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Abstract The chapter focuses on the numerical solution of parametrized unsteady
Eulerian flow of compressible real gas in pipeline distribution networks. Such
problems can lead to large systems of nonlinear equations that are computationally
expensive to solve by themselves, more so if parameter studies are conducted and
the system has to be solved repeatedly. The stiffness of the problem adds even more
complexity to the solution of these systems. Therefore, we discuss the application
of model order reduction methods in order to reduce the computational costs. In
particular, we apply two-sided projection via proper orthogonal decomposition with
the discrete empirical interpolation method to exemplary realistic gas networks of
different size. Boundary conditions are represented as inflow and outflow elements,
where either pressure or mass flux is given. On the other hand, neither thermal
effects nor more involved network components such as valves or regulators are
considered. The numerical condition of the reduced system and the accuracy of
its solutions are compared to the full-size formulation for a variety of inflow and
outflow transients and parameter realizations.
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1 Introduction

Gas as an energy source is being transported from producer or supplier to con-
sumer along pipelines via short or long distances. Size and complexity of these
transportation networks will thus vary notably. Maybe the most typical question
with regard to such gas transportation problems is if the supply can satisfy
consumer demands. Often this question is coupled with the goal to operate the
network efficiently and to account for variations either in supply, demand or in the
network properties itself. The latter problem might, e.g., result from the difficulty to
measure pipeline properties such as roughness exactly. Since gas is compressible
such that the network may hold strongly varying amounts, transient effects can
become important.

All these questions and goals can in principle be answered by numerical
simulation provided that the method of simulation is accurate enough while being
efficient at the same time. Efficiency and computational costs depend on network
size, nonlinearity, and stiffness of the underlying equations. In order to manage
size while dealing with nonlinearity we demonstrate how a nonlinear model order
reduction method can be applied, which is tailored to the problem in that the general
form of the original equations is respected in the reduced order systems.

Certain important assumptions are made in order to simplify the problem,
the most prominent of which is the neglect of all network elements except for
simple pipelines, junctions, inflow and outflow elements. Moreover, we assume a
single phase of an ideal gas flowing through the pipes, disregard most temperature
effects, and make further assumptions that allow us to rewrite the problem as a
system of ordinary differential equations. Some of these assumptions are made in
favor of a simple exposition of the topic, while others originate from numerical
considerations.

Transient simulation of gas networks is a very active field of research. Model
order reduction for this system is treated on a more basic level by [3]. Many
different approaches on how to efficiently compute transient behavior are known
in the literature [6, 9, 10]. The main goal of this chapter is to introduce the reader to
basic concepts of model order reduction involving its practical application. Thus we
present three example networks of different complexity that form the foundation of a
comprehensive treatment of a nonlinear reduced order method, including numerical
tests with a focus on stiffness, accuracy, and computational cost.

How the laws of continuum mechanics can be applied to model gas flow through
a network of pipes is explained in Section 2, including three different example
problems to be used in later sections. Basic notions and definitions of stiffness
are discussed in Section 3 with the application and example problems in mind.
Section 4 introduces basic concepts of model order reduction with a focus on
nonlinear methods suitable for gas transport networks, while Section 5 presents and
discusses results for the example cases. The final section of this chapter summarizes
the main topics and touches further interesting questions.
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2 Problems in Network Simulation

We consider the simulation of gas flowing through a system of branching pipelines
with influx and outflux defined at determined locations. First the network model
itself is described, including continuum mechanics for the flow through a single
pipe and mass conservation at pipeline junctions. Subsequently, we present example
networks later used to empirically analyze the simulation of resulting full and
reduced order systems.

2.1 Pipe Network Modeling

A gas transportation network can be described as a directed graph 4 = (&, .4),
where ./ is the set of nodes and & is the set of directed edges. Those edges are
denoted by tuples of nodes. We distinguish between so-called supply nodes .45,
demand nodes .4, and interior nodes .4, where A = A, U 45U 4. If we choose
not to consider more involved components, each edge represents a pipe and can
thus be specified by length, width, and roughness. Nodes, on the other hand, can be
imagined as the points where pipes start, end, or meet. The physics of a fluid moving
through a single pipe can be modeled by the isothermal Euler equations averaged
over the pipe’s cross-section A = ZDZ with inner pipe diameter D, see [11].

Now several simplifications are applied. Discarding terms related to kinetic
energy, we first get

0:p + 0xq =0, (Ta)

A
0:q + 0xp + gpoch = — 2(5) pv|vl, (1b)
p=y(Dzp,T)p. (lc)

Here p denotes the fluid’s density, p the pressure, and ¢ the volumetric flux.
Together they form the set of unknown dynamical variables and depend on space and
time (z, x). Velocity is denoted by v = 7. The system consists of three equations,
two for mass and momentum conservation (la,1b) and one that specifies material
properties (1c). Momentum conservation (1b) includes a term on the left-hand side
to incorporate gravity g as a conservative body force depending on height £, as well
as a friction term on the right-hand side.
As an approximation to the friction coefficient A(g), we use

D -2
A= Zlog( )+1.138) ,
K
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where D is again the diameter of the pipe and k a parameter describing its roughness.
Notice that this approximation, called the Swamee-Jain equation [12], neglects the
dependence of friction on flux g if we assume, for simplicity again, that roughness «
does not depend on ¢. The field y = RT embodies gas properties by its dependence
on a given gas temperature 7 and on the universal gas constant R. For further
simplification we assume that the temperature 7' = Ty is constant in time and space
and that we deal with an ideal gas (i.e., z = 1). Thus, y = RTj is constant and we
can rewrite the constitutive assumption as p = yp.

Without change of notation, volumetric flux is now substituted by mass flux g <—
Agq. Along with the relation v = Z the simplified isothermal Euler equations take
the form

1
0o + Af)xq =0, (2a)
Lo+ -+ gpoh=— 4, (2b)
A 2DA% p
p=vp, (20)
or substituting p according to (2c),
op = —j; 0xq, o
A A
bg = —Adp— 28 pan— MV qlal
y 2DA p

Within the pipe network, (3) is valid for each edge. Any edge stands for a pipe
parametrized along its given length L, which means the interval [0, L] establishes the
domain of definition of the according partial differential equation. The full system of
equations additionally encompasses consistency conditions for each demand node
as well as input in terms of supply pressures given at supply nodes.! If we assemble
all pipes that end in node i into the set [} and, accordingly, all pipes that start in
node i into the set I}, then the demand consistency conditions are given by

0= qLi)) =Y qx(0,1) + di(1) )

lel; kel

for every node i.% If

'We always identify flux conditions with demand, i.e., with outflux, and pressure boundary
conditions with supply, i.e., with influx. Without further modification, this (somehow arbitrary)
identification can be relaxed such that demand can also be modeled as pressure conditions and
supply as mass or volumetric fluxes.

2The direction given to the edges serves the sole purpose of topology definition and is independent
of the direction of the flux within the pipe that results from the laws of continuum mechanics.
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di(t) = Os (5)

this condition reduces to the well-known Kirchhoff law and is valid at any junction
of pipes. Strictly speaking, (4) holds for all nodes in .4, U .4, whereas for nodes in
o we additionally have (5).

Let ng be the number of edges and assume they are ordered such that every edge
has an index in [1,2,...,ng]. Once we discretize (3) following [4] and add given
supply pressures, the resulting overall differential algebraic system of equations is
given by

k k k k
Pr+ D1 Y dr — 41
9 =— Vk e [l,....ng, 6
t 2 A L [ ng) (6a)
o, IR Tl __y PRTPL AR e M
! 2 Lk 2)/ R L Lk
k k k k (6b)
Ay (qr +qplag + 41l Vi
— x X E[l,...,nE],
4Dy Ay PR+ DL
0= dp— di—di(t) Vie AU A (6)
lel} kel
0 =pi(t) —si(t) Vie . (6d)

The vector gp is the vector of fluxes at the end of the pipes, and the vector gy is the
vector of fluxes at the beginning of the pipes. Except for those at the beginning and
end, we do not take any values along the pipes. This means, if the numerical error
by this discretization exceeds our needs because the pipes are too long, we have to
add artificial nodes (junctions) to the network such that all pipes are short enough to
yield accurate enough results.

For a more compact description, we write the system in matrix notation

\BE0,ps + |BY|0,pa = —M; g, (7a)
dq+ = Ms(Bips + B{pa) + 8(@+.ps. pa). (7b)
0 = Bog+ + |Bolg— —d(1), (7¢)
0 =p;—s(), (7d)
where
LA
My =diag(... “F ), (8)
4y
A
My =diag(---— " *...), )

L.’
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and the k-th component of the function g is given by

k—nk Ay (@)Id

R - , (10)
Ly 4Dy A L (pd, ps)

Akg h
8i(q+, pa, ps) = — 2 Le(pa. ps)

where ¢, is the k-th entry of the vector-valued function £

£(pa.ps) = |B{|pa + |B|ps.

Both matrices My and My are diagonal and invertible. The matrix

denotes the incidence matrix of the underlying directed graph, where By corresponds
to the demand nodes and junctions and By corresponds to the supply nodes. In
addition, the notation g— = gg — g1 and g+ = gg + gz has been introduced here.
To eliminate ¢—, we multiply (7a) by |Bo|M,, and then use (7c) to substitute |By|g—,

|B§10.ps + 1B 0.pa = —M;'q—
= |Bo|M.|BE|d,ps + |BolML|B{|0:pa = —|Bolq-
= |Bo|M_|B{|9:ps + |Bo|ML|BY|0:pa = Bog+ — d(2).

We also replace p; according to (7d) to obtain

|Bo| My |B{|0:pa = Bog+ — d(t) — |Bo| My |B|9,s(2), (11a)

9+ = MuBipa + g(q+,5(), pa) + MBS s(t) (11b)

with g as in (10). The structure that (11) implies can be seen more clearly in block
matrix notation

|BolMc|BS| 0 T[0paT _ [0 Bo|[pa]  [—d) = BolMe|BS|dis
0 M [0:g+ Bl 0] g+ M;'g+ Bls '

12)

Compare this derivation of an ordinary differential equation to the very similar
approach of [4], where more details are conveyed. From now on we consider (12) of
the size || — |A45| + ng (the number of nodes minus the number of supply nodes
plus the number of edges). It is an ordinary differential equation in descriptor form
where the matrix E,

£ — [ 1BolMLIBG| O
0 M
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is positive definite and symmetric. Furthermore, the equation depends on several
parameters given by pipe lengths L, diameters D, friction coefficients A, height
differences Ak, and gas properties y totaling 4 X ny 4+ 1-many parameters.

Remark 1. We are now dealing with an ordinary differential equation of the form
Ex = Tx + f(x, u) + Ku.

This means we have been able to decouple the system in such a way that it is no
longer written in the form of a differential algebraic equation. During the process of
reformulation, the time derivative of the input signal s, which is the pressure at the
supply nodes, has been introduced. Since this pressure is usually given explicitly as
a slowly changing function of time we can calculate its derivative in most practical
applications.

2.2 Example Problems

In this chapter we are going to numerically analyze three example networks. The
first consists in a single pipe, the second in a small connected network of 57 pipes,
and the third in a larger network with a higher number of elements forming several
connected components, the largest of which includes 669 pipes. Network topology
is given by a graph which is mainly defined by a list of edges, i.e., ordered
tuples of nodes indicating the direction of the edge. For simplicity, the total set
of Ny nodes is just described by their numbering, i.e., by a set of integers of the
form {n € N: n < Ny}. The set of edges given as a list automatically implies a
numbering of the edges which we later make use of to set up our equations. Length,
height difference, width, and roughness are given as a parameter vector for each
pipe. Furthermore, one or several demand fluxes are provided by functions of time.
Similarly, one or several time-dependent supply pressures are given.

The topologies of the three networks are visualized in Figures 1, 2 and 3. Supply
nodes are marked by triangles, and nodes with nonzero demand are marked by
rectangles. Tables 1 and 4 show the corresponding parameter vectors.

At the supply nodes a supply function of the following form is given

s() = a; x s(0) x (0.5 X (cos (n(;;t__TfT)f)) — 1)) + 5(0), (13)

) OO OO OO

Fig. 1 Network 1, a single pipe divided into subsections of different properties
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Fig. 2 Network 2, a small network with several supply and demand notes

where «; is the portion the supply pressure drops during the given time period
T; — Tj. Tables 2 and 3 show the supply pressures at time zero for all supply nodes.
Similarly, the demand functions at nodes with nonzero demand are of the form

_ 7d
d(t) = d(0) + 0.5 x oy x (1 — cos (”(;d(t_ Tj)l))) x d(0), (14)
2 1

where o, denotes the percentages the demand grows. The corresponding values of
d(0), T¢, and Tf are listed in Tables 2 and 5 for all nodes with nonzero demand. This
means that the first example, the single pipe, yields a system of ordinary differential
equations of size 14 with 22 parameters, the second network is of size 110 with
29 parameters, and the last network’s largest subnet is of size 1341.
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Fig. 3 Connected component of network 3, of larger scale

3 Stiffness in Ordinary Differential Equations

A simple idea in principle, stiffness can be conceived as the intuition that stability
is more critical than accuracy or, much simpler, that explicit integration methods
might fail. To put this into a mathematical framework can become rather difficult,
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Table 1 Parameters for network 1

Pipe element Length [m] Diameter [m] Friction coefficient Height difference [m]

8.7) 100.000  1.000 0.012 0.000
(1,6) 100.000  0.900 0.008 0.000
(3.2) 1,000.000  0.500 0.014 0.000
(6.3) 1,000.000  0.500 0.014 0.000
(5.2) 1,000.000  0.500 0.014 0.000
(5.4) 1,000.000  0.500 0.014 0.000
(8.4) 1,000.000  0.500 0.014 0.000
Table 2 Supply and demand Node 1 Node 7
for network 1 5(0)[Pa] 5,000,000 d(0) [ke/s] 219.230
TS [s] 500,000 T¢[s] 100,000
5 [s] 1,000,000 7% [s] 500,000
Table 3 Supply for Node 1 2 3
network 2 s(0)[Pa] 5,400,000 2,700,000 2,700,000
T3 [s] 700,000 700,000 700,000
T5[s] 1,000,000 1,000,000 1,000,000

though. As a means to analyze stability, we introduce concepts and definitions
of stiffness in linear constant-coefficient ordinary differential equations in the
following subsection as well as a discussion of practical implications for three
example cases in subsequent subsections.

3.1 Concepts and Definitions

If a linear constant-coefficient ordinary differential equation is given as
X = Ax,

stiffness is often quantified via a ratio of the minimum and maximum real part of the
eigenvalues under the assumption that all eigenvalues of A be negative. Such a ratio
is linked with the behavior of the differential equation for # — oo (and can be too
liberal a condition). The Lipschitz constant of the linear function, which coincides
with the largest singular value of A, gives another (too conservative) criterion of
stiffness that is tied to the limit ¢t — 1.

A more realistic measure of stiffness for linear systems is suggested by [7] in
terms of a pseudo spectral analysis. We do not repeat details here. It is, however,
important to realize that the two notions of stiffness differ more strongly from each
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Table 4 Parameters for network 2

(hg — hr) (hg — hr)

Pipe  L[m] D[m] A [m] Pipe  L[m] D[m] A [m]

(1,43) 1.0 1.0 0.0120 0.0 (32,29) 7,700.0 0.9 0.0122 22.0
(57,56) 1,661.0 0.8 0.0125—22.0 (29,28) 1,350.0 0.9 0.0122—-12.0
(56,55) 1,550.0 0.8 0.0125 6.0 (29,26) 6,300.0 0.9 0.0122 —7.0
(56,54) 1,530.0 0.8 0.0125 6.0 (26,25) 343.0 0.6 0.0132—10.0
(54,53) 750.0 0.8  0.0125 —3.0 (26,24) 1,455.0 0.6 0.0132 —8.0
(54,52) 4,089.0 0.8 0.0125 0.0 (25,27) 189.0 0.6 0.0132 —1.0
(52,51) 229.0 0.8 0.0125 5.0 (25,21) 2,486.0 0.6 0.0132 64.0
(52,50) 1,135.0 0.8 0.0125 3.0 (24,23) 392.0 0.6 0.0132 —1.0
(50,49) 222.0 0.8 0.0125 1.0 (24,22) 814.0 0.6 0.0132 3.0
(50,46) 1,948.0 1.0 0.0120 67.0 (21,20) 18.0 0.6 0.0132 1.0
(49,48) 732.0 0.8 0.0125 —3.0 (19,18) 621.0 0.6  0.0132—24.0
(48,47) 10.0 0.8 0.0125 0.0 (18,17) 1,818.0 0.6 0.0132—47.0
(46,45) 15,1340 1.0  0.0120 78.0 (18,16) 16.0 0.6 0.0132 0.0
(45,44) 1.0 1.0 0.0120 0.0 (15,14) 1,040.0 0.6 0.0188 34.0
(45,42) 14,088.0 1.0  0.0120 —81.0 (14,13) 8,296.0 0.6 0.0188 —29.0
(44,43) 3.0 1.0 0.0120 0.0 (13,12) 1,295.0 0.6 0.0188 2.0
(41,40) 2,258.0 0.9 0.0122 4.0 (12,11) 521.0 0.6 0.0188 0.0
(41,39) 2,010.0 0.9 0.0122 4.0 (11,10) 470.0 0.7 0.0128 14.0
(39,38) 1,948.0 0.9 0.0122 2.0 (11,9)  1,507.0 0.7 0.0181 —3.0
(39,35) 3,533.0 0.9 0.0122 2.0 9,8) 789.0 0.7 0.0128 4.0
(38,37) 350 09 0.0122 2.0 9,5) 800.0 0.7 0.0161 1.0
(38,36) 111.0 0.9 0.0122 —3.0 8,7 275.0 0.7 0.0128 9.0
(35,34) 1,930.0 0.9 0.0122 5.0 (8,6) 1,305.0 0.7 0.0128 2.0
(34,33) 81.0 0.9 0.0122 1.0 (54 11,866.0 0.7 0.0161 —7.0
(34,32) 1640.0 0.9 0.0122 8.0 4,3) 3,212.0 0.7 0.0161 —6.0
(33,2) 34.0 0.9 0.0122 —1.0 (20,19) 1,000.0 0.5 0.0137 0.0
(32,31) 1,666.0 0.9 0.0122 19.0 (57,15) 1,000.0 0.8 0.0125 0.0

(32,30) 763.0 0.9 0.0122 16.0

other the further away A is from a normal matrix, where nonnormality can, e.g., be
measured by

|A*A — AA™||F.

Here || - ||r denotes the Frobenius norm. As a consequence, both concepts of
stiffness are appropriate for normal matrices. The matrices arising from the systems
presented in the following are not normal, though, such that we need to expect
different stiffness measures.

The whole issue of stiffness becomes even more complicated once we deal
with nonlinear equations and source terms, which are present in the systems that
we consider. Linear stiffness theory for constant-coefficient ordinary differential
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Table 5 Demand for network 2

Node 4 5 6 7 10 12 13 14 16 17
d0) 0.092 0028 0538 0434 0.807 0035 0045 0452 0471 1.773
[ke/s]

T;[s] 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000
T,[s] 500,000 500,000 500,000 500,000 500,000 500,000 500,000 500,000 500,000 500,000
Node 22 23 27 28 30 31 35 36 37 40
d(0) 0599 0.133 0.040 0.018 0478 0.678 0573 0.093 0710 0.598
[ke/s]

Ty [s] 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000
T>[s] 500,000 500,000 500,000 500,000 500,000 500,000 500,000 500,000 500,000 500,000
Node 42 46 47 48 49 51 53 55

d0) 0318 0561 0498 0493 0233 0.172 0278 0.359

[kg/s]

Ty [s] 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000

T>[s] 500,000 500,000 500,000 500,000 500,000 500,000 500,000 500,000

equations can be applied to a linearization of the nonlinear system: Via the Jacobian
matrix we get a constant-coefficient linear equation that can be evaluated at a given
time fy. However, information may get lost in the process of linearization. In the
following we empirically evaluate and show the stiffness of the ordinary differential
equation (12) for the single pipe and the small network example from Section 2.2.

3.2 Single Pipe System

The single pipe introduced in Section 2.2 comprises segments of varying properties
and can hence be written as a system of ordinary differential equations of size 14.

In this first excursion in stiffness we are going to compute the common notions
of stiffness that are given by the eigenvalues and the singular values of E~'J¢(0, xo),
where xo denotes a stationary solution at time ¢ = 0. This stationary solution can in
principle be chosen arbitrarily and will serve as a starting value later. The Jacobian’s
singular values and eigenvalues are plotted in Figure 4. Notice that these plots tend
to look very similar for other values of ¢ and x. The analysis of singular values
and eigenvalues leads to a liberal stiffness estimate of 4 and a conservative estimate
of 1.6x10°. Because the difference between both estimates comprises several orders
of magnitude we cannot conclude the extent of stiffness, hence the problem at hand
might either become rather stiff or only mildly so.

By a simple numerical test we notice, though, that the step size of a regular
solver for non-stiff problems (here MATLAB®’s ode15) is chosen much smaller
than by the corresponding stiff solver (here MATLAB’s ode23s). This difference
can be interpreted as a sign of more than only mild stiffness. The step sizes
chosen by the different MATLAB solvers are shown in Figure 5, where we can
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eigenvalues in the complex plane sinular values in decreasing order
30 T T T T
) 105 !
20 - .
X
]03 - X o ]
10 |- - *
) 10'|- a
X
0 %x x .
X
x 101 :
—10 s X
1073 |- :
X x X
-20 . x
105 ]
X
_30 | | | | |
—4 -3 -2 —1 0 0 5 10 15
1073

Fig. 4 The eigenvalues and the singular values of the linearized system, network 1

10' 7
- —— regular |
i — stiff | ]
5
z 100F E
[ - .
g = :
° i 1
= i
S
o
g 10k
102 ! ! ! ! !
0 10 20 30 40 50 60

time

Fig. 5 The time steps chosen by MATLAB’s ode23 and odel5s solvers for ordinary differential
equations, network 1

observe a difference of two orders of magnitude for this simple example. Even more
important, we must expect that we deal with serious stiffness in this class of gas
transportation problems due to the fact that, in spite of those small step sizes, the
solution found by MATLAB’s non-stiff ode15 blows up in finite time whereas the
solution given by ode23s does not.



14 S. Grundel et al.

eigenvalues in complex plane singular values
1,000
X
108 f
500
x 10°
X
0 x > mx«m&% x %
* 10° %
* %
%
—500
1072 \g&
X
—1,000 10~°
-3 -2 -1 0 0 50 100 150
1073

Fig. 6 The eigenvalues and singular values of the linearized system, network 2

3.3 Small Networks

For a network of pipes the stiffness of the system becomes clearer yet. Looking at
the eigenvalue and singular value plot of the Jacobian matrix, which is shown in
Figure 6, we again see that the stiffness estimates vary strongly by several orders of
magnitude, this time between 16 and 1.1 x 10°. As above this result eludes an exact
stiffness analysis of the system of equations. Since both estimates grow higher than
in the previous example, stiffness can most probably be assumed to increase with
the complexity and size of the network. Conducting the same experiment as before,
we compare the resulting MATLAB step sizes as in Section 3.2. We do not include
a plot as it shows the same peculiarities as Figure 5, only that the time step of the
non-stiff method decreases even more, oscillates around 1073 s and therefore differs
by four orders of magnitude from the stiff solver.

Regarding the first six seconds, the solutions computed via the two different
solvers are depicted in Figure 7. We can notice again that these systems seem to
require a stiff or, possibly even better, a dedicated solver.

4 Model Order Reduction

Seeing that these network problems can become arbitrarily large and stiff, we would
be interested in creating a reduced order model which is of small order and hopefully
not stiffer than the full system. Since the system is nonlinear, we apply the model
order reduction method called proper orthogonal decomposition as this is typically
the method of choice for nonlinear systems.
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306.5 |- 306.5 - 1

306 - 306 - n

305.5

305.5 .

305 |-

0 2 4 6 0 2 4 6

Fig. 7 The time steps chosen by MATLAB’s ode23 and ode15s solvers for ordinary differential
equations, network 2

4.1 Proper Orthogonal Decomposition

The model order reduction method called proper orthogonal decomposition (POD)
starts with multiple snapshots {yj ", CX,1 =<k < p, for a given Hilbert space X
(typically R" or a function space like .#2). One is interested in finding a subspace
spanned by an orthonormal basis ¥, . .., ¥ within the Hilbert space X that solves
the minimization problem

2

manZO{j

4
~ 2.0 pidt
k=1 j=1 i=1

s.t AV, € Xand (Y5, ¥j)x = 8, 1 <ij <.

. (15)

This minimization can also be written as a maximization problem due to the
orthogonal nature of the elements v;

4

maxZZa]Z y] 1/1,

k=1j=1 =1 (16)
s.t AV, € Xand (Y5, ¥j)x = 8, 1 <ij <.

Theorem 1. Let X be a separable Hilbert space, Z : X — X a summation operator
on X defined by

P m
RH:X—X, Ry Zzaj(w,yf)xyf-

k=1 j=1
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The following assertions are all true:

(a) Z is linear compact self-adjoint and nonnegative.
(b) A basis of X of eigenfunctions v; exists such that

R = Ay

and Ay > Ay > ... > Ay >Ad+1 =---=0.
(c) The first £ of these eigenfunctions solve the minimization problem (15) and the
maximization problem (16).

For a proof of Theorem 1 see [13].

In the remainder of this chapter, let us assume that X = R” and the inner product
is defined by (x, y)x = xTEy for a given positive definite symmetric matrix E. We
will denote by Y} the matrix of snapshots {yjk =1~ This means Y is an n X m matrix.

Corollary 1. The eigenvectors of the operator % equate to the eigenvectors of the
matrix

(Y\DY] + -+ Y,DY})E. 7)

where D = diag(ay, -+ , o).

So in order to find the best approximation space of size £ for a given set of
snapshots, all we have to do is compute the first £ eigenvectors of (17). Notice that
the matrix (17) is an n x n matrix, the size of the state space X. This matrix is not
symmetric. If we, however, knew the eigenvalues and eigenvectors of the following
symmetric system

E'*(v\DY{ + .-+ Y,DY}) E'?, (18)

we could compute the eigenvectors of (17). In fact, these eigenvectors are obtained
if we multiply the eigenvectors of (18) by E~!/2. Since E is usually a large matrix
and its square root is hard to compute, we are going to describe a faster alternative.
The matrix (18) can be written as YYT for

P B 7.
where ¥; = E'Y2y,D'/2. Since this matrix is symmetric and positive definite its

eigenvalue and singular value decompositions are equivalent. Assuming we know
the singular value decomposition of Y,

Y = Usv?, (19)

we also know the singular value decomposition of YYT = US2UT and the singular
value decomposition of Y7Y = VS?V7 . This means, if we compute V we can recover
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U by (19), with U = YS™'V. The matrix U is the matrix of singular vectors or
eigenvectors of YY7 (recall that Y7 equals (18)). Hence, we get the eigenvector
matrix of (17) by E-'/2U = E~'V2YS™'V.If ¢, . ... ¢ are the singular vectors of
Y¥T we can, consequently, compute the elgenvectors Yi,

Vi= LDV nD' . Y,D' ¢
\/ p

(o

where o; and ¢; are the singular values and singular vectors of YTY. The objective
function is then given by

14
Z Yjs Vi)x Vi

i=1

k=1 j=1

X

m 4
Za,(nyfni 208 0k i) xvi) +||Zy, vi xw,ux)
i=1

1j=1 i=1

Il
M=

k

=
3

l
o (nyfni -> 0k wi)

i=1

>~

=1

—_
~.

4

Yo=Y o

i=1 i=1 >l

=
c,

which follows from the fact that v; are eigenfunctions of the operator % [13]. Not
to mention, this result can be utilized to determine £, i.e., to decide where to cut off
eigenvalue computations. In practical applications, a heuristic choice for £ can, e.g.,
be implied by the requirement that & > 99 % where

¢ ¢
O 10
5:2;;1’: » Zl,;l’ - (20)
2i=1 Oi k=1 21 9lly; Il
We now need to understand how to use the described subspace of X in order to
create a reduced order model of a dynamical system given in the form

Ex = Tx + f(x,u) + Ku,

where the function f depends on the dynamic variable x and the time-dependent
input function u. We are now going to briefly address the matter that the system
matrices E, T, K, and the function f additionally depend on parameters. The basic
idea is to generate snapshots for certain sampled parameter values. This parameter
sampling can be picked as a uniform grid. An alternative way to set up a sampling
in a semi-optimized way by using a Greedy algorithm is, e.g., described by [5].
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Algorithm 1 POD
Require: Y;,...,Y, € RM*" inner product matrix E, diagonal weight matrix D, reduction order £
Ensure: metamodel vy, ..., Wy

: By <= D'?Y/EVD'?, j k€ {1,...p}

B < matrix with B;; blocks

: 0, ¢; < singular values and singular vectors of B
s fori<1:£do

Vi < JIOi[YIDl/Z,...,Y,,Dl/Z]@

B

In fact, (15) can be seen as the discrete version of a continuous minimization
problem. Seen in this light, the objective function would read

T ¢ 2

p
Yo Yo=Y 6" x|
k=1J0

i=1 X

which, in turn, implies the minimization problem (15) by using a quadrature rule to
compute the integral. A classical choice of «; are trapezoidal weights and the inner
product is typically given by (x,y) = x”Ey with the inner product matrix denoted
by E. This allows us to compute v, ..., ¥y by the methods discussed above and
summarized in Algorithm 1. We then determine the matrix W as W = [y, ..., Y]
and project the large scale system by Galerkin projection onto

WTEWx = W TWx + W7 f (WX, u) + W7 Ku, 21)

where W/EW = [ by the mutual orthogonality of v; with respect to said inner
product.

4.2 Nonlinearity and Problem Structure

In the following, we are going to describe the rest of the algorithm that is used
in the numerical experiments of Section 5. There are mainly two questions left
to be answered carefully which were not mentioned in the theoretical derivation
of POD.

1. Do we need to consider the special structure of the problem when we set up
the reduced order model? Pressures and fluxes are not necessarily of a similar
magnitude such that a direct application of the POD matrix as in (21) might
neglect important effects [8]. We therefore reduce the pressure and the flux vector
separately.

2. How do we handle the nonlinearity of the function? The term Wf(Wx)
contributes £-dimensional function values with an ¢-dimensional vector-valued



Numerics of MOR for Gas Transportation Networks 19

argument. However, a higher-dimensional vector must be evaluated to compute
WTf. To obtain a fast simulation, this evaluation needs to be avoided.

Let us first discuss implications of the special structure of our problem. For the
convenience of the reader, the ordinary differential equation (12) is repeated here:

|BolMBG| O |[dwa] _[0 Bo|[pa I Oy |BolM_|Bg|d,s
0 M '||dqg+ Bf 0] [q+ g(q.p.s) +Bis |’
For given input functions s(), d(f), and given parameters, we solve this differential
equation within the time interval [0, T] in time steps of size Az > 0. This means we

obtain pressure values p(0), p(Af), ..., p(T) and flux values ¢(0), g(A?), ..., q(T),
representing snapshots that we assemble into matrices

Y7 (pressures) and Y/ (fluxes), (22)

where i indicates the snapshots of different given parameter values. They are used
to calculate projection matrices W, and W, separately for pressures and fluxes by
Algorithm 1, such that the reduced order system obtained via Galerkin projection of
the full order ordinary differential equation onto the matrix

W, 0
0w,
reads
W, [BolML|BGIW, 0 dpa _
0 WIM'W, | [9.g+

0 WIBoW, I:pd:| —WId(r) — WT|Bo|My|BE|d,s
WIBI'W, 0 a4+ WIF(Wyp. Woq. s) + WIBLs
(23)

Since all involved matrices can be precomputed, the only issue left is the
computation of the nonlinear term W,f(W,p, W,q,s). So as to approximate this
nonlinear term by a function which no longer requires any higher order operation,
the discrete empirical interpolation method (DEIM in short, see [2]) is employed.
If we precompute a snapshot matrix F that consists of function evaluations of f
at a number of given values of p and g, matrices P and U can be computed via
Algorithm 2, such that the resulting reduced (i.e., approximate) nonlinear function
evaluation amounts to

W f(Wop, Woq.s) = WIUMPTU) ' PTf(W,p. Wq. ).
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Algorithm 2 DEIM
Require: F € RV*"reduction order m
Ensure: metamodel vy, ..., Wy
1: [U,S,V] < svd(F)
2: ind < index of the maximal entry of U(:, 1)
3: P <— ¢j,q coordinate basis vector
4: fori<1:mdo
5: ind < index of maximal entry of U(:,i + 1) — U(PTU)PTU(:,i + 1)
6: P <« [P, emd]

We immediately see that the matrix W) U(P"U)™" is of size r1 x m, where m is the
reduction order for DEIM and r; the reduction order for the flux component in POD.
The function P’f (W,p, W,q, s) is truly a function of order m since the matrix P is
a matrix of zeros and ones, where exactly m entries of f are picked. Owing to the
structure of the function f, namely the k-th entry only depending on the k-th entry
of W,q and B W,p + Bls, this computation is straightforward.

S Numerical Examples

The purpose of the following section is to experimentally show the extent of
reduction of the system we can achieve for our three network models (Section 2.2),
while still being able to reproduce the general dynamical behavior of the gas within
the network.

5.1 The Single Pipe

Our first example is one of the most trivial networks possible and serves as proof of
concept. To begin with, a single solution trajectory, which we again call a snapshot,
is calculated for the parameters given in Section 2.2. Its singular values are shown
in the top panel of Figure 8. By the methods explained in Section 4.2, the snapshot
is used to set up a reduced order model. In short, this means we can determine
projection matrices W; and W, via POD as well as projection and picking matrices U
and P via DEIM. The resulting reduced order model parametrically depends on
length, diameter, and friction coefficient of each pipe segment as well as on the
field y that characterizes properties of the gas flowing through it. In order to better
understand the behavior of the system for different choices of these parameters, we
make use of a Latin hypercube sampling of size 10, where we vary all 22 parameters
in a cube of £5 % of the original parameter set. In this particular test, the order of
the reduced model is 4, which results from the choice r; = r» = m = 2. For the
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Fig. 8 The singular values for one time series as well as for 10 time series, each the result of a
different parameter set. The values that are shown along the y-axis are ordered decreasing in size,
along the x-axis

different test networks, which only differ by the said parameter values, we compute
the reduced order model as well as, for reference, the full model and compute
the relative error in the pressure and the absolute error in the flux, displaying the
respective maximal error in Table 6. Furthermore, the relative error at a distance
from r+ = 0 is also given as the maximal difference over all pressure and flux
components. We also display the error of the reduced order system compared to
the full system of the original parameter distribution. This shows that, when we
vary the parameters, we still stay within the same order of magnitude of the error.

Figure 8 emphasizes this result. Here we see that the singular value decay in
the flux looks similar, whether we have one time series or several time series for
several parameters. The difference becomes noticeable in the left column that refers
to pressure. However, in both cases the third singular value, after which DEIM cuts
off the series of singular values, is of order 1075,

Of course, the input and output functions of this problem are not varied. And due
to the nature of the problem we cannot expect to find a reduced system of small order
representing all possible input and output functions. The difficulty consists in that
the partial differential equation describing the physics in the pipe, the isothermal
Euler equation, is a transport dominated partial differential equation. Thus shocks
might travel through the system and we can, therefore, not expect the solution to lie
in a low-dimensional subspace.

The following numerical experiment, however, shows that, if we assume the
supply pressures and demand nodes only vary within a certain range of given
values, we are able to still use the reduced system. We are now going to repeat
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error plot
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Fig. 9 The maximal relative error over the 10 sampled scenarios

the comparison of the full and reduced simulation. Again, we pick 10 simulations,
varying the percentage the supply pressure and the demand flux change over time
within £10 %. Remember the reduced order was created with these values all
varying by 2 % only. The relative error plot, where the maximum is taken over all
10 scenarios, is displayed in Figure 9.

5.2 Network of 57 Pipes

Having a manageable size but realistic structure, the following example supports
the idea that model order reduction already helps to reduce simulation time and
stability of the simulation for networks of smaller scale. We test parameter variations
as well as changes of the input function receiving robust and accurate results. The
system is first solved for the parameters and input function given in Section 2.2,
T = 1x10%s ~ 280h. We store 100 time steps for a system size of 110, of
which 54 dimensions refer to pressure and 56 to flux. By and large, we gather a
snapshot matrix of dimension 100 x 110 in this fashion. The singular value decay
of YEYT is illustrated in the top panel of Figure 10, where the singular values are
displayed for the fluxes and the pressures independently again. On the subject of the
criteria given in (20), we can conclude that a reduced order of size 1 for pressures
and of size 1 for fluxes is sufficient to obtain a “good” approximation in that case
with & > 0.99999 for the pressures as well as for the fluxes. We, however, select
rp = r; = 3. Typically, the reduction order for DEIM has to equal at least this
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Fig. 10 Singular values of the snapshot matrices

reduced order (3 in our case). It turns out that this minimum choice is enough for the
example at hand, see the error values listed in Table 7. In fact,r; =3, =3,m =3
yield a reasonably accurate reduced order system.

The projection matrices are applied to create a parametric reduced order model.
The parameter space of this parametrized model possesses a dimension of size 29.
We allow this parameter vector to vary in a box around +5 % of its given values
again. We pick 10 values in that box by Latin hypercube sampling to obtain
10 scenarios. For each scenario we compute the reduced solution and the full
solution. We realize here that in order to run MATLAB’s ode solver odel5s we
need to have a very accurate starting value for the full model. Therefore, we take the
original initial value and compute a truly stationary solution by Newton’s method
to be used as initial value. For the reduced order system this step is not necessary,
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which in turn means that the solution of the full order system becomes even slower in
comparison. However, this procedure also implies that the solutions near the initial
time are not as close to each other as later because they do not start from the same
initial value. We thus compare the maximal relative error only after the first 1000 s
have already passed. This error is shown in Table 7. We, furthermore, compare the
timings, for the solution of the reduced system and for the solution of the full system,
where the identification of a starting value is included as well as the simulation time
itself.

With regard to the full solution of the 10 scenarios from above, creating a
snapshot matrix as in Section 4.1, we can compute the singular values that are
plotted in the middle panel of Figure 10. The singular values show the size of a
linear subspace to be used in order to create a good approximation of the space in
which the solutions lie.

Furthermore, we have conducted some test with varying input functions. As
in the case of the single pipe, we vary the percentages the demand and supply
values change during the simulated time in a box of £10 %. We can match the
general behavior even though the errors between the full and the reduced system
can be large. However, measurements often differ from the computed solution even
stronger than our reduced model, see, e.g., [1]. We, furthermore, display the singular
value decay for the snapshot matrix created by 10 such scenarios (last panel of
Figure 10).

5.3 Network of 669 Pipes

A system of 669 elements is rather large such that computations of a single time
series can already take from several hours up to weeks with standard solvers (it is
possible to accelerate the implementation, though). The goal here is to show that
we can predict the behavior of the system with the model order reduction method
as described above up to a certain extent. We only compute the solution of this
large system for the first 100 s. From the results of this computation we calculate
the projection matrix W as well as the DEIM matrices P and U with reduction order
ry = 4,r, = 2,m = 4. These matrices are needed to set up the reduced system.
We then run the reduced system for different values of d(0), which are a random
perturbation of the original d(0). We cannot compare the reduced time series to the
time series of the full system, as the latter is too expensive to compute. Since we
run the reduced system in time until it should arrive at a new stationary solution,
we can assess the extent of “stationarity” of our result from the right-hand side of
the system. In Table 8 we compare the value of the right-hand side of the reduced
system to the value of the right-hand side of the full system at the state we arrived
at following the trajectory of the reduced system. Even though these values are not
numerically zero, they are reputably closer to zero than if we evaluated the right-
hand side at the initial configuration. Compared to the initial configuration, these
values are hence better starting values to use a Newton-type method to find a truly
stationary solution.
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Table 8 Value of the right-hand side, network 3

Sample 1 2 3 4 5 6 7 8 9 10
fire.xp) 04 03 27 09 13 04 06 14 06 15
fle,Wxg) 18 22 29 19 20 17 26 22 18 22
flte.xo) 105 106 10° 106 10° 106 10° 10° 10° 10°

The simulation time for simulating those reduced order systems amounts to
approximately 25 s. If we use the end value obtained from the reduced simulation
and apply a Newton method to find a stationary solution such that |f(xs)| < 1073,
the Newton method takes around 10 to 100s. Whereas, if we use x( to start our
Newton method, it takes about 10,000s. So in the presented case, the reduced
method can certainly help to speed up the computation of a feasible stationary
solution.

6 Conclusions

For gas transportation problems through networks of pipelines, from supplier to
consumer, the underlying continuum mechanics, practical simplifications, and a
numerical model have been compiled and explained to the reader. Notably, a state-
of-the-art transformation of the resulting discretized differential algebraic system of
equations to a system of ordinary differential equations has been presented. Among
the properties of this system, stiffness has been spotlighted since it affects the choice
of suitable numerical solvers strongly. Empirical evidence is shown that stiffness
plays an important role and that it even grows with the complexity of the systems.

With the goal of exhaustive studies of varying input and output in mind,
we indicate how to apply model order reduction methods for nonlinear systems
efficiently, making use of POD with DEIM. Special attention is given to the
preservation of the general form of the underlying ordinary differential equation lest
pressure and flux values may be mixed. A parameter domain is defined by varying
network properties within a limited range to indicate uncertainty. The domain is
used to obtain empirical results that illustrate possible gain in simulation speed by
order reduction, while the induced loss in accuracy is discussed.

The numerical behavior of three networks of different complexity is examined in
this light. Results indicate that a speed-up of 10 to 1000 can be achieved, where we
have to anticipate certain inaccuracy within the obtained solutions. In some cases
inaccuracy can be of an order of magnitude such as 10 % of the typical solution
values. The stiffness of the reduced system has been monitored and not found to be
increased by the applied model order reduction technique.

One of the most obvious extensions to the case presented here can be found in
the treatment of more types of network elements, as well as in the inclusion of more
involved temperature effects. From a numerical point of view, the development of
dedicated solvers would probably be interesting.
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