
A Surrogate-Model-Assisted Evolutionary
Algorithm for Computationally Expensive
Design Optimization Problems with Inequality
Constraints

Bo Liu, Qingfu Zhang, and Georges Gielen

Abstract The surrogate model-aware evolutionary search (SMAS) framework is
a newly emerged model management method for surrogate-model-assisted evolu-
tionary algorithms (SAEAs), which shows clear advantages on necessary number
of exact evaluations. However, SMAS aims to solve unconstrained or bound
constrained computationally expensive optimization problems. In this chapter, an
SMAS-based efficient constrained optimization method is presented. Its major
components include: (1) an SMAS-based SAEA framework for handling inequality
constraints, (2) a ranking and diversity maintenance method for addressing compli-
cated constraints, and (3) an adaptive surrogate model updating (ASU) method to
address many constraints, which considerably reduces the computational overhead
of surrogate modeling. Empirical studies on complex benchmark problems and a
real-world mm-wave integrated circuit design optimization problem are reported
in this chapter. The results show that to obtain comparable results, the presented
method only needs 1–10 % of the exact function evaluations typically used by the
standard evolutionary algorithms with popular constraint handling techniques.
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1 Introduction

Many industrial design optimization problems require expensive simulations for
evaluating their candidate solutions. Employing surrogate models to replace com-
putationally expensive exact function evaluations is a routine approach to address
these problems [22]. Because many real-world problems have constraints, con-
strained expensive optimization is receiving increasing attention. However, most
research works focus on computationally expensive local optimization [1, 12]. This
chapter focuses on handling global optimization problems with both expensive
simulations (i.e., only very few exact evaluations are allowed) and complex
inequality constraints, which can be found in many real-world applications such
as mm-wave integrated circuit design (e.g., [19]). Constraints in many industrial
design optimization problems come from design specifications (e.g., power �
1.5 mW) which are inequality constraints and equality constraints are often self-
contained in the simulator (e.g., Maxwell’s equations). For complex constraints,
this chapter mainly aims at a number of constraints, active constraints (tight design
specifications), disconnected feasible region, and complex (sophisticated landscape)
constraint functions.

Surrogate-model-assisted evolutionary algorithms (SAEAs) have been accepted
as an effective approach to deal with expensive optimization. SAEAs take advan-
tages of both evolutionary algorithms (EAs) and surrogate modeling techniques.
To develop an SAEA for constrained expensive optimization problems, one must
consider three highly related issues:

• Which surrogate modeling method should be used to approximate the objective
function and the constraints?

• Which SAEA framework should be used?
• How should the constraints be handled?

The Gaussian process (GP) modeling is one of the most popular surrogate mod-
eling methods used in SAEAs. Some principled expensive optimization approaches
with the GP model and with prescreening, such as the efficient global optimization
(EGO) method [10], have been well investigated and documented. Moreover, very
few empirical parameters are necessary in a GP model, making the surrogate model-
ing more controllable. Due to these, the GP modeling is adopted for approximating
the objective function and the constraints.

To deal with the second issue, several SAEA frameworks have been proposed
for accommodating surrogate models. Successful examples include the surrogate-
model-assisted memetic evolutionary search (SMMS) framework [16, 34], the
meta-model-assisted EA (MAEA) framework [5], and the surrogate model-aware
evolutionary search (SMAS) framework [20]. These frameworks balance the sur-
rogate model quality and the optimization efficiency in different manners and
have been tested mainly on unconstrained optimization problems. The SMAS
framework considers EA-driven function optimization and high-quality surrogate
model construction at the same time by controlling the locations of the generated



An SAEA for Computationally Expensive Constrained Optimization 349

candidate solutions. It has shown clear advantages (up to eight times fewer exact
evaluations) over the SMMS and the MAEA frameworks on a set of widely used
unconstrained test instances with 20–50 variables in terms of solution quality with
a limited number of exact function evaluations [20]. Therefore, SMAS is especially
suitable for quite expensive industrial design optimization problems. For this reason,
the SMAS framework is selected.

With regard to constraint handling, a number of techniques have been suggested
and used in EAs for general (often inexpensive) constrained optimization. Besides
static penalty function-based methods and the superiority of the feasibility (SF)
method [3], some advanced constraint handling methods have been developed for
handling complex constraints [21, 25, 31, 32], such as the self-adaptive penalty
function-based methods [31], stochastic ranking-based methods [25], and multi-
objective ranking-based methods [32]. All these techniques aim at maintaining
the population diversity while driving their populations from infeasible region to
feasible one by adaptively trading off the objective function optimization and the
total constraint violation minimization. In the context of expensive optimization,
some general constraint handling methods have successfully been applied to
constrained expensive optimization (e.g., [5, 7]). Several prescreening methods
have been generalized from unconstrained expensive optimization to constrained
expensive optimization [5, 6, 28]. Some modeling methods and model updating
methods for constraint function satisfaction and objective function optimization
have been developed [2, 14, 26]. In addition, surrogate-model-assisted expensive
integer nonlinear programming has been investigated [11].

One focus of this chapter is to handle complex constraints in an efficient manner
(i.e., using the SMAS framework). It is not straightforward to combine the above
advanced constraint handling methods for inexpensive and expensive constrained
optimization with SMAS. The diversity maintenance methods in most advanced
constraint handling methods rely on the population updating of a standard EA [21],
while the population updating of SMAS is completely different and is critical for its
efficiency.

Another focus is to reduce the computational overhead of surrogate modeling.
Independent modeling of the constraint functions is needed for constrained expen-
sive optimization problems [5]. When the number of decision variables is large (e.g.,
20–50 variables), surrogate model construction itself may cost a few minutes for a
single function in some cases (e.g., [20]), and it should be conducted at each iteration
for both the objective function and all the constraints. Thus, the computational
cost of surrogate modeling can be tremendous, especially for problems with many
constraints.

To address these challenges, an improved SMAS framework for efficient con-
strained expensive optimization, a diversity maintenance method for the SMAS
framework to handle complex constraints, and an adaptive surrogate model updating
(ASU) method for adaptively saving the computational overhead of surrogate mod-
elling are introduced. Using these three techniques, a Gaussian Process SAEA for
computationally expensive inequality constrained optimization problems (GPEEC)
is constructed. Empirical studies on 8 benchmark problems that are challenging in
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terms of constraint handling, a self-developed 20-dimensional benchmark problem
whose objective function is highly multimodal and whose constraint function is
very complex, and a real-world mm-wave integrated circuit design optimization
problem are used as examples. Results show that comparable solution quality
is obtained compared to the state-of-the-art constrained optimization methods
(without surrogate models), and that only 1–10 % of the number of exact function
evaluations are needed compared to the standard EA with the popular SF method.

The remainder of this chapter is organized as follows. Section 2 introduces the
basic techniques. The general framework of GPEEC is then presented in Section 3.
Sections 4–6 provide details of the algorithm. Section 7 presents the experimental
results of GPEEC. The parameter settings of GPEEC are also discussed. The
summary is presented in Section 8.

2 Problem Definition and Basic Techniques

2.1 Problem Definition

The following constrained optimization problem is considered in this chapter:

minimize f .x/

subject to gi.x/ � 0; i D 1; : : : ; m:

x 2 Œa; b�d;

(1)

where f .x/ is the objective function, gi.x/ � 0 (i D 1; : : : ; m/ are the constraints,
and Œa; b�d is the search region. We assume that some constraints gi.x/ � 0 can be
active. In other words, these constraints become almost equalities at the globally
optimal solution. The problem can have disconnected feasible regions, the function
of f .x/ can be highly multimodal and the function landscape of gi.x/ can be quite
complex. We further assume that the calculations of f .x/ and the different gi.x/ can
be done in a single simulation, which is the case for many real-world expensive
optimization problems (e.g., [18]), or can be done in parallel considering the rapid
development of parallel computation techniques.

2.2 GP Modeling

To model an unknown function y D f .x/; x 2 Rd, the GP modeling assumes that
f .x/ at any point x is a Gaussian random variable N.�; �2/, where � and � are
two constants independent of x. For any x, f .x/ is a sample of � C �.x/, where
�.x/ � N.0; �2/. For any x; x0 2 Rd, c.x; x0/, the correlation between �.x/ and
�.x0/, depends on x � x0. More precisely,
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c.x; x0/ D exp.�
dX

iD1

�ijxi � x0
ijpi/; (2)

where parameter 1 � pi � 2 is related to the smoothness of f .x/ with respect to xi,
and parameter �i > 0 indicates the importance of xi on f .x/. More details of the GP
modeling can be found in [24].

2.2.1 Hyper Parameter Estimation

Given K points x1; : : : ; xK 2 Rd and their f -function values y1; : : : ; yK , then the
hyper parameters �, � , �1; : : : ; �d, and p1; : : : ; pd can be estimated by maximizing
the likelihood that f .x/ D yi at x D xi .i D 1; : : : ; K/ [10]:

1

.2��2/K=2
p

det.C/
exp

�
� .y � �1/TC�1.y � �1/

2�2

�
(3)

where C is a K � K matrix whose .i; j/-element is c.xi; xj/, y D .y1; : : : ; yK/T and 1
is a K-dimensional column vector of ones.

To maximize (3), the values of � and �2 must be:

O� D 1TC�1y
1TC�11

(4)

and

O�2 D .y � 1 O�/TC�1.y � 1 O�/

K
: (5)

Substituting (4) and (5) into (3) eliminates the unknown parameters � and � from
(3). As a result, the likelihood function depends only on �i and pi for i D 1; : : : ; d.
Equation (3) can then be maximized to obtain estimates of O�i and Opi. The estimates
O� and O�2 can then readily be obtained from (4) and (5).

2.2.2 The Best Linear Unbiased Prediction and Predictive Distribution

Given the hyperparameter estimates O�i, Opi, O�, and O�2, one can predict y D f .x/ at
any untested point x based on the f -function values yi at xi for i D 1; : : : ; K. The
best linear unbiased predictor of f .x/ is [10, 27]:

Of .x/ D O� C rTC�1.y � 1 O�/ (6)
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and its mean squared error is:

s2.x/ D O�2Œ1 � rTC�1r C .1 � 1TC�1r/2

1TC�1r
� (7)

where r D .c.x; x1/; : : : ; c.x; xK//T . N.Of .x/; s2.x// can be regarded as a predictive
distribution for f .x/ given the function values yi at xi for i D 1; : : : ; K.

More detailed derivations about the hyperparameter estimation and prediction
can be found in [9].

2.2.3 Lower Confidence Bound

We consider minimization of f .x/ in this chapter. Given the predictive distribution
N.Of .x/; s2.x// for f .x/, a lower confidence bound (LCB) of f .x/ can be defined
as [4]:

flcb.x/ D Of .x/ � !s.x/ (8)

where ! is a predefined constant. In the GPEEC algorithm, flcb.x/ instead of Of .x/

itself is used to measure the quality of x. The use of LCB can balance the search
between promising areas (i.e., with low Of .x/ values) and less explored areas (i.e.,
with high s.x/ values). Following the suggestion in [4, 5], ! D 2 is used for
balancing the exploration and exploitation of LCB.

2.3 Differential Evolution

The differential evolution (DE) algorithm is used as the search engine in the GPEEC
algorithm. DE is an effective and popular global optimization algorithm. It uses a
differential operator to create new candidate solutions [23]. There are quite a few
different DE variants and DE/best/1 is used here to generate new solutions for
prescreening. The DE/best/1 mutation uses the current best solution as the base
vector, so as to increase the speed of generating promising candidates.

Suppose that P is a population and the best individual in P is xbest. Let x D
.x1; : : : ; xd/ 2 Rd be an individual solution in P. To generate a child solution u D
.u1; : : : ; ud/ for x, DE/best/1 works as follows.

A donor vector is first produced by mutation:

v D xbest C F � .xr1 � xr2/ (9)

where xr1 and xr2 are two different solutions randomly selected from P and also
different from xbest. F 2 .0; 2� is a control parameter, often called the scaling factor
[23]. Then the following crossover operator is applied to produce u:
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1. Randomly select a variable index jrand 2 f1; : : : ; dg,
2. For each j D 1 to d, generate a uniformly distributed random number rand from

.0; 1/ and set:

uj D
�

vj; if (rand � CR/jj D jrand

xj; otherwise
(10)

where CR 2 Œ0; 1� is a predefined constant called the crossover rate.

3 Algorithm Framework

As described above, GPEEC adopts and improves the SMAS framework originally
proposed for unconstrained expensive optimization [20]. GPEEC maintains a
database and iteratively updates surrogate models for the objective function and
the constraints until a stopping criterion is met.

• The database is composed of all the evaluated solutions and their exact function
values. At the first step, ˛ solutions from Œa; b�d are sampled by an experimental
design method and are evaluated (through exact function evaluations) to form the
initial database.

• Surrogate models for the objective function and each constraint are constructed
at the first step and are then updated at the consecutive iterations.

In each iteration, GPEEC works as follows:

Step 1: Selecting working population: Select the � best solutions from the current
database to form a population P.

Step 2: Diversity maintenance: Check the diversity of P. When necessary, conduct
diversity enhancement operations on P.

Step 3: Generating child population: Apply evolutionary operators on P to
generate � child solutions.

Step 4: Prescreening of child solutions: Adaptively update the surrogate models
for the objective function and for the constraint functions using information
extracted from the database and the available surrogate models. Estimate the
quality of the � child solutions generated in Step 3 based on the updated surrogate
models and prescreening methods.

Step 5: Function evaluation: Perform exact function evaluation on the estimated
best candidate solution xb from Step 4 and then add xb and its exact function
values to the database.

Since the working population P consists of the best solutions in the current database,
the search concentrates on the current promising subregion, which is moving in the
search space for exploration. This is necessary because the computational budget
for exact function evaluations is very limited. In surrogate modeling, training data
points that are close to the child solutions can be obtained so as to construct high-
quality surrogate models. This will further be illustrated in Section 5.
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4 Constraint Handling and Diversity Maintenance

This section explains and discusses the implementation of Step 1 and Step 2 of
GPEEC for handling constraints.

4.1 Basic Constraint Handling Method

It is natural to use the information of constraint satisfaction to rank the candidate
solutions. For simplicity and efficiency, a revised SF method proposed in [3] is
adopted in Step 1 for selecting the � best candidate solutions from the database.
The ranking rules based on SF are as follows:

1. Feasible solutions rank higher than infeasible ones.
2. Feasible solutions are ranked solely based on their objective function values in

ascending order.
3. Infeasible solutions are ranked solely based on their total constraint violation

values (
Pm

iD1 maxf0; gi.x/g) in ascending order.

4.2 The Diversity Maintenance Method

Many constrained optimization procedures have the following phases [21]: (1)
The population moves towards the feasible region and the main driving force is
the minimization of the total amount of constraint violations. (2) A part of the
population is in the feasible region and the other part is in the infeasible region, and
the main driving forces are both the minimization of the total constraint violations
and the optimization of the objective function. (3) Most candidate solutions of the
population are in the feasible region and the main driving force is optimization of the
objective function. An early stage and a late stage are used, which are separated by
T, the number of feasible solutions generated so far, which should be set to several
multiples of � (the reason is explained in Section 7). This indicates that at the end
of the early stage, most candidates are feasible while a substantial effort is used for
objective function optimization; the late stage, on the other hand, mainly focuses on
optimizing the objective function.

There are d decision variables xi (i D 1; : : : ; d/ in Problem (1). Let x� be its
globally optimal solution and let Pi contain the xi values of all the solutions in the
current population P. Ideally, each Pi will converge to the xi value in x�. However,
due to complex constraints and other reasons, some Pi may get trapped at some
wrong position and thus lose its diversity at some search stages. If Pi is trapped
at a value, xi is called a trapped variable. Figure 1 provides an example with two
variables, illustrating why the trapping of some Pi may happen. In this example, ˝1

and ˝2 are two parts of the feasible region. For each value of x2, the feasible range
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Fig. 1 An illustrative figure
of the trapping of variables
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of x1 is different. In Figure 1, the feasible range of x1 for each fixed x2 value consists
of two disconnected intervals since the feasible region is disconnected. When the
early stage begins, the major driving force is the minimization of the total amount
of constraint violations. When there are many constraints in Problem (1), it is very
likely that the total amount of constraint violations drops significantly when some
elements in P1 enter the interval I1 instead of I2. Therefore, once some elements in
P1 fall in I1, most elements in P1 will enter I1 very soon. Since I2 is not connected
with I1, it is very difficult for x1 to get out of I1 just by reproduction operators such
as crossovers and small mutations, and P1 may lose its diversity and then get stuck
at a value in I1 because of the objective function optimization near the end of the
early stage. To deal with this issue, the following method is used to improve the
diversity.

The variables x1; : : : ; xd in x are treated separately in the DM procedure.1 For
each xk, its diversity in P, Dk.P/, is:

Dk.P/ D maxQxD.Qx1;:::;Qxd/2TPfjQxk � xbest
k jg

where TP contains the top 	 solutions in P based on the SF ranking, xbest D
.xbest

1 ; : : : ; xbest
d / is the best solution in P, and 	 is a control parameter.

1We assume that all the decision variables are at least related to one of the constraints; otherwise,
they can be easily eliminated from the DM method.
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The DM method (Step 2 in GPEEC in Section 3) works as follows:

If the total number of feasible solutions in the current database � T
FOR k D 1; : : : ; d

IF Dk.P/ � ".
For every solutionex D .ex1; : : : ;exd/ 2 P, resetexk to a uniformly distributed

random number in Œa; b�.
END

END

Several remarks can be made on the above method:

• The DM method is applied when the total number of feasible solutions generated
so far is less than a predefined number T. In other words, this method will not be
used at the late search stage. A major consideration is that the algorithm should
focus on optimizing the objective function starting from a diversity maintained
(if necessary) population at the late stage.

• When Dk.P/ � ", the xk values of the top 	 solutions in P are very close. It
indicates that the current population P does not have a good diversity in xk. Note
that TP is the best subset of P and thus the current database. To prevent the search
from being trapped in a locally optimal area, the value of xk is randomly reset for
each solution in P.

• At the early search stage, some xi.s/ (often trapped variables) converge much
faster than others (see definition and explanation of the trapped variables).
Therefore, in the for loop of the DM method, not all the variables will be
re-sampled from Œa; b�. The newly generated solutions still inherit variables with
good diversity in the current population. The re-sampling of trapped variables
after the detection, in contrast to the random sampling in the beginning of the
early stage, is effective for jumping out of the premature convergence. As said
above, substantial effort must be spent on objective function optimization when
the trapped variable can be detected (i.e., it converges to a very narrow range ").
Hence, many feasible solutions should have been generated and P should be
around the feasible region, i.e., most constraints are satisfied. This implies that
after re-sampling, each interval of a trapped variable has nearly equal chance to
be selected considering the feasibility and the value of the objective function.

• The DM method can easily be used in the SMAS framework, since it improves
the population diversity by only using information extracted from the decision
space, rather than trading off the objective function value and the constraint
satisfaction like most advanced constrained optimization methods.

The parameters in the DM method are set as follows: T D 5 � �, 	 D 10 and
" D 0:1 assuming a Œ�10; 10� search region (we can make this assumption come
true by scaling). More details are in Section 7.
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5 Surrogate Modeling

This section discusses the implementation of Step 4 of GPEEC for the surrogate
modeling and prescreening.

5.1 Surrogate Modeling Based on Improved SMAS

The idea of SMAS [20] is used in GPEEC. Different from other SAEA frameworks,
SMAS concentrates both its search and its surrogate modeling on the current
promising region and gradually moves the promising region for exploration. It uses
the � best candidate solutions to form its working population, and only evaluates
the exact function value of the estimated best candidate solution.

Training data points with a higher quality can be generated using the SMAS
framework than using an SAEA framework which relies on a standard EA. The
solutions in P (Step 1) are not necessarily far away from one another since they are
the current best candidate solutions. Also, because at most a single new solution
enters P in each iteration, the selected estimated best solutions (which are generated
from P in step 3 and which will serve as training data points) in several consecutive
iterations will not be far away from one another. As a consequence, most training
data points are also in or near the current promising region. Therefore, a high-quality
surrogate model for this region can be constructed for prescreening newly generated
solutions. That is why SMAS is a surrogate model-aware search mechanism. In
contrast, new solutions often spread in different regions in standard EAs and thus
often no sufficient number of training data points are around candidate solutions to
be prescreened, affecting the surrogate model quality negatively.

To select training data points, the median of the � new solutions for each decision
variable is computed to construct a vector mv . The 
 available training data points
that are nearest to mv are selected to construct the surrogate model. 
 should be set
between 5 � d and 7 � d. 
 D 6 � d is used in all the experiments.

Note that the LCB prescreening is used only for the objective function, while for
constraints the predicted value is used (i.e., ! D 0). The reason is to prevent that
many near-feasible solutions are selected, since in SMAS only a single candidate
solution is selected and evaluated in each iteration.

5.2 The Adaptive Surrogate Model Updating Method

The ASU method in GPEEC adaptively decides whether the surrogate model will be
updated or not, with the goal of reducing the computational overhead of surrogate
modeling. This is important for GPEEC, because the computational overhead of
surrogate model construction for constrained expensive optimization problems can
be tremendous (see Section 1).
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Since the goal is to minimize f .x/, the quality of the surrogate model for f .x/

does matter. For this reason, the surrogate model for f .x/ is updated at every
iteration. As to the surrogate model for each gi.x/, there are different considerations
for the different search stages. In the early stage, the purpose of most surrogate
models for gi.x/ is to estimate maxf0; gi.x/g. Therefore, one needs high-quality
models at this stage in order to estimate the total amount of constraint violations
reliably. In contrast, when the search has almost entered the feasible region (the late
stage), the surrogate models for gi.x/ serve the purpose as long as the models can
distinguish feasible solutions from infeasible ones. Therefore, it is not necessary to
update the models of gi.x/ at every iteration in the late stage. For those iterations
where the surrogate model updating is not conducted, previous models are used for
estimating the constraint function values. Therefore, the ASU method is applied
when the total number of feasible solutions in the current database is larger than the
parameter T which was introduced in Section 4.

At each iteration t at the late stage (t � T), the surrogate model is updated for
gi.x/ if

• remaining.t; tc/ D 0; or
• one of the � most recently evaluated points does not satisfy gi.x/ � 0

where tc and � are control parameters.
Several remarks can be made:

• The update of the surrogate models for constraint functions is conducted at every
iteration in the early stage and after every tc iterations in the late stage to reinforce
the reliability of the surrogate models.

• At the late stage, since many candidate solutions in P are deep inside the feasible
region, it is unlikely that all of the � new solutions are infeasible. Thus, there is
a high probability that some infeasible solution (considering gi.x/) among the �

new solutions should be predicted as feasible and ranked as the best. In this case,
it is possible that the search region is near the boundary of gi.x/ D 0 or that the
previous GP model cannot work. Hence, the surrogate model is updated for gi.x/

in this case. For j 2 f1; : : : ; mg and j ¤ i, the surrogate model of gj.x/ is then not
updated.

tc D 10 and � D 5 are used in all the experiments. Their settings are discussed in
Section 7.

6 Implementation Details

Some implementation details included in Step 1, Step 3 and Step 5 are as follows.
Note that various alternative methods can be investigated and applied in the general
GPEEC framework:
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• In Step 1, the selected experimental design method is Latin hypercube sampling
(LHS) [29]. LHS is widely used for the initial database generation in SAEA
research. ˛ (the number of initial samples) is often relatively small and the
empirical rule for setting ˛ for the SMAS framework is in [20], which is also
applicable to GPEEC.

• The selected EA operators in Step 3 are the DE/best/1 mutation operator and the
DE crossover operator. Section 2 has provided more details.

• In Step 5, sometimes a modified form of the estimated best candidate solution
(xb) is used. The purpose is to avoid the repeated expensive evaluation of the
same candidate solution and to perform local search. A Gaussian distributed
random number with zero mean and with 5 % of the search range of each decision
variable as variance is added to modify xb if xb has been evaluated before.

7 Experimental Studies

7.1 Test Problems and Parameter Settings

The GPEEC algorithm is tested with ten problems, which are shown in Table 1.
First, 8 hard benchmark test problems for constrained optimization are used (G1 to
G10 from the CEC 2006 special session on constrained real-parameter optimization
[15], except G3 and G5 which use equality constraints: GN1–GN8 correspond to
G1, G2, G4, G6, G7, G8, G9, G10 in [15], respectively), involving many constraints,
disconnected feasible regions and active constraints. In addition, to test the ability of
GPEEC on handling complex objective and constraint functions, a 20-dimensional
test function is constructed with the Ackley and Griewank test functions [30] (please
see the Appendix). Finally, a real-world problem from the mm-wave integrated
circuit (IC) design field is used to demonstrate the capabilities of GPEEC.

Table 1 Test problems used in the experimental studies

Problem Opt. d � (%) a m � Neval

GN1 (G1 in [15]) �15 13 0:011 6 9 40 1000

GN2 (G2 in [15]) �0.8036 20 99:99 1 2 40 2000

GN3 (G4 in [15]) �30665.54 5 52:12 2 6 30 800

GN4 (G6 in [15]) �6961.81 2 0:006 2 2 30 1000

GN5 (G7 in [15]) 24.31 10 0:00 6 8 40 1000

GN6 (G8 in [15]) �0.0958 2 0:86 0 2 30 800

GN7 (G9 in [15]) 680.63 7 0:52 2 4 30 800

GN8 (G10 in [15]) 7049.33 8 0:00 3 6 40 1000

GN9 0 20 0:00 0 2 40 1500

Opt. is the globally optimal objective function value of each problem
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In Table 1, � is an estimate of the ratio of the feasible space to the entire
search space. a is the number of active constraints and m is the total number of
constraints. All the parameter setting rules of GPEEC have been described above.
For GN1–GN9, ˛ D 50 is used for problems with 10–20 variables, and ˛ D 40

for problems with less than ten variables. The population size � and the number of
exact function evaluations Neval are shown in Table 1. Note that we assume that the
calculations of f .x/ and the different gi.x/ can be done in a single simulation or
can be done in parallel, which is common to many expensive optimization problems
nowadays. In all the experiments, DE/best/1 is used and the crossover rate CR is
set to 0.8 according to the suggestions in [23]. Note that a relatively large scaling
factor F (e.g., F 2 Œ0:75; 0:95�) is necessary to promote exploration for the SMAS
framework, in order to avoid getting stuck in local optima. F is set to 0.8 in the
experiments. ! in LCB prescreening is set to 2 according to [5].

The experiments are carried out on a 2.66 GHz computer with 7.8 Gb RAM in
the MATLAB environment on the Linux system. The ooDACE toolbox [8] is used
for GP modeling.

7.2 The GPEEC Performance and Analysis

7.2.1 Reference Results

To evaluate the solution quality of GPEEC, a state-of-the-art constrained optimiza-
tion method (without surrogate modeling) is used to provide a reference result. The
method is the self-adaptive penalty function (SAPF) method from [31]. In [31],
the real-coded genetic algorithm is used as the search engine. For fair comparison,
the same DE as in GPEEC is used with � � Neval evaluations (the average is about
40,000 evaluations). Twenty runs are performed for each case. The results are shown
in Table 2.

Table 2 Statistics of the best function values obtained by the first reference method
SAPF for GN1–GN9 over 20 runs (� � Neval function evaluations)

Problem Best Worst Mean Median Std Rinf

GN1 �15 �12.01 �14.51 �15 1.06 0

GN2 �0.75 �0.53 �0.61 �0.60 0.06 0

GN3 �30665.53 �30664.04 �30665.07 �30665.03 0.16 0

GN4 �6961.22 �6898.73 �6935.50 �6937.11 18.56 0

GN5 25.37 29.57 26.60 26.02 1.49 0

GN6 �0.0958 �0.0958 �0.0958 �0.0958 1.9e�17 0

GN7 680.64 680.65 680.64 680.64 0.0034 0

GN8 8075.23 15419.02 9545.32 8681.38 2.30eC3 0

GN9 0.61 0.83 0.74 0.75 0.0761 0

Rinf refers to the percentage of runs providing an infeasible final result
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Table 3 Statistics of the best function values obtained by the second reference method
SF for GN1–GN9 over 20 runs (� � Neval function evaluations)

Problem Best Worst Mean Median Std Rinf

GN1 �15 �11 �13.44 �13 1.34 5 %

GN2 �0.77 �0.42 �0.62 �0.62 0.11 0

GN3 �30665.53 �30664.30 �30664.05 �30665.03 0.41 0

GN4 �6961.81 �6944.68 �6959.42 �6961.81 6.48 30 %

GN5 24.31 512.25 73.65 24.31 154.12 0

GN6 �0.0958 �0.0958 �0.0958 �0.0958 1.03e�17 0

GN7 680.63 680.63 680.63 680.63 5.73e�4 0

GN8 7050.92 20101.53 9880.37 7222.31 4295.13 55 %

GN9 0 0.020 0.011 0.015 0.0095 0

Rinf refers to the percentage of runs providing an infeasible final result.

Compared to [31], the results of SAPF for GN1, GN2, GN4, and GN8 are worse
than the published results and the results of GN3, GN5, GN6, GN7 are better
than the published results. This is because different search engines with different
parameter settings are used inside SAPF.

Then, as a second reference, the SF method [3] is used with DE. Also, � � Neval

evaluations are used. The results are shown in Table 3. Note that the results of some
runs are infeasible, so the statistics only considers the runs that provide feasible final
results.

It can be seen that some SF results for GN1, GN4, and GN8 are infeasible. For
GN1 and GN5, it can be observed that premature convergence largely harms the
performance in some runs. The SAPF method shows clear advantages on these
problems. On the other hand, for GN7 and GN9, the SF method performs better
than the SAPF method. This indicates that in some cases when the additional
diversity enhancement does not help much, the SF method shows its advantage of
fast convergence (being more efficient). Tables 2 and 3 will be used for comparison
with GPEEC.

7.2.2 The Effect of the DM Method

The method to simulate the SMAS framework is shown in [20]. The same method
is used here for the GPEEC framework. To simulate it, the GP modeling and
prescreening are removed. Instead, exact function evaluations are conducted on all
the � child solutions in each iteration, and randomly select one from the top ˇ

solutions. ˇ D 5 is used. By this simulation, the search (optimization) ability of the
GPEEC framework can be analyzed and then it can be seen whether the surrogate
modeling and prescreening/prediction work as expected or not. We first simulate the
GPEEC framework without the DM method (without Step 2 in Section 3). Similar
results are obtained compared to Table 3, the SF method. Then, the DM method is
added to simulate the GPEEC framework. These results are in Table 4.
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Table 4 Statistics of the best function values obtained by the simulated GPEEC
framework for GN1–GN9 over 20 runs

Problem Best Worst Mean Median Std Rinf

GN1 �15 �13 �14.51 �14.92 0.71 0

GN2 �0.73 �0.50 �0.61 �0.63 0.09 0

GN3 �30665.53 �30664.17 �30664.81 �30665.04 0.42 0

GN4 �6961.81 �6928.37 �6957.16 �6961.74 10.41 0

GN5 24.47 25.08 24.73 24.62 0.25 0

GN6 �0.0958 �0.0958 �0.0958 �0.0958 1.02e�17 0

GN7 680.63 680.66 680.64 680.64 0.0095 0

GN8 7273.61 8331.37 7457.52 7335.19 318.99 0

GN9 0 0.096 0.026 0.017 0.028 0

Rinf refers to the percentage of runs providing an infeasible final result

Compared to Table 2 (the SAPF method), it can be seen that, except for GN1,
GN2, GN3, and GN6, where the results are comparable to that of the SAPF method,
the results are better than the SAPF method for the other five test problems. For
GN5, GN8, and GN9 considerably better results are observed. Compared to Table 3
(the SF method), it can be seen that no infeasible solution has been provided by
GPEEC. For GN1, GN4, GN5, and GN8, which are difficult to solve by the SF
method, the DM method is seen to be a very effective solution method. Therefore,
it can be concluded that the simulated GPEEC framework incorporates both a high
constraint handling ability and a fast convergence, which is effective for problems
with complex constraints. Moreover, experiments show that the DM method can be
triggered more than once and to more than one variable for problems with complex
constraints, while it often is not triggered for problems that can be solved well by
the SF method.

7.2.3 Integrating the GP Modeling

GPEEC with surrogate modeling and prescreening but without the ASU method is
then tested. Neval evaluations are used (see Table 1). The results are in Table 5.

It can be seen from Table 5 that: (1) All the final solutions are feasible. (2) Except
for GN2, the results are comparable to the results provided by the SAPF method.
For GN2 with 20 variables, experiments have shown that GP modeling is not very fit
for the properties of this function. For GN2 with fewer variables, on the other hand,
the performance of GP modeling is good. It is no surprise that a single surrogate
modeling method has difficulty to work well on all kinds of problems [13, 16],
and the GPEEC method is compatible with hybrid surrogate models. (3) Thanks
to the improved SMAS framework, the surrogate modeling works as expected.
There is a little degradation compared to the simulation results in Table 4 for some
problems, but GN5, GN7, and GN8 show better results than the simulation results.
The advantages of using surrogate models in terms of solution quality have been
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Table 5 Statistics of the best function values obtained by the GPEEC framework
without the ASU method for GN1–GN9 over 20 runs (Neval function evaluations)

Problem Best Worst Mean Median Std Rinf

GN1 �15.00 �12.93 �14.29 �14.85 0.94 0

GN2 �0.77 �0.38 �0.53 �0.53 0.12 0

GN3 �30665.53 �30664.01 �30664.33 �30664.21 0.43 0

GN4 �6956.70 �6769.34 �6902.68 �6915.19 58.81 0

GN5 24.31 25.01 24.39 24.32 0.22 0

GN6 �0.0958 �0.0932 �0.0954 �0.0958 8.66e�4 0

GN7 680.63 680.63 680.63 680.63 4.56e�4 0

GN8 7056.87 7583.43 7290.59 7247.08 192.75 0

GN9 1.42e�10 0.014 0.006 0.007 0.006 0

Rinf refers to the percentage of runs providing an infeasible final result

Table 6 Statistics of the best function values obtained by GPEEC for GN1–GN9 over 20 runs
(Neval function evaluations)

Problem Best Worst Mean Median Std Rinf M/S

GN1 �14.99 �12.88 �14.36 �14.96 0.98 0 1610/17 %

GN2 �0.75 �0.40 �0.51 �0.48 0.12 0 1623/27 %

GN3 �30665.42 �30661.14 �30663.79 �30664.21 1.21 0 1869/36 %

GN4 �6961.54 �6764.85 �6886.90 �6898.43 75.31 0 0/0

GN5 24.31 25.03 24.60 24.32 0.36 0 4816/56 %

GN6 �0.0958 �0.0918 �0.0952 �0.0957 0.0012 0 666/29 %

GN7 680.63 680.63 680.63 680.63 9.27e�4 0 2216/58 %

GN8 7050.20 7310.41 7119.88 7097.64 89.20 0 3041/46 %

GN9 1.25e�9 0.72 0.08 2.39e�9 0.24 0 2038/47 %

Rinf refers to the percentage of runs providing an infeasible final result. M/S indicates the number
of surrogate model constructions using the ASU method, and the percentage compared to updating
every surrogate model in each iteration

discussed in [5, 16]. (4) Note that a fixed number of Neval function evaluations
are used and the convergence is earlier than that for most problems, which will
be illustrated later on.

7.2.4 The GPEEC Performance and the Effect of the ASU Method

At last, when also integrating the ASU method, the full GPEEC algorithm is tested.
Neval function evaluations are used. The results are in Table 6.

In terms of optimality, it can be observed that the results are comparable to the
results from Table 5, as well as with the SAPF results from Table 2. In terms of the
necessary number of surrogate modeling, less than half or about half the surrogate
modeling runs are used in most cases compared to not using ASU. For GN1 (13-
dimensional, 9 constraints), GN2 (20-dimensional), and GN9 (20-dimensional),
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when not using ASU, the surrogate modeling time often costs more than 15 h. When
using the ASU method, the surrogate modeling only costs a few hours. The ASU
method is especially useful when the exact evaluation is not very expensive but with
many constraints, or when the number of decision variables is quite large.

7.2.5 Comparisons

The SF method is widely used in constrained optimization; its main advantages
are its simplicity and efficiency [3]. To observe the speed enhancement of GPEEC,
GPEEC (Table 6) is compared with SF (Table 3). Note that only the objective
function values of the feasible runs of the SF method are used for comparison. In the
experiments, Neval evaluations are used for GPEEC, but most convergence happens
earlier than that. To mark the convergence, a threshold, ı, is used, which means that
after Nec evaluations, the current best solution is feasible and the improvement to the
objective function is less than ı after that. Thus, it can be considered that GPEEC
converges at Nec evaluations. Because the objective function values for different test
problems are in different scales (e.g., GN6 between �0.1 and 0, GN8 about 104),
the selected ı are shown in Table 7.

To make the comparisons, the following information for GPEEC and SF are
reported.

• GNec : the median of the best function values obtained using Nec exact function
evaluations by GPEEC;

• SNec : the median of the best function values obtained using Nec exact function
evaluations by SF;

• HNec : the number of exact function evaluations needed for SF to achieve GNec . If
the final results of the SF method after � � Neval evaluations are worse than the
GPEEC result with Nec exact function evaluations, we denote this as N.A.

The comparison results are shown in Table 8. It can be seen that 6 out of 9 of the
problems, tens to even more than a hundred times less exact function evaluations
are needed by GPEEC.

Table 7 ı for GN1–GN9 Problem GN1 GN2 GN3 GN4 GN5

ı 0.1 0.01 1 1 0.1

Problem GN6 GN7 GN8 GN9

ı 0.001 0.1 1 0.1
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Table 8 Comparisons between GPEEC and SF for GN1–GN9
over 20 runs

Problem Nec GNec SNec HNec Speedup

GN1 268 �14.9 �7.0 N.A. >150

GN2 1959 �0.47 �0.33 4880 2.5

GN3 209 �30663.7 �29961.1 840 4

GN4 134 �6898.4 �4520.9 1280 10

GN5 920 24.3 1008.4 24640 27

GN6 535 �0.0957 �0.0916 840 1.6

GN7 523 680.4 1738.5 8040 15

GN8 992 7097.6 14615.3 N.A. >40

GN9 724 0.094 148.29 12800 18

7.2.6 Discussions on Parameter Setting

The parameters of GPEEC can be classified into three categories: (1) parameters
for the improved SMAS framework, (2) parameters for the DM method, and (3)
parameters for the ASU method.

The parameter setting for the SMAS framework has followed the practice in
[17, 20] where the setting has been discussed in detail.

As to parameter setting in the DM method, " is the threshold for Dk.P/ to
measure the diversity of the current population on xk. A small number is needed
depending on the range of each decision variable. " D 0:1 is used assuming a
Œ�10; 10� search region (we can make this assumption come true by scaling). T
is used to define the division of the two search stages. In the late stage, the search is
conducted mainly in the feasible region and a substantial effort is made to optimize
the objective function. Although every solution in the population P will be feasible
after � feasible solutions have been generated due to the ranking rules used in
Section 4.1, experiments show that many child solutions produced from P are still
infeasible until after 3 � � to 4 � � feasible solutions have been generated. Based
on this observation, T is set to be 5 � �. 	 is used to determine whether a variable is
trapped or not. A big 	 value may not be necessary. It is suggested to be from 5 to
10. In the following, GN5 and GN7 are used as examples to test the impact of T and
	. It can be seen from Table 9 that if 	 and T are selected in the suggested ranges,
the DM method performs well and is robust.

As to parameter setting in the ASU method, note that this method is only used
when the number of generated feasible solutions is larger than T and the surrogate
models for constraint functions are used to differentiate feasible solutions and
infeasible ones. � is used to judge if the search is near the boundary of the feasible
region. A small � value may lead to a wrong judgement, while a large � value may
cause unnecessary model updating and thus may waste computational efforts. It is
suggested to be set around 5. tc defines how often the surrogate model for each
constraint function must be updated regularly. Considering the help of � and the
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Table 9 Statistics of the best function values obtained by the GPEEC framework
without the ASU method for GN5 and GN7 over 20 runs (Neval function evaluations)
with different DM parameters

Problem Best Worst Mean Median Std Rinf

GN5, 	 D 5, T D 5 � � 24:31 25:21 24:61 24:32 0.35 0

GN5, 	 D 10, T D 4 � � 24:31 25:05 24:57 24:34 0.34 0

GN5, 	 D 10, T D 6 � � 24:31 25:01 24:47 24:32 0.30 0

GN7, 	 D 5, T D 5 � � 680:63 680:63 680:63 680:63 0.0014 0

GN7, 	 D 10, T D 4 � � 680:63 680:63 680:63 680:63 2.7e�4 0

GN7, 	 D 10, T D 6 � � 680:63 680:63 680:63 680:63 4.4e�4 0

Rinf refers to the percentage of runs providing an infeasible final result

Table 10 Statistics of the best function values obtained by GPEEC for GN5 and
GN7 over 20 runs (Neval function evaluations) with different ASU parameters

Problem Best Worst Mean Median Std Rinf

GN5, tc D 20, W D 5 24:31 25:07 24:45 24:32 0.28 0

GN5, tc D 10, W D 3 24:31 25:01 24:59 24:36 0.35 0

GN5, tc D 10, W D 7 24:31 25:01 24:47 24:33 0.27 0

GN7, tc D 20, W D 5 680:63 680:63 680:63 680:63 5.3e�4 0

GN7, tc D 10, W D 3 680:63 680:63 680:63 680:63 8.8e�4 0

GN7, tc D 10, W D 7 680:63 680:64 680:63 680:63 0.0027 0

Rinf refers to the percentage of runs providing an infeasible final result

main goal of the late stage, the regular updating does not need to be very frequent. tc
is suggested to be set between 10 and 20. In the following, GN5 and GN7 are used as
examples to test if the suggested setting is robust. It can be observed from Table 10
that GPEEC performs well when � and tc are not very far from the suggested values.
When using � in the suggested range, tc is not sensitive.

7.3 mm-Wave IC Design Optimization Example

This section provides a real-world engineering application of GPEEC: the design
optimization of a 60 GHz power amplifier in a 65 nm CMOS technology. At mm-
wave frequencies, the simple equivalent circuit models typically used for passive
components at low frequencies are no longer accurate, and the way left to the
designers is “trial and error.” Therefore, the global optimization of mm-wave ICs
is very important. However, electromagnetic (EM) simulation is needed in the
evaluation of candidate designs, which is computationally expensive. In power
amplifier design, the 1 dB compression point (P1 dB), the power added efficiency
(PAE@P1 dB) and the power gain (Gp) are key performances. In practical design,
the goal is often to maximize P1 dB or PAE@P1 dB, with constraints on the other two
specifications.



An SAEA for Computationally Expensive Constrained Optimization 367

Fig. 2 Schematic of the 60 GHz power amplifier [33]

The problem is defined in (11). The circuit configuration is shown in Figure 2.
The design parameters (in total 18) include the inner diameters and metal width
of the primary and secondary inductors of every transformer (in total three trans-
formers; each transformer has two inductors), 5 biasing voltages and the number
of fingers of the driver stage. The inner diameter has a range from 20 to 100 
m.
The metal width has a range from 3 to 10
m. The 5 biasing voltages have ranges
from 0.5 to 2 V. The number of fingers can be 2/3/4. This is a simulation-based
(black-box) optimization problem, so no explicit analytical expression is available.
A Xeon 2.66 GHz computer is used for the synthesis (design optimization). GPEEC
is programmed in MATLAB and the simulation is carried out in Cadence and
ADS-Momentum (IC and electromagnetic simulation software). All the programs
are run on the Linux system. The evaluation of a candidate design of this power
amplifier needs 10–13 min using the simulation software to obtain the values of
P1 dB, PAE@P1 dB, and Gp. The total computational time is restricted to about 2 days
to reach the practical requirement of a design automation software tool acceptable
in industry.

maximize PAE@P1 dB

subject to P1 dB � 13 dBm
Gp � 10 dB

(11)

The initial number of samples ˛ is set to 70. All the other settings are the same
as those used in the benchmark problem tests. After 200 exact function evaluations,
GPEEC gets the optimized result: P1 dB is 14.34 dBm, PAE@P1 dB is 9.52 % and Gp

is 10.47 dB. The time cost is 41.6 h (wall clock time).
The high quality of this optimized result by GPEEC can be verified by comparing

to a manual design [33] using the same circuit structure in the 65 nm technology.
The reference result is as follows: P1 dB is 10.8 dBm, PAE@P1 dB is 4.5 % and Gp is
10.2 dB. It can be seen that the result of GPEEC fully dominates the experience-
based manual design result on all the performances. To verify the efficiency of
GPEEC, the SF method with the same DE optimizer is used and the optimization
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time is set to 10 days. The result is P1 dB D 9:44 dBm, PAE@P1 dB D 7:95 %, and
Gp D 12:60 dB. It can be seen that the P1 dB constraint is not satisfied and the PAE
value is much worse than that obtained by GPEEC.

8 Conclusions

This chapter has presented the GPEEC algorithm for dealing efficiently with
computationally expensive inequality constrained optimization problems, which is
of great importance for the industry. GPEEC has the ability to handle complex
constraints in an efficient manner. Thanks to the improved SMAS framework and
the ranking method, an efficient SAEA for constrained expensive optimization has
been constructed. Thanks to the DM method, complex constraints can be handled
effectively under the improved SMAS framework. The ASU method saves more
than half the computational effort on surrogate modeling for most test problems
compared to updating the surrogate models in each iteration, which is especially
useful for problems with several tens of variables or/and with many constraints.
In addition, although the ideas behind the key components of GPEEC are not
easy, their implementation is straightforward, showing GPEEC potential usage in
industrial applications. Experimental studies on a set of widely used test problems
have shown that comparable results in terms of optimality can be obtained when
compared to a SAPF method (without surrogate model), and that several tens to
more than one hundred times less exact function evaluations are needed compared to
an efficient SF method. GPEEC is also applied to a mm-wave IC design optimization
problem and have obtained a high-performance result with an affordable amount of
computational effort.

Appendix

Benchmark test problems:
GN9

minimize f .x/ D 1 C Pd
iD1

.100�xi/
2

4000
� Qd

iD1 cos. .100�xi/p
i

/

subject to g1.x/ D �20e�0:2

q
1
d

Pd
iD1 x2

i � e
1
d

Pd
iD1 cos.2�xi/

�5 � 0

g2.x/ D � P20
iD1 xi � 10 � 0

xi 2 Œ�6; 6�; i D 1; : : : ; 20

minimum W f .x�/ D 0

(12)
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