of an execution record (Fig. 3.2).

Formalizing an evaluation function in terms of interactions is not par-
ticularly common in GP and more typical for coevolutionary algorithmscoevolut-

ionary
algorithm (CoEAs, [149]), where it originated in test-based problem [16, 24]. In a test-
test-
based
problem

based problem, one seeks an element or a combination of elements from
solution space S that conforms a given solution concept [30, 149]. The ar-
guably simplest example of solution concept is maximization of expected
utility, i.e. a candidate solution that maximizes the expected interaction
outcome, i.e. arg maxs∈S Et∈T g(s, t).

The number of tests in T is usually large or infinite, which makes it techni-
cally infeasible to elicit exact values of an evaluation function. This problem
can be addressed by sampling the tests to be used for evaluation, which
can be done in at least three ways. In the simplest scenario, a sample T is
drawn once from T and remains fixed throughout a run of a method; this
case resembles a typical GP setup the most. Alternatively, one may sam-
ple T from T repetitively, for instance in each generation [21]. The third
way is to let the tests coevolve with the candidate solutions in a CoEA
framework. Typically, candidate solutions and tests co-evolve in two sep-
arate populations S ⊂ S and T ⊂ T , respectively, interacting with each
other only for the purpose of evaluation. While the candidate solutions are,
as usually, rewarded for performing, the tests are rewarded for informing,
for instance for the number of pass-fail distinctions they make between
the current candidate solutions. The underlying rationale is that a CoEA
can autonomously induce a useful search gradient by assorting the tests,
and find good solutions faster or more reliably and/or at a lower computa-
tional cost compared to using all tests from T (where feasible) or drawing
them at random. Empirical evidence gathered in previous work on various
test-based problems suggests that this is indeed possible, provided proper
tuning of a CoEA [69, 175].

Though CoEAs are not explicitly used in the methods studied in this book,
the test-based framework is convenient for capturing the diversity of behav-
iors in an evolving population. Crucially, it allows to juxtapose not only the

4.2 Implicit fitness sharing 45

behaviors of programs, but also compare the characteristics of tests, which
is the idea behind the approaches presented in next sections.

4.2 Implicit fitness sharing

Implicit fitness sharing (ifs) introduced by Smith et al. [166] and further ex- implicit
fitness
sharingplored in GP by McKay [124, 123] originates in the observation that difficulty

of particular tests may vary. Let us reiterate after Sect. 2.2.2 that problems
with uniform distribution of test difficulty are less common than problems
where difficulty varies by tests, as the former is a special case of the latter.
The conventional objective function (1.7) is oblivious to that fact and grants
the same reward of 1 for solving every test in T , which may result in premature
convergence discussed in Sect. 2.4. In order to entice a search process to pass
the more difficult tests, one might want to increase the rewards for them. But
where to look for reliable information on test difficulty? The exact objective
difficulty (2.2) and subjective difficulty introduced in Sect. 2.2.2 are of little
use here: the former requires running all programs in P on a given test, and the
latter estimating the probability that a given synthesis algorithm produces a
program that passes a given test.

To estimate the difficulty of particular tests in T , ifs uses the outcomes of
their interactions with the candidate programs in the working population
P ⊂ P , and defines the evaluation function as follows:

fifs(p) =
∑

t∈T :g(p,t)

1
|P (t)| (4.4)

where P (t) ⊆ P denotes the subset of population members that pass test
t:

P (t) = {p ∈ P : g(p, t)}. (4.5)
Notice that P (t) corresponds to a column in an interaction matrix (4.3),
and |P (t)| is equal to a sum of such a column.

In contrast to evaluation functions considered so far, fifs is maximized.
The denominator in Formula 4.4 never becomes zero, because if p passes a
given t, then P (t) must contain at least p. The computational overhead of
calculating fifs is usually negligible, because to get evaluated, the programs
in P have to be applied to the tests in T anyway.

Example 4.1. Consider a population of three programs P = {p1, p2, p3}
evaluated on four tests T = {t1, t2, t3, t4}, with interaction matrix shown
in the left part of Table 4.1. Although p1 and p2 pass the same number
of tests, p1 is granted greater value of fifs because it passes the tests that
no other program in P passes. On the other hand, p2 is not unique in
P in its capability of passing t3. Thus, fifs(p1) > fifs(p2), even though
fo(p1) = fo(p2). �

46 4 Behavioral assessment of test difficulty

Table 4.1: Calculation of ifs evaluation for an exemplary population P
and four tests in T . The upper left 3 × 4 part of the table presents the
matrix G of interaction outcomes between P and T . The bottom row shows
the number of programs in P that pass a given test. The column marked
fo(pi) presents the conventional objective function, i.e. the number of failed
tests. The rightmost column shows the calculation of ifs evaluation, which
results from sharing the rewards for solving particular tests. Note that an
individual’s evaluation is simply the scalar product of its outcome vector
with the vector of inverted cardinalities of P (t)s.

G t1 t2 t3 t4 fo(pi) fifs(pi)
p1 1 1 0 0 2 1 + 1 + 0 + 0 = 2
p2 0 0 1 1 2 0 + 0 + 1

2 + 1 = 3
2

p3 0 0 1 0 3 0 + 0 + 1 + 0 = 1
|Pti | 1 1 2 1

The key characteristics of ifs is that it estimates difficulty from an evolved
population of programs, i.e. a sample that is biased by a specific selection
pressure. The term 1

|P (t)| in (4.4) is ifs’s measure of difficulty of test t, which
depends reciprocally, and thus non-linearly, on the number of programs that
pass t (contrary to objective test difficulty (2.2)). As a consequence, tests in
ifs can be likened to limited resources: individuals in a population share the re-
wards for solving them, where a reward can vary from 1

|P | to 1 inclusive. Higher
rewards are granted for tests that are rarely passed by population members
(small P (t)), and lower for the tests passed frequently (large P (t)). Alloca-
tion of rewards depends on the capabilities of the current population and is in
this sense relative rather than objective or subjective. Despite this transientrelative

test
difficulty nature, empirical evidence shows that fifs can substantially improve perfor-

mance compared to the conventional objective function fo [114, 98].

The relative nature of fifs makes it different from conventional evolutionary
algorithms, where an evaluation of a candidate solution is normally context-
free, i.e. does not depend on the other candidate solutions. ifs may thus
seem to resemble a coevolutionary algorithm (Sect. 4.1). However, in coevo-
lutionary algorithms, individuals interact with each other directly, while in
ifs there is no face-to-face competition between them. Interestingly, ifs
can be also remotely related to shaping, an extension of the conventional
reinforcement learning paradigm [173]: by varying the rewards for solving
particular tests, ifs can be said to modify its own training experience [175].

Because ifs increases the survival odds for candidate solutions that have
‘rare competences’, it is commonly considered as a diversity maintenancediversity

main-
tenance technique and a means of avoiding premature convergence. These char-

acteristics motivated also explicit fitness sharing proposed in [41], whereexplicit
fitness
sharing population diversity is encouraged by monitoring genotypic or phenotypic

distances between individuals. By allowing the same program to receive

4.3 Promoting combinations of skills via cosolvability 47

different evaluation in particular generations of an evolutionary run, ifs
may also facilitate escaping from local minima.

ifs assumes interaction outcomes to be binary: the tests that have been
passed by a program need to be clearly delineated from those that have not.
In real-valued domains, that concept is in a sense ‘fuzzified’ and programs
can perform better or worse on individual tests. In [98] we proposed a
generalized variant of ifs that ranks programs in a population with respect
to errors they commit on a given test and obtain so reliable information
on test difficulty. The method achieved top accuracy when confronted with
several other extensions of GP on a nontrivial real-world task of detection
of blood vessels in retinal imagining.

4.3 Promoting combinations of skills via cosolvability

A program’s capability in passing a given test can be likened to a skill. We skill

presented that perspective in Sect. 2.3. It reverberates with some earlier
works, albeit within very different formal frameworks (for instance produc-
tion rules, conditional programs, and analogical problem solving in [159]).
ifs defines evaluation as a sum of rewards for mastering individual skills. In
real world however, it is often the combination of skills that matters. Reach-
ing for a biological analogy, the skill of digging in the ground and the skill
of navigation may each on its own bring only marginal benefits for an ani-
mal. However, when combined, they enable finding previously-buried prey
and hence survival when food is scarce, an advantage which can be greater
than the sum of the constituent benefits. As another example, the overall
performance of a mobile robot may depend on multiple skills, including the
ability to maintain a straight-line trajectory, the ability to turn, and the
ability of position estimation. Each of these skills alone may be insufficient
to complete a given task, but together they may make that possible.

In ifs, the reward for passing two tests simultaneously amounts to the
sum of rewards obtained for passing each test individually (4.4). ifs cannot
thus model synergy, i.e. reward a combination of skills higher than the sum synergy

of skillsof rewards of its constituents. To model non-additive interactions between
skills, in [94] we introduced the notion of cosolvability. We call a pair of cosolva-

bilitytests (ti, tj) cosolvable by a program p if and only if p passes both of them,
cosolvable
testsi.e. g(p, ti) ∧ g(p, tj). The cosolvability matrix for a population P evaluated

on tests in T is a symmetric |T |×|T | matrix C, with the elements defined as

cij = |{p ∈ P : g(p, ti) ∧ g(p, tj)}|, (4.6)

We define then the cosolvability evaluation function fcs that rewards pro-
grams for solving pairs of distinct tests:

48 4 Behavioral assessment of test difficulty

Table 4.2: An interaction matrix G for an exemplary population of four
programs and for four tests (a), and the corresponding cosolvability matrix
C (b). Empty cells denote zeroes.

(a)

G t1 t2 t3 t4
p1 1 1 0 0
p2 0 0 1 1
p3 0 1 1 0
p4 1 0 0 1

(b)

C t1 t2 t3 t4
t1 a+d a d
t2 a+c c
t3 b+c b
t4 b+d

Table 4.3: Fitness values assigned to programs from Table 4.2a by particular
evaluation functions.

Evaluation function p1 p2 p3 p4
fo 2 2 2 2
fifs

1
a+d

+ 1
a+c

1
b+c

+ 1
b+d

1
a+c

+ 1
b+c

1
a+d

+ 1
b+d

fcs
1
a

1
b

1
c

1
d

fcs(p) =
∑

i<j,cij>0

1
cij

(4.7)

As fifs, fc is maximized. Similarity of this formula to (4.4) is not incidental:
cosolvability can be viewed as a form of second-order fitness sharing, it is
the rewards for solving pairs of tests that is shared.

Example 4.2. Consider four programs p1, p2, p3, p4 that perform on tests
t1, t2, t3, t4 as shown in the interaction matrix in Table 4.2a. Assume that
the population P contains a programs that produce the same outcome
vector as p1, i.e. a ‘behavioral clones’ of p1. Similarly assume b behavioral
copies of p2, c copies of p3, and d copies of p4. The cosolvability matrix C for
this population is shown in Table 4.2b. Note that co-occurrence of multiple
programs that have the same outcome vector is likely in a population of
programs that have been evolving for some time.

Table 4.3 presents the evaluations for programs p1 . . . p4 as assigned by par-
ticular evaluation functions: conventional fo (1.7), fitness sharing fifs (4.4),
and cosolvability evaluation function fcs (4.7). We note that fo does not
discern programs at all, no matter how often they occur in the population.
Whether fifs and fcs discern particular pairs of programs depends on the
numbers of occurrences of t1, . . . , t4, i.e. on of a, b, c and d.

Programs p1 and p3 allow us to demonstrate that fcs can produce different
ordering of individuals than fitness sharing. Let us see if fifs(p1) < fifs(p3)
and fcs(p1) > fcs(p3) can hold simultaneously. As it follows from Table 4.2,

4.3 Promoting combinations of skills via cosolvability 49

these two conditions are respectively equivalent to a + d > c + b and a < c,
which are fulfilled by infinitely many quadruples of a, b, c, d ≥ 0. Therefore,
fcs can order solutions differently from fifs and, in consequence, lead to
different outcomes of a GP run. �

Let us now investigate the ability of fifs to model synergy between skills.
Let T (p) denote the set of tests from T that are passed by p, i.e,

T (p) = {t ∈ T : g(p, t)}. (4.8)

T (p) corresponds to a row of an interaction matrix (4.3), in analogy to P (t)
(4.5) that corresponds to a column.

Consider two programs p, p′ such that T (p) ∩ T (p′) = ∅. Assume they are
crossed over and produce an offspring po that is their perfect ‘behavioral
mixture’, i.e. inherits all skills from them and does not have any other skills.
Formally,

T (po) = T (p) ∪ T (p′). (4.9)
It obviously holds that fo(po) = fo(p)+fo(p′), because fo simply counts the
passed tests. fifs is similarly additive and an analogous relation fifs(po) =
fifs(p) + fifs(p′) holds, though for this to be true we need to assume that
po, p, and p′ are members of the same population for which the subjective
difficulty of tests is estimated. For the sake of argument, we will stick to
this assumption this for the rest of this section.

In contrast to fo and fifs, cs is not additive in the above sense. The off-
spring not only inherits the scores earned by its parents, but also receives
additional rewards for passing the pairs of tests the parents have individu-
ally failed. In effect, it is guaranteed that fcs(po) > fcs(p) + fcs(p′). Thus,
cosolvability not only enables, but actually enforces synergy: an offspring
that inherits all skills from parents that have mutually exclusive skills is
by definition better than both of them taken together. Given the relative
nature of cosolvability, the actual differences in evaluation vary depend-
ing on the skills of other programs in a population, nevertheless the above
statement is guaranteed to hold.

Now consider two programs p, p′ such that T (p) �= T (p′) and fcs(p) >
fcs(p′), and a test t such that t /∈ T (p) ∪ T (p′). Assume that, as a result
of modification, both p and p′ acquire the skill of passing t, so that for the
respective resulting offspring programs o and o′ it holds T (o) = T (p) ∪ {t}
and T (o′) = T (p′) ∪ {t}. From the above analysis it follows that fcs(o) <
fcs(o′) is possible. Thus, o′ can gain more than o for passing the same test,
to the extent that it becomes better than o, even though its parent was
worse than the parent of o. Neither the conventional objective function fo
nor ifs allow for that; under both these evaluation functions, o is better
than o′.1
1 These observations hold for ordinal selection methods that care only about the

ordering of solutions (e.g., tournament selection). For selection methods that

50 4 Behavioral assessment of test difficulty

The above properties cause the dynamics of an evolutionary search under
fcs to be in general different from that of fifs and fo. The differences stem
not only from the co-occurrence of skills in a population, but also from
the sizes of P and T which determine the likelihood of ties on evaluation.
As we noticed in Sect. 2.1, fo can return only |T | + 1 distinct values, so
if |P | � |T |, ties on fo become likely. For ifs and cosolvability, a com-
plementary relationship holds: the greater the number of programs in P ,
there more likely it is that different tests are passed by different numbers
of programs and, as a consequence, programs are granted different evalua-
tions. In general, ties are thus less likely for ifs than for the conventional
evaluation function, and even less likely for cosolvability.

The synergistic nature and fine-grained codomain of fcs proved beneficial in
the empirical examination we reported in [94], where, with exception of one
out of eight benchmarks, it improved the likelihood of successful program
synthesis in comparison to fo and fifs. We are aware of only one technical
inconvenience of this approach: the size of cosolvability matrix is quadratic
with respect to the number of tests, so its memory occupancy may become
noticeable when the number of tests reaches the order of thousands.

A concept vaguely related to cosolvability was subject of the study by Lasar-
czyk et al. [109]. The authors proposed there a method of test selection that
maintains a weighted graph that spans tests, where the weight of an edge
reflects the historical frequency of a pair of tests being passed simultane-
ously. The graph is analyzed to select the ‘essential’ tests that are then
used to evaluate all individuals in population. Compared to that approach,
cosolvability is a simpler, parameter-free approach, which does not select
the tests but weighs pairs of them, and does that individually for each
evaluated program.

4.4 Deriving objectives from program-test interactions

The concept of interaction matrix (4.3) naturally leads to the idea ofPareto
coevolu-
tion Pareto coevolution [31, 137], where aggregation of interaction outcomes

is abandoned in favor of treating each test as an elementary objectiveelementary
objective and comparing candidate solutions with dominance relation, as we did in

Sect. 2.2.3 with lattices of outcome vectors (Fig. 2.1). A candidate solution
p1 dominates p2 if and only if it performs at least as good as p2 on all
tests, and strictly better on at least one test. For instance, p2 in Table 4.1
dominates p3 as it passes all the tests passed by p3 and t4, which p3 does

assume evaluation to be defined on a metric scale (like fitness-proportionate
selection), it becomes even easier for fcs to produce evaluations that imply
different selection probabilities than those of fifs.

4.4 Deriving objectives from program-test interactions 51

not pass. On the other hand, there is no dominance between p1 and p2 –
none of these programs is clearly better than the other.

In principle, dominance relation on tests (dominance on tests in the fol- domi-
nance
relation
on tests

lowing) can be directly used to determine the outcomes of selection in an
evolutionary loop of GP [88]. The arguably simplest selection operator of
this kind would, given a pair of programs, return the one that dominates
the other, or pick any of them at random in case of mutual non-dominance.
However, when the number of tests is large, dominance between candidate
solutions becomes unlikely, as there is high chance that each of compared
solutions passes a test that the other solution fails. The dominance relation
becomes sparse, with many pairs of candidate solutions left incomparable.
This in turn weakens the search gradient, and makes search process less
effective.

The limitations of dominance on tests as a means for selection of candi-
date solutions sparked search for alternative means of exploiting interaction
matrices. The breakthrough came with the observation that test-based
problems may feature an internal structure. Bucci [16] and de Jong [23] coordi-

nate
systemsintroduced coordinate systems that compress the elementary objectives

(each associated with a unique test) into a multidimensional structure of
underlying objectives (dimensions), while preserving the dominance rela- under-

lying
objectivetion between candidate solutions. Because some tests can be redundant,

the number of underlying objectives can be lower (and, interestingly, may
indicate the inherent complexity of a given test-based problem).

However, coordinate systems do not address the above problem of domi-
nance on tests being sparse (or becoming sparse in the course of search).
As a coordinate system perfectly preserves dominance, whenever the dom-
inance on tests is sparse, so it is in the dominance on the underlying ob-
jectives derived from them. Also, the number of underlying objectives can
be still high, even for simple problems like the game of tic-tac-toe, and
construction of a coordinate system is an NP-hard problem [64, 63].

These observations call for alternative ways of efficiently translating an
interaction matrix into a computationally tractable multi-aspect charac-
terization of candidate solutions. In [112, 95] we came up with the idea of
discovering approximate objectives by heuristic clustering of interaction out-
comes. The proposed method doc efficiently clusters an interaction matrix
into a low number of performance measures, which we refer to as derived
objectives, to clearly delineate them from the exact underlying objectives. derived

objectiveBy corresponding to a subset of tests, each derived objective captures a
‘capability’ that can be seen as a generalization of skills discussed earlier.

Technically, doc replaces the conventional evaluation stage of the GP work-
flow (cf. Sect. 1.5.3) with the following steps:

52 4 Behavioral assessment of test difficulty

1. Calculation of interaction matrix. We apply every program in the cur-
rent population P, |P | = m, to every tests in T, |T | = n, and obtain so
an m × n interaction matrix G (4.3).

2. Clustering of tests. We treat every column of G, i.e. the vector of inter-
action outcomes of all programs from P with a test t, as a point in an
m-dimensional space. A clustering algorithm of choice is applied to the
n points obtained in this way, and produces a partition {T1, . . . , Tk} of
the original n tests in T into k subsets (clusters), where 1 ≤ k ≤ n and
Tj �= ∅.

3. Calculation of derived objectives. For each cluster Tj , we average row-
wise the corresponding columns in G. The result is an m × k derived
interaction matrix G′, with the elements defined as follows:

g′
i,j = 1

|Tj|
∑

t∈Tj

g(pi, t) (4.10)

where pi is the program corresponding to the ith row of G, and j =
1, . . . , k.

The columns of resulting G′ matrix define the k derived objectives that
characterize the programs in P in the context of the tests in T . The jth
derived objective for a program pi corresponding to the i row of the derived
interaction matrix G′ amounts to

f j
doc(pi) = g′

i,j. (4.11)

Example 4.3. Figure 4.1 presents the example of doc deriving objectives
from a 4 × 5 interaction matrix G. The clustering algorithm partitions the
tests into k = 2 clusters {t1, t2} and {t3, t4, t5}. Averaging the correspond-
ing columns in G leads to the 4 × 2 derived interaction matrix G′. The
graph plots the programs’ positions in the resulting two-dimensional space
of derived objectives. �

The derived objectives constructed by doc form a compact, multi-aspect
evaluation of the candidate solutions in P , and serve as a basis for selecting
the most promising programs. Rather than devising an ad-hoc selection al-
gorithm, it is natural to employ here multiobjective methods like nsga-ii
[26]. Multiobjective selection allows programs that feature different behav-
iors (capabilities) coexist in a population, even if some of them are better
than others on the conventional objective function fo. In doc, a capability
can be identified with passing a specific group, or even class of tests. In
case of the parity-3 problem illustrated in Sect. 2.3, a capability could be

4.4 Deriving objectives from program-test interactions 53

G t1 t2 t3 t4 t5
p1 1 0 1 1 1
p2 0 0 1 1 0
p3 1 1 0 1 0
p4 0 0 1 0 0

(a)

G′ t{1,2} t{3,4,5}
p1 1/2 1
p2 0 2/3
p3 1 1/3
p4 0 1/3

(b)
t{1,2}

t{3,4,5}

1
0

0

1
p1

p2

p3p4

(c)

Fig. 4.1: An example of derivation of two search objectives from a matrix G
of interactions between four programs p1, . . . , p4 and five tests t1, . . . , t5 (a).
The tests (corresponding to the columns of G) are clustered into two clusters,
marked in colors, according to a distance metric (here: Euclidean distance).
The centroids of the clusters form the derived interaction matrix G′ (b), in
which each column defines a derived objective. The derived objectives form
new objective space, with programs’ locations shown in inset (c).

associated with passing all tests with the first input variable set to true.
See Sect. 9.8 for a more detailed description of nsga-ii.

Derived objectives bear certain similarity to the underlying objectives dis-
cussed at the beginning of this section [16, 23, 64, 63]. However, as Example
4.3 and Fig. 4.1 show, they are not guaranteed to preserve dominance: new
dominance relationships may emerge in the space of resulting derived objec-
tives. For instance, given the interaction matrix as in Fig. 4.1a, program p3
does not dominate p4, however it does so in the space of derived objectives
(Fig. 4.1c). As a result of clustering, some information about the dominance
structure has been lost. This inconsistency buys us however a critical ad-
vantage: the resulting dominance relation is more dense and thus likely to
impose a reasonably strong search gradient on an evolving population.

Although doc may lead to dominance in the space of derived objectives
where such relation was originally absent, in another work under review
[113] we show formally that derivation of objectives will always preserve
dominance if it already held for a pair of candidate solutions. Also, it cannot
reverse the direction of dominance that already existed in the original space
of outcome vectors.

Because clustering partitions the set of tests T (rather than only selecting
some of them), none of the original tests is ignored in the evaluation process.
In this sense, doc tends to embrace the entirety of information available
in an interaction matrix, which makes it different from and potentially
more robust than methods that select tests, like [109] reviewed briefly at
the end of Sect. 4.3. The more two tests are similar in terms of programs’
performance on them, the more likely they are to end up in the same

54 4 Behavioral assessment of test difficulty

cluster and contribute to the same derived objective. In particular, tests
characterized with identical outcome vectors are guaranteed to be included
in the same derived objective.

The only parameter of the method is the number of derived objectives k.
For k = 1, doc degenerates to a single-objective approach: all tests form
one cluster, and G′ has a single column that contains solutions’ evaluations
as defined by (1.7), normalized by |Tj | in (4.10). Setting k = n implies
G′ = G, and every objective being derived from a single test. As we showed
in [112], using k in the order of a few is most beneficial. Alternatively, the
choice of k can be delegated to the clustering algorithm [95].

Similarly to ifs and cs, evaluation performed by doc is contextual: all pro-
grams in P together determine the values of derived objectives. Objectives
are derived independently in every generation of a GP run and are thus
transient and incomparable across generations. This however does not pre-
vent them from driving search more efficiently than conventional GP and
ifs on most benchmarks, which we demonstrated in [95], and in coevolu-
tionary settings, where T varies from generation to generation [112].

4.5 Summary

In the context of behavioral evaluation and execution record (Chap. 3), ifs,
cs and doc all rely on the same source of information for evaluation: an
outcome vector resulting from the comparison of program output with the
desired output (Fig. 3.2). In contrast to the conventional objective func-
tion fo (1.7) that simply counts the zeroes (failed tests) in that vector for
the program which is being evaluated, these methods require simultaneous
access to outcome vectors of all programs in a population. Only then can
they assess the subjective difficulty of tests (ifs), estimate the subjective
odds for pairs of tests being simultaneously passed (cs), or group the tests
into meaningful clusters to form derived objectives (doc). In consequence,
they will in general lead to different selection outcomes (see Examples 4.1,
4.2, and 4.3).

There is however more information available in an execution record and in
the tests that define a program synthesis task. In particular, ifs, cs and
doc care only whether a test has been passed or not, and ignore what is
the actual program output and the desired program output. These more
detailed data open the door to more ‘inquisitive’ extensions of GP, with se-
mantic GP presented in the next chapter being an important contemporary
representative.

5

Semantic Genetic Programming

Semantic genetic programming (SGP) is a relatively new thread in GP
research, which originated in the immense complexity of the genotype-
phenotype mapping in evolutionary program synthesis. As discussed in
Sect. 1.4, minor modifications of program code may result in fundamen-
tally different behavior; on the other hand, an overhaul of program may
leave its behavior intact. The relationship between program source code
(syntax) and its behavior (semantics for the sake of this chapter) is very
complex. SGP germinated from the increasing belief that to make evolu-
tionary program synthesis scalable, program synthesis algorithms need to
explicitly take program semantics into account. In this chapter, we provide
a concise insight into SGP and show how its conceptual underpinnings
relate to behavioral program synthesis and execution records.

5.1 Program semantics

Program semantics is an important concept in theory of programming lan-
guages and in design of compilers and other tools used in contemporary soft-
ware engineering. Formalisms of denotational, axiomatic, and operational
semantics have longstanding position in computer science. The notion of se-
mantics adopted in GP is however different in being tailored to test-based
framework of program synthesis.

Following the consensus emerging from earlier works on SGP [184, 99, 183,
35, 145], we define program semantics as follows. Given a list of tests T ,
|T | = n, the semantics of a program p is an (ordered) n-tuple1 of the program

seman-
ticsoutputs produced by p for the tests in T , i.e.

1 Even though program semantics is a vector for numeric domains, in the follow-
ing we refer to them as tuples to emphasize that programs can return data of
any type. Tuples are assumed to be ordered.

© Springer International Publishing Switzerland 2016 55
K. Krawiec, Behavioral Program Synthesis with Genetic Programming,
Studies in Computational Intelligence 618,
DOI: 10.1007/978-3-319-27565-9_5

56 5 Semantic Genetic Programming

sT (p) = (p(in))(in,out)∈T = (p(in1), p(in2), . . . , p(inn)) (5.1)

Program semantics is thus a part of an execution record (3.5) and can be al-
ternatively defined by referring to the final execution state p$(in) (Fig. 3.2):

sT (p) = (p$(in))(in,out)∈T . (5.2)

Note that (5.2) holds in the strict sense only if the entire final execution
state can be interpreted as program output, which is for instance true in side
effect-free tree-based GP. For other program representations like PushGP
[170] or linear GP [6, 14], program output (and thus sT (p)) comprises only
selected elements of the final execution state (e.g., top stack elements in
PushGP or dedicated registers in linear GP).

In practice, semantics is most often based on the tests T given with a
synthesis task, which in the following we assume to be known implicitly
and thus write s(p) instead of sT (p).

This rephrasing in terms of execution records helps convey that s(p) reflects
only the final execution states. It is partial also in another sense: as s(p)
involves only the tests available in T (which is usually only a sample of a
universe of tests T), it is agnostic about program behavior beyond that set.
This makes it different from more formal operational, axiomatic or denota-
tional semantics. In an attempt to emphasize that fact, the term ‘sampling
semantics’ [136] has been alternatively promoted for (5.1); nevertheless, for
brevity we call this formal object simply ‘semantics’.

Program semantics characterizes an existing program. For the sake of fur-
ther argument, a broader notion of semantics will be necessary. Given a set
of tests T ⊆ I ×O, n = |T |, we define semantics s as an arbitrary n-tuple ofsemantics

elements of O, i.e. s ∈ On. As in (5.1), an element si of s corresponds to the
ith test in T , but this time in abstraction from any program. A program
producing si for the ith test does not have to exist in a given programming
language. In this way, semantics may express any combination of behaviors
on all tests in T . In particular, the target t∗ (1.4), i.e. the tuple of desired
outputs as defined by a program synthesis task, is also a semantics.

The set of all semantics for a set of tests T ⊆ I × O forms the semanticsemantic
space space S. In this context, s can be seen as a function, a semantic mapping
semantic
mapping s : P → S. Every program semantics is a semantics, because by definition

s(p) ∈ S for any p. The reverse is not true though: some semantics in S
may form such combinations of elements from O that cannot be produced
by any program in P . Semantic mapping s is thus a non-surjective function
from P to S.

Example 5.1. Figure 5.1a reprints the symbolic regression program p from
Fig. 3.1. Assume a set of two tests T as in Fig. 5.1b. The domain of the
programing task specified by T is (I, O) = (R2,R). Given two tests with

5.1 Program semantics 57

−

∗

x1 x1

+

x2 x1

(a)

T in out

x1 x2 y
t1 2 3 3
t2 1 0 2

(b)
out1
p(in1)

out2
p(in2)

s(p)

t∗

(c)

Fig. 5.1: An exemplary program p reproduced from Fig. 3.1 (a) and a list
of two tests T , each comprising two input variables x1 and x2 (b). The
program outputs respectively −1 and 0 for these tests, so its semantics is
s(p) = (−1, 0). The inset (c) shows the semantic space S associated with
T and the locations of s(p) and T ’s target t∗ in that space.

outputs in R, the semantic space is S = R
2. Figure 5.1c presents the se-

mantic space with the marked semantics of program p, s(p) = (−1, 0),
determined by applying p to the inputs of tests in T . The target t∗ = (3, 2)
as defined by T is also marked in that space.

Assume the set of instructions of the programming language is {+, ∗, /}.
The target t∗ = (3, 2) is realizable in this programming language, i.e. a
program p∗ exists such that ∀(in, out) ∈ T : p∗(in) = out. As signaled
earlier, in general a program realizing a given semantics s ∈ S does not
have to exist. Let us illustrate two cases of such unrealizable semantics: unreali-

zable
semantics

Case 1: Under the same programming language, s′ = (−1, 2) is unrealiz-
able because no program composed of instructions {+, ∗, /}, no matter
how complex, can produce a negative value for the positive arguments
x1 = 2, x2 = 3 in the first test t1.

Case 2: Let the programming language be {+, ∗}. Then, s′′ = (2, 3) is
unrealizable, because the programs composed of these instructions can
express only monotonically increasing functions. As x1 and x2 are both
greater in t1 than in t2, any program composed of these instructions
ensures p(in1) > p(in2). �

The example illustrates that whether a program with a given semantics ex-
ists or not depends on the expressibility of programming language and the
constraints imposed by tests. Inexpressibility of a given semantics may stem
from certain elements in O being impossible to generate using the available
instructions (Case 1), or the particular combination of outputs being im-
possible to achieve given the inputs in T (Case 2). Nevertheless, even if a
semantics is realizable, it can be challenging to synthesize a program that
realizes it; we address this problem in the next section.

58 5 Semantic Genetic Programming

5.2 Semantic Genetic Programming

In the previous chapter, evaluation functions in ifs and cs characterized pro-
gram performance in ways that are clearly different from the conventional ob-
jective function fo (1.7). Nevertheless, both these approaches still compress
program behavior into a single scalar, and in this sense do not fundamentally
change the way in which the space of candidate solutions is searched.

In contrast, program semantics as defined in Formula (5.1) is by nature
multi-dimensional: each element of semantics s(p) characterizes p’s behavior
for a given test. This detailed behavioral characterization opens the door to
defining semantic-aware components of GP workflow, including semantic-
aware population initialization, selection, and search operators, with the
last area studied most intensely. As semantic GP is one among several takes
on behavioral program synthesis presented in this book, we review here only
the most relevant contributions and refer the reader to more comprehensive
surveys in [145, 144, 142].

Apart from analytical works conducted by, among others, Langdon [104],
McPhee et al. were to our knowledge the first to study the impact of crossover
on program semantics [125]. In that work, they conceptualized semantic build-
ing blocks, defined the semantic properties of components that form offspring
in the tree-swapping crossover, i.e. subtrees and contexts (partial trees with
a hanging branch), and observed how they change with evolution for Boolean
problems. In another early study, Beadle and Johnson [10] proposed a seman-
tically driven crossover operator for Boolean problems that guarantees the
offspring to be semantically distinct from both parents. In [62] Jackson an-
alyzed semantic diversity in the initial population. More recently, Galvan-
Lopez et al. came up with a tournament selection that discouraged semantic
duplicates [35].

Most of the work on semantic-aware search operators revolved around the
observation that semantic similarity of programs (as well as subprograms)
can be measured by referring to the corresponding points in semantic space.
Nguyen et al. [184] considered two semantic crossover operators for sym-
bolic regression, one that permits crossover only if the subtrees to be ex-
changed in the parents are semantically more distant than a given lower
limit (a parameter of the method), and another with an additional upper
limit on the distance. Later, Nguyen et al. [183] proposed an operator that,
from a set of all valid pairs of subtrees to be exchanged in the parents,
chooses the pair with the smallest distance, dropping so the upper limit pa-
rameter. Driven by similar intentions, though without explicitly referring
to program semantics, Day and Nandi used binary strings to characterize
how individuals in a population cope with particular tests, and designed
a mating strategy that exploits that information [22]. More recently, we
proposed semantic backpropagation [145] that enables partial reversal of
program execution and so facilitates design of effective search operators.

5.3 Geometric Semantic Genetic Programming 59

5.3 Geometric Semantic Genetic Programming

The work reviewed above was driven by the legitimate assumption that per-
test information on program behavior may help in driving search more effi-
ciently by, among others, avoiding the compensation discussed in Sect. 2.2.2.
The experimental outcomes were in most cases encouraging. Nevertheless,
pure SGP brought no major conceptual breakthroughs.

The new era in SGP came with the realization that there are deeper implica-
tions of posing a program synthesis task as a search for a program with a cer-
tain semantics, rather than for a program with a certain evaluation. As it turns
out, the test-based objective functions typically used in GP (e.g., MSE, MAD;
see Sect. 1.5.3) are formally metrics in S. By this token, they formally turn
the set S into a space with certain geometry that can be exploited for the sake
of search. This observation gave rise to geometric semantic GP (GSGP) that geometric

semantic
GPfocuses specifically on the geometric (metric-related) properties of semantics.

Formally, semantic metric is any function semantic
metric

d : S × S → R
0+ (5.3)

that is non-negative, symmetric, and fulfills the properties of identity of
indiscernibles and triangle inequality. In order to demonstrate that the
evaluation functions typically used in GP are indeed semantic metrics, con-
sider the Boolean domain and assume that d is the Hamming distance dH .
Then, the objective function fo (1.7) for a program synthesis task with a
target t∗ can be rewritten as

fo(p) = dH(s(p), t∗). (5.4)

With S being a metric space, the evaluation at any point in that space is
the distance from the target t∗, i.e. from the desired semantics as specified
by the synthesis task. Thus, the surface of an evaluation function plotted
with respect to S takes the form of a cone with the apex corresponding
to t∗. The specific type of the cone depends on the employed metric; for
d being the Euclidean distance, it is a cone in the common sense of that
word.

Crucially, fo is not only conic but also unimodal and attains the minimum
value of zero at t∗ and nowhere else. It also does not feature plateaus. This
holds for any semantic space, any data type associated with the output
domain O, and any metric, with the caveat that the cone may have an
unintuitive interpretation in the non-Euclidean spaces. A visualization of
an evaluation function spanning S under the city-block metric and the
Euclidean metric is presented in grayscale in Fig. 5.2.

Although minimizing fo in such a simply structured space may appear easy,
it is not such in practice, the reason being that the semantic space S is not

60 5 Semantic Genetic Programming

the space being searched. The search space is the set of programs P , because
it is programs, not semantics, that are manipulated by search operators. S is
searched only implicitly, intermediated by the semantic mapping s : P → S.
As a result, applying a minor change to a program can correspond to a
big leap in S, while a major change of a program can leave its semantics
intact. In other words, the cone in question is not a fitness landscape in the
traditional meaning of that term (Sect. 2.2.3, [194]), because the moves in
P induced by search operators do not correspond to the moves along the
dimensions of S. This characteristic is analogous to low locality of genotype-
phenotype mapping discussed in Sect. 1.4.

Despite detachment from fitness landscapes, semantic space gives certain
hints for designing search operators, and GSGP offers a formal framework
for principled design of efficient search operators under given semantic met-
ric d. GSGP determines the desired semantic properties of the offspring
produced by a search operator in abstraction from any specific search op-
erator. Our recent formalization of such properties in [135], together with
earlier attempts [93], delineate the class of geometric semantic search op-geometric

semantic
search
opera-
tors

erators, including geometric semantic mutation and geometric semantic
crossover.

Here, we limit our discourse to geometric semantic crossover, because
prospectively it offers the greatest leverage, enabling long-distance moves
in the semantic space and substantially improving convergence to global op-
tima. In a more general context, let us state that the emphasis on crossover
is consistent with our general stance, i.e. that, as argued elsewhere [2], re-
combination is the key innovation of evolutionary computation. Without
it, an evolutionary algorithm ‘degenerates’ to a parallel local search and
has limited chance for benefiting from modularity, which is often present
in the structure of the task and search space (see more in-depth discussion
on modularity in Sect. 11.1). In this sense, we find it appropriate to ‘reha-
bilitate’ crossover, which since the Schema Theorem has been all too often
blamed for its ‘disruptive’ character, though in fact its overall role may be
much more constructive than widely assumed –see for instance the line of
argument concerning Royal Road benchmarks in Sect. 4.2 of [132].

The core innovation of GSGP comes with the observation that a semantic
metric d can be used not only to measure the distance of program’s semantic
from the target (5.4), but to compare any semantics. An offspring program
p = c(p1, p2) resulting from an application of a crossover operator c : P ×
P → P to a pair of parent programs (p1, p2) is geometric with respect to p1geometric

offspring and p2 under metric d if and only if its semantics is located in the d-metric
segment connecting the semantics of its parents, i.e.

d(s(p1), s(p2)) = d(s(p1), s(p)) + d(s(p), s(p2)). (5.5)

A crossover operator that guarantees (5.5) for any pair of parents and result-
ing offspring is called geometric semantic crossover, or geometric crossovergeometric

crossover

5.3 Geometric Semantic Genetic Programming 61

t∗

s(p1)
s(p2)

s(o)
t∗

s(p1)

s(p2)

s(o)

Fig. 5.2: Illustration of semantic space (in grayscale) and geometric
crossover (in color), for the Euclidean metric (left) and for the city-block
metric (right), in two-dimensional semantic space (i.e. for two tests). Spa-
tial dimensions (abscissa and ordinate) correspond to outputs for the first
and the second test, respectively. The target t∗ determines the desired se-
mantics as posed by a program synthesis task. For crossover, s(p1) and
s(p2) mark the semantics of parent programs p1 and p2; s(o) marks the
semantics of their exemplary geometric offspring o. The colored segments
spanning s(p1) and s(p2) define the set of semantics of offspring that are
geometric with respect to the parents.

for short. This definition formalizes the characteristic that is considered de-
sirable in crossover, namely that an offspring should have some ‘traits’ in
common with both its parents. In semantic GP, a trait of a program p can
be identified with the output it produces for a test, i.e. with an elements of
its semantics s(p). Traits are in this context tightly related to skills (Sects.
2.4 and 4.3), the difference being that a skill is a binary indicator that com-
municates only the passing or failing of a test, while a trait in the context
is a specific output produced by a program.

The concept of geometric offspring for city-block metric and the Euclidean
metric is presented in color in Fig. 5.3. The segments mark the locations of
potential offspring that are geometric with respect to the parents p1 and p2.
The point marked s(o) is the semantics of a hypothetical offspring o. Clearly,
geometric offspring have high probability of getting closer to the target t∗

and thus obtaining better evaluation, particularly when the parents happen
to lie on opposite slopes of the cone of evaluation function. In particular, for
the Euclidean distance, the geometric offspring is guaranteed to be at least
as good as the worst of the parents. For this and other types of guarantees
that may apply to geometric offspring, see [143].

By belonging to the segment (5.5), a geometric offspring is guaranteed to min-
imize the total distance (dissimilarity) to its parents in semantic space. Note
that this characteristics is unrelated to equidistance from the parents, i.e.

d(s(p1), s(p)) = d(s(p), s(p2)), (5.6)

which has been studied in the past in EC [126] and GP [86].

62 5 Semantic Genetic Programming

To our knowledge, the first semantic crossover designed with geometric as-
pects in mind was KLX proposed in [93]. Later in [135], an exact geometric
crossover (GSGX) was proposed that guarantees the offspring to be strictly
geometric in the sense of (5.5). Recently, [99] introduced the locally geomet-
ric semantic crossover, which approximates geometric crossover ‘locally’, on
the level of subprograms. Finally, in [145] an operator was proposed that
approximates the geometric recombination by propagating the desired se-
mantics of an offspring through parent’s program tree. Of these operators,
we present here in detail KLX and GSGX. For a full review of state-of-
the-art geometric semantic search operators, the reader is referred to [144,
142].

5.3.1 Approximate geometric crossover

The KLX crossover proposed in [93] uses an arbitrary base crossover op-approxi-
mate
geometric
crossover

erator to repetitively produce candidate offspring from the same parents,
and by this token can be considered a form of brood selection [177]. Given
two parent programs p1 and p2, KLX applies the base crossover operator k
times to them and stores the resulting candidate offspring in a breeding pool.
Then, it calculates the following expression for every candidate offspring p:

d(s(p1), s(p)) + d(s(p), s(p2)) + |d(s(p1), s(p)) − d(s(p), s(p2))|. (5.7)

The two candidate offspring in the breeding pool that have the lowest
value of (5.7) are returned as the final outcome of crossover act. The base
crossover operator has to be obviously stochastic, otherwise this trial-and-
error approach would not make sense. In [93], the conventional tree swap-
ping crossover [79] served that purpose.

The two first terms in Formula (5.7) are candidate offspring’s distances from
the parents. The sum of these terms captures the ‘degree of geometricity’
of the offspring p. The lower this sum, the closer is p to the d-segment
connecting p1 and p2. Geometricity achieves the minimum for the strictly
geometric offspring, i.e. for p located on that segment (cf. (5.5)), including
the ends of that segment, i.e. s(p1) and s(p2). Because producing candidate
offspring that are semantically equivalent to one of the parents renders
crossover ineffective in semantic terms, 5.7 involves also the third term
that promotes the candidate offspring that is close to being semantically
equidistant (c.f. 5.6). An ideal offspring according to (5.7) is thus a program
that is both geometric with respect to its parents and equidistant from them.
The reader is referred to [93] for a more detailed description of KLX (called
SX+ in that paper).

5.3 Geometric Semantic Genetic Programming 63

In relying on stochastic trial-and-error, KLX is not guaranteed to produce
a geometric offspring. However, it is arguably an approximate geometric
semantic crossover, because the odds for returning an exactly geometric
offspring grow with the size of the breeding pool. Unless the base crossover
operator is principally unable to produce a geometric offspring or the partic-
ular pair of parents has no geometric offspring at all, a geometric offspring
will eventually be generated. Generating large pools of candidate offspring
programs is however computationally prohibitive, as each of those programs
needs to be run on all tests to calculate (5.7).

5.3.2 Exact geometric crossover

The exact geometric semantic crossover operator (GSGX, [135]) does not exact
geometric
crossoverinvolve trial-and-error generation of candidate offspring and so avoids an

excessive computational cost. Given two parent programs p1, p2, GSGX
randomly generates a random program pr, and then combines p1, p2 and
pr into an offspring p using the following formula for the Boolean domain

p = (p1 ∧ pr) ∨ (p2 ∧ pr), (5.8)

and the following one for the regression domain:

p = p1 ∗ pr + p2 ∗ (1 − pr). (5.9)

The operators are illustrated in Fig. 5.3. The key feature of GSGX lies
in recombining the parents using language constructs composed of instruc-
tions from the programming language of consideration. To emphasize this,
in the Fig. 5.3 we clearly delineate the parent programs (triangles) and the
instructions used to combine the parents (ovals). The instructions in ques-
tion need to be available in the programming language; for the Boolean
domain, these are ∧ and ∨, while for the symbolic regression domain +, −,
and ∗.

Analysis of Eqs. 5.8 and 5.9 reveals that the offspring are indeed ‘semantic
mixtures’ of the parents. The offspring generated by GSGX is geometric
by construction and in this sense exact (see [135] for formal proofs). Inter-
estingly, (5.8) and (5.9) do not refer to the semantic mapping s at all (in
contrast to, e.g., KLX (5.7). Thus, GSGX does not even need to ‘know’
parents’ semantics to guarantee the offspring to be semantically geometric
with respect to them. This does not however mean that GSGX ignores the
behavioral aspects of program synthesis; to the contrary, it actually relies
on it with its specific, provably geometric, approach to offspring construc-
tion that relies on the properties of the underlying semantic space.

For the Boolean domain, the ‘mixing’ program pr can be arbitrary. For
the regression domain, the offspring is a linear combination of the parents.

64 5 Semantic Genetic Programming

OR

AND

p1 pr

AND

p2 NOT

pr

+

∗

p1 pr

∗

p2 −

1 pr

Fig. 5.3: The exact geometric semantic crossover (GSGX) for tree-GP, for
the Boolean domain (left) and the symbolic regression domain (right). p1
and p2 are parent programs, pr is a randomly generated subprogram. Ovals
mark single instructions.

To make sure that its semantics is located on the segment connecting the
parents, pr must return a value in [0, 1] for every test. If d is the Euclidean
distance, pr has to return the same value in [0, 1] for all tests; for city-block
distance, the value returned by pr should vary across the tests. In [135],
we demonstrate how to design a geometric crossover for another domain of
rule-based classifiers.

The guarantee of producing an exactly geometric offspring allows GSGX
to realize search as a traversal of the above-mentioned cone in semantic
space. The consequence is fast convergence to the global optimum and very
good performance on conventional GP benchmarks and synthetic problems.
This is particularly true when GSGX operates along with an analogously
designed geometric semantic mutation operator GSGM which guaranteesgeometric

semantic
mutation producing offspring that only slightly diverges from its parent in the se-

mantic space. Such mutations obey the structure of semantic space and are
essential to precisely hit the target semantics [135].

GSGX and GSGM might be thus thought to be the ultimate tools for se-
mantic GP. However, in each application, GSGX produces offspring that
are on average roughly two times larger than its parents. The average num-
ber of nodes in a program tree is given by the formula:

|p0| + (2n − 1)(|p0| + |pr|), (5.10)

where |p0| is the average number of nodes in a program in the initial popu-
lation, |pr| is the average number of nodes in the random program pr (Eqs.
5.8 and 5.9), and n is the generation number. Thus, programs in a search
process using GSGX grow exponentially with time. For GSGM, the growth
is linear but in a longer run also severe.

5.4 Summary 65

To work around this problem, in [135] we proposed to apply simplification
to the offspring of every crossover act. Efficient simplification procedures
exist for program representations employed there, i.e. disjunctive normal
forms for the Boolean domain and vectors of polynomial coefficients for the
symbolic regression domain. For the tree-based programs, simplification is
known to be NP-hard, in which case heuristic simplifiers like Espresso [155]
can be employed.

Syntactic simplification incurs additional computational cost. To mitigate
this problem and tackle growing program length in GSGP, Castelli et al.
[20] proposed to transform a population of programs into a directed acyclic
graph. Because the parent programs get incorporated into the offspring
without being modified (Fig. 5.3), GSGX can be applied multiple times
to the same parents, and over the course of multiple generations, without
ever copying the parents’ code. Technically, it is enough for the offspring to
refer to parents’ code rather than to copy it, because they are considered
immutable. The only new code added in every generation are the expressions
that implement the Eqs. (5.8) and (5.9) and the subprograms pr. As a result,
memory consumption grows linearly with the number of generations in this
‘implicit memoization’ technique.

The characteristics of GSGP discussed here can be linked to problem de-
composition. GSGP operators tackle a problem in a test-by-test manner,
with the mixing trees (pr‘s) working as ‘filters’ that decide about which
program subtree’s output should be let through to reach offspring’s output
and which not (in the Boolean case) or combining such outputs linearly (in
the continuous case). The test-wise characteristics applies in particular to
the SGM mutation operator not discussed here in detail, which produces an
offspring that is guaranteed to vary semantically from the parent on exactly
one test. This topic will be subject to a broader discussion in Sect. 11.1.

5.4 Summary

The methods of semantic GP form an exception in this book, as they do
not explicitly define new, alternative evaluation functions. Rather than that,
they rely on the conventional scalar objective function that we have so much
complained about in Sect. 2.1. Given that, do they belong to behavioral
program synthesis we outlined in Chap. 3?

Our answer to this question is positive. Most of the methods discussed
in this chapter and reviewed in cited work require access to semantics of
programs (parents, candidate offspring) and semantics of task specification
(target, i.e. desired output). Program semantics as meant in GP is a detailed
account on program behavior, much richer than scalar evaluation. The only
exception are the exact geometric semantic operators, where the guarantees

66 5 Semantic Genetic Programming

about offspring behavior stem from the geometry of semantic space induced
by metric evaluation functions.

By scrutinizing the detailed final effects of computation, semantic-aware
methods make search algorithms better-informed about the per-test effects
of computation, mitigate so the evaluation bottleneck problem (Chap. 2),
and can be thus deemed behavioral. However, final output is arguably a
very limited account of behavior of a program, which could have conducted
very complex computation prior to arriving at that result. This becomes
particularly evident when defining program semantics in terms of execution
record (Fig. 3.2): the potentially interesting internal dynamics of program
execution is not directly reflected in program semantics. In the approaches
presented in the next two chapters, we push the behavioral envelope fur-
ther, in the limit making the entire evaluation record available to a search
process.

6

Synthesizing programs with consistent
execution traces

The main motif of this book is providing search algorithms with rich in-
formation on solutions’ characteristics. The formalism of execution record,
a complete, instruction-by-instruction account on program execution for
every test, is a technical means to achieve that goal. In the approaches pre-
sented to this point, only the final execution states in an execution record
were taken into account. In this chapter, we utilize an entire execution
record for the first time in this book.

In particular, we illustrate how the concepts borrowed from information
theory facilitate deriving alternative evaluation functions from an execution
record. To this end, we elaborate on the approach we proposed in [100].

6.1 Information content of execution states

Execution of an instruction of a program usually changes the state of the ex-
ecution environment (registers, memory, etc.), which then become reflected
in an execution record, as we discussed in Chap. 3. At any given stage of
program execution, the state of execution environment is characterized by
certain information content. Crucially, as we show in this section, a deter-
ministic sequential program can at most sustain the amount of information
in an execution environment, but is unable to increase it. In consequence,
the process of program execution is usually accompanied by gradual loss of
information in the environment. This is the key motivation for the evalua-
tion function presented in this chapter.

Example 6.1. As an illustration, consider linear programs running in an
execution environment with memory comprising two one-bit registers r1
and r2. A program run in this environment has in general the signature

© Springer International Publishing Switzerland 2016 67
K. Krawiec, Behavioral Program Synthesis with Genetic Programming,
Studies in Computational Intelligence 618,
DOI: 10.1007/978-3-319-27565-9_6

68 6 Synthesizing programs with consistent execution traces

p = (r1 ← AND(r1, r2);
r2 ← AND(r1, r2))

p0 p1 p$

t1 00 00 00
t2 01 01 00
t3 10 00 00
t4 11 11 11

Fig. 6.1: A linear GP program to be run in an execution environment with
two Boolean registers (r1, r2) and its execution record for tests that enu-
merate all inputs. The inputs determine the initial content of the registers,
shown in column p0 (the state before executing the first instruction). Iden-
tical execution states are marked in the same color. Bold font in the last
column marks the effective output.

B×B → B×B, i.e. (I, O) = (B,B). We assume however that r1 is designated
as program output, so the signature is effectively p : B × B → B.

Consider an exemplary program runnable in this environment, shown in
Fig. 6.1a. The program comprises two instructions: first of them modi-
fies r1, the second changes r2. Figure 6.1b presents the execution record
of that program for tests enumerating all combinations of inputs (x1, x2).
With two registers, the state of the execution environment is a tuple of
bits (Booleans), which for clarity we present without delimiters, e.g., 01
denotes (r1, r2) = (0, 1). Prior to program execution, x1 and x2 determine
the initial content of registers in p0. The states in the columns marked
p1 and p$ reflect the registers after executing the first and the second in-
struction, respectively. As in the previous examples, there is one-to-one
correspondence between the instructions of the program and the columns
of execution record p1, . . . , p$, because the program considered here is free
of branchings and loops. However, in contrast to execution record for tree-
based GP (Example 3.1), the order of instruction execution is this time
unambiguously determined by the program.

Inspection of this execution record reveals that execution traces for different
tests may reach the same state at some point of program execution; for
instance p1(t1) = p1(t3) = 00 while p0(t1) �= p0(t3) (where we abuse the
notation and write p(t) for an application of program p to the input part
of test t). We say that such traces have merged. �merging

of
execution
traces

Merging of execution traces is common and due to the fact that instruc-
tions often realize many-to-one computations. Examples abound: elemen-
tary arithmetic operators map infinitely many different pairs of arguments
to the same outcome. The sign function accepts any real number but pro-
duces only three distinct outputs: sgn : R → {−1, 0, 1}. This applies also
to more sophisticated concepts that may form single instructions in higher-
level and/or domain-specific languages. A program/instruction that tests

6.1 Information content of execution states 69

its argument for primality has the signature N → B. A program/instruction
that calculates the greatest common denominator (GCD) for a pair of num-
bers yields the same outcome for infinitely many pairs of arguments (e.g.,
GCD(6, 9) = 3 = GCD(21, 24)). A sorting program/instruction returns
the same sorted list of length k for k! different input lists. Many fundamen-
tal mathematical concepts (and henceforth many elementary instructions in
programming languages) are many-to-one. Those that are one-to-one (and
thus implement injections) are few and far between; prime factorization is
a well-known example of the latter.

Therefore, some of the execution traces may merge while some may not.
Crucially, once some traces have merged, they cannot diverge anymore in
the course of further execution, because the environment fully determines
the further course of execution. That would be possible only for nonde-
terministic instructions (which we excluded in the very beginning of this
book).

Whether merging of particular traces is desirable or not becomes clear only
when a program is confronted with a specific program synthesis task. As-
sume that the program in Fig. 6.1a is evaluated in the task where the target,
i.e. vector of desired outputs, is t∗ = (0, 0, 1, 1). The corresponding actual
outputs of the program are (0, 0, 0, 1), i.e. the marked in bold elements of
the column marked by p$ Fig. 6.1b, as we assumed that r1 is designated to
hold the effective output. These vectors differ at the first and third position,
which can be explained in terms of execution traces: the traces for t1 and
t3 have merged after executing the first instruction (column p1), so it was
clear already at that point that they must end up in the same final when
reaching p$. Given the different desired values for tests t1 and t3, it was
inevitable for the program to fail one of them.

This scenario exemplifies the key observation that gave rise to the approach
we proposed in [100]: whether a particular merger of traces is desirable or
not can be stated while a program is still in the course of execution, i.e. at
intermediate execution states encountered before reaching p$. In particular: inter-

mediate
execution
statesCase 1: If different program inputs should be mapped to different pro-

gram outputs, then merging the corresponding traces is undesirable. A
program that does so loses the information necessary to distinguish be-
tween these inputs, and necessarily fails some of those tests. Merging
of the traces for t1 and t3 in Example 6.1 represents to this case.

Case 2: By contrast, if different program inputs are supposed to be
mapped to the same output, then merging the corresponding traces
is desirable. Reaching the same execution state for these inputs ensures
producing ultimately the same output, because once traces merge, they
cannot diverge anymore. Merging of the traces for t1 and t2 at p$ in
Fig. 6.1 is desirable in this sense.

70 6 Synthesizing programs with consistent execution traces

The conventional objective function (1.7) indirectly depends on trace merg-
ers because they influence program output. However, detecting mergers at
earlier execution stages may help discovering programs that reach the po-
tentially useful intermediate execution states, even when the actual program
output is utterly wrong. A program featuring such states has the potential of
being improved by the forthcoming moves of a synthesis algorithm (e.g., by
augmenting it with a proper program suffix). In the next section, we present
an alternative evaluation function that rewards programs according to the
two type of trace mergers mentioned above.

6.2 Trace consistency measure

In the following, we design an evaluation function that quantifies the oc-
currence of correct and incorrect mergers in terms of information theory.

Consider a random variable Xk corresponding to the kth column in an exe-
cution record (3.5), i.e. characterizing the states generated by kth program
instruction for particular tests. The information content of Xk is the en-infor-

mation
content
of
execution
state

tropy of its probability distribution. When expressed in bits, it amounts
to:

H(Xk) = −
∑

Pr(Xk) log2 Pr(Xk). (6.1)

For instance, for the column corresponding to p0 in Fig. 6.1

E(X0) = −21
2

log2
1
2

= 1, (6.2)

and for p$

E(X$) = −1
4

log2
1
4

− 3
4

log2
3
4
� 0.81. (6.3)

Whenever traces merge at the kth instruction of a program, i.e. when pass-
ing from the (k − 1)th to the kth column of an execution record, this
is reflected in differences between probability distributions of correspond-
ing random variables Xk−1 and Xk. Subject to the desired outputs, those
changes may be undesirable (Case 1 in the previous section) or desirable
(Case 2). To assess the utility of these cases, we use conditional entropy
H(Y |X) = −

∑
Pr(Y |X) log2 Pr(Y |X), with the dependent random vari-

able Y associated with the desired output. We define two quantities that
correspond to Cases 1 and 2 respectively:

1. H(Y |Xk), i.e. the amount of information that desired output Y adds
to Xk. In particular, if H(Y |Xk) > 0, then Xk alone is not sufficient to
predict the value of Y .

6.2 Trace consistency measure 71

2. H(Xk|Y), the amount of information that Xk adds to Y . Large val-equivalence
class of
execution
states

ues of H(Xk|Y) indicate that Xk partitions the set of tests into many
equivalence classes.

Every time the traces for two or more tests merge between the kth and
(k + 1)th execution step (columns of the execution record), either the for-
mer term increases (H(Y |Xk) > H(Y |Sk+1)) or the latter term drops
(H(Xk|Y) > H(Xk+1|Y)). Both H(Y |Xk) and H(Xk|Y) attain zero if and
only if Xk is perfectly consistent with Y , i.e. ski = skj ⇐⇒ yi = yj.

Following this observation, we devise an evaluation function based on the
sum of the above terms. The ftc(p) of a program p is the minimal two-way trace con-

sistencyconditional entropy defined above, calculated over all variables Xk, i.e.

ftc(p) = min
k

H(Y |Xk(p)) + H(Xk(p)|Y), (6.4)

where Xk(p) is the random variable associated with the kth column
in the execution record of program p. Lower values of ftc indicate
merging of traces that is more consistent with Y and thus more
desired; therefore, ftc is to be minimized. By using the minimum
operator for aggregation over program execution steps, ftc(p) re-
wards p for the part of its behavior that is most consistent with
the desired output. This is intended to promote the programs that
feature code fragments (subprograms) that can prove useful in new
programs1.

Example 6.2. Consider a program synthesis task with five tests, and an
execution record shown in Table 6.1. The actual program that produced
this record is not important here. It is sufficient for us to know that an
execution state comprises three single-bit registers, and two of them are
interpreted as program output (column Y of the table). However, it is
also irrelevant which of the registers are interpreted as program output, as
the trace consistency measure ftc never directly compares execution states
with desired output; it cares only about the information content associated
with particular random variables corresponding to the columns of execution
records.

The lower rows of the table present the conditional entropy for consecutive
columns. As the traces merge, the corresponding random variables Xk carry
less and less information, and so the entropy of Y conditioned on Xk may
only grow. For instance, the states 001 and 010 for the tests t2 and t3 in X0

1 Note that the term minimized in (6.4) can be alternatively expressed as
H(Y,Xk(p)) − I(Y ;Xk(p)), where H(Y,Xk(p)) stands for joint entropy and
I(Y ;Xk(p)) is the mutual information. Minimization of (6.4) is thus not equiv-
alent to maximization of mutual information only, as also H(Y,Xk(p)) may
vary between columns of an execution record.

72 6 Synthesizing programs with consistent execution traces

Table 6.1: Exemplary calculation of consistency measure for an execution
record of a program applied to five tests, each comprising three Boolean in-
put variables and two Boolean output variables. The minimum of two-way
conditional entropy H(Y |Xk) + H(Xk|Y) over the columns of execution
record, marked in bold, is the trace consistency ftc of this program. For
readability, the unique intermediate states are marked in colors; note how-
ever that the measures considered here never compare states across columns
of an execution record, so what matters is only the colors within particular
columns.

Test p0 p1 p2 Y

t1 000 000 010 00
t2 001 001 001 10
t3 010 001 001 10
t4 011 010 010 10
t5 100 011 010 11
H(Y |Xk) 0 0 0.95
H(Xk|Y) 0.95 0.55 0.55
H(Y |Xk) + H(Xk|Y) 0.95 0.55 1.50

merge into the state 001 in X1; this however does not increase H(Y |Xk)
because the desired output for these tests is the same (10). On the other
hand, when the traces for t1, t4 and t5 merge in X2, this leads to an increase
of H(Y |Xk), because these three tests have different desired outputs Y , so
this merging is undesirable.

Conversely, H(Xk|Y) cannot grow with consecutive columns. When it drops
in p1, it is because the traces for t2 and t3 have merged, which is desirable.
On the other hand, it does not drop between p1 and p2, because it is where
an undesirable mering of t1, t4, and t5 takes place.

In an ideal case, H(Y |Xk) = H(Xk|Y) = 0, i.e. neither the variable asso-
ciated with kth intermediate execution state adds any information to the
desired output, nor the reverse. This would happen if 001 and 010 collapsed
into a single state in X2 and t4 did not merge with t5 there, as a result of
which X2 would be perfectly consistent with Y . �

Note that attaining ftc(p) = 0 does not necessarily mean that p features
a subprogram that solves a given program synthesis task, i.e. produces
intermediate results that are equal to the desired output. This would only
signal that one of Xks is perfectly consistent with the desired output, i.e.
that there exists a one-to-one mapping between the intermediate memory
states at the kth step of program execution and the desired outputs. For ftc,
it is only the equivalence of states that matters, not the states themselves.
In this sense, ftc can be said to be more lenient than fo. This also facilitates
technical implementation: one can be oblivious about the interpretation of

6.3 Trace consistency for non-linear programs 73

data that form the states; knowing how to test them for equality is sufficient.
On the other hand, we cannot verify program correctness by asking whether
ftc(p) = 0, which was possible for fo. However, this is consistent with
Sect. 1.3, where we clearly delineated the correctness predicate Correct
from an evaluation function. This separation is also consistent with the
concept of search driver to be presented in Chap. 9.

Trace consistency measure ftc reveals thus certain ‘internal qualities’ of
candidate programs that the conventional evaluation function is oblivious
to. It forms yet another behavioral characteristic that may be used as an
alternative (or a supplement) to the conventional objective function. The
experiment in Chap. 10 verifies this hypothesis.

6.3 Trace consistency for non-linear programs

The line of reasoning in the previous sections is valid only for strictly se-
quential programs where execution states reflect the entire execution en-
vironment, as in the formal definition of execution record (3.5). In such
environments, future computation is fully determined by the current state
and traces cannot diverge anymore once they have merged.

In tree-based GP, the arguably most popular genre of GP, program execu-
tion is not sequential nor does it maintain global memory. An intermediate
outcome at a given instruction (tree node) reflects only the computation
carried out by the subtree rooted in that node. In the absence of side ef-
fects (i.e. when instructions are pure functions) the order of execution is
only partially determined by the structure of a program (see Example 3.1).
There is no obvious, ‘natural’ succession of instructions, and instructions
of can be executed in various order without affecting the final semantics.
Talking about ‘further course of computation’ does not make sense in such
a context.

Therefore, the definitive statements about merging and divergence of exe-
cution states need to be relaxed for tree-based GP (and other genres of GP
where programs are not strictly sequential), which we illustrate with the
following example.

Example 6.3. Consider the purely functional tree-based GP program (AND
(AND x1 x2) x2) applied to input composed of two Boolean values x1 and
x2. Figure 6.2 presents the execution record of this program for tests that
enumerate all combinations of inputs (x1, x2). Each column in the record
corresponds to an instruction in the program, executed in bottom-up, left-
to-right order. An execution state is the value returned by the just executed
expression, and depends only on the corresponding subtree. Consider the
column p3 of execution record, corresponding to the subtree (AND x1 x2).

74 6 Synthesizing programs with consistent execution traces

AND

AND

x1 x2

x2

p0 p1

p2 p3

p4 = p$

(a)

p0 p1 p2 p3 p$

t1 0 0 0 0 0
t2 0 1 0 1 0
t3 1 0 0 0 0
t4 1 1 1 1 1

(b)

Fig. 6.2: A tree-based, side effect-free GP program (a) and its execution
record (b), built assuming bottom-to-top, left-to-right order of executing
instructions. Execution traces for t1 and t2 merge in p2, but diverge later
in p3, because under this program representation execution states do not
fully determine the course of further program execution.

Because the yet-to-be-conducted computation depends on program input
(the rightmost node x2), the traces that met at p3 can still diverge. This is
what we observe for t1 and t2 in Fig. 6.2: their traces merge when reaching
p2 but diverge again in p3. However, this divergence is only an artifact of
adopting a particular order of executing instructions. �

Execution states in tree-based GP are thus in a sense local. While merginglocal
execution
state traces for a subset of tests means that a sequential program is destined

to end up with the same output, for tree-based GP that still depends on
the course of execution of the remaining part of a program. A merger at
some point of execution lowers the odds for the engaged traces diverging
in the remaining part of execution, but does not exclude it. The chance of
such a divergence decreases as the end of the program is approached. The
traces that merge deeper in a program tree have more chance to diverge
than those that happen closer to the root node.

This relaxation concerns Case 1 in Sect. 6.1, i.e. merging the traces that
should not merge for a given subset of tests. An analogous argument applies
also to Case 2. Traces that should have merged but did not at an intermediate
execution stage can be still merged – even the very last instruction of a pro-
gram may fix this. However, the longer a program postpones such a desired
merger, the less likely it is that the remaining instructions will do so.

Thus, although for tree-based GP merging and diverging of traces do not
determine consistency with program output as directly as it was for the
strictly sequential GP, they can be still considered as telltales of the prospec-
tive performance of a program. This makes the trace consistency measure

6.4 Summary 75

ftc (6.4) a viable evaluation function also for tree-based GP. Indeed, in
[100] we demonstrated experimentally that tree-based GP driven by ftc
outperforms the conventional objective function fo on popular GP bench-
marks. Explanation of that result goes along the rationale presented in this
chapter. A subprogram p′ in a program p that behaves highly consistently
with the desired output is prospectively valuable. Application of a search
operator to p has a non-zero chance to produce a well-performing program
by combining p′ with an appropriate ‘suffix’. The conventional evaluation
function is oblivious to the internals of program execution and thus unable
to promote such programs.

The incompatibility of non-sequential programs with sequential, tabular
execution records points to possible generalizations of the latter. Ideally, a
generalized execution record would reflect the causal relationships between
program parts in a more direct way. Another future work may concern han-
dling programs that feature loops or even recursion. That would however
require a more sophisticated alignment of traces that that which follows
directly from program syntax.

6.4 Summary

The trace consistency evaluation function ftc is the first formalism pre-
sented in this book that depends on an entire execution record. By this
virtue, it may reveal differences between evaluated programs that escape
the attention of semantic GP methods (Chap. 5) and methods that behav-
iorally assess test difficulty using outputs produced by programs (Chap. 4).
One may thus anticipate observable differences between ftc and the other
evaluation functions presented in this book, which we will verify experimen-
tally in Chap. 10.

There are though still certain nuances in program execution that the
consistency-based evaluation is oblivious to. In particular, ftc cares only
about the equivalence of states across traces. What matters is only whether
traces reach identical execution states, not what those states actually
represent. This is on one hand an elegant abstraction from the internals
of execution state; on the other, one may suppose that the actual content
of execution states can be more informative and allow designing more
sophisticated evaluation functions. The approach presented in the following
chapter follows this observation.

7

Pattern-guided program synthesis

The motivation behind analyzing consistency of execution traces with de-
sired output in Chap. 6 was to identify and promote the programs that
contain prospectively useful subprograms. The approach described in this
chapter generalizes the trace consistency method in two respects. Firstly,
we seek here for a more general relatedness between the intermediate exe-
cution states and the desired output, rather than for information-theoretic
consistency. Secondly, while evaluation in the trace consistency method de-
pends on a single stage of program execution that maximizes consistency
(captured in a particular column of an execution record (6.4)), the evalua-
tion functions proposed here depend on the entire execution record. In this
way, the approach presented in this chapter, originally proposed in [101]
and then extended in [96], looks for patterns in program behaviors that
seem relevant for a given program synthesis task.

7.1 Motivation

The motivations for relying on general ‘relatedness’ between intermediate
execution states and program output and for taking into account entire
execution records can be illustrated with the following example.

Example 7.1. Assume the task is to synthesize a program that checks if
a quadratic polynomial ax2 + bx + c has roots in the real domain. The
input to the program is a triple of numbers (a, b, c) and the desired out-
put is an appropriate Boolean value. Consider the candidate program for
this task, which we present as a function in the Scala programming lan-
guage in Fig. 7.1a to demonstrate that the formalism of execution record
is applicable to conventional programming languages.

Fig. 7.1b shows the corresponding execution record for this program, com-
posed of three traces. The program is clearly very close to being correct; its
only deficiency is disregarding the delta variable. Fixing this is straight-
forward for a human programmer: the return statement in line 4 needs
© Springer International Publishing Switzerland 2016 77
K. Krawiec, Behavioral Program Synthesis with Genetic Programming,
Studies in Computational Intelligence 618,
DOI: 10.1007/978-3-319-27565-9_7

78 7 Pattern-guided program synthesis

Fig. 7.1: (a) A partially correct program in Scala for determining if a quadratic
polynomial ax2 + bx + c has real roots. (b) The execution record for this pro-
gram for three exemplary inputs. The columns pi of the execution record are
numbered consistently with the line numbers in the program listing.

to be extended to return hasDegreeTwo && (delta >= 0). The compo-
nents required for expressing the target concept are calculated at inter-
mediate execution stages in lines 2 and 3. However, this program fails to
combine them in the right way.

The conventional objective function fo would judge this program only by its
output, which would be incorrect for many tests. The trace consistency eval-
uation function ftc (6.4) from Chap. 6 should be able to notice that the inter-
mediate execution states reached in lines 2 and 3 (i.e. the values of variables
hasDegreeTwo and delta calculated there) have relatively high information-
theoretic consistency with the desired output. Depending on the actual tests
used, the two-way conditional entropy is likely to be minimized by one of
the random variables Xk associated with these locations (6.4). However, only
one of them will be ultimately reflected by ftc. ftc cannot take into account
that it is the combination of these expressions (subprograms) that is par-
ticularly promising. As a consequence, the above program may attain the
same value of ftc as its close relatives, e.g., a program that misses line 3. �

The lesson learned from this example is that consistency of execution states
with the desired output is only one type of potentially useful behaviors that
can emerge in candidate programs synthesizes in an iterative framework like
GP. There are other, more complex and more subtle behaviors that can be
the telltales of prospective performance. The challenge lies in making a
program synthesis method capable of detecting such behavioral patterns.behavioral

pattern

A skilled human programmer may discover behavioral patterns and exploit
them to design a program that meets the specification of a program syn-
thesis task. Humans in general are known to be incredibly good at spotting
patterns and thinking in patterns when solving all sorts of problems – it is
not for no reason that they have been termed informavores [128]. A great
deal of AI research is about modeling and mimicking such capabilities [53].
Moreover, humans can anticipate the patterns that are desirable in a given
problem and often use domain and common sense knowledge for that sake.

7.2 Discovering patterns in program behavior 79

list Sort(list) Central(list) median(list)sorted list

Fig. 7.2: The conceptual decomposition of a generic algorithm calculating
the median of a list of numbers.

Example 7.2. Consider the task of synthesizing a program that calculates
the median of a list of numbers (Fig. 7.2). The background knowledge tells
us that a reasonable first stage of solving this task is to sort the list. Once
the input list is sorted, its median is the central element (for odd-length
lists, or the mean of two central elements for lists of even length). In terms
of execution records, reaching an intermediate execution state that contains
the sorted elements of the list is desirable for this task. �

Following the research we reported in [101, 96], we propose to con-
sider synthesis approaches that mimic human programmers in detecting
the potentially useful behavioral patterns and reward the programs ac-
cordingly with evaluations. Hereafter, we use the term pangea (PAtterN
Guided Evolutionary Algorithms) to describe this class of approaches. The
particular representative of this class described in this chapter employs
knowledge discovery algorithms to search for behavioral patterns. Such
methods should in particular be able to notice the promising co-occurence
of intermediate execution states in Example 7.1 and their joint ‘related-
ness’ to the desired output. If this approach is able to reveal meaningful
dependencies between partial outcomes and the desired output, we may
hope to thereby promote programs with the potential to produce good
results in future, even if at the moment of evaluation the output they
produce is incorrect.

7.2 Discovering patterns in program behavior

Example 7.1 shed some light on the notion of relatedness signaled in the
beginning of this chapter. The concepts hasDegreeTwo and delta are re-
lated there to the target concept hasRoots in the sense that they can be
easily combined into a correct program. The trace consistency method in
Sect. 6.2 could be extended so as to capture such co-occurrences of useful
concepts (by, e.g., examining multiple conditioning variables Xk simultane-
ously). There is however a more natural way, which also opens the door to
a wider class of behavioral patterns. Synthesis of an entity that captures
a given target concept using some elementary features can be phrased as
supervised learning from examples, arguably the most intensely studied learning

from
examplesparadigm of machine learning (ML).

80 7 Pattern-guided program synthesis

Program
error

Program traces
(intermediate

execution states)

Training set

f

e

...

...

...

...

...

-

-

-

-

-

Program
input

Desired
output

Program error

in3

in1

in2

in4

in5

y1

y2

y3

y4

y5

Actual
program
output

p(x1)

p(x2)

p(x3)

p(x4)

p(x5)

s1(x1) s2(x1)

s1(x2)

s1(x3)

s1(x4)

s1(x5)

s2(x2)

s2(x3)

s2(x4)

s2(x5)

c
(size)

Fig. 7.3: The workflow of Pattern-Guided Evolutionary Algorithm.
(pangea)

The ML perspective on behavioral program synthesis originates in the ob-
servation that an execution trace bears certain similarity to an example in
ML (cf. Fig. 3.2). Recall that a program p applied to an input in reveals
its behavior with the execution trace (p0(in), . . . , p$(in)) (3.5). If an exe-
cution record resulting from applying p to all tests in T is aligned, i.e. the
states in particular traces correspond to each other, the columns Xk of the
record can be likened to attributes in ML. The desired program output out
corresponds in this context to the desired response of a classifier1. And cru-
cially, an ML induction algorithm (inducer for short), given a set of such
examples, can be used to learn a classifier that predicts out based on the
attributes Xk describing execution traces.

Similarly to the trace consistency method and test difficulty-based methods,
pangea defines its own evaluation function, which is intended to replace
or augment the conventional objective function. The method proceeds in
the following steps, depicted in Fig. 7.3:

1. An execution record is built by running the program on the tests.
2. The execution record is transformed into an ML dataset D.
3. An ML induction algorithm is applied to D, resulting in a classifier C.
4. Program evaluation is calculated from C.

Construction of an execution record in Step 1 has been covered in Sect. 3.1.
Steps 2–4 are detailed in the following subsections.
1 Depending on the domain of out, the ML task in question is classification or

regression. Although pattern-guided program synthesis can be applied to both,
for brevity we use the term ‘classification’.

7.2 Discovering patterns in program behavior 81

7.2.1 Transforming an execution record into an ML dataset

An execution record in its original form (3.3) is not suitable to learn from
using the conventional supervised ML techniques. Execution states can
represent any data (e.g., single values in Fig. 6.2 or pairs of bits in Fig. 6.1),
while ML algorithms typically expect metric or nominal attributes. The
record also does not have an explicitly defined dependent variable, which
is indispensable for supervised learning. In principle, one could overcome
these difficulties and devise a specialized ML algorithm to learn directly
from an execution record. We find it however more reasonable to transform
an execution record into a conventional dataset and so make it amenable
to a multitude of ML inducers that may represent hypotheses in various
ways (e.g., as decision rules, decision trees, or neural networks).

An execution record of m traces and n columns is transformed into a ma-
chine learning dataset D composed of m examples and n′ ≥ n attributes.
Each trace (row) in the execution record corresponds to an example in D,
and every column gives rise to one or more attributes (a.k.a. features). An
attribute is thus a complete or partial image of executing environment at
particular stage of program execution. The attributes are derived from the
states in a way that depends on GP genre. In tree-based GP, there are
no side effects and every instruction (a node in program tree) returns a
single value. If those values represent a simple type, which we assume in
this book, they directly form the corresponding ML attribute. The type of
the attribute is set accordingly to the type of data returned by an instruc-
tion: floating-point values give rise to continuous attributes, discrete values
(booleans, enumerations, etc.) to nominal attributes or ordinal attributes.
For instance, the execution record for the tree-GP program in Fig. 6.2
would be composed of five nominal attributes corresponding to particular
nodes in the program tree.

In non-tree GP paradigms (or more precisely the non-functional ones, i.e. in-
volving side effects), the course of the above transformation depends on the
particular form of execution record. In Sect. 3.2, we suggested to build exe-
cution records in a differential fashion, i.e. so that the consecutive columns
reflect only the changes in an execution environment rather than the en-
tirety of them. This guarantees the columns to be mutually non-redundant,
which comes in particularly handy in the context of ML, where redundant
attributes are a waste of resources in the best case (and can reduce classifier
performance in some scenarios).

Consider the simple, non-differential execution record shown in Fig. 7.4a, re-
produced for convenience from 6.1b, where it was generated by a linear GP
program. Every column of that record would give rise to two nominal ML
attributes corresponding to the registers r1 and r2 that form the execution
environment. That execution record would thus result in an ML dataset com-
prising six attributes. The differential execution record for the same program

82 7 Pattern-guided program synthesis

p0 p1 p$

t1 00 00 00
t2 01 01 00
t3 10 00 00
t4 11 11 11

(a)

p0 p1 p$

t1 00 00 00
t2 01 01 00
t3 10 00 00
t4 11 11 11

(b)

Fig. 7.4: The execution record (a) from Fig. 6.1 and its differential version
(b). The elements of execution state that do not change and disappear
from the differential record are grayed out. These execution records can
be directly mapped to ML datasets that feature respectively six and four
attributes.

is shown in Fig. 7.4b: the grayed-out are omitted in that record, as they have
not been affected by the corresponding instructions. In consequence, the re-
sulting ML dataset would comprise four attributes only.

Analogous simplifications when building an ML dataset from an execution
record hold for the Push programming language [170], which is also non-
functional and involves side effects that manifest in changing the states of data
and code stacks that form the execution environment there. However, most
Push instructions modify only selected elements of specific stacks. To avoid
redundancy, it is thus desirable to define the corresponding ML attributes,
e.g., the top element of the stack affected by the just executed instruction. For
instance, the ∗.INTEGER instruction pops two elements from the top of the in-
teger stack, multiplies them, and pushes the result back on top of the integer
stack. That result becomes the value of the associated attribute. An instruc-
tion producing multiple output values (e.g., swapping two topmost elements
on a stack) would by the same principle give rise to two attributes. In [101],
we successfully applied such proceeding when applying pangea to programs
evolved in Push. The design of ML attributes is related to the incremental
nature of practical implementations of execution records, which we discussed
in Sect. 3.2.

To enable discovery of dependencies between execution traces and the tar-
get behavior, the resulting dataset D needs to define a supervised learning
problem. To this end, we augment it with a decision attribute (dependent
variable) that reflects the desired output. The type O associated with de-
sired output is determined by a given program synthesis task (Sect. 1.2). In
this book we focus on tasks typically considered in GP, where the desired
output is a scalar. In such cases, the corresponding decision attribute in
D is identical to it. When the desired output is nominal, so is the decision
attribute in D, and D defines a classification task. If the desired output
is continuous, D defines a regression task. A program synthesis task with

7.2 Discovering patterns in program behavior 83

desired output forming a compound entity (e.g., list) would require mapping
into several decision attributes.

In summary, the dataset serves as a representation layer for the execution
record, an ‘adapter’ between it and an ML induction algorithm. For tree-based
GP and simple data types (Booleans, integers, reals) it is essentially transpar-
ent, replicating one-to-one the execution record and the desired outputs.

7.2.2 Classifier induction

The outcome of the previous stage is a conventional ML dataset D of m
examples, each described by n′ attributes (where n ≤ n′ is the number of
columns of an execution record) and a decision attribute. The objective of
pangea is to assess how useful are the attributes in D for predicting the de-
pendent attribute, i.e. the desired output of the program. We achieve this by
applying an induction algorithm (inducer) to D and so obtaining a trained
classifier. The induced classifier models the dependencies between the inter-
mediate execution steps and the desired output. In doing so, it implicitly
detects patterns in execution traces that are related to the target of the
program synthesis task.

Subject to certain constraints discussed in the next section, many types of
inducers can be used here to train a classifier. In the experiments reported
in Chap. 10 pangea employs a decision tree induction algorithm, so we use
it also in the example that follows.

Example 7.3. Figure 7.5 presents the above process for the program repro-
duced from Figs. 3.1 and 5.1 and an integer-valued symbolic regression
task composed of four tests and two input variables. The colored lists
below instructions in the program tree show the intermediate execution
states produced for the four tests. When gathered together, they form the
execution record (not shown here) comprising seven columns, i.e. as many
as there are nodes in the program tree. Among them there are columns
that reproduce the input variables (x1 and x2) and columns that reflect
the intermediate execution states (the left and the right subtree of the
root node). The execution record is subsequently transformed into an ML
dataset featuring four attributes (x1 to x4), where the redundant columns
(multiple occurrences of x1) are removed. The blue column corresponding
to program output is also discarded in order to focus the evaluation on
the intermediate execution states. Given this training set, a decision tree
induction algorithm produces the presented classifier, interpreting the at-
tributes as nominal variables. The resulting decision tree is characterized by
fe = 0 and fc = 5; these two values form bi-objective characterization of the
program. The value of the conventional objective function fo (here: city-block
metric) for this program amounts to 10. �

84 7 Pattern-guided program synthesis

x1

2

1

3

0

2

1

3

0

x1

*

4

1

9

0

x2

3

0

1

1

2

1

3

0

x1

+

5

1

4

1

-

-1

0

5

-1

2

1

3

0

3

0

1

1

3

2

4

2

x2 yx1

2

1

3

0

3

0

1

1

4

1

9

0

5

1

4

1

x1 x2 yx3 x4

Problem

GP Individual

ML dataset

2

4

2 y = 2 x1

x4

= 1 = 1

y = 4y = 3

= 2 = 2

Decision tree

Evaluation:

10

0 examples

5 nodes

Program error

Fig. 7.5: Calculation of pattern-guided evaluation for a program reproduced
from Figs. 3.1 and 5.1. See Example 7.3 for detailed explanation.

7.2.3 Evaluation functions

Example 7.3 illustrates that the classifier maps the intermediate execution
states (capture in the attributes of ML dataset) onto the desired output of
the program. In a sense, it attempts to complement program’s capability for
solving the problem (i.e. producing the desired output value). Crucially, if the
traces feature regularities that are relevant for predicting the desired output,
then the induction algorithm should be able to build a classifier that is (i)
compact and (ii) commits relatively few classification errors. These aspects
are strongly related to each other, which we illustrate in the following.

Consider first a correct program p. p solves the task, i.e. produces the desired
output outi = p(ini) for all tests (ini, outi) ∈ T . Since each trace ends with
a final execution state, the last attribute X$ in D reflects the desired output
(for side effect-free programs and simple data types X$ is actually equivalent
to desired output). In such a case, the inducer should be able to produce a clas-
sifier that uses only X$. For instance, for decision tree inducers, the resulting
tree could be composed of a single decision node involving X$ and k leaves
corresponding to the k unique values of desired output. Such a decision tree
is thus quite compact and commits no classification errors.

Now consider an incorrect program such that its output diverges so much
from the desired output that the corresponding attribute X$ is useless
for prediction. In such a case, it is likely for the induced classifier to ig-
nore it and rely the other attributes, derived from the intermediate execu-
tion states. Each such attribute individually has usually limited predictive

7.2 Discovering patterns in program behavior 85

power. In consequence, the resulting classifier needs to rely on many such
attributes and thus be quite complex. In the case of decision trees, the tree
will feature many decision nodes. In general, the size and predictive accu-
racy of the classifier depend on the degree to which the intermediate states
relate to the desired output.2

These examples illustrate that complexity and predictive capability of a
classifier are strongly related, a fact that is well known in ML. According
to the Minimum Description Length principle (MDL [152]), the complexity Minimum

Descrip-
tion
Length

of the mapping from the space of attributes onto the dependent variable
may be expressed by summing the encoding lengths of the classifier (the
‘rule’) and of the erroneously classified examples (the exceptions from the
rule). However, practice shows that plain sum of these two terms rarely
works in practice and they need to be carefully weighed, which can be
challenging. For this reason and driven by the motivations discussed later
in Chap. 9, we define in pangea two separate evaluation functions. The
first of them is the classification error classifi-

cation
error

fe(p) = |{(ini, outi) ∈ T : C(Di) �= outi}|, (7.1)

where C is the classifier induced from the training set D, Di is the ith ex-
ample in the training set D, and C(Di) denotes C’a prediction for example
Di. The second evaluation function is classifier complexity classifier

complex-
ity

fc(p) = |C|, (7.2)

where |C| is the complexity of the classifier C, calculated accordingly to
classifier representation. For decision trees, it is simply the number of tree
nodes.

As it follows from the earlier argument, neither fe(p) nor fc(p) alone cap-
tures the relatedness of attributes to the desired output. In consequence,
we usually use them alongside each other.

Example 7.4. This example continues Example 7.3 illustrated in Fig. 7.5.
The decision tree induced there from the execution record of program p
has five nodes, so fc(p) = 5. When tested on the tests from Fig. 7.5a, that
classifier commits zero error, therefore fe(p) = 0.

Now consider another program p2 = (∗ x1 x1). Because this program is a sub-
program of p (Fig. 7.5b), the resulting dataset comprises only the first two
attributes shown in Fig. 7.5c. The ML inducer can build a zero-error deci-
sion tree from these data, which is possible but requires seven nodes. In such
2 For clarity, in this explanation we assume classifiers that explicitly select at-

tributes, like decision trees or decision rules. Non-symbolic classifiers (like SVMs
or neural nets) would require more elaborate means to demarcate the used/se-
lected attributes from the unused ones; see Sect. 7.3.

86 7 Pattern-guided program synthesis

a case, fc(p2) = 7 and fe(p2) = 0. Of course, particular ML inducers vary in
the way they prioritize classifier complexity and error, so the characteristics
of the underlying ML algorithm determines in part the characteristics of fc
and fe. �

Similarly to ftc in the trace consistency approach (Chap. 6), fe and fc
assess program’s ‘prospective’ capabilities. If a program calculates interme-
diate results (i.e. feature subprograms) that relate to the target concept
defined by the program synthesis task, the resulting classifier is likely to
be simpler and/or commit fewer errors. This will happen even if the actual
output of the program is useless for the task being solved. However, while
ftc seeks a single behaviorally most consistent subprogram, an inducer can
spot co-occurrence of several subprograms which, when combined together
in the classifier, allow attaining low classification error.

Execution records also reflect input data fed into a program, and this man-
ifests in the attributes that reproduce the input variables (like X1 and
X2 in Fig. 7.5). As we assumed the tests in T to be coherent (Sect. 1.3),
the sought mapping from program inputs to the desired outputs in T is a
function. Therefore, if classifier representation is expressive enough, there
always exists a classifier that maps the attributes to the desired output at
no error (fe = 0). For instance, for any coherent supervised classification
dataset composed of nominal attributes there exists a decision tree that
commits zero error. One might thus question the rationale behind pangea.
Note however that realizing a direct mapping from program input to pro-
gram output without the help of attributes based on intermediate execution
states will usually require a complex classifier. The absence of useful sub-
programs is thus penalized by large fc. Once such subprograms emerge in
candidate programs in the further course of iterative synthesis process, an
induction algorithm may prefer to use them because they facilitate con-
struction of simpler classifiers.

Most inducers exhibit such inductive bias, which has its roots in Occam’s
Razor and is intended to lower the likelihood of overfitting. In pangea,
that bias determines the way an inducer handles the trade-off between fe
and fc. Alternatively, one may consider an abridged variant of execution
record that does not include the attributes derived from input data or even
covers only selected stages of program execution, for instance only a few
last executed instructions, as in [101].

It may be also worth realizing that most ML inducers are heuristic al-
gorithms that do not guarantee producing an optimal classifier for a given
input data (here: transformed execution record). For instance, decision tree
inducers like C4.5 [150] search greedily the space of possible tree designs
and may yield a classifier that is suboptimal with respect to size, classifica-
tion accuracy, or both. Therefore, the values of fe and fc used in pangea
only approximately characterize the evaluated programs. However, we do

7.3 Discussion and related concepts 87

not find this critical, given that program synthesis as conducted by GP is
heuristic and stochastic in the first place.

7.3 Discussion and related concepts

pangea conducts the four-stage evaluation process described above for each
candidate program individually, in abstraction from the other programs in
a working population P . As the programs in P may vary in length, the
training sets D constructed from them vary in the number of attributes.
Nevertheless, if the same induction algorithm is used, the resulting evalua-
tions on fe and fc are comparable, because they characterize the classifiers
that solve the same underlying problem. The decision attribute, derived
from the desired output of program synthesis task, is the same, and so is
the input data that gives rise to program traces and attributes. Put in ML
terms, pangea uses an ML inducer to evaluate the utility of various data
preprocessors, implemented by subprograms.

Obviously, transformation of an execution record into an ML dataset
(Sect. 7.2.1) can be made more sophisticated. That would be necessary
if execution states represented not elementary but compound data types,
or when representation bias or inductive bias of an inducer prevented it
from capturing patterns that were essential for solving the task. Yet an-
other motivation is to allow discovery of higher-order patterns that are
unobservable when each attribute reflects a single execution state. Looking
for some form of analogies [53] between execution traces is an appealing
option here. It is interesting to note that similar motivation propelled the
research on feature construction in ML (see review in [83]).

In the past, GP has been often combined with ML in a similar modus
operandi to synthesize features. Such hybrids were routinely used to solve feature

synthesisML tasks and proved particularly effective when applied to challenging
problems in pattern recognition and computer vision (see, e.g., [91, 83, 11,
89, 178] and [92] for a review). In those studies however, feature definitions
evolved with GP form an inherent part of the target ML system. In pangea,
the situation is in a sense reversed: an ML inducer is at the service of
program synthesis, and its usage is transient and limited to the evaluation
process. The classifier is discarded once fe and fc have been calculated.

Classifier complexity fe is easy to compute for decision trees, where it boils
down to counting the number of tree nodes. This is one of the reasons
we adopted decision trees in the above examples and in the experimen-
tal part of this book. Nevertheless, there exists some means of expressing
complexity for virtually all classifiers (models). For instance, in [3] we used
the measures based on Akaike Information Criterion [141] and proposed
by [172] to characterize the complexity of regression models expressed as
vectors of real parameters.

88 7 Pattern-guided program synthesis

The MDL principle that helps understanding the trade-off between fe and fc
was used in GP in numerous occasions. In most such cases, it played a similar
role to other machine learning techniques, i.e. as a means of controlling the
trade-off between model complexity (sometimes referred to as parsimony in
a GP context) and accuracy. In this spirit, Iba et al. [61] used it to prevent
bloat in GP by designing an MDL-based evaluation function that took into
account the error committed by an individual as well as the size of a program.
A few later studies followed this research direction (see, e.g., [197]).

7.4 Summary

Among the methods presented in this book, the pattern-guided evaluation
functions go the furthest in harvesting information about program behavior.
The types of behavioral patterns pangea can detect is in principle limited
only by the expressibility and the biases of the involved ML inducer. A
typical inducer is able to, among others, detect the consistency of a single
attribute with the desired output, which was the feature offered by trace
consistency evaluation function ftc in Chap. 6. We may claim thus that
the class of behavioral patterns detectable by pangea forms a superclass
of the patterns detectable by ftc.

Nevertheless, fe and fc obviously do not reflect all details of program ex-
ecution. Neither they nor ftc ultimately solve the evaluation bottleneck
problem. In place of a single scalar objective to drive a search, they present
us with two objectives, still very little compared to the abundance of in-
formation available in an execution record. Thus, the door to even deeper
behavioral evaluation remains open, which we touch upon in Chap. 11. Nev-
ertheless, the experimental evidence in [101, 96] shows that even this modest
widening of evaluation bottleneck immensely boosts the likelihood of syn-
thesizing correct programs using compared to conventional GP. In Chap. 10,
we will corroborate those results within a new experimental framework.

The common feature of the trace consistency approach and pangea is that
they identify the columns in an execution record that are essential for the re-
sulting evaluation. In the former, it is the column that minimizes the two-way
entropy (6.4). In pangea, it is the columns that judged as pertinent to the
desired output by an ML algorithm. In both approaches, such columns indi-
cate specific locations in program code or, as we phrased this in this chapter,
subprograms. One may wonder whether this additional information can be
exploited for the sake of making program synthesis more effective. In the next
chapter, we present an approach that originates in this observation.

8

Behavioral code reuse

To this point, our attempts to widen the evaluation bottleneck focused on
defining alternative evaluation functions, which we conceptualize as search
drivers in Chap. 9. However, an analysis of an execution record (Chap. 3),
whether conducted with information-theoretic measures (Chap. 6) or ma-
chine learning algorithms (Chap. 7), also reveals information about the quali-
ties of particular components of candidate solutions, i.e. subprograms. In this
chapter, we elaborate on this observation and propose a means to harness its
potential. We show how the detailed information available in an execution
record together with behavioral evaluation enables (i) identification of use-
ful components of programs, which can be then (ii) archived and (iii) reused
by search operators. The following sections detail these stages as realized
in [96].

8.1 Identification of useful subprograms

Many machine learning classifiers perform internal feature selection by decid-
ing which attributes to use to construct a classifier. Some of them explicitly
reveal that information. This in particular applies to the classifiers that rep-
resent their hypotheses (models) symbolically, among others decision trees
used in the previous section. For instance, the decision tree in Fig. 7.5 engages
only two attributes (x1 and x4) of the four available in the dataset. Similar
transparency holds for rule-based classifiers and other more or less ‘white-
box’ symbolic representations like Bayesian networks. Nevertheless, the non-
symbolic representations do not preclude such possibility: the weights of a
neural network can be for instance used to quantify the relative importance of
attributes (or even construct a corresponding symbolic representation [29]),
and statistical tools exist to assess the importance of attributes in regression
models (see e.g., [3]). In summary, almost every type of classifier can be used
to estimate the relevance of attributes in a given supervised learning task.
© Springer International Publishing Switzerland 2016 89
K. Krawiec, Behavioral Program Synthesis with Genetic Programming,
Studies in Computational Intelligence 618,
DOI: 10.1007/978-3-319-27565-9_8

90 8 Behavioral code reuse

In pangea (Chap. 7), behavioral evaluation of a program results in an
ML classifier that serves as a basis for calculating behavioral evaluation
functions. The classifier is induced from a dataset built upon an execution
record. The attributes in that dataset correspond to columns in the orig-
inal execution record, which in turn point to concrete instructions in the
program. This chain of dependencies leads thus to instructions that are
judged as most promising by an ML inducer, i.e. producing intermediate
results that relate to the desired output. Behavioral evaluation can be thus
seen as a means of solving the credit assignment problem [130]: decidingcredit

assign-
ment which components of a compound candidate solution are responsible for its

overall performance and how to distribute the total reward between them.

On the face of it, considering credit assignment in the context of program
synthesis is disputable. Intricate interactions between instructions make it
difficult to treat programs as anything but monoliths (c.f. Sect. 1.4). For
instance, how much credit should the second line of the program in Fig. 7.1a
receive in return for the overall performance of this program (which, by the
way, is incorrect as a whole, making this question even harder)?

This question is difficult if not void when asked at the level of source code.
However, considerations about credit assignment become appropriate on
higher abstraction levels involving structures of code, i.e. blocks, procedures,
or in general modules. Because modules typically have well-defined inter-
faces with the other components (e.g., function signatures) and certain roles
in the context of entire program, one might quantify the degree to which
a given instance of a module meets the expectations of the context. Put
in terms of studies on modularity, such structures are nearly-decomposable
but usually not separable (see [163, 190] and Sect. 11.1).

In tree-based GP, the natural interpretation of such a structure is a subtree
in program tree, which we refer to in the following as subprogram. If a par-sub-

program ticular programming language is functional, there is no global state and sub-
programs perform independent computation. In such a case, the classifier in
pangea, by referring to a particular column in an execution record, indicates
usefulness of the subprogram rooted in corresponding node of program tree.
As a side effect of program evaluation, we obtain a subset of useful subpro-
grams. pangea is not the only approach in this book where evaluation can
adopt this role of ‘subprogram provider’. The trace consistency evaluation
function ftc in Chap. 6 has similar capability: formula (6.4) seeks the col-
umn in an execution record that minimizes the two-way conditional entropy,
and that column pinpoints the subprogram that behaves most consistently
with the desired output.

Given a program p, the subprograms identified by a classifier C in p will
be denoted by PC(p). We allow PC(p) = ∅, i.e. an evaluation process may
refuse to indicate any subprograms in p as valuable. In pangea, this special
case occurs when a classifier does not use any attributes from the dataset.

8.2 Archiving subprograms 91

For instance, a decision tree inducer like C4.5 [150], when faced with poorly
discriminating attributes, may produce a ‘decision stump’, i.e. a degenerate
decision tree comprising single leaf that classifies all examples to the majority
class.

Example 8.1. Consider the evaluation process in pangea illustrated in
Fig. 7.5. The decision tree induced in that example used only attributes
x1 and x4. The remaining attributes have been deemed not discriminative
enough to be used by an inducer when constructing the decision tree. x1
corresponds to an input variable x1, i.e. to a single-instruction program (x1).
x4 identifies in the evaluated program the subprogram (x2 + x + 1) (the
right subtree of the program tree). Therefore, PC(p) = {(x1), (x2 + x + 1)}.
The valuable subprograms identified in this way in all candidate programs
in population P can be then archived as described in the subsequent
sections. �

8.2 Archiving subprograms

We are ultimately interested in reusing the subprograms ‘harvested’ from the code
reusecandidate programs in a population. Valuable subprograms may emerge in

any individual that undergoes evaluation, so it seems reasonable to gather
them in a central repository. However, a few aspects have to be taken into
account in that process.

Firstly, subprograms originating in different programs in a population P
cannot be considered equally valuable. The inducer will always use any
available attributes to construct a possibly good classifier. In the case of
the C4.5 inducer, to be included in the resulting classifier, an attribute
needs to provide just slightly better conditional entropy than any other
attributes (calculated locally, for a given branch of decision tree; [150]). In
consequence, the usefulness of subprograms gathered in PC(p) may strongly
vary across the programs p ∈ P .

Secondly, many inducers, including C4.5, are not limited in the number
of attributes they select to construct a classifier. Which and how many
attributes will be ultimately used by a decision tree depends not only on the
above-mentioned entropy (information gain, to be more precise), but also
on the heuristic strategy employed by an inducer. Consider two classifiers
C1 and C2 induced from execution records of two different programs. C1
may use five attributes, while C2 fifty, yet they may still commit the same
classification error (and even identically classify particular examples).

These premises motivate the design of a repository of subprograms, called
hereafter an archive. The archive A is a prioritized queue of a fixed length, archive

92 8 Behavioral code reuse

maintained throughout the entire evolutionary run. The priority is deter-
mined by a utility measure of a subprogram p′ in program p: sub-

program
utility

u(p′) = 1
(1 + fe(p))|PC(p)| , (8.1)

where fe(p) is the error of the classifier induced from p’s execution record
(7.1). Within a single evaluation act, subprograms are thus rewarded with
high utility if they facilitate building a good classifier (low fe(p)) and if there
are not too many subprograms (low |PC(p)|). An ideal subprogram p′ that
alone (PC(p) = 1) makes it possible to induce a perfect classifier (fe(p) = 0)
receives u(p′) = 1. Conversely, if many subprograms are needed to build a
classifier or/and the classifier has low predictive accuracy, u(p′) will gravi-
tate to zero.

Each evaluation act produces a new batch of subprograms PC(p) and re-
quires A to be accordingly updated. First, the subprograms from these two
collections are temporarily merged into a single set A′ = A ∪ PC(p) and A
is emptied. Then, we apply the utility-proportionate selection to A′ (the
counterpart of the fitness-proportional selection commonly used in EC).
The selection results with a single subprogram p′, which is added to A, un-
less there is already a subprogram p′′ ∈ A that is semantically equivalent to
p′, i.e. produces the same output for all considered tests (Sect. 5.3). In that
latter case, only the smaller subprogram of p′ and p′′ remains in the archive
and is granted with utility equal to max(u(p′), u(p′′)). This selection pro-
cess repeats until A reaches its capacity or there are no more subprograms
in A′ that meet the above requirements. An evolutionary run starts with
an empty archive, and its capacity is assumed to be low (in the order of
dozens) in order to help proliferating the most promising building blocks.

This way of updating an archive provides for its semantic diversity, enables
temporal variance, and promotes small subprograms, which is intended
to reduce bloat when subprograms get reused in new candidate solutions.
The quality of subprograms held there dynamically adapts to the current
performance of programs in population: a subprogram that was considered
valuable in the initial generations of a GP run may have no chance to
survive in the archive once more useful subprograms emerge and become
noticed by behavioral evaluation.

8.3 Reuse of subprograms

The objective of archiving subprograms is their reuse in new candidate
solutions. For compliance with evolutionary framework of GP, it is natural
to implement this functionality as a mutation-like search operator. Given a
parent program tree p, the operator picks a random node in p and replaces

8.4 Discussion 93

Population

Evaluation

Selection

Variation

Termination

Evaluation
function

Initialization Archive

Fig. 8.1: The workflow of genetic programming synthesis system extended
with an archive and behavioral code reuse. Compare to Fig. 1.1.

it (and the subtree rooted in it) with a subprogram drawn from the archive
A proportionally to utility (8.1). Therefore, subprograms of higher utility
are more likely to become components of other programs.

This search operator, though applied to a single parent program, can be
considered as a form of crossover, because it fits the offspring with a piece
of code that has been previously retrieved from another individual. Con-
trary to the conventional subtree-replacing mutation, no genuinely new
subprograms and no instructions other than those currently present in the
archive are being implanted in parent programs. In a longer run, this may
cause some of the instructions to disappear from the population altogether.
For this reason, we recommend to use this operators side-by-side with the
conventional mutation or any other search operator that can provide pop-
ulation with a supply of fresh ‘genetic material’.

8.4 Discussion

Figure 8.1 summarizes the workflow of behavioral code reuse proposed here
by confronting it with the conventional GP workflow (Fig. 1.1). While the
population is only a ‘snapshot’ of the current state of the search, an archive
holds the less transient knowledge and serves as a centralized, long-term
memory of search process. In this respect, it bears some similarity to more
conventional archives used in EC that typically gather the best candidate so-
lutions found so far, which makes particularly sense when in multi-objective
setup (for instance, the nsga-ii algorithm referred several times in this book
maintains an internal archive of nondominated solutions). However, in con-
trast to those archives that store entire candidate solutions, the archive
considered here stores fragments of candidate solutions (subprograms).

94 8 Behavioral code reuse

In a broader, component-wise perspective, any stage of a GP algorithm
might use the knowledge gathered in archive in order to advance search. An
obvious alternative to the archive-based mutation proposed here is to feed
the subprograms from archive directly into population, promoting them so
to complete programs. This is admissible in type-less tree-based GP (or any
tree-based GP that ensures closure [79, 148]), where every subprogram isclosure

a valid program.

In the past GP research, several approaches have been proposed that main-
tain repositories of code pieces and engage code reuse. Automatically de-
fined functions [78] can be seen as such repositories of subprograms, albeit
local, associated with an individual, and devoid of any directed mainte-
nance (i.e. the content of the repository is controlled only by evolution).
Related research efforts quite often aimed at knowledge transfer between
different problems in program synthesis and machine learning. Run trans-
ferable libraries [157] collect program fragments throughout a GP run and
reuse them in separate evolutionary runs applied to other problems. Rosca
and Ballard [153] used an analogous library within a single evolutionary
run, with sophisticated mechanism for assessing subroutine utility, and en-
tropy for deciding when a new subroutine should be created. Haynes [48]
integrated a distributed search of genetic programming-based systems with
‘collective memory’, albeit only for redundancy detection. Other approaches
involving some form of library include reuse of assemblies of parts within
the same individual [58] and explicit expert-driven problem decomposition
using layered learning [4]. Last but not least, the methods we proposed
in [66, 68, 67, 102, 65] used GP archives for solving multi-class machine
learning and pattern recognition problems, where we allowed multiple co-
evolving populations delegated to particular decision classes reuse the code
evolved in other populations.

The archive as proposed in this chapter differs from the work reviewed
above mainly in the way the to-be-archived code pieces are determined. In
the past approaches, that choice was typically based on the frequency of a
subprogram occurrence in a population, or on subprogram’s contribution to
program’s evaluation. In behavioral code reuse, such decisions are founded
on test-wise and instruction-wise analysis of program behavior facilitated
by execution records.

8.5 Summary

Subprogram archives presented in this chapter do not explicitly impose
selection pressure on candidate programs in a population. They are thus
inessential for behavioral evaluation, and should be rather considered as a
complementary mechanism. On the other hand, as evidenced by our earlier

8.5 Summary 95

results in [96] and in Chap. 10, they substantially improve the likelihood
of solving program synthesis tasks. Also, as we show in Sect. 10.5, the
behavior-aware selection of subprograms is essential for this mechanism to
be effective.

This chapter concludes the part of this book that covers selected techniques
designed to (more or less explicitly) broaden the evaluation bottleneck indi-
cated in Sect. 2.1. In Chaps. 4–8, we arranged them with respect to increas-
ing level of detail in which they peruse an execution record. This selection
is by no means complete; arguably, there are other approaches not reviewed
here that aimed at the same goal. In the next chapter, we attempt to gather
the evaluation functions characteristic of such approaches under the common
conceptual umbrella of search driver.

9

Search drivers

In this chapter, we provide a unified perspective on the methods presented
in Chaps. 4–8, the key consequence of which is the concept of search driver
detailed in Sect. 9.3.

9.1 Rationale for the unified perspective

In Chaps. 4–7, we presented several evaluation methods for characterizing
candidate programs in GP. We summarize them in Table 9.1 and contrast
with the conventional GP for reference.1

The approaches are founded on various formalisms. They rely on different
parts of the execution record. Most of them evaluate programs in absolute
terms, but some are relative and contextual, i.e. their assessments depend
also on the other candidate solutions in a population. In the listed order,
they are conceptually more and more sophisticated, and tend to elicit more
information from an execution record. The last two listed methods can serve
as subprogram providers (Sect. 8.1), i.e. can identify potentially valuable
code pieces in evaluated programs.

These differences notwithstanding, all these alternatives to standard GP
have been designed with a more or less explicit intention of broaden-
ing the evaluation bottleneck and acquiring alternative (or additional) be-
havioral information from candidate solutions (programs). We postulate
that by this token they deserve a common conceptual umbrella, and from
now on we refer to the evaluation functions they define as search drivers. search

driver

1 Even though SGP does not involve alternative evaluation functions, it allows
the replacement of a problem-specific objective with a metric that, e.g., enables
more efficient search operators (cf. [143]). By this token, it is also included in
this table.

© Springer International Publishing Switzerland 2016 97
K. Krawiec, Behavioral Program Synthesis with Genetic Programming,
Studies in Computational Intelligence 618,
DOI: 10.1007/978-3-319-27565-9_9

98 9 Search drivers

Table 9.1: Summary of key properties of the approaches presented in
Chaps. 4–7. GP: genetic programming equipped with conventional objective
function. ifs: Implicit fitness sharing. doc: discovery of underlying objec-
tives by clustering. sgp: Semantic GP. pangea: Pattern-Guided Program
Synthesis.

Method Chap./ Evaluation Part of execution Objective Source
Sect. function record used

GP 1 fo (1.7) Outcome vector Yes
ifs 4.2 fifs (4.4) Outcome vector No [124]
Cosolvability 4.3 fcs (4.7) Outcome vector No [94]
doc 4.4 f j

doc (4.11) Outcome vector No [95]
sgp 5 d (5.3) Program semantics Yes [135]
Trace consistency 6 ftc (6.4) Traces (equivalence) Yes [100]
pangea 7 fe, fc (7.1,7.2) Traces (content) Yes [101]

As we argue in the following, search drivers are not required to objectively
assess candidate solutions in the context of given problem – this is what
the correctness predicate (1.1) is for. They are to guide search, meant as
an iterative improvement process, by creating a gradient toward better per-
forming solutions. The concept of search driver is thus a generalization of
evaluation function.

To get a better grip on this new concept, let us recall first that objective
function is not necessarily the best tool to guide a search (Sect. 2.2). On the
other hand, none of the evaluation functions in Table 9.1 can be claimed
universally best, as this would violate the No Free Lunch Theorem [193,No Free

Lunch
Theorem 192]. Thus, rather than looking for an imaginary ‘Holy Grail’ of evaluation

functions, we ask: can we characterize the minimal set of requirements
which, when met by a given evaluation function, make it a useful (even
marginally useful) tool to guide search? What is the minimal amount of
feedback an evaluation function must provide so that we may talk about
any guidance at all? Answering these questions in a rigorous manner will
help us delineate search drivers.

9.2 Design rationale

Heuristic search algorithms alternate two actions: generation of new candi-
date solutions (variation) and their selection (cf. Fig. 1.1):

. . .
o−→ Pi

sel−→ P ′ o−→ Pi+1
sel−→ . . . , (9.1)

where Pi ⊂ P is the state of population in the ith iteration of search, and
P ′ ⊂ Pi is the sample (a multiset in general) of candidate solutions selected

9.2 Design rationale 99

from Pi by the selection phase sel. The candidate solutions in P ′ form the
basis for creating new candidate solutions with o, which may internally
implement several specific search operators. The new candidate solutions
populate Pi+1.

Formula (9.1) is a succinct phrasing of an Evolutionary Algorithm (EA) and
virtually any iterative heuristic search algorithm. For instance, in a μ + λ
evolutionary strategy [151], |Pi| = μ + λ, and sel returns the μ best parents
from Pi, which are then augmented by λ offspring by o, leading so to Pi+1. In
local search, P ′ = {p} and Pi is a sample of p’s neighborhood. In an exhaus-
tive local search, o generates the entire neighborhood Pi+1 from the current
candidate solution p, and sel selects the best candidate from it. In stochastic
local search, o generates only a sample of neighborhood. Even random walk
conforms to (9.1): in that case, o generates a random candidate solution, and
sel is an identity function.2

Search operators in o may also utilize the evaluation outcomes, though in
conventional EAs it is usually not the case, and in the following we will be
agnostic about that aspect. For clarity, we also ignore for now initialization
and termination (Fig. 1.1).

Evaluation is not explicitly present in (9.1). We assume that sel is ‘informed’
by some evaluation process. Conventionally, an evaluation function f is glob-
ally defined, static, and absolute, like the objective function fo. The concept
of search driver originates in observations that these properties can be sub-
stantially relaxed:

Observation 1: The evaluations f(p) that guide sel’s decisions do not need
to be independent across the candidate solutions p ∈ Pi. f(p) may
change subject to removal of any other p′ ∈ Pi. This is the case when
evaluation is contextual, e.g., for ifs, cs, and doc in Chap. 4. In such
cases, f ’s domain is effectively Pn, where n is population size, and it
returns an n-tuple of evaluations of its arguments.

Observation 2: The implementation of sel usually involves multiple invoca-
tions of a selection operator, each returning a single candidate solution
from Pi picked from a relatively small sample P ′′ ∈ Pi of candidates,
while the characteristics of the remaining solutions in Pi \ P ′′ are irrel-
evant. At that particular moment, f does not even have to be defined
outside of P ′′. For instance, tournament selection cares only about the
evaluations of a few candidate solutions that engage in the tournament.

2 Formula (9.1) is actually expressive enough to embrace any search algorithm,
including exact algorithms like A∗, once we assume that Pi, rather than being a
subset of P , is a more general state of search process – a formal object that stores
the knowledge about the search conducted to a given point, like the prioritized
queue of states in A∗.

100 9 Search drivers

Observation 3: For selection, it is sufficient to make qualitative compar-
isons on f for the candidate solutions in Pi (or in a sample P ′′ ∈ Pi –
cf. Observation 2). The absolute values of f are irrelevant; it is orders
that matter. Tournament selection is again a good example here. More-
over, comparisons between candidate solutions do not necessarily need
to conform to the requirements of completer orders (in particular to
transitivity). Also, some candidate solutions can be arguably incompa-
rable. Algorithms that conduct search only by qualitative comparisons
are sometimes referred to as comparison-based algorithms [179].

These characteristics form the minimal set of properties of search drivers
posited in the beginning of Sect. 9.1. They are deliberately very modest: a
typical evaluation function, like the objective function fo, imposes a com-
plete ordering on all candidate solutions in P and thus conforms Observa-
tions 1–3 by definition. Apart from these properties, a typical evaluation
function has usually other characteristics that are not essential for search
algorithm as defined above, and are in this sense redundant. The chasm
between the characteristics of common evaluation functions and the actual
needs of a selection operator in a search process (9.1) as expressed in Ob-
servations 1–3 motivate the concept of search driver presented in the next
section. For clarity, our further argument will primarily focus on individ-
ual candidate solutions and local search algorithms. However, we will also
present how this considerations generalize to population-based algorithms.

9.3 Definition

A search driver for a solution space P is any non-constant functionsearch
driver

h : Pk → O
k, (9.2)

where k ≥ 1 is the order of the search driver driver, and O is a partially
ordered set with an outranking relation ≺ (precedence)3. When applied to a
k-tuple P of candidate solutions from P , h(p) returns a k-tuple of evaluations
(scores) from O. We assume that the scores oi ∈ h(P) correspond one-to-
one to the arguments pi ∈ P and are invariant under permutations of the
arguments in P . Accordingly, we allow for abuse of notation and write h(P)
even when P is not a tuple but a set. In the following, o1 ≺ o2 means that
o2 is more desirable than o1. One may alternatively say that h(P) returns a
partially ordered set (poset) (P, ≺).

Many of the search drivers considered in this book are behavioral. A behav-behavioral
search
driver ioral search driver can be always implemented with help of execution record,

because an execution record is the complete account of program execution
3
O should not be confused with O, the type of program output (Sect. 1.1).

9.3 Definition 101

(Sect. 3.1). In this light, such search drivers could be redefined as mappings
from a domain of execution records E to O; however, to embrace also the
non-behavioral search drivers, in the following we conform to the signature
in (9.2).

A search drivers with completely ordered codomain O will be referred to as
complete search drivers. The conventional scalar real- or integer-valued evalu- complete

search
driveration functions are examples of such drivers. The motivation for using partial

orders is to allow search drivers to abstain from deeming some solutions bet-
ter than others, which may be desirable when two solutions fundamentally
differ in characteristics. As complete orders are special cases of partial orders,
an evaluation function with the signature (9.2) that orders its arguments lin-
early is a search driver as well. On the other hand, search drivers generalize
evaluation functions.

A search driver is context-free if the scores it assigns to its arguments are context-
free
search
driver

independent, i.e. it can be expressed by a one-argument function f : P → O:

h(p1, . . . , pk) = (f(p1), . . . , f(pk)). (9.3)

Most of conventional evaluation functions f used in EC and GP are context-
free search drivers in this sense. Note that for context-free search drivers,
the order k is irrelevant. A search driver that is not context-free will be
referred to as contextual. Note that the signature given in (9.2) is necessary con-

textual
search
driver

to correctly define a contextual search driver: for instance, when defining
fifs(p) (4.4) we silently allowed for an abuse of notation, as fifs(p) depends
not only on p, but also on the other members of the population that p
belongs to (the context).

This definition of search driver follows the design rationale presented in the
previous section. Firstly, h evaluates a set of candidate solutions (or more
precisely a tuple) rather than individual solutions, and is thus contextual
(Observation 1). A candidate solution p may receive different evaluations
depending on the remaining elements of P , the argument of h(P). Formally,
h(. . . , pi, . . .) = (. . . , oi, . . .) and h(. . . , pj , . . .) = (. . . , oj , . . .) where pi = pj
does not imply that oi = oj , because the partial orders returned by h in
these two applications can be in general completely unrelated. Secondly,
the characteristics of the remaining candidate solutions in P do not have
to be known (nor even computable) at the moment of applying h to a
particular subset of them (Observation 2). Thirdly, the evaluations assigned
to particular elements of P are not only allowed to be qualitative, but also
only partially ordered (Observation 3).

Our rationale behind naming this formal object ‘search driver’ is twofold.
The word ‘search’ signals that the class of problems we are primarily inter-
ested in here are search problems, even if they are disguised as optimization
problems in GP. The ‘driver’ is to suggest that, other than creating some
search gradient, a search driver is not promising to necessarily reach the

102 9 Search drivers

search target (or detect the arrival at it) – in contrast to what the term
‘objective function’ suggests. In this sense, search drivers care more about
evolvability than about reaching the ultimate goal of search.

The contextual evaluation functions discussed in Chap. 4 (ifs, cs, and doc)
can be phrased as complete search drivers, which we illustrate this with the
following example.

Example 9.1. Refer to Example 4.1 of ifs evaluation and Table 4.1. The
fifs evaluation function applied there to population P = (p1, p2, p3) pro-
duces fifs(p1) = 2, fifs(p2) = 3/2, and fifs(p3) = 1 as the corresponding
evaluations. An equivalent order-3 search driver h can be defined as

h(p1, p2, p3) = (2, 3/2, 1). (9.4)

More generally,
h(p1, p2, p3) = (a, b, c), (9.5)

where a, b, c ∈ O could be abstract values ordered as follows: c ≺ b ≺ a.

Assume that we consider the differences on fifs for the pairs (p1, p2) and
(p2, p3) too small to deem any of the compared candidate solutions better.
In such a case, one could redefine the order in O so that so that only c ≺ a
would hold.

Last but not least, the order of a search driver does not have to be bound
with the size of population; an exemplary order-2 search driver for this
problem could be defined as

h(p1, p2) = h(p2, p3) = h(p1, p3) = (a, b), (9.6)

where a ≺ b. �

9.4 Search drivers vs. selection operators

A vigilant reader might have noticed that search drivers can be directly
used as selection operators. Indeed, h(p1, . . . , pk) is a k-tuple of values
(o1, . . . , ok) from O, and the maximal elements4 in (o1, . . . , ok) are obvi-
ous candidates for being selected. Should O be only partially ordered, the
selection between incomparable elements in O could be addressed by ran-
dom drawing.

Though these similarities might suggest equivalence of search drivers and
selection operators, we find it important to distinguish between these two
4 In general, the maximal elements in the sense of partial orders. A partially

ordered set may have arbitrary many maximal elements.

9.5 Universal search drivers 103

h

P

p1 p2 p3

p4 p5 p6

p7 p8 p9

P ′

p1 p3

p4

p8 p9

h(P ′)

p1 p3

p4

p8 p9

p3

Fig. 9.1: The process of selection involving a single search driver. The selec-
tion operator draws a sample P ′ of candidate solutions from the population
P . Search driver h is applied to P ′ and returns a partial ordering of the
elements of P ′, in which it may deem some pairs of candidate solutions
incomparable (e.g., p1 and p3). Finally, the selection operator makes a de-
cision about selection based on h, yielding p3.

concepts. A selection operator is a component of metaheuristic architec-
ture (9.1) that implements the entirety of preferences concerning naviga-
tion in the search space as well as the desired characteristics of solutions.
A single search driver, to the contrary, is an elementary source of infor-
mation, reflecting only selected characteristics of candidate solutions. This
distinction becomes particularly clear when using multiple search drivers
simultaneously (Sect. 9.8). Thus, selection should be seen as a higher-level
component that may engage one or more search drivers, applying them
to accordingly prepared (typically drawn at random) samples of candidate
solutions. We illustrate this principle in Fig. 9.1.

Search drivers differ from selection operators also in scope of application.
A selection operator is typically applied to entire working population. The
scope of search driver is determined by its order k, which we assume to be
usually low compared to population size (recall that in Sect. 9.1 we set out
to define the minimal feedback needed to effectively guide search).

Another difference is determinism. We define search drivers as deterministic
functions, leaving the non-deterministic aspect of selection to a selection op-
erator. In particular, we assume that it is the selection operator that is respon-
sible for drawing a randomized sample of candidates, which are then passed
to a search driver. Handling special cases with randomness (e.g., tie-breaking)
is also delegated to selection operator in our conceptual model.

9.5 Universal search drivers

Remarkably, our definition of search driver in (9.2) does not refer to a pro-
gram synthesis task. A search driver defines certain features of a solution,

104 9 Search drivers

whether in the context of a specific program synthesis task or in a more ab-
stract way. This is not incidental: we intend to embrace also the universal
search drivers that promote problem-independent characteristics of candi-universal

search
driver date solutions. Examples of universal search drivers for program synthesis

include, but are not limited to:

• Non-functional properties of programs like program length (size), execu-
tion time, memory occupancy, or power consumption.

• Input sensitivity. In cases where program input is a tuple of variables,
it might be important to synthesize programs that take them all into
account. There are two variants of this characteristic. A program can
be said to be syntactically sensitive to all variables if it fetches them all
(reads them in). A program is operationally sensitive if it can be shown
that for every variable vi there exists a combination of the remaining
variables such that the output of a program changes when vi is being
changed. A syntactically sensitive program does not have to be opera-
tionally sensitive. The latter property is usually more desirable, but the
former one is easier to verify.

• Evolvability. Given the iterative nature of search process, it is desirable to
promote candidate solutions that can be subsequently modified to make
further variation possible, and help reaching the optimal solution in a
longer perspective. In tree-based GP, evolvability is hampered by, among
others, bloat: standard search operators tend to extend deeper parts of
programs (close to program leaves), while such changes often have no im-
pact on the behavior of a program.

• Smoothness. In symbolic regression, programs are real-valued functions
that are often required to be smooth, i.e. the output of a program should
not change abruptly in response to modifications of the input.

Note that most of the above properties are behavioral, which is in tune with
the leading motif of this book. Also, some of them are inherently qualita-
tive; for instance, syntactic input sensitivity is basically a binary property.
Some other characteristics are more quantitative but naturally deserve ap-
proximate comparisons. For instance, minor differences of program length
are negligible in most applications: it really does not matter whether a sym-
bolic regression model has e.g., 38 or 39 instructions. Another scenario that
calls for tolerance is when the underlying measure is noisy. These examples
show that defining search drivers in a qualitative manner is practical.

Example 9.2. An order-2 search driver that maps the exact program length
onto a qualitative indicator can be defined as

h(p1, p2) =

⎧
⎪⎨

⎪⎩

(0, 1), if |p1| > |p2| + β

(1, 0), if |p1| < |p2| − β

(0, 0), otherwise

, (9.7)

9.6 Problem-specific search drivers 105

where |p| is the length of program p, β is the tolerance threshold, and 0 ≺ 1.
This search driver renders any two programs that differ in length by less
than β as indiscernible, and so imposes a complete order (pre-order to be
precise) on its arguments. Note that the outranking relation defined by h
is in this case intransitive.

Should it be more appropriate to use partial orders, the codomain could be
extended to O = {0, 1, φ}, where 0 ≺ 1would be the only outranking in O.
Then, the third case in (9.7) would return (φ, φ), so that minor differences
in program length would be interpreted as incomparability. �

9.6 Problem-specific search drivers

A problem-specific search driver is a search driver that refers to the speci-
fication of program synthesis task. The k-tuples returned by such a driver
depend not only on the k arguments (programs) but also on the Correct
predicate of a task of consideration (Sect. 1.2). We assume the dependency
on the latter to be implicit, unless otherwise stated.

The conventional objective function fo may be trivially cast as the following
complete, problem-specific, context-free search driver of an arbitrary order k:

h(p1, . . . , pk) = (fo(p1), . . . , fo(pk)). (9.8)

By (1.7), such a search driver depends on T , i.e. all tests that define a
given program synthesis task. Alternatively, we may consider a search driver
that counts program’s failures in an arbitrary subset of tests T ′ ⊂ T . For
instance, T ′ could have been determined by an underlying objective (4.10)
in the doc method presented in Sect. 4.4. A more sophisticated variant is
an order-2 search driver based on the inclusion of passed tests

h(p1, p2) =

{
(0, 1), if T (p1) ⊂ T (p2),
(φ, φ), otherwise

(9.9)

where we recall that T (p) ⊆ T is the subset of tests passed by program
p, and φ ∈ O is the special incomparable value (cf. Example 9.2). Such h
defines a partial order that implements the concept of measure on a set.
An extreme case is a search driver that depends on programs’ outcomes on
a individual tests in T , i.e. dominance on tests

h(p1, . . . , pk) = (g(pi, t), . . . , g(pk, t)), (9.10)

where we recall that g : P × T is an interaction function (see 4.1).

The repertoire of problem-specific search drivers is by no means exhausted
by the above examples. Virtually any evaluation function defined in past

106 9 Search drivers

studies can be recast as a search driver in an analogous way. On the other
hand, search drivers themselves represent a large class of functions. This
helps convey that, in a sense, there is nothing special about the conventional
test-counting objective function fo: it is just one of many possible search
drivers, but not necessarily the most effective one for a given program
synthesis task (or a class of tasks). This observation leads to questions on
quality of search drivers, which we address in the next section.

9.7 Quality of search drivers

We are ultimately interested in designing search drivers that perform well.
However, what does ‘perform’ mean for a search driver? A search driver is
just one component of iterative search algorithm, hidden inside the selection
step in (9.1). The overall performance of the algorithm depends not only on
the engaged search driver(s), but also on the selection operators, search oper-
ators, population initialization method, and possibly other components.

This suggests that it might be difficult, if not impossible, to investigate the
the quality of a search driver in isolation from the remaining components
of an iterative metaheuristic search algorithm5. Therefore, in this book we
assume that the best gauge of a search driver’s usefulness is its empirical
performance on actual problem instances. In accordance with this, we intro-
duce three categories of search drivers for a given class of iterative search
algorithms A (9.1) and a set of problems (e.g., a suite of benchmarks). To
this end, we define first the concept of random search driver.

An order-k random search driver h is a search driver such that, for anyrandom
search
driver given P and (. . . , oi, . . . , oj , . . .) = h(P) it holds

Pr(oi ≺ oj) = Pr(oj ≺ oi), (9.11)

that is, it is equally likely that h orders oi before oj and that it orders
them reversely. Note that in general Pr(oi < oj) ≤ 1/2 due to the potential
presence of incomparability.

The random search driver serves as a reference point for defining effective,
deceptive, and neutral search drivers:

• An order-k search driver is effective if it reduces the expected numbereffective
search
driver of iterations of A compared to the number of iterations of A equipped

with an order-k random search driver.
5 In the process of writing this book, we have undertaken an attempt of designing

a formal, algorithm-independent measure of search driver quality, based on
the concordance of solution orderings provided by search drivers with the first
hitting times of solutions. Unfortunately, the formalism required making many
unrealistic assumptions, so we decided to not present it here.

9.8 Employing multiple search drivers 107

• An order-k search driver is deceptive if it increases the number of itera- deceptive
search
drivertions mentioned above.

• An order-k search driver is neutral if it does not affect the number of neutral
search
driveriterations in a statistically significant way.

We are obviously interested in effective search drivers, and with this book
hope to pave the way for practical development and principled design
thereof. From now on, by ‘search driver’ we will mean an effective search
driver, unless otherwise stated.

We intentionally attribute deception to search drivers rather than to prob-
lems, even though the latter is prevailing in the literature. Recall that pro-
gram synthesis tasks we consider here are inherently search problems that are
only disguised as optimization problems (Sect. 1.5.3). A search problem can-
not be deceptive, because all it defines is a set of candidate solutions (states)
and the goal predicate (Correct in program synthesis). This the true, under-
lying information about the problem; no suggestion is being made that some
of the candidate solutions are ‘closer’ to the search goal than others (what-
ever ‘closer’ would mean in this context). It is only a search driver (or an
objective function in the more conventional setting) that can be deceptive in
the above sense.

An optimal order-k search driver is a search driver h∗ that maximizes, in optimal
search
driverthe above sense, the performance of a given search algorithm on a given set

of problems. This concept will serve us as a useful reference point in the
following.

9.8 Employing multiple search drivers

Effective search drivers can be informally divided into weak and strong de- weak
search
driver
strong
search
driver

pending on how much they reduce the expected number of iterations required
to reach the correct program. However, even weak drivers are assumed to per-
form significantly better than the random ones in the above sense.

Designing strong search drivers for program synthesis is difficult; if it was
not, program synthesis would be a solved problem. In contrast, weak search
drivers are by definition poor guides for a search process. Indeed, the studies
we conducted earlier [97, 101] suggest that many search drivers do not work
particularly well in isolation. However, given that search drivers may reflect
different qualities of candidate solutions (see examples in Sects. 9.5 and 9.6),
it is natural to consider using many of them.

There are many ways in which the judgments of multiple search drivers can
be translated into decisions made by selection operator (or, in a wider con-
text, the behavior of all algorithm components). We divide the techniques

108 9 Search drivers

that facilitate usage of multiple search drivers into sequential and parallel.
The sequential methods allow different search drivers to be used at varioussequential

usage of
search
drivers

stages of an iterative search process. In the simplest realization, the choice
of search driver is explicitly controlled by the method. For instance, an
analogous idea of alternating multiple evaluation functions (together with
problem instances) at regular time intervals has been exploited to induce
modularity in evolved neural networks [74, 75]. Interestingly, such proceed-
ing can be seen as yet another form of shaping which we touched upon inshaping

Sect. 4.2 [175].

Explicit control of the choice of search driver requires multiple design
choices: in which order they should be used, for how many iterations, and
whether they should take turns cyclically. Also, the transitions between par-
ticular search drivers suddenly change the ‘rules of the game’: adaptations
acquired under one search driver may turn out to be maladaptations un-
der subsequent search driver. Such ‘catastrophic events’ can be interesting
when trying to reproduce some biological phenomena in silico (like in [74,
75]), but are not necessarily useful in program synthesis.

In this book, we argue for using multiple search drivers in parallel, primar-parallel
usage of
search
drivers

ily because this is consistent with our stance that no single search driver
is a perfect means to control a search process, and thus no search driver
should be favored. Another motivation is the above-mentioned problem-
atic parameterization of sequential techniques. But even more importantly,
parallel usage of search drivers has other appealing features discussed in
below.

Partial independence. Assume n search drivers hi, i = 1, . . . , n. Let us de-
note by Di the event that hi orders two programs p1 and p2 discordantly
with the optimal search driver h∗, i.e.

Pr(oi1 ≺i oi2 ∧ o∗
2 ≺∗ o∗

1). (9.12)

Given the optimal nature of h∗, such discordance may result in an increase
of the expected number of iterations. The probability that any pair of search
drivers is simultaneously discordant with h∗ is less or equal the probability
that any of them is discordant. By the sum rule:

Pr(Di ∪ Dj) = Pr(Di) + Pr(Dj) − Pr(Di ∩ Dj), (9.13)

from which it follows that Pr(Di ∩ Dj) ≤ Pr(Di), as by definition Pr(Di ∪
Dj) ≥ Pr(Dj). Simultaneous availability of hi and hj lowers thus the risk
of mistakenly deeming one candidate solution less useful than another. The
greater the number of search drivers, the less likely it becomes for them to
be simultaneously discordant with the optimal search driver, and that like-
lihood is the lower the more independent are the search drivers in question.inde-

pendent
search
drivers

In the extreme case of n fully independent search drivers , the probability
of all of them being simultaneously discordant quickly vanishes with n:

9.8 Employing multiple search drivers 109

Pr

(
n⋂

i=1
Di

)

=
n∏

i=1
Pr(Di). (9.14)

On the other hand, the probability of all drivers being simultaneously
concordant is also decreasing with n. However, if the search drivers in
question are effective, they are likely to make more concordant decisions
than discordant ones, i.e. Pr(oi1 ≺i oi2) < 1/2, and the probability of at least
half of n drivers to be concordant is greater than 1/2. For the special case
of Pr(Di) = Pr(Dj), ∀i, j ∈ [1, n], that probability is determined by the
cumulative distribution function of binomial distribution. Thus, if partially
independent search drivers were to vote about a relation between a pair of
candidate solutions, they are more likely to make the right decision than the
wrong one.

Although designing a family of independent search drivers may be difficult,
a certain degree of independence comes ‘for free’ for the search drivers
summarized in Table 9.1 and examples given in Sects. 9.5 and 9.6, because
they peruse different aspects of program behavior. Some methods promote
independence on their own; for instance, the particular derived objectives
built by doc (Sect. 4.4) are based on disjoint subsets of tests, and may by
that token be partially independent.

The above argument is analogous to the motivations for committees of clas-
sifiers in machine learning (a.k.a. classifier ensembles) [12]. ML committees classifier

ensem-
blesare usually built to provide more robust predictions in the presence of noisy

data. Just as multiple search drivers are less likely to simultaneously commit
an error, so for the classifiers that vote about the output (decision class label
or continuous signal) to be produced for a given example.

More specifically, partial ordering of candidate solutions performed by a
search driver can be seen as an ordinal regression task (a partial one, to be
more precise). A search driver is thus a special case of regression machine,
and as such is characterized by certain bias and variance [38]. Bias represents
a driver’s inherent propensity toward certain realizations (models), while
variance reflects the variability of a model’s predictive accuracy. These
quantities are inseparable, a characteristics known as bias-variance tradeoff : bias-

variance
tradeoffa highly biased predictor tends to have low variance and vice versa. However,

by aggregating multiple low-bias, high-variance predictors, the variance can
be reduced at no extra cost to bias. This observation is the key motivation
for ensemble machines, and is naturally applicable also to search drivers.

Diversity. By using several search drivers of different nature in parallel, we
hope to provide for greater behavioral diversity in a population. Promot-
ing behavioral diversity entails genotypic diversity, i.e. diversity of program
code in the case of program synthesis. The importance of diversity mainte-
nance has been demonstrated in population-based search and optimization

110 9 Search drivers

techniques many times in the past, and was the major premise for de-
signing methods like implicit fitness sharing (Sect. 4.2). We find diversity
maintenance by means of behavioral search drivers particularly natural,
as opposed to, e.g., niching techniques [118] and island models [191] that
require parameter tuning.

Multimodality. Program synthesis tasks are often multimodal, i.e. featuremulti-
modality multiple optimal solutions, all of them conforming to the correctness predi-

cate. A single-objective search process may be biased in tending to explore
only selected basins of attraction of such optimal solutions. A search pro-
cess that follows multiple objectives in parallel may be more open to ex-
plore many such basins. By the same token, multimodality is an argument
against sequential usage of search drivers. Consider interlacing two search
drivers along iterations of search process; if one of them happens to drive
the search toward one optimum while another toward another optimum,
search may cyclically oscillate between these optima.

Moderate computational overhead.Different search drivers may share algorith-
mic components needed to compute them. In such cases, calculating multiple
search drivers rather than one does not necessarily incur massive overheads.
For instance in tc (Chap. 6) and pangea (Chap. 7), recording of a program
trace is a side effect of its execution and as such causes only moderate over-
head.

9.9 Multiobjective selection with search drivers

In conventional GP, a scalar evaluation function serves as the basis for a
straightforward selection operator (e.g., tournament selection). Simultane-
ous usage of several search drivers argued for in the previous section pre-
cludes direct application of such operators and requires special handling.
In the following we discuss several alternative means to that end, most of
which are only applicable when search drivers are complete, i.e. impose
linear (pre)orders on candidate solutions.

Fig. 9.2 presents an example of a selection process involving two search
drivers. As in the single-driver case (Fig. 9.1), the role of search drivers is to
provide recommendation (a partial order of the considered sample of candi-
date solutions P ′), while selection process is responsible for drawing P ′ and
final selection of the ‘winner’. Recommendations of particular drivers may
be contradictory: for instance, p1 and p3 are incomparable according to h1,
while h2 suggests that the former is worse than the latter.

The role of selection algorithm is to reconcile such discrepancies and appoint
the best candidate solution within the considered sample P ′. How to do

9.9 Multiobjective selection with search drivers 111

h2

h1

P

p1 p2 p3

p4 p5 p6

p7 p8 p9

P ′

p1 p3

p4

p8 p9

h2(P ′)

p1 p3

p4

p8 p9

h1(P ′)
p1 p3

p4

p8 p9

p3

Fig. 9.2: The process of selection involving two search drivers h1 and h2.
The selection operator has to reconcile the – partially contradicting – or-
derings provided by h1 and h2 to produce the final selection outcome, i.e.
p3. Consult Fig. 9.1 for an analogous single-driver example.

this appropriately and efficiently (particularly when the number of search
drivers large) is in itself an interesting research question, which we do not
address in this book. In the following, we discuss the possible aggregation
methods for the case when all search drivers in question are complete, i.e.
(pre)order the candidate solutions linearly.

Aggregation (scalarization). The arguably easiest way of handling multiple
search drivers is to merge them into scalar evaluation, to be interpreted later
by a single-objective selection method. If the codomains of search drivers in
questions happen to be defined on metric scales, this may boil down to ap-
plying an averaging operator like arithmetic mean. Another alternative, geo-
metric mean, is equivalent (up to an order) to the concept of hypervolume in hyper-

volumemultiobjective optimization. When search drivers range in different intervals
and have different distributions, rank-based aggregation can be used.

Scalar aggregation opens the possibility of using numerous conventional
selection operators. On the other hand, aggregation incurs compensation
(Sect. 2.2.2). Nevertheless, as we showed in [101], even a simple multi-
plicative aggregation of search drivers can offer substantial performance
improvements.

Lexicographic ordering. A common multiobjective selection technique that
avoids explicit aggregation is lexicographic ordering. This method expects lexico-

graphic
orderingthe search drivers to be sorted with respect to decreasing importance. Given

two candidate programs p1 and p2, they are first compared on the most
important driver. If this comparison is conclusive, e.g., p1 is strictly better
than p2 on that criterion, p1 is selected. Otherwise, the next driver with

112 9 Search drivers

respect to importance is considered. This process repeats until one of the
programs proves better. Should that not happen, p1 and p2 are declared
indiscernible. In other words, the consecutive drivers resolve the ties on the
previous ones.

Lexicographic ordering avoids direct aggregation, but in exchange for that
requires domain-specific ordering of search drivers. Also, it becomes effec-
tive only for discrete and coarse-grained objectives. If for instance the most
important search driver happens to feature many unique values, the remain-
ing search drivers have little to say.

Lexicase selection. An interesting recent method that builds upon lexico-
graphic ordering is lexicase selection [50]. The main difference with respectlexicase

selection to lexicographic approach is in the adopted ordering of search drivers which
is random and drawn independently in every selection act. This helps avoid-
ing overfocusing on some search drivers and diversifies the population. This
straightforward and parameterless method proved very efficient in [50], where
it was applied to tests, especially when the number of them was substantial.
However, when applied to a moderate number of search drivers, its diversifi-
cation capability and performance deteriorate [114].

In retrospect, lexicase selection can be seen as a test sampling technique. Such
techniques typically draw a random sample of tests T ′ ⊂ T in every generation
of GP run, and use only the tests from T ′ for evaluation in that generation.
Test sampling fosters diversity and improves performance, even when brought
to extremes, i.e. drawing just a single test in each generation [43]. Lexicase
selection ‘individualizes’ this process for particular selection acts.

Multiobjective selection. Multiobjective evolutionary algorithms offer sev-
eral methods that avoid the pitfalls of aggregation while still eliciting useful
information on search gradient. Usually, the underlying formalisms are dom-
inance relation and Pareto ranking. Of the multiobjective selection methods,
the Non-dominated Selection Genetic Algorithm (nsga-ii, [26]) is arguably
most popular. nsga-ii employs a tournament selection on Pareto ranks to
make selection choices. As a tie-breaker, it employs crowding, a measure
that rewards the candidate solutions that feature less common scores on
search drivers. The method is also elitist in selecting from the combined set
of parents and offspring, rather than from parents alone. nsga-ii is the se-
lection algorithm used in the experiment reported in Chap. 10. Many past
works in GP proved the usefulness of multiobjective approach; see, e.g.,
[25], where an ad-hoc multiobjective algorithm was used for simultaneous
promotion of diversity and reduction of program bloat.

9.10 Related concepts

There are several concepts in computational and artificial intelligence that
bear some resemblance to that of a search driver.

9.10 Related concepts 113

In EC, the concept that arguably resembles search driver is surrogate fitness. surrogate
fitnessAlso known as approximate fitness function or response surface [71], a sur- approxi-
mate
fitness
function
response
surface

rogate fitness function provides a computationally cheaper approximation
of the original objective function. Surrogates are particularly helpful in do-
mains where evaluation is computationally expensive, e.g., when it involves
simulation. They usually rely on simplified models of the process being sim-
ulated, hence yet another alternative name: surrogate models. In continuous
optimization, such models are typically implemented using low-order poly-
nomials, Gaussian processes, or artificial neural networks. Occasionally, sur-
rogate models have been also used in GP. For instance, in [51], Hildebrandt
and Branke proposed a surrogate fitness for GP applied to job-shop schedul-
ing problems. A metric was defined that reflected the behavioral similarity
between programs, more specifically how the programs rank the jobs. When-
ever an individual needed to be evaluated, that metric was used to locate
its closest neighbor in a database of historical candidate solutions and neigh-
bor’s fitness was used as a surrogate.

Search drivers diverge from surrogate fitness in several respects. Firstly, sur-
rogate functions are by definition meant to approximate the original objective
function. Search drivers are, to the contrary, based primarily on the evidence
that objective functions are not always the best means to navigate in a search
space. Given the deficiencies discussed in Sect. 2.1 and the experimental ev-
idence backing up the methods presented in Chaps. 4–7, why would one in-
sist on approximating an objective function? Secondly, search drivers are pri-
marily intended for search problems rather than optimization problems. This
leaves more freedom in their design, which do not have to ‘mimic’ an objective
function across the entire search space. Thirdly, in a program synthesis task,
a search driver is not required to be consistent with a correctness predicate
(1.5). In surrogate fitness, such consistency is essential.

Augmenting search with additional objectives is a part of the methodology
proposed in [76] under the name of multiobjectivization. The additional multi-

objec-
tivizationobjectives are introduced in that framework to make search more efficient,

turn the original single-objective problem into a multiobjective one, and
solve it using more or less off-the-shelf algorithms capable of handling mul-
tiobjective problems. An important assumption is that the extra objectives
convey some additional problem-specific knowledge. In contrast, many of
the search drivers discussed here essentially ‘rephrase’ the information that
is conveyed – albeit subject to losses discussed in Chap. 2 – by the con-
ventional objective function. The decomposition of scalar evaluation into
multiple objectives in doc (Sect. 4.4) is an example of such a proceed-
ing. Also, with search drivers we put more emphasis on having many, even
qualitative, information sources.

The concept that is close to both multiobjectivization and search drivers is
that of helper objectives [70], additional objectives used along with the orig- helper

objectivesinal (‘primary’) objective in multiobjective setting. According to the cited

114 9 Search drivers

work, helper objectives are meant to maintain diversity in the population,
guide the search away from local optima, and help creation of good building
blocks, meant as small components (schemata, to be more precise) that pos-
itively contribute to solution’s evaluation [41]. The author argues that they
should be ‘in conflict’ with the original objective function; for search drivers,
we formalized a related concept of partial independence in Sect. 9.8. Helper
objectives may change with time, i.e. only a subset of helper objectives is be-
ing used at any given time (dynamic helper objectives). The cited work also
addresses the issue of size of Pareto front in multiobjective setting: once the
number of candidate solutions with the same values of objectives exceeds the
niche count, candidate solutions are randomly removed so that this constraint
is not violated anymore. The approach was applied to job-shop scheduling and
traveling salesperson problems, producing encouraging results.

Search drivers diverge from helper objectives in several respects. Helper ob-
jectives are meant to be used primarily with optimization problems – that
is why the original objective function is always included as one of the objec-
tives. Search drivers address search problems, in particular program synthe-
sis, where achieving the sought solution is verified with a separate correctness
predicate, so discarding the original objective function is acceptable. Also, de-
signing helper objectives is similar to multiobjectivization in requiring sub-
stantial domain knowledge: for instance in application it to job-shop schedul-
ing in [70], helper objectives reflected the flow-times of particular jobs. Later
work also concerns job-shop scheduling [116] and confirms this deep immer-
sion in problem domain. Search drivers, to the contrary, are more generic, and
as we showed in Sect. 9.5, many of them are universal. Finally, search drivers
are more general than helper objectives in being allowed to impose only quali-
tative and partial relationships between candidate solutions (see also the sum-
mary of search drivers’ properties in Sect. 9.12).

In GP, several approaches have been proposed that aim at reducing the num-
ber of tests used for evaluation of candidate programs. In doing that, such
methods effectively replace the original objective with an alternative evalua-
tion function that can be sometimes likened to a search driver. The probably
oldest contribution in this category is dynamic training subset selection [37].
In [115], selection of tests was applied to the task of software quality classifi-
cation, in an attempt to reduce overfitting. In [43], this has been taken even
further, i.e. single tests have been used. Several variants of this approach stud-
ied in [42] consistently reduced overfitting compared to standard GP.

In AI, the concept that bears certain similarity to search driver is that of
heuristic function. Heuristic functions in algorithms like A∗ bound the ac-heuristic

function tual cost of reaching the search goal. Thy can be used to prioritize search and
often thereby lead to performance improvements. They can be designed by
relaxing the original problem, for instance, for an 8-puzzle problem, this can
be achieved by assuming that any two neighboring tiles can be swapped, and

9.10 Related concepts 115

counting the number of moves so defined. Interestingly, methods exist that
generate heuristic functions automatically given problem formulation [156].

In reordering the visiting of candidate solutions, heuristic functions indeed
resemble search drivers that may lead search in different directions than
that of the objective function. However, heuristic functions explicitly rely
on additional domain-specific knowledge that search drivers do without; ex-
amples include straight-line distance between cities in the famous Roma-
nian roadmap example in [156] or the cost function for the 8-puzzle example
mentioned above. Also, search driver is a more general formalism than
heuristic function: unlike the latter, it is not guaranteed to bound the orig-
inal objective function. As a consequence, algorithms that rely on search
drivers cannot enjoy the ‘comfort’ of A∗, which provably reaches an opti-
mal solution (goal state) provided it exists in the searched tree. Providing
analogous bounds in program synthesis is difficult due to the complex
genotype-phenotype mapping (Sect. 1.4). In the typical tasks approached
with the A∗-like algorithms, the effects of search moves on the objective
function are well understood, which facilitates designing efficient admissi-
ble heuristic functions. In program synthesis, a single move may change
program’s behavior almost arbitrarily.

In reinforcement learning (RL, [173]), the concepts of intrinsic rewards (or rein-
force-
ment
learning

intrinsic motivation) [8] and internal rewards [169] bear distant similarity
to search drivers. In nontrivial RL tasks, an agent often lacks external
‘incentives’ to explore and learn from an environment. Both methodologies
mentioned above assume that, in the absence of such incentives, an agent
would on its own ‘induce’ appropriate internal/intrinsic motivations and
follow them, escaping thereby the detrimental state of temporal ‘apathy’.
In a sense, intrinsic rewards and intrinsic motivations can be seen as an
agents’s emanation of curiosity.

Last but not least, behavior search drivers share motivations with novelty
search [110] (NS). In the spirit of open-ended evolution, often considered novelty

search
open-
ended
evolution

in artificial life community, novelty search discards search objectives alto-
gether and rewards individuals for being behaviorally different from their
peers in the current population and selected representatives of the search
history. This turns out to work well on deceptive problems, especially on the
problems where the mapping from genotypes to behaviors is strongly many-
to-one, and the resulting behavioral space is relatively small. In [111], the
authors applied novelty search to nontrivial GP benchmarks of maze navi-
gation and Artificial Ant. The algorithm diverges from the traditional GP
only in evaluation function. Prior to running evolution, an empty, unlimited-
capacity archive A is created. Each evaluated individual has a low probability
of being included in the archive. The evaluation of an individual in popula-
tion P is defined as

fns(p) = 1
k

k∑

i=1
dist(p, μi), (9.15)

116 9 Search drivers

where dist() is a behavioral distance measure, μi is the ith closest neigh-
bor of p in P ∪ A with respect to dist(), and k defines the size of the
neighborhood.

They key component of NS is the behavioral distance measure dist(). In
[111], it was based on the final location in the maze problem and the time-
wise distribution of food collections in the Artificial Ant problem. The au-
thors of [121], the probably first attempt to apply novelty search to generic
GP tasks, based dist() on behavioral descriptors closely resembling out-
come vectors defined in this book (2.3). The ith vector element is 1 if the
individual belongs to an assumed (low) percentile of programs that commit
the smallest error on a test; otherwise it is set to 0. Experimental assess-
ment of this configuration on three benchmarks did not yield particularly
conclusive results. Other works related to NS include, among others, [196]
and [195], where diversification was promoted by maximizing correlation
distance between time-wise behavior of GP programs representing trading
strategies.

In general, we anticipate NS to struggle when faced with more demanding
program synthesis tasks because of the size of behavioral space. Even in
the simplest case when tests can be only passed or failed, the number of
all possible behavioral descriptors grows exponentially with the number
of tests, and becomes staggering even for the small benchmarks typically
considered in GP (e.g., 264 for the humble 6-bit multiplexer; see Chap. 10).
One may doubt if simply enticing an evolving population to spread across
such a space is sufficient to locate the target solution.

Nevertheless, NS shares motivations with behavioral program synthesis:
Lehman and Stanley state that “The problem is not in the search algorithm
itself but in how the search is guided” [111, p. 842], which strongly resonates
with the arguments in this book. NS can be seen as the opposite extreme to
conventional search driven by the conventional objective function. Search
drivers sit in between these two extremes: they impose different search
gradients than the conventional objective function, yet, contrary to NS,
those gradients are not entirely detached from it.

9.11 Efficiency

Abandoning search objectives in favor of search drivers has measurable con-
sequences for more technical aspects of implementation. Below we discuss
such implications for the arguably most important technical aspect of pro-
gram synthesis – computation cost. In a typical GP run, the lion’s share
of computation is spent on running programs, i.e. applying them to tests.
No wonder the number of evaluated programs is the most common unit of
computational expense in GP.

9.11 Efficiency 117

In Sect. 9.8, we argued for using several search drivers in parallel, in a mul-
tiobjective setting. As some search drivers incur substantial overheads (e.g.,
classifier induction in pangea), this may seem computationally prohibitive.
However, the execution record stores the complete account of program exe-
cution for a considered set of tests. Once it has been computed for a given
program (which is not particularly expensive as demonstrated in Sect. 3.2)
most search drivers can be calculated from it at a moderate cost, because
the data they require (outcome vectors, program semantics, program traces
– see Table 9.1) can be immediately retrieved from the record (Fig. 3.2).
Therefore, if the number of tests is large or/and program execution is in
itself expensive, the total overhead resulting from using multiple search
drivers may become negligible.

Moreover, in some scenarios search drivers allow for substantial reduction
of computational expense. For instance, the convergence of execution traces
in Chap. 6 can be used to reduce the time spent on program execution: if
two traces merge (which the method has to detect anyway), i.e. program
execution leads to the same execution state for two tests, then from that
state on only one execution has to be conducted, as the other must proceed
in exactly the same way.
Opportunities for potential savings wait to be uncovered not only in the
internals of program execution, but also on the higher abstraction levels.
Consider an order-2 search driver h that completely orders the programs
according to the number of tests they pass. This search driver can be triv-
ially expressed using the objective function fo: h : P2 → {0, 1}2, where
0 ≺ 1 and

h(p1, p2) =

⎧
⎪⎨

⎪⎩

(0, 1), if fo(p1) > fo(p2)
(1, 0), if fo(p1) < fo(p2)
(0, 0), otherwise

(9.16)

(recall that fo is minimized). This formulation assumes that fo(p1) and
fo(p2) are calculated independently, which for a set of tests T requires
the total of 2|T | executions of p1 and p2. Now consider an algorithm that
iterates over T and applies p1 and p2 to a given t ∈ T simultaneously.
Let i ∈ [1, |T |] be the number (index) of the currently processed test, and
f
(i)
o (p) the number of tests failed so far. Note that as soon as the following

condition starts to hold

|f (i)
o (p1) − f (i)

o (p2)| > |T | − i, (9.17)

the loop over i can be terminated, because the outcomes for the remaining
|T |−i tests cannot compensate the already gathered evidence in favor of one
of the programs. In such a scenario, the total number of program executions
amounts to 2i, and may be substantially smaller than 2|T | above. Though
the actual benefits resulting from enhancements like this one are domain-
and problem-dependent, even a minor reduction of the number of program
executions may be beneficial in challenging program synthesis tasks.

118 9 Search drivers

9.12 Summary

This chapter described a preliminary attempt to crystallize the concept of
search driver, a generalization of evaluation function intended to meet the
needs of metaheuristic search algorithms and program synthesis in particu-
lar. Further effort is clearly required to get a better grip on it and possibly
lead to principled design of search drivers. Nevertheless, it should be clear
already at this point that search drivers exhibit common characteristics (cf.
Observations formulated in Sect. 9.2):

1. Search drivers are contextual. The role of a search driver is to provide
gradient within a relatively small set of candidate solutions. A search
driver is not required to provide such a gradient globally.

2. Search drivers provide qualitative, ordinal feedback. Absolute values are
irrelevant. What matters is the (partial or complete) order of candidate
solutions.

3. Search drivers do not have to relate to the original objective function,
and in particular do not have to correlate with it. Preferably, they
should approximate the optimal search driver.

4. Search drivers do not have to be consistent in the sense of (1.5), i.e.
to indicate the optimality of candidate solutions by achieving extreme
values at them (nor in any other way). This functionality is delegated
to a correctness predicate.

5. Search drivers may depend on the entire state of the search process meant
as the working population of candidate solutions (or even state in a
broader sense, for instance including candidate solutions visited in pre-
vious iterations).

6. As a consequence of (5), search drivers may be non-stationary, i.e. or-
der the same subset of candidate solutions differently in particular it-
erations of a search loop.

7. Search drivers can be weak, i.e. order relatively many candidate so-
lutions differently than an optimal search driver. Using many weak
drivers in parallel can make the search process effective by providing
sufficiently strong search gradient and diversity.

10

Experimental assessment of search drivers

This chapter presents the results of a comparative experiment involving var-
ious combinations of search drivers. Our goal, beyond demonstrating the
strength of behavioral evaluation, is to answer the following questions:

1. What is the impact of particular search drivers when used in combina-
tion with other search drivers? The experiment addressing this question
is reported in Sect. 10.3.

2. How useful is the mechanism of archiving useful subprograms presented
in Chap. 8? (Sect. 10.4).

Our goal is to gain better understanding of behavioral search drivers and
interactions between them, rather than engaging into an ‘up-the-wall’ game
[17] with other genres of GP as competitors. Compared to our previous re-
sults reported in [96], here we consider more combinations of search drivers,
and combine the drivers of pangea, trace consistency approach, and ifs.
We also simplify archive maintenance, verify the importance of subprogram
selection (Sect. 10.5) and investigate other aspects.

10.1 Scope

We consider only selected search drivers to avoid combinatorial explosion
when considering their combinations. The experiment involves universal
search drivers and those defined for trace consistency analysis (Chap. 6),
pattern-guided GP (Chap. 7), and ifs (Chap. 4). We consider six search
drivers in total, denoting them with the following mnemonics:

• F (fo), the conventional objective function, i.e. the number of failed
tests (1.7),

© Springer International Publishing Switzerland 2016 119
K. Krawiec, Behavioral Program Synthesis with Genetic Programming,
Studies in Computational Intelligence 618,
DOI: 10.1007/978-3-319-27565-9_10

120 10 Experimental assessment of search drivers

• S (fs), program length (size), i.e. the number of nodes in a GP tree,

• L (fe), the error of the classifier induced from execution traces (7.1),

• C (fc), the complexity of the classifier induced from execution traces
(7.2),

• E (ftc), the two-way entropy induced from execution traces (6.4),

• I (fifs), implicit fitness sharing (4.4).

All these drivers are complete, i.e. order linearly the compared programs.
Among them, program size S is the only non-behavioral search driver and
the only universal search driver; all the remaining ones are behavioral and
problem-specific. fifs (I) is the only contextual search driver – all the remain-
ing ones are context-free.

There are 26 − 1 = 63 nonempty combinations of these drivers. However,
ifs is the only contextual search driver and will be considered separately in
Sect. 10.6, which halves for now the number of combinations to 31. We do
not run experiments with individual search drivers as we anticipate them
to perform poorly; for instance, one cannot expect to synthesize a correct
program by driving synthesis with program size alone. Also, in Sect. 9.8
we brought several arguments in favor of using multiple search drivers in
parallel. Therefore, we conduct single-objective synthesis only for F.

Additionally, we assume that every considered combination of drivers must
include F. Also, C requires an ML classifier to be induced (Sect. 7.2.2), and
the presence of a classifier implies availability of L, so C will be used only
when L is present in a given combination. These constraints leave us with
11 combinations:

• Five purely behavioral combinations, i.e. not including program size:
FL, FLC, FLE, FE, FLCE,

• Six combinations with program size: FS, FLS, FLSC, FLSE, FSE,
FLSCE.

For each considered combination of drivers we run a tree-based generational
GP algorithm with parameter settings summarized in Table 10.1. nsga-ii
algorithm with tournament of size 7 is used for selection ([26]; see Sect. 9.9).
As its computational complexity is quadratic in population size, we allow
only 300 programs in the population. Also, in nsga-ii the parents and
offspring are Pareto-ranked together, which makes the selection process
highly elitist. The risk of losing a good candidate solution is thus small, so
we permit quite intense exploration, setting the probability of mutation to
0.2, higher than the default 0.1 typically used in GP studies. The programs
in initial population are relatively small to enable gradual ‘complexification’
of solutions.

10.1 Scope 121

Table 10.1: The common parameter setting for all considered methods.

Parameter Setting
Population size 300
Population initialization Ramped half-and-half, max. tree height 3
Selection operator Tournament of size 7
Node selection operator Uniform-depth selector
Mutation operator Replacement with random subtree of height 3, prob. 0.2
Crossover operator Subtree-swapping crossover, prob. 0.8
Offspring acceptance Tree height ≤ 9
Maximum generations 300

The original nsga-ii algorithm [26] resolves ties between solutions in the
same tier of Pareto ranking by resorting to crowding, a measure based on
distance in objective space. This approach is rational in conventional mul-
tiobjective problems, where the goal is to obtain a representative, evenly
distributed approximation of the true, unknown Pareto front, which may
be then subject to choice of a final solution. Here, uniformity of that ap-
proximation is less important, because search drivers are only meant to
guide search and their values become irrelevant once a solution is found
(program size being the only exception). It is however desirable to promote
unique combinations of objectives’ values to promote diversity in popula-
tion. Therefore, we define crowding for a given candidate solution p as
the number of candidate solutions (in the same rank of Pareto front) that
have the same evaluations as p on all objectives. Lower values of crowd-
ing are preferred when programs tie on Pareto ranks. In contrast to [26],
we do not promote the solutions located at the extremes of Pareto fronts,
as this may lead to pathologies: in a preliminary experiment involving S,
degenerate one-instruction programs tended to win a very high fraction of
tournaments, causing search to stall.

To lower the risk of bloat, we abandon the conventional methods for select-
ing a node (instruction) to be modified by search operators in a program
tree. Normally, nodes are selected at random, with equal probability, and
with optional special handling of tree leaves, like in the Koza-style node
selector [79]. Rather than that, we employ uniform depth node selector,
which, given a tree of height d, draws a random number d′ from [0, d] and
returns a randomly chosen node at depth d′. In this way, the probability
of selection does not grow exponentially with node depth, as it is the case
in conventional methods. Mutations and crossovers at shallow depths are
more likely, and tendency for bloating is reduced. Preliminary experiments
showed that this is beneficial for all configurations, including standard GP.

However, even with the above node selector, the configurations devoid of
S tend to produce large programs. We include thus a feasibility check: if
the height of an offspring program tree exceeds 9, it is discarded and a new

122 10 Experimental assessment of search drivers

offspring is generated (with any search operator, according to the probability
distribution in Table 10.1). As all instructions considered here are binary, this
limits program size to 29+1 − 1 = 1023. Programs approaching this limit are
very improbable, as evolving a perfectly balanced binary tree is unlikely.

In the configurations that involve L, we apply the REPTree algorithm [47]
as the ML algorithm for inducing decision trees from execution records
(Chap. 7). REPTree is much faster than traditional decision tree algorithms
like C4.5 [150] and can induce both classification and regression trees.
By default, it post-prunes (simplifies) the induced trees, but we disable
this option and make it always split a decision node if that leads to an
improvement of intra-node class consistency. In this way, search driver C
(the size of decision tree) reflects better the complexity of mapping from
execution traces to desired outputs, which is its very essence (Sect. 7.2.3)

A run terminates when a correct program is found, i.e. when fo(p) = 0 (cf.
(1.5)), or when 300 generations have elapsed.

We define two single-objective baseline setups:

• F, the conventional GP with fo as the only objective,

• F+, as F, however with population of size 1 000 evolving for up to 90
generations.

The motivation for F+ is 300 candidate solutions can be considered too
few for conventional GP, so F+ uses a larger population while maintaining
the same overall computational budget of 90 000 evaluations per run.1

Both single- and multi-objective configurations employ tournament of size
7 to select the parents, where the former perform selection on the conven-
tional evaluation function fo, and the latter on the ranks of the Pareto
ranking built in a multiobjective space spanning search drivers (and with
crowding to resolve ties). This is the only difference between F and F+ and
the remaining configurations.

The algorithms were implemented using software libraries prepared in
Scala2 and available online. The experimental configurations and detailed
results can also be downloaded [82]. Scala is a succinct object-oriented and
functional programming language that offers traits, mixins, lazy evaluation,
built-in support for parallelism, advanced reflection mechanisms, and many
other modern features. It is fully interoperable with Java and runs on its
virtual machine.

1 Technically, F and F+ could be alternatively implemented using nsga-ii with
fo as the only objective. However, this may result in undesired side effects; for
instance, all solutions with the same rank have by definition the same value of
crowding when evaluated on one objective.

2 http://www.scala-lang.org/

http://www.scala-lang.org/

10.2 Program synthesis tasks 123

Table 10.2: The program synthesis tasks used in the computational experi-
ment.

Domain Instruction set Problem Input variables Tests Unique semantics

Boolean and, nand,
or, nor

Cmp6 6 64 264

Cmp8 8 256 2256

Maj6 6 64 264

Maj8 8 256 2256

Mux6 6 64 264

Par6 6 64 264

Par8 8 256 2256

Categorical ai
Di 3 27 327

Mi 3 15 315

10.2 Program synthesis tasks

Table 10.2 presents the 17 benchmark program synthesis tasks used in
the experiment, 7 of which come from the Boolean domain and 10 from
a categorical domain. The table lists the instruction sets used for each
domain, and the number of variables, tests, and cardinality of search space
for every problem. Note that there are no constants in instruction sets.

The targets for particular Boolean problems are defined as follows. For a v-bit
comparator cmpv, a program is required to return true if the v

2 least signifi-
cant input bits encode a number that is smaller than the number represented
by the v

2 most significant bits. For majority majv problems, true should be
returned if more that half of the input variables are true. For the multiplexer
mulv, the state of the addressed input should be returned (6-bit multiplexer
uses two inputs to address the remaining four inputs). In the parityparv prob-
lems, true should be returned only if the number of inputs set to true is odd.

The categorical problems come from Spector et al.’s work on evolving alge-
braic terms [171] and dwell in a nominal ternary domain: the admissible
values of program inputs and outputs are {0, 1, 2}. The peculiarity of these
problems consists of using only one binary instruction in each benchmark,
denoted by ai in in Table 10.2. ai is defined as follows for the considered
five algebras:

a1 0 1 2
0 2 1 2
1 1 0 0
2 0 0 1

a2 0 1 2
0 2 0 2
1 1 0 2
2 1 2 1

a3 0 1 2
0 1 0 1
1 1 2 0
2 0 0 0

a4 0 1 2
0 1 0 1
1 0 2 0
2 0 1 0

a5 0 1 2
0 1 0 2
1 1 2 0
2 0 1 0

For each algebra, we consider two tasks (of four discussed in [171]). In
discriminator term tasks (Di in Table 10.2), the goal is to synthesize an
expression that accepts three inputs x, y, z and is equivalent to

124 10 Experimental assessment of search drivers

t(x, y, z) =

{
x if x �= y

z if x = y
. (10.1)

Given three inputs and ternary domain, this gives rise to 33 = 27 tests.
The second task defined for each of algebras (Mi in Table 10.2) consists in
evolving a ternary Mal’cev term that satisfies

m(x, x, y) = m(y, x, x) = y. (10.2)

When x, y, and z are all distinct, the desired output is not determined by
this condition. There are thus only 15 tests in Mal’cev tasks, the lowest of
all considered benchmarks.

The readers familiar with GP have surely noticed the absence of regression
problems in our benchmark suite. We disregard them for a few reasons. Firstly,
as stated in Sect. 1.2, program synthesis in its core formulation is a search prob-
lem, and not an optimization problem that symbolic regression inherently be-
longs to. Program correctness becomes elusive for continuous outputs. In prac-
tice, it is implemented by imposing a threshold on program error (fo(p) < θ),
but it is hard to justify the setting of this parameter, unless it is given as a part
of problem statement (which is not the case in benchmarks normally consid-
ered in GP). It is common to use very small θ, just to account for roundoff
errors and render correct only the programs which, mathematically speaking,
implement the target perfectly. However, aiming at perfect regression is ques-
tionable given that real-world data is always noisy, and resembles more in-
terpolation than regression. To evade these dilemmas, we disregard symbolic
regression problems in this study.

10.3 Combinations of search drivers

The 11 multiobjective configurations and the two single-objective ones, to-
gether with the considered 17 benchmarks, lead to the total of 13×17 = 221
configuration-benchmark pairs. To achieve statistical significance, for each
of them we ran 50 evolutionary runs with a different seed of random number
generator.

In consistency with our emphasis on producing correct rather than approx-
imate programs, our primary performance measure of interest is success
rate, i.e. the percentage of runs that produce a correct program, i.e. an un-success

rate biased estimate of the probability of synthesizing a correct program. Ta-
ble 10.3 presents this performance measure for particular configurations and
benchmarks. The conventional single-objective GP (configurations F and
F+) tends to solve only the easiest benchmarks, even when working with a
larger population (F+). The multiobjective methods based on two or more

10.3 Combinations of search drivers 125

Table 10.3: Success rates for particular combinations of search drivers.

cm
p6

cm
p8

di
sc

1

di
sc

2

di
sc

3

di
sc

4

di
sc

5

m
aj

6

m
aj

8

m
al

1

m
al

2

m
al

3

m
al

4

m
al

5

m
ux

6

pa
r5

pa
r6

FE 0.32 0.02 0.02 0.04 0.32 0.00 0.10 0.22 0.00 0.40 0.34 0.20 0.16 0.82 0.94 0.00 0.00
FL 0.34 0.00 0.00 0.00 0.08 0.00 0.02 0.22 0.00 0.08 0.14 0.24 0.04 0.68 0.98 0.02 0.00
FLC 0.62 0.12 0.02 0.02 0.24 0.00 0.04 0.46 0.00 0.28 0.16 0.38 0.20 0.74 0.78 0.06 0.00
FLCE 0.52 0.04 0.10 0.20 0.38 0.16 0.26 0.38 0.00 0.56 0.48 0.32 0.50 0.66 0.84 0.04 0.00
FLE 0.36 0.00 0.02 0.10 0.26 0.04 0.12 0.32 0.00 0.48 0.42 0.28 0.36 0.78 0.98 0.00 0.00
FLS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.06 0.02 0.00 0.02 0.64 0.10 0.00 0.00
FLSC 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.14 0.12 0.12 0.24 0.86 0.46 0.00 0.00
FLSCE 0.12 0.00 0.04 0.02 0.14 0.02 0.00 0.04 0.00 0.34 0.30 0.10 0.42 0.88 0.30 0.00 0.00
FLSE 0.04 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.42 0.22 0.08 0.32 0.74 0.10 0.00 0.00
FS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.58 0.04 0.00 0.00
FSE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.16 0.00 0.08 0.90 0.14 0.00 0.00
F 0.36 0.02 0.00 0.00 0.00 0.00 0.00 0.56 0.00 0.14 0.06 0.26 0.00 0.84 0.92 0.04 0.00
F+ 0.70 0.16 0.00 0.00 0.02 0.00 0.00 0.86 0.00 0.20 0.12 0.58 0.00 0.94 1.00 0.06 0.00

search drivers fare much better. All benchmarks, except for maj8 and par6,
are solved at least once by some combinations of search drivers.

The performance on individual benchmarks does not tell much about a
configuration; what ultimately matters are the relations between the likeli-
hoods of synthesizing a correct program for any problem. In order to take
into account that some benchmarks are inherently easier and some more
difficult, we summarize Table 10.3 by ranking methods on every benchmark
independently, and then averaging the ranks for each method:

FLCE FLE FLC FE F+ FLSCE F FL FLSE FLSC FSE FLS FS
3.26 4.47 4.94 5.47 5.59 6.35 7.32 7.47 8 8.32 8.94 10.2 10.7

The ranking reveals that including program size S as a search driver is
detrimental in all cases. Except for FLSCE, all configurations that involve
S rank lower than F (conventional GP), and FLSCE ranks worse than F+.
Preferring the smaller programs leads to elimination of the larger ones, and
it is the latter programs that are evolvable, because they lend themselves to
modifications that are harmless and prospectively beneficial (for instance
when applied to introns, i.e. code pieces that do not affect program output).
Small programs, to the contrary, tend to be more brittle: most modifications
applied to them are usually detrimental.

Individual search drivers clearly complement each other. When used only
with the conventional evaluation function F (FE, FL, FS), they perform
rather poorly. When combined in groups of three (FLC, FLE, FLS, FSE),
they fare better. When excluding S, the average rank of triples of search
drivers amounts to 4.705 and the average rank for pairs of drivers is 6.47.
It is the most numerous combinations that take the lead. Of them, FLCE
fares the best, achieving success rate of 32 percent on average.

It is interesting to see that greater numbers of search drivers do not harm
the success rate, even though multiobjective selection is known to become

126 10 Experimental assessment of search drivers

Table 10.4: Average ranks of configurations that include and exclude par-
ticular search drivers.

Search driver L C E S
Configurations including the driver 6.63 5.72 6.08 8.75
Configurations excluding the driver 7.60 7.57 7.79 5.50

less efficient with the growing number of objectives. This confirms the hy-
pothesis formulated in Sect. 9.8 that using multiple uncorrelated search
drivers can make a search process more effective.

For statistical significance we conduct Friedman’s test for multiple achieve-
ments of multiple subjects [72] which, as opposed to ANOVA, does not re-
quire the distributions of variables to be normal (which we cannot assume
here). The p-value for the data in Table 10.3 is � 0.001, which strongly
indicates that at least one method performs significantly different from
the remaining ones. The post-hoc analysis using the symmetry test [57]
indicates that the leading configuration FLCE is significantly better than
FLSCE and all configurations that follow in the above ranking.

To assess the contributions of each driver, in Table 10.4 we confront the
average ranks of configurations that include a given search driver with
those that do not. The only driver that deteriorates performance is S. All
the remaining drivers, when added to a combination of remaining drivers,
improve its rank in expectation. The impact of C seems to be the greatest,
improving rank by 1.85 on average.

10.4 Configurations with subprogram archives

The rationale for archives of subprograms (Chap. 8) is that by inspect-
ing execution traces we obtain not only quantitative feedback in form of
search drivers, but also subprograms that are relevant for the task being
solved. Here, the attributes selected by the REPTree-induced decision tree
(corresponding to instructions in an execution record and, indirectly, to
a program subtree) indicate the relevance of particular subprograms in an
evaluated program. The subprograms are gathered in an archive and reused
by a customized search operator.

In this experiment, we simplify the workflow originally used in [96] and
described in Chap. 8. As in that work, after every generation we gather all
indicated subprograms in a working set A′ and eliminate semantic dupli-
cates: for any group Peq ⊆ A′ of semantically equivalent subprograms, we
preserve the smallest one, set its utility to the maximum of the utilities of
subprograms in Peq, and discard the remaining elements in Peq . However,
rather than fixing the archive’s capacity, we discard half of A′ in every

10.4 Configurations with subprogram archives 127

Table 10.5: Success rates for particular combinations of search drivers (con-
figurations with subprogram archive).

cm
p6

cm
p8

di
sc

1

di
sc

2

di
sc

3

di
sc

4

di
sc

5

m
aj

6

m
aj

8

m
al

1

m
al

2

m
al

3

m
al

4

m
al

5

m
ux

6

pa
r5

pa
r6

FLA 0.98 0.66 0.16 0.40 0.84 0.04 0.32 0.92 0.00 0.80 0.80 0.98 0.78 0.96 1.00 0.68 0.22
FLCA 1.00 0.76 0.22 0.58 0.96 0.06 0.40 0.88 0.02 0.80 0.88 0.98 0.94 1.00 1.00 0.38 0.08
FLCEA 1.00 0.70 0.54 0.68 0.94 0.40 0.70 0.90 0.02 0.84 1.00 0.98 0.98 1.00 1.00 0.40 0.12
FLEA 1.00 0.64 0.32 0.44 0.92 0.28 0.54 0.96 0.00 0.98 1.00 1.00 1.00 1.00 1.00 0.72 0.30
FLSA 0.88 0.00 0.00 0.02 0.32 0.00 0.00 0.26 0.00 0.56 0.52 0.66 0.54 0.92 1.00 0.08 0.00
FLSCA 1.00 0.30 0.10 0.30 0.96 0.02 0.12 0.94 0.00 0.88 1.00 0.94 1.00 0.98 1.00 0.62 0.10
FLSCEA 1.00 0.18 0.28 0.74 0.88 0.10 0.34 1.00 0.00 0.98 1.00 0.94 1.00 1.00 1.00 0.20 0.00
FLSEA 0.84 0.00 0.14 0.46 0.88 0.10 0.18 0.66 0.00 0.94 1.00 0.96 1.00 0.96 1.00 0.12 0.02

generation, removing so the subprograms with utility below the median.
Should this result in archive size dropping below 50, we keep the 50 sub-
programs with highest utility. The archive is emptied and repopulated with
subprograms in every generation.

We also simplify the definition of subprogram utility. Rather than (8.1), we
define it for a subprogram p′ in a program p as

u(p′) = 1 − fe(p)/|T |
|PC(p)| , (10.3)

where fe(p) is the error of the classifier induced from p’s execution record
(7.1), PC(p) > 1 is the number of subprograms/attributes used by that clas-
sifier, and |T | is the number of tests. The ‘reward’ (classification accuracy) is
evenly shared between the derived subprograms, while in (8.1) it depended
nonlinearly on fe.

To reuse code pieces from the archive, we use archive-based mutation de- archive-
based
mutationscribed in Sect. 8.3. It works as subtree-replacing mutation, the only differ-

ence being that the program implanted in the parent is fetched from the
archive rather than randomly generated. The new operator is granted half
of the engagement probability of crossover (0.8, Table 10.1), so that mu-
tation, crossover, and archive-based mutation are engaged at probabilities
0.2, 0.4, and 0.4, respectively.

Table 10.5 presents the results for the configurations with archives (called
hereafter ‘archived’ configurations), marked with an ‘A’ appended to the
list of search drivers. The success rates are remarkably higher than for
configurations reported in Table 10.3. Overall, the configurations rank as
follows:

FLEA FLCEA FLCA FLSCEA FLSCA FLA FLSEA FLSA
2.74 2.91 3.91 3.91 4.62 5.06 5.32 7.53

As before, program size is clearly not beneficial. More importantly however,
we may now assess the impact of archives on performance. The joint ranking

128 10 Experimental assessment of search drivers

Table 10.6: Average ranks of configurations that include and exclude par-
ticular search drivers (for archived configurations).

L C E S
Configurations including the driver 9.74 8.66 9.82 12.57
Configurations excluding the driver 15.06 12.45 12.09 9.59

of the archived and non-archived methods (including conventional GP, i.e.
F and F+) is as follows:

FLCEA FLEA FLCA FLSCEA FLSCA FLA FLSEA FLCE FLSA FLE
2.94 3.15 4 4.76 5.29 5.56 6.44 10.1 11.1 11.8

FLC F+ FE FLSCE F FL FLSE FLSC FSE FLS FS
12.4 12.7 12.9 13.9 14.8 15.1 15.6 15.9 16.6 17.8 18.3

The improvements are unquestionable. The archived configurations achieve
top ranks, and only one of them (FLSA) ranks worse than any other non-
archived configuration (FLCE). The average rank for configurations that use
an archive is 5.4, and 14.5 for those that do not. The top-ranking configu-
rations, FLCA and FLCEA, are practically guaranteed to solve the easiest
problems (success rate 1.0), work well for the more difficult ones, and manage
to occasionally solve even the hardest maj8 benchmark, a feat none of the
non-archived configurations managed to achieve. Most of the archived config-
urations regularly solve also par6, another difficult benchmark not solved by
the non-archived configurations; FLEA, the other top-ranking configuration,
solves this problem in almost every third run (success rate 0.30).

In terms of statistical significance, Friedman test is conclusive again (p ≈
10−43). Post-hoc analysis shows that FLCEA’s rank is significantly better
than FLSA’s and than all the subsequent configurations. The seven top con-
figurations (up to FLSEA) are significantly better than F, and the top four
configurations (up to FLSCEA) are better than F+. Let us emphasize that
this statistical analysis is very conservative, given the weak nature of the
non-parametric Friedman test.

Concerning the contributions of individual search drivers, we juxtapose the
average ranks of groups of configurations in Table 10.6. Analogously to the
ranks presented in Table 10.4, the positive contributions of L, C and E are
evident; this is particularly clear for L, which boosts performance by over five
ranks on average. Program size S is again detrimental, albeit not as much as
before (note that, given 21 configurations, the raw ranks achieved on individ-
ual benchmarks range here in the interval [1, 21], compared to [1, 13] in the
previous section).

The relatively high number of search drivers used in parallel (up to five in case
of FLSCE and FLSCEA) does not seem to be harmful. Many configurations
that feature four or five search drivers rank high. The average rank of configu-
rations with five drivers is 9.33, compared to 9.38 and 12.25 for four and three

10.5 Importance of subprogram selection 129

drivers respectively. Let us reiterate that this is far from obvious: multiobjec-
tive methods like nsga-ii are known to lose performance with the growing
number of objectives, as that causes solutions less likely to dominate other
solutions. The diversifying nature of multi-faceted behavioral evaluation ap-
parently managed to counteract this weakness.

The self-regulatory mechanism of discarding half of the archive in every
generation proved effective. At least for the considered benchmarks, the
archives did not tend to blow up. The average size of an archive at the end of
a run varied from 100 to 331 subprograms (with average at 159), depending
on problem and configuration. Thanks to that, the computational overhead
of archive management was moderate: the runtimes on contemporary PCs
exceeded five minutes per GP run only for the hardest benchmarks.

10.5 Importance of subprogram selection

The archiving mechanism introduces an additional flow of subprograms
from the current population, through the archive, to the subsequent pop-
ulation (Fig. 8.1). Several decisions are made on that way: first about the
selection of subprograms to be submitted to the archive, then about the
removal of the least useful subprograms from the archive, and finally about
the insertion of subprograms into programs. Given the nontrivial nature of
this process, it is justified to ask: do the choices of subprograms made by
the pangea’s classifier matter at all?

To verify this hypothesis, we prepare a control setup that maintains all
the settings of archived configurations (Sect. 10.4), but chooses the sub-
programs to be archived at random. Technically, the REPTree inducer is
applied to an execution record as explained the previous section, resulting
in a subset of k selected attributes. However, those attributes are discarded
and k attributes are drawn from the execution record at random (without
replacement). The subsequent stages proceed as before, i.e. the k subpro-
grams indicated by the randomly selected attributes are submitted to the
archive and undergo further processing. Therefore, the classifier is engaged
here only in order to obtain k, i.e. to avoid arbitrarily setting this number.

Below we present the ranking on success rate, including all the original
archived configurations and the corresponding configurations randomized in
the above way, where the names of the latter are prepended with letter ‘r’.

FLCEA FLEA FLCA FLSCEA FLSCA FLA FLSEA rFLCEA
3 3.06 4.21 4.56 5.56 6.03 6.56 8.35

rFLEA rFLCA rFLA rFLSCEA FLSA rFLSEA rFLSCA rFLSA
9.26 10.6 10.7 11.7 12 12.8 12.9 14.7

130 10 Experimental assessment of search drivers

The outcome is unambiguous: all randomized configurations achieve worse
rank than their non-randomized counterparts. Choosing subprograms ac-
cording to classifier indication is beneficial. Apparently, such subprograms
are more useful building blocks than subprograms chosen at random (even
though the latter are also prioritized by utilities (10.3)). The capability of
detecting meaningful behavioral patterns should be thus deemed critical.

10.6 Contextual search drivers

In the last experiment, we augment the configurations considered earlier
with the implicit fitness sharing search driver fifs, marked by letter I. Note
that this is the only contextual search driver (Sect. 9.3) considered here. The
configurations are simply the combinations of drivers used earlier, extended
by I. We discard F, F+, FS, FE, and FSE, because they performed inferior
in the earlier experiments.

For clarity, we report separately the ranks of non-archived combinations:

FLCE FLEI FLE FLCEI FLC FLCI FLSCE FLI
3.82 5.15 5.29 5.85 6.09 7.94 8.35 8.94

FLSCEI FL FLSEI FLSCI FLSE FLSC FLSI FLS
9.03 9.09 10.1 10.1 10.4 10.5 12.4 13

and the archived ones:

FLEA FLCEA FLCEAI FLSCEA FLCA FLSCEAI FLEAI FLSCA
8.5 8.85 9.24 9.29 10.1 10.3 12.2 14.7

FLSCAI FLCAI FLA FLSEAI FLSEA FLAI FLSAI FLSA
4.5 4.88 6.53 6.62 6.82 7.44 7.65 8.41

For the non-archived configurations, the average rank of the combinations
extended with driver I is 9.09 and 7.92 for those not including I. For the
archived configurations, the analogous numbers are 8.85 and 8.16, respec-
tively. Therefore, we may conclude that the ifs search driver I is not ben-
eficial as an extender of combinations of search drivers considered here.
Though Friedman test is conclusive again (p ≈ 10−12), none of the ex-
tended configurations is better than its non-extended variant according to
post-hoc analysis.

This is however not to say that driver I is never helpful: it does improve
performance in some configurations, for instance advancing the rank of
FLE from 5.29 to 5.15. Nevertheless, it may occasionally deteriorate per-
formance quite gravely, as in the case of FLEAI vs. FLEA. Note however
that in absolute terms all archive-based configurations perform very well
(cf. Table 10.5) and the differences in success rates between them are often
minor.

10.7 Discussion 131

To explain the low usefulness of I, we hypothesize that this driver may be
unable to provide sufficient additional information compared to F, the con-
ventional evaluation function included in each configuration. Therefore, we
conducted an additional experiment, not reported here in detail for brevity,
where the driver I replaced driver F in the configurations considered ear-
lier, leading to search driver combinations ILCEA, ILSCEA, ILEA, ILSCA,
ILCA, ILSEA, ILAI, and ILSA. No I-including combination provided bet-
ter performance than the corresponding combination with F. This suggests
that, at least within the considered suite of benchmarks, drivers F and I are
mutually redundant.

10.7 Discussion

The experiments reported in this chapter, which in total engaged over
30 000 evolutionary runs, corroborate the results presented in [101] and [96].
The multi-faceted evaluation by means of diversified search drivers system-
atically leads to performance improvements. Problems that are very hard
to solve using conventional GP become tractable when behavioral search
drivers provide a richer account of solution characteristics. Simultaneous
use of search drivers of conceptually different ‘pedigrees’ (like ML-based L
and information theory-based E) proves particularly beneficial and forms
an important new result to elaborate on in future. Detrimental influence of
the only non-behavioral search driver considered here, program size S, may
be interpreted as another argument in favor of behavioral drivers. However,
we obviously should not hasten to deem all non-behavioral drivers useless
based on this single case.

We find it particularly encouraging that behavioral assessment proves effec-
tive in configurations that substantially vary from our previous work, in-
cluding different program representation (tree-based GP here vs. PushGP in
[101]) and substantial departure from the setup used in [96]: simpler archive
management and utility definition, different population initialization, and
larger populations, to mention the most important differences. This clearly
suggests that the behavioral paradigm is robust and powerful enough to work
well in various operating conditions.

In addition to the experiments reported here in detail, we tested also other
variations, including:

• Incremental subprogram archives, i.e. merging the subprograms har-
vested from programs with the previous archive content,

• Drawing the subprograms from the archive with probabilities propor-
tional to their utilities,

132 10 Experimental assessment of search drivers

• Even simpler definition of feature utility, not discounted by the number
of identified features, i.e. u(p′) = 1 − e(p) (vs. (10.3)).

In all cases, the comparisons of these variants with the core algorithm used
in this chapter were inconclusive or revealed only minor differences, which
inclined us to not present them in detail. On the other hand, this stability
of performance is yet another signal that behavioral search drivers did not
perform so well here by sheer luck, which corroborates the rationale behind
behavioral program synthesis.

11

Implications of the behavioral perspective

Previous chapters presented a range of approaches that characterize program
behavior in terms of execution record and search drivers. The experiments
reported in Chap. 10 demonstrated that these approaches increase the likeli-
hood of synthesizing a correct program. What are the other, not necessarily
empirical, implications of behavioral program synthesis? We discuss them in
a broader context in this chapter.

11.1 Conceptual consequences

When discussing advantages of behavioral evaluation in Sect. 9.8 and else-
where, we suggested that it can be a means for assessing and promoting
diversity in populations of programs. This is particularly natural in the diversity

mainten-
ancepresence of multiple search drivers. If neither of two compared programs

dominates the other, selection renders them incomparable and allows them
co-exist in a population. No additional mechanism for controlling or induc-
ing diversity may be necessary. Behavioral evaluation and selection implic-
itly provide for phenotypic diversity, which in turn may lower the risk of
premature convergence and overfocusing on local optima.

One might argue that maintaining behavioral diversity is not a truly novel
feature, especially given the recent works addressing semantic diversity (e.g.,
[35]) or methods like lexicase selection [50]. However, the concept of an
execution record invites a deeper take on diversity, not limited only to in-
specting program output. For instance, two programs could be treated as
behaviorally distinct if there is any difference in their execution records. Be-
cause program fragments are being constantly moved by crossover between
individuals in the population, such a mechanism could promote ‘internal
behavioral diversity’ and have positive impact on search performance. This
supposition remains to be verified in further studies.
© Springer International Publishing Switzerland 2016 133
K. Krawiec, Behavioral Program Synthesis with Genetic Programming,
Studies in Computational Intelligence 618,
DOI: 10.1007/978-3-319-27565-9_11

134 11 Implications of the behavioral perspective

Many of the search drivers considered in this book are in a sense invented by a
search algorithm. By relying on ML-induced behavioral models, pangea can
autonomously detect behavioral patterns that reveal potentially useful can-
didate solutions and parts thereof. No background knowledge or human inge-
nuity is necessary for that purpose: the experimenter is not required to specify
which types of patterns are desirable. This makes pangea attractive when
compared to, e.g., extensions of reinforcement learning methods (Sect. 9.10)
that require the additional search drivers to be explicitly provided [8, 165].

Another, potentially more consequential feature of behavioral evaluation is
facilitation of problem decomposition. Problem decomposition, often con-problem

decom-
position sidered together with modularity, has been for long considered an impor-
modularity tant aspect of intelligent systems, and it remains to be an area of intense

research in computational and artificial intelligence [190]. In behavioral
program synthesis, there are at least two alternative avenues to problem
decomposition.

By holding a trace for every test, execution records open the door to verti-
cal, row-wise, test-wise problem decomposition. This capability is essentialvertical

problem
decom-
position

for geometric semantic GP (Chap. 5), where the geometric crossover oper-
ators combine the behaviors of parents on particular tests. For instance, in
the exact geometric crossover in the Boolean domain (Fig. 5.3a and (5.8)), a
mixing random subprogram decides, for each test individually, which parent
to copy the output from. According to the convention adopted in this book,
such outputs are column vectors (see, e.g., Figs. 7.5), and a mixing program,
by picking elements from such vectors, effectively splice them into smaller
vertical segments – hence the name.

Execution records facilitate also horizontal, column-wise problem decompo-
sition, i.e. along the course of program execution. In the median example inhorizontal

problem
decom-
position

Fig. 7.2, horizontal decomposition consists of splitting the original task into
two separate subtasks of (i) sorting the list and (ii) retrieving the central
element of the sorted list (or averaging the pair of the central elements for
the even-length lists). We argue that such desirable decompositions can be
automatically derived by analyzing execution records for entire populations
of programs.

To proceed with our argument, we need to consider the joint behavioral space
of multiple programs. Figure 11.1 visualizes the behavior of three programs
that start with the same input and end up with the same output. Contrary
to previous figures, where a graph node corresponded one-to-one to a state
of an execution environment, here it represents a combination of execution
states for all tests in T (a |T |-ary Cartesian product of execution states). We
term such a combination a c-state. For instance, s1 is the combination of
executions states reached by program p1 after executing its first instruction
for all available tests. Consistently, a path in the graph represents a combined
trace (c-trace) and captures the behavior of a program for all tests. c-traces

11.1 Conceptual consequences 135

s0 s2

s1

s3

s4

s5

s6

s7

s8

t∗

p1

p2

p3

p1

p2

p3

p1

p2

p3

p1

p2

p3

Fig. 11.1: Graphical representation of three c-traces of programs p1, p2, p3,
each of length 4. Each c-state si corresponds to a specific combination of
states for all tests. Vertical columns of c-states correspond to consecutive
execution stages.

of two programs can meet in a single c-state and then diverge (which was
impossible for traces of the same program; see discussion in Sect. 6.2). In
Fig. 11.1, this is the case for the c-state s4 where the c-traces of p1 and p2
meet.

Assume for the sake of argument that p1, p2, and p3 in Fig. 11.1 are correct
programs that calculate the median. p1 and p2 may implement different sort-
ing algorithms (which lead to some intermediate c-states s1 and s2), but they
arrive at the same intermediate c-state s4 where the list is sorted for all con-
sidered tests. The programs may then use different means to fetch the central
element from the sorted list, which makes their c-traces diverge again. Never-
theless, they both end up in the same final c-state t∗ (the target of the task),
producing the correct value of the median. The fact that the c-trace of p3 does
not pass through s4 could mean in this context that p3 sorts the list in reverse
order, or determines the median without sorting the list altogether.

The key observation related to horizontal decomposition is that the larger
the number of correct programs with c-traces crossing in the same inter-
mediate c-state s, the more evident it is that a task is decomposable. It
is so because, on one hand, s can be achieved in many ways from the
initial c-state, and, on the other, there are many ways of transforming s
into the correct final c-state (target) t∗. We visualize such scenario for mul-
tiple programs in Fig. 11.2. If we knew s in advance, the task could be
elegantly decomposed into two separate tasks. Crucially – and this is the
main promise of problem decomposition – the combined computational ef-
fort of solving both these subtasks could be lower than that of solving the
original task: the expected length of a correct program for each subtask is a
fraction of the expected length of a program that solves the entire task, and
the size of program space that needs to be searched depends exponentially
on program length.

136 11 Implications of the behavioral perspective

s0 s t∗

Fig. 11.2: The set of c-traces of a program synthesis task that is modular
in the horizontal sense (the dashed lines denote c-traces traversing through
many c-states). The c-traces traverse the same intermediate c-state s, while
the computation that precede and follow that c-state can be realized in
multiple ways (hence multiple arcs from s0 to s and from s to t∗).

s0 s

s1

s2

t∗

s3

s4

Fig. 11.3: The c-traces of close-to-correct programs cluster in the space of
c-states (dashed arrows represent c-paths, solid lines similarity between c-
states). The programs end execution in c-states s3 and s4 that are similar
to target t∗ (similarity marked with blue arrows). This may suggest that
the intermediate c-states they traverse (s1 and s2, respectively) can be also
similar in some sense, and indicate the existence of a (yet unknown) c-state
s that could make it possible to achieve the target t∗.

In practice however such desirable c-states are not known in advance and,
to make things harder, we do not even know if they exist for a given pro-
gram synthesis task. Not discouraged by this, we posited in [87] that for
horizontally modular tasks the c-traces of close-to-correct programs tend
to visit similar intermediate c-states. Assume that the c-states s and t∗

in Fig. 11.3 correspond to, respectively, the sorted list and the calculated
median, as in the previous figures. Consider a program that fails to sort
(and consequently produces wrong output) for some tests in T , with c-trace
marked by any sequence of dashed arrows. Obviously, because the program
passes quite many tests, its final c-state (say, s3) will be similar to the
target t∗. More importantly however, an intermediate c-state s1 traversed
by that program after (imperfect) sorting phase will share many execution
states with the desired (yet in general unknown) intermediate c-state s, be
in this sense similar1 to it.

Given many programs in a working population, each of them possibly
diverging from s in an individual way, the ‘behavioral trajectories’ of such
1 The similarity measure could be just the number of execution states shared by

the compared c-states.

11.1 Conceptual consequences 137

a) s0 s′ s′′ t∗

b) s0

s′

s′′
t∗

Fig. 11.4: The sets of c-traces for two program synthesis tasks, revealing
three underlying subtasks (a), and indicating the possibility of realizing the
target functionality via two alternative c-states (b).

close-to-correct programs may thus cluster, revealing so the internal behav-
ioral structure of a task. In Fig. 11.3, such a cluster is formed by the c-traces
traversing s0 → s1 → s3 and s0 → s2 → s4. Crucially, if both s1 and s2
are similar to s, then there is a chance that they are similar to each other,
and an analogous observation holds for s3, s4, and t∗. Therefore, clustering
could be hypothetically observable even if s was not known. In [87], we
provided preliminary experimental evidence for such clustering in real
program synthesis tasks. We observed that the frequency with which
c-traces cross with each other varies across tasks, and that the distribution
of this characteristic across tasks is non-uniform, which corroborates the
existence of less and more modular tasks in the above sense. In an earlier
study [103], we showed that the proximity of the intermediate c-states
correlates with the proximity to the target for some program synthesis
tasks in the Boolean domain.

An effective method for detecting horizontal modularity would need to
handle other ways in which c-traces could cluster. This includes more than
two subtasks arranged sequentially (Fig. 11.4a) or subtasks arranged in
parallel (Fig. 11.4b). These variants are clearly related to the concepts
known in research on modularity [190]. A task for which all c-traces of
correct programs intersect (Figs. 11.2 and 11.4a) is separable, because it can separable

taskbe decomposed into fully independent subtasks, each of them corresponding
to a module and independent from all others. In evolutionary terms, there
is no epistasis between such modules.

If only some c-traces of correct programs intersect, a task can be considered
nearly-decomposable [163], or decomposable but not separable [190, p. 113]. nearly-

decom-
posable
task

For such tasks, changes within a part of program that corresponds to a
module may or may not influence program behavior. In Fig. 11.4b, a sub-
program with its c-trace ending in s′ (a dashed arc from s0 to s′) may be

138 11 Implications of the behavioral perspective

modified so that its c-trace still ends up in s′ (another arc from s0 to s′)
and the final outcome t∗ of the entire program remains the same. But if
the same subprogram changed so that its trace ended in s′′, the remaining
part of the program would need to be modified to traverse from s′′ to t∗, in
order to the final outcome to be preserved. There is evidence that nearly
decomposable tasks are particularly frequent in natural systems [190].

The methods presented in this book do not perform explicit horizontal prob-
lem decomposition, i.e. do not appoint any intermediate c-states as desirable.
However, those of them that define search drivers based on entire execution
traces (pangea and tc) can be said to ‘silently’ aim at decomposition. For
instance, the ftc search driver (6.4) promotes programs (and thus indirectly
also the corresponding c-states) characterized by high two-way entropy. In
this way, it appoints as desirable an entire class of c-states rather than a spe-
cific c-state. An analogous comment applies to pangea (Chap. 7), where ev-
ery attribute fetched by a classifier from an execution record (a column in
Fig. 7.5) can be seen as a part of desired c-state. Telltales of problem decom-
position become even more evident when combining these approaches with
code reuse (Chap. 8): subprograms stored in an archive have c-traces that
start in some s in the above figures and end in c-states that are desirable
according to decisions made by a classifier in pangea.

There are alternatives to clustering when it comes to finding the desirable
intermediate c-states. In [145], we proposed semantic backpropagation, wheresemantic

back-
propa-
gation

candidate programs are inversely executed (starting from t∗), producing by
this means intermediate c-states that may be desirable. The key challenge
of that approach is that inverse program execution is in general ambiguous,
and many c-states may be thus appointed as potentially useful. Nevertheless,
the empirical evidence presented in [145] clearly indicates viability of this
approach and its superiority to alternative variants of semantic GP.

11.2 Architectural implications

The approaches of behavioral program synthesis presented in this book re-
quire extending the common EC framework with additional functionalities,
like tracing program execution, multiobjective evaluation, and customized
search operators (Chap. 7). It becomes thus natural to ask what are the
implications of the behavioral paradigm for design of program synthesis
methods and metaheuristics in general. In particular, does not it lead to
tighter coupling between the components?

Let us start with noting that the two core concepts of our behavioral
framework, execution record and search driver, are well-separated from the
specifics of a given domain. An execution record is just a matrix2 of values
2 Or a two-level nested list, if traces vary in length.

11.2 Architectural implications 139

that belong to the types available to the underlying programming language.
It is essentially agnostic about program representation and programming
language. For instance, an imperative program and a functional program
may produce execution records that look very similar (or even identical,
depending on the representations of execution states). Similarly, search
drivers are largely problem-independent, and the behavioral ones require
access to execution record only. Thus, although for clarity we defined them
as functions of signature Pk → O

k (9.2), many of them could be redefined
as Ek → O

k, where E is the domain of execution records.

Nevertheless, before even bringing up the above arguments, we should start
with stating that the presumed generic character of metaheuristic algo-
rithms is largely a myth. The objective function is not the only component
of the metaheuristic ‘ecosystem’ that is domain-specific and needs to be tai-
lored to a given application. Consider the block diagram of a conventional,
single-objective metaheuristic algorithm configured to solve a nontrivial pro-
gram synthesis task (like GP in Fig. 1.1). Evaluation function features a
nontrivial interpreter that runs programs on tests. There are sophisticated
search operators that manipulate programs, possibly taking into account
the specifics of a given programming language. Also the initialization phase
needs to obey the admissible program syntax and/or type system. A selec-
tion mechanism may take into account not only program error, but also
other properties like program size.

And between these all components we find the actual metaheuristic al-
gorithm: usually just a handful of lines of code that control the flow of
candidate solutions from domain-specific initialization to domain-specific
evaluation to domain-dependent selection and domain-dependent search op-
erators. Yet it is this algorithm which often, despite claiming to be generic,
throttles the flow of information between the components mentioned above
by, e.g., making narrowing assumptions about the nature of evaluation (e.g.,
assuming it to be scalar). The question is then: why should we insist on
sticking to meta-heuristics and keeping them domain-agnostic, if the other,
arguably more complex components, are often so much bound to problem
domain? Opening the core search algorithm to the specifics of a given do-
main – effectively turning into a heuristic – may be easier than widely
assumed, and very beneficial.

These observations urge us to diverge from the conventional evolutionary
workflow and rethink the architecture of a behavioral program synthesis
system. Rather than a rigid pipeline with predefined information flow, it
may be more appropriate to conceptualize it as a network of interconnected
components that exchange information about a search process. This vision
fortuitously coincides with the recent analysis by Sörensen [168], where
metaheuristics is first defined as an algorithmic framework accompanied
with a set of guidelines (rather than an algorithm template), and later
rephrased as follows:

140 11 Implications of the behavioral perspective

In its general sense, however, a metaheuristic is not an algorithm,
i.e. it is not a sequence of actions that needs to be followed such
as a cooking recipe. Rather, it is a consistent set of ideas, concepts,
and operators that can be used to design heuristic optimization
algorithms [168, p. 6].

The cited work also points out to advantages of this vision for research on
metaheuristics: clearer understanding of past works, easier identification of
similarities between the structure and inner workings of methods, and better
focus on selected aspects of particular components. We hasten to extend that
list by facilitation of hierarchical composition and higher abstraction levels.

Component-based vision facilitates also separation of concerns, which inseparation
of
concerns turn clarifies conceptualization and easies implementation. Decoupling eval-

uation from identifying the optimal solutions is an example of such sepa-
ration in the proposed framework: a search driver provides only the for-
mer, while a correctness predicate only the latter. Separation of concerns
is considered desirable in software engineering and sanctioned as a design
pattern [36], i.e. a recognized good practice in software design. By analogy,
the above separation of evaluation and correctness predicate can be seen as
a metaheuristic design pattern3. Other components considered in this book,metaheu-

ristic
design
pattern

search drivers in particular, form viable candidates for such patterns too,
which subscribes to the recent growing interest in metaheuristic standard-
ization [174]. On a more technological level, this trend can be seen as a step
toward seeing metaheuristic frameworks as service-oriented architectures4.

Last but not least, the behavioral framework addresses the main problem
identified in this book, i.e. that of evaluation bottleneck (Sect. 2.1). In the
traditional GP workflow, an evaluation function plays the decisive role:
it not only compresses the behavioral characteristics of a program into
(usually scalar) evaluation (Sect. 2.1), but also decides what to compress.
The ‘client’ components (selection operators and search operators) have no
choice and need to make the best of what is available in such selective eval-
uation. With execution records, the role of evaluation is less dominant: it is
responsible only for providing execution records, and leaves up to the client
components how to exploit that information. And with more information
available, the metaheuristic components become more empowered in their
influence on search process. They can make better-informed decisions not
only about selection of candidate solutions, but also about future search
directions, e.g., by engaging search operators that reuse subprograms from
an archive (Chap. 8). This decentralized ‘whitebox’ architecture interest-
ingly converges with the well-known blackboard architecture that has beenblack-

board
architec-
ture

known for decades in AI [156].

3 See http://www.sigevo.org/gecco-2014/workshops.html#mdp
and http://www.sigevo.org/gecco-2015/workshops.html#wmdp.

4 See http://osgiliath.org/ for an example of such an initiative.

http://www.sigevo.org/gecco-2014/workshops.html#mdp
http://www.sigevo.org/gecco-2015/workshops.html#wmdp
http://osgiliath.org/

11.3 Summary 141

11.3 Summary

In this chapter, we discussed only the most evident implications of adopting
the behavioral perspective in program synthesis, focusing in particular on
modularity, problem decomposition and architectural aspects. Concerning
the latter, it is worth noting that some of architectural concerns can be
elegantly addressed using the functional programming paradigm, which we
demonstrate with our software suite [82] and elsewhere [174]. Many of the
implications discussed in this chapter point to opportunities for future work,
some of which we identify in the next, final chapter.

12

Future perspectives

This book proposes a new conceptual perspective on generate-and-test pro-
gram synthesis. The framework of behavioral program synthesis is intended
to provide more information on candidate programs on one hand, and to
make search algorithms capable of exploiting that information on the other.
The core elements of that framework are execution records, behavioral search
drivers, multiobjective characterization, and code reuse. Experimental evi-
dence in Chap. 10 and elsewhere proves this viable: behavioral insight into
candidate programs is clearly beneficial. How can this take us further? What
are the possible extensions? In this closing chapter, we outline a few prospec-
tive research directions.

12.1 The prospects

The repertoire of behavioral extensions of GP presented in this book is
by no means complete. Our intention was to present the well-defined rep-
resentatives of the behavioral paradigm and arrange them into a logical
chain of gradually increasing sophistication. Such juxtaposition makes it
easier to spot the opportunities for further work that can either interpolate
or extrapolate this progression; in the following we point to several such
possibilities.

The arguably most exciting aspect of search drivers is their vast design
space. In this book, we only scratched the surface of possible designs. By
its sheer size, the space of functions Pk → O

k must host many yet un-
known search drivers. And even though only some of them can be expected
to be universal, i.e. generic enough to prove effective for many problems
(Sect. 9.5), and effective, i.e. guiding search better than the random search
driver (Sect. 9.7), some may be more useful than anything known to date.
Arguably, new behavioral patterns can be defined, detected and exploited,
© Springer International Publishing Switzerland 2016 143
K. Krawiec, Behavioral Program Synthesis with Genetic Programming,
Studies in Computational Intelligence 618,
DOI: 10.1007/978-3-319-27565-9_12

144 12 Future perspectives

which would characterize other qualities than existence of execution traces
that merge (tc, Chap. 6) or the capability of predicting the desired output
(pangea, Chap. 7).

Interestingly, a search driver that has no obvious interpretation within our
conceptual framework may still be very helpful. As the success of artificial
neural networks shows, our ability to name or understand a concept (e.g.,
learned by a neuron in network’s hidden layer) is not a prerequisite of perfor-
mance. The repertoire of search drivers considered in this book can be surely
extended with many other characteristics of program behavior. From the
practical perspective, it would be particularly interesting to consider drivers
reflecting non-functional aspects of program execution like program runtime,
memory occupancy, or power consumption.

One of the features of search drivers that remains to be exploited is the par-
tial nature of their codomains (9.2). All individual search drivers employed in
the experimental part of this book order candidate programs completely, and
partial ordering results only from their simultaneous use in a multiobjective
setting. The key advantage of being partial is the permission to abstain from
comparing some programs: for the success rate of a program synthesis algo-
rithm, it may be better to decline such comparisons than to possibly suggest
an incorrect ordering and so deceive an algorithm. In single-objective settings,
partiality renders selection inconclusive and may be thus considered trouble-
some. This seems to be particularly reasonable in multiobjective configura-
tions, where the other search drivers may fill in and relieve the momentarily
‘incompetent’ driver from its duties.

An aspect of program synthesis that is absent from this book is data types: we
assumed single-type GP, as it is sufficient in quite many domains. Attempting
to evolve programs that implement more complex concepts (i.e. operations
on lists) necessitates multiple types. The importance of types has been advo-
cated in program synthesis for a long time. Type constraints can immensely
constrain the space of feasible solutions in program synthesis. For instance,
as shown in [187], a function with the signature List[T] → N, where T is any
type, must in fact be a function of list length, and only of list length (the rea-
son being, among others, that the semantics of this task abstracts from the
nature of list elements). There are no principal obstacles for designing search
drivers that inspect types used by candidate programs and capture that in-
formation or confront it with the type-related information coming with the
specific program synthesis task.

Richer behavioral information opens the door to a broader repertoire of
possible reactions of a search algorithm. In this book, the recipients of
behavioral evaluation are selection operators and, to a much lesser extent,
search operators (the archive-based mutation in Chap. 8). Concerning other
possibilities, generation of new candidate solutions can be more directional,
as exemplified by semantic GP in Chap. 5, where search operators construct

12.1 The prospects 145

new candidate programs that meet very specific semantic requirements (see
also [145]). The discussion on modularity in Sect. 11.1 points to possible ex-
tensions of the archive-based mutation. For instance, a behaviorally-aware
crossover operator could involve mate selection and recombine the parents
so as to achieve the desired behavioral effect. In an ideal scenario, such an
operator, when faced with the task of synthesizing a program that calculates
the median (Fig. 7.2) could select a sorting subprogram with a subprogram
that retrieves the central element from a list, and combine them into a
complete program. To an extent, we obtained this type effect in our recent
work on semantic backpropagation [145], where the desired intermediate
state is estimated via inverse execution of programs. Other components of
GP workflow may benefit from behavioral evaluation as well; for instance,
initializing programs with some form of feedback from evaluation process
seems particularly promising.

To an extent, the idea of making search operators more responsive alludes
to research on reactive search [9] and hyper-heuristics [18]. In both these
research directions, a metaheuristic algorithm monitors its own progress
and adjusts its search policy to maximize the odds of success. Their focus
is on search operators and algorithms, i.e. on how to perform search. The
behavioral perspective is more about what to drive the search with.

Concerning the impact beyond program synthesis, behavioral approach is
applicable in domains where candidate solutions (agents) can interact with
various ‘stimuli’ (environments) and produce diversified responses to them.
The term executable structure has been quite often used in the past to
characterize this class of solutions (Sect. 1.5.3). The behavioral perspective
becomes even more fitting if the interactions between candidate solutions
and environments are iterative: an agent reacts to a stimulus, takes an ac-
tion which changes the environment state, and that change possibly affects
the further course of its actions. A complete interaction involves multiple
such stimulus-action cycles. Typical areas where such simulations are com-
mon include games, evolutionary robotics [15, 138], and, in general, AI
agents situated in their environments.

The behavioral approach could push the envelope of these domains. As we
argued in Sect. 1.1, by being capable of realizing any computable function,
computer programs can in principle tackle all these tasks. Thus, in an inter-
esting twist, one does not have to leave the realm of program synthesis to
approach such problems. The past literature is abundant in examples of fruit-
ful evolution of GP programs that control autonomous robots, solve complex
problems, and play games (see [148] for a review).

In this book, we focused on behaviors of just one type of entity in a meta-
heuristic ‘ecosystem’ – programs. However, a metaheuristic algorithm itself
exhibits certain behavior. In the limit, any aspects of search process can be
the subject of behavioral analysis and exploitation. Like pangea peruses

146 12 Future perspectives

execution record, we might therefore hope to mine for patterns (behavioral or
not) in, e.g., problem description, representation of solutions and operators,
genotype-to-phenotype mapping, solution-state trajectory, algorithm-state
trajectory, or operator-sequence trajectory. As an example, consider a set of
tests T ⊆ R

2 × R, i.e. for programs that take two real numbers as input and
produce a real number in response, and assume that ((x, y), z) ∈ T ⇐⇒
((y, x), z) ∈ T . Even without access to this domain knowledge, a human pre-
sented with sufficient samples from T would in all probability notice that the
program to be induced should be symmetric with respect to its arguments.
Taking this observation into account immensely reduces the size of search
space. Such symmetry is of course a case of an invariant, and there are a
number of ways in which one might attempt to incorporate invariants into
heuristic program synthesis, perhaps the most obvious of which is to add it
as a soft constraint of the heuristic function.

We expect the behavioral framework extended in the above ways to help
advance heuristic program synthesis towards realizing the full potential
discussed in Sect. 1.6 and help in scaling up already existing algorithms. The
ML-style benchmarks traditionally studied in GP literature [122] may be
insufficient to validate this claim, and the ‘uncompromising’ problems [50,
49] or the like might present a more appropriate challenge. Prospectively,
we hope behavioral program synthesis to also be useful for conventional
programming languages, with potential consequences for the practice of
software engineering.

12.2 Closing remarks

We envision behavioral program synthesis as a paradigm shift from the
traditional black-box architecture to the white-box one. In conventional
GP, program behavior is hardly ever considered. Scalar evaluation, captur-
ing the final effects of execution, is assumed to be informative enough to
effectively drive search. We brought many arguments in this book, both
theoretical and empirical, to claim that this is not the way to go. It should
become clear at this point that evaluation in generative program synthesis
can be made more informative at virtually no additional cost, and that the
detailed information on program behavior is valuable and may substantially
improve the performance of heuristic search.

In [168], Sörensen succinctly summarized Simon’s and Newell’s visionary pa-
per on the role of heuristic methods [164], saying that

(...) a theory of heuristic (as opposed to algorithmic or exact)
problem-solving should focus on intuition, insight, and learning.
[168, p. 5]

12.2 Closing remarks 147

The perspective presented in this book is parallel to that vision. Search
drivers are in a sense intuitive, because they capture only certain aspects
of considered candidate solutions, unlike objective functions that provide
unquestionable assessment of solution quality (or are at least often believed
to do so). A search driver may be even literally intuitive when it embodies a
human’s supposition about a presumably effective way of driving a search
process. Concerning insight, search drivers clearly open the blackbox of
evaluation function and make the structure of a problem more exposed to
a metaheuristic search process. Finally, search drivers facilitate inclusion
of learning in order to understand the structure of a search space (as in
unsupervised learning via clustering in doc) or to find the links between
the behavioral characteristics of candidate solutions and the search goal (as
in pangea).

One of the plausible interpretations of this book’s motto “To measure is
to know” is that science makes progress by developing better instruments.
With this volume, we hope to extend the toolbox of instruments normally
used in generate-and-test program synthesis. We look forward for further
developments, including even more effective search drivers, a principled
approach to designing search drivers, or, most excitingly, the dawn of au-
tomated design of search drivers. If hyper-heuristic research showed that
design of metaheuristics can be automated, why should that be impossible
for search drivers? Time will bring the answers to this and other supposi-
tions formulated in and following from this volume.

Index

abstract syntax tree, 2
accretion, 31, 32
admissible input, 2, 10, 11
approximate fitness function, 113
archive, 91
archive-based mutation, 92, 127

behavioral descriptor, 25, 41, 116
behavioral pattern, 78, 88, 134
behavioral program synthesis, 35
bias-variance tradeoff, 109
blackboard architecture, 140
bloat, 112
building block, 58, 92, 114, 130

candidate solution, 3, 12
optimal, 3

classification error, 85
classifier complexity, 85
classifier ensembles, 109
closure, 94
code reuse, 91
coevolutionary algorithm, 32, 44
conditional entropy, 70
coordinate systems, 51
correctness predicate, 3
cosolvability, 47
credit assignment, 90

deductive program synthesis, 10
deep learning, 31
derived objective, 51
design-by-contract, 5
desired output, 5
discrete search problem, 4

diversity maintenance, 31, 46, 133
domain, 2
domain barrier, 33
domain knowledge, 78
dominance relation, 25, 50, 112

on tests, 51, 105

elementary objective, 50
emergence, 8
end user programming, 19
entropy, 70
epistasis, 8, 137
evaluation bottleneck, 22, 33, 140
evaluation function, 12, 14, 21, 98

consistent, 14
conventional, 15
multimodal, 7

evolvability, 102, 104, 125
executable structure, 12, 145
execution environment, 36
execution record, 37

differential, 39, 81
execution state, 36

information content, 70
intermediate, 69
local, 74

feature synthesis, 87
fitness, 12, 14
fitness landscape, 9, 27, 60
fitness sharing

explicit, 46
implicit, 45

fitness-distance correlation, 9
formal verification, 4, 5

150 Index

genetic programming, 12
tree-based, 16

geometric crossover, 61
approximate, 62
exact, 63

geometric offspring, 60
geometric semantic GP, 59
geometric semantic mutation, 64
geometric semantic

search operators, 60
goal state, 7

helper objectives, 113
heuristic function, 114
hyper-heuristics, 33
hypervolume, 111

inductive bias, 86, 87
inductive logic programming, 11
inductive programming, 11
instruction, 2
interaction function, 43
interaction matrix, 44
intrinsic motivation, 115
intron, 125

lattice of outcome vectors, 25
learning from examples, 5, 79
lexicase selection, 112
lexicographic ordering, 111
linear GP, 16, 36, 56
local optimum, 31
locality, 9, 60
loss of gradient, 23

mate selection, 145
metaheuristic design pattern, 140
metaheuristics, 21
Minimum Description Length, 85
modularity, 60, 90, 134
multimodality, 7, 110
multiobjectivization, 113

No Free Lunch Theorem, 98
novelty search, 115
NSGA, 52, 93, 120

objective function, 15
open-ended evolution, 115
outcome vector, 24

Pareto coevolution, 50
poset, 25, 100
postcondition, 5
precondition, 5
premature convergence, 31, 46
problem decomposition, 65, 134

horizontal, 134
vertical, 134

program, 2
non-functional properties, 17

program behavior, 31
program execution trace, 36
program improvement, 17
program interpreter, 36
program semantics, 41, 55
program synthesis

generalization, 8
generative, 6
specification-driven, 6

program synthesis task, 3
program trace, 36
programming language, 2
punctuated equilibria, 33
PushGP, 16, 39, 56, 82

reinforcement learning, 115, 134
response surface, 113
rewrite systems, 17

search driver, 33, 97, 100
behavioral, 100
complete, 101
context-free, 101
contextual, 99, 101, 130
deceptive, 107
effective, 106
independent, 108
neutral, 107
optimal, 107
random, 106
strong, 107
universal, 104
weak, 107

search operator, 13
selection operator, 12, 13, 52, 98

fitness-proportionate, 13
ordinal, 13, 49
tournament selection, 13, 99, 112,

120
semantic backpropagation, 138, 145
semantic mapping, 56

Index 151

semantic metric, 59
semantic space, 56
semantics, 8, 56

unrealizable, 57
separation of concerns, 140
shaping, 46, 108
skill, 31, 32, 47, 51

synergy of, 47
subprogram, 72, 86, 88–90
subprogram utility, 92
success rate, 124
surrogate fitness, 113
symbolic regression, 15

target, 6
task

nearly-decomposable, 137
separable, 90, 137

solvable, 4
task specification, 3
test, 5

cosolvable, 47
test difficulty

objective, 24, 45
relative, 46
subjective, 24, 45

test-based problem, 44
trace, 36

consistency, 71
merging, 68

transition graph, 26

underlying objective, 51

variation, 98

REFERENCES 153

References

[1] Douglas Adams. The Restaurant at the End of the Universe. Pan
Macmillan, 2009. isbn: 9780330513111.

[2] Lee Altenberg. “Open Problems in the Spectral Analysis of
Evolutionary Dynamics”. In: Frontiers of Evolutionary Compu-
tation. Ed. by Anil Menon. Vol. 11. Genetic Algorithms And
Evolutionary Computation Series. Boston, MA, USA: Kluwer Aca-
demic Publishers, 2004. Chap. 4, pp. 73–102. isbn: 1-4020-7524-3.
doi: doi:10.1007/1-4020-7782-3_4. url: http://dynamics.org/
Altenberg/FILES/LeeOPSAED.pdf.

[3] Ignacio Arnaldo, Krzysztof Krawiec, and Una-May O’Reilly. “Mul-
tiple regression genetic programming”. In: GECCO ’14: Proceedings
of the 2014 conference on Genetic and evolutionary computation.
Ed. by Christian Igel et al. Vancouver, BC, Canada: ACM, Dec.
2014, pp. 879–886. doi: doi:10.1145/2576768.2598291. url: http://
doi.acm.org/10.1145/2576768.2598291.

[4] Andrei Bajurnow and Vic Ciesielski. “Layered Learning for Evolv-
ing Goal Scoring Behavior in Soccer Players”. In: Proceedings of
the 2004 IEEE Congress on Evolutionary Computation. Portland,
Oregon: IEEE Press, 20-23 06 2004, pp. 1828–1835. isbn: 0-7803-
8515-2. doi: doi:10.1109/CEC.2004.1331118. url: http://goanna.cs.
rmit.edu.au/~vc/papers/cec2004-bajurnow.pdf.

[5] Wolfgang Banzhaf. “Genetic Programming and Emergence”. In:
Genetic Programming and Evolvable Machines 15.1 (Mar. 2014),
pp. 63–73. issn: 1389-2576. doi: doi:10.1007/s10710-013-9196-7.

[6] Wolfgang Banzhaf. “Genetic Programming for Pedestrians”. In:
Proceedings of the 5th International Conference on Genetic Al-
gorithms, ICGA-93. Ed. by Stephanie Forrest. University of Illi-
nois at Urbana-Champaign: Morgan Kaufmann, 17-21 07 1993,
p. 628. url: http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.
com/papers/GenProg_forPed.ps.Z.

[7] Wolfgang Banzhaf et al. Genetic Programming – An Introduc-
tion; On the Automatic Evolution of Computer Programs and its
Applications. San Francisco, CA, USA: Morgan Kaufmann, Jan.
1998. isbn: 3-920993-58-6. url: http://www.elsevier.com/wps/find/
bookdescription.cws_home/677869/description#description.

[8] Andrew G. Barto, Satinder Singh, and Nuttapong Chentanez. “In-
trinsically Motivated Learning of Hierarchical Collections of Skills”.
In: Proceedings of International Conference on Developmental
Learning (ICDL). Cambridge, MA: MIT Press, 2004.

[9] Roberto Battiti. “Reactive Search: Toward Self–Tuning Heuristics”.
In: Modern Heuristic Search Methods. Ed. by V. J. Rayward–Smith
et al. Chichester: John Wiley & Sons Ltd., 1996, pp. 61–83.

[10] Lawrence Beadle and Colin Johnson. “Semantically Driven
Crossover in Genetic Programming”. In: Proceedings of the IEEE

http://dx.doi.org/doi:10.1007/1-4020-7782-3_4
http://dynamics.org/Altenberg/FILES/LeeOPSAED.pdf
http://dynamics.org/Altenberg/FILES/LeeOPSAED.pdf
http://dx.doi.org/doi:10.1145/2576768.2598291
http://doi.acm.org/10.1145/2576768.2598291
http://doi.acm.org/10.1145/2576768.2598291
http://dx.doi.org/doi:10.1109/CEC.2004.1331118
http://goanna.cs.rmit.edu.au/~vc/papers/cec2004-bajurnow.pdf
http://goanna.cs.rmit.edu.au/~vc/papers/cec2004-bajurnow.pdf
http://dx.doi.org/doi:10.1007/s10710-013-9196-7
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/GenProg_forPed.ps.Z
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/GenProg_forPed.ps.Z
http://www.elsevier.com/wps/find/bookdescription.cws_home/677869/description#description
http://www.elsevier.com/wps/find/bookdescription.cws_home/677869/description#description

154 REFERENCES

World Congress on Computational Intelligence. Ed. by Jun Wang.
IEEE Computational Intelligence Society. Hong Kong: IEEE Press,
Jan. 2008, pp. 111–116. doi: doi:10.1109/CEC.2008.4630784.

[11] Bir Bhanu, Yingqiang Lin, and Krzysztof Krawiec. Evolution-
ary Synthesis of Pattern Recognition Systems. Monographs in
Computer Science. New York: Springer-Verlag, 2005. isbn: 0-387-
21295-7. url: http://www.springer.com/west/home/computer/
imaging?SGWID=4-149-22-39144807-detailsPage=ppmmedia
%7CaboutThisBook.

[12] Christopher M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2006. isbn: 0387310738.

[13] Yossi Borenstein and Alberto Moraglio. Theory and Principled Meth-
ods for the Design of Metaheuristics. Springer Publishing Company,
Incorporated, 2014. isbn: 3642332056, 9783642332050.

[14] Markus Brameier and Wolfgang Banzhaf. Linear Genetic Program-
ming. Genetic and Evolutionary Computation XVI. Springer, 2007.
isbn: 0-387-31029-0. url: http://www.springer.com/west/home/
default?SGWID=4-40356-22-173660820-0.

[15] Rodney A. Brooks. Cambrian Intelligence: The Early History of the
New AI. Cambridge, MA: MIT Press, Bradford Books, 1999 1999.

[16] Anthony Bucci, Jordan B. Pollack, and Edwin de Jong. “Automated
Extraction of Problem Structure”. In: Genetic and Evolutionary
Computation – GECCO-2004, Part I. Ed. by Kalyanmoy Deb et al.
Vol. 3102. Lecture Notes in Computer Science. Seattle, WA, USA:
Springer-Verlag, 26-30 06 2004, pp. 501–512. isbn: 3-540-22344-4.
doi: doi:10.1007/b98643. url: http://link.springer.de/link/service/
series/0558/bibs/3102/31020501.htm.

[17] Edmund K. Burke et al. “Towards the Decathlon Challenge of Search
Heuristics”. In: Workshop on Automated Heuristic Design - In con-
junction with the Genetic and Evolutionary Computation Confer-
ence (GECCO-2009), Montreal, Canada. Montreal, Canada, 2009,
pp. 2205–2208. url: http://www.asap.cs.nott.ac.uk/publications/
pdf/DecHH.pdf.

[18] Edmund Burke et al. “Hyper-Heuristics: An Emerging Direction
in Modern Search Technology”. English. In: Handbook of Meta-
heuristics. Ed. by Fred Glover and GaryA. Kochenberger. Vol. 57.
International Series in Operations Research & Management Sci-
ence. Springer US, 2003, pp. 457–474. isbn: 978-1-4020-7263-5. doi:
10.1007/0-306-48056-5_16. url: http://dx.doi.org/10.1007/0-306-
48056-5_16.

[19] Cristian Cadar, Daniel Dunbar, and Dawson Engler. “KLEE: Unas-
sisted and Automatic Generation of High-coverage Tests for Com-
plex Systems Programs”. In: Proceedings of the 8th USENIX Con-
ference on Operating Systems Design and Implementation. OSDI’08.

http://dx.doi.org/doi:10.1109/CEC.2008.4630784
http://www.springer.com/west/home/computer/imaging?SGWID=4-149-22-39144807-detailsPage=ppmmedia%7CaboutThisBook
http://www.springer.com/west/home/computer/imaging?SGWID=4-149-22-39144807-detailsPage=ppmmedia%7CaboutThisBook
http://www.springer.com/west/home/computer/imaging?SGWID=4-149-22-39144807-detailsPage=ppmmedia%7CaboutThisBook
http://www.springer.com/west/home/default?SGWID=4-40356-22-173660820-0
http://www.springer.com/west/home/default?SGWID=4-40356-22-173660820-0
http://dx.doi.org/doi:10.1007/b98643
http://link.springer.de/link/service/series/0558/bibs/3102/31020501.htm
http://link.springer.de/link/service/series/0558/bibs/3102/31020501.htm
http://www.asap.cs.nott.ac.uk/publications/pdf/DecHH.pdf
http://www.asap.cs.nott.ac.uk/publications/pdf/DecHH.pdf
http://dx.doi.org/10.1007/0-306-48056-5_16
http://dx.doi.org/10.1007/0-306-48056-5_16
http://dx.doi.org/10.1007/0-306-48056-5_16

REFERENCES 155

San Diego, California: USENIX Association, 2008, pp. 209–224. url:
http://dl.acm.org/citation.cfm?id=1855741.1855756.

[20] Mauro Castelli et al. “An Efficient Implementation of Geometric Se-
mantic Genetic Programming for Anticoagulation Level Prediction
in Pharmacogenetics”. In: Proceedings of the 16th Portuguese Con-
ference on Artificial Intelligence, EPIA 2013. Ed. by Luis Correia,
Luis Paulo Reis, and Jose Cascalho. Vol. 8154. Lecture Notes in
Computer Science. Angra do Heroismo, Azores, Portugal: Springer,
Sept. 2013, pp. 78–89. doi: doi:10.1007/978-3-642-40669-0_8. url:
http://link.springer.com/chapter/10.1007/978-3-642-40669-0_8.

[21] Siang Yew Chong et al. “Improving Generalization Performance in
Co-Evolutionary Learning”. In: IEEE Transactions on Evolutionary
Computation 16.1 (2012), pp. 70–85. url: http://www.cs.bham.ac.
uk/~xin/papers/ChongTinoKuYaoTEVC2011.pdf.

[22] Peter Day and Asoke K. Nandi. “Binary String Fitness Char-
acterization and Comparative Partner Selection in Genetic
Programming”. In: IEEE Transactions on Evolutionary Com-
putation 12.6 (Dec. 2008), pp. 724–735. issn: 1089-778X. doi:
doi:10.1109/TEVC.2008.917201.

[23] Edwin D. de Jong and Anthony Bucci. “DECA: dimension extract-
ing coevolutionary algorithm”. In: GECCO 2006: Proceedings of the
8th annual conference on Genetic and evolutionary computation. Ed.
by Mike Cattolico et al. Seattle, Washington, USA: ACM Press,
2006, pp. 313–320. isbn: 1-59593-186-4. url: http://doi.acm.org/
10.1145/1143997.1144056.

[24] Edwin D. de Jong and Jordan B. Pollack. “Ideal Evaluation from
Coevolution”. In: Evolutionary Computation 12.2 (Summer 2004),
pp. 159–192.

[25] Edwin D. de Jong, Richard A. Watson, and Jordan B. Pollack. “Re-
ducing Bloat and Promoting Diversity using Multi-Objective Meth-
ods”. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2001). Ed. by Lee Spector et al. San Francisco,
California, USA: Morgan Kaufmann, July 2001, pp. 11–18. isbn: 1-
55860-774-9. url: http://citeseer.ist.psu.edu/440305.html.

[26] Kalyanmoy Deb et al. “A fast and elitist multiobjective genetic al-
gorithm: NSGA-II”. In: Evolutionary Computation, IEEE Trans-
actions on 6.2 (Apr. 2002), pp. 182–197. issn: 1089-778X. doi:
10.1109/4235.996017.

[27] Edsger W. Dijkstra. “On the cruelty of really teaching computing
science”. circulated privately. Dec. 1988. url: http://www.cs.utexas.
edu/users/EWD/ewd10xx/EWD1036.PDF.

[28] Edsger W. Dijkstra. “On the reliability of programs”. circulated pri-
vately. n.d. url: http://www.cs.utexas.edu/users/EWD/ewd03xx/
EWD303.PDF.

[29] M. Faifer, C. Janikow, and K. Krawiec. “Extracting fuzzy symbolic
representation from artificial neural networks”. In: Proc. 18th In-

http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dx.doi.org/doi:10.1007/978-3-642-40669-0_8
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-642-40669-0_8
http://www.cs.bham.ac.uk/~xin/papers/ChongTinoKuYaoTEVC2011.pdf
http://www.cs.bham.ac.uk/~xin/papers/ChongTinoKuYaoTEVC2011.pdf
http://dx.doi.org/doi:10.1109/TEVC.2008.917201
http://doi.acm.org/10.1145/1143997.1144056
http://doi.acm.org/10.1145/1143997.1144056
http://citeseer.ist.psu.edu/440305.html
http://dx.doi.org/10.1109/4235.996017
http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1036.PDF
http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1036.PDF
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD303.PDF
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD303.PDF

156 REFERENCES

ternational Conference of the North American Fuzzy Information
Processing Society. New York, 1999, pp. 600–604.

[30] Sevan G. Ficici. “Solution concepts in coevolutionary algorithms”.
Adviser-Pollack, Jordan B. PhD thesis. Waltham, MA, USA: Bran-
deis University, 2004.

[31] Sevan G. Ficici and Jordan B. Pollack. “Pareto Optimality in Co-
evolutionary Learning”. In: Advances in Artificial Life, 6th Euro-
pean Conference, ECAL 2001. Ed. by Jozef Kelemen and Petr Sosík.
Vol. 2159. Lecture Notes in Computer Science. Prague, Czech Repub-
lic: Springer, 2001, pp. 316–325. isbn: 3-540-42567-5. url: http://
link.springer.de/link/service/series/0558/bibs/2159/21590316.htm.

[32] Jean-Christophe Filliâtre et al. The Coq Proof Assistant - Reference
Manual Version 6.1. Tech. rep. 1997.

[33] Lawrence Jerome Fogel, Alvin J. Owens, and Michael John Walsh.
Artificial Intelligence through Simulated Evolution. New York: John
Wiley, 1966.

[34] Edgar Galvan-Lopez et al. “Defining locality as a problem difficulty
measure in genetic programming”. In: Genetic Programming and
Evolvable Machines 12.4 (Dec. 2012), pp. 365–401. issn: 1389-2576.
doi: doi:10.1007/s10710-011-9136-3.

[35] Edgar Galvan-Lopez et al. “Using Semantics in the Selection Mech-
anism in Genetic Programming: a Simple Method for Promoting Se-
mantic Diversity”. In: 2013 IEEE Conference on Evolutionary Com-
putation. Ed. by Luis Gerardo de la Fraga. Vol. 1. Cancun, Mexico,
June 2013, pp. 2972–2979. doi: doi:10.1109/CEC.2013.6557931.

[36] Erich Gamma et al. Design Patterns: Elements of Reusable Object-
oriented Software. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1995. isbn: 0-201-63361-2.

[37] Chris Gathercole and Peter Ross. “Dynamic Training Subset Selec-
tion for Supervised Learning in Genetic Programming”. In: Parallel
Problem Solving from Nature III. Ed. by Yuval Davidor, Hans-Paul
Schwefel, and Reinhard Männer. Vol. 866. LNCS. Jerusalem:
Springer-Verlag, Sept. 1994, pp. 312–321. isbn: 3-540-58484-6. doi:
doi:10.1007/3-540-58484-6_275. url: http://www.cs.ucl.ac.uk/
staff/W.Langdon/ftp/papers/94-006.ps.gz.

[38] Stuart Geman, Elie Bienenstock, and René Doursat. “Neural Net-
works and the Bias/Variance Dilemma”. In: Neural Comput. 4.1
(Jan. 1992), pp. 1–58. issn: 0899-7667.

[39] William F. Gilreath and Phillip A. Laplante. Computer Architec-
ture: A Minimalist Perspective: Dynamics and Sustainability. The
Springer International Series in Engineering and Computer Science.
Springer US, 2003. isbn: 9781402074165.

[40] J. Gleick. What Just Happened: A Chronicle from the Information
Frontier. Pantheon Books, 2002. isbn: 9780375421778.

[41] David Goldberg. Genetic algorithms in search, optimization and ma-
chine learning. Reading: Addison-Wesley, 1989.

http://link.springer.de/link/service/series/0558/bibs/2159/21590316.htm
http://link.springer.de/link/service/series/0558/bibs/2159/21590316.htm
http://dx.doi.org/doi:10.1007/s10710-011-9136-3
http://dx.doi.org/doi:10.1109/CEC.2013.6557931
http://dx.doi.org/doi:10.1007/3-540-58484-6_275
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/94-006.ps.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/94-006.ps.gz

REFERENCES 157

[42] Ivo Goncalves and Sara Silva. “Balancing Learning and Overfit-
ting in Genetic Programming with Interleaved Sampling of Train-
ing data”. In: Proceedings of the 16th European Conference on Ge-
netic Programming, EuroGP 2013. Ed. by Krzysztof Krawiec et
al. Vol. 7831. LNCS. Vienna, Austria: Springer Verlag, Mar. 2013,
pp. 73–84. doi: doi:10.1007/978-3-642-37207-0_7.

[43] Ivo Goncalves et al. “Random Sampling Technique for Over-
fitting Control in Genetic Programming”. In: Proceedings of
the 15th European Conference on Genetic Programming, Eu-
roGP 2012. Ed. by Alberto Moraglio et al. Vol. 7244. LNCS.
Malaga, Spain: Springer Verlag, Nov. 2012, pp. 218–229. doi:
doi:10.1007/978-3-642-29139-5_19.

[44] Sumit Gulwani. “Dimensions in Program Synthesis”. In: Pro-
ceedings of the 12th international ACM SIGPLAN symposium
on Principles and practice of declarative programming. Invited
talk. Hagenberg, Austria: ACM, Oct. 2010, pp. 13–24. doi:
doi:10.1145/1836089.1836091. url: http://research.microsoft.com/
en-us/um/people/sumitg/pubs/ppdp10-synthesis.pdf.

[45] Sumit Gulwani, William R. Harris, and Rishabh Singh. “Spread-
sheet Data Manipulation Using Examples”. In: Communications
of the ACM 55.8 (Aug. 2012), pp. 97–105. issn: 0001-0782. doi:
doi:10.1145/2240236.2240260. url: http://doi.acm.org/10.1145/
2240236.2240260.

[46] Steven Gustafson and Leonardo Vanneschi. “Crossover-Based Tree
Distance in Genetic Programming”. In: IEEE Transactions on Evo-
lutionary Computation 12.4 (Aug. 2008), pp. 506–524. issn: 1089-
778X. doi: doi:10.1109/TEVC.2008.915993.

[47] Mark Hall et al. “The WEKA Data Mining Software: An Update”.
In: SIGKDD Explor. Newsl. 11.1 (Nov. 2009), pp. 10–18. issn: 1931-
0145. doi: 10.1145/1656274.1656278. url: http://doi.acm.org/10.
1145/1656274.1656278.

[48] Thomas Haynes. “On-line Adaptation of Search via Knowledge
Reuse”. In: Genetic Programming 1997: Proceedings of the Second
Annual Conference. Ed. by John R. Koza et al. Stanford University,
CA, USA: Morgan Kaufmann, 13-16 07 1997, pp. 156–161. url:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.3381.

[49] Thomas Helmuth and Lee Spector. “General Program Synthesis
Benchmark Suite”. In: Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2015, Madrid, Spain, July 11-15,
2015. Ed. by Juan Luis Jiménez Laredo, Sara Silva, and Anna Is-
abel Esparcia-Alcázar. ACM, 2015, pp. 1039–1046. isbn: 978-1-4503-
3472-3. doi: 10.1145/2739480.2754769. url: http://doi.acm.org/10.
1145/2739480.2754769.

[50] Thomas Helmuth, Lee Spector, and James Matheson. “Solving Un-
compromising Problems with Lexicase Selection”. In: IEEE Trans-

http://dx.doi.org/doi:10.1007/978-3-642-37207-0_7
http://dx.doi.org/doi:10.1007/978-3-642-29139-5_19
http://dx.doi.org/doi:10.1145/1836089.1836091
http://research.microsoft.com/en-us/um/people/sumitg/pubs/ppdp10-synthesis.pdf
http://research.microsoft.com/en-us/um/people/sumitg/pubs/ppdp10-synthesis.pdf
http://dx.doi.org/doi:10.1145/2240236.2240260
http://doi.acm.org/10.1145/2240236.2240260
http://doi.acm.org/10.1145/2240236.2240260
http://dx.doi.org/doi:10.1109/TEVC.2008.915993
http://dx.doi.org/10.1145/1656274.1656278
http://doi.acm.org/10.1145/1656274.1656278
http://doi.acm.org/10.1145/1656274.1656278
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.3381
http://dx.doi.org/10.1145/2739480.2754769
http://doi.acm.org/10.1145/2739480.2754769
http://doi.acm.org/10.1145/2739480.2754769

158 REFERENCES

actions on Evolutionary Computation (). Accepted for future publi-
cation. issn: 1089-778X. doi: doi:10.1109/TEVC.2014.2362729.

[51] Torsten Hildebrandt and Juergen Branke. “On Using Surrogates
with Genetic Programming”. In: Evolutionary Computation ().
Forthcoming. issn: 1063-6560. doi: doi:10.1162/EVCO_a_00133.

[52] Charles A. R. Hoare. “An Axiomatic Basis for Computer Program-
ming”. In: Commun. ACM 12.10 (Oct. 1969), pp. 576–580. issn:
0001-0782. doi: 10.1145/363235.363259. url: http://doi.acm.org/
10.1145/363235.363259.

[53] Douglas R. Hofstadter. Godel, Escher, Bach: An Eternal Golden
Braid. New York, NY, USA: Basic Books, Inc., 1979. isbn:
0465026850.

[54] J.H. Holland. Adaptation in natural and artificial systems. Vol. 1.
Ann Arbor: University of Michigan Press, 1975, pp. 75–89.

[55] John H. Holland. “Adaptation”. In: Progress in theoretical biology
IV. Ed. by R. Rosen and F. M. Snell. New York: Academic Press,
1976, pp. 263–293.

[56] John H. Holland. “Emergence”. In: Philosophica 59.1 (1997), pp. 11–
40.

[57] Myles Hollander and Douglas A. Wolfe. Nonparametric Statisti-
cal Methods. A Wiley-Interscience publication. Wiley, 1999. isbn:
9780471190455.

[58] Gregory S. Hornby and Jordan B. Pollack. “Creating High-Level
Components with a Generative Representation for Body-Brain Evo-
lution”. In: Artif. Life 8.3 (2002), pp. 223–246. issn: 1064-5462.
doi: doi:10.1162/106454602320991837. url: http://www.demo.cs.
brandeis.edu/papers/hornby_alife02.pdf.

[59] W. A. Howard. “The formulae-as-types notion of construction”. In:
To H. B. Curry: essays on combinatory logic, lambda calculus and
formalism. Ed. by J. P. Seldin and J. R. Hindley. London-New York:
Academic Press, 1980, pp. 480–490.

[60] Ting Hu et al. “Robustness, Evolvability, and Accessibility in Linear
Genetic Programming”. In: Proceedings of the 14th European Con-
ference on Genetic Programming, EuroGP 2011. Ed. by Sara Silva
et al. Vol. 6621. LNCS. Turin, Italy: Springer Verlag, 27-29 04 2011,
pp. 13–24. doi: doi:10.1007/978-3-642-20407-4_2.

[61] Hitoshi Iba, Taisuke Sato, and Hugo de Garis. “System identifica-
tion approach to genetic programming”. In: Proceedings of the 1994
IEEE World Congress on Computational Intelligence. Vol. 1. Or-
lando, Florida, USA: IEEE Press, 27-29 06 1994, pp. 401–406. doi:
doi:10.1109/ICEC.1994.349917.

[62] David Jackson. “Phenotypic Diversity in Initial Genetic Program-
ming Populations”. In: Proceedings of the 13th European Confer-
ence on Genetic Programming, EuroGP 2010. Ed. by Anna Isabel
Esparcia-Alcazar et al. Vol. 6021. LNCS. Istanbul: Springer, July
2010, pp. 98–109. doi: doi:10.1007/978-3-642-12148-7_9.

http://dx.doi.org/doi:10.1109/TEVC.2014.2362729
http://dx.doi.org/doi:10.1162/EVCO_a_00133
http://dx.doi.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259
http://dx.doi.org/doi:10.1162/106454602320991837
http://www.demo.cs.brandeis.edu/papers/hornby_alife02.pdf
http://www.demo.cs.brandeis.edu/papers/hornby_alife02.pdf
http://dx.doi.org/doi:10.1007/978-3-642-20407-4_2
http://dx.doi.org/doi:10.1109/ICEC.1994.349917
http://dx.doi.org/doi:10.1007/978-3-642-12148-7_9

REFERENCES 159

[63] Wojciech Jaśkowski. “Algorithms for Test-Based Problems”. Ad-
viser: Krzysztof Krawiec. PhD thesis. Poznan, Poland: Institute of
Computing Science, Poznan University of Technology, 2011.

[64] Wojciech Jaśkowski and Krzysztof Krawiec. “Formal Analysis, Hard-
ness and Algorithms for Extracting Internal Structure of Test-Based
Problems”. In: Evolutionary Computation 19.4 (2011), pp. 639–671.
doi: 10.1162/EVCO_a_00046. url: http://www.mitpressjournals.
org/doi/abs/10.1162/EVCO_a_00046.

[65] Wojciech Jaskowski, Krzysztof Krawiec, and Bartosz Wieloch.
“Cross-Task Code Reuse in Genetic Programming Applied to
Visual Learning”. In: International Journal of Applied Mathe-
matics and Computer Science 24.1 (2014), pp. 183–197. doi:
10.2478/amcs-2014-0014. url: http://www.cs.put.poznan.pl/
kkrawiec/pubs/2013AMCS.pdf.

[66] Wojciech Jaskowski, Krzysztof Krawiec, and Bartosz Wieloch.
“Genetic programming for cross-task knowledge sharing”. In:
GECCO ’07: Proceedings of the 9th annual conference on Ge-
netic and evolutionary computation. Ed. by Dirk Thierens et al.
Vol. 2. London: ACM Press, July 2007, pp. 1620–1627. doi:
doi:10.1145/1276958.1277281. url: http://www.cs.bham.ac.uk/
~wbl/biblio/gecco2007/docs/p1620.pdf.

[67] Wojciech Jaskowski, Krzysztof Krawiec, and Bartosz Wieloch.
“Multi-task code reuse in genetic programming”. In: GECCO-2008
Late-Breaking Papers. Ed. by Marc Ebner et al. Atlanta, GA, USA:
ACM, Dec. 2008, pp. 2159–2164. doi: doi:10.1145/1388969.1389040.
url: http://www.cs.bham.ac.uk/~wbl/biblio/gecco2008/docs/
p2159.pdf.

[68] Wojciech Jaskowski, Krzysztof Krawiec, and Bartosz Wieloch. “Mul-
titask Visual Learning Using Genetic Programming”. In: Evolution-
ary Computation 16.4 (Winter 2008), pp. 439–459. issn: 1063-6560.
doi: doi:10.1162/evco.2008.16.4.439.

[69] Wojciech Jaśkowski et al. “Improving coevolution by random sam-
pling”. In: Proceeding of the fifteenth annual conference on Genetic
and evolutionary computation conference. GECCO ’13. Amsterdam,
The Netherlands: ACM, 2013, pp. 1141–1148. isbn: 978-1-4503-1963-
8. doi: 10.1145/2463372.2463512. url: http://doi.acm.org/10.1145/
2463372.2463512.

[70] Mikkel T. Jensen. “Helper-objectives: Using multi-objective
evolutionary algorithms for single-objective optimisation”. In:
J. Math. Model. Algorithms 3.4 (2004), pp. 323–347. doi:
10.1007/s10852-005-2582-2. url: http://dx.doi.org/10.1007/
s10852-005-2582-2.

[71] Yaochu Jin, Markus Olhofer, and Bernhard Sendhoff. “A Frame-
work for Evolutionary Optimization with Approximate Fitness Func-
tions”. In: IEEE TRANSACTIONS ON EVOLUTIONARY COM-
PUTATION 6 (2002), pp. 481–494.

http://dx.doi.org/10.1162/EVCO_a_00046
http://www.mitpressjournals.org/doi/abs/10.1162/EVCO_a_00046
http://www.mitpressjournals.org/doi/abs/10.1162/EVCO_a_00046
http://dx.doi.org/10.2478/amcs-2014-0014
http://www.cs.put.poznan.pl/kkrawiec/pubs/2013AMCS.pdf
http://www.cs.put.poznan.pl/kkrawiec/pubs/2013AMCS.pdf
http://dx.doi.org/doi:10.1145/1276958.1277281
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2007/docs/p1620.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2007/docs/p1620.pdf
http://dx.doi.org/doi:10.1145/1388969.1389040
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2008/docs/p2159.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2008/docs/p2159.pdf
http://dx.doi.org/doi:10.1162/evco.2008.16.4.439
http://dx.doi.org/10.1145/2463372.2463512
http://doi.acm.org/10.1145/2463372.2463512
http://doi.acm.org/10.1145/2463372.2463512
http://dx.doi.org/10.1007/s10852-005-2582-2
http://dx.doi.org/10.1007/s10852-005-2582-2
http://dx.doi.org/10.1007/s10852-005-2582-2

160 REFERENCES

[72] Gopal K. Kanji. 100 Statistical Tests. SAGE Publications, 1999.
isbn: 9780761961512.

[73] Karthik Kannappan et al. “Analyzing a Decade of Human-
Competitive (HUMIE) Winners:What Can We Learn?” In: Genetic
Programming Theory and Practice XII. Genetic and Evolutionary
Computation. In preparation. Ann Arbor, USA: Springer, May
2014.

[74] Nadav Kashtan and Uri Alon. “Spontaneous evolution of mod-
ularity and network motifs”. In: Proceedings of the National
Academy of Sciences 102.39 (Sept. 2005), pp. 13773–13778. doi:
doi:10.1073/pnas.0503610102. url: http://www.pnas.org/cgi/
reprint/102/39/13773.pdf.

[75] Nadav Kashtan, Elan Noor, and Uri Alon. “Varying environ-
ments can speed up evolution”. In: Proceedings of the National
Academy of Sciences 104.34 (21 08 2007), pp. 13711–13716. doi:
doi:10.1073/pnas.0611630104. url: http://www.pnas.org/cgi/
reprint/104/34/13711.

[76] Joshua D. Knowles, Richard A. Watson, and David Corne.
“Reducing Local Optima in Single-Objective Problems by Multi-
objectivization”. In: EMO ’01: Proceedings of the First International
Conference on Evolutionary Multi-Criterion Optimization. London,
UK: Springer-Verlag, 2001, pp. 269–283. isbn: 3-540-41745-1.

[77] Zoltan A. Kocsis and Jerry Swan. “Asymptotic Genetic Improve-
ment Programming via Type Functors and Catamorphisms”. In: Se-
mantic Methods in Genetic Programming. Ed. by Colin Johnson et
al. Workshop at Parallel Problem Solving from Nature 2014 con-
ference. Ljubljana, Slovenia, 13 09 2014. url: http://www.cs.put.
poznan.pl/kkrawiec/smgp2014/uploads/Site/Kocsis.pdf.

[78] John R. Koza. Genetic Programming II: Automatic Discovery of
Reusable Programs. Cambridge Massachusetts: MIT Press, May
1994. isbn: 0-262-11189-6. url: http://mitpress.mit.edu/catalog/
item/default.asp?ttype=2&tid=8307.

[79] John R. Koza. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. Cambridge, MA, USA:
MIT Press, 1992. isbn: 0-262-11170-5. url: http://mitpress.mit.
edu/books/genetic-programming.

[80] John R. Koza. “Human-competitive results produced by genetic
programming”. In: Genetic Programming and Evolvable Machines
11.3/4 (Sept. 2010). Tenth Anniversary Issue: Progress in Ge-
netic Programming and Evolvable Machines, pp. 251–284. issn:
1389-2576. doi: doi:10.1007/s10710-010-9112-3. url: http://www.
genetic-programming.com/GPEM2010article.pdf.

[81] John R. Koza et al. Genetic Programming IV: Routine Human-
Competitive Machine Intelligence. Kluwer Academic Publish-
ers, 2003. isbn: 1-4020-7446-8. url: http://www.amazon.com/

http://dx.doi.org/doi:10.1073/pnas.0503610102
http://www.pnas.org/cgi/reprint/102/39/13773.pdf
http://www.pnas.org/cgi/reprint/102/39/13773.pdf
http://dx.doi.org/doi:10.1073/pnas.0611630104
http://www.pnas.org/cgi/reprint/104/34/13711
http://www.pnas.org/cgi/reprint/104/34/13711
http://www.cs.put.poznan.pl/kkrawiec/smgp2014/uploads/Site/Kocsis.pdf
http://www.cs.put.poznan.pl/kkrawiec/smgp2014/uploads/Site/Kocsis.pdf
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=8307
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=8307
http://mitpress.mit.edu/books/genetic-programming
http://mitpress.mit.edu/books/genetic-programming
http://dx.doi.org/doi:10.1007/s10710-010-9112-3
http://www.genetic-programming.com/GPEM2010article.pdf
http://www.genetic-programming.com/GPEM2010article.pdf
http://www.amazon.com/Genetic-Programming-IV-Human-Competitive-Intelligence/dp/1402074468

REFERENCES 161

Genetic-Programming-IV-Human-Competitive-Intelligence/dp/
1402074468.

[82] Krzysztof Krawiec. Behavioral Program Synthesis with Genetic Pro-
gramming (accompanying material). http://www.cs.put.poznan.pl/
kkrawiec/bps/. [Online]. 2015.

[83] Krzysztof Krawiec. Evolutionary Feature Programming: Coopera-
tive learning for knowledge discovery and computer vision. 385.
Poznan University of Technology, Poznan, Poland: Wydawnictwo
Politechniki Poznanskiej, 2004. url: http://www.cs.put.poznan.pl/
kkrawiec/pubs/hab/krawiec_hab.pdf.

[84] Krzysztof Krawiec. “Genetic programming: where meaning emerges
from program code”. In: Genetic Programming and Evolvable
Machines 15.1 (Mar. 2014), pp. 75–77. issn: 1389-2576. doi:
doi:10.1007/s10710-013-9200-2.

[85] Krzysztof Krawiec. “Learnable Embeddings of Program Spaces”. In:
Proceedings of the 14th European Conference on Genetic Program-
ming, EuroGP 2011. Ed. by Sara Silva et al. Vol. 6621. LNCS.
Turin, Italy: Springer Verlag, 27-29 04 2011, pp. 166–177. doi:
doi:10.1007/978-3-642-20407-4_15.

[86] Krzysztof Krawiec. “Medial Crossovers for Genetic Programming”.
In: Proceedings of the 15th European Conference on Genetic Pro-
gramming, EuroGP 2012. Ed. by Alberto Moraglio et al. Vol. 7244.
LNCS. Malaga, Spain: Springer Verlag, Nov. 2012, pp. 61–72. doi:
doi:10.1007/978-3-642-29139-5_6.

[87] Krzysztof Krawiec. “On relationships between semantic diversity,
complexity and modularity of programming tasks”. In: GECCO
’12: Proceedings of the fourteenth international conference on Ge-
netic and evolutionary computation conference. Ed. by Terry Soule
et al. Philadelphia, Pennsylvania, USA: ACM, July 2012, pp. 783–
790. doi: doi:10.1145/2330163.2330272.

[88] Krzysztof Krawiec. “Pairwise Comparison of Hypotheses in
Evolutionary Learning”. In: Proceedings of the Eighteenth Inter-
national Conference on Machine Learning (ICML 2001). Ed. by
Carla E. Brodley and Andrea Pohoreckyj Danyluk. Williams
College, Williamstown, MA, USA: Morgan Kaufmann, June 2001,
pp. 266–273. isbn: 1-55860-778-1. url: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.29.900.pdf.

[89] Krzysztof Krawiec and Bir Bhanu. “Visual Learning by Coevo-
lutionary Feature Synthesis”. In: IEEE Transactions on System,
Man, and Cybernetics – Part B 35.3 (June 2005), pp. 409–425.
doi: doi:10.1109/TSMCB.2005.846644. url: http://ieeexplore.ieee.
org/iel5/3477/30862/01430827.pdf.

[90] Krzysztof Krawiec and Bir Bhanu. “Visual Learning by Evolu-
tionary and Coevolutionary Feature Synthesis”. In: IEEE Trans-
actions on Evolutionary Computation 11.5 (Oct. 2007), pp. 635–

http://www.amazon.com/Genetic-Programming-IV-Human-Competitive-Intelligence/dp/1402074468
http://www.amazon.com/Genetic-Programming-IV-Human-Competitive-Intelligence/dp/1402074468
http://www.cs.put.poznan.pl/kkrawiec/bps/
http://www.cs.put.poznan.pl/kkrawiec/bps/
http://www.cs.put.poznan.pl/kkrawiec/pubs/hab/krawiec_hab.pdf
http://www.cs.put.poznan.pl/kkrawiec/pubs/hab/krawiec_hab.pdf
http://dx.doi.org/doi:10.1007/s10710-013-9200-2
http://dx.doi.org/doi:10.1007/978-3-642-20407-4_15
http://dx.doi.org/doi:10.1007/978-3-642-29139-5_6
http://dx.doi.org/doi:10.1145/2330163.2330272
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.900.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.900.pdf
http://dx.doi.org/doi:10.1109/TSMCB.2005.846644
http://ieeexplore.ieee.org/iel5/3477/30862/01430827.pdf
http://ieeexplore.ieee.org/iel5/3477/30862/01430827.pdf

162 REFERENCES

650. doi: doi:10.1109/TEVC.2006.887351. url: http://ieeexplore.
ieee.org/iel5/4235/4336114/04336120.pdf.

[91] Krzysztof Krawiec and Bir Bhanu. “Visual Learning by Evolution-
ary Feature Synthesis”. In: Proceedings of the Twentieth Interna-
tional Conference on Machine Learning (ICML 2003). Ed. by Tom
Fawcett and Nina Mishra. Washington, DC, USA: AAAI Press, Aug.
2003, pp. 376–383. isbn: 1-57735-189-4. url: http://www.aaai.org/
Papers/ICML/2003/ICML03-051.pdf.

[92] Krzysztof Krawiec, Daniel Howard, and Mengjie Zhang. “Overview
of Object Detection and Image Analysis by Means of Genetic Pro-
gramming Techniques”. In: Proceedings of the 2007 International
Conference Frontiers in the Convergence of Bioscience and Infor-
mation Technologies (FBIT 2007). Jeju Island, Korea: IEEE Press,
Oct. 2007, pp. 779–784. doi: doi:10.1109/FBIT.2007.148.

[93] Krzysztof Krawiec and Pawel Lichocki. “Approximating geometric
crossover in semantic space”. In: GECCO ’09: Proceedings of the
11th Annual conference on Genetic and evolutionary computation.
Ed. by Guenther Raidl et al. Montreal: ACM, Aug. 2009, pp. 987–
994. doi: doi:10.1145/1569901.1570036.

[94] Krzysztof Krawiec and Pawel Lichocki. “Using Co-solvability to
Model and Exploit Synergetic Effects in Evolution”. In: PPSN 2010
11th International Conference on Parallel Problem Solving From Na-
ture. Ed. by Robert Schaefer et al. Vol. 6239. Lecture Notes in Com-
puter Science. Krakow, Poland: Springer, Nov. 2010, pp. 492–501.
doi: doi:10.1007/978-3-642-15871-1_50.

[95] Krzysztof Krawiec and Pawel Liskowski. “Automatic Derivation of
Search Objectives for Test-Based Genetic Programming”. In: 18th
European Conference on Genetic Programming. Ed. by Penousal
Machado, Malcolm Heywood, and James McDermott. LNCS. Forth-
coming. Copenhagen: Springer, Aug. 2015.

[96] Krzysztof Krawiec and Una-May O’Reilly. “Behavioral program-
ming: a broader and more detailed take on semantic GP”. In:
GECCO ’14: Proceedings of the 2014 conference on Genetic and
evolutionary computation. Ed. by Christian Igel et al. Best paper.
Vancouver, BC, Canada: ACM, Dec. 2014, pp. 935–942. doi:
doi:10.1145/2576768.2598288. url: http://doi.acm.org/10.1145/
2576768.2598288.

[97] Krzysztof Krawiec and Una-May O’Reilly. “Behavioral Search
Drivers for Genetic Programing”. In: 17th European Conference
on Genetic Programming. Ed. by Miguel Nicolau et al. Vol. 8599.
LNCS. Granada, Spain: Springer, 23-25 04 2014, pp. 210–221. doi:
doi:10.1007/978-3-662-44303-3_18.

[98] Krzysztof Krawiec and Mikolaj Pawlak. “Genetic Programming with
Alternative Search Drivers for Detection of Retinal Blood Vessels”.
In: 18th European Conference on the Applications of Evolutionary

http://dx.doi.org/doi:10.1109/TEVC.2006.887351
http://ieeexplore.ieee.org/iel5/4235/4336114/04336120.pdf
http://ieeexplore.ieee.org/iel5/4235/4336114/04336120.pdf
http://www.aaai.org/Papers/ICML/2003/ICML03-051.pdf
http://www.aaai.org/Papers/ICML/2003/ICML03-051.pdf
http://dx.doi.org/doi:10.1109/FBIT.2007.148
http://dx.doi.org/doi:10.1145/1569901.1570036
http://dx.doi.org/doi:10.1007/978-3-642-15871-1_50
http://dx.doi.org/doi:10.1145/2576768.2598288
http://doi.acm.org/10.1145/2576768.2598288
http://doi.acm.org/10.1145/2576768.2598288
http://dx.doi.org/doi:10.1007/978-3-662-44303-3_18

REFERENCES 163

Computation. Ed. by Antonio Mora. LNCS. Forthcoming. Copen-
hagen: Springer, Aug. 2015.

[99] Krzysztof Krawiec and Tomasz Pawlak. “Locally geometric seman-
tic crossover: a study on the roles of semantics and homology
in recombination operators”. In: Genetic Programming and Evolv-
able Machines 14.1 (Mar. 2013), pp. 31–63. issn: 1389-2576. doi:
doi:10.1007/s10710-012-9172-7.

[100] Krzysztof Krawiec and Armando Solar-Lezama. “Improving Genetic
Programming with Behavioral Consistency Measure”. In: 13th Inter-
national Conference on Parallel Problem Solving from Nature. Ed.
by Thomas Bartz-Beielstein et al. Vol. 8672. Lecture Notes in Com-
puter Science. Ljubljana, Slovenia: Springer, 13-17 09 2014, pp. 434–
443. doi: doi:10.1007/978-3-319-10762-2_43.

[101] Krzysztof Krawiec and Jerry Swan. “Pattern-guided genetic pro-
gramming”. In: GECCO ’13: Proceeding of the fifteenth annual con-
ference on Genetic and evolutionary computation conference. Ed.
by Christian Blum et al. Amsterdam, The Netherlands: ACM, June
2013, pp. 949–956. doi: doi:10.1145/2463372.2463496.

[102] Krzysztof Krawiec and Bartosz Wieloch. “Automatic gener-
ation and exploitation of related problems in genetic pro-
gramming”. In: IEEE Congress on Evolutionary Computation
(CEC 2010). Barcelona, Spain: IEEE Press, 18-23 07 2010. doi:
doi:10.1109/CEC.2010.5586120.

[103] Krzysztof Krawiec and Bartosz Wieloch. “Functional modularity for
genetic programming”. In: GECCO ’09: Proceedings of the 11th An-
nual conference on Genetic and evolutionary computation. Ed. by
Guenther Raidl et al. Montreal: ACM, Aug. 2009, pp. 995–1002.
doi: doi:10.1145/1569901.1570037.

[104] W. B. Langdon. “How many Good Programs are there? How Long
are they?” In: Foundations of Genetic Algorithms VII. Ed. by Ken-
neth A. De Jong, Riccardo Poli, and Jonathan E. Rowe. Pub-
lished 2003. Torremolinos, Spain: Morgan Kaufmann, Apr. 2002,
pp. 183–202. isbn: 0-12-208155-2. url: http://www.cs.ucl.ac.uk/
staff/W.Langdon/ftp/papers/wbl_foga2002.ps.gz.

[105] W. B. Langdon and S. M. Gustafson. “Genetic Programming and
Evolvable Machines: ten years of reviews”. In: Genetic Programming
and Evolvable Machines 11.3/4 (Sept. 2010). Tenth Anniversary
Issue: Progress in Genetic Programming and Evolvable Machines,
pp. 321–338. issn: 1389-2576. doi: doi:10.1007/s10710-010-9111-4.
url: http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/
gppubs10.pdf.

[106] W. B. Langdon and Riccardo Poli. Foundations of Genetic
Programming. Springer-Verlag, 2002. isbn: 3-540-42451-2. doi:
doi:10.1007/978-3-662-04726-2. url: http://link.springer.com/
book/10.1007/978-3-662-04726-2.

http://dx.doi.org/doi:10.1007/s10710-012-9172-7
http://dx.doi.org/doi:10.1007/978-3-319-10762-2_43
http://dx.doi.org/doi:10.1145/2463372.2463496
http://dx.doi.org/doi:10.1109/CEC.2010.5586120
http://dx.doi.org/doi:10.1145/1569901.1570037
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl_foga2002.ps.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl_foga2002.ps.gz
http://dx.doi.org/doi:10.1007/s10710-010-9111-4
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gppubs10.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gppubs10.pdf
http://dx.doi.org/doi:10.1007/978-3-662-04726-2
http://springerlink.bibliotecabuap.elogim.com/book/10.1007/978-3-662-04726-2
http://springerlink.bibliotecabuap.elogim.com/book/10.1007/978-3-662-04726-2

164 REFERENCES

[107] William B. Langdon and Mark Harman. “Genetically Improved
CUDA C++ Software”. In: 17th European Conference on Ge-
netic Programming. Ed. by Miguel Nicolau et al. Vol. 8599.
LNCS. Granada, Spain: Springer, 23-25 04 2014, pp. 87–99. doi:
doi:10.1007/978-3-662-44303-3_8. url: http://www.cs.ucl.ac.uk/
staff/W.Langdon/ftp/papers/langdon_2014_EuroGP.pdf.

[108] William B. Langdon et al. “Improving 3D Medical Image Regis-
tration CUDA Software with Genetic Programming”. In: GECCO
’14: Proceeding of the sixteenth annual conference on genetic and
evolutionary computation conference. Ed. by Christian Igel et al.
Vancouver, BC, Canada: ACM, Dec. 2014, pp. 951–958. doi:
doi:10.1145/2576768.2598244. url: http://doi.acm.org/10.1145/
2576768.2598244.

[109] Christian W. G. Lasarczyk, Peter Dittrich, and Wolfgang Banzhaf.
“Dynamic Subset Selection Based on a Fitness Case Topology”.
In: Evolutionary Computation 12.2 (Summer 2004), pp. 223–242.
doi: doi:10.1162/106365604773955157. url: http://ls11-www.cs.
uni-dortmund.de/people/lasar/publication/LasarDittBanz_TBS_
2004/LasarDittBanz_TBS_2004.pdf.

[110] Joel Lehman and Kenneth O. Stanley. “Abandoning Objectives: Evo-
lution through the Search for Novelty Alone”. In: Evolutionary Com-
putation 19.2 (Summer 2011), pp. 189–223. issn: 1063-6560. doi:
doi:10.1162/EVCO_a_00025.

[111] Joel Lehman and Kenneth O. Stanley. “Efficiently evolving pro-
grams through the search for novelty”. In: GECCO ’10: Proceed-
ings of the 12th annual conference on Genetic and evolutionary
computation. Ed. by Juergen Branke et al. Portland, Oregon, USA:
ACM, July 2010, pp. 837–844. doi: doi:10.1145/1830483.1830638.
url: http://eplex.cs.ucf.edu/papers/lehman_gecco10b.pdf.

[112] Paweł Liskowski and Krzysztof Krawiec. “Discovery of Implicit Ob-
jectives by Compression of Interaction Matrix in Test-Based Prob-
lems”. In: Parallel Problem Solving from Nature – PPSN XIII. Ed.
by Thomas Bartz-Beielstein et al. Vol. 8672. Lecture Notes in Com-
puter Science. Heidelberg: Springer, 2014, pp. 611–620. isbn: 978-3-
319-10761-5. doi: 10.1007/978-3-319-10762-2_60.

[113] Paweł Liskowski and Krzysztof Krawiec. “Online Discovery of
Search Objectives for Test-based Problems”. In: (). (under review).

[114] Paweł Liskowski et al. “Comparison of Semantic-aware Selec-
tion Methods in Genetic Programming”. In: Proceedings of the
Companion Publication of the 2015 on Genetic and Evolution-
ary Computation Conference. GECCO Companion ’15. Madrid,
Spain: ACM, 2015, pp. 1301–1307. isbn: 978-1-4503-3488-4.
doi: 10.1145/2739482.2768505. url: http://doi.acm.org/10.1145/
2739482.2768505.

[115] Yi Liu and Taghi Khoshgoftaar. “Reducing overfitting in genetic pro-
gramming models for software quality classification”. In: Proceedings

http://dx.doi.org/doi:10.1007/978-3-662-44303-3_8
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/langdon_2014_EuroGP.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/langdon_2014_EuroGP.pdf
http://dx.doi.org/doi:10.1145/2576768.2598244
http://doi.acm.org/10.1145/2576768.2598244
http://doi.acm.org/10.1145/2576768.2598244
http://dx.doi.org/doi:10.1162/106365604773955157
http://ls11-www.cs.uni-dortmund.de/people/lasar/publication/LasarDittBanz_TBS_2004/LasarDittBanz_TBS_2004.pdf
http://ls11-www.cs.uni-dortmund.de/people/lasar/publication/LasarDittBanz_TBS_2004/LasarDittBanz_TBS_2004.pdf
http://ls11-www.cs.uni-dortmund.de/people/lasar/publication/LasarDittBanz_TBS_2004/LasarDittBanz_TBS_2004.pdf
http://dx.doi.org/doi:10.1162/EVCO_a_00025
http://dx.doi.org/doi:10.1145/1830483.1830638
http://eplex.cs.ucf.edu/papers/lehman_gecco10b.pdf
http://dx.doi.org/10.1007/978-3-319-10762-2_60
http://dx.doi.org/10.1145/2739482.2768505
http://doi.acm.org/10.1145/2739482.2768505
http://doi.acm.org/10.1145/2739482.2768505

REFERENCES 165

of the Eighth IEEE Symposium on International High Assurance Sys-
tems Engineering. Tampa, Florida, USA, 25-26 03 2004, pp. 56–65.
doi: doi:10.1109/HASE.2004.1281730.

[116] Darrell F Lochtefeld and Frank W Ciarallo. “Helper-objective opti-
mization strategies for the job-shop scheduling problem”. In: Applied
Soft Computing 11.6 (2011), pp. 4161–4174.

[117] Sean Luke. Essentials of Metaheuristics. First. Available at
http://cs.gmu.edu/∼sean/books/metaheuristics/. lulu.com,
2009. url: http://www.lulu.com/shop/sean-luke/essentials-of-
metaheuristics-second-edition/paperback/product-21080150.html.

[118] Samir W. Mahfoud. “Niching methods for genetic algorithms”. PhD
thesis. Champaign, IL, USA, 1995.

[119] John Maloney et al. “The Scratch Programming Language and
Environment”. In: Trans. Comput. Educ. 10.4 (Nov. 2010), 16:1–
16:15. issn: 1946-6226. doi: 10.1145/1868358.1868363. url: http://
doi.acm.org/10.1145/1868358.1868363.

[120] Zohar Manna and Richard Waldinger. “A Deductive Approach to
Program Synthesis”. In: ACM Trans. Program. Lang. Syst. 2.1 (Jan.
1980), pp. 90–121. issn: 0164-0925. doi: 10.1145/357084.357090.
url: http://doi.acm.org/10.1145/357084.357090.

[121] Yuliana Martinez et al. “Searching for Novel Regression Functions”.
In: 2013 IEEE Conference on Evolutionary Computation. Ed. by
Luis Gerardo de la Fraga. Vol. 1. Cancun, Mexico, June 2013,
pp. 16–23. doi: doi:10.1109/CEC.2013.6557548. url: http://eplex.
cs.ucf.edu/noveltysearch/userspage/CEC-2013.pdf.

[122] James McDermott et al. “Genetic programming needs better bench-
marks”. In: GECCO ’12: Proceedings of the fourteenth international
conference on Genetic and evolutionary computation conference. Ed.
by Terry Soule et al. Philadelphia, Pennsylvania, USA: ACM, July
2012, pp. 791–798. doi: doi:10.1145/2330163.2330273.

[123] R. I. (Bob) McKay. “Committee Learning of Partial Functions in
Fitness-Shared Genetic Programming”. In: Industrial Electronics
Society, 2000. IECON 2000. 26th Annual Confjerence of the IEEE
Third Asia-Pacific Conference on Simulated Evolution and Learn-
ing 2000. Vol. 4. Nagoya, Japan: IEEE Press, Oct. 2000, pp. 2861–
2866. isbn: 0-7803-6456-2. doi: doi:10.1109/IECON.2000.972452.
url: http://sc.snu.ac.kr/PAPERS/committee.pdf.

[124] R I (Bob) McKay. “Fitness Sharing in Genetic Programming”. In:
Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO-2000). Ed. by Darrell Whitley et al. Las Ve-
gas, Nevada, USA: Morgan Kaufmann, Oct. 2000, pp. 435–442.
isbn: 1-55860-708-0. url: http://www.cs.bham.ac.uk/~wbl/biblio/
gecco2000/GP256.ps.

[125] Nicholas Freitag McPhee, Brian Ohs, and Tyler Hutchison. “Seman-
tic Building Blocks in Genetic Programming”. In: Proceedings of
the 11th European Conference on Genetic Programming, EuroGP

http://dx.doi.org/doi:10.1109/HASE.2004.1281730
http://www.lulu.com/shop/sean-luke/essentials-of-metaheuristics-second-edition/paperback/product-21080150.html
http://www.lulu.com/shop/sean-luke/essentials-of-metaheuristics-second-edition/paperback/product-21080150.html
http://dx.doi.org/10.1145/1868358.1868363
http://doi.acm.org/10.1145/1868358.1868363
http://doi.acm.org/10.1145/1868358.1868363
http://dx.doi.org/10.1145/357084.357090
http://doi.acm.org/10.1145/357084.357090
http://dx.doi.org/doi:10.1109/CEC.2013.6557548
http://eplex.cs.ucf.edu/noveltysearch/userspage/CEC-2013.pdf
http://eplex.cs.ucf.edu/noveltysearch/userspage/CEC-2013.pdf
http://dx.doi.org/doi:10.1145/2330163.2330273
http://dx.doi.org/doi:10.1109/IECON.2000.972452
http://sc.snu.ac.kr/PAPERS/committee.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2000/GP256.ps
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2000/GP256.ps

166 REFERENCES

2008. Ed. by Michael O’Neill et al. Vol. 4971. Lecture Notes in Com-
puter Science. Naples: Springer, 26-28 03 2008, pp. 134–145. doi:
doi:10.1007/978-3-540-78671-9_12.

[126] P. Merz and B. Freisleben. “Fitness Landscape Analysis and
Memetic Algorithms for the Quadratic Assignment Problem”. In:
Trans. Evol. Comp 4.4 (Nov. 2000), pp. 337–352. issn: 1089-778X.
doi: 10.1109/4235.887234. url: http://dx.doi.org/10.1109/4235.
887234.

[127] Bertrand Meyer. “Applying "Design by Contract"”. In: Computer
25.10 (Oct. 1992), pp. 40–51. issn: 0018-9162.doi: 10.1109/2.161279.
url: http://dx.doi.org/10.1109/2.161279.

[128] George A. Miller. “Informavores”. In: The Study of Information:
Interdisciplinary Messages. Ed. by Una Machlup Fritz; Mansfield.
Wiley-Interscience, 1983, pp. 111–113.

[129] Julian F. Miller, ed. Cartesian Genetic Programming. Natural Com-
puting Series. Springer, 2011. doi: doi:10.1007/978-3-642-17310-3.
url: http://www.springer.com/computer/theoretical+computer+science/
book/978-3-642-17309-7.

[130] Marvin Minsky. “Steps toward artificial intelligence”. In: Computers
and Thought. McGraw-Hill, 1961, pp. 406–450.

[131] M. Mitchell. Complexity: A Guided Tour. OUP USA, 2009. isbn:
9780195124415.

[132] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT
Press, 1996. isbn: 0-262-13316-4. url: http://www.santafe.edu/
~mm/books.html.

[133] Richard Mitchell, Jim McKim, and Bertrand Meyer. Design by Con-
tract, by Example. Redwood City, CA, USA: Addison Wesley Long-
man Publishing Co., Inc., 2002. isbn: 0-201-63460-0.

[134] T.M. Mitchell. An introduction to genetic algorithms. Cambridge,
MA: MIT Press, 1996.

[135] Alberto Moraglio, Krzysztof Krawiec, and Colin G. Johnson.
“Geometric Semantic Genetic Programming”. In: Parallel Prob-
lem Solving from Nature, PPSN XII (part 1). Ed. by Carlos
A. Coello Coello et al. Vol. 7491. Lecture Notes in Computer
Science. Taormina, Italy: Springer, Sept. 2012, pp. 21–31. doi:
doi:10.1007/978-3-642-32937-1_3.

[136] Quang Uy Nguyen. “Examining Semantic Diversity and Semantic
Locality of Operators in Genetic Programming”. PhD thesis. Ire-
land: University College Dublin, 18 07 2011. url: http://ncra.ucd.
ie/papers/Thesis_Uy_Corrected.pdf.

[137] Jason Noble and Richard A. Watson. “Pareto coevolution: Using
performance against coevolved opponents in a game as dimensions
for Pareto selection”. In: Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO-2001). Ed. by Lee Spector et
al. San Francisco, California, USA: Morgan Kaufmann, July 2001,

http://dx.doi.org/doi:10.1007/978-3-540-78671-9_12
http://dx.doi.org/10.1109/4235.887234
http://dx.doi.org/10.1109/4235.887234
http://dx.doi.org/10.1109/4235.887234
http://dx.doi.org/10.1109/2.161279
http://dx.doi.org/10.1109/2.161279
http://dx.doi.org/doi:10.1007/978-3-642-17310-3
http://www.springer.com/computer/theoretical+computer+science/book/978-3-642-17309-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-642-17309-7
http://www.santafe.edu/~mm/books.html
http://www.santafe.edu/~mm/books.html
http://dx.doi.org/doi:10.1007/978-3-642-32937-1_3
http://ncra.ucd.ie/papers/Thesis_Uy_Corrected.pdf
http://ncra.ucd.ie/papers/Thesis_Uy_Corrected.pdf

REFERENCES 167

pp. 493–500. isbn: 1-55860-774-9. url: http://www.cs.bham.ac.uk/
~wbl/biblio/gecco2001/d03b.pdf.

[138] Stefano Nolfi and Dario Floreano. Evolutionary Robotics: The Biol-
ogy,Intelligence,and Technology. Cambridge, MA, USA: MIT Press,
2000. isbn: 0262140705.

[139] Martin A. Nowak. Evolutionary Dynamics: Exploring
the Equations of Life. Harvard University Press, 2006.
url: http://groups.lis.illinois.edu/amag/langev/paper/
nowak06evolutionaryDynamicsBOOK.html.

[140] Una-May O’Reilly. “Using a Distance Metric on Genetic Programs
to Understand Genetic Operators”. In: IEEE International Con-
ference on Systems, Man, and Cybernetics, Computational Cyber-
netics and Simulation. Vol. 5. Orlando, Florida, USA, Dec. 1997,
pp. 4092–4097. isbn: 0-7803-4053-1. url: http://ieeexplore.ieee.org/
iel4/4942/13793/00637337.pdf.

[141] Hirotugu Akaike. “A New Look at the Statistical Model Identifi-
cation”. In: IEEE Transactions on Automatic Control 19.6 (1974),
pp. 716–723.

[142] Tomasz P. Pawlak. “Competent Algorithms for Geometric Seman-
tic Genetic Programming”. in review. PhD thesis. Pozna’n, Poland:
Poznan University of Technology, 2015.

[143] Tomasz P. Pawlak and Krzysztof Krawiec. “Guarantees of Progress
for Geometric Semantic Genetic Programming”. Presented at
Semantic Methods in Genetic Programming, PPSN’14 Workshop.
2014.

[144] Tomasz P. Pawlak, Bartosz Wieloch, and Krzysztof Krawiec. “Re-
view and comparative analysis of geometric semantic crossovers”.
English. In: Genetic Programming and Evolvable Machines (). On-
line first. issn: 1389-2576. doi: doi:10.1007/s10710-014-9239-8.

[145] Tomasz P. Pawlak, Bartosz Wieloch, and Krzysztof Krawiec.
“Semantic Backpropagation for Designing Search Operators in
Genetic Programming”. In: IEEE Transactions on Evolutionary
Computation (). This article has been accepted for publication
in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication. issn: 1089-778X. doi:
doi:10.1109/TEVC.2014.2321259. url: http://www.cs.put.poznan.
pl/tpawlak/?Semantic%20Backpropagation%20for%20Designing
%20Search%20Operators%20in%20Genetic%20Programming,16.

[146] Justyna Petke, William B. Langdon, and Mark Harman. “Ap-
plying Genetic Improvement to MiniSAT”. In: Symposium on
Search-Based Software Engineering. Ed. by Guenther Ruhe and
Yuanyuan Zhang. Vol. 8084. Lecture Notes in Computer Science.
Short Papers. Leningrad: Springer, Aug. 2013, pp. 257–262. doi:
doi:10.1007/978-3-642-39742-4_21. url: ftp://ftp.cs.ucl.ac.uk/
genetic/papers/Petke_2013_SSBSE.pdf.

http://www.cs.bham.ac.uk/~wbl/biblio/gecco2001/d03b.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2001/d03b.pdf
http://groups.lis.illinois.edu/amag/langev/paper/nowak06evolutionaryDynamicsBOOK.html
http://groups.lis.illinois.edu/amag/langev/paper/nowak06evolutionaryDynamicsBOOK.html
http://ieeexplore.ieee.org/iel4/4942/13793/00637337.pdf
http://ieeexplore.ieee.org/iel4/4942/13793/00637337.pdf
http://dx.doi.org/doi:10.1007/s10710-014-9239-8
http://dx.doi.org/doi:10.1109/TEVC.2014.2321259
http://www.cs.put.poznan.pl/tpawlak/?Semantic%20Backpropagation%20for%20Designing%20Search%20Operators%20in%20Genetic%20Programming,16
http://www.cs.put.poznan.pl/tpawlak/?Semantic%20Backpropagation%20for%20Designing%20Search%20Operators%20in%20Genetic%20Programming,16
http://www.cs.put.poznan.pl/tpawlak/?Semantic%20Backpropagation%20for%20Designing%20Search%20Operators%20in%20Genetic%20Programming,16
http://dx.doi.org/doi:10.1007/978-3-642-39742-4_21
ftp://ftp.cs.ucl.ac.uk/genetic/papers/Petke_2013_SSBSE.pdf
ftp://ftp.cs.ucl.ac.uk/genetic/papers/Petke_2013_SSBSE.pdf

168 REFERENCES

[147] Justyna Petke et al. “Using Genetic Improvement and Code Trans-
plants to Specialise a C++ Program to a Problem Class”. In:
17th European Conference on Genetic Programming. Ed. by Miguel
Nicolau et al. Vol. 8599. LNCS. Granada, Spain: Springer, 23-
25 04 2014, pp. 137–149. doi: doi:10.1007/978-3-662-44303-3_12.
url: http://www0.cs.ucl.ac.uk/staff/J.Petke/papers/Petke_2014_
EuroGP.pdf.

[148] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee.
A field guide to genetic programming. (With contributions by J.
R. Koza). Published via http://lulu.com and freely available
at http://www.gp-field-guide.org.uk, 2008. url: http://dl.acm.
org/citation.cfm?id=1796422.

[149] Elena Popovici et al. “Handbook of Natural Computing”. In: ed. by
Grzegorz Rozenberg, Thomas Back, and Joost N. Kok. Springer-
Verlag, 2011. Chap. Coevolutionary Principles.

[150] John R. Quinlan. C4.5: Programs for machine learning. San Mateo:
Morgan Kaufmann, 1992.

[151] Ingo Rechenberg. Evolutionsstrategie : Optimierung technischer Sys-
teme nach Prinzipien der biologischen Evolution. Problemata 15.
Stuttgart-Bad Cannstatt: Frommann-Holzboog, 1973.

[152] Jorma J. Rissanen. “Modeling By Shortest Data Description”. In:
Automatica 14 (1978), pp. 465–471.

[153] Justinian P. Rosca and Dana H. Ballard. “Discovery of Subroutines
in Genetic Programming”. en. In: Advances in Genetic Program-
ming 2. Ed. by Peter J. Angeline and K. E. Kinnear, Jr. Cam-
bridge, MA, USA: MIT Press, 1996. Chap. 9, pp. 177–201. isbn: 0-
262-01158-1. url: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?
tp=&arnumber=6277495.

[154] Franz Rothlauf. Representations for genetic and evolutionary algo-
rithms. Second. First published 2002, 2nd edition available electroni-
cally. pub-SV:adr: Springer, 2006. isbn: 3-540-25059-X. url: http://
download-ebook.org/index.php?target=desc&ebookid=5771.

[155] Richard L. Rudell and Alberto L. Sangiovanni-Vincentelli.
“ESPRESSO-MV: Algorithms for Multiple Valued Logic Min-
imization”. In: Proc. of the IEEE Custom Integrated Circuits
Conference. Portland, May 1985.

[156] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. 2nd ed. Pearson Education, 2003. isbn: 0137903952.

[157] Conor Ryan, Maarten Keijzer, and Mike Cattolico. “Favorable Bias-
ing of Function Sets Using Run Transferable Libraries”. In: Genetic
Programming Theory and Practice II. Ed. by Una-May O’Reilly et
al. Ann Arbor: Springer, 13-15 05 2004. Chap. 7, pp. 103–120. isbn:
0-387-23253-2. doi: doi:10.1007/0-387-23254-0_7.

[158] Eric Schkufza, Rahul Sharma, and Alex Aiken. “Stochastic
Superoptimization”. In: Proceedings of the Eighteenth Interna-
tional Conference on Architectural Support for Programming

http://dx.doi.org/doi:10.1007/978-3-662-44303-3_12
http://www0.cs.ucl.ac.uk/staff/J.Petke/papers/Petke_2014_EuroGP.pdf
http://www0.cs.ucl.ac.uk/staff/J.Petke/papers/Petke_2014_EuroGP.pdf
http://dl.acm.org/citation.cfm?id=1796422
http://dl.acm.org/citation.cfm?id=1796422
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6277495
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6277495
http://download-ebook.org/index.php?target=desc&ebookid=5771
http://download-ebook.org/index.php?target=desc&ebookid=5771
http://dx.doi.org/doi:10.1007/0-387-23254-0_7

REFERENCES 169

Languages and Operating Systems. ASPLOS ’13. Houston, Texas,
USA: ACM, 2013, pp. 305–316. isbn: 978-1-4503-1870-9. doi:
10.1145/2451116.2451150. url: http://doi.acm.org/10.1145/
2451116.2451150.

[159] Ute Schmid and Fritz Wysotzki. “Skill Acquisition Can be Regarded
as Program Synthesis”. In: In Mind Modelling - A Cognitive Science
Approach to Reasoning, Learning and Discovery. Pabst Science Pub-
lishers, 1998, pp. 39–45.

[160] Hans-Paul Schwefel. “Kybernetische Evolution als Strategie der ex-
perimentellen Forschung in der Strömungstechnik”. Diplomarbeit.
Technische Universität Berlin, Hermann Föttinger–Institut für Strö-
mungstechnik, März 1965.

[161] Ehud Y. Shapiro. Algorithmic Program DeBugging. Cambridge, MA,
USA: MIT Press, 1983. isbn: 0262192187.

[162] Ehud Y. Shapiro. Inductive inference of theories from facts. Tech.
rep. RR 192. Yale University (New Haven, CT US), 1981. url:
http://opac.inria.fr/record=b1007525.

[163] Herbert A. Simon. The Sciences of the Artificial. Cambridge, MA:
MIT Press, 1969.

[164] Herbert A. Simon and Allen Newell. “Heuristic problem solving: The
next advance in operations research”. In: Operations research 6.1
(1958), pp. 1–10.

[165] Satinder P. Singh et al. “Intrinsically Motivated Reinforcement
Learning: An Evolutionary Perspective”. In: IEEE Trans. on
Auton. Ment. Dev. 2.2 (June 2010), pp. 70–82. issn: 1943-0604. doi:
10.1109/TAMD.2010.2051031. url: http://dx.doi.org/10.1109/
TAMD.2010.2051031.

[166] Robert E. Smith, Stephanie Forrest, and Alan S. Perelson. “Search-
ing for Diverse, Cooperative Populations with Genetic Algorithms”.
In: Evolutionary Computation 1.2 (June 1993), pp. 127–149. issn:
1063-6560. doi: 10.1162/evco.1993.1.2.127. url: http://dx.doi.org/
10.1162/evco.1993.1.2.127.

[167] Armando Solar-Lezama et al. “Combinatorial sketching for finite
programs”. In: ASPLOS. Ed. by John Paul Shen and Margaret
Martonosi. ACM, 2006, pp. 404–415. isbn: 1-59593-451-0.

[168] Kenneth Sörensen. “Metaheuristics—the metaphor exposed”. In: In-
ternational Transactions in Operational Research 22.1 (2015), pp. 3–
18. issn: 1475-3995.doi: 10.1111/itor.12001. url: http://dx.doi.org/
10.1111/itor.12001.

[169] Jonathan Sorg, Satinder P. Singh, and Richard L. Lewis. “Inter-
nal rewards mitigate agent boundedness”. In: Proceedings of the
27th international conference on machine learning (ICML-10). 2010,
pp. 1007–1014.

[170] Lee Spector and Alan Robinson. “Genetic Programming and Au-
toconstructive Evolution with the Push Programming Language”.
In: Genetic Programming and Evolvable Machines 3.1 (Mar. 2002),

http://dx.doi.org/10.1145/2451116.2451150
http://doi.acm.org/10.1145/2451116.2451150
http://doi.acm.org/10.1145/2451116.2451150
http://opac.inria.fr/record=b1007525
http://dx.doi.org/10.1109/TAMD.2010.2051031
http://dx.doi.org/10.1109/TAMD.2010.2051031
http://dx.doi.org/10.1109/TAMD.2010.2051031
http://dx.doi.org/10.1162/evco.1993.1.2.127
http://dx.doi.org/10.1162/evco.1993.1.2.127
http://dx.doi.org/10.1162/evco.1993.1.2.127
http://dx.doi.org/10.1111/itor.12001
http://dx.doi.org/10.1111/itor.12001
http://dx.doi.org/10.1111/itor.12001

170 REFERENCES

pp. 7–40. issn: 1389-2576. doi: doi:10.1023/A:1014538503543. url:
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf.

[171] Lee Spector et al. “Genetic programming for finite algebras”.
In: GECCO ’08: Proceedings of the 10th annual conference on
Genetic and evolutionary computation. Ed. by Maarten Keijzer
et al. Atlanta, GA, USA: ACM, Dec. 2008, pp. 1291–1298. doi:
doi:10.1145/1389095.1389343. url: http://www.cs.bham.ac.uk/
~wbl/biblio/gecco2008/docs/p1291.pdf.

[172] Robert A. Stine. “Model Selection Using Information Theory and
the MDL Principle”. In: Sociological Methods Research 33.2 (Nov. 1,
2004), pp. 230–260. url: http://smr.sagepub.com/cgi/content/
abstract/33/2/230.

[173] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning:
An Introduction. The MIT Press, 1998.

[174] Jerry Swan et al. “A Research Agenda for Metaheuristic Standard-
ization”. In: MIC 2015: The XI Metaheuristics International Con-
ference. (accepted). 2015.

[175] Marcin Szubert. “Coevolutionary Shaping for Reinforcement Learn-
ing”. PhD thesis. Poznan University of Technology, 2014. url:
http://www.cs.put.poznan.pl/mszubert/pub/phdthesis.pdf.

[176] Marcin Szubert et al. “Shaping fitness function for evolutionary
learning of game strategies”. In: Proceeding of the fifteenth annual
conference on Genetic and evolutionary computation conference.
GECCO ’13. Amsterdam, The Netherlands: ACM, 2013, pp. 1149–
1156. isbn: 978-1-4503-1963-8. doi: 10.1145/2463372.2463513. url:
http://doi.acm.org/10.1145/2463372.2463513.

[177] Walter A. Tackett and Aviram Carmi. “The unique implications of
brood selection for genetic programming”. In: Proceedings of the
1994 IEEE World Congress on Computational Intelligence. Vol. 1.
Orlando, Florida, USA: IEEE Press, 27-29 06 1994, pp. 160–165.
doi: doi:10.1109/ICEC.1994.350023.

[178] Xuejun Tan, Bir Bhanu, and Yingqiang Lin. “Fingerprint clas-
sification based on learned features”. In: IEEE Transactions
on Systems, Man and Cybernetics, Part C: Applications and
Reviews 35.3 (Aug. 2005), pp. 287–300. issn: 1094-6977. doi:
doi:10.1109/TSMCC.2005.848167.

[179] Fabien Teytaud and Olivier Teytaud. “Convergence rates of evolu-
tionary algorithms and parallel evolutionary algorithms”. In: The-
ory and principled methods for the design of metaheuristics. Ed.
by Yossi Borenstein and Alberto Moraglio. Natural Computing
Series. Springer, 2014, pp. 25–39. isbn: 978-3-642-33205-0. doi:
10.1007/978-3-642-33206-7_2.

[180] The On-Line Encyclopedia of Integer Sequences, published electron-
ically at http://oeis.org. 2011.

[181] Marco Tomassini et al. “A Study of Fitness Distance Corre-
lation as a Difficulty Measure in Genetic Programming”. In:

http://dx.doi.org/doi:10.1023/A:1014538503543
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
http://dx.doi.org/doi:10.1145/1389095.1389343
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2008/docs/p1291.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2008/docs/p1291.pdf
http://smr.sagepub.com/cgi/content/abstract/33/2/230
http://smr.sagepub.com/cgi/content/abstract/33/2/230
http://www.cs.put.poznan.pl/mszubert/pub/phdthesis.pdf
http://dx.doi.org/10.1145/2463372.2463513
http://doi.acm.org/10.1145/2463372.2463513
http://dx.doi.org/doi:10.1109/ICEC.1994.350023
http://dx.doi.org/doi:10.1109/TSMCC.2005.848167
http://dx.doi.org/10.1007/978-3-642-33206-7_2

REFERENCES 171

Evolutionary Computation 13.2 (Summer 2005), pp. 213–239.
issn: 1063-6560. doi: doi:10.1162/1063656054088549. url: http://
www.ingentaconnect.com/search/expand;jsessionid=k43b8htgbpy4.
victoria?pub=infobike://mitpress/evco/2005/00000013/00000002/
art00004&unc=.

[182] Alan M. Turing. “On Computable Numbers, with an Appli-
cation to the Entscheidungsproblem”. In: Proceedings of the
London Mathematical Society s2-42.1 (1937), pp. 230–265. doi:
10.1112/plms/s2-42.1.230. eprint: http://plms.oxfordjournals.
org/content/s2-42/1/230.full.pdf+html. url: http://plms.
oxfordjournals.org/content/s2-42/1/230.short.

[183] Nguyen Quang Uy et al. “On the roles of semantic locality
of crossover in genetic programming”. In: Information Sci-
ences 235 (20 06 2013), pp. 195–213. issn: 0020-0255. doi:
doi:10.1016/j.ins.2013.02.008. url: http://www.sciencedirect.com/
science/article/pii/S0020025513001175.

[184] Nguyen Quang Uy et al. “Semantically-based crossover in genetic
programming: application to real-valued symbolic regression”. In:
Genetic Programming and Evolvable Machines 12.2 (June 2011),
pp. 91–119. issn: 1389-2576. doi: doi:10.1007/s10710-010-9121-2.

[185] Pascal Vincent et al. “Stacked Denoising Autoencoders: Learning
Useful Representations in a Deep Network with a Local Denoising
Criterion”. In: J. Mach. Learn. Res. 11 (Dec. 2010), pp. 3371–3408.
issn: 1532-4435. url: http://dl.acm.org/citation.cfm?id=1756006.
1953039.

[186] Michael D. Vose and Gunar Liepins. “Punctuated equilibria in ge-
netic search”. In: Complex Systems 5 (1991), pp. 31–44.

[187] Philip Wadler. “Theorems for Free!” In: Proceedings of the Fourth
International Conference on Functional Programming Languages
and Computer Architecture. FPCA ’89. Imperial College, London,
United Kingdom: ACM, 1989, pp. 347–359. isbn: 0-89791-328-0.
doi: 10.1145/99370.99404. url: http://doi.acm.org/10.1145/99370.
99404.

[188] Richard J. Waldinger and Richard C. T. Lee. “PROW: A Step To-
ward Automatic Program Writing”. In: Proceedings of the 1st Inter-
national Joint Conference on Artificial Intelligence, IJCAI. Ed. by
D. E. Walker and L. M. Norton. Morgan Kaufmann, 1969, pp. 241–
252.

[189] Henry S. Warren. Hacker’s Delight. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2002. isbn: 0201914654.

[190] Richard A. Watson. Compositional Evolution: The impact of Sex,
Symbiosis and Modularity on the Gradualist Framework of Evolution.
Vol. NA. Vienna series in theoretical biology. MIT Press, Feb. 2006.
url: http://eprints.ecs.soton.ac.uk/10415/.

[191] Darrell Whitley, Soraya Rana, and Robert B. Heckendorn. “The
Island Model Genetic Algorithm: On Separability, Population Size

http://dx.doi.org/doi:10.1162/1063656054088549
http://www.ingentaconnect.com/search/expand;jsessionid=k43b8htgbpy4.victoria?pub=infobike://mitpress/evco/2005/00000013/00000002/art00004&unc=
http://www.ingentaconnect.com/search/expand;jsessionid=k43b8htgbpy4.victoria?pub=infobike://mitpress/evco/2005/00000013/00000002/art00004&unc=
http://www.ingentaconnect.com/search/expand;jsessionid=k43b8htgbpy4.victoria?pub=infobike://mitpress/evco/2005/00000013/00000002/art00004&unc=
http://www.ingentaconnect.com/search/expand;jsessionid=k43b8htgbpy4.victoria?pub=infobike://mitpress/evco/2005/00000013/00000002/art00004&unc=
http://dx.doi.org/10.1112/plms/s2-42.1.230
http://plms.oxfordjournals.org/content/s2-42/1/230.full.pdf+html
http://plms.oxfordjournals.org/content/s2-42/1/230.full.pdf+html
http://plms.oxfordjournals.org/content/s2-42/1/230.short
http://plms.oxfordjournals.org/content/s2-42/1/230.short
http://dx.doi.org/doi:10.1016/j.ins.2013.02.008
http://www.sciencedirect.com/science/article/pii/S0020025513001175
http://www.sciencedirect.com/science/article/pii/S0020025513001175
http://dx.doi.org/doi:10.1007/s10710-010-9121-2
http://dl.acm.org/citation.cfm?id=1756006.1953039
http://dl.acm.org/citation.cfm?id=1756006.1953039
http://dx.doi.org/10.1145/99370.99404
http://doi.acm.org/10.1145/99370.99404
http://doi.acm.org/10.1145/99370.99404
http://eprints.ecs.soton.ac.uk/10415/

172 REFERENCES

and Convergence”. In: Journal of Computing and Information Tech-
nology 7.1 (1999), pp. 33–47.

[192] David H. Wolpert and William G. Macready. “No Free Lunch The-
orems for Optimization”. In: IEEE Trans. on Evolutionary Compu-
tation 1.1 (1997), pp. 67–82.

[193] David H. Wolpert and William G. Macready. No Free Lunch Theo-
rems for Search. Tech. rep. SFI-TR-95-02-010. Santa Fe, NM: Santa
Fe Institute, 1995.

[194] Sewall Wright. “The roles of mutation, inbreeding, crossbreeding and
selection in evolution”. In: Proc of the 6th International Congress
of Genetics. Vol. 1. 1932, pp. 356–366.

[195] Wei Yan and Christopher D. Clack. “Behavioural GP diversity for
adaptive stock selection”. In: GECCO ’09: Proceedings of the 11th
Annual conference on Genetic and evolutionary computation. Ed. by
Guenther Raidl et al. Montreal: ACM, Aug. 2009, pp. 1641–1648.
doi: doi:10.1145/1569901.1570120.

[196] Wei Yan and Christopher D. Clack. “Behavioural GP diversity for
dynamic environments: an application in hedge fund investment”.
In: GECCO 2006: Proceedings of the 8th annual conference on
Genetic and evolutionary computation. Ed. by Maarten Keijzer et al.
Vol. 2. Seattle, Washington, USA: ACM Press, Aug. 2006, pp. 1817–
1824. isbn: 1-59593-186-4. doi: doi:10.1145/1143997.1144290. url:
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2006/docs/p1817.
pdf.

[197] Byoung-Tak Zhang and Heinz Mühlenbein. “Balancing Accuracy
and Parsimony in Genetic Programming”. In: Evolutionary Com-
putation 3.1 (1995), pp. 17–38. doi: doi:10.1162/evco.1995.3.1.17.
url: http://www.ais.fraunhofer.de/~muehlen/publications/gmd_
as_ga-94_09.ps.

http://dx.doi.org/doi:10.1145/1569901.1570120
http://dx.doi.org/doi:10.1145/1143997.1144290
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2006/docs/p1817.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2006/docs/p1817.pdf
http://dx.doi.org/doi:10.1162/evco.1995.3.1.17
http://www.ais.fraunhofer.de/~muehlen/publications/gmd_as_ga-94_09.ps
http://www.ais.fraunhofer.de/~muehlen/publications/gmd_as_ga-94_09.ps

	Foreword
	Preface
	Contents
	List of Acronyms
	1
Program synthesis
	1.1 The nature of computer programs
	1.2 Program synthesis
	1.3 Specifying program correctness
	1.4 Challenges in program synthesis
	1.5 Paradigms of program synthesis
	1.5.1 Deductive program synthesis
	1.5.2 Inductive programming
	1.5.3 Genetic programming

	1.6 Consequences of automated program synthesis
	1.6.1 Program improvement
	1.6.2 Hybrid and interactive program synthesis

	1.7 Summary

	2 Limitations of conventional program evaluation
	2.1 Evaluation bottleneck
	2.2 Consequences of evaluation bottleneck
	2.2.1 Discreteness and loss of gradient
	2.2.2 Compensation
	2.2.3 Biased search

	2.3 Experimental demonstration
	2.4 Discussion
	2.5 Related concepts
	2.6 Summary and the main postulate

	3 The framework of behavioral program synthesis
	3.1 Program traces and execution records
	3.2 Realization of execution record
	3.3 Summary

	4 Behavioral assessment of test difficulty
	4.1 Test-based problems
	4.2 Implicit fitness sharing
	4.3 Promoting combinations of skills via cosolvability
	4.4 Deriving objectives from program-test interactions
	4.5 Summary

	5 Semantic Genetic Programming
	5.1 Program semantics
	5.2 Semantic Genetic Programming
	5.3 Geometric Semantic Genetic Programming
	5.3.1 Approximate geometric crossover
	5.3.2 Exact geometric crossover

	5.4 Summary

	6 Synthesizing programs with consistent execution traces
	6.1 Information content of execution states
	6.2 Trace consistency measure
	6.3 Trace consistency for non-linear programs
	6.4 Summary

	7 Pattern-guided program synthesis
	7.1 Motivation
	7.2 Discovering patterns in program behavior
	7.2.1 Transforming an execution record into an ML dataset
	7.2.2 Classifier induction
	7.2.3 Evaluation functions

	7.3 Discussion and related concepts
	7.4 Summary

	8 Behavioral code reuse
	8.1 Identification of useful subprograms
	8.2 Archiving subprograms
	8.3 Reuse of subprograms
	8.4 Discussion
	8.5 Summary

	9 Search drivers
	9.1 Rationale for the unified perspective
	9.2 Design rationale
	9.3 Definition
	9.4 Search drivers vs. selection operators
	9.5 Universal search drivers
	9.6 Problem-specific search drivers
	9.7 Quality of search drivers
	9.8 Employing multiple search drivers
	9.9 Multiobjective selection with search drivers
	9.10 Related concepts
	9.11 Efficiency
	9.12 Summary

	10 Experimental assessment of search drivers
	10.1 Scope
	10.2 Program synthesis tasks
	10.3 Combinations of search drivers
	10.4 Configurations with subprogram archives
	10.5 Importance of subprogram selection
	10.6 Contextual search drivers
	10.7 Discussion

	11 Implications of the behavioral perspective
	11.1 Conceptual consequences
	11.2 Architectural implications
	11.3 Summary

	12 Future perspectives
	12.1 The prospects
	12.2 Closing remarks

	Index
	References

