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Abstract Artificial neural network (ANN) is widely used for modeling and
optimization in antenna design problems. It is a very convenient alternative for using
computationally intensive 3D-Electromagnetic (EM) simulation in design. The
reconfigurable microstrip patch antennas have been considered to ensure operational
frequencies for different kind of purposes. ANN is used for modeling of antenna
design problems to obtain a surrogate based model instead of a computationally
intensive 3D-EM simulation. Further improvement in modeling, a prior knowledge
about the problem such as an empirical formula, an equivalent circuit model,
and a semi-analytical equation is directly embedded in ANN structure through a
knowledge based modeling technique. Knowledge based techniques are developed
to improve some properties of conventional ANN modeling such as accuracy and
data requirement. All these improvements ensure better accuracy compared to
conventional ANN modeling. The necessary knowledge can be obtained by the
coarse model which is a complex 3D-EM simulation in terms of grid size selec-
tion. Knowledge based techniques can improve the performance of conventional
ANN through the guidance of the coarse model. As long as the coarse model
approximates to the computationally intensive 3D-EM simulation, the performance
of the knowledge based surrogate model can converge to the design targets. The
efficiency of modeling strategies is demonstrated by a reconfigurable 5-fingers
microstrip patch antenna. The antenna has four modes of operation, which are
controlled by two PIN diode switches with ON/OFF states, and it resonates at
multiple frequencies between 1 and 7 GHz. The number of training data is changed
in terms of selected parameters from the design space. Three different sets are
used to show modeling performance according to the size of training data. The
simulation results show that knowledge based neural networks ensure considerable
savings in computational costs as compared to the computationally intensive 3D-
EM simulation while maintaining the accuracy of the fine model.
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1 Introduction

Over the years, several numerical and analytical methods that employ detailed
electromagnetic models of active/passive components have been developed for
designing antennas. However, these methods come with their own set of limitations
such as high computational cost and memory requirements. To overcome these
challenges, artificial neural network (ANN) has been used as efficient alternative
to conventional methods in RF and microwave modeling [23]. Several studies have
been carried out for designing antennas using ANN. In the context of reconfigurable
antennas, neural network was recently used as an optimization technique to activate
the switches in order to realize a given reconfiguration state (e.g., resonating at
certain frequency bands) [5, 10].

ANN has been extensively preferred as a modeling technique to obtain a surro-
gate model instead of a fine model which has high computational burden. Surrogate
based modeling [20] is required to overcome this computational burden of the fine
model. Surrogate based models can be fundamentally developed in two ways. First
way only requires input or output mapping without any change in the computa-
tionally cheap coarse model. Space mapping based modeling [3, 9, 14, 16–18] is
developed considering this approach. Second way is based on updating the coarse
model during modeling process for the coarse model. ANN is very convenient to
obtain this kind of coarse model.

ANN provides an efficient strategy to solve modeling and optimization problems
which are essential in engineering design where only input–output data are available
instead of mathematical formulations [4, 7, 11, 23, 24]. ANN modeling is generally
used to construct a mapping from the input to the output depending on the data
obtained from detailed physical/EM simulation models or measurements (fine
model) and generate approximate results depending on some tunable parameters
such as training set, topological structure, and complexity of the fine model.

Since ANN technique constitutes input–output mapping highly depending on the
training set, when the points outside of the training range (extrapolation) are used as
inputs for the final model after training process, responses of the model are probably
unsatisfactory compared to the points inside of the training set (interpolation). ANN
and the existing knowledge about the fine model should be combined in the same
modeling process in order to reduce complexity of the fine model, while improving
extrapolation performance or lowering data requirements for training process.

In some cases, modeling involves numerous training data to satisfy specific
design purposes such as good accuracy, better extrapolation, and less computational
burden. However training process takes longer time and modeling accuracy cannot
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be good enough with respect to design purposes. To overcome this problem, knowl-
edge based ANN (KBANN) techniques emerged to generate an efficient model.
Knowledge based modeling techniques have been developed to embed existing
knowledge into the conventional ANN modeling [6, 14, 15, 19, 23]. Knowledge
based models utilize less training data as compared to the conventional ANN. The
knowledge provides coarse information for modeling and ANN completes rest of
the information using less training data. This modeling approach provides more
accuracy and better extrapolation performance than ANN models and offers less
computational burden compared to the detailed physical/EM simulation models.

Knowledge based models are applied to reconfigurable 5-fingers microstrip patch
antenna using ANNs in this chapter. Source difference (SD), prior knowledge
input (PKI), and prior knowledge input with difference (PKI-D) [12, 14, 15, 19]
methods are considered as knowledge based neural networks. Employing fine and
coarse models in order to train the networks enables to develop fast and accurate
EM-ANN models. The developed antenna has four modes of operation, which
are controlled by two PIN diode switches with ON/OFF states, and it resonates
at multiple frequencies between 1 and 7 GHz. The antenna has several attractive
features such as reconfigurability, small size, and low cost. This example handles
the increasing requests for the continuing application of ANN in the reconfigurable
microstrip antenna design: reduction of model development cost and improving the
accuracy.

Conventional ANN modeling and knowledge based modeling techniques will
be presented in Section 2 and 3. Design of reconfigurable 5-fingers microstrip
patch antenna will be presented in Section 4. Three different cases such as ON–
ON, ON–OFF, and OFF–OFF will be handled with three training sets which
have different number of samples in Section 4. Simulation results demonstrate
considerable savings in computational costs as compared to the 3D-EM simulation
results obtained by CST while maintaining the same level of accuracy as the 3D-EM
simulation.

2 Conventional ANN Modeling Concept

ANN has been used as an important technique in engineering modeling and
optimization. ANN has been widely preferred for modeling purposes in many
disciplines such as function approximation, pattern recognition, signal processing,
microwave design, and so on [14, 23]. The main reason for ANN being so popular
among other modeling techniques is that ANN needs only input–output information
obtained from the detailed physical/EM simulation models. ANN usually involves
some necessary steps during training such as scaling, initialization of weight
coefficients, calculating error which is used for updating weight coefficients. The
main purpose of the training process is to reduce the error value as given in Fig. 1,
and to increase the generalization capability of the ANN model. Weight coefficients
can be obtained by the optimization process defined as
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Fig. 1 The training process
(updating weight coefficients
in terms of error values) and
the final model of the
conventional ANN technique
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where w indicates weight coefficient of the ANN model and N indicates the number
of training data. i represents which training data is evaluated by the training process.
The error term in (1) can be defined as
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where ffine and fANN indicate the fine model and the ANN model responses,
respectively. xf indicates input of the problem. After the training process of the
ANN model, the final response of the ANN model can be given by

YANN D fANN
�

xf
�

: (3)

Since generalization of ANN is mostly determined by training data set, after the
training process the ANN model can generate response in terms of this data set.
Extrapolation data are selected differently than training data that’s why ANN
response will not be highly accurate as interpolation data. The problem specific
knowledge based on experience with respect to the engineering problem is required
to reduce the data dependency of the conventional ANN.

3 Fundamentals of Knowledge Based Modeling Technique

In engineering design problems, an accurate model for a wide application interval
can be obtained by a detailed physical/EM simulation model but it is highly
nonlinear and complex, so it is called fine model that has computationally intensive
mathematical expressions. In contrast, a less accurate and less computationally
intensive model can be utilized instead of the fine model for modeling and
optimization purposes, so it is called coarse model that has computationally less
complex mathematical expressions than the fine model.

Surrogate based modeling and optimization has been developed to dispose the
computational burden of the fine model exploiting a coarse model. In design
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optimization, the coarse model is used for the optimization process to find optimum
design parameters satisfying the design purpose. But the convergence of the
optimization process is directly effected by the accuracy of the coarse model.
When the coarse model generates quite similar response compared to the fine model
response, convergence is probably ensured during surrogate based optimization
process.

The knowledge based ANN (KBANN) has emerged to fulfill the requirement
for a more accurate model generation than the conventional ANN. The KBANN
techniques can create new model exploiting coarse model and this new model can
perform better accuracy and improve the generalization capability for interpolation
and extrapolation data. The key idea behind the success of the KBANN techniques
is that the more accuracy that is needed the more knowledge from the problem space
has to be obtained by the coarse model. Another way to overcome the need for more
knowledge instead of using the coarse model is to have more training data which
requires more effort for data generation.

3.1 Source Difference Method

The source difference method [21, 22] is one of the earliest methods utilizing the
knowledge based concept. The target response of the source difference method is
the difference between the fine and coarse models (existing approximate model)
responses. The coarse model imposes general knowledge behavior of the fine model,
thus extrapolation performance and generalization capability of the difference
method increase while the number of training data set decreases. In Fig. 2, training
phase and final model of SD method are denoted as the dotted line and the bold box,
respectively. The training process of ANN during SD modeling can be defined as
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YANN
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ffine
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Fig. 2 The training process (updating weight coefficients in terms of error values) and the final
model of SD technique embedded the coarse model as the difference between fine and coarse
outputs



190 M. Simsek and A. Aoad

w� D arg min
w

�
�
� � � � e.i/

T � � �
�
�
� i D 1; 2; : : : ;N: (4)

The error term in (4) can be defined as

e.i/ D

0

B
B
@

ffine

�

x.i/f

�

� Y.i/
coarse

„ ƒ‚ …

Yd

1

C
C
A

� fANN

�

x.i/f

�

(5)

where Ycoarse indicates the coarse model response and Yd indicates the difference
between the fine model and the coarse model responses. After the training process
of the SD model, the final response of the SD model can be given by

YSD D fANN
�

xf
� C Ycoarse: (6)

The complexity of ANN can be reduced by the coarse model due to Yd. Therefore
the SD model which is trained by less training data can provide similar accuracy
obtained by the ANN model.

3.2 Prior Knowledge Input Method

One of the knowledge based techniques is PKI which requires coarse model
response as an extra input besides other inputs that belong to the modeling problem
[19, 22]. Since extra inputs which contain extra knowledge other than model inputs
enables complexity reduction for the modeling problem. ANN can be formed easily
to generate a more accurate response. The training process of ANN during PKI
modeling can be defined as

w� D arg min
w
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The error term in (7) can be defined as
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After the training process of the PKI model, the final response of the PKI model
YPKI can be given by

YPKI D fANN
�

xf ;Ycoarse
�

(9)
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Fig. 3 The training process (updating weight coefficients in terms of error values) and the final
model of PKI technique embedded the coarse model as an extra inputs

where Ycoarse is used for extra input to the ANN model, hence the accuracy of the
PKI model can increase higher than conventional ANN modeling. The training
phase and the final model of the PKI are denoted as the dotted line and the bold
box in Fig. 3, respectively.

3.3 Prior Knowledge Input with Difference Method

PKI-D as shown in Fig. 4 is developed [13, 14, 19] to exploit the advantage of
utilizing the coarse model twice. PKI-D combines extra input property of PKI
and learning the output difference Yd calculated as the difference of fine Yfine and
coarse Ycoarse models in difference method [19]. ANN forms nonlinear mapping
from extended input space with coarse model response to difference between fine
and coarse model responses. During the training process, weight coefficients are
updated by

w� D arg min
w
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Fig. 4 The training process (updating weight coefficients in terms of error values) and the final
model of PKI-D technique embedded the coarse model two times as the extra input and as the
difference between fine and coarse outputs

After training is completed, the final model response is ready for the test purpose as
follows

YPKI�D D fANN
�

xf ;Ycoarse
� C Ycoarse (12)

where Ycoarse is used for extra input to the ANN model and also used for obtaining
the difference Yd, hence the accuracy of the PKI-D model can increase higher
than conventional ANN modeling due to using this knowledge twice and PKI-D
generally provides better accuracy than even other KBANN methods. The training
phase and the final model of PKI-D are denoted as the dotted line and the bold box
in Fig. 4, respectively.

4 Reconfigurable 5-Fingers Shaped Microstrip
Patch Antenna

The Reconfigurable 5-Fingers Shaped Microstrip Patch Antenna (R5FSMPA) [2]
is used to perform efficiency of the knowledge based modeling through its three
configurations such as ON–ON, ON–OFF, and OFF–OFF states. Since ON–OFF
and OFF–ON generate same result, only ON–OFF state is considered. Design
parameters of R5FSMPA which are indicated in Fig. 5 are L1, L2, and L3 which
represent the length of the radiating patches and W1, W2 which represent the width
of the radiating patches and W3 which represents the unfilled space that includes the
two PIN diodes (D1 and D2) [1]. The feeding coaxial conductor is centered in the
middle of L3 with a radius of 0.065 cm. Two different resistors (RD1 and RD2) are
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Fig. 5 Physical parameters
of R5FSMPA

Table 1 Parameters of reconfigurable 5-fingers shaped microstrip patch antenna (r5fsmpa) and
data sets in terms of number of samples

Training data set Number of samples
Type of parameters Input parameters Minimum Maximum Set-1 Set-2 Set-3

Physical geometry L1 (cm) 1:2825 1:4175 3 4 5

L2 (cm) 0:7125 0:7875 3 4 5

L3 (cm) 0:9975 1:1025 3 4 5

Diode states

(ON or OFF)

RD1 5 (ON) 1000 (OFF)
3 3 3

RD2 5 (ON) 1000 (OFF)

Frequency sweep f 1 GHz 7 GHz 200 200 200

utilized with 1000 ohm and 5 ohm values for ON and OFF states of the PIN diodes
[8]. Right and left patches of R5FSMPA can be activated through ON and OFF states
hence three different combinations can be obtained by two diodes. This section is
divided into three parts in terms of the training data set. Each training set has three
geometrical parameters, two resistors of diode (ON and OFF states)and frequency
as input parameters. Return loss S11 as output response is obtained by CST 3D-EM
simulations. Physical dimensions of R5FSMPA are given in Table 1.

Input–output relationships of R5FSMPA are shown in Fig. 6 and S11 (return loss)
is obtained by 3D-EM simulation of CST in terms of 200 number of frequency
points between 1 GHz and 7 GHz. The relationship between frequency and S11 is
indicated by Fig. 7. Three different states of R5FSMPA are modeled via one ANN
structure while three states were modeled by three ANN structures in the previous
study [2].

In order to demonstrate the efficiency of knowledge based methods, three
different data sets can be considered. Selection of data sets is summarized in Table 2
including three data sets. Each data set is utilized as training samples for two
different number of neurons in ANN hidden layers. Therefore, all methods can be
analyzed in terms of the fundamental ANN properties such as the number of data
and the number of neurons to reveal the correlation between accuracy and other
ANN parameters.

ANN structure for the conventional ANN is realized by feed-forward multi-
layer perceptron (MLP) function in MATLAB Toolbox which utilizes Levenberg-
Marquard algorithm and such optimization parameters are: two hidden layer
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Fig. 6 Input–output relationship of the fine model for R5FSMPA

Fig. 7 Frequency-S11 relationship of the fine model for R5FSMPA

Table 2 Number of samples for three training data sets and test data

Antenna Frequency 1–7
Data type Geometry L1 L2 L3 switching states [GHz] Total samples

Training Set-1 3*3*3 = 27 3 200 3*3*3*3*200 = 16,200

Set-2 4*4*4 = 64 3 200 4*4*4*3*200 = 38,400

Set-3 5*5*5 = 125 3 200 5*5*5*3*200 = 75,000

Test 3 3 200 3*3*200 = 1800

with different number of neurons, learning rate = 0:1, momentum = 0:2, and
regularization = 0:2. Two hidden layer is so suitable for highly nonlinear engineering
problem hence it is preferred to form required ANN structure for the knowledge
based ANN and conventional ANN methods.

Error calculation is an important part of the comparison. Normalized test error
can be formulated by

Normalized Error D jYFine � YModelj
YFine

(13)
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where YFine and YModel indicate the fine model response and the model response
which is compared with the fine model response. Normalized mean error can be
formulated by

Normalized Mean Error D 1

N
�

NX

iD1

jYFine;i � YModel;ij
YFine;i

(14)

where i indicates the number of test samples. Normalized max error can be
formulated by

Normalized Max Error D max
i

� jYFine;i � YModel;ij
YFine;i

�

: (15)

After 20 runs are completed, normalized mean value of S11 is calculated for each
test sample. Normalized mean and maximum errors are calculated using (14) and
(15) in terms of S11 obtained from 20 runs.

4.1 Data Set � 1: 16;200 Samples

In this part, three states of the reconfigurable patch antenna are considered in terms
of the accuracy and time consumption for data set � 1 which consists of three
parameters, three states (ON–ON, ON–OFF, and OFF–OFF) and 200 frequency
points. The total number of data samples is 16; 200 obtained by three samples
selected from the training data interval for three physical geometries which are
multiplied by three states and 200 frequencies. Test data which includes nine
different geometry is selected from the training interval but each test geometry
is different than the training geometry. The test samples consist of three different
geometries for three states. Test performance can be demonstrated by one geometry
for each states of reconfigurable antenna. Conventional ANN and knowledge based
ANN methods run 20 times and average responses of test samples for EM, ANN,
and PKI-D are given in Fig. 8 for three different geometries. In addition, normalized
test errors of PKI-D and the conventional ANN are given in Fig. 9 for three different
geometries.

Accuracy of all methods are summarized in Table 3 for two different ANN
structure such as (30–30) and (30–20). Time consumptions of generating data set
and the training phase for all methods are given in Table 4 for ANN structure with
(30–20) neurons. Since the fine model is computationally complex, it requires more
computational time than the coarse model. The coarse model improves the accuracy
of all knowledge based methods compared to conventional ANN. The coarse model
is used for twice during training of PKI-D, which reduces the complexity of
modeling problem. Therefore, time consumption of PKI-D can be less than other
knowledge based methods such as SD and PKI.
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Fig. 8 MLP with two hidden layers (30–30 neurons) trained by 16,200 samples to show EM,
PKI-D, and conventional ANN results. (a) Magnitude of S11 for Geometry � 3 (ON–ON case)
(b) Magnitude of S11 for Geometry � 6 (ON–OFF case) (c) Magnitude of S11 for Geometry � 9

(OFF–OFF case)
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Fig. 9 MLP with two hidden layers (30–30 neurons) trained by 16,200 samples to show EM,
PKI-D, and conventional ANN results. (a) Normalized test error for Geometry � 3 (ON–ON
case) (b) Normalized test error for Geometry � 6 (ON–OFF case) (c) Normalized test error for
Geometry � 9 (OFF–OFF case)
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Table 3 Normalized mean errors at 16,200 data samples for all switching states

Tow hidden layers Error Coarse (Training) Coarse (Test) ANN SD PKI PKI-D

30–30 Mean 0:0485 0:0479 0:3739 0:0628 0:0748 0:0453

Max 0:4954 0:4719 3:1766 0:4647 1:1451 0:3056

30–20 Mean 0:0485 0:0479 0:3086 0:0630 0:0514 0:0433

Max 0:4954 0:4719 1:7161 0:4683 0:3423 0:3008

Table 4 Time consumption results of all methods trained by 16,200 data samples for all switching
states

ANN SD PKI PKI-D

Fine 1 h, 11 m 1 h, 11 m 1 h, 11 m 1 h, 11 m

Coarse – 0 h, 47 m 0 h, 47 m 0 h, 47 m

Max Training 0.462 m 0.217 m 0.220 m 0.203 m

Total 1 h, 11.462 m 1 h, 58.217 m 1 h, 58.220 m 1 h, 58.203 m

4.2 Data Set � 2: 38; 400 Samples

In this part, three states of the reconfigurable patch antenna are considered in terms
of the accuracy and time consumption for data set � 2 which consists of three
parameters, three states (ON–ON, ON–OFF, and OFF–OFF) and 200 frequency
points. The total number of data samples is 34; 800 obtained by four samples
selected from the training data interval for three physical geometries which are
multiplied by 3 states and 200 frequencies. The same test samples are used for
comparing set � 1 with set � 2. PKI is utilized instead of PKI-D to demonstrate
the general performance of knowledge based methods. Conventional ANN and
knowledge based ANN methods run 20 times and average responses of test samples
for EM, ANN, and PKI are given in Fig. 10 for three different geometries. In
addition, normalized test errors of PKI and conventional ANN are given in Fig. 11
for three different geometries.

Accuracy of all methods are summarized in Table 5 for two different ANN
structure such as (30–30) and (40–30). Time consumptions of generating data set
and the training phase for all methods are given in Table 6 for ANN structure
with (40–30) neurons. Since extra knowledge obtained by the coarse model reduces
the complexity of modeling problem, knowledge based methods require less time
for the training process of ANN structure. Time efficiency in training process of
knowledge based methods can be realized in Table 6.
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Fig. 10 MLP with two hidden layers (40–30 neurons) trained by 38,400 samples to show EM,
PKI, and conventional ANN results. (a) Magnitude of S11 for Geometry � 3 (ON–ON case) (b)
Magnitude of S11 for Geometry �6 (ON–OFF case) (c) Magnitude of S11 for Geometry �9 (OFF–
OFF case)
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Fig. 11 MLP with two hidden layers (40–30 neurons) trained by 38,400 samples to show EM,
PKI, and conventional ANN results. (a) Normalized test error for Geometry�3 (ON–ON case) (b)
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Table 5 Normalized mean errors at 38,400 data samples for all switching states

Tow hidden layers Error Coarse (Training) Coarse (Test) ANN SD PKI PKI-D

30–30 Mean 0:0480 0:0479 0:2338 0:0606 0:0475 0:0409

Max 0:5288 0:4719 1:3846 0:4685 0:3787 0:2645

40–30 Mean 0:0480 0:0479 0:2126 0:0635 0:0428 0:0403

Max 0:5288 0:4719 1:4164 0:4676 0:3269 0:2747

Table 6 Time consumption results of all methods trained by 38,400 data samples for all switching
states

ANN SD PKI PKI-D

Fine 2 h, 44 m 2 h, 44 m 2 h, 44 m 2 h, 44 m

Coarse – 2 h, 34 m 2 h, 34 m 2 h, 34 m

Max training 2.679 m 1.028 m 1.116 m 1.016 m

Total 2 h, 46.679 m 5 h, 19.028 m 5 h, 19.116 m 5 h, 19.016 m

4.3 Data Set � 3: 75; 000 Samples

In this part, three states of the reconfigurable patch antenna are considered in terms
of the accuracy and time consumption for data set � 3 which consists of three
parameters, three states (ON–ON, ON–OFF, and OFF–OFF) and 200 frequency
points. The total number of data samples is 75; 000 obtained by five samples selected
from training data interval for three physical geometries which are multiplied by 3

states and 200 frequencies. The same test data is used for comparing set � 1 and
set � 2 with set � 3. SD is utilized instead of PKI to demonstrate the general
performance of knowledge based methods. Conventional ANN and knowledge
based ANN methods run 20 times and average responses of test samples for EM,
ANN, and SD are given in Fig. 12 for three different geometries. In addition,
normalized test errors of SD and conventional ANN are given in Fig. 13 for three
different geometries.

Accuracy of all methods are summarized in Table 7 for two different ANN
structure such as (45–45) and (50–40). Time consumptions of generating data set
and the training phase for all methods are given in Table 8 for ANN structure with
(50–40) neurons. Time efficiency in training process of knowledge based methods
can be realized in Table 8.

Knowledge based methods generally improve the accuracy of ANN model using
even less training data. This improvement is based on extra knowledge about input–
output relationship of the modeling problem. This extra knowledge enables to
reduce the complexity of the problem. Thus, more accurate results can be obtained
by knowledge based methods which utilize less data and fast modeling process.
Knowledge based methods provide more accurate results for 16; 200 samples
compared to 38; 400 samples for conventional ANN. The performance of knowledge
based methods with less training data can be realized in Table 9. Knowledge based
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Fig. 12 MLP with two hidden layers (50–40 neurons) trained by 75,000 samples to show EM,
SD, and conventional ANN results. (a) Magnitude of S11 for Geometry � 3 (ON–ON case) (b)
Magnitude of S11 for Geometry �6 (ON–OFF case) (c) Magnitude of S11 for Geometry �9 (OFF–
OFF case)
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Fig. 13 MLP with two hidden layers (50–40 neurons) trained by 75,000 samples to show EM,
SD, and conventional ANN results. (a) Normalized test error for Geometry � 3 (ON–ON case) (b)
Normalized test error for Geometry�6 (ON–OFF case) (c) Normalized test error for Geometry�9

(OFF–OFF case)
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Table 7 Normalized mean errors at 75,000 data samples for all switching states

Tow hidden layers Error Coarse (Training) Coarse (Test) ANN SD PKI PKI-D

45–45 Mean 0:0475 0:0479 0:1903 0:0592 0:0409 0:0382

Max 0:6593 0:4719 1:4485 0:4690 0:3682 0:3271

50–40 Mean 0:0475 0:0479 0:2076 0:0583 0:0478 0:0397

Max 0:6593 0:4719 2:0250 0:4684 0:3265 0:3180

Table 8 Time consumption results of all methods trained by 75,000 data samples for all switching
states

ANN SD PKI PKI-D

Fine 4 h, 22 m 4 h, 22 m 4 h, 22 m 4 h, 22 m

Coarse – 3 h, 49 m 3 h, 49 m 3 h, 49 m

Max training 3.718 m 1.620 m 1.508 m 2.229 m

Total 4 h, 25.718 m 8 h, 12.620 m 8 h, 12.508 m 8 h, 13.229 m

Table 9 The accuracy comparison of all methods with different data samples and time
consumption results for all switching states

Methods Data samples Tow hidden layers Mean error Max error Time consumption

SD 16,200 30–30 0.0628 0.4647 1 h, 58.217 m

PKI 0.0748 1.1451 1 h, 58.220 m

PKI-D 0.0453 0.3056 1 h, 58.203 m

ANN 38,400 30–30 0.2338 1.3846 2 h, 46.679 m

ANN 75,000 50–40 0.2076 2.0250 4 h, 25.718 m

methods provide more accurate result for less training data, hence they are so
suitable to embed existing knowledge into modeling step of the engineering design
process.

5 Conclusion

Knowledge based modeling is applied to engineering modeling relevant to reconfig-
urable 5-fingers shaped microstrip patch antenna. The aim of this modeling problem
is to obtain S11 of antenna design parameters corresponding to the frequency.
Number of data and number of neurons directly effect ANN performance hence
both of them are utilized for the analysis and comparison between knowledge based
models and the conventional ANN model. Knowledge based methods with less data
are used in order to obtain more accurate results compared to conventional ANN
with more data. In addition, knowledge based methods require less time consump-
tion and even less training data through the coarse model efficiency. Knowledge
based methods should be selected for the engineering design problem to embed
the existing knowledge into the design process. Reconfigurable 5-fingers shaped
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microstrip patch antenna is selected to demonstrate the efficiency of knowledge
based methods which are easily applied to the modeling problem in the engineering
design process.
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