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Abstract In this chapter, the two primarily important highly nonlinear design
problems of the contemporary microwave engineering which are “Low Noise
Amplifier (LNA)”s and “Reflect-array Antenna (RA)”s are solved as “Design
Optimization problems.” For this purpose, firstly the design problem is defined
in terms of the feasible design variables (FDVs), the feasible design target space
(FDTS), both of which are built up by integrating the artificial intelligence black-
box models based upon the measurements or full-wave simulations and a suitable
metaheuristic search algorithm. In the second stage, feasible design target (FDT) or
objective function of the optimization procedure is determined as a sub-space of the
FDTS. Thirdly, the cost function evaluating the objective is minimized employing
a suitable metaheuristic search algorithm with respect to the FDVs. Finally the
completed designs are verified by the professional Microwave Circuitor3-D EM
simulators.
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1 Design Optimization of LNAs

1.1 LNA Design Problem

As the electronic industry moves towards higher integration and lower cost, RF and
wireless design demands increasingly more “concurrent” engineering. Typically,
today’s most receivers are hand-held or battery-operated devices; one of the major
challenges in these receivers is to design a low-noise amplifier (LNA) that has
very low power consumption and operates from a very low supply voltage with the
provided trade-off of noise measure and mismatch losses. Since the two transistor
configurations consume more power from the higher voltage supply than the single
transistor configurations, the two transistor configurations are unsuitable for this
type of applications. Thus, after selection of a transistor among the available high
technology transistors, then a low-noise design approach consists of trading off
among the often contrasting goals of low noise, high gain, and input and output
match within the device operation domain.

The design optimization method used for a microstrip LNA is given in a flow
chart in Fig. 1. However the method can easily be applied to the LNAs using
different wave guiding systems.

1.2 Feasible Design Target Space (FDTS)

Since the design optimization of an LNA necessitates the physical limits and
compromise relations of the design hexagon consisting of bias voltage VDS, bias
current IDS, noise F, gain GT, input VSWR Vin, and output VSWR Vout belonging
to the employed transistor, in the other words, the “Feasible Design Target Space
(FDTS)” must be constructed as an important stage of the design optimization
procedure. Certainly, within the optimization process, one can easily embed the
desired performance goals without knowing the physical realizability conditions
and compromise relations appropriately, but in this case, the device is utilized either
under its performance potential or unrealizable requirements that result in failure in
the design.

The block diagram of the FDTS is given in Fig. 2 where all the compatible
performance quadrates (noise figure F, input VSWR Vin, output VSWR Vout,
transducer gain GT); the corresponding operation bandwidth B and the source ZS

and load ZL terminations are obtained as the continuous functions of the device’s
operation parameters which are bias condition (V, I) and frequency at a chosen
configuration type. Let us consider the most commonly used configuration which
is common source configuration. Firstly a soft model of the transistor is constructed
using either a suitable artificial intelligent network or an equivalent circuit built
by a parameter extraction method to obtain the device’s scattering S and noise N
parameters as the continuous functions of the operation parameters VDS, IDS, f.
Typical works for the S and N parameters modeling of a microwave transistor can
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Fig. 1 Design flow chart of the microstrip LNA

be found in [1–7]. Secondly, potential performance of the microwave transistor is
analyzed in terms of the S and N parameters at a chosen bias condition. This analysis
has been achieved by solving the highly nonlinear performance equations of the
transistor using either the analytical approaches based on the constant performance
ingredient circles [8–14] or optimization methods without using the complicated
microwave theory [15–17].
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Fig. 2 Block diagramme for performance data sheets
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Fig. 3 3D EM simulation-based SVRM model of the microstripline

1.3 Feasible Design Variables (FDVs)

The second stage is modeling of the feasible design variables (FDVs) using the 3-D
EM simulation-based support regression vector machine (SVRM). In this modeling,
one-to-one mapping is built between the input domain consisting of the microstrip
width W, substrate ("r, h) parameters, and frequency f, and the output domain
defined by the equivalent transmission line parameters which are the characteristic
impedance Z0 and effective dielectric constant "eff (Fig. 3) [18, 19].
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1.4 Design of Input and Output Matching Circuits

Final stage is the design of the input and output matching circuits. Transistor with
the Darlington equivalencies of the compatible performance terminations ZS, ZL are
given in Fig. 4. Input IMC and Output Matching Circuit (OMCs) are designed using
either the gain or port impedance optimization of the two independent matching
circuits given in Fig. 5 by either a gradient or metaheuristic algorithm. In the next
subsection design strategies of LNA are given briefly.

1.5 Design Strategies

Here to fore the two different design strategies can be put forward for the
LNAs: In the first strategy, considering F(ZS) and Vin(ZS, ZL) as the free vari-
ables, GTmin � GT � GTmax and the corresponding termination ZS, ZL couple are
determined solving the nonlinear transistor’s performance equations with either
analytical approaches using the constant performance ingredient circles or a con-
strained optimization problem. Thus, with the resulted Vout, the FDTS can be built
consisting of the compatible (F � Freq, Vin � 1, Vout � 1, GTmin � GT � GTmax) and
the associated ZS, ZL terminations [8–11, 15, 16].
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In the second strategy, only noise F(ZS) is considered as a free variable and the
nonlinear performance equations are solved for the input termination ZS satisfying
simultaneously both the maximum gain GTmax and the required noise F, again
either in the analytical way or as a constrained maximization problem. Then the
load ZL is obtained by the conjugate-matched output port Vout D 1 condition.
Mismatching at the input port can be adjusted by degrading either noise and
mismatching at the output port. Thus a different FDTS can be built up consisting of
the compatible (F � Freq, Vin � 1, Vout � 1, GTmin � GT � GTmax) and the associated
ZS, ZL terminations [12–14, 17].

Both design strategies are based on the following balance equation:

 
1 �

ˇ̌̌
ˇVin .ZS;ZL/� 1

Vin .ZS;ZL/C 1

ˇ̌̌
ˇ
2
!
:Gop .ZL/ D

 
1 �

ˇ̌̌
ˇVout .ZS;ZL/� 1

Vout .ZS;ZL/C 1

ˇ̌̌
ˇ
2
!
:Gav .ZS/

(1)

Where Gop(ZL) and Gav(ZS) are the operation and available power gains, respec-
tively, which will be taken into account in the study case. Typical LNA designs
based on these design strategies using either gradient or metaheuristic algorithms
can be found in [20–26]. In the next section, a front-end amplifier design worked
out by our research group in [26] will briefly be given as a case study based on the
above methodology.

1.6 Case Study: HBMO Design Optimization of an LNA
with Support Vector Microstrip Model

In this section, a HBMO design optimization procedure is given in subject to
the design flow chart in Fig. 1 for a front-end amplifier so that all the matching

microstrip widths, lengths f
n�!

W;
�!̀o

g can be obtained to provide the (ZS, ZL)

terminations on a given substrate ("r, h, tan•) for the maximum power delivery and
the required noise over the required bandwidth of a selected transistor, respectively
[26]. Thus, in the following subsection all the stages of the design procedure will be
considered.

1.6.1 Feasible Design Target (FDT)

In this LNA design optimization problem, the design objective is to ensure the
maximum output power delivery and the required noise. Thus, hereafter the
problem of determination of the source impedance ZS D rS C jxS of a microwave
transistor can be described as a mathematically constrained optimization problem
so that the transducer gain GT(rS, xS, rL, xL) will be maximized simultaneously
satisfying the required noise figure F(rS, xS) provided that the stability conditions
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are ensured at each sample frequency throughout the required operation bandwidth.
The transistor’s load impedance ZL can be determined using the balanced Eq. (1)
by the conjugate-matched output, that is, Vout D 1 () ZL D Z�

out .ZS/. Thereby
the multi-objective cost function of this constrained optimization process can be
expressed as:

Cost .rS; xS; fi/ D e� 1GAV .rS; xS;fi/ C  2
ˇ̌
F .rS; xS; fi/� Freq .fi/

ˇ̌
(2)

with the following constraints for the physical limits and stability of the transistor

<e fZSg > 0; <e fZLg > 0; Freq � Fmin (3)

<e fZing D <e

�
z11 � z12 z21

z22 C ZL

�
> 0; <e fZoutg D <e

�
z22 � z12z21

z11 C ZS

�
> 0

(4)

Here the performance measure GT, GAV, and F functions can be expressed in terms
of the transistor’s z-parameters and ZS, ZL terminations as follows [27]:

GT D PL

Pavs
D GAV .ZS/ :Mout .ZS; ZL/ (5)

where

GAV .ZS/ D jz21j2
jz11 C ZSj2

rS

rout
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ˇ̌̌
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ˇ̌̌
ˇ
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ˇ̌2ˇ̌
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ˇ̌2
rS

(7)

Besides, 1 and 2 in the Eq. (2) are the weighting coefficients which can be chosen
during the optimization process by trial, which in our case are taken as unity. Thus,
the smaller cost is the fitter optimization process we have.

Here, for the ultra-wideband LNA design, the three alternatives are consid-
ered for the required noise figure Freq f of the selected transistor NE3512S02
using the honey bee mating optimization (HBMO): (1) Freq(!i) D Fmin(!i); (2)
Freq(!i) D constant D 1.0 dB; (3) Freq(!i) D constant D 1.5 dB (Fig. 6).

In Fig. 6, the maximum gain variations of the transistor NE3512S02 for the
matched output against the input mismatching Vin are given as compared with
the analytical counterparts [14, 15]. Besides the corresponding terminations of the
maximum gain for the matched output and F(f ) D 1 dB are given in Tab. 1.
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Fig. 6 Maximum gain against input VSWR Vin and for j¡outj D 0 for NE3512S02 at the bias
condition VDS D 2 V, IDS D 10 mA

Table 1 The source ZS and load ZL terminations for the maximum gain for j¡outj D 0 and
F(f ) D 1 dB for NE3512S02 at the bias condition VDS D 2 V, IDS D 10 mA

f(GHz) Vin GTMAX(dB) Real(ZL) � Imag(ZL) � Real(ZS) � Imag(ZS) �

5 3.09 15:0 16.32 29:97 14.66 23:23

6 1.87 13:06 19.31 26:14 14.31 12:36

7 1.49 11:55 21.78 22:19 14.78 3:09

8 1.38 10:40 23.52 17:42 15.97 �5:00
9 1.36 9:43 25.35 12:18 18.08 �12:03
10 1.40 8:62 27.06 6:791 20.77 �18:72
11 1.49 7:92 29.34 0:872 24.72 �24:68
12 1.50 7:94 35.67 �5:91 35.37 �28:85

1.6.2 Design Objective for the Matching Networks

Thus, we have the transistor terminations solving the nonlinear performance
equations subject to the objective of Eq. (2–7). A novel metaheuristic the HBMO
is used in the solution procedure of the equations of Eq. (2–7) that will briefly
be given in the following section. In the design optimization procedure, the gain
of the input/output matching two-port terminated by the complex conjugate of the
(ZS(!i)/ ZL(!i)) as given in Fig. 5 is maximized over the required bandwidth:
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cost
� �!

W;
�!̀�

D Minimum
X

i

�
1 � GTi

�
fi;

�!
W;

�!̀� �
(8)

where
n�!

W;
�!̀o

is the design variable vector which consists of the microstrip widths

and lengths of the problem matching circuit and GTi is the transducer power gain
of the same matching circuit at the sample frequency fi. In the worked example,
T-type matching circuits are considered to be designed. The proposed method can
be applied without any difficulty to another different type of matching circuit. In that
case, the gain function GTi given in Eq. (8) should be evaluated for the considered
matching circuit.

1.6.3 Design Variables: Microstrip Widths and Lengths fW; `g

In this design optimization procedure, the microstrip widths and lengths
n�!

W;
�!̀o

on a selected substrate f"r, h, tanıg are directly used by the HBMO optimization of
the LNA (Fig. 1) and the cost function (Eq. 8) is evaluated by means of the SVRM
microstrip model (Fig. 1). The 3-D SONNET-based SVRM model of the microstrip
[18, 19] is employed that provides an accurate, fast, and cost effective generalization
from the highly nonlinear discrete mapping from the input domain M (R4) of the
microstrip width W, substrate f"r, h, tanıg, and frequency f to the output domain of
the characteristic impedance Z0 and effective dielectric constant "eff .

Here, the range of input and output domains is given as f0.1 mm � W � 4.6 mm,
2 � "r � 10, 0.1 mm � h � 2.2 mm, 2 GHz � f � 14 GHzg and
f3�� Z0 � 240�g and f1:5 � "eff � 9:7g, respectively.

1.6.4 Building Knowledge-Based Microstrip SVRM Model

Knowledge-based microstrip SVRM is given as block diagram in Fig. 3 where the
quasi-TEM microstrip analysis formula is used as a coarse SVRM model database
by means of which nfreq � n" � nh � nw D 5 � 5 � 4 � 10 D 1000

��!x i;
�!y i

�
data

pairs are obtained to train the coarse SVRM, where nfreq, n", nh, nw are the number
of the samples for the frequency, the dielectric constant, the substrate height and
width, respectively. Tab. 2 gives the accuracy of the “Z0” coarse model with the
number of the SVs and the radius of selection tube –. 402 and 367 fine SVs obtained
from 3-D SONNET simulator are used to train the fine “Z0” and “"eff ” SVRMs,
respectively, with the accuracy at least 99.4 % (Fig. 7b). Thus the substantial

Table 2 Accuracy of the fine
SVRM model

Epsilon (–) Number of SVs Accuracy (%)

0.05 583 99.4
0.07 402 98.6
0.1 279 97.9
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reduction (up to 60 %) is obtained utilizing sparseness of the standard SVRM in
number of the expensive fine discrete training data with the negligible loss in the
predictive accuracy and the resulted fine microstrip SVRM model can be considered
as accurate as the 3-D EM simulator and as fast as the analytical formulae. The
typical comparative prediction curves of the microstrip SVRM model take place in
Fig. 7a–d give Z0 and "eff variations with respect to the microstrip width W resulted
from the fine SVRM model for the dielectrics at f D 4GHz and 8 GHz, respectively.

1.6.5 HBMO with Royal Jelly for the Amplifier’s Matching Network
Design Problem

HBMO is a recent swarm-based optimization algorithm to solve highly nonlinear
problems, whose based approach combines the powers of simulated annealing,
genetic algorithms, and an effective local search heuristic to search for the best
possible solution to the problem under investigation within a reasonable computing
time.

The flow diagramme of the algorithm is given by Fig. 8. The user-defined
parameters of the algorithms are the number of the Drone bees NDrone, maximum
iteration number tmax, sizes of the genetic inheritance of the Master Queen QM,
and each Drone bee Dj, mQ, mD; maximum number of feeding times of the Master
Queen QM with Royal Jelly NRJ, maximum Emax and minimum Emin energies of the
Queen at the start and end of the mating flights, respectively, and the required cost
costreq. In the algorithm, the numbers of the Hive NHive, Brood NBrood, LarvaNLarva,
Fertilization Nfertilization are set equal to NGen which is taken to be equal to tmax and
the total egg number NEgg D (NGen) 5.

The proposed HBMO algorithm is used effectively and efficiently to design a
front-end amplifier. The working mechanism of the HBMO version can briefly
be summarized as follows (Fig. 8): In the proposed HBMO algorithm, after
initialization, a genetic pool is built by the mating process of a single queen with the
drone bees, governed by the probabilistic annealing law, thus a complete solution
space between the predefined lower and upper limitations is generated in the form
of the queen’s and the successful drones’s genetic inheritances. Here the entire
colony is divided into the Nhive hives that facilitates “Sorting” process applied to
the sub-colonies step by step, in the other words the search for the new candidates
is performed in reduced number of sub-matrices instead of making a search for
a single gigantic matrix. This gains the algorithm both simplicity and efficiency.
The mating process is also simplified to only energy-based probabilistic decision
rule to enable the fittest solutions. Furthermore, a sub-solution space as the “Egg-
Population” is built by crossover processing of the entire huge solution space of the
genetic pool. Accelerated exploration in the form of the five steps is applied into
the egg population to obtain the best solution: 1-Fertilization (Nfertilization), 2-Larva
(NLarva), 3-Brood (Nbrood), 4-Hive (NHive), and 5-Generation (NGen), size of each of
these steps is equal to maximum iteration number which is taken to be equal to
20 in our application. The accelerated exploration is based on the “sorting” step
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Fig. 9 Mismatching at the input port using standard metaheuristic algorithms

by step and can briefly be summarized as follows: In each step, the current entire
population is divided into the subpopulations having (NGen) members, then the best
member with the minimum cost value of each subpopulation is promoted to the next
step, and the rest members are discarded. In this final step, only (Wj, `j) couples
having the minimum cost of the competition will be chosen as the new Master
Queen bee which will take new mating flights to give born to new members of
the next generation of the colony. Besides “Royal Jelly” feed is used in algorithm
to make a local search in order to improve the fitness of the Master Queen bee at
the end of the each generation or iteration. Thus comparison with the counterpart
population-based algorithms (Figs. 9, 10, 11, 13, 14 and 15) verified that a robust
and fast convergent algorithm with the minimal problem information is resulted for
the most successful design of a front-end amplifier.

1.6.6 Implementation

The user-defined parameters of the HBMO algorithms are set to the following values
in the design of the front-end amplifier: NDrone D 20, tmax D NGen D 20, mQ D 1000,
mD D 100, NRj D 1000, Emax D 1, Emin D 0.2, costreq D 0.02.

In the implementation, NE3512S02 is selected as the microwave transistor and
maximum gain GTmax(f ) variations constrained by the minimum noise figures
Fmin(f ), F D 1 dB and F D 1.5 dB are evaluated numerically using the HMO and
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compared the analytical counterparts [14, 15] in Fig. 6 and the transistor source ZS

and load ZL terminations are given for F D 1 dB in Tab. 1. The gain performance
GTmax (f) constrained by F D 1 dB at the bias condition (2 V, 10 mA) is designed on
the substrate of Rogers 4350 ("r D 3.48, h D 1.524 mm, tan•D 0.003, t D 0.001 mm)
along the bandwidth of 5–12 GHz. The solution space of the T-type matching
circuits in Fig. 5 is shown in Tab. 2. Impedance mismatching at the input and
output ports are given as compared with the genetic algorithm (GA), particle swarm
optimization (PSO), and HBMO with and without Royal Jelly in Figs. 9 and 10,
respectively. The resulted gain, noise performances, input and output reflections
of the amplifier designed by HBMO with Royal Jelly take place by are given in
Figs. 11, 12, 13, and 14, respectively, as compared with the targeted performances
and obtained by the AWR circuit and 3-D EM simulators. Furthermore the cost and
execution time with iteration number of the used counterpart’s algorithms which
are GA, PSO, and HBMO with and without Royal Jelly are given in Fig. 15. The
optimization parameters of the studied algorithms are given in Tab. 5, the parameters
of the PSO and GA are taken as their default values of the MATLAB optimization
tool, MATLAB 2010b. The cost values and execution times at the 20th iteration of
a random run are given in Tab. 3 performed by the Intel Core i7 CPU, 1.60 GHz
Processor, 6 GB RAM (Tabs. 4, 5 and 6).

5 6 7 8 9 10 11 12
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Frequency (GHz)

N
oi

se
 F

ig
ur

e 
(d

B
)

HBMO & Royal Jelly
EC Simulation

Fig. 12 Synthesized noise performance of the T-type amplifier



Design Optimization of LNAs and Reflectarray Antennas Using the Full-Wave. . . 277

5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (GHz)

In
pu

t 
R

ef
le

ct
io

n

HBMO & Royal Jelly
EC Simulation
EM Simulation

Fig. 13 Input reflection of the T-type amplifier

5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (GHz)

O
ut

pu
t 

R
ef

le
ct

io
n

Target
 HBMO & Royal Jelly
EC Simulation
EM Simulation

Fig. 14 Output reflection of the T-type amplifier



278 F. Güneş et al.
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Table 3 Benchmarking of
cost variation for 10 tries at
20th iteration for all
algorithms

Algorithm Worst Best Mean

HBMO and Royal Jelly 0.29 0.12 0.18
HBMO 0.9 0.65 0.74
GA 1.27 0.95 0.99
PSO 1.15 0.9 0.96

Table 4 Solutions of the T-type input and output microstrip match-
ing elements for the maximum output power and the noise figure
F(f ) D 1 dB

W1(mm) W2(mm) W3(mm) W4(mm) W5(mm) W6 (mm)

4.58 4.99 4.32 1.28 3.79 4.13
`1 (mm) `2 (mm) `3 (mm) `4 (mm) `5 (mm) `6 (mm)
13.93 5.37 0.77 1.73 5.65 14.36

Table 5 Benchmarking at
20th iteration

Algorithm Cost Execution time(Sec)

HBMO and Royal Jelly 0.17 84
HBMO 0.77 71
PSO 1.15 84
GA 1.05 89
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Table 6 User-defined parameters of the algorithms

Algorithm Population Maximum iteration Special parameters

HBMO and Royal Jelly Iteration 5 25 NDrone D 20, Emax D 1,
Emin D 0.2, NRJ D ˙0.01

HBMO Iteration 5 25 NDrone D 20, Emax D 1,
Emin D 0.2

GA 30 25 Gaussian mutation
PSO 30 25 Learning factors c1 D c2 D 2

1.7 Summary

In this part of the chapter a front-end amplifier is formulated as a constrained
optimization problem each ingredient of which is carried out rigorously on the
mathematical basis. The significance of the work for the microwave circuit theory
can mainly be itemized as follows:

(1) First of all, the design needs solely the fundamental microwave circuit
knowledge; (2) Design target is feasible based on the potential performance of
the used active device that is obtained by solving numerically the nonlinear gain,
noise, and input and output mismatching equation using a metaheuristic algorithm
subject to the design objective; (3) In the design of the input and output microstrip
matching circuits, the cost effective microstrip SVRM model is used as a fast and
accurate model so that it facilitates to obtain directly all the matching microstrip

widths, lengths
n�!

W;
�!̀o

on a chosen substrate to satisfy the feasible design target

(FDT) over the required bandwidth of a selected transistor; (4) Microstrip matching
circuit in any configuration can be easily synthesized by either gradient/nongradient
optimization.

It can be concluded that the paper presents an attractive design method for a
front-end amplifier design based on the transistor potential performance, and it can
be adapted to design of the other types of linear amplifiers.

2 Design Optimization of Reflectarray Antennas

Reflectarray antenna (RA) is able to provide equivalent performance of a traditional
parabolic reflector, but their simple structures with the low profiles, light weights,
and no need any complicated feeding networks. This can be achieved by designing
each RA element to reflect the incident wave independently with a phase compen-
sation proportional to the distance from the phase center of the feed-horn to form
a pencil beam in a specified direction (™0, ¥0) as is well-known from the classical
array theory. Thus, “Phasing” is very important process in designing reflectarray. In
literature different approaches of compensating the phase of each element have been
proposed, however, phasing method using the variable size patches is preferable
choice in many designs due to its simplicity [28, 29].
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Since it is simple to manufacture the microstrip RA on a single layer, in order
to satisfy requirements as the capability to radiate a shaped beam or multi-beams,
or also to enhance the frequency behavior and bandwidth, the advanced patch
configurations are necessary to be worked out in which the structure has a lot of
degrees of freedom and all concur to the performances of the whole antenna. The
management of different parameters and the need of satisfying requirements that
could be also in opposite each other could however make the design of a reflectarray
quite complex. Therefore first of all for a computationally efficient optimization
process, an accurate and rapid model for the reflection phase of a unit element is
needed to establish it as a continuous function in the input domain of the patch
geometry and substrate variables, then it could be convenient to carry this model out
adopting a hybrid “global C local” search method to find the best solution among
all the possible solutions.

Thus, the systematic design optimization procedure for the Minkowski RA is
presented in this chapter. It can briefly be summarized in the following steps: The
first step is devoted to the discretization of the 5-D Minkowski space of (m, n,
"r, h, f ) to obtain the training and validation data for MLP NN. In the next part,
the gain and bandwidth optimization of MLP NN model with respect to the input
variables will be presented using the hybrid combination of Genetic and Nelder-
Mead algorithms. In addition, the sensitivity and yield analyses are performed for
the tolerance analysis in order to specify the tolerance limits of optimized design
parameters. Design and performance analysis of the Minkowski RAs with the
optimized or non-optimized antenna parameters will be taken place in the fourth
and fifth sections, respectively. Finally the paper ends with the conclusions.

2.1 Reflection Phase Characterization of a Minkowski Element

2.1.1 Minkowski Space

In the design of microstrip RA, the shape and geometry selection of the RA element
is the crucial part as well as the substrate properties chosen. In this work, the
geometry of radiating element has been proposed to be a resonant element shape
for a periodic RA structure, which is a first fractal type, as called the Minkowski
shape. Fig. 16a shows the geometrical representation of Minkowski shape patch
element.

The relationship between the Minkowski parameters is formulated as:

n D s

m=3
; 0 � n � 1 (9)

In Eq. (9), s is the indention and m is the width of the patch, respectively,
and n refers the indention ratio. The reflection response of unit cell and phase of
reflected wave are generated by the 3-D CST MWS-based analysis implemented
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Fig. 16 (a) Minkowski patch geometry, (b) The H-wall waveguide simulator

to the H-wall waveguide simulator which is shown in Fig. 16b. The top and
bottom surfaces of the H-wall waveguide simulator are perfectly electric conducting
walls, while the right and left walls are perfectly magnetic field walls [29]. The
vertically polarized incoming waves will be incident normally onto the element at
the end of the waveguide at the broadside direction and then scattered back also
at the broadside direction with a set of amplitude and phase information. The 5-D
discretized Minkowski space of (m, n, "r, h, f) is constructed by totally 5400 samples
to be used in the training and validation of the MLP NN model using the H-wall
waveguide simulator analyzed by 3-D CST MWS as follows:

The operation bandwidth of 8–12 GHz is swept as the intervals of 1 GHz and the
resulted number of the sample frequencies is fs D 5. Then, Minkowski sampling
matrix (Fig. 17) is generated as n s�ms for each sampled substrate properties ("r, h)
at each sampling frequency where n s D 6 and ms D 5 are the number of samples
for the indention factor and patch width within the ranges of 0:15 � n � 0:9

and m ˙ .�m=m/max D m ˙ % 20 where m is the resonant length at 11 GHz,
respectively. Simultaneously the substrate thickness h is sampled as the intervals of
0.5 mm between them 0:5 mm � h � 3 mm and the total number of the thickness
sampling is h s D 6. In addition, the dielectric permittivity of substrate

�
"r) is totally

sampled "s D 6 times between 1 � "r � 6: Thus, the entire Minkowski space is
discretized totally into the "s � fs � hs � ms � ns D 5400Minkowski configurations
[30–32].

2.1.2 The Modeling of MLP NN

The employed MLP NN model of Minkowski patch, which is generalization
process, is depicted in Fig. 18. The MLP NN has the two hidden layers each of
which consists of 10 neurons activating by the tangential sigmoid function. The
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m=5.951 mmm=5.41 mmm=4.869 mmm=4.328 mm

n=0.45

n=0.60

n=0.75

n=0.90

n=0.30

n=0.15

m=6.492 mm

Fig. 17 Sampling Minkowski patch variation matrix (ns x ms D 6 x 5 D 30)

input and output vectors (�!x ;�!y
�

are 5- and 1-dimensioned, respectively, and can

be expressed as Eq. (10):

�!x D Œm n "r h f �t; �!y D Œ'11�
t D '11

��!x ;�!w � (10)

where �!w is the weighting vector of the MLP NN given in Fig. 13. The output
function '11

��!x ; �!w � can be built using the MLP NN theory [8]. The weighting
vector �!w is determined by the optimization with mean-squared error (Eq. 11) over
the training data using the Levenberg-Marquardt algorithm [33, 34]:

MSE D
X
k2Tr

.'11k � dk/
2

(11)
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Fig. 18 The MLP NN structure for Minkowski patch

where Tr is an index set of the training data which consists of 3240
��!x ; '11� data

pairs corresponding to the patch lengths of 4.328, 5.41, and 6.491, the rest of 2160��!x ; '11� data pairs are used to validate the MLP NN model. The linear regression
scattering plots for the training and the validation process are given with their MSE
errors in Fig. 19.

Fig. 20 gives the 3-D view of the reflection phase variations with the patch width
m and the relative permittivity of substrate ("r) for the constructed and targeted
data at the fixed conditions of h D 1.5 mm, n D 0.6, f D 11 GHz. Some examples
of modeling performances are depicted in Fig. 21 where the constructed phasing
characteristics are compared with their targets. Furthermore thus, it can be inferred
that the MLP NN model works very well in generalization of the 5400

��!x ; '11� data
pairs to the entire domains to obtain the continuous Minkowski reflection phasing
function '11

��!x �. In the next section, this '11
��!x � function will be used directly

to determine the phase calibration characteristic and later it will be reversed to
synthesize the Minkowski RA in the Memetic optimization procedure.
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Fig. 19 Regression scattering plots for the complete Minkowski MLP NN model (a) training
(MSE Error D 9.9564x10�5) and (b) validation (MSE error D 1.7264x10�4)

Fig. 20 3-D view of reflection phase variations w.r.t. the patch width m and the relative
permittivity "r for the fixed conditions of h D 1.5 mm, n D 0.6, f D 11 GHz for (a) target and
(b) constructed data



Design Optimization of LNAs and Reflectarray Antennas Using the Full-Wave. . . 285

Minikowski patch width (m)

Minikowski patch width (m)
c

b

a

-350

-300

-250

-200

-150

-100

-50

0

-350

-300

-250

-200

-150

-100

-50

0

4,5 5,0 5,5 6,0

4,5 5,0 5,5 6,0

4,5 5,0 5,5 6,0

-350

-300

-250

-200

-150

-100

-50

0

Minikowski patch width (m)

R
ef

le
ct

io
n

 p
h

as
e 

(D
eg

re
e)

R
ef

le
ct

io
n

 p
h

as
e 

(D
eg

re
e)

R
ef

le
ct

io
n

 p
h

as
e 

(D
eg

re
e)

CST_eps=3
MLP_eps=3

MLP_eps=4

MLP_eps=5

MLP_eps=6

CST_eps=4

CST_eps=5

CST_eps=6

MLP_n=0.3
CST_n=0.3

MLP_n=0.6
CST_n=0.6

MLP_n=0.75
CST_n=0.75

MLP_n=0.9
CST_n=0.9

MLP_h=1.5
CST_h=1.5

MLP_h=2
CST_h=2

MLP_h=2.5
CST_h=2.5

MLP_h=3
CST_h=3

Fig. 21 Reflection phase characteristics for (a) h D 1 mm, n D 0.60, f D 11 GHz; taking dielectric
constant "r as parameter; (b) "r D 3, h D 1.5 mm, f D 11 GHz and indention ratio n is parameter
(c) "r D 3, n D 0.90, f D 11 GHz and substrate thickness h is parameter
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2.2 The Optimization Process

2.2.1 Objective Function

In the optimization process, a multi-objective procedure is established where
the phase calibration characteristic is selected among the phasing characteristics
obtained in the previous section as the one having the slower gradient and the wider
range with respect to the indention of patch (n) and substrate ("r, h) to achieve
the wider band and smaller susceptibility to the manufacturing errors. Thus, this
objective can be expressed as the sum of the three ingredients as follows:

Objective D Min
n; h; "r

( X
iDl;c;u

#i .n; h; "r/

)
(12)

with the following objective ªi at the frequency fi:

#iD

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:

6X
"rD1

�"rD0:01

3 mmX
hD0:5mm
�hD0:01mm

0:9X
nD0:15
�nD0:01

W1:2 1 .fi/CW2:2 2 .fi/CW3:2 3 .fi/

9>>>>>>=
>>>>>>;

(13)

where,

2 1 D e�. 'max�'min
360 / (14)

2 2 D j'max � 'centerj � j'min � 'centerj (15)

2 3 D 1-

�
�'center

�mcenter

	
(16)

In Eq. (14), 21 is used to maximize the phase range while 22;23 provide the
centralization of the characteristic with the angle of  /4. In Eqs. (14), (15), and
(16), ®max, ®min, and ®center, are the reflection phase values at mmax, mmin, and
mcenter for a certain (n, "r, h ) set, respectively, at the fi where l, c, u stand for the
lower, center, and the upper frequencies. In the optimization process, the operation
frequency range is defined as follows: fl D 10 GHz; fc D 11 GHz; fu D 12 GHz:
In Eq. (16), the phase difference between ®max and ®min is normalized by dividing
360 and (�®center/�mcenter) is the gradient of the phasing characteristic at the point
of (®center ,mcenter) which is aimed at to be equal to unity corresponding to optimum
angle  /4. All weighting coefficients in the objective function ªi at the frequency fi
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in Eq. (13) have been taken as unity. Optimization process is completed as soon as
the iteration number has reached to its maximum value or the predefined cost value.
In our case, the optimization ends when the cost value reaches to 0.4353 with the
optimized values of all the weighting coefficients.

2.2.2 The Memetic Algorithm: Hybrid Combination
of GA-NM Algorithm

A Memetic algorithm (MA) is essentially a combination of a population-based
global optimization algorithm with a local search [35]. Recently, Memetic algo-
rithms consisting of the hybrid GA-NM and bacterial swarm optimization BSO-NM
algorithms are successfully implemented to designs of the low-noise microwave
amplifier and Bow–Tie antennas in [36] and [37], respectively. In this work, a
Genetic Algorithm (GA) is used as a population-based global optimizer and a simple
local search algorithm called Nelder-Mead (NM) [13] is employed along with the
GA to reduce the cost of the solution at each iteration of the optimization procedure.

The GA uses the evolution operations which are the crossover, mutation, and
recombination together with the concept of fitness. The population is built by the
chromosomes as the solution candidates, binary encoded randomly varied as 0
and 1. The objective function corresponding to each chromosome is evaluated,
then chromosomes are ranked according to their fitness’s and the least fit ones
are discarded and the remaining chromosomes are paired at randomly selected
crossover points. In order to prevent the solution from being trapped into the local
minima, mutation process is applied by transforming a small percentage of the bits
in the chromosome from 0 to 1 or vice versa. The mutation process per iteration is
applied for 1 % of the chromosomes.

The MA used in our work can be briefly described through the following abstract
description [37]:

Begin
Population initialization
Local search
Evaluation
Repeat
Crossover
Recombination
Mutation
Local Search
Evaluation
Selection
Until termination criterion is satisfied
Return best solution
End
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Fig. 22 The convergence curves of the genetic and Memetic optimization

Here, the initial populations are usually generated in a random or controlled
manner and then the evolution of these populations is carried out by the genetic
operators such as crossover, mutation, and recombination. Local search is utilized
to reduce the cost of the resulted solution from the global optimization.

In our GA-NM application, the MATLAB [34] is used for the Memetic algo-
rithm with the selection stochastic uniform operators consisting of a population
(chromosome) of 60, number of generation of 900, crossover probability of
0.8 (or crossover fraction for reproduction is 0.8), and mutation probability of
0.001. Mutation function is constraint dependent. Crossover function is scattered.
Migration direction is just forward numbered 0.2. The convergence occurs very
quickly typically within the 30 iterations shortening 5 times as compared with the
60 iterations GA process, which takes 1 min and 12 s and 5 min and 41 s with Core
i7 CPU, 1.60 GHz Processor, 4 GB RAM depending on the initialization values. A
typical convergence curve is given in Fig. 22 [38].

2.3 Tolerance Analysis of the Optimized Parameters

The design parameters may usually change in a certain tolerance region during
the manufacturing process. Thus it is of interest to which percentage the design
specifications are fulfilled. Thus the yield analysis is applied to compute an expected
tolerance as percentage. In the implementation of yield analysis, variations in the
design parameters are assumed to be small so that the linearization via the sensitivity
analysis can be valid. For this reason a yield analysis can only be applied after a
successful run of the sensitivity analysis. In the sensitivity analysis, the derivatives
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of output function with respect to geometric and/or material design parameters can
be calculated without re-meshing the example. The first derivative of the network
function with respect to a design parameter can be calculated with the information of
the nominal value in a small neighborhood of that nominal value. Also the sensitivity
information is used for a more efficient optimization.

In this study, sensitivity analysis is applied to the optimum dielectric constant
"ropt D 3.164 by rounding up the other parameters, as nopt D 0.85, hopt D 1.8. Then
the yield analysis is applied to the results of the sensitivity analysis for the three
values of the standard deviation belonging to the dielectric constant. The graphics
for these results are shown in Fig. 23 [38].

As is seen from Fig. 23, the best tolerance is at the nominal design parameter
value with a lower and upper bound (�3*sigma, C3*sigma) of the dielectric
permittivity when the sigma is equal to 0.01. The upper and lower bound indicate
as the worst case limits of the tolerance for the dielectric property of substrate.
The substrate that has closest specifications to the optimized parameters had been
searched, and the two commercially available substrates which are Rogers RO3003
and RO4232 have been found. As is seen from Fig. 24, RO4232 is the fittest
substrate as commercially available for our optimized parameter result.

2.4 Design of the Variable–Size RA

2.4.1 Phase Compensation

In this study, the 15 � 15 variable sizes Minkowski RA with half-wave spacing
at resonant frequency of 11 GHz are designed. The radiation analysis has been
generated using available full-wave simulation tool of CST MWS. In the phase
compensation unit, a coordinate system has been used to determine the progressive
phase distribution on the microstrip reflectarray surface of M � N arbitrarily spaced
patches with a centered focal point that will produce a pencil beam in a direction of
normal to the surface [8]. Thus, the required phase to compensate path difference
4R(x) for a reflectarray element can be given as a function of its radial distance x
to the center and the operation frequency f as follows:

' .x; f / D �ˇ .�Rmax ��R.x// D �2�f

c
F

�q
1C .D=F/2=4 �

q
1C .x=F/2

	
(17)

where the minus sign expresses delay, c is the velocity of light. In Eq. (17) D and
F are the diameter and the focal length of the feed to the array center, respectively.
Quadrature symmetry characteristic of the phase compensation with respect to the
element position for the 15 � 15 reflectarray where frequency is considered as the
parameter and F/D is taken as 0.8.
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(sigma) values: (a) ¢D 0.01, (b) ¢D 0.05, (c) ¢ D 0.1 at f D 11 GHz
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2.4.2 Determination Size of Each Radiator

Size of each radiator is determined to meet the necessary compensation phase using
the phase calibration characteristic. For this purpose, the established ANN model
is reversed by inputting optimum values corresponding to the phase calibration
characteristic and while input m changes itself using the adaptable size 4m which
get exponentially smaller with an adaptation parameter £ as decreasing the squared
error as given in Fig. 25 [32].

2.5 Implementation

In the implementation stage, all the radiation performance analyses are made using
3-D CST Microwave Studio. The fully optimized X-band Minkowski reflectarray
antenna with the parameters "ropt D 3:1694, hopt D 1.7916 mm, nopt D 0.8438 is
designed using the general design procedure (Fig. 25) and its realized gain patterns
at the frequencies 10.5, 11, and 11.9 GHz are given in Fig. 26a. Furthermore for
the purpose of comparison, the realized gain patterns of an arbitrary non-optimized
RA antenna with the parameters of "r D 2.2, h D 1.5 mm, n D 0.90 at the same
frequencies are obtained with the same procedure and depicted in Fig. 26b and the
compared performance values take place in Tab. 7. In order to examine the influence
of dielectric property optimization, the gain variation with respect to the frequency
is obtained with the same optimized indention ratio nopt D 0.8438 and thickness
hopt D 1.7916 mm, but on some traditional substrates which are Taconic RF-35 with
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Fig. 25 Design flow chart for the optimum reflectarray antenna

"r D 3:5, Taconic TRF41 with "r D 4:1, Rogers TMM4 with "r D 4:5 and depicted
in Fig. 27. The performance values corresponding to Fig. 27 take place in Tab. 8,
Fig. 28 depicts the gain versus frequency variations of the optimized RAs designed
on the dielectric "ropt D 3:1694 and the traditional substrates. The performance
values belonging to Fig. 28 are given in Tab. 8 (Tab. 9).

2.5.1 Summary

Doubtlessly, microstrip reflectarrays are of prime importance in today’s antenna
technology, since they combine the advantages of both the printed phased arrays
and parabolic reflectors to create a new generation of high gain antennas.

In this part of the chapter, a robust and systematic method is put forward to be
used in the design and analysis of a Minkowski reflectarray. The most important
and critical stage of a reflectarray design is the design optimization of its element.



Design Optimization of LNAs and Reflectarray Antennas Using the Full-Wave. . . 293

20

a

b

10

0

-10

-20

-40 40

10.5  GHz
11.0  GHz
11.9  GHz

20-20 0

Theta (Degree)

R
ea

liz
ed

 G
ai

n 
(d

B
)

-40 40

10.5  GHz

11.0  GHz

11.9  GHz

20-20 0

Theta (Degree)

R
ea

liz
ed

 G
ai

n 
(d

B
)

20

10

0

-10

-20

Fig. 26 (a) Fully optimized RA with "ropt D 3:1694, hopt D 1.7916 mm, nopt D 0.8438; (b) Non-
optimized reflectarray with "r D 2:2, h D 1.5 mm, n D 0.90

Therefore, firstly a complete, accurate and fast MLP ANN model of a Minkowski
patch radiator is built based on the 3-D CST Microwave Studio MWS that takes
into account all the main factors influencing the performance of the Minkowski
RA. When the outputs of performed MLP ANN model and 3-D simulations are
compared, it is verified that the MLP is very accurate and fast solution method to
construct the highly nonlinear phasing characteristics within the continuous domain
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Table 7 Performance comparison of the fully optimized reflectarray with a non-optimized
reflectarray

Antenna
Frequency
(GHz)

Realized
gain (dB)

Side lobe
level (dB)

Angular width
(3 dB) (Deg.)

Optimized RA "ropt D 3.1694,
hopt D 1.7916, nopt D 0.8438

10.5 22.5 �12.5 7.9

11 25 �18.6 7.4
11.9 22.5 �13.2 7.1

Non-optimized RA "r D 2.2,
h D 1.5, n D 0.90

10.5 19.2 �13.2 8.8

11 24.4 �17.5 7.5
11.9 21 �12.4 6.3

Fig. 27 Realized gain versus frequency graphs for the fully optimized RA and the other RAs on
the different substrates with the optimized parameters nopt, hopt

of the geometrical and substrate parameters of the RA element and frequency.
All the stages of building the MLP ANN model and its utilization in design of
a Minkowski RA are given in details as a general systematic method that can be
applied to the differently shaped patch radiators.

Overall parameters of Minkowski RA including dielectric permittivity of the
substrate "r are optimized for an optimum linear phasing range of an ultra-wideband
RA in the X-band by applying a standard novel evolutionary hybrid combination of
Global Genetic (GA) and Local Nelder-Mead (NM) algorithms.

In addition to optimization process, the sensitivity and yield analyses are
performed as tolerance analysis in order to specify the tolerance limits of optimized
design parameters and the commercially available substrate options which are com-
patible with our optimized design parameters. The optimum dielectric permittivity
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Table 8 Comparison of the fully optimized RA and the other RAs designed on the
different substrates with same optimized parameters nopt, hopt

Realized gain (dB)

Frequency (GHz)

Fully optimized RA
"ropt D 3.1694,
hopt D 1.7916 mm,
nopt D 0.8438

Rogers RT5880
"r D 2.2,
hopt D 1.7916 mm,
nopt D 0.8438

Rogers TMM4
"r D 4.5,
hopt D 1.7916 mm,
nopt D 0.8438

10 17 13.2 17.7
10.5 22.5 18.2 22.3
11 25 23.9 23.5
11.5 24.3 24.7 18.5
12 21.2 23.5 8.5

Fig. 28 Gain variations of fully optimized RA with only patch geometry nopt optimized RAs on
the given dielectric permittivity "r and substrate thickness ˜

tolerance limits are qualified rounding up the values of the optimum substrate
thickness hopt and indention ratio of Minkowski microstrip patch nopt for the three
characteristic values of the standard deviation. Thus this tolerance analysis results
in the limits of design parameters and the proper commercial available dielectric
substrate as Rogers RO4232. Finally, a fully optimized 15 � 15 Minkowski RA
is designed as a worked example. Thus, its radiation characteristics are analyzed
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Table 9 Comparison of the fully optimized RA and RAs with the optimized Minkowski
shapes on the traditional substrates

Realized gain (dB)

Frequency
(GHz)

Optimized
reflectarray
"ropt D 3.1694,
hopt D 1.7916,
nopt D 0.8438

Taconic RF-35
"r D 3.5, h D 1.52,
nopt D 0.7848

Taconic TRF41
"r D 4.1, h D 3.05,
nopt D 0.6212

Rogers TMM4
"r D 4.5,
h D 1.524,
nopt D 0.3604

17 14.5 18.5 16.7
10.5 22.5 20.9 21.8 21.7
11 25 24 24.8 24.5
11.5 24.3 22 23.8 24.1
12 21.2 16.3 19.9 20.7

based on the 3-D CST Microwave Studio MWS and graphically represented, then
compared with the performances of the non-optimized and the partially optimized
Minkowski RAs.

It may be concluded that the presented method can be considered as a robust and
systematic method for the design and analysis of a microstrip reflectarray antenna
built by the advanced patches.
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