
Chapter 3
A Deep Dive into the Hadoop World
to Explore Its Various Performances

Dipayan Dev and Ripon Patgiri

Abstract Size of the data used in todays enterprises has been growing at exponential
rates from last few years. Simultaneously, the need to process and analyze the large
volumes of data has also increased. To handle and for analysis of large scale datasets,
an open-source implementation of Apache framework, Hadoop is used now-a-days.
For managing and storing of all the resources across its cluster, Hadoop possesses
a distributed file system called Hadoop Distributed File System (HDFS). HDFS is
written completely in Java and is depicted in such away that in can storeBig datamore
reliably, and can stream those at high processing time to the user applications.Hadoop
has been widely used in recent days by popular organizations like Yahoo, Facebook
and various online shoppingmarket venders.On the other hand, experiments onData-
Intensive computations are going on to parallelize the processing of data. None of
them could actually achieve a desirable performance. Hadoop, with its Map-Reduce
parallel data processing capability can achieve these goals efficiently. This chapter
initially provides an overview of the HDFS in details. The next portion of the paper
evaluates Hadoops performance with various factors in different environments. The
chapter shows how files less than the block size affect Hadoops R/W performance
and how the time of execution of a job depends on block size and number of reducers.
Chapter concludes with providing the different real challenges of Hadoop in recent
days and scope for future work.

Keywords Hadoop · Big data · HDFS · Small files ·Map-Reduce

D. Dev (B) · R. Patgiri
Department of Computer Science, NIT Silchar, Silchar, India
e-mail: dev.dipayan16@gmail.com

R. Patgiri
e-mail: ripon@cse.nits.ac.in

© Springer International Publishing Switzerland 2016
B.S.P. Mishra et al. (eds.), Techniques and Environments for Big Data Analysis,
Studies in Big Data 17, DOI 10.1007/978-3-319-27520-8_3

31

32 D. Dev and R. Patgiri

3.1 Introduction

The last few years of internet technology as well as computer world has seen a lot of
growth and popularity in the field of cloud computing [9, 11]. As a consequence, the
cloud applications have given birth to Big data. Hadoop, an open source distributed
system made by Apache Software Foundation, has contributed hugely to handle
and manage such Big data [2]. Hadoop [1] has a master-slave architecture, provides
scalability and reliability to a great extent. In the last few years, this framework is
extensively used and accepted by different cloud vendors as well as Big data handler.
With the help of Hadoop, a user can deploy programs and execute processes on the
configured cluster.

The main parts of Hadoop include HDFS (Hadoop Distributed File System) [1,
13] and Map-Reduce paradigm [6]. A crucial property of Hadoop Framework is
the capacity to partition the computation and data among various nodes (known as
Data Node) and running the computations in parallel. Hadoop increases the storage
capacity, I/O BW and other computation capacity by adding commodity servers.

HDFS keeps application data and file systems meta-data [7, 23] in different
servers. Like popular DFS, viz. PVFS [4, 20], Lustre [15] and GFS [10, 16], HDFS
too saves its meta-data in a server, known as Name Node. Rest of the application
data are kept on the slaves server, known as Data Nodes.

The main purpose of the paper is to focus and reveal the various criteria that
influence the efficiency of Hadoop cluster. None of the previous papers demonstrated
this kind of work that exposes the dependencies of Hadoop efficiency.

In this chapter, we have discussed about the mechanism of HDFS and we tried
to find out the different factors on which HDFS provides maximum efficiency. The
remainder of this chapter is organized as follows.We discuss Hadoop Architecture in
Sect. 3.2. In Sect. 3.3, we discuss about file I/O operation and interaction of Hadoop
with the clients. Section3.4 discusses three experimentalworks to evaluate the crucial
factors onwhichHadoop clusters performance depends. The next part, Sect. 3.5 deals
with the major challenges of Hadoop field. The conclusions and future work in the
concerned issues are given in Sect. 3.6.

3.2 Related Work

Evaluationof performance in thefield ofHadoopanddifferent large-scalefile systems
have been carried out many times [17, 18, 21]. HDFS performance is analyzed in
[18] whose results shows that HDFS performs poor because of the various delays
in task scheduling, fragmentation, huge disk seeks caused by disk contention under
excessive workloads. The performance of Hadoop relies heavily on the operating
system as well as on the algorithms that were employed by the disk scheduler and
various allocators.

3 A Deep Dive into the Hadoop World to Explore Its Various Performances 33

In [21], the authors tried to integrate PVFS with Hadoop and they compared the
performance with Hadoop Distributed File System using some sets of benchmarks.
They paper indicates various optimizations of Hadoop that can be matched with
PVFS and how durability, consistency and persistent tradeoffs made by these large-
scale file system effect the cluster performance. Their results showed that, PVFS
performance is as good as HDFS in Hadoop Framework.

The authors of the paper [17], analyzed the performance of BlobSeerDFS with
HDFS. Their result demonstrated that, BlobSeerDFS achieved higher throughput
when compared to HDFS.

In our work, we have evaluated the performance of HDFSwith various parameters
considering different sizes of file sizes. Compared with the conference version in
[8], this chapter describes the Hadoop architecture in little more depth and extra
simulation is carried out to portrait HDFS read and write behavior with different
sizes of files.

3.3 Architecture of Hadoop

Hadoop framework uses pureMaster/Slaves architecture (Fig. 3.1). Themaster nodes
are given the responsibility of Name Node and Job Tracker. The main duty of Job-
Trackers is to initiate tasks, track and dispatch their implementation. The charge of
Data Node and Task Tracker is given to Slave nodes. The main role of TaskTracker
is to process of local data and collection of all these result data as per the request
received from applications and then report the performance in periodic interval to
JobTracker [12]. HDFS, which seems to be heart of Hadoop, all of its charges, are
given to NameNode and DataNode for fulfilling, while JobTracker and TaskTracker
mainly deal with Map-Reduce application.

In this chapter, we are only dealing with HDFS architecture. So, here is a brief
description about Name Node and Data Node. A short description of the client
interaction with the Name Node and Data Node is also portrayed.

Fig. 3.1 Master-slave architecture of Hadoop cluster

34 D. Dev and R. Patgiri

3.3.1 NameNode

The HDFS namespace is a hierarchy of files and directories. Files and directories are
represented on the NameNode by i-nodes, which record attributes like permissions,
modification and access times, namespace and disk space quotas. The file content
is split into large blocks (user defined, default 128MB) and each block of the file
is independently replicated at multiple Data Nodes (user defined, default 3). The
NameNode maintains the namespace tree and the mapping of file blocks to Data
Nodes. For, faster execution of the cluster operations, HDFS has to keep the whole
namespace in its Main Memory. I-node data and other list of block, which belong
to each file, constitute the meta-data of the name system, termed as FSImage. The
un-interrupted record of the FSImage stored in the Name Nodes local filesystem is
termed as checkpoint.

3.3.2 DataNodes

The block replica stored on Data Nodes is regarded as two files in the local hosts own
file system. The first one constitutes the main data and second file acts as storage for
meta-data of blocks. During startup each Data Node get connect to the Name Node.
The phenomenon is just like a normal handshake. The purpose of this type of hand-
shake is to verify the namespaceID and to checkwhether there is amismatch between
the software versions of the Data Nodes. If either does not match the same with the
NameNode, that particularDataNode gets automatically shut down.A namespaceID
is assigned to the file system when it is formatted each time. The namespaceID is
persistently stored on all nodes of the cluster. A node with a different namespaceID
will not be able to join the cluster, thus maintaining the integrity of the file system. A
Data Node that is newly initialized and without any namespaceID is permitted to join
the cluster and receive the clusters namespaceID. After the handshake is done, the
Data Node registers with the Name Node. A storageID is allotted to the Data Node
for the first time, during the registration with Name Node. Data Node periodically
sends block report to the Name Node to identify the block replicas in its control. The
report consists of block id, the length of each block etc. During normal operations, all
the Data Nodes periodically send a response to the Name Node to confirm that, it is
alive and active in operation and all the different block replicas it stores are available.
If the Name Node does not receive a heartbeat from a Data Node in 10min the Name
Node considers the Data Node to be dead and the block replicas stored at that Data
Node becomes inaccessible. The Name Node then schedules the things again and
allocates all of those blocks to other Data Nodes, which is selected randomly.

3 A Deep Dive into the Hadoop World to Explore Its Various Performances 35

Fig. 3.2 Hadoop high-level architecture, interaction of clients with HDFS

3.3.3 HDFS Client Interaction with Hadoop

This part explains the interaction among client and Name Node and Data Node.
HDFS client is the media via which a user application accesses the file system. For
faster access, the namespace is saved in the Name Nodes RAM. A user references
all the files and directories by paths in the namespace. It remains unknown to an
application that, that file system meta-data and application data are put on separate
servers as well as about the replication of blocks. During the time, an application
reads a file for the first time; HDFS client gets response from the Name Node of all
lists of Data Nodes that stores replicas of the blocks of that particular file. The client
application checks the lists out, then a Data Node is contacted directly and requests
to transfer the desired block for reading. When a client wants to write in the HDFS,
it first sends a query to the Name Node to choose Data Nodes for hosting replicas
of the blocks of the file. When the client application, get response from the Name
Node, it start searches for that given Data Node. When if finds, the first block is filled
or doesnt have enough disk space, the client requests new Data Nodes to choose for
hosting replicas for the next block. Like this way, the process continues. The detail
interactions among the client, the Name Node and the Data Nodes are illustrated in
Fig. 3.2.

3.4 File I/O Operations and Management of Replication

3.4.1 File Read and Write

This part of paper, describes the operation of HDFS for different I/O file operations.
When a client wants to write some data or add something into HDFS, he has to
do the taskthrough an application. HDFS follows a single-writer, multiple-reader
model [19]. When the application closes the file, the content already written cannot

36 D. Dev and R. Patgiri

be manipulated or altered. However, new data can be appended in to by reopening
the file All HDFS client, when tries to open a file for writing into it, is granted a
lease for it; no other client can write to the file. The writing application periodically
can renew the given lease by sending heartbeats to the Name Node. When the file is
closed down, the lease is revoked. The lease duration is bound by a soft limit and a
hard limit. The writer is granted an exclusive access for the file, as long as the soft
limit persists. After the soft limits expiry comes and even then the client does not able
to close the file or make renew of the lease, another client can pre-empt the lease.

The client application is also grant a hard limit of one hour. When this hard limits
expiry time arrives, and here also if the client fails to renew the hard limit, HDFS
taken it for granted that the client has left the network. HDFS then automatically
closes that file on behalf of the writer and recovers the lease granted for it. The
lease provided to a writer never does prevent any other client to read that file. HDFS
follows a read by simultaneous reader at a time scheme.

An HDFS file can be defined as a collection of chunks of data or blocks. When
a client application wants for a new block, Name Node does an allocation for the
block, specified with a unique blockID. It then searches for a list of Data Nodes
that can host the replicas of the block. Data Nodes, that act as a pipeline, generally
possess has a tendency to minimize the total network distance of the last Data Node
from the client.

HDFS treats all the Bytes as a sequence of packets. Bytes written by a client
program is stored as a buffer. After the packet buffer is filled up (Usually 64KB), all
of these are pushed Data Nodes pipeline.

When packets of bytes (data) are written into the HDFS, it never assures the
reader, that he can read the file, until and unless the file is closed. There is a hush
operation provided by the Hadoop, which a user application explicitly uses to see the
updated file. Immediately the current packet gets pushed to the Data Nodes, and the
hush operation waits until all the Data Nodes, standing in the pipeline acknowledge
the successful transmission of the packet. Hadoop clusters consist of thousands of
nodes. So, it is quite natural to come across failure frequently. The replicas that are
stored in the Data Nodes might become corrupted as a result of memory faults, disks
or several network issues. Checksums are verified by the HDFS clients to check the
integrity of the data block of a HDFS file. During reading, it helps for the detection
of any corrupt packet in the network. All the checksums are stored in a meta-data
file in the Data-Nodes system, which is different from the blocks data file During the
reading of files by HDFS, all block data and checksums are transferred to the client.
It then calculates the checksums for the data and confirms that the newly calculated
checksum matched with the one it received. If it doesnt match, the client informs
the Name Node about the damaged replica and brings another replica from different
Data Node [19].

When a file is opened by the client for reading, the client first fetches the whole
list of blocks the different location of the replicas from the Name Node. The location
of each block is sorted by the distance from the client. In the process of reading the
content of the block, the client posses a property to read the closest replica first. If this
attempt fails, it tries for the next one in sequence. If the Data Node is not available

3 A Deep Dive into the Hadoop World to Explore Its Various Performances 37

Fig. 3.3 Racks of commodity hardware and interaction with NameNode and JobTracker

or if the block replica is found to be corrupted (checksum test), the read operation
then fails completely for that Data Node.

HDFS can permit a client to read the content of a file, even if it is opened for
writing. But, while reading, the length of the last block, which is being written at that
point of time, remains unknown to the Name Node. In this kind of case, the client
asks one of the replicas for the longest length before starting to read the content.

3.4.2 Block Placement

When we want to setup a large cluster, it is never a good idea to connect all nodes to
a particular switch. A better solution is that nodes of a rack should share a common
switch, and switches of the rack are connected by one or more switches. The config-
uration of commodity hardware is done in such a way that, the network bandwidth
between two nodes in the same rack is greater than network bandwidth between
two nodes in different racks. Figure3.3 shows a cluster topology, used in Hadoop
architecture.

HDFS calculates the network bandwidth between two nodes by measuring the
distance between them. Generally, the distance from a node to its parent node is
always measured as one. A distance between two nodes can be measured by just
adding up their distances to their closest node. For greater bandwidth, we should
have shorter distance between two nodes. This eventually increases the capacity to
transfer data.

The main concern of HDFS block replacement policy is minimization of write
cost, and maximization of data reliability, scalability and increase the overall band-
width of the cluster.

38 D. Dev and R. Patgiri

After the generation of new block, HDFS searches for a location where the writer
is placed and places the first replica on that node, the 2nd and 3rd replicas are stored
similarly on two different nodes in a different rack, and the rest are placed on random
nodes. HDFS provides a restriction that, more than one replica cannot be stored at one
node and more than two replicas cannot be stored in the same rack. The mechanism
of storing the 2nd and 3rd replicas, each on different rack provides better replication
management of the block replicas for a single file across the cluster.

Summing up all the above policy, the HDFS follows the following replica place-
ment policy:

1. A single Data Node does not contain more than one replica of any block.
2. A single rack never contains more than two replicas of the same block, given then

there is significant number of racks in the cluster.

3.4.3 Replication Management

The Name Node attempts to make it sure that each block of the files always has some
significant number of replicas stored in theDataNodes. DataNodes periodically send
its block report to NameNodes. Verifying the report, the NameNode detects whether
a block is under or over replicated.WhenNameNodes finds it to be over replicated, it
chooses a replica from any random Data Node to remove. Generally the Name Node
does not prefer to reduce the number of racks which has available number of host
replicas, and mainly prefers to remove from that Data Node, which has the least disk
space available. The main purpose is balancing the storage utilization across all the
Data Nodes, without hampering the block availability. There is a replication priority
queue, which stores the blocks that is under replicated. Highest priority factor is
given to the blocks, which has only one replica. On the other hand, blocks having
more than two third of the specified replication factor are given the lowest priority. A
thread running in background, search the replication priority queue to determine the
best position for the new replicas. Block replication of HDFS also follows the same
kind of policy like that of new block placement. If HDFS finds the number of existing
replica of a block is one, it searches for that block and places the next replica on a
rack which is different from the existing one. In case, if two replica of a block are
found to be in a particular rack, the third one is kept on a different rack. Basically, the
main motive here is minimizing the cost of creation of new replicas of blocks. The
NameNode also does proper distribution of the block to make sure that all replicas of
a particular block are not put on one single rack. If there is a situation comes, that the
Name Node detects that a blocks replicas end up storing itself at one common rack,
the Name Node treats it as under-replicated and eventually allocate that particular
block to a different rack.When the NameNode receives the notification that a replica
is created on different node, the block becomes again becomes over- replicated. So,
following the previous policywritten above, theNameNode, at that situation, decides
to remove an old replica chosen randomly.

3 A Deep Dive into the Hadoop World to Explore Its Various Performances 39

3.5 Performance Evaluation

In this section, the performance of Hadoop Distributed File System is evaluated in
order to conclude the efficiency dependence of a Hadoop cluster.

3.5.1 Experimental Setup

For performance characterization, a 46-nodeHadoop clusterwas configured. Thefirst
44 nodes provided both computation (as Map-Reduce clients) and storage resources
(as Data Node servers), and the rest two nodes served as Job Tracker (Resource-
Manager) and NameNode storage manager. Each node is running at 3.10GHz clock
speed and with 4GB of RAM and a gigabit Ethernet NIC. All nodes used Hadoop
framework 2.6.0, and Java 1.7.0. Ubuntu 14.04 [22] is used as out Operating System.

3.5.2 Test Using TestDFSIO to Evaluate Average I/O
and Throughput of the Cluster

The test process aims at finding optimal efficiency of the performance characteristics
of two different sizes of files and bottlenecks posed by the network interface. The
comparison is done to check the performance between small and big files. A test of
write and read between 1GB file and 10GB file is carried out. A total of 500GB data
is created through it. HDFS block size of 512MB is used.

For this test we have used industry standard benchmarks: TestDFSIO
TestDFSIO is used to measure performance of HDFS as well as of the network

and IO subsystems. The command reads and writes files in HDFS which is useful
in measuring system-wide performance and exposing network bottlenecks on the
NameNode and DataNodes. A majority of Map-Reduce workloads are IO bound
more than compute and hence TestDFSIO can provide an accurate initial picture of
such scenarios.

We executed two tests for both write and read: one for 50 files each of size 10GB
and other with 500 files each of size 1GB.

As an example, the command for a read test may look like:
$hadoop jar Hadoop–*test*.jar TestDFSIO read nrFiles 100 fileSize 10000

This command will read 100 files, each of size 10GB from the HDFS and there-
after provides the necessary performance measures.

The command for a write test may look like:
$hadoop jar Hadoop–*test*.jar TestDFSIO write nrFiles 100 fileSize 10000

This command will write 100 files, each of size 10GB from the HDFS and there-
after provides the necessary performance measures.

40 D. Dev and R. Patgiri

Fig. 3.4 Evaluation of write operation (a) the write bandwidth and throughput of (b) the same
amount of write takes almost 10GB file size is almost 6 times greater than 1.71 more time in case
of 10 and 1GB

Fig. 3.5 Evaluation of read operation (a) reading same amount of data in 10GB file- (b) the same
amount of read takes almost 1.95 size offers close to 4 times more throughput and more time in
case of 10GB average bandwidth

TestDFSIO generates 1 map task per file and splits are defined such that each map
gets only one file name. After every run, the command generates a log file indicating
performance in terms of 4 metrics: Throughput in MBytes/s, Average IO rate in
MBytes/s, IO rate standard deviation and execution time.

Output of different tests are given in Figs. 3.4 and 3.5.
To obtain a good picture of performance, each benchmark tool was run 3 times

on each 1GB file size and results were averaged to reduce error margin. The same
process was carried on 10GB file size to get data for comparison.

Experiment shows, test execution time is almost half during the 1GB file test.
This the total time it takes for the Hadoop jar command to execute.

From Figs. 3.4a and 3.5a, we can visualize that, the throughput and IO Rate too
shows a significant declined in terms of both write and read for the 1GB file test.

This is somewhat unexpected in nature. However, one major conclusion that we
encountered is as follows: In these tests there is always one reducer that runs after
the all map tasks have complete. The reducer is responsible for generating the result
set file. It basically sums up all of these values “rate, sqrate, size, etc.” from each
of the map tasks. So the Throughput, IO rate, STD deviation, results are based on
individual map tasks and not the overall throughput of the cluster. The nrFiles is
equal to number of map tasks. In the 1GB file test there will be (500/6) = 83.33
(approx) map tasks running simultaneously on each node manager node versus 8.33
map tasks on each node in the 10GB file test. The 10GB file test yields throughput

3 A Deep Dive into the Hadoop World to Explore Its Various Performances 41

results of 64.94MB/s on each node manager. Therefore, the 10GB file test yields
(8.33× 64.94MB/s) = 540.95MB/s per node manager. Whereas, the 1GB file test
yields throughput results of 11.13MB/s on each nodemanager. Therefore, the 1GB
file test yields (83.33× 11.13MB/s) = 927.46 MB/s per node manager.

Clearly the 1GB file test shows the maximum efficiency. However increasing the
no of commodity hardware eventually decreases the execution time and increased the
average IO rate. It also shows how MapReduce IO performance can vary depending
on the data size, number of map/reduce tasks, and available cluster resources.

3.5.3 Dependence of Execution Time of Write Operation
on No of Reducers and Block Size

Aword count job is submitted and experiment is carried out on a 100GB file, varying
the no of reducers keeping with block size of HDFS fixed. The experiment carried
out with 4 different types of block size, viz. 512, 256, 128 and 64MB.

Based on the Test-Report we obtained, the charts in the Figs. 3.6, 3.7, 3.8 and 3.9
have been made and proper conclusion is followed.

Fig. 3.6 Variation of
processing times with
variation of reducers,
keeping block size fixed
at 512MB

Fig. 3.7 Variation of
processing times with
variation of reducers,
keeping block size fixed
at 256MB

42 D. Dev and R. Patgiri

Fig. 3.8 Variation of
processing times with
variation of reducers,
keeping block size fixed
at 128MB

Fig. 3.9 Variation of
processing times with
variation of reducers,
keeping block size fixed
at 64MB

All the above graphs appear to form a uniform straight line or in some it shows
a slight negative slope which indicates that with increase in number of reducer for a
give block size time for processing either remains same or reduces to some extent.
But, a significant negative slope is visible in Fig. 3.6,where block size equals 512MB.
On the other hand, in Figs. 3.8 and 3.9, the execution times are unpredictable and
show an unexpected behavior.

It can be concluded that, for large block size, the reducers play an important role
in the execution time of a Map-Reduce job. For smaller block size, the change in
number of reducers doesnt bring noticeable changes in the execution time.

Moreover, for significant large files, small change in block-size doesnt lead to
change the drastic change in execution time.

3.5.4 Performance Evaluation of Read and Write Operations
in HDFS Varying Number of Files and Sizes

The write operation of HDFS is carried out for the different data of sizes 1, 2, 4
and 8TB as shown in Figs. 3.10, 3.11, 3.12 and 3.13 and Tables3.1, 3.2, 3.3 and 3.4
respectively. The block size of HDFS is kept at 64MB for all the experiments in
this subsection. In all the four figures a similar trend is observed. Figures show that,

3 A Deep Dive into the Hadoop World to Explore Its Various Performances 43

Fig. 3.10 Variation of write operation for 1TB data size

Fig. 3.11 Variation of write operation for 2TB data size

Fig. 3.12 Variation of write operation for 4TB data size

44 D. Dev and R. Patgiri

Fig. 3.13 Variation of write operation for 8TB data size

Table 3.1 Execution time of write operation for 1TB data size

Sl no. No. of files File size in MB Execution time (in secs)

1 1048576 1 7140.68

2 524288 2 5590.058

3 262144 4 4182.967

4 131072 8 2883.34

5 65536 16 2171.219

6 32768 32 1490.87

7 16384 64 562.991

8 8192 128 544.897

9 4096 256 461.15

10 2048 512 459.18

11 1024 1024 462.07

HDFS performance is significantly poor when the file size is smaller than current
block size (64MB is our case). The execution times of the files for the write operation
show a sharp decline when the size is greater than the block size.

In Figs. 3.14, 3.15, 3.16 and 3.17 and Tables3.5, 3.6, 3.7 and 3.8, the performance
of read operation for the different data of sizes 1, 2, 4 and 8TB are shown respectively.
Figure3.14 indicates that, HDFS is taking much more time for reading 1TB data
when the file size is less than 64MB. Whereas, when the size of the files is greater
than the block size, HDFS requires much less time to read the data. Similar kind of
scenario is observed in Figs. 3.15, 3.16 and 3.17.

3 A Deep Dive into the Hadoop World to Explore Its Various Performances 45

Table 3.2 Execution time of write operation for 2TB data size

Sl no. No. of files File size in MB Execution time (in secs)

1 1048576 2 8040.32

2 524288 4 5482.437

3 262144 8 2911.926

4 131072 16 1829.159

5 65536 32 1382.462

6 32768 64 709.462

7 16384 128 623.556

8 8192 256 568.708

9 4096 512 610.539

10 2048 1024 601.506

11 1024 2048 618.796

Table 3.3 Execution time of write operation for 4TB data size

Sl no. No. of files File size in MB Execution time (in secs)

1 1048576 4 10642.859

2 524288 8 7601.318

3 262144 16 3407.575

4 131072 32 2083.141

5 65536 64 962.719

6 32768 128 723.435

7 16384 256 707.912

8 8192 512 630.882

9 4096 1024 611.868

10 2048 2048 602.868

11 1024 4096 618.948

3.6 Major Challenges in Hadoop Framework

Although the Hadoop Framework has been approved by everyone for its flexibility
and faster parallel computing technology [5], there still are many problems which
written in short in the following points:

1. Hadoop suffers from a irrecoverable failure called Single point of failure of Name
Node. Hadoop possesses a single master server to control all the associated sub
servers (slaves) for the tasks to execute, that leads to a server shortcomings like
single point of failure and lacking of space capacity, which seriously affect its
scalability. During the later versions of Apache Hadoop, they came out with a
Secondary NameNode [14, 24] to deal with this problem.The secondary Name
Node periodically check NameNodes namespace status and merges the fsimage

46 D. Dev and R. Patgiri

Table 3.4 Experimental results of write operation for 8TB data size

Sl no. No. of files File size in MB Execution time (in secs)

1 1048576 8 12360.926

2 524288 16 9161.401

3 262144 32 8592.253

4 131072 64 7265.476

5 65536 128 3684.956

6 32768 256 1514.76

7 16384 512 1092.849

8 8192 1024 1104.974

9 4096 2048 1097.671

10 2048 4096 981.7

11 1024 8192 889.511

Fig. 3.14 Variation of read operation for 1TB data size

with editlogs. It decreases the restart time of NameNode. But unfortunately is not
a hot backup daemon of NameNode, not fully capable of hosting DataNodes in
the absence of NameNode. So, could not resolve the SPOF of Hadoop.

2. As our experimental results show, HDFS faces huge problems, dealing with small
files. HDFS data are stored in the Name Node as meta-data, and each meta-data
corresponds to a block occupies about 200 Byte. Taking a replication factor of
3(default), it would take approximately 600Byte. If there are such huge no of these
kind of smaller files in the HDFS, Name Node will consume lot of space. Name
Node keeps all the meta-data in its main memory, which leads to a challenging
problem for the researchers [23].

3 A Deep Dive into the Hadoop World to Explore Its Various Performances 47

Fig. 3.15 Variation of read operation for 2TB data size

Fig. 3.16 Variation of read operation for 4TB data size

Fig. 3.17 Variation of read operation for 8TB data size

48 D. Dev and R. Patgiri

Table 3.5 Experimental results of read operation for 1TB data size

Sl no. No. of files File size in MB Execution time (in secs)

1 1048576 1 11962.46

2 524288 2 7030.8

3 262144 4 4149.977

4 131072 8 2211.445

5 65536 16 1752.17

6 32768 32 1573.021

7 16384 64 759.939

8 8192 128 766.876

9 4096 256 611.896

10 2048 512 310.796

11 1024 1024 437.017

Table 3.6 Experimental results of read operation for 2TB data size

Sl no. No. of files File size in MB Execution time (in secs)

1 1048576 2 12062.4

2 524288 4 9288.534

3 262144 8 7452.232

4 131072 16 6535.733

5 65536 32 5041.818

6 32768 64 3048.021

7 16384 128 1864.993

8 8192 256 1542.613

9 4096 512 1099.71

10 2048 1024 812.796

11 1024 2048 747.017

3. Job Tracker at a certain time becomes extremely over loaded since it has the
sole responsibility to monitor as well as dispatch simultaneously. Researchers are
focusing to design a more developed version of Hadoop component for monitor-
ing, while Job Tracker will be given the charge of overall scheduling.

4. Improving data processing performance is also a topic of major challenge for
the upcoming days. A special optimization process should be assigned based on
what is the actual need of application. Different experiments show that there are
various scopes to increase the processing performance and thus improving time
complexity of data for the execution of a particular job [3, 25].

3 A Deep Dive into the Hadoop World to Explore Its Various Performances 49

Table 3.7 Experimental results of read operation for 4TB data size

Sl no. No. of files File size in MB Execution time (in secs)

1 1048576 4 13642.89

2 524288 8 9601.310

3 262144 16 5407.515

4 131072 32 4083.144

5 65536 64 1762.761

6 32768 128 923.675

7 16384 256 907.912

8 8192 512 830.882

9 4096 1024 711.868

10 2048 2048 702.868

11 1024 4096 718.948

Table 3.8 Experimental results of read operation for 8TB data size

Sl no. No. of files File size in MB Execution time (in secs)

1 1048576 8 13960.926

2 524288 16 12561.401

3 262144 32 10992.253

4 131072 64 9985.476

5 65536 128 4894.956

6 32768 256 3714.76

7 16384 512 2692.849

8 8192 1024 1894.974

9 4096 2048 1317.671

10 2048 4096 1181.7

11 1024 8192 989.511

3.7 Conclusion

This section of the chapter describes related future work that we are considering;
Hadoop being an open source project justifies the addition of new features and
changes for the sake of better scalability and file management. Hadoop is recently
one of the best large-scale frameworks among managing the Big data. Still, in our
experiment, we have found that, it performs poor in terms of throughput when the
numbers of files are relatively larger compared to smaller numbers of files. Our exper-
iment shows how the read/write operations of files depend on its sizes and the block
size of HDFS. The performance bottlenecks are not directly imputable to application
code but actually depends on numbers of data nodes available, size of files in used
in HDFS and also it depends on the number of reducers used. However, the biggest

50 D. Dev and R. Patgiri

issue on which we are focusing is the scalability of Hadoop Framework. The Hadoop
cluster becomes unavailable when its NameNode is down.

Scalability issue of the Name Node has been a major struggle. The Name Node
keeps all the namespace and block locations in its main memory. The main challenge
with the Name Node has been that when its namespace table space becomes close
the main memory of Name Node, it becomes unresponsive due to Java garbage
collection. This scenario is bound to happen because the numbers of files used the
users are increasing exponentially. Therefore, this is a burning issue in the recent
days for Hadoop.

Acknowledgments The research is supported by Data Science & Analytic Lab of NIT Silchar.
The authors would also like to thank the anonymous reviewers for their valuable and constructive
comments on improving the chapter.

References

1. Apache Hadoop. http://hadoop.apache.org/
2. Beaver, D., Kumar, S., Li, H. C., Sobel, J., & Vajgel, P. (2010). Finding a needle in haystack:

Facebooks photo storage. In OSDI, ACM (pp. 1–8).
3. Bhandarkar, M. (2010). MapReduce programming with apache Hadoop. In: 2010 IEEE Inter-

national Symposium on Parallel & Distributed Processing (IPDPS) (Vol. 1, No. 1, pp. 19–23).
4. Carns, P. H., Ligon III,W. B., Ross, R. B., & Thakur, R. (2000). PVFS: A parallel file system for

Linux clusters. In Proceedings of 4th Annual Linux Showcase and Conference (pp. 317–327).
5. Daxin, X., & Fei, L. (2011). Research on optimization techniques for Hadoop cluster perfor-

mance. Computer Knowledge and Technology, 8(7), 5484–5486.
6. Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified data processing on large clusters. In

Proceedings Sixth Symposium Operating System Design and Implementation (OSDI 04) (pp.
137–150).

7. Dev D., & Patgiri, R. (in press). HAR+: Archive and metadata distribution! Why not both? In
ICCCI 2015.

8. Dev D., & Patgiri, R. (in press). Performance evaluation of HDFS in big data management. In
ICHPCA-2014.

9. Dev, D., & Baishnab, K. L. A. (2014). Review and research towards mobile cloud computing.
In 2nd IEEE International Conference on Mobile Cloud Computing, Services, and Engineering
(Mobile- Cloud) (pp. 252–256).

10. Ghemawat, S., Gobio, H. & Leung, S.-T. (2003). The google file system. In Proceedings 19th
ACM Symposium Operating Systems Principles (SOSP03) (pp. 29–43).

11. Grobauer, B., Walloschek, T., & Stocker, E. Understanding cloud computing vulnerabilities.
In IEEE International Conference on Security & Privacy (vol. 9, pp. 50–57).

12. Guilan, X., & Shengxian, L. (2010). Research on applications based on Hadoop MapReduce
model. Microcomputer & Its Applications (8), 4–7.

13. Hadoop Distributed File System Rebalancing Blocks. (2012). http://developer.yahoo.
com/hadoop/tutorial/module2.html#rebalancing.

14. HDFS Federation. (2012). http://hadoop.apache.org/common/docs/r0.23.0/hadoop-yarn/
hadoop-yarn-site/Federation.html.

15. Lustre File System. http://www.lustre.org.
16. McKusick, K., & Quinlan, S. G. F. S. (2010). Evolution on Fast-Forward. Communication of

the ACM, 53(3), 42–49.

http://hadoop.apache.org/
http://hadoop.apache.org/common/docs/r0.23.0/hadoop-yarn/hadoop-yarn-site/Federation.html
http://hadoop.apache.org/common/docs/r0.23.0/hadoop-yarn/hadoop-yarn-site/Federation.html
http://www.lustre.org

3 A Deep Dive into the Hadoop World to Explore Its Various Performances 51

17. Nicolae, B., Moise, D., Antoniu, G., Boug, L., & Dorier, M. (2010). BlobSeer: Bringing high
throughput under heavy concurrency to Hadoop Map/Reduce applications. In Proceedongs
24th IEEE Interational Parallel and Distributed Processing Symposium (IPDPS 2010).

18. Shafer, J. A. (2010). Storage architecture for data-intensive computing. Ph.D. thesis, Rice
University. Advisor-Rixner, Scott.

19. Shvachko, K., Kuang, H., Radia, S., &Chansler, R. (2010). The Hadoop distributed file system.
In IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST) (Vol. 1, No. 10,
pp. 3–7).

20. Tantisiriroj, W., Patil, S., & Gibson, G. (2008, October). Data-intensive file systems for Inter-
net services: A rose by any other name. Technical Report CMUPDL- 08–114, Parallel Data
Laboratory, Carnegie Mellon University, Pittsburgh, PA.

21. Tantisiriroj, W., Patil, S., Gibson, G., Son, S. W., Lang, S. J., & Ross, R. B. On the duality of
data-intensive file system design: Reconciling HDFS and PVFS. In SC11.

22. Ubuntu. http://releases.ubuntu.com/14.04/.
23. Weil, S.A., Pollack,K.T., Brandt, S.A.,&Miller, E. L. (2004).Dynamicmetadatamanagement

for petabyte-scale file systems. In ACM/IEEE SC (pp. 4–12).
24. White, T. (2009). Hadoop, guide, The Definitive, & Inc, O’ Reilly Media. (1005). Gravenstein

Highway North, Sebastopol. CA, 95472.
25. Yan, J., Yang, X., Gu, R., Yuan, C., & Huang, Y. (2012). Performance optimization for short

MapReduce job execution in Hadoop. In: 2012 Second International Conference on Cloud and
Green Computing (CGC) (Vol. 688, No. 694, pp. 1–3).

http://releases.ubuntu.com/14.04/

	3 A Deep Dive into the Hadoop World to Explore Its Various Performances
	3.1 Introduction
	3.2 Related Work
	3.3 Architecture of Hadoop
	3.3.1 NameNode
	3.3.2 DataNodes
	3.3.3 HDFS Client Interaction with Hadoop

	3.4 File I/O Operations and Management of Replication
	3.4.1 File Read and Write
	3.4.2 Block Placement
	3.4.3 Replication Management

	3.5 Performance Evaluation
	3.5.1 Experimental Setup
	3.5.2 Test Using TestDFSIO to Evaluate Average I/O and Throughput of the Cluster
	3.5.3 Dependence of Execution Time of Write Operation on No of Reducers and Block Size
	3.5.4 Performance Evaluation of Read and Write Operations in HDFS Varying Number of Files and Sizes

	3.6 Major Challenges in Hadoop Framework
	3.7 Conclusion
	References

