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Abstract The goal of aerodynamic design for airfoils and wings is to improve the
performance of the lifting surfaces, e.g., by minimizing the drag. We consider here
two approaches, the classical inverse design approach that finds the surface which
produces desired pressure distributions, and the direct mathematical optimization
based on local parameter searches, that is usually enabled by fast gradient compu-
tation, for example, by the adjoint method. The hybrid approach is to combine both
of them. Each approach has its own pros and cons. In this chapter the approaches
are assessed by application to the design of transonic RAE2822 airfoil and ONERA
M6 wing.
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1 Introduction

Aircraft design activities are concerned with the determination of designs that meet a
priori specified performance features of the vehicle. The specified design objectives
are traditionally met through an iterative process of analyses, evaluations, and
modifications of the design. In this sequential trial-and-error procedure, the designer
must rely on experience, intuition, and ingenuity for every re-design, and this makes
aircraft design an exciting creative discipline. In practice, however, designers are
often forced to depend on tried concepts to cut a path through an incomprehensible
number of feasible designs, historically characterizing the process as a slow gradual
improvement of existing types of concepts.

The task of designing an aircraft is among the most complex in engineering.
The complexity can be simplified by sequential decision that divides the design
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into the conceptual design, preliminary design, and the detailed design. While
the greatest freedom to exploit potential trade-offs between aircraft subsystems
for the optimization of the design occurs earliest in the design stage, since the
decisions taken during the earlier stage commit up to 80 % of the life-cycle costs,
although, of course, the actual costs incurred appear on the books much later.
Mistakes here must be avoided because they are very costly to remedy later and
delay acceptance. Matters involving the interaction of aerodynamics with structures
and controls are particularly prone to errors due to the low fidelity of the analysis
methods traditionally used. If these complicated problems are not resolved in an
integrated sense, the sub-optimal design might be led to in a global sense and
become “myoptic.”

1.1 MDO and Aerodynamic Design Approaches

Multidisciplinary Design Optimization, or MDO [1, 2], combines analysis and
optimizations in several individual disciplines with those of the entire system
concurrently through formal mathematical processes. It puts into place a formal
integrated system design process for better product quality by effectively exploiting
the synergism of interdisciplinary couplings. MDO, as a discipline, itself comprises
of many areas of research. It is “a methodology for design of complex engineering
systems that are governed by mutually interacting physical phenomena and made up
of distinct interacting subsystems (suitable for systems for which) in their design,
everything influences everything else” [1].

One of the significant factors holding back the widespread adoption of MDO
is its computational cost when the number of design variables becomes very large
(the curse of dimensionality). The use of high-fidelity models can raise the cost
from merely expensive to unbearable. Parallel computing helps, but cannot over-
come computational inefficiency. The revolution in computing speed and memory
capacity of digital computers together with persistent systematization of design
methodology has led to tools for computational aircraft design (e.g., MDO) that aim
at automation of the conventional design process through integration of numerical
methods for analysis, sensitivity analysis and mathematical programming so that the
best design in terms of a pre-defined criterion can be determined. Traditionally the
process of selecting design variations has been carried out by trial-and-error, relying
on the intuition and experience of the designer, the engineer in the loop. Increasing
the level of automation by computational means has reduced, but not eliminated, the
engineer-in-the-loop activities. The overall success of the design process depends
heavily not only on reliability and accuracy of the computational methods but also
on how well the designer has set his goals.

1.1.1 Aerodynamic Design: Three Approaches from a User Perspective

Optimization of aircraft wings is not new. The thing that makes wings so hard to
design is that their aerodynamics and structure are not just interdependent, they are
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variable. Computational aerodynamic design, one of the disciplinary subsets of the
aircraft design process, aims directly at determining the geometrical shape of the
aircraft hull that produces certain specified aerodynamic properties, with or without
constraints on the geometry. Usually termed aerodynamic shape optimization (ASO)
[3–5], this is the subject of this chapter. ASO is a very attractive technology because
it replaces workable designs with optimal ones, and cuts down design times, thus
enabling faster responses to the economic pressure of the marketplace.

For wing design there are generally three approaches: the direct optimization
design (mathematics-skill dependent) [6], the inverse design (engineering-skill
dependent) [5, 7–9], and the hybrid approach which combines both of them.
The direct approach requires the user to define the cost function (usually the
drag) along with the constraints, and then seeks the solution to the constrained
optimization problem by mathematical algorithms for non-linear optimization.
When the algorithm involves gradient searches, the sensitivities that indicate how
to change the geometry in order to reduce the cost function can be computed also
for very many design parameters by solution of an adjoint to the flow problem.
This approach is the most popular way of doing optimization nowadays as the
computer capacities are continuously increasing. However, it is always trapped in
a local optimum due to the limitation of the algorithms, and it may overexploit the
flow localities. The second approach works by first finding a well-posited pressure
distribution that fulfills the design requirements and then determining a geometry
that yields this target pressure. One big issue of this approach is that it needs to
formulate a good “target” pressure distribution first, which requires engineer in the
loop. The last method can employ both approaches under user control, but very
manual. One example is LINDOP optimizer [10, 11] in the MSES [12] package.

2 Introduction to Direct Optimization, Inverse Design,
and Hybrid Approach

2.1 Direct Mathematical Optimization

A straightforward way to search for an optimal design is to construct a non-linear
constrained optimization problem,

min W I D I.w; X/

subject to W
CL.w; X/ � C0

L;

Cm.w; X/ D C0
m;

gj.X�/ � 0; 1 � j � m;

(1)
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where X is the mesh, X� is the surface of the geometry, w is the flow-field variables,
and gj are the geometric constrains. The cost function I is selected by the designer,
which might be the drag coefficient I D CD, the drag to lift ratio I D CD

CL
, or the

pressure difference I D R
.p � pd/2d˝ if an inverse design problem is being posed.

Numerous optimization algorithms [6] are available for attempted solution of the
mathematical problem. We have the mesh generation algorithms

M.X; X�/ D 0 (2)

and the surface parametrization algorithm S

S.X�; `/ D 0 (3)

where ` are the design variables which determine the surface X� .
The change in I can be estimated by a small variation ı` to the parameter

vector and recalculating the flow to obtain the change in I, thus approximating the
directional derivative,

I.` C ı`/ D I.`/ C dI

d`
� ı` C O.jjı`jj2/: (4)

Most optimization algorithms employ a line search along search direction d,

`nC1 D `n � �d (5)

with � a step size parameter. The search direction d is composed of gradients
dI
d`

; quasi-Newton methods also compute approximations to the Hessian matrix of

second derivatives, Hij D d2I
d`id`j

, by differences of gradients in an updating scheme.
When the parameter space is high-dimensional, this approach using the gradient
itself entails high computational cost.

2.1.1 Gradients by Adjoint Equations

The adjoint method was originally applied to aerodynamics by Jameson [13]
adapting ideas originally formulated by Lions [14] on optimal control of systems
governed by partial differential equations. The adjoint equations can be conveniently
formulated in a framework to calculate the sensitivity of a given objective function
I to parameters ` which control the geometry. The derivation is easy when R, etc.
below are interpreted as the finite dimensional discretization of the flow equations,
objective functions, etc. The residual R of the governing equations for a given flight
state(s) which expresses the dependence of flow variables w on the mesh X is:

R.w; X/ D 0 (6)



Assessment of Inverse and Direct Methods for Airfoil and Wing Design 79

Thus a small change in X produces a small change ıI to the cost function,

ıI D @I

@w
ıw C @I

@X
ıX (7)

and a small change ıw to the flow w,

ıR D @R

@w
ıw C @R

@X
ıR D 0: (8)

The mesh deformation ıX is calculated from the corresponding displacements of
the nodes that define the surface of the geometry X� by parametrization S.

Equation (8) is multiplied by a Lagrange multiplier vector ‰, subtracted from
Eq. (7) and the result re-arranged,

ıI D .
@I

@w
� ‰T @R

@w
/ıw C .

ıIT

ıX
� ‰T @R

@X
/ıX: (9)

Choosing ‰ so that the first term on the right vanishes gives

Œ
@R

@w
�T ‰ D .

@I

@w
/T : (10)

This is a linear PDE known as the adjoint equation. There are two main ways to
characterize the adjoint approach, as a discrete method, in which the discretized
governing equations are used to derive the adjoint equations, and as a continuous
method, in which the adjoint equations are derived from the analytical PDEs [15].
The discrete and continuous approaches are found to have relative advantages and
disadvantages over each other [16]. The discrete adjoint equations derived directly
from the discrete flow equations become very complicated when the flow equations
are discretized with higher order schemes using flux limiters. On the other hand it
can provide an exact gradient of the inexact cost function which results from the
discretization of the flow equations. In theory a discrete method can handle PDEs
of arbitrary complexity without significant mathematical development and can treat
arbitrary functionals I. In comparison, the continuous adjoint requires significant
theoretical development but is better connected to the underlying physics and can
be solved by a method independent of the flow solution scheme. However, it is more
limited in the types of functionals and governing equations that can be treated, and
the gradient calculated will differ more from that found by finite differencing. But
as the mesh is refined, all three gradients, discrete, continuous, and finite difference,
converge to the same limit.

A few words are needed here to explain why we can consider this (the
discretization of) a linear PDE known as the adjoint to the flow equations: we see
no derivatives operating on � . The key here is the scalar product: for the continuous
PDE formulation, an integral over the domain. The trick is to perform suitable
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integrations by part in the integral to move derivatives from the primary variables
(the flow variables) to the dual—the Lagrange parameters. Notice also that it is the
linearized flow equation that appears. This implies that the adjoint of the Euler flow
equations is very similar to the linearized Euler equations—they are almost self-
adjoint, which in turn implies that the adjoint equation can be solved by much the
same procedures as the primal (flow equations).

The total perturbation ıI now depends only on the change of the mesh ıX,
but is independent of the flow solution perturbation ıw. Unlike the gradient
calculation by finite difference, for each optimization step, the gradient of I with
respect to an arbitrary number of design variables (usually a large amount) can
be determined without the need for additional flow-field evaluations. To solve the
adjoint equation (10), it costs approximately as much as a flow solution. Note,
however, that the boundary conditions in the adjoint PDE are usually chosen to
eliminate boundary integral contributions rather than efficient expulsion of waves
through the boundaries and this may hamper convergence of the numerical solution.
Finite difference methods can also be used to find these sensitivities but are in
general significantly more expensive, requiring at least one additional flow solution
per parameter.

Examples shown here of direct optimization design are computed by the SU2
[15] software suite from Stanford University: an open-source, integrated analysis
and design tool for solving complex, multi-disciplinary problems on unstructured
computational grids. The built-in optimizer is a Sequential Least SQuares Program-
ming (SLSQP) algorithm [6] from the SciPy Python scientific library. The gradient
is calculated by continuous adjoint equations of the flow governing equations
[15, 17]. SU2 is in continued development. Most examples pertain to inviscid flow
but also RANS flow models with the Spalart–Allmaras and the Menter SST k-!
turbulence models can be treated.

2.2 Inverse Design

Inverse design is a classical way of designing airfoils and wings, which was popular
several decades ago before the advent of high performance computing as a tool in
aircraft design.1 The method consists of predictor and corrector processes which
require engineering know-how at the very beginning of the design stage. The
predictor/corrector design approach systematically modifies a given geometry based
on direct solutions for the flow around the airfoils or wings. The calculated pressure
distribution is compared with a prescribed target distribution and the resulting
differences are used by a geometry “corrector” module to modify the current
geometry to a shape more likely to generate the desired pressure. The corrector
module may be an optimization procedure such as LINDOP [10–12] described

1This section is adapted from [5, 18].
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below, or a design algorithm that directly relates pressure changes to geometry
changes. Examples of the latter type include Barger and Brooks [9] methods
for designing super-critical airfoils. The method was developed and coupled with
several two- and three-dimensional transonic codes by Campbell [7].

Dulikravich [19] solved a similar 3D problem using a Fourier series method.
Later Campbell [20] and Obayashi [21] raised some ideas on setting up the target
pressure distribution and reasonable constraints for inverse design problem.

Inverse design approach has a long history but it is not out of date. Dealing
with the surface curvatures is robust, and the aerodynamicist sees more physical
properties of the wing. The approach was recently re-visited and improved by
German Aerospace Center (DLR) [22] with good results on laminar wing design.
Zhang developed the SCID toolbox with the resulting surface curvature [7, 20]
inverse design method. The flow chart of SCID inverse design is shown in Fig. 1.
It connects streamline curvatures on the wing surface with pressure changes to
iteratively modify an initial shape. It is combined with under-relaxation chosen

Fig. 1 Flow chart for wing inverse design using SCID algorithm, retrieved from [18]
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to help convergence, and smoothing procedures to ensure a smooth surface and
curvature. Examples shown here for inverse design are computed by SCID [18, 23].
In SCID the CFD code MSES [12] is used for airfoils and EDGE2 is used for wings.

2.2.1 Pressure–Curvature Relations

The relation is derived from the normal component of the momentum equation for
inviscid flow along the streamline on the wing surface as long as the flow is attached.
The steady Euler equations with es the unit vector along a streamline, so that the
velocity vector is u D Ues, U D juj,

UUses C U2 des

ds
C rp=� D 0 (11)

where s is the arc-length along the streamline. In the Darboux frame in Fig. 2, en and
et are the surface unit normal, and the second unit normal es � en to the streamline,
there holds

d2�

ds2
D des

ds
D cnen C cget (12)

where cn and cg are the normal and geodesic curvatures. The normal component of
the streamline Euler equation is:

0 C �U2cn C @p

@n
D 0 (13)

from which we can derive a relation between the curvature and the pressure
coefficient,

cn C Cp

2L.1 � Cp/
D 0

Fig. 2 Wing represented in
the Darboux frame

2www.foi.se/en/Customer--Partners/.../Edge1/Edge/.

www.foi.se/en/Customer--Partners/.../Edge1/Edge/
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where L is a length scale for the pressure gradient L � p�p1
@p=@n . Since L is unknown

and varies along the streamline, we introduce an inverse length scale coefficient F.
The relation used in the shape modification step is the proportionality between
changes in normal curvature and pressure coefficient, for unit chord-length, so
curvature becomes non-dimensional,

cn D F � Cp D d2�

ds2
� en � F � Cp: (14)

The F-coefficient was proposed by Barger and Brooks [9]. Campbell [7] suggests
the cn-dependence F D A.1 C cn

2/B for perturbations �Cn, �Cp, to produce

�cn D A.1 C cn
2/B�Cp (15)

where A and B are adjustable constants.
There remains to relate the surface normal curvature change to geometry

change itself. The surface analogue of the Frenet–Serret formulas for the surface
coordinates �.s/ along the streamline is

� ss D cnen C cget: (16)

For small change on the surface, it gives

��ss D �cnen C cn�en C �cget C cg�et (17)

where only the first term on the right-hand side is kept. Note that the last two terms
vanish for airfoils. Since only displacement normal to the surface will change the
surface, it makes sense to so restrict the geometry change, say

�� D h.s/en

and then the normal projection of Eq. (17) gives precisely

hss D �cn:

In the shape modification step A is chosen as large as possible without creating
divergence in the iteration. Reported values range from 0 to 0.5. Smaller values
give slow convergence, larger values may cause divergence. The correct coefficients
must be chosen as compromise between speed of convergence and robustness.
An adjustment algorithm is applied to select A and B according to the status of
convergence.
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2.2.2 Shape Modification of Streamline Sections

The following applies to airfoils but is also used in the wing design, with the
assumption of surface streamlines not deviating much from the surface traces of
the sections used to build the wing. With �cn from Eq. (15), the new shape y.s/ is
computed from the two-point boundary value problem

d2��

ds2
D coeff�Cpen; ��.s0; lower/ D �y.smax; upper/ D 0: (18)

The arc-length s starts from the trailing edge on the lower surface. The boundary
conditions are applied to ensure a sharp and closed trailing edge. The section
geometry is represented by point clouds � i D .x; z/, i D 1; 2; : : : ; N, N is the
number of total points of the airfoil.

2.3 Hybrid Design

This chapter describes a hybrid scheme which combines inverse design with
optimization of the aerodynamic shape based on the above as shown in Fig. 3. The
“hybrid” means we use mathematical optimization with gradients produced by the
adjoint technique or by finite differences in a loop together with inverse design that
integrates the streamline curvature to produce the shape associated with the target
pressure distribution to find the shape (right). One key point is that as the iteration
proceeds, the engineer, with some insight from the direct optimization, can modify
the current target pressure to guide the design process [7, 21, 23].

Fig. 3 The feedback design loop
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The target pressure distribution on the wing planform is constructed by consider-
ing the span loads, isobar patterns, etc. [24], as well as other best practice guidelines
provided by experience. Keeping the engineer in the loop emphasizes wing design
rather than accurate solution of a (possibly not-so-well formulated) mathematical
optimization task:

Engineer in loop to minimize drag by finding the best feasible target pressure
distribution, for which a feasible shape can be found by inverse design.

LINDOP [10, 11] is an external code apart from MSES [12] which is used
for airfoil optimization, it intelligently breaks down the evolution of design into
reasonably small number of optimization cycles and allows the engineer in the
design process during each cycle. MSES estimates the flow field by solving the Euler
equations in the internal flow field coupled to thin boundary layer equations in the
boundary layer [12, 25]. The overall equation system

R.wI ˛; AoA; M/ D 0 (19)

consists of the interior steady Euler equations, the boundary layer equations, and the
necessary coupling and boundary conditions. The flow field is solved by Newton-
based methods.

The optimization method used in LINDOP is also based on Newton iteration,
with gradients easily available from the (exact) Jacobians employed in the flow
solution. The designer can use the gradients to interactively try out various objective
functions I (e.g., aerodynamic forces CL, CD, CL

CD
) with respect to small perturbations

in design parameters ˛, and flow parameters AoA and M with almost no additional
cost. The Hessian matrix necessary for quasi-Newton optimization is approximated
by the BFGS updating scheme [6].

There are two types of optimization problems defined in LINDOP:

(I) Least-square problem (modal-inverse design): e.g., I D 1
2

R
.f .s/ � fspec.s//2ds,

where f .s/ is usually the pressure distribution.
(II) General optimization problem (direct design): e.g., I D CD, always with some

constraints, on, for example, lift, pitching moment, wing volume, or thickness,
etc.

Indeed, those two problems are the most common ones among many design cases.
The former one (2.3) is always solved by inverse design, if specified pressure
distributions (fspec.s/) are given. The latter one (2.3) is usually solved directly by
optimization. The following chapter shows how to solve those two problems using
hybrid design with MSES-LINDOP an exemplary tool. The designer is allowed to
generate design-parameter changes in many ways regarding to different problem
to be solved, it can be from direct keyboard inputs, or indirect posing & solving
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Fig. 4 LINDOP work flow, retrieved from Drela [11]

optimization problems [10]. The hybrid approach can be complicated but it is
particularly useful for complex design problems, for example, multi-element airfoils
with multi-point design [26].

Figure 4 spells out how LINDOP works. By specifying the target pressure
distribution the user can interactively work through the feedback graphics where
the flow solver and inverse solver are applied. The procedures require substantial
user intervention. The engineer is in the loop to lead the design towards the correct
direction in every small step, however it is also very manual and tedious.

3 Parametrization

There are many ways to parametrize a wing, to produce either the lofted wing
surface, or the set of surface mesh points. For example the wing surface can be lofted
through airfoil stacks (Fig. 5), or the geometry can be represented by modeling the
perturbations of the “baseline” shape [27]. The latter technique can also perturb
mesh points, or so-called mesh deformation [28]. This section shows several popular
parametrization methods used in the test cases, and discusses the mesh update
methods, namely, re-meshing and mesh deformation.

For the overall shape definition, mapping from surface mesh to volume mesh
is usually done by “re-meshing,” i.e. re-creation of the complete grid for each
shape to analyze. The generated grids will have well-formed cells, and usually
mesh generation takes only a small fraction of the flow solution time. This allows
loose coupling but also means that each flow solution must be done essentially from
scratch since the number of flow variables is different from the previous calculation.
However, if the CFD package supports interpolation between arbitrary grids it is
possible to obtain a good initial guess for the flow which can speed up the solution.
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Fig. 5 Airfoil stacks

In the deformation approach, only the coordinates of grid points change, so no
interpolation is necessary for initial guesses. A mesh deformation algorithm for
propagating the deformation of surfaces through the whole grid is needed. The
cheapest alternative is interpolation methods for arbitrary points, based on, e.g.,
radial basis functions or Kriging. Also PDE-based methods employing the equations
of elasticity or the Laplace equations are in use. However, these techniques are most
easily implemented closely coupled to the flow solver. The PDE methods provide
some guard against creation of bad computational cells. But although they deal
with deformations which are very small compared to wing dimensions, they can
be large compared to mesh cell sizes, e.g., at a sharp trailing edge when the twist is
changed.

3.1 Shape Definition

There are many ways to parameterize a wing, to produce either the lofted wing
surface, or the set of surface mesh points. For example, the wing surface can be
lofted through airfoil stacks, or the geometry can be represented by modeling the
perturbations of a “baseline” shape [27]. The latter technique can also perturb
off-surface mesh points, by so-called mesh deformation [28]. This section shows
popular parametrization methods used in the test cases, and discusses the mesh
update methods, namely, re-meshing and mesh deformation. Although the CAD-
free parametrization techniques have been proposed [29, 30], we believe that
the re-meshing technique has some advantages. Re-meshing is easy if a smooth
geometry is provided. A reliable and fast meshing tool is a key. SCID uses sumo
[31], a tool for rapid automatic Euler and RANS meshing. If re-meshing rather
than mesh deformation is applied in finite difference approximation of derivatives,
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changes to design variables cannot be too small, lest the unavoidable, random-
looking, mesh changes resulting from the detailed workings of the generation
algorithm hide the gradient information.

3.2 Airfoil Stacks and Re-Meshing

Airfoil sections are the most important building block of aerodynamic geom-
etry. Vassberg and Jameson [3] state that: “Airfoils are used to define wings,
pylons, nacelles, struts, winglets, features, horizontal stabilizers, verticals, pro-
pellers, turbomachinery blades and stators, cowls, blimps, sailboat sails, keels and
ballast-bulbs, cascades, helicopter rotors, fins, chines, strakes, vertical/horizontal-
axis wind turbines, flaps, frisbees, and boomerangs.” In most software systems for
aircraft shape definition, the defining stations are chordwise cuts. The wing surface
parametrization is decomposed into parameterization of n stations of airfoils. It is
customary for the first defining station to be at the symmetry plane (wing root),
and the last defining station to be at the wing’s theoretical tip. Each airfoil (defined
as scaled to leading edge at the origin to trailing edge at [1,0]) is rotated by an
incidence, translated to the defining station leading edge, then scaled to match the
projected planform chord. The wing surface is usually lofted by Bézier/Bspline
surfaces [32].

In SCID as well as many software systems for aircraft shape definition, the defin-
ing stations are spanwise cuts. The wing surface parametrization is decomposed into
parametrization of n stations of airfoils. The geometry is updated (and smoothed) in
every design cycle, then a re-meshing is carried out, as indicated in Fig. 1.

3.3 Airfoil Shape Definition

Some airfoil families are defined by a number of parameters with geometric
interpretation, such as the NACA four, five, and six-digit families. But those families
are of limited interest for the super-critical airfoils for transonic speeds, so more
general schemes must be devised.

3.3.1 Bézier/Bspline Curves

Using Bézier/Bspline polynomials to parametrize the airfoil shape is simple and
robust [32–34], it ensures geometrical properties including leading edge radius,
trailing edge shape by solving a least-square fitting problem. It usually gives good
representation of an airfoil (and smoothing) chosen by the number of control points.
Melin et al. [35] developed a technique that uses four pieces of cubic Bézier
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Fig. 6 Airfoil is parametrized by four pieces of cubic Bézier curves

Fig. 7 The surface mesh
point at i; j is moved by ıX�i;j

curves [33] to parametrize an airfoil within a reasonable error level. A similar
parametrization is used in SCID [18, 23] for geometry update and smoothing
purpose with wing represented by airfoil stacks (Fig. 6).

3.4 Parameterization of Shape Perturbations

3.4.1 Mesh Points and Mesh Deformation

When the mesh points are used to represent the surface, the design variables
are the coordinates of the mesh points. The main advantage of parameterizing a
shape with mesh points is that there is no restriction on the attainable geometry.
Also, this parametrization technique can be easily implemented in any design
problem. However, the use of mesh points does present some difficulties. First,
the independent displacement of points may create non-smooth surfaces which are
unsuitable as lifting surfaces and give the flow solver a hard time. Second, if all
surface mesh points are used, the method is very costly for 3D problem since we
will deal with a large number of design variables (i.e., surface mesh points). Both
difficulties can be easily resolved by using a set of smooth functions to perturb the
initial mesh so that the surface mesh points are mapped from a limited number of
design variables, such as in MSES-LINDOP [10–12], SU2 [15]. Figure 7 shows the
surface mesh point at i; j which is moved by ıX�i;j , Fig. 8 shows the surface mesh
points moved by Hicks–Henne bumps.

Deforming the computational mesh is an efficient alternative to re-meshing and
it enables a smooth mapping from the design parameters to the cost function. One
issue for mesh deformation is that by deforming the surface boundary of the mesh
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Fig. 8 The surface mesh
points are moved by
Hicks–Henne bumps [37]

points, the rest of the grids must be deformed accordingly. SU2 uses the linear
elasticity equations [15, 36] to compute the volume mesh displacement from the
displacement of the perturbed surface. If the computational cells are small, this
prevents creation of negative volume cells by deformation. In certain circumstances,
further mesh smoothing [28] will be required.

3.4.2 Hicks–Henne Bumps

A single Hicks–Henne (HH) bump function [37] perturbs the airfoil shape (y
coordinates) by a “bumps,” so that with a sequence of HH bumps there obtains a
perturbation of airfoil shape,

�y.x/ D
NX

kD1

˛k sin
�
�x

log 0:5
log xk

�t

(20)

with the x-locations of max-points are xk; k D 1; 2; : : : ; N, and the coefficients ˛k

are design variables. Figure 9 shows an example of the fourth order bumps (t D 4)
with N D 10, xk is equally distributed over Œ0:5=N; 1 � 0:5=N�.

3.4.3 Free-Form Deformation

Free-form deformations (FFD) provide a method of deforming an object by
adjusting the control points of a lattice. The technique was first described by
Sederberg and Parry in 1986 [38] and its effect is used in computer animation. In
2D the shape perturbations are simply modeled by Bézier/Bspline/NURB control
points [33, 34, 38, 39]

d�.x; y/ D
nx�1;ny�1X

i;jD0

dCPi;jB
nx
i .u/Bny

j .v/ (21)

x D xmin C u.xmax � xmin/



Assessment of Inverse and Direct Methods for Airfoil and Wing Design 91

1
Hicks-Henne (4) 1-10

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6

x

f k
(x
),
k=

1,
...
,1
0

0.8 1

Fig. 9 The Hicks–Henne bump functions, t D 4, with N D 10, xk is equally distributed over
Œ0:5=N; 1 � 0:5=N�
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Fig. 10 NACA-0012 is deformed by a 5�2 FFD Bézier box

where nx; ny are the degrees of the FFD functions, u; v 2 Œ0; 1� are the parametric
coordinates, CPi;j is the nx � ny array of control points, Bs are the Berstein
polynomials [32]. Fig. 10 shows an example that deforms an NACA-0012 airfoil
by a 5�2 FFD Bézier box. In SU2 deformation of the baseline wing is done by a 3D
FFD Bézier box [15, 38] in a similar way.
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4 Test Cases Statement

4.1 Case I: RAE-2822 Airfoil in Transonic Viscous Flow

The drag should be minimized at Mach number 0.734 and lift coefficient of 0.824,
and the cross section area must exceed or equal that of the baseline. Initial angle
of attack is 2.79ı. The flow is viscous with Reynolds number Re D 6:5 � 106. The
optimization problem is

min W cd

subjectto W c` D 0:824

cm � �0:092

A � Abaseline

(22)

where cl, cd, and cm are the lift, drag, and pitch moment coefficients, A is the airfoil
cross section area.

4.2 Case II: ONERA M6 Wing Optimization in Transonic
Inviscid Flow

The ONERA M6 wing is a classic computational fluid dynamics (CFD) validation
case for external flows because of its simple geometry combined with complexities
of transonic flow (i.e., local supersonic flow, shocks, etc.). It has almost become a
standard for CFD codes because of its inclusion as a validation case in numerous
CFD papers over the years [40]. In the proceedings of a single conference, the 14th
AIAA CFD Conference3 (1999), the ONERA M6 wing was included in 10 of the
approximately 130 papers. This wing configuration is used here as a baseline for
drag minimization. The drag should be minimized at Mach number 0.8395 and the
flow is assumed to be inviscid. The maximum thickness t of each section should be
preserved to a specified value. Initial angle of attack is 3.06ı.

min W cd

subjectto W c` D 0:2864

ti;max D ti;specified:

(23)

3http://www.aiaa.org/.

http://www.aiaa.org/


Assessment of Inverse and Direct Methods for Airfoil and Wing Design 93

5 Results from Direct Optimization SU2

5.1 Test Case I

The Spalart–Allmaras turbulent model [41] is used in this test case. Figure 11 shows
the airfoil grids with 140,573 nodes. The mesh is perturbed by Hicks–Henne bump
functions [37] with 19 design variables. Table 1 shows the optimization solution
table for RAE 2822 airfoil (Fig. 12). The KKT condition [6] is met after 35 design
cycles. The shock at around 55 % chord is weakened, with a drag benefit of 70 drag
counts.4 Figure 13 shows the pressure distribution and airfoil shape for both baseline
and optimized airfoils. The Cp of the optimized shape has wiggles in between 0.5
and 0.6 chord, that the shock starts to re-build a little. Figure 14 shows the Mach
contours of both RAE 2822 and its optimized shape, with weakened shock on the
optimized shape. Note that the Mach is re-developed between 0.5 and 0.6 chord.

5.2 Test Case II

It is an unstructured mesh with 36,454 tetrahedral cells, half geometry with a
symmetric plane at y D 0. The wing tip is capped. The wing is parametrized by
FFD Bézier box [38] as discussed in previous section by 176 design variables, with
root section unchanged. The optimized wing is obtained after 14 design cycles,
the drag coefficient CD is reduced by around 17.9 counts, while the lift coefficient

Fig. 11 RAE-2822 airfoil
mesh with 140,573 nodes

Table 1 RAE 2822
optimization results table

Airfoil c` cd cm

Baseline RAE2822 0.8092 0.01949 �0.09679

Optimized 0.8431 0.01263 �0.08631

41 drag count is defined as 104 drag coefficient; 1 lift count is defined as 103 lift coefficient.
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Fig. 12 The design cycles
history for RAE 2822 with 19
design variables on the
140,573 nodes mesh.
(a) Convergence of
constraints on c` and
�10 � cm (b) Convergence of
cost function cd
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CL is increased by 4 % as it can be seen in Table 2. Figure 15 shows the pressure
coefficient comparisons for M6 baseline and its optimized wing shape from SU2.
The shock is reduced such that 17 drag counts benefit is obtained.

The wing section profiles are studied at five stations from root (0 m) to tip
(1.1963 m) on both baseline and optimized geometries. The maximum thickness
varies from section to section, and its maximum locations even shifted a bit forward
on inboard sections, see Figures 16a, b. The optimizer changes twist by less than 1
degree, and maximum chamber by less than 1 % to arrive at a point believed to be
a local optimum, using 176 design variables. This indicates that the wing is hard to
improve on.
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Fig. 13 Pressure
distributions and airfoil
shapes for RAE 2822, black:
baseline; blue: optimized
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5.3 Assessment: Direction Optimization

The direct optimization gives a rapid indication of possible directions for improve-
ment when traditional inverse design and/or geometric cut-and-try are impracti-
cal. It also provides the possible design improvement paths when unusual non-
aerodynamic design variables are present, for example, the r.m.s. strain constraints.
Due to the fact that it minimizes the cost function and the cost function can be
defined in multi-points, it is suitable to handle multi-point design problems [42],
whereas single-point design is better handled with traditional inverse design. For
the 2D problem, the optimized result in the test case was obtained after only 35
iterations. This approach is clear to extend to 3D (as the ONERA M6 wing), but
needs even longer computation time.
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Fig. 14 Mach contour for
RAE 2822 and its optimized
shape at Mach 0.734,
c` D 0:824. (a) Baseline
RAE 2822 Airfoil (b)
Optimized shape

Table 2 M6 optimization
results table

Shape CL CD

Baseline (ONERA M6) 0.28641 0.0117909

Optimized 0.298087 0.010016

The cons are also considerable. First of all, it requires tough learning curve, and
one cell with high surface gradient can influence the overall search direction. For
example, SU2 has an option that removes the sharp edge sensitivities from the
gradient calculation to guarantee a descent direction in optimization [17]. This
treatment to sharp trailing edge is easier to find the mean gradient. However,
the drawback is that it removes the gradient from trailing edge, resulting little
geometric changes around trailing edge, if we recalled the ONERA M6 wing
case, the optimized wing has little twists and cambers compared with the baseline
configuration, see Figure 16.

Setting up the optimization problem requires engineering skill as well. The
cost function and the constraints should be well defined to ensure convergence.
Palacios et al. [17] claimed a “sequential way” to apply constraints when designing
a simple wing-body configuration in transonic viscous flow using SU2 otherwise
the optimizer would fail. The gradient is sensitive to the mesh deformation
method/strategy, if the gradient is not on the order of a meaningful dimensional
perturbation of the design variables (control points), the first step of the optimizer
will cause the mesh deformation to fail due to too large of a step being taken.
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Fig. 15 Upper surface Cp for ONERA M6 baseline and optimized wing from SU2 optimization

This approach is always too “myoptic,” it is trapped in the local optimum rather
than finding the global optimum, exploiting the smallest significant physical scales.
For 3D problem, it requires long computing time on big computers, although the
adjoint approach reduces the gradient calculation time a lot.

6 Results from Inverse Design SCID

6.1 Test Case I

The target pressure is defined as a pressure distribution with weakened shocks. The
target is found perfectly with 50 iterations by SCID-inviscid mode to get quick
convergence, see Figure 17. Due to zero pressure gradient through boundary layer
we would rather use SCID-inviscid mode to compute once the target pressure is
given. However there are form drag and skin friction drag that SU2 can give while
SCID-inviscid mode cannot. A compromise is made by re-running the solution from
inviscid SCID in MSES [12] viscous mode, see Figure 18. The drag is reduced from
170 counts to 115 counts, with cm constraint perfectly held (Table 3).

6.2 Case II Variation

A variation design of test case II is carried out, which is a similar exercise as
Jameson did [43] by the adjoint code for inverse design. The wing planform is
ONERA-M6 and the initial geometry was made up of NACA 0012 sections and
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Fig. 16 Geometric
comparison for M6 baseline
vs. optimized results on five
spanwise stations.
(a) Maximum thickness
(b) Maximum thickness
locations (c) Local twist
distributions
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Fig. 17 The resulting
pressure distributions and the
airfoil shape from
SCID-inviscid;
baseline/initial shape is
RAE-2822 airfoil.
(a) Pressure distributions
computed from
SCID-inviscid (b) Resulting
airfoil shapes computed from
SCID-inviscid

-1.5
a

b

-0.5

0

0.5

1

1.5
0 0.1 0.2 0.3 0.4 0.5

x/c

C
p

0.6

Initial
Iter-20
Iter-50
Target

Initial
Iter-50
Target

0.7 0.8 0.9 1

-1

0.06

0.04

0.02

0

-0.02

-0.04

-0.06

0 0.1 0.2 0.3 0.4 0.5

x/c

z/
c

0.6 0.7 0.8 0.9 1

the target pressure distribution was the pressure distribution over the ONERA-M6
wing. The target pressure distribution was computed by SU2 in inviscid flow with
the same mesh and under the same conditions as computed the ONERA M6 baseline
in the previous section, namely, unstructured grids with 36,454 cells (rather coarse),
Mach number 0.8395, angle of attack is fixed at 3.06ı. Eight equally spaced sections
are designed for half wing, from 0 % of the wing semi-span (root) to 94.32 % of the
wing semi-span. Figures 19 and 20 show the pressure distribution and the section
geometries over the initial NACA 0012 airfoil wing and the final design by SCID.
The final design was achieved by 110 designs. Note that after 40 designs the target
pressure distribution was already almost found, with only slightly deviations. More
design cycles would not make significant difference. Smoothing plays an important
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Fig. 18 Re-run the solution
Iter-50 in viscous mode
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Table 3 RAE 2822 design
by re-running the baseline
and the optimized solution
from inviscid SCID in MSES
viscous mode

Airfoil c` cd cm

Baseline
RAE2822 -vis

0.824 0.016987 �0.09394

Iter-50 -vis 0.824 0.011512 �0.05896

Fig. 19 Initial and Final Cp contours comparisons of M6 wing planform. (a) Target pressure
distribution contours over an M6 wing computed by SU2; (b) Final pressure distribution contours
obtained by SCID-inviscid mode; (c) Initial pressure distribution contours over an M6 wing with
NACA 0012 profile

role, the different smoothing technique would lead different pressure distributions
especially for the last design cycles. As Jameson [43] claimed, this is a particularly
challenging test, because it calls for the recovery of a smooth symmetric profile from
an asymmetric pressure distribution containing a triangular pattern of shock waves,
(Table 4, Fig. 21).
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Fig. 20 Initial and Final
pressure distribution and
modified section geometries
along the wing, computed by
SCID-inviscid mode,
compared with target pressure
distribution computed by
SU2 Root. (a) section, 0 %
semi-span (b) Mid section:
54.26 % semi-span (c) Tip
section: 94.32 % semi-span
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Table 4 Wing design for
ONERA M6 planform
by SCID

ONERA M6 Planform CL CD Cm

Initial SCID 0.29828 0.020906 �0.133737

Final SCID 0.28634 0.01540 �0.11941

Target SU2 0.28641 0.0117909 �0.120047

6.3 Assessment: Inverse Design

The significant advantages of inverse design are that the engineer applies her
knowledge and (thus) a realistic airfoil is obtained at every iteration (e.g., MSES
inverse design mode [12]). The pressure gradient is zero through boundary layer
[44] so that it can be chosen to maintain laminar flow. The changes in streamline
curvature–pressure relationship are robust that it ensures fast convergence to target
pressure with good quality. The engineer in the loop is seeking favorable properties
of the pressure distributions such as:

1. the flattened leading edge pressure peak on the upper surface which avoids
leading edge flow separation;

2. weakened or eliminated shock waves which reduce the wave drag;
3. monotonic trailing edge pressure recovery that avoids boundary layer separation.

However, using the inverse method, the engineer must be well experienced and
knowledgeable to know how to set the target pressure. Because this method works
on pressure distributions rather than the lift or drag coefficients, it may not reach a
true optimum, at best only the target pressure. Moreover, the streamline curvature–
pressure relation used in SCID is more tricky and complex for transonic flow in 3D
since the shocks and cross-flow are introduced [18].

7 Results from Hybrid Design: Case I

Figure 22 shows the pressure distributions on the baseline airfoil calculated in MSES
inviscid mode, and the target pressure distributions (solid). The target pressure is
obtained from the optimized solution of RAE 2822 airfoil in inviscid flow using
EDGE adjoint solver, which is out of scope here. Directly driving the Cp towards the
“target” pressure distributions causes divergence. What we need to do in LINDOP
is to make the design iteratively. There are many options that user can interact, for
example, the search direction, the search step, and quasi-Newton toggle. Figures 23
and 24 show the gradient-inverse design procedures in LINDOP inviscid mode. In
the former figure only the upper surface is modified, and the Cp value at the trailing
edge (right endpoint of freewall segment) is fixed. In the latter figure only the lower
surface is modified, and the stagnation Cp value (left endpoint of freewall segment)
is fixed.
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Fig. 21 Final and target
pressure distributions along
the wing using inverse design.
(a) Root section, 0 %
semi-span (b) Mid section:
54.26 % semi-span (c) Tip
section: 94.32 % semi-span
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Fig. 22 The pressure for baseline airfoil RAE2822 (markers) calculated in MSES inviscid mode
and the target pressure distributions (solid)

Figure 25 shows the optimized results from RAE 2822 airfoil, inviscid flow
solutions. It is found that in inviscid flow, the drag coefficient cd is reduced by 74 %,
the lift coefficient is maintained, and the cm constraint is held (Table 5).

7.1 Assessment: Hybrid Design

The pros of hybrid design are:

• it can systematically set constraints and cost functions, thus can obtain benefits
of both inverse design and direct optimization;

• it offers the engineer know-how advantages (c.f. long list of user options in
LINDOP menu);

• iterations with visualized feedback and (thus) a realistic airfoil is obtained at
every iteration.

However, there are a number of cons for hybrid design approach. It also has
a tough learning curve for users, and it is too manual to set/determine too many
options, especially for new users. There is no guarantee for convergence, unless the
target pressure is a “small” modification of the initial one (e.g., Figures 23, 24).
There are some tricks to get convergent solutions. First of all, make small pressure
changes (�Cp) for each design cycle; second, modify/re-design one surface each
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Fig. 23 The design
procedures for RAE 2822 in
LINDOP inviscid mode,
modify upper surface only, to
be continued. (a) Fix right
endpoint segment (b) Fix
right endpoint segment
(c) Fix right endpoint
segment
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Fig. 24 The design procedures for RAE 2822 LINDOP inviscid mode, modify lower surface only,
completed. (a) Fix left endpoint segment (b) Fix left endpoint segment
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−2.0 blade.rae2822new4
Mach  =  0.734
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L/D     =  523.44
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Fig. 25 The optimized design of RAE 2822 in LINDOP inviscid mode

Table 5 RAE 2822
optimization results table,
computed in LINDOP
inviscid mode

Airfoil c` cd cm

Baseline RAE2822 - invis 0.824 0.00648 �0.1294

Iter-50 -invis 0.824 0.00157 �0.0867

time; third, carefully choose order of mixed inverse prescribed shape function and
global constraints; fourth, fix the left/right endpoint of freewall segment each time;
finally, introduce the target pressure C�

p from the last cycles when the current Cp is
close to C�

p . All of the tricks and the options which should be determined by users
make the hybrid design method tough for new users.

8 Conclusions

This chapter assesses three different design methods for aerodynamic shape design
by two test cases. They are not isolated to each other, the “hybrid” design is to
combine the first two approaches. It is difficult to say one is superior than the other,
each of them has pros and cons. What we can do is to understand the strong and
weak points of each method, and use the appropriate and/or combined methods to
a specified design problem. Van der Velden called it “cocktails” or combinations of
optimizers [45] under the control of the engineer in the loop. This is also stressed in
Zhang’s PhD thesis [5].
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