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Preface

Accurate modeling and simulation of complex systems often necessitates highly
sophisticated but very computationally expensive models, and the costs and time
of computational simulations can pose challenging issues in many applications.
In addition, the search for optimum designs requires multiple simulation-design
cycles, often from hundreds to thousands of evaluations of design objectives, which
makes modeling and optimization tasks extremely challenging and time-consuming.
Among these challenges, a serious bottleneck for realizing an efficient design
optimization process is the high cost of computer simulations with simulation
times varying from hours to weeks or even months for large complex systems,
which means that even a single set of simulations can be very costly. For a
typical design process, different design options may require many validations and
verifications using computer models in order to test “what-if” scenarios so as to
provide decision-makers with robust, realistic design options. Though the speed of
the computer power has steadily increased over past decades, however, such speed
increase can slightly ease only part of the modeling and simulation problems, and
these challenging issues still remain largely unresolved. One of the reasons is the
ever-increasing demand of the high-accuracy, high-fidelity models for simulating
complex systems.

In addition, the search for more sustainable optimum designs makes such
simulation tasks more challenging to solve. Even with a good simulation model, the
number of evaluations and validations of design objectives can be very high, varying
from several hundreds to thousands or even millions of objective calls. In many
cases, such optimization problems can be NP-hard, and thus no efficient algorithms
exist. Therefore, some tradeoff is needed in practice to balance the solution accuracy
and practicality of simulation and designs.

Furthermore, for many applications in aerospace engineering, microwave engi-
neering, gas transport networks, waste management, and system engineering,
alternative methods or approximations methods are often used. A class of approx-
imation techniques and alternative approaches are the surrogate-based modeling,
simulation-driven design optimization, and metaheuristic optimization methods.
These surrogate-based and simulation-driven approaches provide the possibility

v



vi Preface

of using faster and cheaper surrogate models to represent expensive models with
adequate accuracy and sufficiently reduced simulation times, which consequently
makes many complex design optimization tasks solvable and achievable in practice.

Among all the key issues and techniques, the main aims are threefold: to increase
the accuracy of modeling and simulation, to reduce the simulation and design
time, and to come up with more robust and sustainable design options. First, to
get more accurate simulation results, sophisticated surrogate models are needed to
provide near high-fidelity results; this usually requires many sampling points in
the search space in order to produce highly representative surrogates, which will
indirectly increase the computational costs. Second, in order to reduce simulation
and design time, efficient optimization algorithms are needed in addition to the
efficient approximate surrogate models. Traditional algorithms such as gradient-
based methods and trust-region methods do not work well. Thus, new methods such
as those based on swarm intelligence methods can be promising. In reality, a good
combination of new methods with the existing traditional methods can often obtain
good results. Finally, researchers and designers have to combine all the techniques
and resources so as to produce robust and sustainable design options. Some design
options may satisfy all the design requirements, but they may be very sensitive
to manufacturing errors, and they may not be sustainable. Thus, designers often
have to produce a diverse set of design options and thus allow decision-makers to
choose the most suitable design options under given stringent design constraints.
Any successful design cycle requires to deal with the above three challenging issues
with sufficient accuracy in a practically acceptable time limit.

This edited book provides a timely summary of some of the latest developments
in modeling and simulation-driven design optimization. Topics include aerodynamic
optimization, gas transport networks, antenna designs, microwave structures, filter
designs, waste management, system identification, crystal nanostructures, sparse
grids, and other computationally extensive design applications. Therefore, this book
can serve as a reference to researchers, lecturers, and engineers in engineering
design, modeling, and optimization as well as industry where computationally
expensive designs are most relevant. It is our hope that this may help researchers
and designs to produce better design tools so as to reduce the costs of the design
process aided by computer simulations.

Reykjavik, Iceland Slawomir Koziel
Ames, IA, USA Leifur Leifsson
London, UK Xin-She Yang
October 2015
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Numerical Aspects of Model Order Reduction
for Gas Transportation Networks

Sara Grundel, Nils Hornung, and Sarah Roggendorf

Abstract The chapter focuses on the numerical solution of parametrized unsteady
Eulerian flow of compressible real gas in pipeline distribution networks. Such
problems can lead to large systems of nonlinear equations that are computationally
expensive to solve by themselves, more so if parameter studies are conducted and
the system has to be solved repeatedly. The stiffness of the problem adds even more
complexity to the solution of these systems. Therefore, we discuss the application
of model order reduction methods in order to reduce the computational costs. In
particular, we apply two-sided projection via proper orthogonal decomposition with
the discrete empirical interpolation method to exemplary realistic gas networks of
different size. Boundary conditions are represented as inflow and outflow elements,
where either pressure or mass flux is given. On the other hand, neither thermal
effects nor more involved network components such as valves or regulators are
considered. The numerical condition of the reduced system and the accuracy of
its solutions are compared to the full-size formulation for a variety of inflow and
outflow transients and parameter realizations.

Keywords Gas network simulation • Model order reduction • Proper orthogo-
nal decomposition • Discrete empirical interpolation method • Stiff initial-value
problems
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2 S. Grundel et al.

1 Introduction

Gas as an energy source is being transported from producer or supplier to con-
sumer along pipelines via short or long distances. Size and complexity of these
transportation networks will thus vary notably. Maybe the most typical question
with regard to such gas transportation problems is if the supply can satisfy
consumer demands. Often this question is coupled with the goal to operate the
network efficiently and to account for variations either in supply, demand or in the
network properties itself. The latter problem might, e.g., result from the difficulty to
measure pipeline properties such as roughness exactly. Since gas is compressible
such that the network may hold strongly varying amounts, transient effects can
become important.

All these questions and goals can in principle be answered by numerical
simulation provided that the method of simulation is accurate enough while being
efficient at the same time. Efficiency and computational costs depend on network
size, nonlinearity, and stiffness of the underlying equations. In order to manage
size while dealing with nonlinearity we demonstrate how a nonlinear model order
reduction method can be applied, which is tailored to the problem in that the general
form of the original equations is respected in the reduced order systems.

Certain important assumptions are made in order to simplify the problem,
the most prominent of which is the neglect of all network elements except for
simple pipelines, junctions, inflow and outflow elements. Moreover, we assume a
single phase of an ideal gas flowing through the pipes, disregard most temperature
effects, and make further assumptions that allow us to rewrite the problem as a
system of ordinary differential equations. Some of these assumptions are made in
favor of a simple exposition of the topic, while others originate from numerical
considerations.

Transient simulation of gas networks is a very active field of research. Model
order reduction for this system is treated on a more basic level by [3]. Many
different approaches on how to efficiently compute transient behavior are known
in the literature [6, 9, 10]. The main goal of this chapter is to introduce the reader to
basic concepts of model order reduction involving its practical application. Thus we
present three example networks of different complexity that form the foundation of a
comprehensive treatment of a nonlinear reduced order method, including numerical
tests with a focus on stiffness, accuracy, and computational cost.

How the laws of continuum mechanics can be applied to model gas flow through
a network of pipes is explained in Section 2, including three different example
problems to be used in later sections. Basic notions and definitions of stiffness
are discussed in Section 3 with the application and example problems in mind.
Section 4 introduces basic concepts of model order reduction with a focus on
nonlinear methods suitable for gas transport networks, while Section 5 presents and
discusses results for the example cases. The final section of this chapter summarizes
the main topics and touches further interesting questions.
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2 Problems in Network Simulation

We consider the simulation of gas flowing through a system of branching pipelines
with influx and outflux defined at determined locations. First the network model
itself is described, including continuum mechanics for the flow through a single
pipe and mass conservation at pipeline junctions. Subsequently, we present example
networks later used to empirically analyze the simulation of resulting full and
reduced order systems.

2.1 Pipe Network Modeling

A gas transportation network can be described as a directed graph G D .E ;N /,
where N is the set of nodes and E is the set of directed edges. Those edges are
denoted by tuples of nodes. We distinguish between so-called supply nodes Ns,
demand nodes Nd, and interior nodes N0, where N D Ns[N0[Nd. If we choose
not to consider more involved components, each edge represents a pipe and can
thus be specified by length, width, and roughness. Nodes, on the other hand, can be
imagined as the points where pipes start, end, or meet. The physics of a fluid moving
through a single pipe can be modeled by the isothermal Euler equations averaged
over the pipe’s cross-section A D �

4
D2 with inner pipe diameter D, see [11].

Now several simplifications are applied. Discarding terms related to kinetic
energy, we first get

@t�C @xq D 0; (1a)

@tqC @xpC g�@xh D ��.q/
2D

�vjvj; (1b)

p D �.T/z.p;T/�: (1c)

Here � denotes the fluid’s density, p the pressure, and q the volumetric flux.
Together they form the set of unknown dynamical variables and depend on space and
time .t; x/. Velocity is denoted by v D q

�
. The system consists of three equations,

two for mass and momentum conservation (1a,1b) and one that specifies material
properties (1c). Momentum conservation (1b) includes a term on the left-hand side
to incorporate gravity g as a conservative body force depending on height h, as well
as a friction term on the right-hand side.

As an approximation to the friction coefficient �.q/, we use

� D
�
2 log

�
D

�

�
C 1:138

��2
;
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where D is again the diameter of the pipe and � a parameter describing its roughness.
Notice that this approximation, called the Swamee-Jain equation [12], neglects the
dependence of friction on flux q if we assume, for simplicity again, that roughness �
does not depend on q. The field � D RT embodies gas properties by its dependence
on a given gas temperature T and on the universal gas constant R. For further
simplification we assume that the temperature T � T0 is constant in time and space
and that we deal with an ideal gas (i.e., z � 1). Thus, � D RT0 is constant and we
can rewrite the constitutive assumption as p D ��.

Without change of notation, volumetric flux is now substituted by mass flux q 
Aq. Along with the relation v D q

�
the simplified isothermal Euler equations take

the form

@t�C 1

A
@xq D 0; (2a)

1

A
@tqC @xpC g�@xh D � �

2DA2
qjqj
�
; (2b)

p D ��; (2c)

or substituting � according to (2c),

@tp D ��
A
@xq;

@tq D �A@xp � Ag

�
p@xh � ��

2DA

qjqj
p
:

(3)

Within the pipe network, (3) is valid for each edge. Any edge stands for a pipe
parametrized along its given length L, which means the interval Œ0;L� establishes the
domain of definition of the according partial differential equation. The full system of
equations additionally encompasses consistency conditions for each demand node
as well as input in terms of supply pressures given at supply nodes.1 If we assemble
all pipes that end in node i into the set Ii

R and, accordingly, all pipes that start in
node i into the set Ii

L, then the demand consistency conditions are given by

0 D
X
l2Ii

L

ql.Ll; t/ �
X
k2Ii

R

qk.0; t/C di.t/ (4)

for every node i.2 If

1We always identify flux conditions with demand, i.e., with outflux, and pressure boundary
conditions with supply, i.e., with influx. Without further modification, this (somehow arbitrary)
identification can be relaxed such that demand can also be modeled as pressure conditions and
supply as mass or volumetric fluxes.
2The direction given to the edges serves the sole purpose of topology definition and is independent
of the direction of the flux within the pipe that results from the laws of continuum mechanics.
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di.t/ � 0; (5)

this condition reduces to the well-known Kirchhoff law and is valid at any junction
of pipes. Strictly speaking, (4) holds for all nodes in N0[Nd, whereas for nodes in
N0 we additionally have (5).

Let nE be the number of edges and assume they are ordered such that every edge
has an index in Œ1; 2; : : : ; nE�. Once we discretize (3) following [4] and add given
supply pressures, the resulting overall differential algebraic system of equations is
given by

@t
pk

R C pk
L

2
D� �

Ak

qk
R � qk

L

Lk
8k 2 Œ1; : : : ; nE�; (6a)

@t
qk

R C qk
L

2
D� Ak

pk
R � pk

L

Lk
� Akg

2�
.pk

R C pk
L/

hk
R � hk

L

Lk

� �k�

4DkAk

.qk
R C qk

L/jqk
R C qk

Lj
pk

R C pk
L

8k 2 Œ1; : : : ; nE�;

(6b)

0 D
X
l2Ii

L

q`R �
X
k2Ii

L

qk
L � di.t/ 8i 2 N0 [Nd; (6c)

0 Dpi.t/ � si.t/ 8i 2 Ns: (6d)

The vector qR is the vector of fluxes at the end of the pipes, and the vector qL is the
vector of fluxes at the beginning of the pipes. Except for those at the beginning and
end, we do not take any values along the pipes. This means, if the numerical error
by this discretization exceeds our needs because the pipes are too long, we have to
add artificial nodes (junctions) to the network such that all pipes are short enough to
yield accurate enough results.

For a more compact description, we write the system in matrix notation

jBT
S j@tps C jBT

0 j@tpd D �M�1L q�; (7a)

@qC D MA.B
T
S ps C BT

0pd/C g.qC; ps; pd/; (7b)

0 D B0qC C jB0jq� � d.t/; (7c)

0 D ps � s.t/; (7d)

where

ML Ddiag.: : :
LkAk

4�
: : : /; (8)

MA Ddiag.� � � � Ak

Lk
: : : /; (9)
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and the k-th component of the function g is given by

gk.qC; �d; �s/ D� Akg

2�
`k.pd; ps/

hk
R � hk

L

Lk
� �k�

4DkAk

.qkC/jqkCj
`k.�d; �s/

; (10)

where `k is the k-th entry of the vector-valued function `

`.pd; ps/ D jBT
0 jpd C jBT

S jps:

Both matrices ML and MA are diagonal and invertible. The matrix

B D
�

B0
BS

�

denotes the incidence matrix of the underlying directed graph, where B0 corresponds
to the demand nodes and junctions and BS corresponds to the supply nodes. In
addition, the notation q� D qR � qL and qC D qR C qL has been introduced here.
To eliminate q�, we multiply (7a) by jB0jML and then use (7c) to substitute jB0jq�,

jBT
S j@tps C jBT

0 j@tpd D �M�1L q�

) jB0jMLjBT
S j@tps C jB0jMLjBT

0 j@tpd D �jB0jq�
) jB0jMLjBT

S j@tps C jB0jMLjBT
0 j@tpd D B0qC � d.t/:

We also replace ps according to (7d) to obtain

jB0jML jBT
0 j@tpd D B0qC � d.t/ � jB0jML jBT

S j@ts.t/; (11a)

@tqC D MaBT
0pd C g.qC; s.t/; pd/CMaBT

S s.t/ (11b)

with g as in (10). The structure that (11) implies can be seen more clearly in block
matrix notation

�jB0jMLjBT
0 j 0

0 M�1a

� �
@tpd

@tqC

�
D
�
0 B0

BT
0 0

� �
pd

qC

�
C
��d.t/ � jB0jMLjBT

S j@ts
M�1a gC BT

S s

�
:

(12)

Compare this derivation of an ordinary differential equation to the very similar
approach of [4], where more details are conveyed. From now on we consider (12) of
the size jN j � jNsj C nE (the number of nodes minus the number of supply nodes
plus the number of edges). It is an ordinary differential equation in descriptor form
where the matrix E,

E D
�jB0jMLjBT

0 j 0

0 M�1a

�
;
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is positive definite and symmetric. Furthermore, the equation depends on several
parameters given by pipe lengths L, diameters D, friction coefficients �, height
differences�h, and gas properties � totaling 4 � nE C 1-many parameters.

Remark 1. We are now dealing with an ordinary differential equation of the form

EPx D TxC f .x; u/C Ku:

This means we have been able to decouple the system in such a way that it is no
longer written in the form of a differential algebraic equation. During the process of
reformulation, the time derivative of the input signal s, which is the pressure at the
supply nodes, has been introduced. Since this pressure is usually given explicitly as
a slowly changing function of time we can calculate its derivative in most practical
applications.

2.2 Example Problems

In this chapter we are going to numerically analyze three example networks. The
first consists in a single pipe, the second in a small connected network of 57 pipes,
and the third in a larger network with a higher number of elements forming several
connected components, the largest of which includes 669 pipes. Network topology
is given by a graph which is mainly defined by a list of edges, i.e., ordered
tuples of nodes indicating the direction of the edge. For simplicity, the total set
of NN nodes is just described by their numbering, i.e., by a set of integers of the
form fn 2 N W n � NNg. The set of edges given as a list automatically implies a
numbering of the edges which we later make use of to set up our equations. Length,
height difference, width, and roughness are given as a parameter vector for each
pipe. Furthermore, one or several demand fluxes are provided by functions of time.
Similarly, one or several time-dependent supply pressures are given.

The topologies of the three networks are visualized in Figures 1, 2 and 3. Supply
nodes are marked by triangles, and nodes with nonzero demand are marked by
rectangles. Tables 1 and 4 show the corresponding parameter vectors.

At the supply nodes a supply function of the following form is given

s.t/ D ˛s � s.0/ �
�
0:5 �

�
cos

�
� � .t � Ts

1/

.Ts
2 � Ts

1/

�
� 1

��
C s.0/; (13)

1 6 3 2 5 4 8 7

Fig. 1 Network 1, a single pipe divided into subsections of different properties
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Fig. 2 Network 2, a small network with several supply and demand notes

where ˛s is the portion the supply pressure drops during the given time period
Ts
2 � Ts

1. Tables 2 and 3 show the supply pressures at time zero for all supply nodes.
Similarly, the demand functions at nodes with nonzero demand are of the form

d.t/ D d.0/C 0:5 � ˛d �
�
1 � cos

�
� � .t � Td

1 /

.Td
2 � Td

1 /

��
� d.0/; (14)

where ˛d denotes the percentages the demand grows. The corresponding values of
d.0/, Td

1 , and Td
2 are listed in Tables 2 and 5 for all nodes with nonzero demand. This

means that the first example, the single pipe, yields a system of ordinary differential
equations of size 14 with 22 parameters, the second network is of size 110 with
29 parameters, and the last network’s largest subnet is of size 1341.
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Fig. 3 Connected component of network 3, of larger scale

3 Stiffness in Ordinary Differential Equations

A simple idea in principle, stiffness can be conceived as the intuition that stability
is more critical than accuracy or, much simpler, that explicit integration methods
might fail. To put this into a mathematical framework can become rather difficult,
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Table 1 Parameters for network 1

Pipe element Length [m] Diameter [m] Friction coefficient Height difference [m]

(8,7) 100:000 1.000 0.012 0.000

(1,6) 100:000 0.900 0.008 0.000

(3,2) 1; 000:000 0.500 0.014 0.000

(6,3) 1; 000:000 0.500 0.014 0.000

(5,2) 1; 000:000 0.500 0.014 0.000

(5,4) 1; 000:000 0.500 0.014 0.000

(8,4) 1; 000:000 0.500 0.014 0.000

Table 2 Supply and demand
for network 1

Node 1 Node 7

s.0/ ŒPa� 5; 000; 000 d.0/ Œkg=s� 219.230

Ts
1 Œs� 500; 000 Td

1 Œs� 100,000

Ts
2 Œs� 1; 000; 000 Td

2 Œs� 500,000

Table 3 Supply for
network 2

Node 1 2 3

s.0/ ŒPa� 5; 400; 000 2; 700; 000 2; 700; 000

Ts
1 Œs� 700; 000 700; 000 700; 000

Ts
2 Œs� 1; 000; 000 1; 000; 000 1; 000; 000

though. As a means to analyze stability, we introduce concepts and definitions
of stiffness in linear constant-coefficient ordinary differential equations in the
following subsection as well as a discussion of practical implications for three
example cases in subsequent subsections.

3.1 Concepts and Definitions

If a linear constant-coefficient ordinary differential equation is given as

Px D Ax;

stiffness is often quantified via a ratio of the minimum and maximum real part of the
eigenvalues under the assumption that all eigenvalues of A be negative. Such a ratio
is linked with the behavior of the differential equation for t ! 1 (and can be too
liberal a condition). The Lipschitz constant of the linear function, which coincides
with the largest singular value of A, gives another (too conservative) criterion of
stiffness that is tied to the limit t! t0.

A more realistic measure of stiffness for linear systems is suggested by [7] in
terms of a pseudo spectral analysis. We do not repeat details here. It is, however,
important to realize that the two notions of stiffness differ more strongly from each
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Table 4 Parameters for network 2

.hR � hL/ .hR � hL/

Pipe L Œm� D Œm� � Œm� Pipe L Œm� D Œm� � Œm�
(1,43) 1:0 1:0 0:0120 0:0 (32,29) 7; 700:0 0:9 0:0122 22:0

(57,56) 1; 661:0 0:8 0:0125�22:0 (29,28) 1; 350:0 0:9 0:0122�12:0
(56,55) 1; 550:0 0:8 0:0125 6:0 (29,26) 6; 300:0 0:9 0:0122 �7:0
(56,54) 1; 530:0 0:8 0:0125 6:0 (26,25) 343:0 0:6 0:0132�10:0
(54,53) 750:0 0:8 0:0125 �3:0 (26,24) 1; 455:0 0:6 0:0132 �8:0
(54,52) 4; 089:0 0:8 0:0125 0:0 (25,27) 189:0 0:6 0:0132 �1:0
(52,51) 229:0 0:8 0:0125 5:0 (25,21) 2; 486:0 0:6 0:0132 64:0

(52,50) 1; 135:0 0:8 0:0125 3:0 (24,23) 392:0 0:6 0:0132 �1:0
(50,49) 222:0 0:8 0:0125 1:0 (24,22) 814:0 0:6 0:0132 3:0

(50,46) 1; 948:0 1:0 0:0120 67:0 (21,20) 18:0 0:6 0:0132 1:0

(49,48) 732:0 0:8 0:0125 �3:0 (19,18) 621:0 0:6 0:0132�24:0
(48,47) 10:0 0:8 0:0125 0:0 (18,17) 1; 818:0 0:6 0:0132�47:0
(46,45) 15; 134:0 1:0 0:0120 78:0 (18,16) 16:0 0:6 0:0132 0:0

(45,44) 1:0 1:0 0:0120 0:0 (15,14) 1; 040:0 0:6 0:0188 34:0

(45,42) 14; 088:0 1:0 0:0120�81:0 (14,13) 8; 296:0 0:6 0:0188�29:0
(44,43) 3:0 1:0 0:0120 0:0 (13,12) 1; 295:0 0:6 0:0188 2:0

(41,40) 2; 258:0 0:9 0:0122 4:0 (12,11) 521:0 0:6 0:0188 0:0

(41,39) 2; 010:0 0:9 0:0122 4:0 (11,10) 470:0 0:7 0:0128 14:0

(39,38) 1; 948:0 0:9 0:0122 2:0 (11,9) 1; 507:0 0:7 0:0181 �3:0
(39,35) 3; 533:0 0:9 0:0122 2:0 (9,8) 789:0 0:7 0:0128 4:0

(38,37) 35:0 0:9 0:0122 2:0 (9,5) 800:0 0:7 0:0161 1:0

(38,36) 111:0 0:9 0:0122 �3:0 (8,7) 275:0 0:7 0:0128 9:0

(35,34) 1; 930:0 0:9 0:0122 5:0 (8,6) 1; 305:0 0:7 0:0128 2:0

(34,33) 81:0 0:9 0:0122 1:0 (5,4) 11; 866:0 0:7 0:0161 �7:0
(34,32) 1640:0 0:9 0:0122 8:0 (4,3) 3; 212:0 0:7 0:0161 �6:0
(33,2) 34:0 0:9 0:0122 �1:0 (20,19) 1; 000:0 0:5 0:0137 0:0

(32,31) 1; 666:0 0:9 0:0122 19:0 (57,15) 1; 000:0 0:8 0:0125 0:0

(32,30) 763:0 0:9 0:0122 16:0

other the further away A is from a normal matrix, where nonnormality can, e.g., be
measured by

kA�A � AA�kF:

Here k � kF denotes the Frobenius norm. As a consequence, both concepts of
stiffness are appropriate for normal matrices. The matrices arising from the systems
presented in the following are not normal, though, such that we need to expect
different stiffness measures.

The whole issue of stiffness becomes even more complicated once we deal
with nonlinear equations and source terms, which are present in the systems that
we consider. Linear stiffness theory for constant-coefficient ordinary differential
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Table 5 Demand for network 2

Node 4 5 6 7 10 12 13 14 16 17

d.0/
Œkg=s�

0.092 0.028 0.538 0.434 0.807 0.035 0.045 0.452 0.471 1.773

T1 Œs� 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000

T2 Œs� 500,000 500,000 500,000 500,000 500,000 500,000 500,000 500,000 500,000 500,000

Node 22 23 27 28 30 31 35 36 37 40

d.0/
Œkg=s�

0.599 0.133 0.040 0.018 0.478 0.678 0.573 0.093 0.710 0.598

T1 Œs� 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000

T2 Œs� 500,000 500,000 500,000 500,000 500,000 500,000 500,000 500,000 500,000 500,000

Node 42 46 47 48 49 51 53 55

d.0/
Œkg=s�

0.318 0.561 0.498 0.493 0.233 0.172 0.278 0.359

T1 Œs� 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000

T2 Œs� 500,000 500,000 500,000 500,000 500,000 500,000 500,000 500,000

equations can be applied to a linearization of the nonlinear system: Via the Jacobian
matrix we get a constant-coefficient linear equation that can be evaluated at a given
time t0. However, information may get lost in the process of linearization. In the
following we empirically evaluate and show the stiffness of the ordinary differential
equation (12) for the single pipe and the small network example from Section 2.2.

3.2 Single Pipe System

The single pipe introduced in Section 2.2 comprises segments of varying properties
and can hence be written as a system of ordinary differential equations of size 14.

In this first excursion in stiffness we are going to compute the common notions
of stiffness that are given by the eigenvalues and the singular values of E�1Jf .0; x0/,
where x0 denotes a stationary solution at time t D 0. This stationary solution can in
principle be chosen arbitrarily and will serve as a starting value later. The Jacobian’s
singular values and eigenvalues are plotted in Figure 4. Notice that these plots tend
to look very similar for other values of t and x. The analysis of singular values
and eigenvalues leads to a liberal stiffness estimate of 4 and a conservative estimate
of 1:6�105. Because the difference between both estimates comprises several orders
of magnitude we cannot conclude the extent of stiffness, hence the problem at hand
might either become rather stiff or only mildly so.

By a simple numerical test we notice, though, that the step size of a regular
solver for non-stiff problems (here MATLAB®’s ode15) is chosen much smaller
than by the corresponding stiff solver (here MATLAB’s ode23s). This difference
can be interpreted as a sign of more than only mild stiffness. The step sizes
chosen by the different MATLAB solvers are shown in Figure 5, where we can
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Fig. 5 The time steps chosen by MATLAB’s ode23 and ode15s solvers for ordinary differential
equations, network 1

observe a difference of two orders of magnitude for this simple example. Even more
important, we must expect that we deal with serious stiffness in this class of gas
transportation problems due to the fact that, in spite of those small step sizes, the
solution found by MATLAB’s non-stiff ode15 blows up in finite time whereas the
solution given by ode23s does not.
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Fig. 6 The eigenvalues and singular values of the linearized system, network 2

3.3 Small Networks

For a network of pipes the stiffness of the system becomes clearer yet. Looking at
the eigenvalue and singular value plot of the Jacobian matrix, which is shown in
Figure 6, we again see that the stiffness estimates vary strongly by several orders of
magnitude, this time between 16 and 1:1� 106. As above this result eludes an exact
stiffness analysis of the system of equations. Since both estimates grow higher than
in the previous example, stiffness can most probably be assumed to increase with
the complexity and size of the network. Conducting the same experiment as before,
we compare the resulting MATLAB step sizes as in Section 3.2. We do not include
a plot as it shows the same peculiarities as Figure 5, only that the time step of the
non-stiff method decreases even more, oscillates around 10�3 s and therefore differs
by four orders of magnitude from the stiff solver.

Regarding the first six seconds, the solutions computed via the two different
solvers are depicted in Figure 7. We can notice again that these systems seem to
require a stiff or, possibly even better, a dedicated solver.

4 Model Order Reduction

Seeing that these network problems can become arbitrarily large and stiff, we would
be interested in creating a reduced order model which is of small order and hopefully
not stiffer than the full system. Since the system is nonlinear, we apply the model
order reduction method called proper orthogonal decomposition as this is typically
the method of choice for nonlinear systems.
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4.1 Proper Orthogonal Decomposition

The model order reduction method called proper orthogonal decomposition (POD)
starts with multiple snapshots fyk

j gmjD1 � X, 1 � k � p, for a given Hilbert space X
(typically R

n or a function space like L 2). One is interested in finding a subspace
spanned by an orthonormal basis  1; : : : ;  ` within the Hilbert space X that solves
the minimization problem

min
pX

kD1

mX
jD1

˛j

�����yk
j �

X̀
iD1
hyk

j ;  iiX i

�����
2

X

s. t. f ig`iD1 � X and h i;  jiX D ıij; 1 � i; j � `:
(15)

This minimization can also be written as a maximization problem due to the
orthogonal nature of the elements  i

max
pX

kD1

mX
jD1

˛j

X̀
iD1
hyk

j ;  ii2X

s. t. f ig`iD1 � X and h i;  jiX D ıij; 1 � i; j � `:
(16)

Theorem 1. Let X be a separable Hilbert space, R W X ! X a summation operator
on X defined by

R W X ! X; R 7!
pX

kD1

mX
jD1

˛jh ; yk
j iXyk

j :
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The following assertions are all true:

(a) R is linear compact self-adjoint and nonnegative.
(b) A basis of X of eigenfunctions  j exists such that

R j D �j j

and �1 � �2 � : : : � �d > �dC1 D � � � D 0.
(c) The first ` of these eigenfunctions solve the minimization problem (15) and the

maximization problem (16).

For a proof of Theorem 1 see [13].
In the remainder of this chapter, let us assume that X D R

n and the inner product
is defined by hx; yiX D xTEy for a given positive definite symmetric matrix E. We
will denote by Yk the matrix of snapshots fyk

j gmjD1. This means Y is an n �m matrix.

Corollary 1. The eigenvectors of the operator R equate to the eigenvectors of the
matrix

�
Y1DYT

1 C � � � C YpDYT
P

�
E; (17)

where D D diag.˛1; � � � ; ˛n/.

So in order to find the best approximation space of size ` for a given set of
snapshots, all we have to do is compute the first ` eigenvectors of (17). Notice that
the matrix (17) is an n � n matrix, the size of the state space X. This matrix is not
symmetric. If we, however, knew the eigenvalues and eigenvectors of the following
symmetric system

E1=2
�
Y1DYT

1 C � � � C YpDYT
P

�
E1=2; (18)

we could compute the eigenvectors of (17). In fact, these eigenvectors are obtained
if we multiply the eigenvectors of (18) by E�1=2. Since E is usually a large matrix
and its square root is hard to compute, we are going to describe a faster alternative.
The matrix (18) can be written as OY OYT for

OY D 	 OY1 OY2 : : : OYp



;

where OYi D E1=2YiD1=2. Since this matrix is symmetric and positive definite its
eigenvalue and singular value decompositions are equivalent. Assuming we know
the singular value decomposition of OY ,

OY D USVT ; (19)

we also know the singular value decomposition of OY OYT D US2UT and the singular
value decomposition of OYT OY D VS2VT . This means, if we compute V we can recover
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U by (19), with U D OYS�1V . The matrix U is the matrix of singular vectors or
eigenvectors of OY OYT (recall that OY OYT equals (18)). Hence, we get the eigenvector
matrix of (17) by E�1=2U D E�1=2 OYS�1V . If 	1; : : : ; 	` are the singular vectors of
OY OYT we can, consequently, compute the eigenvectors  i,

 i D 1p

i

	
Y1D1=2; Y2D1=2; : : : YpD1=2



	i;

where 
i and 	i are the singular values and singular vectors of OYT OY . The objective
function is then given by

pX
kD1

mX
jD1

˛j

�����yk
j �

X̀
iD1
hyk

j ;  iiX i

�����
2

X

D
pX

kD1

mX
jD1

˛j

 
kyk

j k2X � 2hyk
j ;
X̀
iD1
hyk

j ;  iiX ii C k
X̀
iD1
hyk

j ;  iiX ik2X
!

D
pX

kD1

mX
jD1

˛j

 
kyk

j k2X �
X̀
iD1
hyk

j ;  ii2X
!

D
nX

iD1

i �

X̀
iD1


i D
X
i>`


i:

which follows from the fact that  i are eigenfunctions of the operator R [13]. Not
to mention, this result can be utilized to determine `, i.e., to decide where to cut off
eigenvalue computations. In practical applications, a heuristic choice for ` can, e.g.,
be implied by the requirement that E � 99% where

E D
P`

iD1 
iPn
iD1 
i

D
P`

iD1 
iPp
kD1

Pm
jD1 ˛jkyk

j k2X
: (20)

We now need to understand how to use the described subspace of X in order to
create a reduced order model of a dynamical system given in the form

EPx D TxC f .x; u/C Ku;

where the function f depends on the dynamic variable x and the time-dependent
input function u. We are now going to briefly address the matter that the system
matrices E;T;K, and the function f additionally depend on parameters. The basic
idea is to generate snapshots for certain sampled parameter values. This parameter
sampling can be picked as a uniform grid. An alternative way to set up a sampling
in a semi-optimized way by using a Greedy algorithm is, e.g., described by [5].
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Algorithm 1 POD
Require: Y1; : : : ; Yp 2 R

N�n, inner product matrix E, diagonal weight matrix D, reduction order `
Ensure: metamodel  1; : : : ;  `

1: Bjk D1=2YT
j EYkD1=2, j; k 2 f1; : : : pg

2: B matrix with Bij blocks
3: 
i; 	i singular values and singular vectors of B
4: for i 1 W ` do
5:  i 1

p


i
ŒY1D1=2; : : : ; YpD1=2�	i

In fact, (15) can be seen as the discrete version of a continuous minimization
problem. Seen in this light, the objective function would read

pX
kD1

Z T

0

�����yk.t/�
X̀
iD1
hyk.t/;  iiX i

�����
2

X

;

which, in turn, implies the minimization problem (15) by using a quadrature rule to
compute the integral. A classical choice of ˛i are trapezoidal weights and the inner
product is typically given by hx; yi D xTEy with the inner product matrix denoted
by E. This allows us to compute  1; : : : ;  ` by the methods discussed above and
summarized in Algorithm 1. We then determine the matrix W as W D Œ 1; : : : ;  `�
and project the large scale system by Galerkin projection onto

WTEW POx D WTTWxCWTf .W Ox; u/CWTKu; (21)

where WTEW D I by the mutual orthogonality of  i with respect to said inner
product.

4.2 Nonlinearity and Problem Structure

In the following, we are going to describe the rest of the algorithm that is used
in the numerical experiments of Section 5. There are mainly two questions left
to be answered carefully which were not mentioned in the theoretical derivation
of POD.

1. Do we need to consider the special structure of the problem when we set up
the reduced order model? Pressures and fluxes are not necessarily of a similar
magnitude such that a direct application of the POD matrix as in (21) might
neglect important effects [8]. We therefore reduce the pressure and the flux vector
separately.

2. How do we handle the nonlinearity of the function? The term WTf .W Ox/
contributes `-dimensional function values with an `-dimensional vector-valued
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argument. However, a higher-dimensional vector must be evaluated to compute
WTf . To obtain a fast simulation, this evaluation needs to be avoided.

Let us first discuss implications of the special structure of our problem. For the
convenience of the reader, the ordinary differential equation (12) is repeated here:

�jB0jMLjBT
0 j 0

0 M�1a

� �
@tpd

@tqC

�
D
�
0 B0

BT
0 0

� �
pd

qC

�
C
��d.t/ � jB0jMLjBT

S j@ts
g.q; p; s/C BT

S s

�
:

For given input functions s.t/, d.t/, and given parameters, we solve this differential
equation within the time interval Œ0;T� in time steps of size �t > 0. This means we
obtain pressure values p.0/; p.�t/; : : : ; p.T/ and flux values q.0/; q.�t/; : : : ; q.T/,
representing snapshots that we assemble into matrices

Yp
i (pressures) and Yq

i (fluxes); (22)

where i indicates the snapshots of different given parameter values. They are used
to calculate projection matrices Wp and Wq separately for pressures and fluxes by
Algorithm 1, such that the reduced order system obtained via Galerkin projection of
the full order ordinary differential equation onto the matrix

�
Wp 0

0 Wq

�

reads
"

WT
p jB0jMLjBT

0 jWp 0

0 WT
q M�1a Wq

#�
@tpd

@tqC

�
D

"
0 WT

p B0Wq

WT
a BT

0Wp 0

#�
pd

qC

�
C
"
�WT

p d.t/�WT
p jB0jMLjBT

S j@ts
WT

q f .Wpp;Wqq; s/CWT
p BT

S s

#
:

(23)

Since all involved matrices can be precomputed, the only issue left is the
computation of the nonlinear term Wqf .Wpp;Wqq; s/. So as to approximate this
nonlinear term by a function which no longer requires any higher order operation,
the discrete empirical interpolation method (DEIM in short, see [2]) is employed.
If we precompute a snapshot matrix F that consists of function evaluations of f
at a number of given values of p and q, matrices P and U can be computed via
Algorithm 2, such that the resulting reduced (i.e., approximate) nonlinear function
evaluation amounts to

WT
q f .Wpp;Wqq; s/ D WT

q U.PTU/�1PTf .Wpp;Wqq; s/:
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Algorithm 2 DEIM
Require: F 2 R

N�n, reduction order m
Ensure: metamodel  1; : : : ;  `

1: ŒU; S;V� svd.F/
2: ind index of the maximal entry of U.W; 1/
3: P eind coordinate basis vector
4: for i 1 W m do
5: ind index of maximal entry of U.W; iC 1/�U.PT U/PT U.W; iC 1/
6: P ŒP; eind�

We immediately see that the matrix WT
q U.PTU/�1 is of size r1 � m, where m is the

reduction order for DEIM and r1 the reduction order for the flux component in POD.
The function PTf .Wpp;Wqq; s/ is truly a function of order m since the matrix P is
a matrix of zeros and ones, where exactly m entries of f are picked. Owing to the
structure of the function f , namely the k-th entry only depending on the k-th entry
of Wqq and BT

0WppC BT
S s, this computation is straightforward.

5 Numerical Examples

The purpose of the following section is to experimentally show the extent of
reduction of the system we can achieve for our three network models (Section 2.2),
while still being able to reproduce the general dynamical behavior of the gas within
the network.

5.1 The Single Pipe

Our first example is one of the most trivial networks possible and serves as proof of
concept. To begin with, a single solution trajectory, which we again call a snapshot,
is calculated for the parameters given in Section 2.2. Its singular values are shown
in the top panel of Figure 8. By the methods explained in Section 4.2, the snapshot
is used to set up a reduced order model. In short, this means we can determine
projection matrices W1 and W2 via POD as well as projection and picking matrices U
and P via DEIM. The resulting reduced order model parametrically depends on
length, diameter, and friction coefficient of each pipe segment as well as on the
field � that characterizes properties of the gas flowing through it. In order to better
understand the behavior of the system for different choices of these parameters, we
make use of a Latin hypercube sampling of size 10, where we vary all 22 parameters
in a cube of ˙5% of the original parameter set. In this particular test, the order of
the reduced model is 4, which results from the choice r1 D r2 D m D 2. For the
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Fig. 8 The singular values for one time series as well as for 10 time series, each the result of a
different parameter set. The values that are shown along the y-axis are ordered decreasing in size,
along the x-axis

different test networks, which only differ by the said parameter values, we compute
the reduced order model as well as, for reference, the full model and compute
the relative error in the pressure and the absolute error in the flux, displaying the
respective maximal error in Table 6. Furthermore, the relative error at a distance
from t D 0 is also given as the maximal difference over all pressure and flux
components. We also display the error of the reduced order system compared to
the full system of the original parameter distribution. This shows that, when we
vary the parameters, we still stay within the same order of magnitude of the error.

Figure 8 emphasizes this result. Here we see that the singular value decay in
the flux looks similar, whether we have one time series or several time series for
several parameters. The difference becomes noticeable in the left column that refers
to pressure. However, in both cases the third singular value, after which DEIM cuts
off the series of singular values, is of order 10�8.

Of course, the input and output functions of this problem are not varied. And due
to the nature of the problem we cannot expect to find a reduced system of small order
representing all possible input and output functions. The difficulty consists in that
the partial differential equation describing the physics in the pipe, the isothermal
Euler equation, is a transport dominated partial differential equation. Thus shocks
might travel through the system and we can, therefore, not expect the solution to lie
in a low-dimensional subspace.

The following numerical experiment, however, shows that, if we assume the
supply pressures and demand nodes only vary within a certain range of given
values, we are able to still use the reduced system. We are now going to repeat
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Fig. 9 The maximal relative error over the 10 sampled scenarios

the comparison of the full and reduced simulation. Again, we pick 10 simulations,
varying the percentage the supply pressure and the demand flux change over time
within ˙10%. Remember the reduced order was created with these values all
varying by 2% only. The relative error plot, where the maximum is taken over all
10 scenarios, is displayed in Figure 9.

5.2 Network of 57 Pipes

Having a manageable size but realistic structure, the following example supports
the idea that model order reduction already helps to reduce simulation time and
stability of the simulation for networks of smaller scale. We test parameter variations
as well as changes of the input function receiving robust and accurate results. The
system is first solved for the parameters and input function given in Section 2.2,
T D 1 � 106 s 	 280 h. We store 100 time steps for a system size of 110, of
which 54 dimensions refer to pressure and 56 to flux. By and large, we gather a
snapshot matrix of dimension 100 � 110 in this fashion. The singular value decay
of YEYT is illustrated in the top panel of Figure 10, where the singular values are
displayed for the fluxes and the pressures independently again. On the subject of the
criteria given in (20), we can conclude that a reduced order of size 1 for pressures
and of size 1 for fluxes is sufficient to obtain a “good” approximation in that case
with E � 0:99999 for the pressures as well as for the fluxes. We, however, select
r1 D r2 D 3. Typically, the reduction order for DEIM has to equal at least this
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Fig. 10 Singular values of the snapshot matrices

reduced order (3 in our case). It turns out that this minimum choice is enough for the
example at hand, see the error values listed in Table 7. In fact, r1 D 3; r2 D 3;m D 3
yield a reasonably accurate reduced order system.

The projection matrices are applied to create a parametric reduced order model.
The parameter space of this parametrized model possesses a dimension of size 29.
We allow this parameter vector to vary in a box around ˙5% of its given values
again. We pick 10 values in that box by Latin hypercube sampling to obtain
10 scenarios. For each scenario we compute the reduced solution and the full
solution. We realize here that in order to run MATLAB’s ode solver ode15s we
need to have a very accurate starting value for the full model. Therefore, we take the
original initial value and compute a truly stationary solution by Newton’s method
to be used as initial value. For the reduced order system this step is not necessary,



Numerics of MOR for Gas Transportation Networks 25

T
ab

le
7

N
um

er
ic

al
er

ro
r,

ne
tw

or
k

2

Sa
m

pl
e

1
2

3
4

5
6

7
8

9
10

A
bs

ol
ut

e
er

ro
r

(fl
ux

)
Œ k

g=
s�

10
.6

85
4

3.
40

17
2.

31
85

10
.6

69
0

4.
35

58
4.

00
95

9.
14

39
14

.2
88

3
12

.9
63

2
5.

03
59

R
el

at
iv

e
er

ro
r

(p
re

ss
ur

e)
0.

02
96

0.
04

26
0.

04
21

0.
03

40
0.

03
00

0.
02

24
0.

03
88

0.
03

12
0.

04
29

0.
01

71

R
el

at
iv

e
er

ro
r

(p
re

ss
ur

e,
t
2Œ
1
0
3

s;
1
0
6

s�
)

0.
02

96
0.

03
48

0.
02

21
0.

09
16

0.
03

46
0.

00
96

0.
03

88
0.

08
31

0.
05

73
0.

02
16

T
im

e
(f

ul
lm

od
el

)
Œs
�

1,
38

8
90

4
1,

02
9

1,
32

0
1,

06
0

87
8

94
1

94
0

81
1

91
4

T
im

e
(r

ed
uc

ed
m

od
el

)
Œs
�

2
1.

7
1.

6
1.

8
1.

7
1.

7
1.

8
1.

4
1.

1
1



26 S. Grundel et al.

which in turn means that the solution of the full order system becomes even slower in
comparison. However, this procedure also implies that the solutions near the initial
time are not as close to each other as later because they do not start from the same
initial value. We thus compare the maximal relative error only after the first 1000 s
have already passed. This error is shown in Table 7. We, furthermore, compare the
timings, for the solution of the reduced system and for the solution of the full system,
where the identification of a starting value is included as well as the simulation time
itself.

With regard to the full solution of the 10 scenarios from above, creating a
snapshot matrix as in Section 4.1, we can compute the singular values that are
plotted in the middle panel of Figure 10. The singular values show the size of a
linear subspace to be used in order to create a good approximation of the space in
which the solutions lie.

Furthermore, we have conducted some test with varying input functions. As
in the case of the single pipe, we vary the percentages the demand and supply
values change during the simulated time in a box of ˙10%. We can match the
general behavior even though the errors between the full and the reduced system
can be large. However, measurements often differ from the computed solution even
stronger than our reduced model, see, e.g., [1]. We, furthermore, display the singular
value decay for the snapshot matrix created by 10 such scenarios (last panel of
Figure 10).

5.3 Network of 669 Pipes

A system of 669 elements is rather large such that computations of a single time
series can already take from several hours up to weeks with standard solvers (it is
possible to accelerate the implementation, though). The goal here is to show that
we can predict the behavior of the system with the model order reduction method
as described above up to a certain extent. We only compute the solution of this
large system for the first 100 s. From the results of this computation we calculate
the projection matrix W as well as the DEIM matrices P and U with reduction order
r1 D 4; r2 D 2;m D 4. These matrices are needed to set up the reduced system.
We then run the reduced system for different values of d.0/, which are a random
perturbation of the original d.0/. We cannot compare the reduced time series to the
time series of the full system, as the latter is too expensive to compute. Since we
run the reduced system in time until it should arrive at a new stationary solution,
we can assess the extent of “stationarity” of our result from the right-hand side of
the system. In Table 8 we compare the value of the right-hand side of the reduced
system to the value of the right-hand side of the full system at the state we arrived
at following the trajectory of the reduced system. Even though these values are not
numerically zero, they are reputably closer to zero than if we evaluated the right-
hand side at the initial configuration. Compared to the initial configuration, these
values are hence better starting values to use a Newton-type method to find a truly
stationary solution.
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Table 8 Value of the right-hand side, network 3

Sample 1 2 3 4 5 6 7 8 9 10

fr.rE ; xE/ 0.4 0.3 2.7 0.9 1.3 0.4 0.6 1.4 0.6 1.5

f .tE;WxE/ 18 22 29 19 20 17 26 22 18 22

f .tE; x0/ 106 106 106 106 106 106 106 106 106 106

The simulation time for simulating those reduced order systems amounts to
approximately 25 s. If we use the end value obtained from the reduced simulation
and apply a Newton method to find a stationary solution such that jf .xS/j � 10�3,
the Newton method takes around 10 to 100 s. Whereas, if we use x0 to start our
Newton method, it takes about 10; 000 s. So in the presented case, the reduced
method can certainly help to speed up the computation of a feasible stationary
solution.

6 Conclusions

For gas transportation problems through networks of pipelines, from supplier to
consumer, the underlying continuum mechanics, practical simplifications, and a
numerical model have been compiled and explained to the reader. Notably, a state-
of-the-art transformation of the resulting discretized differential algebraic system of
equations to a system of ordinary differential equations has been presented. Among
the properties of this system, stiffness has been spotlighted since it affects the choice
of suitable numerical solvers strongly. Empirical evidence is shown that stiffness
plays an important role and that it even grows with the complexity of the systems.

With the goal of exhaustive studies of varying input and output in mind,
we indicate how to apply model order reduction methods for nonlinear systems
efficiently, making use of POD with DEIM. Special attention is given to the
preservation of the general form of the underlying ordinary differential equation lest
pressure and flux values may be mixed. A parameter domain is defined by varying
network properties within a limited range to indicate uncertainty. The domain is
used to obtain empirical results that illustrate possible gain in simulation speed by
order reduction, while the induced loss in accuracy is discussed.

The numerical behavior of three networks of different complexity is examined in
this light. Results indicate that a speed-up of 10 to 1000 can be achieved, where we
have to anticipate certain inaccuracy within the obtained solutions. In some cases
inaccuracy can be of an order of magnitude such as 10% of the typical solution
values. The stiffness of the reduced system has been monitored and not found to be
increased by the applied model order reduction technique.

One of the most obvious extensions to the case presented here can be found in
the treatment of more types of network elements, as well as in the inclusion of more
involved temperature effects. From a numerical point of view, the development of
dedicated solvers would probably be interesting.
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Parameter Studies for Energy Networks
with Examples from Gas Transport

Tanja Clees

Abstract The focus of this chapter is on methods for the analysis of parameter
variations of energy networks and, in particular, long-distance gas transport net-
works including compressor stations. Gas transport is modeled by unsteady Eulerian
flow of compressible, natural gas in pipeline distribution networks together with
a gas law and equations describing temperature effects. Such problems can lead
to large systems of nonlinear equations with constraints that are computationally
expensive to solve by themselves, more so if parameter studies are conducted and
the system has to be solved repeatedly. Metamodels will thus play a decisive role in
the general workflows and practical examples discussed here.

Keywords Metamodeling • Response surfaces • Design of experiments •
Parameter analysis • Robustness • Gas networks

1 Introduction

Networks rule the world. The well-known social networks are just one example.
Infrastructure for transport of gas, electricity, or water, but also electrical circuits
inside technical devices are other important instances. Due to the ongoing transfor-
mation of our energy production and incorporation of increasingly larger amounts
of renewable energy sources, energy networks of different types (electrical grid, gas,
heat, etc.) have to form an integrated system allowing for balancing of supplies and
demands in the future. Conversions between different energy media (power-to-gas,
power-to-heat, etc.) and storages provided by, for instance, pipeline systems and
caverns will play a decisive role. This increases the demand for enhanced cross-
energy simulation, analysis and optimization tools.
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Transport networks for energy or water as well as circuits can be mathematically
modeled in a very similar fashion, based on systems of differential-algebraic
equations. Their numerical simulation can be performed based on the same or at
least similar numerical kernels.

In Section 2, the physical model for flow of compressible, natural gas in pipeline
distribution networks with several technical elements is sketched. In a similar
fashion, one can model electrical grids, pipeline systems and other energy transport
networks as well.

Afterwards, in Section 3, we describe analysis tasks which are common for many
energy networks and define some terms important there. Section 4 gives a short
overview on a selection of methods frequently used. A flow chart asking some key
questions and several workflows are outlined in 5. Section 6 summarizes several
versatile visualization techniques. Based on these workflows, several examples from
gas transport analysis are studied in some detail in Section 7. Finally, Section 8
concludes this chapter.

2 Gas Transport Network Modeling

In the following, the physical model considered here is sketched. More details
can be found in [24]. Several ongoing research aspects such as model order
reduction, ensemble analysis, coupled network and device simulation are discussed
in [5, 13, 18, 20, 21, 28], for instance. Throughout this chapter, we use MYNTS
(MultiphYsical NeTwork Simulation framework), see [1, 4]. In MYNTS, the
physical model described in the following is implemented.

2.1 Isothermal Euler Equations

A gas transport network can be described as a directed graph G D .E ;N / where
N is the set of nodes and E is the set of directed edges denoted by tuples of
nodes. If we choose to not consider more involved components as a start, each
edge constitutes a pipe and can thus be specified by length and width. Nodes, on
the other hand, can be imagined as the points where pipes start, end or meet. The
physics of a fluid moving through a single pipe can be modeled by the isothermal
Euler equations. Discarding terms related to kinetic energy for simplification we get:

@t�C @xq D 0 (1)

@tqC @xpC @x
�
�v2

�C g�@xhC F D 0 (2)

p D RsTz�: (3)
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The hydraulic resistance is given by the Darcy-Weisbach equation:

F D �.q/

2D
�vjvj (4)

Here, � D �.x; t/ denotes the density, p D p.x; t/ the pressure, q D � 
 v the
flux, v D v.x; t/ the velocity, T D T.x; t/ the temperature, h D h.x/ the geodesic
height, D D D.x/ the pipe diameter, z the compressibility, Rs denotes the specific
gas constant (see also Section 2.3), and � D �.q/ being the friction coefficient.

Together with Kirchhoff’s equations, the nonlinear system to be solved is defined.
The meaning of the equations is as follows:

• the continuity (1) and Kirchhoff’s equations modeling the mass (or molar) flux
• a pipe law (2) and Darcy-Weisbach modeling pressure-flux (see Section 2.2)
• a gas law (3) modeling pressure–density–temperature (see Section 2.3)

�; p; q; v;T form the set of unknown dynamical variables.

2.2 Pipe Laws

The friction coefficient in the Darcy-Weisbach equation can be modeled by, e.g.:
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�
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�
C 1:138

��2
Nikuradze (6)

where Re is the Reynolds number and � a parameter describing the roughness of the
pipe currently considered. For high Reynolds numbers, Hofer approaches the easier
Nikuradze equation.

2.3 Gas Laws

For ideal gases, pV D nRT holds where p denotes pressure, V volume, n amount
(in moles), R ideal gas constant, and T temperature of the gas. Defining the specific
gas constant Rs as the ratio R=m with m being the mass, we get p D �RsT. For the
non-ideal case, compressibility z is introduced, and Eq. 3 holds. Several gas laws are
frequently used:

z D 1C 0:257pr � 0:533 pr

Tr
AGA.upto70bars/
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Here, pr;Tr; �r denote the reduced pressure, temperature, and density, respectively.
A reduced property is obtained by dividing the property by its (pseudo-)critical
value. If AGA8-DC92 shall be applied, the fractions of all components in the gas
mix have to be computed as well, cf. 2.5. AGA8-DC92 contains several further
coefficients and constants which are not further explained here. Papay is quite
popular. However, for an accurate simulation, AGA8-DC92 should be used though.

2.4 Network Elements

Several types of nodes should be distinguished:

• Standard supplies: Input pressure, temperature and gas composition are defined.
• Standard demands: Either output mass flow or volume flow or power is defined.
• Special supplies: Either input mass flow or volume flow or power is defined.
• Interior nodes: The remaining nodes, where nothing is defined (besides (h).

For all nodes, their geodesic height h has to be given.
Besides nodes and pipes, several elements are present in many gas transportation

networks. The following elements are considered here, a typical selection:

• Compressors, described by a characteristic diagram (engine operating map; see,
for instance, Figure 4).

• Regulators: Input pressure, output pressure, output volume flow are typical
regulation conditions; regulators might be described by a characteristic curve.

• Coolers, heaters.
• Valves, resistors, flaptraps.
• Shortcuts: A special element which can be seen as an extremely short pipe.

2.5 Gas Mixing and Thermodynamics

Natural gas consists of 21 components, and the by far largest fraction is methane. For
modeling the molar mix of gas properties, such as combustion value, heat capacity,
fractional composition, etc., the system has to be enlarged and reformulated to take
21 gas components into account.

Also for modeling thermodynamical effects, the composition is incorporated.
Several important effects have to be considered:

• Heat exchange (pipe-soil): A (local) heat transfer coefficient is used.
• Joule-Thomson effect (inside the pipe): Temperature change due to pressure loss

during an isenthalpic relaxation process.

The system is then enlarged by an equation describing the molar mix of enthalpy (a
form of internal energy). Arguments include, in particular, the heat capacity and the
critical temperature and pressure, as modeled by the gas law chosen. For modeling
the gas heating inside compressors, the isentropic coefficient has to be considered
as well. Several models for approximating this effect exist, cf. [23], for instance.
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2.6 Outputs, Parameters and Criteria

The following terms are used here:

• Input: Settings/values which have to be defined before starting a simulation.
• Output: Results stemming from a simulation.
• Parameter: An input which shall be varied for a specific analysis task.
• Criterion: A single value or distribution computed from one or more outputs;

a criterion might be a global value or one with only a local meaning for the
network given.

Several general questions arise for each parameter:

• Of which type is the parameter: discrete (e.g. state of a valve) or continuous
(e.g. input pressure)?

• Which (range of) values shall be considered for the parameter for the specific
analysis task? Examples are:

– “on” and “off” for the state of a valve
– the interval Œ52:0I 60:0� for an input pressure

• Can all parameters be varied independently? If not, is the dependency be known
in advance or result of another process?

• Which type of distribution shall be considered for the parameter for the specific
analysis task?

• How is this distribution be defined?

– Function: Analytic (physical model) or fitted to data stemming from measure-
ments or simulations (attention: the method for and assumptions behind the
fitting might have a large impact).

– Histogram (raw data) resulting from another process.

See Table 1 for a selection of input parameters, varied in the examples (see
Section 7), as well as output functions, analysed in more detail.

Table 1 Input and output functions (selection).

shortcut function node/edge remark

pset input: pressure at supply node values in bar here

qset input: volume flow at demand node values in 1000Nm3=h here

m mass flow edge values in kg=s here

p pressure node values in bar here

pslope pressure difference edge p2 � p1 on the edge

t temperature node values in Kelvin here

tslope temperature difference edge t2 � t1 on the edge

had head of compressor edge change of isentropic enthalpy ŒkJ=kg�

qvol volume flow through compressor edge volume per second Œm3=s�
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A General Remark. Depending on the concrete physical scenario to be solved
and, in particular, conditions for compressors and regulators, either a set of
equations or a set of equations and constraints (and possibly an objective function)
has to be solved. We call both cases “simulations” in the following, though.

3 Analysis Tasks and Ensembles

Parameters of the model can vary, depending on their meaning and physical and/or
numerical scenarios considered. A parameter variation might cover a tiny up to a
huge range of values, in one or more intervals, and different types of distributions
might be considered. Typical ones are

• uniform
• (skewed) Gaussian (see, for example, Figure 9)
• based on a histogram harvested from measurements

Different tasks can be solved. Important ones include

• comparison of scenarios and visualization of differences on the net (Section 6.3)
• stability analysis (Section 3.1)
• parameter sensitivity and correlation analysis (Section 3.2)
• robustness analysis and analysis of critical situations (Section 3.3)
• robust design-parameter optimization (RDO, Section 3.4)
• calibration of simulation models (history matching, Section 3.5)
• analysis of the security of energy supplies: this has to be carried out, in particular,

for electrical grids; the so-called .N � 1/-study is usually performed. If N is the
number of (at least) all (decisive) components, N simulations are performed in
each of which another one of these components is assumed to fall out.

If the data basis for such an analysis task is a collection of results from several
simulation runs or measurements, we call this data basis ensemble here.

In the following, we describe the tasks listed above in more detail. Afterwards,
we will present and discuss methods for creating ensembles and analysing them.

3.1 Stability Analysis

We call (the design of) a scenario stable if tiny changes of initial conditions and
physical properties have a tiny impact on the results only. We call it instable, if tiny
changes in the initial conditions lead to substantially different results with a large
portion of purely random scatter. We call it chaotic, if tiny changes in the initial
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conditions lead to substantially different and even unpredictable results. Instability
might stem from physical and/or numerical issues, and it is difficult to separate these
effects in many cases.

A pragmatic way to perform a stability analysis is given by workflow STAT, see
Section 5.1, where many parameters of the model as well as numerical settings are
randomly varied in a tiny range each.

3.2 Parameter Sensitivity and Correlation Analysis

We call (the design of) a scenario sensitive, if small changes of the initial conditions
lead to substantially different, still predictable results.

There are several ways to measure sensitivity and to perform sensitivity analysis.
A simple method and quick check for nonlinear behaviour is based on a star-shaped
experimental design (design-of-experiment (DoE), see Section 4.1). Per parameter,
3 values (left, center, right) for checking dependencies are available then. This
simple analysis might be the first part of workflow ADAPTIVE (Section 5.3).

If a deeper analysis shall be performed directly, or if only one set of simulation
runs is possible, either workflow STAT (Section 5.1) or workflow UNIFORM
(Section 5.2) can be performed. Workflow UNIFORM has the advantage that a
metamodel is constructed as well. Global impacts are reflected by correlation
measures (see Section 4.2). Local sensitivities, 2D histograms and (approximations
of) cumulative density functions give a deeper insight, see also Sections 6.1 and 6.1.

3.3 Robustness Analysis and Analysis of Critical Situations

We call (the design of) a scenario robust if small changes of the initial conditions
will only have small and w.r.t. to the “quality” affordable impacts on the results. In
particular, robustness analysis is a typical way to examine critical situations based
on simulations.

One has to carefully distinguish between robustness and reliability. Roughly
speaking, robustness aims at the behaviour for the majority of the cases (between
the 5- and 95-percent-quantile or the 1- and 99-percent-quantile, say), whereas
reliability asks for the seldom cases (outside the area considered for robustness
analysis). In practice, reliability might be very difficult to compute accurately,
whereas one can at least characterize robustness. Some robustness measures are
(cf. [25, 27]):

• If a certain objective should be optimal in average, an expected value can be
minimized (Attention: The distribution of the target function itself is allowed to
have big outliers).

• If a certain objective should vary as less as possible, dispersion can be minimized.
It is mandatory to combine this measure with one for controlling quality itself.
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• If a certain objective must not fall below a given threshold, worst-case analysis
and a respective measure can be used.

• If a given percentage of values of a target isn’t allowed to fall below a threshold,
a quantile measure can be applied.

Each measure is reasonable, there are more alternatives, and several measures can
even be used simultaneously. Note that the decision for one or more measures
depends on the intention of the designer.

3.4 Robust Design-Parameter Optimization (RDO)

RDO means parameter optimization with robustness aspects. One or more robust-
ness criteria can be added to the optimization process. However, minimization of the
value of a target function can lead to a higher dispersion and vice versa: usually, you
cannot achieve both. Compromises might be found by a weighted objective function
or the computation of Pareto fronts or a more substantial change of design.

3.5 History Matching

The adjustment of parameters of a model with respect to (historical) data stemming
from physical measurements is quite often called calibration or history matching.

The goal is to ensure that predictions of future performance are consistent with
historical measurements. History matching typically requires solving an ill-posed
inverse problem, and thus, it is inherently non-unique. One can obtain a set of
matching candidates by means of solving a multi-objective parameter-optimization
problem.

Besides the parameters and their ranges, one or more optimization criteria have
to be set up measuring the quality of the match. Often, differences of decisive
properties such as pressures, fluxes, temperatures, etc., measured in, e.g., the L1-
or L2-norm, are used.

4 Methods

In order to solve one of the analysis tasks discussed above, methods have to be
selected and a workflow set up. Here, methods are outlined. In Section 5, several
workflows as well as a flow chart supporting the selection of a workflow are
discussed.
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4.1 Experimental Designs

Experimental designs (design-of-experiment, DoE) considered here are based on
some standard sampling schemes. Among them can be Monte Carlo (MC), Quasi
Monte Carlo (QMC), Latin hypercube sampling (LHS), stratified sampling (SS),
Centered stratified sampling (CSS). A detailed description of sampling schemes can
be found in [19, 25], for instance.

A special DoE useful for a rough sensitivity analysis is the star-shaped DoE. It
consists of 2np C 1 experiments where np is the number of parameters. The central
design plus, per parameter, a variation to a smaller as well as a larger value (typically
with the same distance to the central point) is performed.

Note that the choice of the DoE is depending on the analysis task and the concrete
step performed.

4.2 Correlation Measures

The Pearson correlation measure is an often-used, yet easily misleading one,
because only monotonous correlations are captured (a typical example is depicted
in Figure 1 (on the left)), and particularly for the case depicted in Figure 1 (on the
right), it completely fails.

A measure reflecting nonlinearities is necessary as, for instance, the DesParO
correlation measure, developed for RBF metamodels (see next section). In order

Fig. 1 Exemplary correlation plots. For the situation on the right, the Pearson measure will be 0
which is quite misleading. The color represents the number of samples in the respective hexagonal
bin. Note that the actual range of values on the x- and y-axis are not relevant here
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to roughly check which parameter-criteria dependencies are still linear or already
nonlinear, both measures can be compared. This has been done exemplarily in
Figs. 5, 8 and 15.

4.3 Metamodeling (Response Surfaces) and Adaptive
Refinement

Classically, ensemble evaluations and Pareto optimizations rely on many exper-
iments (simulation runs) - usually a costly procedure, even if the number of
parameters involved is reduced beforehand.

For drastically reducing the number of simulation runs, one can set up fast-
to-evaluate metamodels (response surfaces). This way, dependencies of objective
functions on parameters are interpolated or approximated. Metamodels are quite
often a good compromise for balancing the number of simulation runs (or physical
measurements) to set up the model and a sufficient accuracy of approximation.

In the DesParO software [6], we use radial basis functions (RBF; e.g. multi-
quadrics, ANOVA), see [3], with polynomial detrending and an optional adjustment
of smoothing and width.

We developed a measure for the local tolerance of the model w.r.t. leave-one-out
cross-validation. It has some similarities to what can be done when working with
Kriging. By means of this measure, interactive robustness analysis can be supported,
in addition to quantile estimators. Analogously, we developed a nonlinear global
correlation measure as well. Figs. 5, 8, 15 show examples of DesParO’s metamodel
explorer. Current tolerances are visualized by red bars below the current value of
each criterion. Visualization of correlations is explained in Section 6.1.

As an orientation for the number of experiments nexp which shall be used
for constructing a basic RBF metamodel, one can use the following formula,
assuming that the order of polynomial detrending is 2 and np denotes the number of
parameters:

nexp � C

�
2C np C np.np C 1/

2

�
(7)

C is an integer which can be set to 3, 4, or 5, say, to obtain a rough, small-sized, or
medium-sized metamodel, respectively.

A standard measure for the quality of a metamodel is PRESS (predicted residual
sums of squares). Originally, it stems from the statistical analysis of regression
models, but can be used for other metamodels as well. If a local tolerance estimator
is available, as for DesParO, quality can also be assessed locally.

More details and applications are discussed in [2, 8–12, 31], for instance.
A metamodel can be adaptively refined, in particular, if a local tolerance measure

is available, as is the case in DesParO. We developed an extension and modification
of the expected-improvement method (cf. [30] and references given therein to
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Keane’s method) for determining points (i.e. sets of parameters), the addition of
which to the DoE is expected to improve interpolation. De facto, a hierarchical
model results. See [7, 15], for instance.

4.4 Quantiles and Robust Multi-Objective Optimization

Several methods for computing quantiles and their applications are discussed in,
e.g., [14, 17, 25–27, 29]. Methods for robust multi-objective optimization are
presented and their practical applicability discussed in, e.g., [7, 15, 16, 22, 30].

5 Workflows

In the following, several workflows for tackling the analysis tasks summarized in
Section 3. The specific task to be considered is denoted with Analysis Task.

The flow chart sketched in Figure 2 can be used as an orientation. In order to
balance computational effort and accuracy while working with simulations, one
should know, in addition, how fast a single simulation run is.

Fig. 2 Flow chart



40 T. Clees

5.1 Workflow STAT

A standard workflow for performing the Analysis Task directly based on simulation
runs or experimental data is sketched below:

1. Ensemble set-up

a. Determine the set of parameters
b. For each parameter, determine its range of values and distribution according

to the Analysis Task
c. Set up a DoE according to the parameter ranges and distributions determined

above; for determining the size of the DoE, find a balance between effort and
quality

d. Perform corresponding simulation runs / experiments

2. Perform the Analysis Task based on the ensemble

5.2 Workflows UNIFORM and UNIFORM-LARGE

A standard workflow for performing the Analysis Task employing a metamodel is
sketched below:

1. Ensemble setup

a. Determine the set of parameters
b. For each parameter, determine its range of values
c. Set up uniform DoE; for determining the size of the DoE, find a balance

between effort and quality; in case of UNIFORM, find orientation in Eq. 7; in
case of UNIFORM-LARGE, estimate the number of experiments necessary
for a classical QMC method, say

d. Perform corresponding simulation runs / experiments

2. Metamodel and quality assessment

a. Set up a metamodel using the ensemble created above
b. Check model tolerances (global PRESS value, local tolerances)
c. Check correlation measures
d. Reduce parameter space for analysis task, as far as possible

3. If metamodel ok: Perform the Analysis Task employing the metamodel

5.3 Workflow ADAPTIVE

An iterative workflow for adaptive hierarchical metamodeling and optimization of
decisive metamodeling parameters is sketched now:
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1. (Optional:) Set up a star-shaped DoE for performing a basic sensitivity analysis
2. (Optional:) Based on its results, reduce the parameter space
3. Perform workflow UNIFORM
4. This includes the first run of the Analysis Task. In case of RDO, a rough Pareto

optimization for finding candidate regions should be performed
5. If necessary, perform model refinement (cf. Section 4.3), then go to step 4
6. Perform the final run of the Analysis Task employing the metamodel

6 Visualizations

Besides the methods for approximating dependencies and statistical measures,
visualization techniques play a decisive role. Without appropriate representation
of results, the sometimes immense output cannot be digested and efficiently
interpreted. Visualization can efficiently support, for instance, pointing to interesting
features of a problem and interactive exploration of parameter-criteria dependencies.
Some important techniques are summarized in the following.

6.1 Correlations

Global correlation measures can be visualized by means of tables with boxes. The
magnitude of the box represents the magnitude of the absolute correlation value, its
color the direction of correlation, e.g., blue for monotonously decreasing, red for
monotonously increasing, black for nonmonotonous behaviour.

Examples can be found in Figure 5 (on the right), for instance.
Correlations can directly be visualized by means of two-dimensional scatter

plots of all pairs of values involved. However, especially if larger areas of the
two-dimensional space are filled this way, a good alternative are two-dimensional
histograms (see the next section).

6.2 Histograms and Alternatives

Classical techniques to visualize distributions are

• (one-dimensional) histograms: an example can be found in Figure 14 (on the left)
• approximate CDF curves (CDF: cumulative density function) an example can be

found in Figure 10 (on the bottom)
• boxplots

In addition to a histogram, a plot of sorted values is often of help. To create one,
all values of interest have to be sorted first, decreasing or increasing by (absolute)
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value. All values (or selected ranges only) of the resulting vector v are plotted then,
i.e., all data points .i; /v.i/ are plotted. An example can be found in Figure 14 (on
the right).
2D histograms (hexbins) are a good alternative to scatter plots if enough data points
are available. Examples can be found in Figs. 1, 7 and 12, for instance.

6.3 2D Network Representations

Colors and thicknesses of nodes and lines can be chosen differently representing
values of different inputs or outputs. A classical version is shown in Figure 13.
Pressure values are used for coloring the nodes, averaged pressure values for
coloring the edges, and pipe widths for determining the thickness of the edges. A 2D
network representation is also a good choice for showing differences of values for
two scenarios of an ensemble. In order to find areas with large differences, node
and/or edge sizes should dependent on the local difference of the output function
considered. Typical applications are the comparison of different physical laws,
parameter variations (extreme cases), or local differences between the maximal and
minimal value in the ensemble for the output function considered.

Manipulating the coordinates is another possibility. Quite often, the coordinates
do not reflect the geometrical situation but is a compromise of real locations and a
schematic view. Important areas can be given more space this way. Alternatively,
algorithms might be used which perform mappings of coordinates in order to
highlight areas with, for instance, large mass flows.

6.4 3D Network Representations

A classical setting is to use .x; y; h/ for 3D plots. This setting allows for debugging
of height data - drastic drop downs to zero, for instance, might indicate missing or
wrongly specified height values.

For analysing function profiles, one might use, for instance, pressure or tem-
perature as z-coordinate. Figure 3 provides an example for a realistic pressure
profile. Analogously, means, medians, quantiles or differences between minimum
or maximum values or two selected quantiles can be visualized.

7 Examples from Gas Transport

Applications of the methods discussed above are illustrated by means of two
examples from long-distance gas transport, namely a compressor station and a mid-
sized pipeline network with several supplies and regulators, for instance.
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Fig. 3 3D plot (MYNTS’ interactive OpenGL-based 3D viewer) for a decisive part of a large
realistic network - pressure profile: color and z-coordinate are based on pressure values, clearly
showing the different pressure levels and transition areas (due to compressor stations, for example)

7.1 Example 1 - Compressor Station

The first example, see Figure 4, is a simple compressor station consisting of two
machine units with a compressor, a drive, a cooler, a regulator, two resistors and
a master each, as well as a master and several valves and pipes for controlling the
station and switching tracks. One supply and one demand node are attached.

The parameters and criteria investigated overall are listed in Table 2. Two
scenarios are analysed. Their settings and results are described and discussed in
the following sections.

7.1.1 Scenario 1

In Scenario 1, only the first compressor is up and running, and only QSET is varied.
Workflow UNIFORM is used. The DesParO metamodel resulting from a standard

uniform DoE with 50 experiments (after automatically excluding 9 parameter values
which are very close to others) is shown in Figure 5. 50 experiments are not really
necessary here, given that only one parameter is varied. The metamodel would react
more or less identically if only 10 experiments are used, say. However, the same
ensemble can be used to create a model, evaluate it randomly and plot 1D and 2D
histograms, see Figure 6, as well as to plot finely resolved curves for parameter-
criteria dependencies directly, see Figure 7.
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Fig. 4 Example 1: (top) schematics of the network (diamond on the right marks the supply, trian-
gle on the left the demand node, other elements as explained in the text); (bottom) characteristics
maps of the two compressors

Table 2 Example 1: parameters and criteria

property element type description

PSET junc0 parameter input pressure at supply

QSET junc1 parameter output volume flow at demand

Had CS AjM1jc criterion head of compressor 1

QVOL CS AjM1jc criterion volume flow through compressor 1

tslope CS AjM1jc criterion tslope of compressor 1

pslope CS AjM1jc criterion pslope of compressor 1

m CS AjM1jc criterion mass flow through compressor 1

pslope junc0^locE criterion pslope at pipe beginning at the supply

tslope junc0^locE criterion tslope at pipe beginning at the supply

m junc0^locE criterion mass flow at pipe beginning at the supply

T junc1 criterion temperature at demand

P junc1 criterion pressure at demand

m locA^junc1 criterion mass flow at pipe ending at the demand

tslope locA^junc1 criterion tslope at pipe ending at the demand

PSLOPE locA^junc1 criterion pslope at pipe ending at the demand
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Fig. 5 Example 1, Scenario 1: metamodel and correlations for the parameters and criteria listed
in Table 2. Criteria from top to bottom: tslope, Had, QVOL, pslope, m of the compressor, pslope,
tslope and m of junc0^locE, T and P of junc1, m, tslope and pslope of locA^junc1

Fig. 6 Example 1, Scenario 1: histograms (Gaussian distribution for QSET, one million evalua-
tions) of the first 4 criteria. x-axis: values (clockwise: approx. [-8.5;0.5], [-2;12], [-6;1], [8;20]),
y-axis: counts (clockwise: up to 70,000, 140,000, 140,000, 14,000)

Figure 5 shows both Pearson and DesParO correlation results. The magnitude
of the correlation values is very similar among the parameters. However, several
correlations are nonlinear (black box in the DesParO correlation plot), and Pearson
indicates a large monotonous correlation instead. Especially, Had@CS AjM1jc
reacts in a strongly nonlinear fashion to changes of QSET, see also Figs. 6 and
Figure 7. This criterion is decisive for describing the behaviour of the compressor.
Hence, the nonlinearity cannot be neglected, and a linear model and Pearson
correlation are not sufficient in this small and quite simple test case involving one
compressor only.
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Fig. 7 Example 1, Scenario 1: exemplary ensemble curves for HAD of the compressor, and 2D
histogram (Gaussian distribution for QSET) for QVOL vs. HAD. x-axis: [2,000;4,000], y-axis:
HAD [0;12], QVOL [10.5;18.5]. Counts (color) on the right: [0;9,000]

7.1.2 Scenario 2

In Scenario 2 both compressors are up and running in parallel, and both parameters
(PSET and QSET) are varied: Œ50I 60� for PSET, and Œ2; 000I 10; 000� for QSET.
We already learned from analysing Scenario 1 that several parameter-criteria
dependencies are expected to be strongly nonlinear, depending on the concrete range
of variations.

Again, workflow UNIFORM is used, and, since we have only two parameters
here, a standard full-factorial DoE with 72 D 49 experiments is chosen as a basis
for direct analysis as well as creation of a DesParO metamodel. Ensemble curves,
i.e., raw-data plots of parameter-criteria dependencies, are shown in Figure 11.

Indeed, Scenario 2 shows several interesting effects. The ranges are de facto
chosen here so that the compressors cannot completely fulfill their task of creating
an output pressure of 60 bars. Fig. 11 (top-right plot) clearly shows that 60 bars
cannot be reached for most combinations. Analogously, Figure 11 (bottom-left plot)
shows that the compressor goes to de facto bypass mode (zero head) for QSETs
above approximately 7,000.

The metamodel for the ensemble is shown in Figure 8. The model has a
reasonable quality (see PRESS values), however, DesParO’s tolerance measure
cannot be neglected here. Based on the parameter distributions depicted in Figure 9,
the metamodel is evaluated and 1D and 2D histograms for several exemplary
interesting dependencies shown in Figs. 10 and 12. Note that skewed Gaussian
distributions are used, in case of QSET only for a part, namely Œ2; 000I 7; 000�, of
the range covered by the metamodel (Figure 8).
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Fig. 8 Example 1, Scenario 2: metamodel, correlations, PRESS values, target function

Fig. 9 Example 1, Scenario 2: histograms of the skewed Gaussian distributions of parameters
PSET [52;60] and QSET [2,000;7,000]. Counts (y-axis): [0;14,000]

Looking at Had@CS AjM1jc and QVOL@CS AjM1jc, one can study effects of
nonlinear, linear or very weak dependencies on variations of PSET and QSET here.
QVOL has to react linearly on variations of QSET, as the 1D histogram in Figure 10
as well as the 2D histogram in Figure 12 show. As long as the compressors are able
to completely fulfill their common task (PSET large enough), QVOL does weakly
react on PSET. For smaller PSETs and large QSETs, the compressors go to their
limit, and the distribution of QVOL is wide.
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Fig. 10 Example 1, Scenario 2: histograms and CDFs (for distributions shown in Figure 9) of the
first 3 criteria. Figures on top: count [0;14,000] vs. TSLOPE [-12;2], count [0;12,000] vs. HAD
[-5;20], count [0;16,000] vs. QVOL [-4;18]. Quantile plots at the bottom: x-axis [0;1], y-axis:
TSLOPE [-10;1], HAD [2;18], QVOL [5.5;14.5]

Fig. 11 Example 1, Scenario 2: exemplary ensemble curves for HAD [0;20] vs. PSET [52;60] and
QSET [2,000;7,000] as well as QVOL [5;18] and P@junction1 [46;59.5] vs. QSET [2,000;7,000]

Based on the metamodel, RDO tasks can be set up and solved. Figure 8 shows
such a task and its visual exploration. Here, the following target is set:

max Had@CS AjM1jcC .m@locA^junc1/2 (8)

One could also use, for instance, QVOL@CS AjM1jc instead of m@locA^junc1.
By visual inspection, one can see that the parameter space separates into two parts:
one is with mid-sized PSET and QSET, one with small PSET and large QSET.
DesParO’s tolerance measure gives a first indication of robustness of results.
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Fig. 12 Example 1, Scenario 2: exemplary 2D correlation plots for exemplary criteria vs. PSET
(on the left) or QSET (on the right). Ranges for values analogously as before, counts up to (left)
7200, 720, 2000, 1100, 3600, (right) 270, 3600, 360, 12000, 400
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Fig. 13 Example 2: net with pressure results of the basic scenario considered

Table 3 Example 2: elements (table on the left), parameters and criteria (table on the right)

element type number

pipes 907

regulators 45

heaters 45

valves 52

resistors 89

important supplies 5

important demands 5

remaining nodes 1069

element parameter min max
distributions
DoE; analysis

(all) tsoil 267.15 287.15 uniform; Gaussian

out1 QSET 20 30 uniform; Gaussian

out2 QSET 50 60 uniform; Gaussian

out3 QSET 30 40 uniform; Gaussian

out4 QSET 20 30 uniform; Gaussian

out5 QSET 50 60 uniform; Gaussian

in1. . . in5 m – – (criteria)

7.2 Example 2

The second example, see Figure 13, is a mid-sized network consisting of the
elements mentioned in Table 3 (on the left). A typical distribution of pressures
resulting from the simulation of a typical scenario is shown in Figure 14. In contrast
to Example 1, this network does not contain compressors. The task is here to
determine the influence of variations of the 5 largest demands as well as the soil
temperature on the network, see Table 3 (on the right).

Again, workflow UNIFORM is used, and a standard uniform DoE with 50
experiments is chosen as a basis for direct analysis as well as creation of a DesParO
metamodel. A thin full-factorial DoE for checking nonlinearities would already
have 63 D 216 experiments. As can be seen from Figure 15, the criteria depend
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Fig. 14 Example 2: exemplary histogram (left: count [0;70] vs. pressure [0;60]) and plot of sorted
values (right) for pressure (P) (y-axis: pressure [0;60], x-axis: index [0;1,200])

Fig. 15 Example 2: metamodel exploration, PRESS quality measure and correlation plot for the
parameters and criteria listed in Table 3

monotonously from the parameters. They are de facto quite linear: the Pearson and
DesParO correlation measures are more or less identical, the PRESS values for
the quality of the metamodel tiny, of course. As can be seen from the correlation
plots, the soil temperature does not play a decisive role. The interplay of the
different supply demand combinations reveals a partition into three parts: two
one-to-one constellations (out1-in1 and out2-in2), one three-to-three constellation.
Figure 16 shows exemplary combinations of strongly dependent parameter-criteria
combinations.
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Fig. 16 Example 2: 2D histograms: (left) m@in3 [-30.2;-28.6] vs. QSET@out3 [30;40] which
has a decisive impact on m@in3, (right) m@in4 [-52.7;-48.8] vs. QSET@out5 [50;60] which has
an impact but shares this with two other parameters

In such a situation, maybe a cheaper way to proceed would be to use workflow
ADAPTIVE. We could start with a simple star-style DoE (2 
 6C 1 D 13 experi-
ments) in order to check the linearity of the dependencies. The set of parameters
could be reduced by removing soil temperature. In addition, the three separate
constellations mentioned above could be analysed separately.

Based on a metamodel, one or more optimization tasks can be set up and
solved, for instance, in order to fulfill certain contractual conditions. For illustration,
a very simple optimization target is set up (here: m@in4 shall meet a certain
value). Figure 15 shows how a visual exploration already reveals influences on the
parameter combinations.

8 Conclusions and Outlook

Several methods for approximating parameter-criteria dependencies and deter-
mining statistical quantities, corresponding workflows and versatile visualization
methods for analysing parameter variations in energy networks have been described
and discussed. A common physical model for flow in gas transport networks has
been described. Two exemplary gas networks with some typical effects have been
studied in some detail using the methods and workflows discussed.

From examining the examples, one can see that nonlinearities might play a
decisive role, especially in networks with compressor stations. Numerical methods
for measuring correlations and approximating parameter-criteria dependencies have
to be chosen which are able to reflect nonlinearities. Regression-based linear
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methods can sometimes support the analysis though - a comparison of the values
provided by Pearson’s correlation measure with the ones provided by DesParO’s
measure indicates nonlinearities in an intuitive fashion.

The challenge of transforming our energy production by means of incorporating
increasingly larger amounts of renewable energy sources can only succeed if also
our energy networks are transformed to build up an integrated system allowing
for balancing of supplies and demands with the use of energy conversion and
storages provided by pipeline systems and caverns, to give just some examples.
This motivates the author and her colleagues a lot. They will continue their work on
physical modeling of energy networks, their efficient simulation, statistical analysis
and optimization.

References

1. Baumanns, S., Cassirer, K., Clees, T., Klaassen, B., Nikitin, I., Nikitina, L., Tischendorf, C.:
MYNTS User’s Manual, Release 1.3. Fraunhofer SCAI, Sankt Augustin, Germany (2012).
www.scai.fraunhofer.de/mynts

2. Borsotto, D., Clees, T., Nikitin, I., Nikitina, L., Steffes-lai, D., Thole, C.A.: Sensitivity
and robustness aspects in focused ultrasonic therapy simulation. In: EngOpt 2012 – 3rd
International Conference on Engineering Optimization. Rio de Janeiro, Brazil (2012)

3. Buhmann, M.: Radial Basis Functions: Theory and Implementations. Cambridge University
Press, Cambridge (2003)

4. Cassirer, K., Clees, T., Klaassen, B., Nikitin, I., Nikitina, L.: MYNTS User’s Manual, Release
2.9. Fraunhofer SCAI, Sankt Augustin (2015). www.scai.fraunhofer.de/mynts

5. Clees, T.: MYNTS – Ein neuer multiphysikalischer Simulator für Gas, Wasser und elektrische
Netze. Energie — Wasser-Praxis 09, 174–175 (2012)

6. Clees, T., Hornung, N., Nikitin, I., Nikitina, L., Pott, S., Steffes-lai, D.: DesParO User’s Man-
ual, Release 2.2. Fraunhofer SCAI, Sankt Augustin, Germany (2012). www.scai.fraunhofer.de/
desparo

7. Clees, T., Hornung, N., Oyerinde, A., Stern, D.: An adaptive hierarchical metamodeling
approach for history matching of reservoir simulation models. In: SPE/SIAM Conference on
Mathematical Methods in Fluid Dynamics and Simulation of Giant Oil and Gas Reservoirs
(LSRS). Istanbul, Turkey (2012). Invited presentation (T. Clees)

8. Clees, T., Nikitin, I., Nikitina, L.: Nonlinear metamodeling of bulky data and applications in
automotive design. In: Günther, M., et al. (eds.) Progress in industrial mathematics at ECMI
2010. Mathematics in Industry, vol. 17, pp. 295–301. Springer, Berlin (2012)

9. Clees, T., Nikitin, I., Nikitina, L., Kopmann, R.: Reliability analysis of river bed simulation
models. In: Herskovits, J. (ed.) CDROM Proceedings of the EngOpt 2012, 3rd International
Conference on Engineering Optimization, no. 267. Rio de Janeiro, Brazil (2012)

10. Clees, T., Nikitin, I., Nikitina, L., Thole, C.A.: Nonlinear metamodeling and robust optimiza-
tion in automotive design. In: Proceedings of the 1st International Conference on Simulation
and Modeling Methodologies, Technologies and Applications SIMULTECH 2011, pp. 483–
491. SciTePress, Noordwijkerhout, The Netherlands (2011)

11. Clees, T., Nikitin, I., Nikitina, L., Thole, C.A.: Analysis of bulky crash simulation results:
deterministic and stochastic aspects. In: Pina, N., et al. (eds.) Simulation and Modeling
Methodologies, Technologies and Applications, AISC 197. Lecture Notes in Advances in
Intelligent and Soft Computing, pp. 225–237. Springer, Berlin, Heidelberg (2012)

www.scai.fraunhofer.de/mynts
www.scai.fraunhofer.de/mynts
www.scai.fraunhofer.de/desparo
www.scai.fraunhofer.de/desparo


54 T. Clees

12. Clees, T., Steffes-lai, D., Helbig, M., Sun, D.Z.: Statistical analysis and robust optimization of
forming processes and forming-to-crash process chains. Int. J. Mater. Form. 3, 45–48 (2010).
Supplement 1; 13th ESAFORM Conference on Material Forming. Brescia, Italy (2010)

13. Grundel, S., Hornung, N., Klaassen, B., Benner, P., Clees, T.: Computing surrogates for gas
network simulation using model order reduction. In: Koziel, S., Leifsson, L. (eds.) Surrogate-
Based Modeling and Optimization, pp. 189–212. Springer, New York (2013)

14. Harrell, F.E., Davis, C.E.: A new distribution-free quantile estimator. Biometrika 69, 635–640
(1982)

15. Hornung, N., Nikitina, L., Clees, T.: Multi-objective optimization using surrogate functions.
In: Proceedings of the 2nd International Conference on Engineering Optimization (EngOpt).
Lisbon, Portugal (2010)

16. Jones, D., Schonlau, M., Welch, W.: Efficient global optimization of expensive black-box
functions. J. Glob. Optim. 13(4), 455–492 (1998)

17. Jones, M.C.: The performance of kernel density functions in kernel distribution function
estimation. Stat. Probab. Lett. 9(2), 129–132 (1990)

18. Klaassen, B., Clees, T., Tischendorf, C., Soto, M.S., Baumanns, S.: Fully coupled circuit and
device simulation with exploitation of algebraic multigrid linear solvers. In: Proceedings of the
Equipment Data Acquisition Workshop. Dresden (2011)

19. Kleijnen, J.: Design and Analysis of Simulation Experiments. Springer, New York (2008)
20. Lorenz, J., Bär, E., Clees, T., Evanschitzky, P., Jancke, R., Kampen, C., Paschen, U., Salzig, C.,

Selberherr, S.: Hierarchical simulation of process variations and their impact on circuits and
systems: results. IEEE Trans. Electron Devices 58(8), 2227–2234 (2011)

21. Lorenz, J., Clees, T., Jancke, R., Paschen, U., Salzig, C., Selberherr, S.: Hierarchical simulation
of process variations and their impact on circuits and systems: methodology. IEEE Trans.
Electron Devices 58(8), 2218–2226 (2011)

22. Maass, A., Clees, T., Nikitina, L., Kirschner, K., Reith, D.: Multi-objective optimization
on basis of random models for ethylene oxide. Mol. Simul. Special Issue: FOMMS 2009
Conference Proceedings, vol. 36(15), pp. 1208–1218(11) (December 2010)

23. Maric, I., Ivek, I.: Natural gas properties and flow computation. In: Potocnik, P. (ed.) Natural
Gas. InTech (2010). ISBN: 978-953-307-112-1. doi: 10.5772/9871. Available from: http://
www.intechopen.com/books/natural-gas/natural-gas-properties-and-flow-computation

24. Mischner, J., Fasold, H.G., Kadner, K.: gas2energy.net - Systemplanerische Grundlagen der
Gasversorgung. Div Deutscher Industrieverlag München (2011). ISBN 978-3835632059

25. Rhein, B., Clees, T., Ruschitzka, M.: Robustness measures and numerical approximation of the
cumulative density function of response surfaces. Commun. Stat. Simul. Comput. 43(1), 1–17
(2014)

26. Rhein, B., Clees, T., Ruschitzka, M.: Uncertainty quantification using nonparametric quantile
estimation and metamodeling. In: Eberhardsteiner, J., et.al. (eds.) European Congress on
Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012). Vienna,
Austria (2012)

27. Rhein, B., Ruschitzka, M., Clees, T.: A simulation framework for robust optimization based on
metamodels. In: Proceedings of NAFEMS World Congress 2013, International Conference on
Simulation Process and Data Management, Salzburg, 9–12 June 2013

28. Schöps, S., Bartel, A., Günther, M., ter Maten, E.J.W., Müller, P.C. (eds.): Progress in
Differential-Algebraic Equations, Differential-Algebraic Equations Forum. Proceedings of
Descriptor 2013, pp. 183–205. Springer, Berlin, Heidelberg (2014)

29. Sfakianakis, M.E., Verginis, D.G.: A new family of nonparametric quantile estimators.
Commun. Stat. Simul. Comput. 37, 337–345 (2008)

30. Sobester, A., Leary, S., Keane, A.: On the design of optimization strategies based on global
response surface approximation models. J. Glob. Optim. 33(1), 31–59 (2005)

31. Steffes-lai, D., Clees, T.: Statistical analysis of forming processes as a first step in a process-
chain analysis: novel PRO-CHAIN components. Key Engineering Materials (KEM) 504–506,
631–636 (2012). Special Issue Proceedings of the 15th ESAFORM Conference on Material
Forming. Erlangen, Germany (2012)

http://dx.doi.org/10.5772/9871
http://www.intechopen.com/books/natural-gas/natural-gas-properties-and-flow-computation
http://www.intechopen.com/books/natural-gas/natural-gas-properties-and-flow-computation


Fast Multi-Objective Aerodynamic Optimization
Using Space-Mapping-Corrected Multi-Fidelity
Models and Kriging Interpolation
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Abstract The chapter describes a computationally efficient procedure for
multi-objective aerodynamic design optimization with multi-fidelity models,
corrected using space mapping, and kriging interpolation. The optimization
procedure utilizes a multi-objective evolutionary algorithm to generate an initial
Pareto front which is subsequently refined iteratively using local enhancements of
the kriging-based surrogate model. The refinements are realized with space mapping
response correction based on a limited number of high-fidelity training points
allocated along the initial Pareto front. The method yields—at a low computational
cost—a set of designs representing trade-offs between the conflicting objectives.
We demonstrate the approach using examples of airfoil design, one in transonic
flow and another one in low-speed flow, in low-dimensional design spaces.
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1 Introduction

Aerodynamic design problems are mostly solved using single-objective optimiza-
tion. However, aerodynamic design is by nature a multi-objective task. Handling
the problem as a multi-objective one is often impractical due to the cost of
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running high-fidelity computational fluid dynamics (CFD) simulations, which are
ubiquitous in aerodynamic design [1, 2]. Although CFD-based parameter sweeps
and engineering experience are common practice when searching for better designs
in a single-objective sense, automation using numerical optimization techniques is
becoming increasingly popular and necessary [3–6]. A multitude of methods for
single-objective optimization problems are available such as conventional gradient-
based algorithms [7] (including those utilizing inexpensive adjoint sensitivities
[8, 9]), and surrogate-based optimization (SBO) techniques [10–15] that offer
efficient global optimization as well as a substantial reduction of the design cost
when compared to the traditional methods [12]. In this chapter, we describe an
efficient approach to solve multi-objective aerodynamic design problems using
high-fidelity simulations and surrogate-based methods.

A Pareto front is a common way of representing solutions to multi-objective
problems. It contains a set of the best possible designs which are non-
commensurable in the conventional (single-objective sense) [16]. The most widely
used multi-objective optimization methods include multi-objective evolutionary
algorithms (MOEAs) [17–20]. The computational complexity of MOEAs is high
due to the fact that a (usually large) set of designs is being processed in each iteration
of the algorithm. SBO [10–15] can be used to reduce the computational cost of
multi-objective aerodynamic design by using inexpensive/less costly surrogate
functions in lieu of the CPU-intensive high-fidelity models.

In general, the surrogate models can be created by either approximating the
sampled high-fidelity model data using regression (so-called data-driven surrogates
[10, 11, 15]), or by correcting physics-based low-fidelity models (so-called multi-
fidelity surrogates [12–14, 21–23]) which are less accurate but computationally
inexpensive/less costly representations of the high-fidelity models.

Data-driven surrogate models can be constructed using polynomial regression,
radial basis function interpolation, kriging, and support vector regression [10,
11]. Typically, a substantial amount of data samples, selected using Design of
Experiments [11], are required.

Multi-fidelity surrogates [12] are constructed using low-fidelity models that are
manipulated to become a reliable representation of the high-fidelity models. The
two main parts in constructing a multi-fidelity surrogate are (1) developing the
low-fidelity models, and (2) modifying them to achieve a better representation of
the high-fidelity models. Techniques to modify (also called correct) the low-fidelity
models include bridge functions [24–26], calibration [21, 22], space mapping [27–
29, 41], shape-preserving response prediction [30, 31], adaptive response correction
[32], and adaptive response prediction [33]. The multi-fidelity models are usually
more expensive to evaluate than the data-driven surrogates, but fewer high-fidelity
model data are required to obtain a given accuracy level as compared to when using
the high-fidelity data in the data-driven surrogates directly.

This chapter describes a multi-objective procedure for aerodynamic design
exploiting low-fidelity CFD simulations, space mapping, kriging interpolation,
and MOEAs. The procedure is illustrated using examples involving the design of
transonic and low-speed airfoil shapes.
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2 Methodology

In this section, we provide a formulation of the multi-objective design problem,
a procedure for constructing multi-fidelity surrogate model, as well as outline the
multi-objective optimization algorithm.

2.1 Problem Formulation

Let x be an n� 1 vector of the design variables, and f(x)D [f1(x) f2(x) : : : fq(x)]T

be a q� 1 vector of the high-fidelity model responses. Examples of responses
include the airfoil section drag coefficient f1(x)DCd.f and the section lift coefficient
f2(x)DCl.f . Let Fobj,i(x), iD 1, : : : , Nobj, be the ith design objective. A typi-
cal performance objective would be to minimize the drag coefficient, in which
case Fobj,i(x)DCd.f . Another objective would be to maximize lift, in which case
Fobj,i(x)D 1/Cl.f or Fobj,i(x)D�Cl.f (normally, the objectives are supposed to be
minimized so the maximization problem has to be transformed into a minimization
one before carrying out the design process). Yet another objective could be to
minimize a noise metric NMf , in which case Fobj,i(x)DNMf .

If Nobj > 1, then any two designs x(1) and x(2) for which Fobj,i(x(1)) < Fobj,i(x(2)) and
Fobj,l(x(2)) < Fobj,l(x(1)) for at least one pair i¤ l, are not commensurable, i.e., none
is better than the other in the multi-objective sense. We define Pareto-dominance
relation ‡ (see, e.g., Fonseca [16]), saying that for the two designs x and y, we
have x ‡ y (x dominates over y) if Fobj,i(x)�Fobj,i(y) for all iD 1, : : : , Nobj, and
Fobj,i(x) < Fobj,i(y) for at least one i. In other words, the point x dominates over y if it
is not worse than y with respect to all objectives, and it is better than y with respect
to at least one objective. The goal of the multi-objective optimization is to find a
representation of a Pareto front XP of the design space X, such that for any x 2 XP,
there is no y 2 X for which y ‡ x (Fonseca [16]).

2.2 Multi-Fidelity Surrogate Model Construction

The process of finding the Pareto front is realized using evolutionary algorithms
(EAs) [17]. EAs iteratively process the entire set of potential solutions to the
problem at hand. Therefore, they typically require numerous evaluations of the
objective function. Consequently, using the expensive high-fidelity model, f(x),
directly in the multi-objective optimization is normally prohibitive. This difficulty is
alleviated using a surrogate model, s(x), constructed using a corrected low-fidelity
model, c(x).
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A low-fidelity model can be developed based on, for example, (1) simplified
physics, (2) reduced grid discretization, and (3) reduced solver convergence criteria,
or any combination of the aforementioned approaches [13]. Here, we use a
combination of approaches (2) and (3).

Given the low-fidelity model c(x) the process of constructing the surrogate is
as follows. Let c(x)D [c1(x) c2(x) : : : cq(x)]T denote a q� 1 vector of responses
from the low-fidelity model. We will use a response with qD 3, and c1(x)DCl.c(x),
c2(x)DCd.c(x), and c3(x)DNMc(x) to demonstrate the construction process (here,
Cl.c and Cd.c are the lift and drag coefficients, respectively, and NMc is the noise
metric). The surrogate model is constructed in two steps.

In Step 1, the multi-point space mapping correction is applied to the low-
fidelity model. The initial surrogate model s0(x), a vector of the same dimension
as c(x), is obtained by applying a parameterized output space mapping [27, 28, 34].
The mapping uses the correction terms that are directly applied to the response
components Cl.c(x), Cd.c(x), and NMc(x) of the low-fidelity model. The initial
surrogate model is defined as [27]

s0 .x/ D A .x/ ı c .x/C D .x/ D
h
al .x/Cl:c .x/C dl .x/ ad .x/Cd:c .x/C

C dd .x/ aN .x/NMc .x/C dN .x/
i

T ;
(1)

where ı denotes component-wise multiplication. Both the multiplicative and addi-
tive correction terms are design-variable-dependent and take the form of

A .x/D
h
al:0 C Œal:1 al:2 : : : al:n��

�
x � x0

�
ad:0CŒad:1 ad:2 : : : ad:n� �

�
x � x0

�
aN:0 C ŒaN:1 aN:2 : : : aN:n� �

�
x � x0

� i
T ;

(2)

D .x/D
h
dl:0 C Œdl:1 dl:2 : : : dl:n� �

�
x � x0

�
dd:0CŒdd:1 dd:2 : : : dd:n� �

�
x � x0

�
dN:0 C ŒdN:1 dN:2 : : : dN:n� �

�
x � x0

� i
T ;

(3)

where x0 is the center of the design space. The response correction parameters A
and D are obtained as

ŒA;D� D arg min
ŒA;D�

XN

kD1 jj f
�
xk
� � �A �xk

� ı c
�
xk
�C D

�
xk
�� jj 2; (4)

i.e., the response scaling is supposed to (globally) improve the matching for all
training points xk, kD 1, : : : , N, where N is the number of training points.

A training set combining the following subsets is used: (1) a star-distribution
design of experiments with ND 2nC 1 training points (n being the number of design
variables) allocated at the center of the design space x0D (lCu)/2 (l and u being the
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lower and upper bound for the design variables, respectively), and the centers of its
faces, i.e., points with all coordinates but one equal to those of x0, and the remaining
one equal to the corresponding component of l or u; this sampling scheme is also
referred to as the star distribution [12], (2) design space corners, and (3) additional
points allocated using the Latin Hypercube Sampling (LHS) [40]. In the application
examples given in Sections 3 and 4 of this chapter, we use all three subsets (with
ND 10 LHS points) for transonic airfoil design, and only (1) and (3) for low-speed
airfoil design.

The problem (4) is equivalent to the linear regression problems Cl[al.0 al.1 : : : al.n

dl.0 dl.1 : : : dl.n]T DFl, Cd[ad.0 ad.1 : : : ad.n dd.0 dd.1 : : : dd.n ]T DFd , and CN[aN.0

aN.1 : : : aN.n dN.0 dN.1 : : : dN.n ]T DFN , where the matrices Cl, Cd, CN , Fl, Fd, and
FN are defined as

Cl D
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The dimension of the vectors Fl, Fd , and FN is N � 1, and the dimension of the
matrices Cl, Cd, and CN is N � 2(nC 1). The correction matrices A and D can
now be found analytically as a least-square optimal solution to the aforementioned
regression problems
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Note that the matrices Cl
TCl, Cd

TCd, and CN
TCN are non-singular for N > nC 1,

which is the case for our choice of the training set.
In Step 2, we construct the kriging surrogate model. Having the space-mapping-

corrected low-fidelity model from Step 1, we sample the initial surrogate and create
the kriging interpolation model of it [10, 11]. The kriging surrogate model, s, is
very fast, smooth, and easy to optimize. In particular, a large number of model
evaluations can be done at low cost in the context of multi-objective optimization
using evolutionary methods. Step 1 of the surrogate modeling process allows us
to reduce misalignment between the low- and high-fidelity models. The surrogate
model created in Step 2 is a data-driven model so that it is fast and yet accurate
because relatively dense sampling of the design space is utilized. Nevertheless, the
computational cost of the surrogate is reasonably low because it is based on low-
fidelity model data.

2.3 Optimization Method

The multi-objective design optimization flow can be summarized as follows:

1. Correct the low-fidelity model c using parameterized output space mapping as in
Eqn. (1), in particular, identify the correction matrices A(x) and D(x);

2. Sample the design space and acquire the s0 data (i.e., evaluate the low-fidelity
model c at the selected locations and apply the correction in Eqn. (1) using A(x)
and D(x) from Step 1);

3. Construct the kriging interpolation surrogate model s using the sample values
obtained in Step 2;

4. Obtain the Pareto front by optimizing s using MOEA;
5. Evaluate high-fidelity model at selected geometries from the Pareto front.
6. If the termination condition is not satisfied, add the new high-fidelity data set to

the existing one, and go to Step 1.
7. END

The first four steps of the method lead to obtaining an initial representation of the
Pareto front by optimizing the surrogate model s in a multi-objective sense using
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a multi-objective evolutionary algorithm (MOEA). In the illustration examples in
Sections 3 and 4, we use a standard multi-objective evolutionary algorithm with
fitness sharing, Pareto-dominance tournament selection, and mating restrictions
[16, 17].

The surrogate model is updated upon conclusion of the verification stage (Step 5)
by executing the output space mapping procedure using the entire high-fidelity
model data set (the original one and the Pareto front representation). The geometries
in Step 5 are selected uniformly along the Pareto front. The number of selected
geometries is not critical, in the illustration examples, we use around 10 samples per
iteration. The improved surrogate model is then re-optimized in a multi-objective
sense.

The computational cost of each iteration of the above procedure is only due to
the evaluation of the high-fidelity model at the geometries picked up from the Pareto
front (in practice, a few points are sufficient). Moreover, the design space in the
refinement iterations can be restricted to only the part that contains the Pareto set
(the remaining part of the space is irrelevant) to reduce the number of required
evaluations. The termination condition is based on comparison between the Pareto
front produced by optimizing the current surrogate model and the high-fidelity
verification samples.

3 Example 1: Transonic Airfoil Design

The first test case considers the design of airfoils in transonic flow involving lift and
drag as design objectives.

3.1 Problem Formulation

A specific case of transonic airfoil shape design with the aim at maximizing the
section lift coefficient and minimizing the section drag coefficient at the same
time is considered. In other words, we have two objectives, Fobj,1(x)D 1/Cl.f and
Fobj,2(x)DCd.f . We fix the operating conditions at a free-stream Mach number of
M1D 0.75 and an angle of attack of ˛D 1 deg. The airfoil shapes are parameterized
by the NACA four-digit parameterization [35], where the airfoil shape design
variables are m (the maximum ordinate of the mean camber line as a fraction of
chord), p (the chordwise position of the maximum ordinate), and t/c (the maximum
thickness-to-chord ratio). The design variable vector is xD [m p t/c]T .

The airfoils are constructed by combining a thickness function zt(x/c) with a
mean camber line function zc(x/c). The x/c- and z/c-coordinates are [35]

.x=c/u;l D .x=c/� .zt=c/ sin �; .z=c/u;l D .zc=c/˙ .zt=c/ cos �; (12)
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where u and l refer to the upper and lower surfaces, respectively, and

� D tan�1
�

d .zc=c/

d .x=c/

�
; (13)

is the mean camber line slope. The NACA four-digit thickness distribution is
given by

.zt=c/ D t
�

a0.x=c/1=2 � a1 .x=c/� a2.x=c/2 C a3.x=c/3 � a4.x=c/4
�
; (14)

where a0D 1.4845, a1D 0.6300, a2D 1.7580, a3D 1.4215, a4D 0.5075, and t is
the maximum thickness. We use the following parameter bounds: 0.0�m� 0.03,
0.2� p� 0.8, and 0.08� t� 0.14. There is one nonlinear constraint regarding the
cross-section area A (non-dimensionalized by the chord squared), i.e., A� 0.075.

3.2 High-Fidelity Model

The flow is assumed to be steady, inviscid, and adiabatic with no body forces. The
compressible Euler equations are taken to be the governing fluid flow equations. The
solution domain boundaries are placed at 25 chord lengths in front of the airfoil,
50 chord lengths behind it, and 25 chord lengths above and below it, see Fig. 1a.
The computational meshes are of structured curvilinear body-fitted C-topology with
elements clustering around the airfoil and growing in size with distance from the
airfoil surface. The computer code ICEM CFD [29] is used for the mesh generation.
An example mesh is shown in Fig. 1b.

The free-stream Mach number, static pressure, and angle of attack are prescribed
at the farfield boundary. The flow solver is of implicit density-based formulation
and the inviscid fluxes are calculated by an upwind-biased second-order spatially

c
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x/c
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c

-20 0 20 40

-20
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Fig. 1 Elements of the computational mesh: (a) sketch of the computational domain, (b) an
example mesh
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Fig. 2 Grid convergence study using the NACA 0012 airfoil at a Mach number of M1D 0.75
and an angle of attack of ˛D 1ı: (a) the lift and drag coefficients versus the number mesh cells,
and (b) the simulation time versus the number of mesh cells

accurate Roe flux scheme. Asymptotic convergence to a steady-state solution is
obtained for each case. The solution convergence criterion for the high-fidelity
model is the one that occurs first of the following: a reduction of all the residuals
by six orders, or a maximum number of iterations of 1000. Numerical fluid flow
simulations are performed using the computer code FLUENT [29].

A grid convergence study was performed using the NACA 0012 airfoil at a Mach
number of M1D 0.75 and an angle of attack of ˛D 1ı. The study, shown in Fig. 2a,
revealed that roughly 400,000 mesh cells are needed for mesh convergence, and that
particular mesh was used for the high-fidelity model. The overall simulation time
for the case considered is around 67 min (Fig. 2b) using four processors on an Intel
(R) Xeon CPU E5-2620@2.00 GHz machine. The flow solver reached a converged
solution after 352 iterations. The other meshes required around 350–500 iterations
to converge, except the coarsest mesh, which terminated after 1000 iterations, with
the overall simulation time around 9.5 min on the same four processors as the high-
fidelity model.

3.3 Low-Fidelity Model

The low-fidelity CFD model is constructed in the same way as the high-fidelity
model, but with a coarser computational mesh and relaxed convergence criteria. For
the low-fidelity model, we use the coarse mesh in the grid study presented in Fig. 3a,
with roughly 30,000 mesh cells. The flow solution history for the low-fidelity model,
shown in Fig. 3a, indicates that the lift and drag coefficients are nearly converged
after 80–100 iterations. The maximum number of iterations is set to 100 for the low-
fidelity model. This reduced the overall simulation time to 1.5 min. A comparison
of the pressure distributions, shown in Fig. 3b, indicates that the low-fidelity model,
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of ˛D 1ı: (a) the evolution of the lift and drag coefficients obtained by the low-fidelity model; (b) a
comparison of the pressure distributions obtained by the high- and low-fidelity models

in spite of being based on much coarser mesh and reduced flow solver iterations,
captures the main features of the high-fidelity model pressure distribution quite well.
The biggest discrepancy in the distributions is around the shock on the upper surface,
leading to an over estimation of both lift and drag (Fig. 3a).

The ratio of the simulation times of the high- and low-fidelity model in this case
study is 43.8. In many cases the solver does not fully converge with respect to the
residuals and goes on up to 1000 iterations. Then the overall evaluation time of the
high-fidelity model goes up to 170 min. In those cases, the ratio of the simulation
times of the high- and low-fidelity models is around 110. For the sake of simplicity,
we will use a fixed value of 80 in the numerical computations presented in the results
section.

3.4 Results

The Pareto set obtained in the first iteration is shown in Fig. 4a. It is generated
by optimizing the initial kriging model, i.e., the one constructed from the space-
mapping-corrected low-fidelity model (Eqns. (1)–(11), but without the noise metric
values) with the training samples allocated as described below Eqn. (4). The new set
of ten high-fidelity samples allocated along that initial Pareto front representation
(only nine of them are shown in Fig. 4a) is used for verification purposes but also
to enhance the surrogate model by re-running the space mapping corrections (Eqns.
(1)–(11)). It can be observed that there is some discrepancy between the Pareto-
optimized surrogate model and the sampled high-fidelity model, which means that
the optimization process has to be continued. The final Pareto set shown in Fig. 4b
is obtained after four iterations of the algorithm. Its verification carried out using
an additional set of high-fidelity model samples indicates that the surrogate model



Fast Multi-Objective Aerodynamic Optimization Using Space-Mapping. . . 65

0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

C
l

C
d

Surrogate

High-fidelity

0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

C
l

C
d

High-fidelity

Surrogate

First iteration (initial Pareto set)

a b

c

Last iteration (final Pareto set)

0 0.2 0.4 0.6 0.8 1-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

x/c

c/z

Low C
d

High C
l

Sample airfoils from the final Pareto set

Fig. 4 Pareto front representation obtained by optimizing the surrogate model: (a) and (b) show
the surrogate model points (circles), and selected high-fidelity model points (squares), and (c)
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is a sufficiently good representation of the high-fidelity model (both data set are
practically aligned). The total optimization cost is about 60 high-fidelity model
evaluations: 30 to obtain the initial set as mentioned above, and ten per each
additional iteration of the algorithm.

Figure 4c shows the airfoil shapes from the final Pareto set (Fig. 4b) with a
low drag coefficient (xD [0.0013 0.5326 0.1117]T), i.e., the left-most high-fidelity
sample on Fig. 4b, and a high lift coefficient (xD [0.0267 0.7725 0.1134]T), i.e.,
the right-most high-fidelity sample on Fig. 4b. Both designs fulfill the cross-
sectional area constraint, i.e., Alow Cd � 0.075 and Ahigh Cl� 0.075. The two airfoil
shapes have similar thickness (tlow Cd	 thigh Cl	 0.11), but the design with lower
drag has a much lower camber than the one with higher lift (mlow CdD 0.0013 vs.
mhigh ClD 0.0267).
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4 Example 2: Low-Speed Airfoil Design

The second test case involves low-speed airfoil design with trade-offs of aerody-
namic performance versus noise signature.

4.1 Problem Formulation

This example involves the trade-off between the aerodynamic and aeroacoustic
performances of low-speed airfoils. We consider only the clean wing, trailing-edge
(TE) noise in this example, and we aim at minimizing the section drag coefficient
(Cd.f ) for a given section lift coefficient (Cl.f ), and at the same time minimize the
TE noise (given by a noise metric NMf explained in the next section). Therefore, we
have two objectives, Fobj,1(x)DCd.f and Fobj,2(x)DNMf , both obtained by a high-
fidelity simulation.

The specific design case considered is optimization for a target lift coefficient of
ClD 1.5. The operating conditions are a free-stream Mach number of M1D 0.208
and a Reynolds number of RecD 0.665 million. The angle of attack ˛ is a dependent
variable utilized to obtain, for any given airfoil geometry, the target lift coefficient.
We use again the NACA four-digit parameterization [35] (as described in Section
III.A.1) with the following parameter bounds: 0.0�m� 0.1, 0.3� p� 0.6, and
0.08� t� 0.14. There are no other constraints considered in the optimization
process.

The kriging surrogate model constructed for the purpose of evolutionary-based
multi-objective optimization was obtained using 343 low-fidelity model samples
allocated on a uniform rectangular 7� 7� 7 grid. The surrogate was further
corrected using the multi-point output space mapping (1), and utilizing nine high-
fidelity model samples: seven samples allocated according to the star-distribution
factorial design of experiments, and two additional random samples necessary to
ensure that the regression problem has a unique solution.

4.2 Noise Metric Model

The noise metric model was developed by Hosder et al. [36] to give an accurate
relative noise measure suitable for design studies. The noise metric therefore does
not give an accurate prediction of the absolute noise level. However, it does give
an accurate measure of the change in noise due to changes in the wing shape. The
noise metric model is recalled here for convenience. A rigorous derivation of the
noise metric can be found in Hosder et al. [36].
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Fig. 5 Geometrical
definition of the noise source,
receiver, and directivity
angles (note that the
trailing-edge sweep angle ˇ is
0ı here) [36]

x

y

z

H

Receiver

q

j

Noise source

Wing
TE

V¥

The objective is to estimate the acoustic noise perceived by an observer at a
distance H from a clean wing (Fig. 5). An intensity indicator for the clean wing
turbulent trailing-edge noise is defined as [36]

INM D �1
2�3a21

b=2Z
0

u50l0 c os3ˇ
D .�; 	/

H2
dy; (15)

where b is the wing span, �1 is the free-stream density, a1 is the free-stream speed
of sound, u0 is the characteristic velocity scale for turbulence, l0 is the characteristic
length scale for turbulence, and ˇ is the trailing-edge sweep angle. D(� ,®) is the
directivity term and is defined as

D .�; 	/ D 2sin2
�
�

2

�
sin 	; (16)

where � is the polar directivity angle, and ® is the azimuthal directivity angle
(Fig. 5).

The characteristic turbulent velocity at a spanwise location of the wing trailing
edge is chosen as the maximum value of the turbulent kinetic energy (TKE) profile
at that particular spanwise station, that is

u0.y/ D max
hp

TKE.z/
i
; (17)

where z is the direction normal to the wing surface. The characteristic turbulence
length scale at each spanwise station is modeled as

l0.y/ D u0.y/

!
; (18)

where! is the turbulent frequency (dissipation rate per unit kinetic energy) observed
at the maximum TKE location.

The noise metric (NM) for the trailing-edge noise (in dB) is written as

NM D 120C 10 log .INM/ ; (19)
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where the noise intensity indicator has been scaled with the reference noise intensity
of 10�12 W/m2 (the minimum sound intensity level that the human ear can detect).
The total noise metric is

NM D 10 log
�
10

NMu
10 C 10 NMl

10

�
; (20)

where NMu and NMl are noise metric values obtained by Eqn. (19), evaluated for
the upper and lower surfaces, respectively.

4.3 High-Fidelity CFD Model

The flow is assumed to be steady, compressible, and viscous. The steady Reynolds-
averaged Navier–Stokes equations are taken as the governing fluid flow equations
with the k-! SST turbulence model by Menter [37]. The solution domain boundaries
are placed at 25 chord lengths in front of the airfoil, 50 chord lengths behind it, and
25 chord lengths above and below it. The computational meshes are of structured
curvilinear body-fitted C-topology with elements clustering around the airfoil and
growing in size with distance from the airfoil surface. The grids are generated using
the hyperbolic C-mesh of Kinsey and Barth [38]. The high-fidelity models grid has
around 400,000 mesh cells.

Numerical fluid flow simulations are performed using the computer code FLU-
ENT [39]. The flow solver is of implicit density-based formulation and the fluxes are
calculated by an upwind-biased second-order spatially accurate Roe flux scheme.
Asymptotic convergence to a steady-state solution is obtained for each case. The
solution convergence criterion for the high-fidelity model is the one that occurs
first of the following: a reduction of the residuals by six orders of magnitude, or
a maximum number of iterations of 4000.

4.4 Low-Fidelity CFD Model

The low-fidelity CFD model is constructed in the same way as the high-fidelity
model, but with a coarser computational mesh and relaxed convergence criteria.
The low-fidelity mesh has around 30,000 mesh cells. Although the flow equation
residuals are not converged, the lift and drag coefficients and the noise metric
typically converge within 1200 iterations. Therefore, the maximum number of
iterations is set to 1200.

4.5 Results

Figure 6 shows the distribution of the solutions in the feature (output) space at the
first iteration of the evolutionary algorithm. The population size used was ND 500.
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Fig. 6 Multi-objective optimization of the surrogate model: distribution of the initial population
in the feature (output) space and the design space

Random initialization with uniform probability distribution is utilized. One can
observe a strong correlation between the drag coefficient and the noise metric in
the majority of the feature space. Moreover, one can also observe that in a small
region of the feature space the two objectives are weakly conflicting, i.e., in the
region with low values of both objectives.

The Pareto set obtained after optimizing the surrogate model is shown in Fig. 7,
together with the allocation of the solution in the design space. Note that all the
Pareto-optimal solutions correspond to the thinnest possible airfoil shapes (here,
tD 0.08). As there are no thickness constraints, the optimizer reaches the lower
bound on the thickness parameter to reduce drag, in particular skin friction drag,
while still maintaining the prescribed lift.

Figure 8a shows the high-fidelity model verification samples, indicating certain
discrepancies between the drag/noise figures predicted by the surrogate model and
actual values. The Pareto front refinement has been subsequently executed in the
refined design space of 0.045�m� 0.075, 0.3� p� 0.6, and 0.08� t� 0.14. The
verification samples obtained in the previous step have been utilized to update the
surrogate model.

The results of the refinement iteration are shown in Fig. 8b. The overall
optimization procedure is terminated at this point because the assumed accuracy
of <1 drag count (where a drag count is defined to be �CdD 0.0001) and <0.1 dB
with respect to the noise metric is met. The final Pareto front shows that the range
of the drag coefficients for the trade-off solutions is from 148 to 156 drag counts
with the corresponding noise metric from 66.4 dB to 65.6 dB. Thus, improvement
of the noise performance by 0.8 dB can be obtained by increasing the drag by eight
counts.
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Fig. 7 Multi-objective optimization of the surrogate model: Pareto set found by optimizing the
surrogate model and the corresponding allocation of Pareto-optimal solutions in the design space

Figure 8c shows the airfoil shapes from the final Pareto set (Fig. 8b) with a low
drag coefficient (xD [0.0628 0.4789 0.080]T), i.e., the left-most high-fidelity sample
in Fig. 8b, and with a low noise metric (xD [0.0510 0.5978 0.080]T), i.e., the right-
most high-fidelity sample in Fig. 8b.

5 Conclusion

A computationally efficient procedure for multi-objective optimization of aero-
dynamic surfaces has been described. The approach exploits a fast surrogate
constructed using kriging and space mapping corrected low-fidelity CFD simulation
data, as well as the multi-objective evolutionary algorithm that finds a set of
designs representing the best trade-offs between design objectives, here, the lift
and drag coefficients. A refinement procedure allows for improving the initial
Pareto front representation at a low cost depending on the number of high-fidelity
verification samples used in the process. The design examples demonstrate a
consistent performance of the described method. Future work will extend the
approach for higher-dimensional cases, where the initial computational effort
related to construction of the response surface approximation model may become a
serious issue.
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Assessment of Inverse and Direct Methods
for Airfoil and Wing Design

Mengmeng Zhang and Arthur William Rizzi

Abstract The goal of aerodynamic design for airfoils and wings is to improve the
performance of the lifting surfaces, e.g., by minimizing the drag. We consider here
two approaches, the classical inverse design approach that finds the surface which
produces desired pressure distributions, and the direct mathematical optimization
based on local parameter searches, that is usually enabled by fast gradient compu-
tation, for example, by the adjoint method. The hybrid approach is to combine both
of them. Each approach has its own pros and cons. In this chapter the approaches
are assessed by application to the design of transonic RAE2822 airfoil and ONERA
M6 wing.

Keywords Inverse design • Gradient-based optimization • Parametrization •
Drag reduction • Wing surface curvature • Adjoint solver

1 Introduction

Aircraft design activities are concerned with the determination of designs that meet a
priori specified performance features of the vehicle. The specified design objectives
are traditionally met through an iterative process of analyses, evaluations, and
modifications of the design. In this sequential trial-and-error procedure, the designer
must rely on experience, intuition, and ingenuity for every re-design, and this makes
aircraft design an exciting creative discipline. In practice, however, designers are
often forced to depend on tried concepts to cut a path through an incomprehensible
number of feasible designs, historically characterizing the process as a slow gradual
improvement of existing types of concepts.

The task of designing an aircraft is among the most complex in engineering.
The complexity can be simplified by sequential decision that divides the design
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into the conceptual design, preliminary design, and the detailed design. While
the greatest freedom to exploit potential trade-offs between aircraft subsystems
for the optimization of the design occurs earliest in the design stage, since the
decisions taken during the earlier stage commit up to 80 % of the life-cycle costs,
although, of course, the actual costs incurred appear on the books much later.
Mistakes here must be avoided because they are very costly to remedy later and
delay acceptance. Matters involving the interaction of aerodynamics with structures
and controls are particularly prone to errors due to the low fidelity of the analysis
methods traditionally used. If these complicated problems are not resolved in an
integrated sense, the sub-optimal design might be led to in a global sense and
become “myoptic.”

1.1 MDO and Aerodynamic Design Approaches

Multidisciplinary Design Optimization, or MDO [1, 2], combines analysis and
optimizations in several individual disciplines with those of the entire system
concurrently through formal mathematical processes. It puts into place a formal
integrated system design process for better product quality by effectively exploiting
the synergism of interdisciplinary couplings. MDO, as a discipline, itself comprises
of many areas of research. It is “a methodology for design of complex engineering
systems that are governed by mutually interacting physical phenomena and made up
of distinct interacting subsystems (suitable for systems for which) in their design,
everything influences everything else” [1].

One of the significant factors holding back the widespread adoption of MDO
is its computational cost when the number of design variables becomes very large
(the curse of dimensionality). The use of high-fidelity models can raise the cost
from merely expensive to unbearable. Parallel computing helps, but cannot over-
come computational inefficiency. The revolution in computing speed and memory
capacity of digital computers together with persistent systematization of design
methodology has led to tools for computational aircraft design (e.g., MDO) that aim
at automation of the conventional design process through integration of numerical
methods for analysis, sensitivity analysis and mathematical programming so that the
best design in terms of a pre-defined criterion can be determined. Traditionally the
process of selecting design variations has been carried out by trial-and-error, relying
on the intuition and experience of the designer, the engineer in the loop. Increasing
the level of automation by computational means has reduced, but not eliminated, the
engineer-in-the-loop activities. The overall success of the design process depends
heavily not only on reliability and accuracy of the computational methods but also
on how well the designer has set his goals.

1.1.1 Aerodynamic Design: Three Approaches from a User Perspective

Optimization of aircraft wings is not new. The thing that makes wings so hard to
design is that their aerodynamics and structure are not just interdependent, they are
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variable. Computational aerodynamic design, one of the disciplinary subsets of the
aircraft design process, aims directly at determining the geometrical shape of the
aircraft hull that produces certain specified aerodynamic properties, with or without
constraints on the geometry. Usually termed aerodynamic shape optimization (ASO)
[3–5], this is the subject of this chapter. ASO is a very attractive technology because
it replaces workable designs with optimal ones, and cuts down design times, thus
enabling faster responses to the economic pressure of the marketplace.

For wing design there are generally three approaches: the direct optimization
design (mathematics-skill dependent) [6], the inverse design (engineering-skill
dependent) [5, 7–9], and the hybrid approach which combines both of them.
The direct approach requires the user to define the cost function (usually the
drag) along with the constraints, and then seeks the solution to the constrained
optimization problem by mathematical algorithms for non-linear optimization.
When the algorithm involves gradient searches, the sensitivities that indicate how
to change the geometry in order to reduce the cost function can be computed also
for very many design parameters by solution of an adjoint to the flow problem.
This approach is the most popular way of doing optimization nowadays as the
computer capacities are continuously increasing. However, it is always trapped in
a local optimum due to the limitation of the algorithms, and it may overexploit the
flow localities. The second approach works by first finding a well-posited pressure
distribution that fulfills the design requirements and then determining a geometry
that yields this target pressure. One big issue of this approach is that it needs to
formulate a good “target” pressure distribution first, which requires engineer in the
loop. The last method can employ both approaches under user control, but very
manual. One example is LINDOP optimizer [10, 11] in the MSES [12] package.

2 Introduction to Direct Optimization, Inverse Design,
and Hybrid Approach

2.1 Direct Mathematical Optimization

A straightforward way to search for an optimal design is to construct a non-linear
constrained optimization problem,

min W I D I.w;X/

subject to W
CL.w;X/ � C0

L;

Cm.w;X/ D C0
m;

gj.X�/ � 0; 1 � j � m;

(1)
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where X is the mesh, X� is the surface of the geometry, w is the flow-field variables,
and gj are the geometric constrains. The cost function I is selected by the designer,
which might be the drag coefficient I D CD, the drag to lift ratio I D CD

CL
, or the

pressure difference I D R .p � pd/
2d˝ if an inverse design problem is being posed.

Numerous optimization algorithms [6] are available for attempted solution of the
mathematical problem. We have the mesh generation algorithms

M.X;X�/ D 0 (2)

and the surface parametrization algorithm S

S.X�; `/ D 0 (3)

where ` are the design variables which determine the surface X� .
The change in I can be estimated by a small variation ı` to the parameter

vector and recalculating the flow to obtain the change in I, thus approximating the
directional derivative,

I.`C ı`/ D I.`/C dI

d`
� ı`C O.jjı`jj2/: (4)

Most optimization algorithms employ a line search along search direction d,

`nC1 D `n � �d (5)

with � a step size parameter. The search direction d is composed of gradients
dI
d` ; quasi-Newton methods also compute approximations to the Hessian matrix of

second derivatives, Hij D d2I
d`id`j

, by differences of gradients in an updating scheme.
When the parameter space is high-dimensional, this approach using the gradient
itself entails high computational cost.

2.1.1 Gradients by Adjoint Equations

The adjoint method was originally applied to aerodynamics by Jameson [13]
adapting ideas originally formulated by Lions [14] on optimal control of systems
governed by partial differential equations. The adjoint equations can be conveniently
formulated in a framework to calculate the sensitivity of a given objective function
I to parameters ` which control the geometry. The derivation is easy when R, etc.
below are interpreted as the finite dimensional discretization of the flow equations,
objective functions, etc. The residual R of the governing equations for a given flight
state(s) which expresses the dependence of flow variables w on the mesh X is:

R.w;X/ D 0 (6)
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Thus a small change in X produces a small change ıI to the cost function,

ıI D @I

@w
ıwC @I

@X
ıX (7)

and a small change ıw to the flow w,

ıR D @R

@w
ıwC @R

@X
ıR D 0: (8)

The mesh deformation ıX is calculated from the corresponding displacements of
the nodes that define the surface of the geometry X� by parametrization S.

Equation (8) is multiplied by a Lagrange multiplier vector ‰, subtracted from
Eq. (7) and the result re-arranged,

ıI D . @I

@w
�‰T @R

@w
/ıwC . ıI

T

ıX
�‰T @R

@X
/ıX: (9)

Choosing ‰ so that the first term on the right vanishes gives

Œ
@R

@w
�T‰ D . @I

@w
/T : (10)

This is a linear PDE known as the adjoint equation. There are two main ways to
characterize the adjoint approach, as a discrete method, in which the discretized
governing equations are used to derive the adjoint equations, and as a continuous
method, in which the adjoint equations are derived from the analytical PDEs [15].
The discrete and continuous approaches are found to have relative advantages and
disadvantages over each other [16]. The discrete adjoint equations derived directly
from the discrete flow equations become very complicated when the flow equations
are discretized with higher order schemes using flux limiters. On the other hand it
can provide an exact gradient of the inexact cost function which results from the
discretization of the flow equations. In theory a discrete method can handle PDEs
of arbitrary complexity without significant mathematical development and can treat
arbitrary functionals I. In comparison, the continuous adjoint requires significant
theoretical development but is better connected to the underlying physics and can
be solved by a method independent of the flow solution scheme. However, it is more
limited in the types of functionals and governing equations that can be treated, and
the gradient calculated will differ more from that found by finite differencing. But
as the mesh is refined, all three gradients, discrete, continuous, and finite difference,
converge to the same limit.

A few words are needed here to explain why we can consider this (the
discretization of) a linear PDE known as the adjoint to the flow equations: we see
no derivatives operating on  . The key here is the scalar product: for the continuous
PDE formulation, an integral over the domain. The trick is to perform suitable
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integrations by part in the integral to move derivatives from the primary variables
(the flow variables) to the dual—the Lagrange parameters. Notice also that it is the
linearized flow equation that appears. This implies that the adjoint of the Euler flow
equations is very similar to the linearized Euler equations—they are almost self-
adjoint, which in turn implies that the adjoint equation can be solved by much the
same procedures as the primal (flow equations).

The total perturbation ıI now depends only on the change of the mesh ıX,
but is independent of the flow solution perturbation ıw. Unlike the gradient
calculation by finite difference, for each optimization step, the gradient of I with
respect to an arbitrary number of design variables (usually a large amount) can
be determined without the need for additional flow-field evaluations. To solve the
adjoint equation (10), it costs approximately as much as a flow solution. Note,
however, that the boundary conditions in the adjoint PDE are usually chosen to
eliminate boundary integral contributions rather than efficient expulsion of waves
through the boundaries and this may hamper convergence of the numerical solution.
Finite difference methods can also be used to find these sensitivities but are in
general significantly more expensive, requiring at least one additional flow solution
per parameter.

Examples shown here of direct optimization design are computed by the SU2
[15] software suite from Stanford University: an open-source, integrated analysis
and design tool for solving complex, multi-disciplinary problems on unstructured
computational grids. The built-in optimizer is a Sequential Least SQuares Program-
ming (SLSQP) algorithm [6] from the SciPy Python scientific library. The gradient
is calculated by continuous adjoint equations of the flow governing equations
[15, 17]. SU2 is in continued development. Most examples pertain to inviscid flow
but also RANS flow models with the Spalart–Allmaras and the Menter SST k-!
turbulence models can be treated.

2.2 Inverse Design

Inverse design is a classical way of designing airfoils and wings, which was popular
several decades ago before the advent of high performance computing as a tool in
aircraft design.1 The method consists of predictor and corrector processes which
require engineering know-how at the very beginning of the design stage. The
predictor/corrector design approach systematically modifies a given geometry based
on direct solutions for the flow around the airfoils or wings. The calculated pressure
distribution is compared with a prescribed target distribution and the resulting
differences are used by a geometry “corrector” module to modify the current
geometry to a shape more likely to generate the desired pressure. The corrector
module may be an optimization procedure such as LINDOP [10–12] described

1This section is adapted from [5, 18].
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below, or a design algorithm that directly relates pressure changes to geometry
changes. Examples of the latter type include Barger and Brooks [9] methods
for designing super-critical airfoils. The method was developed and coupled with
several two- and three-dimensional transonic codes by Campbell [7].

Dulikravich [19] solved a similar 3D problem using a Fourier series method.
Later Campbell [20] and Obayashi [21] raised some ideas on setting up the target
pressure distribution and reasonable constraints for inverse design problem.

Inverse design approach has a long history but it is not out of date. Dealing
with the surface curvatures is robust, and the aerodynamicist sees more physical
properties of the wing. The approach was recently re-visited and improved by
German Aerospace Center (DLR) [22] with good results on laminar wing design.
Zhang developed the SCID toolbox with the resulting surface curvature [7, 20]
inverse design method. The flow chart of SCID inverse design is shown in Fig. 1.
It connects streamline curvatures on the wing surface with pressure changes to
iteratively modify an initial shape. It is combined with under-relaxation chosen

Fig. 1 Flow chart for wing inverse design using SCID algorithm, retrieved from [18]
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to help convergence, and smoothing procedures to ensure a smooth surface and
curvature. Examples shown here for inverse design are computed by SCID [18, 23].
In SCID the CFD code MSES [12] is used for airfoils and EDGE2 is used for wings.

2.2.1 Pressure–Curvature Relations

The relation is derived from the normal component of the momentum equation for
inviscid flow along the streamline on the wing surface as long as the flow is attached.
The steady Euler equations with es the unit vector along a streamline, so that the
velocity vector is u D Ues, U D juj,

UUses CU2 des

ds
Crp=� D 0 (11)

where s is the arc-length along the streamline. In the Darboux frame in Fig. 2, en and
et are the surface unit normal, and the second unit normal es � en to the streamline,
there holds

d2�

ds2
D des

ds
D cnen C cget (12)

where cn and cg are the normal and geodesic curvatures. The normal component of
the streamline Euler equation is:

0C �U2cn C @p

@n
D 0 (13)

from which we can derive a relation between the curvature and the pressure
coefficient,

cn C Cp

2L.1 � Cp/
D 0

Fig. 2 Wing represented in
the Darboux frame

2www.foi.se/en/Customer--Partners/.../Edge1/Edge/.

www.foi.se/en/Customer--Partners/.../Edge1/Edge/
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where L is a length scale for the pressure gradient L 	 p�p1

@p=@n . Since L is unknown
and varies along the streamline, we introduce an inverse length scale coefficient F.
The relation used in the shape modification step is the proportionality between
changes in normal curvature and pressure coefficient, for unit chord-length, so
curvature becomes non-dimensional,

cn D F � Cp D d2�

ds2
� en � F � Cp: (14)

The F-coefficient was proposed by Barger and Brooks [9]. Campbell [7] suggests
the cn-dependence F D A.1C cn

2/B for perturbations�Cn, �Cp, to produce

�cn D A.1C cn
2/B�Cp (15)

where A and B are adjustable constants.
There remains to relate the surface normal curvature change to geometry

change itself. The surface analogue of the Frenet–Serret formulas for the surface
coordinates �.s/ along the streamline is

� ss D cnen C cget: (16)

For small change on the surface, it gives

��ss D �cnen C cn�en C�cget C cg�et (17)

where only the first term on the right-hand side is kept. Note that the last two terms
vanish for airfoils. Since only displacement normal to the surface will change the
surface, it makes sense to so restrict the geometry change, say

�� D h.s/en

and then the normal projection of Eq. (17) gives precisely

hss D �cn:

In the shape modification step A is chosen as large as possible without creating
divergence in the iteration. Reported values range from 0 to 0.5. Smaller values
give slow convergence, larger values may cause divergence. The correct coefficients
must be chosen as compromise between speed of convergence and robustness.
An adjustment algorithm is applied to select A and B according to the status of
convergence.



84 M. Zhang and A.W. Rizzi

2.2.2 Shape Modification of Streamline Sections

The following applies to airfoils but is also used in the wing design, with the
assumption of surface streamlines not deviating much from the surface traces of
the sections used to build the wing. With �cn from Eq. (15), the new shape y.s/ is
computed from the two-point boundary value problem

d2��

ds2
D coeff�Cpen; ��.s0; lower/ D �y.smax; upper/ D 0: (18)

The arc-length s starts from the trailing edge on the lower surface. The boundary
conditions are applied to ensure a sharp and closed trailing edge. The section
geometry is represented by point clouds � i D .x; z/, i D 1; 2; : : : ;N, N is the
number of total points of the airfoil.

2.3 Hybrid Design

This chapter describes a hybrid scheme which combines inverse design with
optimization of the aerodynamic shape based on the above as shown in Fig. 3. The
“hybrid” means we use mathematical optimization with gradients produced by the
adjoint technique or by finite differences in a loop together with inverse design that
integrates the streamline curvature to produce the shape associated with the target
pressure distribution to find the shape (right). One key point is that as the iteration
proceeds, the engineer, with some insight from the direct optimization, can modify
the current target pressure to guide the design process [7, 21, 23].

Fig. 3 The feedback design loop
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The target pressure distribution on the wing planform is constructed by consider-
ing the span loads, isobar patterns, etc. [24], as well as other best practice guidelines
provided by experience. Keeping the engineer in the loop emphasizes wing design
rather than accurate solution of a (possibly not-so-well formulated) mathematical
optimization task:

Engineer in loop to minimize drag by finding the best feasible target pressure
distribution, for which a feasible shape can be found by inverse design.

LINDOP [10, 11] is an external code apart from MSES [12] which is used
for airfoil optimization, it intelligently breaks down the evolution of design into
reasonably small number of optimization cycles and allows the engineer in the
design process during each cycle. MSES estimates the flow field by solving the Euler
equations in the internal flow field coupled to thin boundary layer equations in the
boundary layer [12, 25]. The overall equation system

R.wI˛;AoA;M/ D 0 (19)

consists of the interior steady Euler equations, the boundary layer equations, and the
necessary coupling and boundary conditions. The flow field is solved by Newton-
based methods.

The optimization method used in LINDOP is also based on Newton iteration,
with gradients easily available from the (exact) Jacobians employed in the flow
solution. The designer can use the gradients to interactively try out various objective
functions I (e.g., aerodynamic forces CL, CD, CL

CD
) with respect to small perturbations

in design parameters ˛, and flow parameters AoA and M with almost no additional
cost. The Hessian matrix necessary for quasi-Newton optimization is approximated
by the BFGS updating scheme [6].

There are two types of optimization problems defined in LINDOP:

(I) Least-square problem (modal-inverse design): e.g., I D 1
2

R
.f .s/� fspec.s//2ds,

where f .s/ is usually the pressure distribution.
(II) General optimization problem (direct design): e.g., I D CD, always with some

constraints, on, for example, lift, pitching moment, wing volume, or thickness,
etc.

Indeed, those two problems are the most common ones among many design cases.
The former one (2.3) is always solved by inverse design, if specified pressure
distributions (fspec.s/) are given. The latter one (2.3) is usually solved directly by
optimization. The following chapter shows how to solve those two problems using
hybrid design with MSES-LINDOP an exemplary tool. The designer is allowed to
generate design-parameter changes in many ways regarding to different problem
to be solved, it can be from direct keyboard inputs, or indirect posing & solving
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Fig. 4 LINDOP work flow, retrieved from Drela [11]

optimization problems [10]. The hybrid approach can be complicated but it is
particularly useful for complex design problems, for example, multi-element airfoils
with multi-point design [26].

Figure 4 spells out how LINDOP works. By specifying the target pressure
distribution the user can interactively work through the feedback graphics where
the flow solver and inverse solver are applied. The procedures require substantial
user intervention. The engineer is in the loop to lead the design towards the correct
direction in every small step, however it is also very manual and tedious.

3 Parametrization

There are many ways to parametrize a wing, to produce either the lofted wing
surface, or the set of surface mesh points. For example the wing surface can be lofted
through airfoil stacks (Fig. 5), or the geometry can be represented by modeling the
perturbations of the “baseline” shape [27]. The latter technique can also perturb
mesh points, or so-called mesh deformation [28]. This section shows several popular
parametrization methods used in the test cases, and discusses the mesh update
methods, namely, re-meshing and mesh deformation.

For the overall shape definition, mapping from surface mesh to volume mesh
is usually done by “re-meshing,” i.e. re-creation of the complete grid for each
shape to analyze. The generated grids will have well-formed cells, and usually
mesh generation takes only a small fraction of the flow solution time. This allows
loose coupling but also means that each flow solution must be done essentially from
scratch since the number of flow variables is different from the previous calculation.
However, if the CFD package supports interpolation between arbitrary grids it is
possible to obtain a good initial guess for the flow which can speed up the solution.
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Fig. 5 Airfoil stacks

In the deformation approach, only the coordinates of grid points change, so no
interpolation is necessary for initial guesses. A mesh deformation algorithm for
propagating the deformation of surfaces through the whole grid is needed. The
cheapest alternative is interpolation methods for arbitrary points, based on, e.g.,
radial basis functions or Kriging. Also PDE-based methods employing the equations
of elasticity or the Laplace equations are in use. However, these techniques are most
easily implemented closely coupled to the flow solver. The PDE methods provide
some guard against creation of bad computational cells. But although they deal
with deformations which are very small compared to wing dimensions, they can
be large compared to mesh cell sizes, e.g., at a sharp trailing edge when the twist is
changed.

3.1 Shape Definition

There are many ways to parameterize a wing, to produce either the lofted wing
surface, or the set of surface mesh points. For example, the wing surface can be
lofted through airfoil stacks, or the geometry can be represented by modeling the
perturbations of a “baseline” shape [27]. The latter technique can also perturb
off-surface mesh points, by so-called mesh deformation [28]. This section shows
popular parametrization methods used in the test cases, and discusses the mesh
update methods, namely, re-meshing and mesh deformation. Although the CAD-
free parametrization techniques have been proposed [29, 30], we believe that
the re-meshing technique has some advantages. Re-meshing is easy if a smooth
geometry is provided. A reliable and fast meshing tool is a key. SCID uses sumo
[31], a tool for rapid automatic Euler and RANS meshing. If re-meshing rather
than mesh deformation is applied in finite difference approximation of derivatives,
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changes to design variables cannot be too small, lest the unavoidable, random-
looking, mesh changes resulting from the detailed workings of the generation
algorithm hide the gradient information.

3.2 Airfoil Stacks and Re-Meshing

Airfoil sections are the most important building block of aerodynamic geom-
etry. Vassberg and Jameson [3] state that: “Airfoils are used to define wings,
pylons, nacelles, struts, winglets, features, horizontal stabilizers, verticals, pro-
pellers, turbomachinery blades and stators, cowls, blimps, sailboat sails, keels and
ballast-bulbs, cascades, helicopter rotors, fins, chines, strakes, vertical/horizontal-
axis wind turbines, flaps, frisbees, and boomerangs.” In most software systems for
aircraft shape definition, the defining stations are chordwise cuts. The wing surface
parametrization is decomposed into parameterization of n stations of airfoils. It is
customary for the first defining station to be at the symmetry plane (wing root),
and the last defining station to be at the wing’s theoretical tip. Each airfoil (defined
as scaled to leading edge at the origin to trailing edge at [1,0]) is rotated by an
incidence, translated to the defining station leading edge, then scaled to match the
projected planform chord. The wing surface is usually lofted by Bézier/Bspline
surfaces [32].

In SCID as well as many software systems for aircraft shape definition, the defin-
ing stations are spanwise cuts. The wing surface parametrization is decomposed into
parametrization of n stations of airfoils. The geometry is updated (and smoothed) in
every design cycle, then a re-meshing is carried out, as indicated in Fig. 1.

3.3 Airfoil Shape Definition

Some airfoil families are defined by a number of parameters with geometric
interpretation, such as the NACA four, five, and six-digit families. But those families
are of limited interest for the super-critical airfoils for transonic speeds, so more
general schemes must be devised.

3.3.1 Bézier/Bspline Curves

Using Bézier/Bspline polynomials to parametrize the airfoil shape is simple and
robust [32–34], it ensures geometrical properties including leading edge radius,
trailing edge shape by solving a least-square fitting problem. It usually gives good
representation of an airfoil (and smoothing) chosen by the number of control points.
Melin et al. [35] developed a technique that uses four pieces of cubic Bézier
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Fig. 6 Airfoil is parametrized by four pieces of cubic Bézier curves

Fig. 7 The surface mesh
point at i; j is moved by ıX�i;j

curves [33] to parametrize an airfoil within a reasonable error level. A similar
parametrization is used in SCID [18, 23] for geometry update and smoothing
purpose with wing represented by airfoil stacks (Fig. 6).

3.4 Parameterization of Shape Perturbations

3.4.1 Mesh Points and Mesh Deformation

When the mesh points are used to represent the surface, the design variables
are the coordinates of the mesh points. The main advantage of parameterizing a
shape with mesh points is that there is no restriction on the attainable geometry.
Also, this parametrization technique can be easily implemented in any design
problem. However, the use of mesh points does present some difficulties. First,
the independent displacement of points may create non-smooth surfaces which are
unsuitable as lifting surfaces and give the flow solver a hard time. Second, if all
surface mesh points are used, the method is very costly for 3D problem since we
will deal with a large number of design variables (i.e., surface mesh points). Both
difficulties can be easily resolved by using a set of smooth functions to perturb the
initial mesh so that the surface mesh points are mapped from a limited number of
design variables, such as in MSES-LINDOP [10–12], SU2 [15]. Figure 7 shows the
surface mesh point at i; j which is moved by ıX�i;j , Fig. 8 shows the surface mesh
points moved by Hicks–Henne bumps.

Deforming the computational mesh is an efficient alternative to re-meshing and
it enables a smooth mapping from the design parameters to the cost function. One
issue for mesh deformation is that by deforming the surface boundary of the mesh
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Fig. 8 The surface mesh
points are moved by
Hicks–Henne bumps [37]

points, the rest of the grids must be deformed accordingly. SU2 uses the linear
elasticity equations [15, 36] to compute the volume mesh displacement from the
displacement of the perturbed surface. If the computational cells are small, this
prevents creation of negative volume cells by deformation. In certain circumstances,
further mesh smoothing [28] will be required.

3.4.2 Hicks–Henne Bumps

A single Hicks–Henne (HH) bump function [37] perturbs the airfoil shape (y
coordinates) by a “bumps,” so that with a sequence of HH bumps there obtains a
perturbation of airfoil shape,

�y.x/ D
NX

kD1
˛k sin

�
�x

log 0:5
log xk

�t

(20)

with the x-locations of max-points are xk; k D 1; 2; : : : ;N, and the coefficients ˛k

are design variables. Figure 9 shows an example of the fourth order bumps (t D 4)
with N D 10, xk is equally distributed over Œ0:5=N; 1� 0:5=N�.

3.4.3 Free-Form Deformation

Free-form deformations (FFD) provide a method of deforming an object by
adjusting the control points of a lattice. The technique was first described by
Sederberg and Parry in 1986 [38] and its effect is used in computer animation. In
2D the shape perturbations are simply modeled by Bézier/Bspline/NURB control
points [33, 34, 38, 39]

d�.x; y/ D
nx�1;ny�1X

i;jD0
dCPi;jB

nx
i .u/B

ny
j .v/ (21)

x D xmin C u.xmax � xmin/
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Fig. 9 The Hicks–Henne bump functions, t D 4, with N D 10, xk is equally distributed over
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Fig. 10 NACA-0012 is deformed by a 5�2 FFD Bézier box

where nx; ny are the degrees of the FFD functions, u; v 2 Œ0; 1� are the parametric
coordinates, CPi;j is the nx � ny array of control points, Bs are the Berstein
polynomials [32]. Fig. 10 shows an example that deforms an NACA-0012 airfoil
by a 5�2 FFD Bézier box. In SU2 deformation of the baseline wing is done by a 3D
FFD Bézier box [15, 38] in a similar way.
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4 Test Cases Statement

4.1 Case I: RAE-2822 Airfoil in Transonic Viscous Flow

The drag should be minimized at Mach number 0.734 and lift coefficient of 0.824,
and the cross section area must exceed or equal that of the baseline. Initial angle
of attack is 2.79ı. The flow is viscous with Reynolds number Re D 6:5 � 106. The
optimization problem is

min W cd

subjectto W c` D 0:824
cm � �0:092
A � Abaseline

(22)

where cl, cd, and cm are the lift, drag, and pitch moment coefficients, A is the airfoil
cross section area.

4.2 Case II: ONERA M6 Wing Optimization in Transonic
Inviscid Flow

The ONERA M6 wing is a classic computational fluid dynamics (CFD) validation
case for external flows because of its simple geometry combined with complexities
of transonic flow (i.e., local supersonic flow, shocks, etc.). It has almost become a
standard for CFD codes because of its inclusion as a validation case in numerous
CFD papers over the years [40]. In the proceedings of a single conference, the 14th
AIAA CFD Conference3 (1999), the ONERA M6 wing was included in 10 of the
approximately 130 papers. This wing configuration is used here as a baseline for
drag minimization. The drag should be minimized at Mach number 0.8395 and the
flow is assumed to be inviscid. The maximum thickness t of each section should be
preserved to a specified value. Initial angle of attack is 3.06ı.

min W cd

subjectto W c` D 0:2864
ti;max D ti;specified:

(23)

3http://www.aiaa.org/.

http://www.aiaa.org/
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5 Results from Direct Optimization SU2

5.1 Test Case I

The Spalart–Allmaras turbulent model [41] is used in this test case. Figure 11 shows
the airfoil grids with 140,573 nodes. The mesh is perturbed by Hicks–Henne bump
functions [37] with 19 design variables. Table 1 shows the optimization solution
table for RAE 2822 airfoil (Fig. 12). The KKT condition [6] is met after 35 design
cycles. The shock at around 55 % chord is weakened, with a drag benefit of 70 drag
counts.4 Figure 13 shows the pressure distribution and airfoil shape for both baseline
and optimized airfoils. The Cp of the optimized shape has wiggles in between 0.5
and 0.6 chord, that the shock starts to re-build a little. Figure 14 shows the Mach
contours of both RAE 2822 and its optimized shape, with weakened shock on the
optimized shape. Note that the Mach is re-developed between 0.5 and 0.6 chord.

5.2 Test Case II

It is an unstructured mesh with 36,454 tetrahedral cells, half geometry with a
symmetric plane at y D 0. The wing tip is capped. The wing is parametrized by
FFD Bézier box [38] as discussed in previous section by 176 design variables, with
root section unchanged. The optimized wing is obtained after 14 design cycles,
the drag coefficient CD is reduced by around 17.9 counts, while the lift coefficient

Fig. 11 RAE-2822 airfoil
mesh with 140,573 nodes

Table 1 RAE 2822
optimization results table

Airfoil c` cd cm

Baseline RAE2822 0.8092 0.01949 �0.09679

Optimized 0.8431 0.01263 �0.08631

41 drag count is defined as 104 drag coefficient; 1 lift count is defined as 103 lift coefficient.
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Fig. 12 The design cycles
history for RAE 2822 with 19
design variables on the
140,573 nodes mesh.
(a) Convergence of
constraints on c` and
�10 � cm (b) Convergence of
cost function cd
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CL is increased by 4 % as it can be seen in Table 2. Figure 15 shows the pressure
coefficient comparisons for M6 baseline and its optimized wing shape from SU2.
The shock is reduced such that 17 drag counts benefit is obtained.

The wing section profiles are studied at five stations from root (0 m) to tip
(1.1963 m) on both baseline and optimized geometries. The maximum thickness
varies from section to section, and its maximum locations even shifted a bit forward
on inboard sections, see Figures 16a, b. The optimizer changes twist by less than 1
degree, and maximum chamber by less than 1 % to arrive at a point believed to be
a local optimum, using 176 design variables. This indicates that the wing is hard to
improve on.
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Fig. 13 Pressure
distributions and airfoil
shapes for RAE 2822, black:
baseline; blue: optimized
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5.3 Assessment: Direction Optimization

The direct optimization gives a rapid indication of possible directions for improve-
ment when traditional inverse design and/or geometric cut-and-try are impracti-
cal. It also provides the possible design improvement paths when unusual non-
aerodynamic design variables are present, for example, the r.m.s. strain constraints.
Due to the fact that it minimizes the cost function and the cost function can be
defined in multi-points, it is suitable to handle multi-point design problems [42],
whereas single-point design is better handled with traditional inverse design. For
the 2D problem, the optimized result in the test case was obtained after only 35
iterations. This approach is clear to extend to 3D (as the ONERA M6 wing), but
needs even longer computation time.
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Fig. 14 Mach contour for
RAE 2822 and its optimized
shape at Mach 0.734,
c` D 0:824. (a) Baseline
RAE 2822 Airfoil (b)
Optimized shape

Table 2 M6 optimization
results table

Shape CL CD

Baseline (ONERA M6) 0.28641 0.0117909

Optimized 0.298087 0.010016

The cons are also considerable. First of all, it requires tough learning curve, and
one cell with high surface gradient can influence the overall search direction. For
example, SU2 has an option that removes the sharp edge sensitivities from the
gradient calculation to guarantee a descent direction in optimization [17]. This
treatment to sharp trailing edge is easier to find the mean gradient. However,
the drawback is that it removes the gradient from trailing edge, resulting little
geometric changes around trailing edge, if we recalled the ONERA M6 wing
case, the optimized wing has little twists and cambers compared with the baseline
configuration, see Figure 16.

Setting up the optimization problem requires engineering skill as well. The
cost function and the constraints should be well defined to ensure convergence.
Palacios et al. [17] claimed a “sequential way” to apply constraints when designing
a simple wing-body configuration in transonic viscous flow using SU2 otherwise
the optimizer would fail. The gradient is sensitive to the mesh deformation
method/strategy, if the gradient is not on the order of a meaningful dimensional
perturbation of the design variables (control points), the first step of the optimizer
will cause the mesh deformation to fail due to too large of a step being taken.
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Fig. 15 Upper surface Cp for ONERA M6 baseline and optimized wing from SU2 optimization

This approach is always too “myoptic,” it is trapped in the local optimum rather
than finding the global optimum, exploiting the smallest significant physical scales.
For 3D problem, it requires long computing time on big computers, although the
adjoint approach reduces the gradient calculation time a lot.

6 Results from Inverse Design SCID

6.1 Test Case I

The target pressure is defined as a pressure distribution with weakened shocks. The
target is found perfectly with 50 iterations by SCID-inviscid mode to get quick
convergence, see Figure 17. Due to zero pressure gradient through boundary layer
we would rather use SCID-inviscid mode to compute once the target pressure is
given. However there are form drag and skin friction drag that SU2 can give while
SCID-inviscid mode cannot. A compromise is made by re-running the solution from
inviscid SCID in MSES [12] viscous mode, see Figure 18. The drag is reduced from
170 counts to 115 counts, with cm constraint perfectly held (Table 3).

6.2 Case II Variation

A variation design of test case II is carried out, which is a similar exercise as
Jameson did [43] by the adjoint code for inverse design. The wing planform is
ONERA-M6 and the initial geometry was made up of NACA 0012 sections and
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Fig. 16 Geometric
comparison for M6 baseline
vs. optimized results on five
spanwise stations.
(a) Maximum thickness
(b) Maximum thickness
locations (c) Local twist
distributions
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Fig. 17 The resulting
pressure distributions and the
airfoil shape from
SCID-inviscid;
baseline/initial shape is
RAE-2822 airfoil.
(a) Pressure distributions
computed from
SCID-inviscid (b) Resulting
airfoil shapes computed from
SCID-inviscid
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the target pressure distribution was the pressure distribution over the ONERA-M6
wing. The target pressure distribution was computed by SU2 in inviscid flow with
the same mesh and under the same conditions as computed the ONERA M6 baseline
in the previous section, namely, unstructured grids with 36,454 cells (rather coarse),
Mach number 0.8395, angle of attack is fixed at 3.06ı. Eight equally spaced sections
are designed for half wing, from 0 % of the wing semi-span (root) to 94.32 % of the
wing semi-span. Figures 19 and 20 show the pressure distribution and the section
geometries over the initial NACA 0012 airfoil wing and the final design by SCID.
The final design was achieved by 110 designs. Note that after 40 designs the target
pressure distribution was already almost found, with only slightly deviations. More
design cycles would not make significant difference. Smoothing plays an important
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Fig. 18 Re-run the solution
Iter-50 in viscous mode
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Table 3 RAE 2822 design
by re-running the baseline
and the optimized solution
from inviscid SCID in MSES
viscous mode

Airfoil c` cd cm

Baseline
RAE2822 -vis

0.824 0.016987 �0.09394

Iter-50 -vis 0.824 0.011512 �0.05896

Fig. 19 Initial and Final Cp contours comparisons of M6 wing planform. (a) Target pressure
distribution contours over an M6 wing computed by SU2; (b) Final pressure distribution contours
obtained by SCID-inviscid mode; (c) Initial pressure distribution contours over an M6 wing with
NACA 0012 profile

role, the different smoothing technique would lead different pressure distributions
especially for the last design cycles. As Jameson [43] claimed, this is a particularly
challenging test, because it calls for the recovery of a smooth symmetric profile from
an asymmetric pressure distribution containing a triangular pattern of shock waves,
(Table 4, Fig. 21).
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Fig. 20 Initial and Final
pressure distribution and
modified section geometries
along the wing, computed by
SCID-inviscid mode,
compared with target pressure
distribution computed by
SU2 Root. (a) section, 0 %
semi-span (b) Mid section:
54.26 % semi-span (c) Tip
section: 94.32 % semi-span
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Table 4 Wing design for
ONERA M6 planform
by SCID

ONERA M6 Planform CL CD Cm

Initial SCID 0.29828 0.020906 �0.133737

Final SCID 0.28634 0.01540 �0.11941

Target SU2 0.28641 0.0117909 �0.120047

6.3 Assessment: Inverse Design

The significant advantages of inverse design are that the engineer applies her
knowledge and (thus) a realistic airfoil is obtained at every iteration (e.g., MSES
inverse design mode [12]). The pressure gradient is zero through boundary layer
[44] so that it can be chosen to maintain laminar flow. The changes in streamline
curvature–pressure relationship are robust that it ensures fast convergence to target
pressure with good quality. The engineer in the loop is seeking favorable properties
of the pressure distributions such as:

1. the flattened leading edge pressure peak on the upper surface which avoids
leading edge flow separation;

2. weakened or eliminated shock waves which reduce the wave drag;
3. monotonic trailing edge pressure recovery that avoids boundary layer separation.

However, using the inverse method, the engineer must be well experienced and
knowledgeable to know how to set the target pressure. Because this method works
on pressure distributions rather than the lift or drag coefficients, it may not reach a
true optimum, at best only the target pressure. Moreover, the streamline curvature–
pressure relation used in SCID is more tricky and complex for transonic flow in 3D
since the shocks and cross-flow are introduced [18].

7 Results from Hybrid Design: Case I

Figure 22 shows the pressure distributions on the baseline airfoil calculated in MSES
inviscid mode, and the target pressure distributions (solid). The target pressure is
obtained from the optimized solution of RAE 2822 airfoil in inviscid flow using
EDGE adjoint solver, which is out of scope here. Directly driving the Cp towards the
“target” pressure distributions causes divergence. What we need to do in LINDOP
is to make the design iteratively. There are many options that user can interact, for
example, the search direction, the search step, and quasi-Newton toggle. Figures 23
and 24 show the gradient-inverse design procedures in LINDOP inviscid mode. In
the former figure only the upper surface is modified, and the Cp value at the trailing
edge (right endpoint of freewall segment) is fixed. In the latter figure only the lower
surface is modified, and the stagnation Cp value (left endpoint of freewall segment)
is fixed.
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Fig. 21 Final and target
pressure distributions along
the wing using inverse design.
(a) Root section, 0 %
semi-span (b) Mid section:
54.26 % semi-span (c) Tip
section: 94.32 % semi-span
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Fig. 22 The pressure for baseline airfoil RAE2822 (markers) calculated in MSES inviscid mode
and the target pressure distributions (solid)

Figure 25 shows the optimized results from RAE 2822 airfoil, inviscid flow
solutions. It is found that in inviscid flow, the drag coefficient cd is reduced by 74 %,
the lift coefficient is maintained, and the cm constraint is held (Table 5).

7.1 Assessment: Hybrid Design

The pros of hybrid design are:

• it can systematically set constraints and cost functions, thus can obtain benefits
of both inverse design and direct optimization;

• it offers the engineer know-how advantages (c.f. long list of user options in
LINDOP menu);

• iterations with visualized feedback and (thus) a realistic airfoil is obtained at
every iteration.

However, there are a number of cons for hybrid design approach. It also has
a tough learning curve for users, and it is too manual to set/determine too many
options, especially for new users. There is no guarantee for convergence, unless the
target pressure is a “small” modification of the initial one (e.g., Figures 23, 24).
There are some tricks to get convergent solutions. First of all, make small pressure
changes (�Cp) for each design cycle; second, modify/re-design one surface each
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Fig. 23 The design
procedures for RAE 2822 in
LINDOP inviscid mode,
modify upper surface only, to
be continued. (a) Fix right
endpoint segment (b) Fix
right endpoint segment
(c) Fix right endpoint
segment
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Fig. 24 The design procedures for RAE 2822 LINDOP inviscid mode, modify lower surface only,
completed. (a) Fix left endpoint segment (b) Fix left endpoint segment
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−2.0 blade.rae2822new4
Mach  =  0.734
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Fig. 25 The optimized design of RAE 2822 in LINDOP inviscid mode

Table 5 RAE 2822
optimization results table,
computed in LINDOP
inviscid mode

Airfoil c` cd cm

Baseline RAE2822 - invis 0.824 0.00648 �0.1294

Iter-50 -invis 0.824 0.00157 �0.0867

time; third, carefully choose order of mixed inverse prescribed shape function and
global constraints; fourth, fix the left/right endpoint of freewall segment each time;
finally, introduce the target pressure C�p from the last cycles when the current Cp is
close to C�p . All of the tricks and the options which should be determined by users
make the hybrid design method tough for new users.

8 Conclusions

This chapter assesses three different design methods for aerodynamic shape design
by two test cases. They are not isolated to each other, the “hybrid” design is to
combine the first two approaches. It is difficult to say one is superior than the other,
each of them has pros and cons. What we can do is to understand the strong and
weak points of each method, and use the appropriate and/or combined methods to
a specified design problem. Van der Velden called it “cocktails” or combinations of
optimizers [45] under the control of the engineer in the loop. This is also stressed in
Zhang’s PhD thesis [5].
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realizing simple and cheap common mode filters for differential interconnect appli-
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offered by this technology. The first is that it relies on the standard planar layout
methodology for filter design, applied to either a printed circuit board (PCB) or
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1 Introduction

Electromagnetic bandgap (EBG) structures are a sub-class of frequency selective
surfaces. Introduced in 1999 [1] for applications in the field of antenna design
and for minimization of the coupling between antennas [2–6], their usage has been
extended to printed circuit boards (PCBs), mainly in the area of power integrity (PI)
[7–16]. High-speed switches in digital systems generate well-known simultaneous
switching noise (SSN) that can propagate across the PCB through the cavities
made by power planes [17–22]. Moreover, discontinuities along the high-speed
interconnects, such as vias and imbalances in differential traces are also a source
of noise [23–28].

The EBG structure is a simple and efficient way to minimize this noise. It is
implemented in the same technology as used for manufacturing multilayer PCBs,
thus without the need of extra components and expensive tools. EBG structures are
effective in the GHz range where the lumped capacitors become useless due to their
inherited parasitic inductance. Often, mixed-signal systems require isolation of the
analog circuitry from the digital section in order to decouple the current return paths.
EBGs turn to be attractive noise reduction solutions also in mixed-signal systems
[29–31].

The EBG technology attracted attention of many research groups around the
world. Its development led to introduction of various types of EBGs, mainly
identifiable as the mushroom [13, 15, 32–35] and the planar types [16, 36].
Generally speaking, they consist of specifically designed metal planes with char-
acteristic geometries suitably shaped to form a high impedance surface (HIS)
[1]. Widespread utilization as well as optimization of planar EBGs resulted in
making this technology flexible and easy to implement. In particular, simple design
procedures were developed for effectively sizing the EBG cavity [37, 38], placing it
at any level of a multilayer stack-up [39], and minimizing its impact on the IR-Drop
of the power distribution network as well as on the signal quality of interconnects
referenced to the EBG patterned plane [10, 40–42].

A planar EBG structure, placed within a typical multilayer PCB substrate,
affects the propagation of the return current for interconnects being referenced to
the patterned plane. Therefore, the impact on the signal integrity (SI) of digital
signals has been considered, measured, and predicted [43–46]. Since a close
electromagnetic interaction between the signal transmission along this type of
interconnects and the resonant behavior of an EBG cavity was found, the coupling
mechanisms have been deeply investigated to minimize the unintentional signal
degradation. On the other hand, the capability of energy coupling between the
signal interconnects and the planar EBGs has been found valuable for realization
of efficient common mode filters [27, 47–49].
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2 EBGs as Common Mode Filters

In the design of modern link paths for low voltage high-speed differential digital
signals, one of the technical challenges is the containment of their common
mode (CM) harmonic components [50, 51]. These components have a twofold
negative effects: (a) a loss of signal energy due to the differential-to-common mode
conversion and, consequently, an implicit attenuation of the intentional differential
signal, and (b) EMI radiation when leaving the board assembly through connectors
and cables. The origin of these components is always related to certain imbalance
(geometrical and/or electrical) of the entire signal path, from the driver to the
receiver [27, 52].

In a real-world design, completely removing the asymmetries is impractical or
impossible; thus, a suitable solution to reduce the CM harmonics is to filter out
the CM portion of the signal. This filtering operation is usually achieved using
discrete components, which have some disadvantages: they take up space on the
board, generate an additional cost, and are often lead to undesirable attenuation of
the intentional differential signal.

An approach similar to the EBG layout technique, based on the periodic
interrupted ground plane structure, has been introduced in [53] for the design of
a common mode suppression filter. The regular planar EBG has been investigated
in [54], where the effects of the patterned plane on both the common mode and
the differential mode signal propagation along a differential microstrip line were
studied. These principles are applied in [27, 47, 55] where a preliminary filter
topology has been developed based on a simple cavity resonator. Later, the proper
EBG type of a cavity was introduced for minimizing the layout area required by the
filter for a given frequency [56].

A general structure of an EBG CM filter can be explained using the geometry
shown in Fig. 1. The relevant geometry parameters are represented by the patch
width (a), the gap between the patches (g), and the width of the interconnections
between them (w), named “bridges.” The filtering effect is achieved due to the
resonant behavior of the cavity made by each single EBG cavity and the reference
solid plane underneath. In practical applications of a real PCB layout, no vias should
be placed within the patch area and no connection should be made between the
patches and the reference plane.

The gaps between the patterned plane that are along the signal current return
path allow energy coupling between the microstrip/EBG pair and the cavity made
of the EBG and the solid plane. The return current goes back to the source
flowing mainly under the microstrip. The current, always choosing the path of least
impedance, in the case of a discontinuity—such as the gap along its path—follows
three different paths. One is through the bridge (at LF due to the highly inductive
nature of this part), another is through the patch-to-patch capacitance, and the last
one is through the solid plane underneath the EBG patterned plane, as shown in
Fig. 2.
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Fig. 1 Basic geometry of an EBG CM filter

The CM filter geometry needs to be appropriately sized to achieve an EBG cavity
resonating at the frequency of the harmonic components that should be filtered
out. Typically, for EMC purposes, these would be the fundamental and first few
harmonics of the intentional differential signal. In [37], the fundamental physics
of an EBG cavity is investigated, and a simple design procedure is developed in
[38] to design the EBG patches and bridges according to the frequency of the CM
strongest harmonic to be filtered out. Moreover, the initial procedure, based on the
inductance calculation of bridges and patches as well as evaluation of the EBG
equivalent inductance to its solid plane counterpart, is refined as detailed in [57],
where the optimal relationships among the design variables are found, depending
on the number of patches of the EBG cavity.
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2.1 On-Board EBG-Based CM Filters

The simplest EBG-based CM filter is laid out on the PCB outermost stack-up layer
(the so-called top and bottom layers). It is applied to differential microstrips as
shown in Fig. 3. The figure reports the actual layout of a manufactured board which
was employed to investigate the crosstalk among the adjacent differential pairs
routed on the same EBG filter [58]. However, the embedded CM filters have been
shown to be effective also for differential striplines [59], in which case the filter
is allocated deep in the stack-up, as shown in Fig. 4. The stripline filter consists
of two patterned layers above and below the differential traces, since the return
current flows on both the V20 and V22 planes as in Fig. 4b. As an example, the
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measurement results for the geometries DL08 in Fig. 3 and for the filtered stripline
pair DL11 in Fig. 4 are shown in Fig. 5. The notch is clearly seen at the desired
frequency of 8 GHz for the specific requirement considered for both the microstrip
as well as the stripline EBG filters.

2.2 Removable EBG-Based Common Mode Filters

A different layout strategy was adopted in [60, 61] to provide more flexibility in
the filter design. As opposed to the layout described in the previous paragraph,
the filter has been removed from the PCB stack-up, and it is modified to be
a surface-mount component installed on the top of the PCB. However, the key
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Fig. 5 CM insertion loss for
the filtered (a) microstrip
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concepts making the EBG filter attractive, such as the use of its standard multilayer
laminate technology, easy design procedure, and the reduced costs, are still in
place. Moreover, the electromagnetic behavior of the filter remains unchanged
with the common mode return currents of the differential pair being responsible
for the common mode to EBG cavity mode coupling. The drawback of having
a standalone component, as mentioned before, is not a practical issue as long as
the filter layout is cheap, it is designed and manufactured similarly to its on-board
counterpart, and it ensures no attenuation of the intentional differential signal. The
remaining disadvantage of the filter, i.e., utilization of the PCB layout area, can be
minimized by employing techniques for its miniaturization; the simplest strategy
is to employ a high permittivity material. Again, its larger cost compared to the
standard laminates (e.g., FR-4) is not a problem due to the small size of the filter
component.

A first version of the removable EBG filter was proposed in [60], where the
differential pair runs on the motherboard PCB outer layer. The filter is realized in the
auxiliary small PCB using the typical configuration of Fig. 6, with 3 EBG cavities,
each made of three patches. The top view of the filter as well as the assembled
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stack-up (the main PCB together with the removable filter) is shown in Fig. 6. The
filter is attached to the PCB by means of four corner pads for the current return
corresponding to pads on the PCB.

The filter can be realized by a minimum of 3-layer PCB, with the bottom one
etched leaving only the four connecting pads. The second layer includes the EBG
pattern and the ring; the third is the outermost solid layer for the reference ground
that closes the EBG cavity. The PCB area below the EBG (layers L3 and bottom)
is voided to allow the return current on L3, once it reaches the EBG area, to
flow up toward the EBG through the vias and the ring. Then, the common mode
return current flows back and forth between the EBG layer L1 and the top layer, as
described in the previous paragraphs.

The Scc21 in Fig. 7 shows the predicted filter notch at 8 GHz as well as a lower
one at 5.58 GHz. The latter is due to a resonant effect of the ring to ground.
Moreover, the figure includes a parametric analysis to investigate the effect of the
voided main PCB layers below the PCB area. The four additional models in Fig. 7a
are simulated and the corresponding results are shown in Fig. 7b, c. The filter
performance degradation is observed when moving the additional EBG reference
closer to the filter.
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3 Miniaturized EBG-Based CM Filters

Maintaining small size is an important factor when including an EBG filter
in the PCB layout. The present filter topology comes from a miniaturization
process described in [56] where the patterned EBG cavity behaves as a resonator
having smaller dimension with respect to its solid plane counterpart. Further area
reduction can be achieved by manipulating the material properties of the filter. More
specifically, increasing dielectric permittivity leads to smaller EBG cavity size at
the same required filtering frequency. The main drawback is that materials with
higher dielectric permittivity are more expensive, thus the basic design of the on-
board EBG filter would require modification of the laminate material for the overall
PCB. Although the present PCB technology allows to mix different dielectric layers
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presented in a single stack-up (i.e., low-loss expensive materials for laying out high
frequency RF or high-data-rate-line signals only on a few dielectric layers), the
expensive material used for the filter dielectrics should still be employed in the
overall PCB area.

This difficulty can be alleviated by utilization of the removable filter topology
described in Section 2.2, thus limiting the use of high permittivity materials only for
the removable filter without changing the material of the main PCB.

Two alternative designs are described in the following sub-sections and the pro-
posed models are subsequently subjected to the optimization process (cf. Sections 4
and 5).

3.1 On-Board LTCC EBG-Based CM Filter (Model I)

The first design consists of the simplest layout as in Fig. 1 with the use of
the high permittivity material on the overall board. Although this model is not
quite practical due to relatively large amount of expensive laminate utilized in
it, it is considered here as a preliminary illustration example of the optimization
procedure.

The material employed is a Low Temperature Co-fired Ceramic (LTCC) typical
for aerospace applications. As expected, the stack-up parameters changed with
respect to the standard PCB technology employed for the previous filter topologies.
In particular, the relative dielectric permittivity of the LTCC is 7.8 with tangent
loss of 0.0045. The metal layers are made by a 2.1 � 107 S/m gold allowing
8 �m layer thickness, whereas the employed dielectric has a standard thickness
of 137 �m.

The preliminary non-optimized model is shown in Fig. 8 based on the stack-up in
Fig. 1. Since the filter is based on an EBG cavity embedded within a larger layout,
a key aspect would be to reduce the electromagnetic interference induced across
the surrounding signals and vias [62]. Therefore the stitching vias are laid out to
minimize the EBG radiation within the same multilayer circuit. The via diameter is
set to 130�m with a distance sD 400�m from the EBG area and 600�m via-to-via
distance.

During the optimization process the variation of the patch and bridge sizes would
lead to the overall EBG area resize; the placement of the stitching vias in the
simulation model is defined to allow the automatic via number variation according
to the overall EBG area.

The EBG parameters involved in the optimization process are the patch width
a, the bridge length g, and the bridge width w. These parameters will be varied to
achieve the optimization targets as described in the next paragraph.
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Fig. 8 (a) Layout of the
Model I, (b) cross-section
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3.2 Removable LTCC EBG-Based CM Filter (Model II)

The second model represents an advancement with respect to the removable EBG
filter introduced in Section 2.2. Its architecture is developed to avoid the necessity
of using the main board void planes below the filter footprint. To this end, the
differential interconnects are moved to the removable component instead of being
laid out on the main board. More specifically, the main board microstrips go up
inside the removable components through the pads on the main board connected
to the pads and vias on the filter substrate, as sketched in Fig. 9. The blue area
surrounding the EBG layers acts as the shielding fence to minimize the radiation at
the EBG filter resonance; the top solid layer of the filter is designed for the same
EMI reduction purpose, thus providing a complete shielding. The finalized layout of
the main board external layer as well as of the filter bottom layer is shown in Fig. 10
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to highlight the contact points between the main board and the removable filter as
well as the four holes necessary for the correct board-to-filter alignment during the
assembly process.

Although the layout of this proposed filter topology appears to be much more
complex than the filter in Section 3.1, the EBG resonant principles remain the same,
thus the variables to be varied to optimize the filter response are still those defined
in Section 3.1, the patch width a, the bridge length g, and the bridge width w.
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4 Filter Optimization

In this section, we describe the optimization methodology developed and utilized to
improve the electrical performance parameters of the EBG filters considered in the
previous paragraph. It should be emphasized that the problem at hand is challenging
from the numerical point of view because of highly nonlinear responses of the EBG
structures that are also very sensitive to geometry parameters. Furthermore, the
computational cost of electromagnetic simulations, carried out by using CST Studio
Suite 2015 [63] of the EBG filters, is high so that one of our concerns is to limit the
number of simulations as much as possible. On the other hand, the dimensionality
of the design space is rather low (typically up to four parameters) which allows us
to utilize auxiliary data-driven surrogate models to speed up the design optimization
process.

4.1 Problem Formulation

The problem at hand is to adjust the geometry parameters of the EBG filter so
that a notch is allocated at a specific design (or center) frequency f0 (here, 8 GHz)
and optimized either to (1) minimize jS21j in a frequency band f0� df � f � f0C df
(here, df D 0.1 GHz), or to (2) increase the bandwidth for which jS21j ��10 dB.

In more rigorous terms, the problem can be formulated as follows:

x� D arg min
x

U .R .x// (1)

where R denotes a response vector of the EM simulation model of the EBG
filter (here, S-parameters versus frequency), x is a vector of designable geometry
parameters, and U is the objective function. The objective function is defined
either as

U .R .x// D U .jS21 .xI f /j/ D max
˚jS21 .xI f /j f0�df�f�f0Cdf


(2)

for case (1) or

U .R .x// D U .jS21 .xI f /j/ D arg min
f
fjS21 .xI f /j � �10 dBg

� arg max
f
f jS21 .xI f /j � �10 dBg (3)

for case (2).
The geometry parameters are aD patch width, gD bridge length, and wD bridge

width forming the geometry parameters vector xD [a g w]T .
The problem (1) is constrained as follows:

• Lower and upper bounds for geometry parameters l� x� u, and
• Linear inequality constraints ck(x)� 0, kD 1, : : : , K.
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Fig. 11 Responses of the EBG filter at various parameter setups. One can observe that the
responses are highly nonlinear (as a function of frequency) and very sensitive to the adjustable
parameters of the problem

The constraints are introduced to make the structure physically consistent and
able to fulfill the limits of the building technology.

It should be emphasized that the optimization problem is challenging because
of sharp narrow responses in the notch region. The typical responses of the filter
at various design parameter setup, indicating the difficulty of the problem at hand,
are shown in Fig. 11. It can be observed that depending on the initial design, local
optimization may fail to find a satisfactory design. Thus, local optimization has to be
preceded by a screening stage at which the notch is approximately allocated around
f0 as required.

4.2 Optimization Algorithm

The initial screening mentioned in Section 4.1 cannot be executed through con-
ventional global optimization using, e.g., population-based meta-heuristics due
to excessive computational cost associated with such procedures. On the other
hand, we are not interested in a precise control of the entire filter response but
just in handling its two critical features, i.e., the center frequency and the depth
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of the notch. It turns out that despite highly nonlinear dependence of the S-
parameter responses of the filter on frequency, the aforementioned features of
the notch (both its center frequency and depth), change much more linearly with
the design variables. Additionally, the number of geometry parameters is small
so that is it possible to construct and exploit a data-driven model of the notch
features. In this work, Kriging interpolation [64] is utilized for model construction.
More specifically, the following procedure is implemented and employed to find a
reasonable starting point for further local optimization:

(1) Sample the design space at N locations xB
(k), kD 1, : : : , N;

(2) Evaluate the EM model R at all points obtained in Step 1;
(3) Extract center frequencies fB(k) and notch depths LB

(k) for all the points;
(4) Construct a Kriging interpolation models sf (x) and sL(x) of the center frequen-

cies and depths as a function of design variables;
(5) Optimize the Kriging models in order to allocate the notch at the required

frequency f0D 8 GHz and increase its depth L.

The objective function used in Step 5 is as follows: UL .x/ D sL .x/ C ˇ �	�
sf .x/ –f0

�
=f0

2

. Such a formulation allows for increasing the notch depth while
centering it at the required operating frequency.

For illustration purposes, Fig. 12 shows the landscapes of the Kriging model
(notch depth and its center frequency) for three various values of the patch width a
of 1.5, 1.71, and 2.0 mm for the EBG filter of Fig. 8.

Having the notch allocated around the required frequency by optimizing the
Kriging interpolation models, local optimization is executed. Here, a pattern search
algorithm [65] is utilized because of low-dimensionality of the search space. In case
of a larger number of parameters more efficient methods would have to be used.

5 Numerical Results

In this section, we provide optimization results of the two EBG filters considered
in this chapter. Optimization was executed using the methodology described in
Section 4.

5.1 On-Board LTCC EBG-Based CM Filter (Model I)

In case of Model I, only the lower l and upper u bounds for design variables were set
as follows: lD [0.836 0.15 0.15]T mm and uD [2.0 1.0 1.0]T mm. There was no need
to execute the initial screening because the notch was allocated sufficiently close to
the center frequency of 8 GHz at the initial design xinitD [1.4000 0.4036 0.3750
0.4030]T. The local search was only run for case (2) of Section 4.1 (bandwidth
maximization) and resulted in the final design x*D [1.3444 0.0.3969 0.02789]T.
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Fig. 12 Two-dimensional cuts of the Kriging interpolation models sf (x) and sL(x) for the EBG
filter of Fig. 8, corresponding to patch width aD 1.5 (a), 1.71 (b), and 2.0 (c)

Fig. 13 shows the responses of the filter at the initial and at the final design. The
design cost is 45 evaluations of the EM filter model. It can be observed that both the
notch depth and the bandwidth were greatly improved compared to the initial design.
Also, the bandwidth at the final design is centered at the frequency f0D 8 GHz as
required.
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Fig. 13 EBG filter (Model I) responses at the initial and the optimized designs
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Fig. 14 Responses of the EBG filter (Model II) at the initial design dashed line and at the design
obtained at the first stage of the optimization process (screening) solid line

5.2 Removable LTCC EBG-Based CM Filter (Model II)

In this case of Model II, the following lower and upper bounds for design variables
were set: lD [0.836 0.15 0.15]T mm and uD [2.0 1.0 1.0]T mm. Additionally, the
following two inequality constraints were defined: 2*wC 2*g� 6.385 and w� a.
The result obtained in the screening stage is xinitD [1.5000 0.2733 0.3489]T. The
EM-simulated response is shown in Fig. 14. The design is already very good both in
terms of the notch frequency and depth. Dashed line shows the initial design [2.500
0.400 0.175]T, which is very poor, especially in terms of the notch depth. The cost
of the screening stage was 48 evaluations of the EM filter model required to set up
the Kriging interpolation model.
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Fig. 15 Local optimization of the EBG filter (Model II) for case (1) (bandwidth enhancement):
dashed line initial design from screening, solid line final design
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Fig. 16 Local optimization of the EBG filter (Model II) for case (2) (notch depth): dashed line
initial design from screening, solid line final design

Figures 15 and 16 show the filter responses at the two designs obtained by
local optimization starting from xinit, the first one for case (1) (bandwidth enhance-
ment) and case (2) (notch depth enhancement): x*1D [1.5000 0.2733 03558]T and
x*2D [1.5000 0.2733 03451]T. The �10 dB bandwidth obtained in the first case is
442 MHz and it is wider than for the second design (365 MHz). On the other hand,
the second design exhibits notch depth of�20 dB and better for the frequency range
of 7.9–8.1 GHz, which is not the case for the first design. The cost of the local
optimization was only 15 and 19 EM model evaluations for case (1) and case (2),
respectively, which is because the final designs were close to the one obtained at the
screening stage.
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6 Conclusions

In the chapter, an efficient numerical procedure for EM-simulation-driven design
optimization of EBG-based filters has been presented. The design objectives are
to obtain the band-notch at a specified center frequency and increase the notch
bandwidth and depth, and, consequently, the bandwidth of the common mode
insertion loss. The optimization algorithm is applied to two different topologies,
initially designed employing a previously published analytical procedure. The first
case is based on a typical PCB configuration where the filter is laid out within the
PCB stack-up. The second filter structure consists of a more complex topology with
the filter modified with respect to the typical on-board case. At the conceptual level,
the goal is to develop a miniaturized standalone component (still designed with the
typical PCB/package planar layout) to be removed and substituted if necessary once
the electronics of the system changes, i.e. when the data rate and thus the common
mode harmonic components or simply the design requirements are modified.

The proposed optimization algorithm can be applied at the design closure stage
to fine-tune the geometry parameters of the EBG filters. It allows for automation
and reduction of the computational cost of the simulation-driven design, previously
realized using inefficient and error-prone hands-on procedures involving parameter
sweeps. The future work will include further developments of the algorithmic
frameworks for EBG filter optimization as well as its application to various practical
design cases.
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Abstract This chapter deals with the automated and unattended design of planar
wideband bandpass filters by means of aggressive space mapping (ASM) optimiza-
tion. The approach can be applied to bandpass filters based on semi-lumped element
resonators (e.g., stepped impedance resonators, ring resonators, etc.) coupled
through admittance inverters (implemented with quarter-wavelength transmission
lines). It will be explained how the filter layout is automatically generated from
filter specifications, i.e., central frequency, fractional bandwidth, in-band ripple, and
order, without the need of any external aid to the design process. For this purpose, a
novel optimization algorithm based on two independent ASM processes will be fully
described. The proposed automatic design procedure will be detailed and validated
through its application to generate several filter layouts starting from different sets
of practical specifications.
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1 Introduction

The synthesis of planar microwave circuits able to satisfy a set of given
specifications is a subject of interest for microwave engineers. Despite the
fact that most commercially available computer aided design (CAD) tools and
electromagnetic solvers include optimizers, obtaining the circuit topologies that
satisfy the design requirements is not always straightforward. This design difficulty
increases with circuit complexity, and convergence to the optimum solution is not
always guaranteed (for instance, due to limitations related to local minima), unless
the seeding layout is already very close to the one providing the target response.

This chapter is focused on a specific type of planar circuits, of interest in many
different microwave applications, whose design requires significant computational
effort: high-order (and hence highly selective) wideband bandpass filters. There
are many approaches for the design of wideband planar microwave filters [1, 2].
The interest in this chapter is the design of wideband bandpass filters based on
semi-lumped (i.e., electrically small and planar) resonant elements coupled through
admittance inverters [3] (see the generalized bandpass filter network in Fig. 1). In
principle, these filters can be designed by forcing the planar resonant elements
to exhibit the fundamental resonance at the filter central frequency, f0, and the
impedance slope at the value of the corresponding LC resonant tank of the gen-
eralized bandpass filter network. With such network, standard filter responses (e.g.,
Butterworth, Chebyshev) can ideally be achieved.1 However, deviations from the
ideal responses are caused by the limited functionality of the inverters (implemented
by means of quarter-wavelength transmission lines at f0) and by the distributed
effects of the planar resonators at sufficiently high frequencies. These deviations
are more pronounced if the filter is broadband, mainly because the required phase
shift (90ı) of the inverters is not preserved over the whole filter pass band. Thus,
broadband planar filters designed by implementing the inverters with quarter-
wavelength transmission line sections typically exhibit a narrower bandwidth than
the required one (nominal bandwidth), unless such bandwidth degradation is
compensated at the design stage. One possibility to compensate for this narrowing
effect is to over-dimension the filter bandwidth [4]. However, this tends to affect

Fig. 1 Generalized bandpass filter network based on shunt LC resonators coupled through
admittance inverters. From [5]; reprinted with permission

1There are available expressions that provide the element values of the resonators from the filter
order, central frequency, bandwidth, and response type (see [3]).
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the reflection coefficient (ripple level in Chebyshev filters), and hence this is not
an optimum solution. In the present chapter, a systematic design procedure, able to
provide the filter layout satisfying the required specifications, and first reported in
[5], is studied in detail. Moreover, it will be shown that, once specifications and order
are introduced, the final layout of the filter is obtained without any action by the
user, namely, filter layout is generated following a completely unattended scheme.
Filter design is a two-step process. In the first step, the filter schematic satisfying
the specifications (optimum schematic) is obtained. This equivalent circuit consists
in the generalized network of Fig. 1 with the admittance inverters replaced with
quarter-wavelength transmission lines (not necessarily at f0) and the lumped LC
parallel tanks substituted by a reactive element network describing the semi-lumped
resonators. Once the optimum filter schematic is inferred, the second step consists
in determining the filter layout described by the optimum schematic.

Both design steps (optimum schematic and layout generation) are based on
the aggressive space mapping (ASM) methodology [6], a technique that uses
quasi-Newton type iteration to obtain the optimum solution. The two-step design
process can in principle be applied to the automated synthesis of any type of
wideband bandpass filter implemented by means of semi-lumped resonators coupled
through admittance inverters. Planar resonant elements such as split rings, stepped
impedance resonators (SIRs), and combinations of inductive/capacitive stubs and
capacitive patches, among others, can be also considered as semi-lumped resonators
for filter design based on the approach reported in this chapter.

Chapter organization is as follows. In Section 2, the general formulation of
ASM is presented. Section 3 is focused on the first design step, namely on
the determination of the optimum filter schematic. Thus, the first ASM iterative
algorithm will be presented through a guide example. The second design step (and
hence the second ASM), providing the filter layout, will be presented in Section 4.
In Section 5, further examples will be reported. Finally, in Section 6, the application
of the two-step ASM algorithm will be applied to the design of wideband balanced
filters.

2 General Formulation of ASM

Among the considered techniques for microwave circuit synthesis and optimization,
space mapping (SM), first proposed by Bandler et al. in 1994 [7], has revealed
to be a powerful and efficient approach. Since this seminal work, several variants
of SM have been proposed and applied to the synthesis and optimization of many
different microwave components, including not only planar circuits [6, 8, 9], but
also waveguide-based components [10–12]. The interest in this chapter is on the
so-called ASM [6], an approach that uses quasi-Newton type iteration to find the
optimum solution of the considered problem, as mentioned before. ASM uses two
simulation spaces [6, 7, 13]: (1) the optimization space, Xc, where the variables are
linked to a coarse model, which is simple and computationally efficient, although
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not accurate, and (2) the validation space, Xf, where the variables are linked to a fine
model, typically more complex and CPU intensive, but significantly more precise.
In each space, a vector containing the different model parameters can be defined.
Let us call such vectors xf and xc for the fine and coarse model spaces, respectively,
and let us designate by Rf(xf) and Rc(xc) their corresponding responses. The goal
in ASM is to minimize the following error function:

f .xf/ D P .xf/� x�c (1)

where xc
* is a vector containing the target parameters in the coarse model (so that

Rc(xc
*) is the target response), and P(xf) is a mapping function that gives (via a

parameter extraction procedure) the corresponding coarse model parameters that
provide the same response of the fine model parameters.

Let us assume that xf
(j) is the j-th approximation to the solution in the validation

space, and f(j) is the corresponding error function to this solution. The next vector of
the iterative process xf

(jC1) is obtained by a quasi-Newton iteration according to

x.jC1/f D x.j/f C h.j/ (2)

where h(j) is given by:

h.j/ D ��B.j/��1f.j/ (3)

and B(j) is an approach to the Jacobian matrix, which is updated according to the
Broyden formula [6]:

B.jC1/ D B.j/ C f.jC1/h.j/T

h.j/Th.j/
(4)

In (4), f(jC1) is obtained by evaluating (1), using a certain parameter extraction
method providing the coarse model parameters from the fine model parameters,
and the super-index T stands for transpose.

A typical scenario in ASM optimization is the determination of the layout of a
certain microwave circuit (e.g., a filter) described by a lumped element equivalent
circuit model. In this case, the coarse model parameters are constituted by the set of
lumped elements describing the equivalent circuit, and the response (optimization
space) is, for instance, the set of S-parameters, that can be inferred from the
electrical analysis of the circuit model. The fine model parameters are a set of
geometrical values defining the layout geometry, and the response in the validation
space is also given by the S-parameters, typically inferred from electromagnetic
simulation by means of commercial solvers. Note that the substrate parameters,
necessary for the electromagnetic simulations, i.e., thickness, dielectric constant,
and loss tangent, are not considered as optimization variables. The second step
in the ASM-based optimization method studied in this chapter is very similar to
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the example of the present paragraph (despite the fact that the considered filters
are described by a combination of lumped and distributed components). Namely,
the filter layout is synthesized from the circuit schematic in the second ASM
algorithm. However, the main relevant aspect of the two-step ASM iterative process
concerns the first ASM stage, where the schematic satisfying the filter requirements
is determined from the nominal specifications [5]. In the next two sections, these two
ASM algorithms are carefully and independently analyzed, using for that purpose a
guide example for better understanding.

3 First ASM Algorithm: Determination of the Optimum
Filter Schematic

The objective of the first ASM algorithm is the determination of the filter schematic
able to satisfy the filter requirements (specifications). It can be applied to any
type of bandpass filter described by a set of semi-lumped resonators coupled
through admittance inverters, where the replacement of the inverters with quarter-
wavelength transmission lines in the theoretical model, which results from direct
application of the design formulas [3], degrades the bandwidth. Thus, the objective
is to automatically find the filter schematic providing the target response. Such
theoretical model will be designated as optimum filter schematic from now on. It is
important to note that each specific filter requires a particular ASM algorithm, and
for that reason, a representative case example is considered throughout this section
and the next one.2 Let us thus first present the considered wideband bandpass filters,
including their equivalent circuit and topology, and then we will describe the first
ASM algorithm for the determination of the optimum filter schematic.

The topology and schematic of the case example filters are depicted in Fig. 2
[14]. The shunt resonators are implemented through a combination of SIRs and
grounded stubs. The SIRs provide transmission zeros (at frequencies designated as
fz) above the central filter frequency, f0, which are useful for spurious suppression
and for achieving a pronounced fall-off above the upper band edge. Moreover, with
the parallel combination of SIRs and inductive stubs, the susceptance slopes at the
filter central frequency can be made small, resulting in broad fractional bandwidths
[14]. In the filter schematic, the resonators Lri-Cri describe the SIRs, the inductances
Lpi account for the grounded stubs (i denotes the filter stage), and the quarter-
wavelength transmission line sections correspond to the admittance inverters in the
canonical prototype network (Fig. 1).

As mentioned before, at the schematic level, deviations from the target response
(given by the network of Fig. 1 that results from specifications and transformation
from the low-pass filter prototype) are due to the limited functionality of the

2Nevertheless, the reported ASM algorithm can be easily adapted to different type of filters (i.e.,
considering different semi-lumped resonators).
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a

λ λ λ λ
b

Fig. 2 Typical topology (a) and circuit schematic (b) of the wideband bandpass filters considered
as case example. The topology corresponds to an order-5 filter. From [5]; reprinted with permission

inverters and to the fact that the considered resonators (Fig. 2b) are not purely
parallel resonant LC tanks, but inductors connected to series resonators in shunt
configuration. However it does not mean that the intended filter response (or at least
a very good approximation to it in the region of interest) cannot be achieved with a
certain schematic (described by the circuit of Fig. 2b). The hypothesis is that there
exists a set of specifications, different than the target, that provide a filter schematic
satisfying the target specifications [5]. This schematic is obtained by replacing the
ideal admittance inverters of the canonical network with quarter-wavelength (not
necessarily at f0) transmission line sections, and the LC parallel resonators with the
resonators Lri-Cri connected in parallel to the inductances Lpi, with the reactance
values necessary to obtain the reactance slope and central frequency of the given
specifications (different from the target).3 This means that it is necessary to tailor
the parameters of the circuit schematic of Fig. 2b, that is, the reactive parameters
(Lri, Cri, and Lpi) and the electrical lengths (at f0) of the transmission line sections.
Let us now present an ASM-based algorithm that automatically re-calculates these
parameters in order to satisfy the filter specifications, thus providing the optimum
filter schematic.

Let us consider that the filter order, n, is known. The order is determined by
the required selectivity. However, it is important to bear in mind that the responses
obtained by the proposed filters are more selective than the Chebyshev responses at
the upper transition band (due to the transmission zeros), but somehow less selective
at the lower transition band (for the same specifications, i.e., central frequency,
fractional bandwidth, and ripple). Therefore, although the order can in principle be
estimated by considering the standard Chebyshev response, it might be necessary
to increase it if the resulting response does not satisfy the selectivity requirements
below the pass band. Nevertheless, the ASM algorithm to determine the optimum

3The additional condition to univocally determine the three element values of the resonators is the
transmission zero frequency, set to a fixed value.
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filter schematic is very fast, and hence a new optimum filter schematic with a higher
order (and hence higher selectivity) can be easily inferred.

By considering a quasi-Chebyshev response,4 the filter specifications are the
central frequency, f0, the fractional bandwidth, FBW, and the in-band ripple level
LAr (or minimum return loss level). On the other hand, as many transmission zeros
as SIRs (and hence order) can be forced. However, it is convenient to set all the
transmission zeros to fzD 2f0, since this is an efficient strategy to achieve spurious
suppression, and to improve filter selectivity above the upper band edge [4, 14].

From the well-known impedance and frequency transformations from the low-
pass filter prototype [3], and assuming a Chebyshev response, the reactive elements
of the shunt resonators of the network of Fig. 2 (Lri, Cri, and Lpi) can be easily
inferred. The three conditions to unequivocally determine Lr, Cr, and Lp are:

(1) the filter central frequency, given by

f0 D 1

2�
q�

Lri C Lpi
�

Cri

(5)

(2) the transmission zero frequency

fz D 1

2�
p

LriCri
(6)

(3) and the susceptance slope at f0 (dependent on the filter stage):

bi D 2�f0
Cri
�
Lri C Lpi

�2
L2pi

(7)

In (5) and (7), the left-hand side terms are the resonance frequency and
susceptance slope, respectively, of the LC resonant tanks in the circuit of Fig. 1
corresponding to the required Chebyshev response. Without loss of generality, the
admittance of the inverters is set to JD 0.02 S.5

Let us consider for the case example of an order-5 (nD 5) Chebyshev response
with f0D 2.4 GHz, FBWD 40 % (corresponding to a 43.96 % �3-dB fractional

4As mentioned, the filter responses are similar, but not identical, to the standard Chebyshev
responses.
5For a given filter response, there is not a unique solution for the network of Fig. 1. However,
if the admittance of the inverters is set to a certain value (typically JD 0.02 S, as considered in
the guide example), then the element values of the resonators are univocally determined. This is
a usual procedure, although sometimes the resonator elements are all fixed to the same value, and
the resulting admittance of the inverters is univocally determined by the design equations.
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Table 1 Element values of
the shunt resonators [5]

Stage Lp (nH) Lr (nH) Cr (pF)

1,5 1.3202 0.4401 2.4983
2,4 1.3226 0.4409 2.4937
3 0.8164 0.2721 4.0400
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Fig. 3 Quasi-Chebyshev response of the filter that results by using the element values of Table 1
and ideal admittance inverters (dashed line), compared to the filter response that results by
replacing the ideal inverters with quarter-wavelength transmission lines (black solid line), and with
the ideal Chebyshev (target) response. From [5]; reprinted with permission

bandwidth6), and LArD 0.2 dB [5]. From (5–7), the element values of the shunt
resonators are found to be those indicated in Table 1.

The quasi-Chebyshev filter response (i.e., the one inferred from the schematic
of Fig. 2b, but with ideal admittance inverters), depicted in Fig. 3, is similar to
the ideal Chebyshev response in the pass band region, and it progressively deviates
from it as frequency approaches fz, as expected. The discrepancies are due to the
fact that the shunt resonator is actually a combination of a grounded series resonator
(providing the transmission zero) and a grounded inductor. The quasi-Chebyshev
response satisfies the specifications to a rough approximation. Hence the target is
considered to be the ideal Chebyshev response, except for the transmission zero
frequency.

6Note that for Chebyshev bandpass filters the fractional bandwidth is given by the ripple level and
is hence smaller than the once given by�3-dB level. However, in this chapter, the�3-dB fractional
bandwidth is considered, since the ripple level is not constant in the optimization process (to be
described). Thus, from now on, this�3-dB fractional bandwidth is designated as FBW, rather than
FBW�3dB (as usual), for simplicity, and to avoid an excess of subscripts in the formulation.
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Let us now replace the ideal admittance inverters with quarter-wavelength
transmission lines. The resulting response is further modified, as revealed by
the significant bandwidth reduction (see Fig. 3). These results indicate that the
three-element resonators and the limited functionality of the quarter-wavelength
transmission lines (acting as admittance inverters) degrade the filter bandwidth, as
anticipated before, and point out the need to recalculate the element values and
electrical lengths of the line sections of the filter schematic of Fig. 2b, in order
to satisfy the specifications. To this end, a new ASM concept that carries out the
optimization at the schematic level has been proposed [5], and it is detailed in the
following paragraphs.

The main hypothesis in the development of the iterative ASM algorithm able
to provide the optimum filter schematic is to assume that there is a set of filter
specifications, different than the target, that leads to a filter schematic (inferred
by substituting the ideal admittance inverters with quarter-wavelength transmission
lines), whose response satisfies the target specifications. Let us now try to define
the optimization (coarse model) space and the validation (fine model) space in
the proposed ASM iterative scheme. The first one is constituted by the set of
specifications, f0, FBW, LAr, being its response the same from the ideal Chebyshev
prototype—target response—depicted in Fig. 3. The validation space is constituted
by the same variables, but their response is inferred from the schematic of
Fig. 2b, with element values calculated as specified above, and quarter-wavelength
transmission lines at f0, where f0 is the considered value of this element in the
validation space (not necessarily the target filter central frequency). The variables of
each space are differentiated by a subscript. Thus, the corresponding vectors in the
coarse and fine models are written as xcD [f0c, FBWc, LArc] and xfD [f0f, FBWf,
LArf], respectively. The optimum coarse model solution (target specifications) is
expressed as xc

*D [f0c
*, FBWc

*, LArc
*]. Notice that the transmission zero frequency,

necessary to unequivocally determine the element values of the shunt resonators, is
set to fzD 2f0, as indicated before. Hence fz is not a variable in the optimization
process.

Following the standard procedure in ASM, the first step before starting the
iterative process is to make an estimation of the initial vector in the validation space,
xf

(1). Since the variables in both spaces are the same ones, the most canonical (and
simplest) procedure is to consider xf

(1)D xc
*. From xf

(1), the response of the fine
model space is obtained (using the schematic with quarter-wavelength transmission
lines), and from it, the parameters of the coarse model can directly be extracted by
inspection of that response, i.e., xc

(1)DP(xf
(1)). Applying (1), the first error function

can be obtained. To iterate the process (obtaining xf
(2) from (2), using (3)), the

Jacobian matrix must be initiated. To this end, the parameters of the fine model, f0f,
FBWf, LArf, are slightly perturbed, and the effects of such perturbations on the coarse
model parameters, f0c, FBWc, LArc, are inferred. Thus, the first Jacobian matrix is
given by:
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(8)

Once the first Jacobian matrix is obtained, the process can be iterated until
convergence is obtained. At each iteration, the elements of the coarse space vector,
xc

(j), are compared to the target (filter specifications), xc
*, and the error function is

calculated according to:

kfnormk D
s�

1 � f0c

f �0c

�2
C
�
1 � FBWc

FBW�c

�2
C
�
1 � LArc

L�Arc

�2
(9)

The scheme of the proposed ASM algorithm is depicted in Fig. 4.
Applying the first ASM algorithm to the considered example (xc

*D [f0c
*, FBWc

*,
LArc

*]D [2.4 GHz, 43.96 %, 0.2 dB]), the error function rapidly decreases, so
that the error is smaller than 1.2 % after ND 13 iterations. The evolution of the
error function is depicted in Fig. 5. The fine model parameters for ND 13 are
xf

(13)D [f0f
(13), FBWf

(13), LArf
(13)]D [2.4690 GHz, 65.53 %, 0.4413 dB], and the

coarse model parameters are xc
(13)D [f0c

(13), FBWc
(13), LArc

(13)]D [2.3999 GHz,
43.75 %, 0.1978 dB]. Note that xf

(13) is appreciably different than xc
*. The optimum

filter schematic is the one given by the last fine model response (which provides

Fig. 4 Flow diagram of the first ASM algorithm. From [5]; reprinted with permission
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Fig. 5 Evolution of the error function of the first ASM algorithm for the considered example.
From [5]; reprinted with permission

Table 2 Element values of
the shunt resonators for the
optimum filter schematic [5]

Stage Lp (nH) Lr (nH) Cr (pF)

1,5 1.6090 0.5363 1.9368
2,4 2.1196 0.7065 1.4703
3 1.0685 0.3562 2.9168

an error below a predefined value). The elements of the shunt resonators for this
optimum filter schematic are indicated in Table 2, whereas the 50-� line sections
are quarter-wavelength transmission lines at f0f

(13)¤ f0*D 2.4 GHz.
The response of the optimum schematic is compared to the target response

in Fig. 6. The agreement in terms of central frequency, bandwidth, and in-band
ripple is very good as indicates the small error function that results after 13
iterations. Nonetheless, the position of the reflection zero frequencies is different
in both responses. The reason is that these frequency positions are not goals
in the optimization process. Unavoidably, it is not possible to perfectly match
the Chebyshev (target) response by replacing the ideal admittance inverters with
transmission line sections, and the LC shunt resonators of Fig. 1 with the resonators
of the schematic of Fig. 2b. Nevertheless the synthesized circuit fulfills the target
specifications, and hence it is the optimum filter schematic. This schematic is used
as the starting point in the ASM algorithm developed to obtain the filter layout, to
be described in the next section.



146 M. Sans et al.

1 2 3 4 5 6 7

-80

-60

-40

-20

0

S
21

S
11

S,
21

)
Bd(

Frequency (GHz)

  Optimum schematic (N=13)
  Schematic (N=2)
  Chebyshev (target)

S
11

Fig. 6 Response of the optimum filter schematic, derived from the ASM algorithm, compared
with the Chebyshev target response. The response at the second iteration (ND 2), also included, is
very close to the final solution (ND 13). From [5]; reprinted with permission

4 Second ASM Algorithm: Determination
of the Filter Layout

To determine the final layout from the optimum filter schematic, a second ASM
algorithm is considered. Each unit cell is synthesized from the element values of
the shunt resonator and the characteristic impedance of the cascaded �/4 (at f0f

(13))
transmission lines independently. This second ASM process involves three stages:
(1) determination of the resonator layout, (2) determination of the line width, and
(3) optimization of the line length. Let us now discuss in detail the implementation
of these three specific ASM algorithms.

4.1 Synthesis of the Resonators

In order to obtain the layout of the filter resonators, composed by the SIRs
connected in parallel to the grounded stubs, a specific ASM iterative process
is applied. The variables in the optimization space are the resonator elements,
i.e., xcD [Lp, Lr, Cr], and the coarse model response is obtained through circuit
simulation. The validation space is constituted by a set of variables defining
the resonator layout. In order to deal with the same number of variables in
both spaces, the widths of the grounded stubs, WLp, as well as the widths of
the low- and high-impedance transmission line sections of the SIRs, WCr and
WLr, respectively, are set to fixed values. Specifically, the values of WCr and
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Table 3 Geometry parameters of the synthesized order-5 filter [5]

Stage lLr (mm) lCr (mm) lLp (mm) lcell (mm) WCr (mm) WLp (mm)

1,5 0.7062 3.6710 2.5955 11.4003 2 0.3
2,4 1.9438 2.1037 4.2334 11.2583 2 0.5
3 0.4725 3.7461 1.6629 11.4786 3 0.3

WLrDWLp indicated in Tables 3 and 5 have been considered. There is some
flexibility to choose these widths, but it is convenient to consider wide capac-
itive and narrow inductive sections in order to reduce the length of the SIRs
and inductive stubs. Nevertheless, extreme widths of the capacitive sections are
not recommended, since they can introduce transversal resonances in the fre-
quency region of interest (i.e., up to frequencies above fz) [15]. The widths of
the inductive sections must be set to values above the tolerance limits (rep-
resenting a good balance between SIR/stub dimensions and fabrication accu-
racy). Thus, the variables in the validation space are the remaining dimensions
of the shunt resonators, that is, the length of the grounded stub, lLp, and the
lengths lLr and lCr of the high- and low-impedance transmission line sections,
respectively, of the SIR (i.e., xfD [lLp, lLr , lCr]). The fine model response is
obtained through electromagnetic simulation of the layout, inferred from the
fine model variables plus the fixed dimensions (specified above) and substrate
parameters. Let us consider in the present guide example the substrate param-
eters of the Rogers RO3010 with thickness hD 635 �m and dielectric constant
"rD 10.2.

Following the general scheme of the ASM optimization described in Section 2,
to initiate the algorithm it is necessary to obtain an initial layout for the SIR and
shunt stub. This is obtained from the well-known (and simple) approximate formulas
providing the inductance and capacitance of a narrow and wide, respectively,
electrically small transmission line section [16]. Isolating the lengths, the following
results are obtained:

lLr D Lrvph

Zh
(10a)

lCr D CrvplZl (10b)

lLp D Lpvph

Zh
(10c)

where vph and vpl are the phase velocities of the high- and low-impedance transmis-
sion lines sections, respectively, and Zh and Zl are the corresponding characteristic
impedances. Once the initial layout (i.e., xf

(1)) is determined, the circuit elements
can be extracted from the electromagnetic response using (5–7). This provides
xc

(1)DP(xf
(1)), and using (1), the first error function can be inferred. To iterate the
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process using (2), with h(1) derived from (3), a first approximation of the Jacobian
matrix is needed. Following a similar approach to the one explained in Section 3, the
lengths lLp, lLr, lCr are slightly perturbed, and the values of Lp, Lr , and Cr resulting
after each perturbation are obtained from parameter extraction. The first Jacobian
matrix can thus be expressed as:

B D

0
BBBBBBBB@

ıLr

ılLr

ıLr

ılCr

ıLr

ılLp

ıCr

ılLr

ıCr

ılCr

ıCr

ılLp

ıLp

ılLr

ıLp

ılCr

ıLp

ılLp

1
CCCCCCCCA

(11)

By applying this procedure to the resonator elements of each filter stage, the
corresponding layouts of the SIRs and grounded stubs are determined.

4.2 Determination of the Line Width

The initial line width is estimated from the formulas provided in several microwave
textbooks (for instance, [17]). Once the initial width is estimated, the specific ASM
algorithm developed to determine the line width is applied. In such one-variable
ASM scheme, the initial Jacobian matrix (actually just composed of one element)
is inferred by perturbing the line width and obtaining the characteristic impedance
through electromagnetic simulation (i.e., the fine model variable is the line width,
W, whereas the variable of the coarse model is the characteristic impedance).

4.3 Optimization of the Line Length (Filter Cell Synthesis)

As previously mentioned, the length of the lines cascaded to the resonant elements
is optimized by considering the whole filter cell. Let us define lcell as the length of
the cell excluding the width of the grounded stubs, WLp, (roughly corresponding to
�/4 at f0f

(13)). To determine lcell, a single parameter ASM optimization is applied to
the filter cell (filter cell synthesis), where the initial value of lcell is inferred from
the well-known formula [15] that gives the line length as a function of the required
phase (90ı) and frequency (f0f

(13)). At this stage, the ASM optimization consists of
varying the length of the lines cascaded to the resonator until the required phase at
f0f

(13) (i.e., 90ı) per filter cell is achieved (the other geometrical parameters of the
cell are kept unaltered). The phase is directly inferred from the frequency response
of the cell obtained from electromagnetic simulation at each iteration step.
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Fig. 7 Flow diagram of the second ASM algorithm. The sub-process depicted at the right of the
figure represents a typical ASM algorithm used in each optimization process (particularly the
indicated one is for the resonator optimization). Notice that the loop must be executed (nC 1)/2
times, where n is the filter order. The order is assumed to be odd, since for odd Chebyshev response
the cells i and nC 1� i are identical. However, this does not affect line width optimization since
line width is identical for all filter stages. From [5]; reprinted with permission

Once each filter cell has been synthesized, the cells are simply cascaded to
generate the final filter layout (coupling between adjacent resonators is not taken
into account since the results reveal that this effect is not significant). The scheme of
the complete ASM process able to automatically provide the layout from the opti-
mum filter schematic, and consisting of three independent quasi-Newton iterative
algorithms, is depicted in Fig. 7. Using the element values of Table 2, corresponding
to the optimum filter schematic of the example reported in Section 3, where the lines
present between adjacent resonators exhibit a characteristic impedance of ZoD 50�
and an electrical length of 90ı at f0f

(13)D 2.4690 GHz, the second ASM algorithm
was applied to automatically generate the filter layout (which is actually the one
depicted in Fig. 2). The dimensions are summarized in Table 3, except the line width,
which does not depend on the filter stage, i.e., WD 0.6055 mm. Notice that the cell
length slightly varies from cell to cell. This variation is due to the phase effects
produced by the different resonators, and justifies the need to optimize the length
of the lines by considering the complete filter cell (as described in the preceding
paragraph).

The electromagnetic simulation (excluding losses) of the synthesized filter is
compared to the response of the optimum filter schematic and to the target (ideal
Chebyshev) response in Fig. 8. The agreement between the lossless electromagnetic
simulation and the response of the optimum filter schematic (where losses are
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Fig. 8 Lossless electromagnetic simulation of the synthesized order-5 filter, compared to the
response of the optimum filter schematic and target response. From [5]; reprinted with permission

excluded) is very good, pointing out the validity of the second ASM synthesis
method. The fabricated filter and the measured frequency response are depicted
in Fig. 9. The measured response is in reasonable agreement with the lossy
electromagnetic simulation, and reveals that filter specifications are satisfied to
a good approximation. Slight discrepancies between the measured response and
the lossy electromagnetic simulation can be mainly attributed to inaccuracies
in the dielectric constant provided by the substrate supplier, although they can
be also influenced by fabrication related tolerances, substrate anisotropy, and
foil roughness. Nevertheless, these effects are not considered in the optimization
process, because the aim is to automatically obtain the filter layout providing a
lossless electromagnetic simulation able to satisfy the specifications.

It is worth highlighting that layout generation with the reported two-step ASM
procedure (synthesis of the filter schematic and synthesis of the filter layout)
is obtained following a completely unattended scheme. External action is only
required in the first step, to provide the filter specifications, which are the input
variables of the proposed two-step ASM algorithm.

5 Further Examples of Filter Synthesis

In order to demonstrate the potential of the two-step ASM algorithm for the
synthesis of filters based on SIRs and shunt inductive stubs, let us now apply
the developed tool to the synthesis of a higher order filter with the following
specifications: order nD 7, central frequency f0D 3.0 GHz, fractional bandwidth
FBWD 37.2 % (�3 dB fractional bandwidth), and ripple level LArD 0.12 dB.
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a

b

Fig. 9 Photograph of the fabricated order-5 filter (a) and measured response compared to the lossy
electromagnetic simulation (b). The layout of the fabricated filter is the one depicted in Fig. 2. From
[5]; reprinted with permission

Table 4 Element values of
the shunt resonators for the
optimum filter schematic of
the 7th order filter

Stage Lp (nH) Lr (nH) Cr (pF)

1,7 1.6280 0.5427 1.2431
2,6 1.1377 0.3792 1.7788
3,5 0.8442 0.2814 2.3974
4 1.0073 0.3358 2.0092

Application of the first ASM algorithm gives the schematic with element values
indicated in Table 4 and 90ı (at f0f

(8)D 3.0638 GHz) transmission line sections.
Convergence has been achieved after ND 8 iterations, when the error function is as
small as 0.1 %.

Application of the second ASM algorithm, considering the substrate used for
the filter of the previous section (Rogers RO3010 with thickness hD 635 �m and
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Table 5 Geometry parameters of the synthesized order-7 filter

Stage lLr (mm) lCr (mm) lLp (mm) lcell (mm) WCr (mm) WLp(mm)

1,7 1.0493 1.9982 2.6430 9.0701 2.0 0.3
2,6 0.4612 3.2080 1.7949 9.1020 2.0 0.3
3,5 0.4407 2.7972 1.2780 9.2243 3.0 0.3
4 0.5882 2.3437 1.5738 9.1482 3.0 0.3
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Fig. 10 Layout of the synthesized order-7 filter (a), and lossless electromagnetic simulation
compared to the response of the optimum filter schematic and target response (b)

dielectric constant "rD 10.2), provides the filter geometry indicated in Table 5.
Figure 10 shows the layout of the filter and the lossless electromagnetic simulation,
compared to the optimum filter schematic and target responses. The fabricated
filter is depicted in Fig. 11, together with the measured response and the lossy
electromagnetic simulation. Again, very good agreement between the different
responses can be appreciated, and the filter response satisfies the considered
specifications.
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Fig. 11 Photograph of the fabricated order-7 filter (a) and measured response compared to the
lossy electromagnetic simulation (b)

This additional example of an order-7 filter with different specifications (as
compared to the 5th order filter reported before) and other synthesized higher
order filters reported in [5] demonstrate that the two-step ASM algorithm discussed
in this chapter is a powerful tool to automatically provide the layout of the
considered type of filters. In principle, the reported two-step ASM tool can be
applied to any type of filter consisting on semi-lumped resonators coupled through
admittance inverters. For instance, application to wideband bandpass filters based on
open complementary split ring resonators (OCSSRs) coupled through admittance
inverters, first reported in [18], can be envisaged. It is also possible to apply the
reported two-step ASM technique to the synthesis of wideband balanced bandpass
filters. Indeed, this is the subject of the next section.
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6 Synthesis of Wideband Balanced Bandpass Filters

The design of differential-mode wideband bandpass filters with common-mode
noise suppression has been an object of growing interest in recent years [19–27].
These filters are key elements in balanced circuits and systems (e.g., high-speed
digital circuits), of increasing demand for their inherent high immunity to noise,
electromagnetic interference (EMI), and crosstalk. The design of balanced filters by
means of resonant elements coupled through differential-mode quarter-wavelength
admittance inverters suffers from the same limitations than the single-ended coun-
terparts, i.e., bandwidth degradation [24]. Hence the application of the two-step
ASM scheme presented before is fully justified for the automated design of
these differential-mode bandpass filters. As an illustrative example, the filter type
considered in this section is based on mirrored SIRs coupled through admittance
inverters [24]. The typical layout is depicted in Fig. 12a. The central metallic patches
of the mirrored SIRs introduce common-mode transmission zeros, useful for the
suppression of that mode in the differential filter pass band.

The mirrored SIRs are described by means of a combination of capacitances
and inductances, as indicated in the schematic of Fig. 12b. Note that the symmetry
plane is an electric wall for the differential mode, and hence the capacitances Czi

do not play an active role for that mode (they are grounded). Thus, the equivalent
circuit schematic for the differential mode is the canonical circuit of a bandpass
filter (Fig. 12c) [5]. Conversely, the symmetry plane for the common-mode is a
magnetic wall (open circuit) and the equivalent circuit schematic is the one depicted
in Fig. 12d. The resonators Lpi-Czi provide transmission zeros that are useful for the
suppression of the common-mode in the region of interest (differential filter pass
band). According to the schematics of Fig. 12c–d, the position of the transmission
zeros does not affect the differential-mode response.

For the synthesis of the filter, the two-step process described above can be
applied after suitable modifications. Notice that for the determination of the circuit
schematic for the differential mode, the capacitances Czi do not play a role.
Moreover, for the differential mode, the shunt resonators only depend on two
elements, and hence they are determined from the filter central frequency and
reactance slope. An important difference, as compared to the first ASM algorithm
reported in Section 3, is that in this case the resonators are considered to be identical,
(and thus LpiDLp and CpiDCp for i D1,2, : : : ,n), whereas the admittance of the
inverters depends on the device stage. The reason is that, from a topological point
of view, it is convenient to implement the filter layout with identical mirrored SIRs,
since the admittance inverters can thus be implemented by transmission line sections
parallel to the line axis.

Let us consider the following differential filter specifications: nD 3,
f0D 2.4 GHz, FBWD 40 % (corresponding to a 52.98 % �3 dB fractional
bandwidth, considered in the optimization), and LArD 0.15 dB. The ideal
Chebyshev response is depicted in Fig. 13. Such response is achieved by
considering LpD 1.1637 nH, CpD 3.7779 pF, and ideal admittance inverters with
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Fig. 12 Typical topology (order-3) of the considered balanced wideband bandpass filters (a),
circuit schematic (b), and circuit schematic for the differential (c) and common (d) modes.
Dimensions, in millimeters, correspond to the designed prototype
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Fig. 13 Ideal Chebyshev response of the differential bandpass filter, response that results by
replacing the ideal inverters with quarter-wavelength transmission lines, and response of the
optimum schematic that results after applying the first ASM algorithm

J0,1D J3,4D 0.02 S, J1,2D J2,3D 0.0199 S. The application of the first ASM
algorithm to the considered example provides an error function smaller than
3.2 % after ND 4 iterations. The resulting fine and coarse model parameters are
xf

(4)D [f0f
(4), FBWf

(4), LArf
(4)]D [2.423 GHz, 65.78 %, 0.332 dB] and xc

(4)D [f0c
(4),

FBWc
(4), LArc

(4)]D [2.3999 GHz, 0.5344 %, 0.1546 dB], and the resulting response
is depicted in Fig. 13. The element values of the resonators are LpD 2.8195 nH,
CpD 1.5302 pF, and the admittance of the quarter-wavelength (at f0f

(4)) transmission
line sections are J0,1D J3,4D 0.02 S, J1,2D J2,3D 0.0223 S. To complete the
schematic of Fig. 12b, the capacitances Czi must be set to a certain value. In this
example, all the transmission zero frequencies have been set to the same value, i.e.,
fzD 1.1f0. This gives a good common-mode rejection ratio (CMRR) in the whole
differential filter pass band. With this value of fz, the central patch capacitances are
found to be CzD 2.3302 pF.

The second ASM algorithm, necessary to determine the filter layout, is similar to
the one reported in Section 4. The resulting layout is the one depicted in Fig. 12. The
lossless electromagnetic response is very close to the response of the schematic and
hence to the target response (see Fig. 14). The fabricated device (depicted in Fig. 15)
exhibits a frequency response in very good agreement to the lossy electromagnetic
simulation (see Fig. 15b). As for the single-ended filter synthesis reported before,
the layout of the balanced filter has been determined from the specifications without
the need of any further action during the optimization process. The results of this
section demonstrate that the two-step ASM scheme analyzed in this chapter is
also useful for the synthesis of common-mode suppressed balanced filters based
on resonators coupled through admittance inverters.
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Fig. 14 Lossless electromagnetic simulation of the synthesized order-3 balanced filter, compared
to the response of the optimum filter schematic

7 Conclusions

In summary, a method for the automated and unattended design of single-ended
and balanced wideband bandpass filters based on shunt resonators coupled through
admittance inverters has been reviewed. It is based on ASM optimization and
is divided in two steps: a first ASM algorithm, devoted to determine the filter
schematic able to satisfy the specifications, and a second ASM algorithm, that
automatically determines the filter layout. With this approach, the bandwidth degra-
dation typical of wideband filters based on resonators coupled through admittance
inverters is solved, and the filter design does not require any external action in the
whole process. Several examples of filter design have been reported to demonstrate
the viability and flexibility of the method. Moreover, the applicability of this method
for efficient solving of numerically expensive problems has been revealed.
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to the lossy electromagnetic simulation (b). The layout of the fabricated filter is the one depicted
in Fig. 12
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Abstract Accurate models that can be rapidly evaluated are indispensable in
microwave engineering. Kernel-based machine learning methods applied to the
modeling of microwave structures have recently attracted attention; these include
support vector regression, Bayesian support vector regression, and Gaussian process
regression (GPR). In this chapter, we apply an extended methodology based on
GPR, namely two-stage GPR, to the modeling of microwave antennas and filters.
At the core of the method lies variable-fidelity electromagnetic simulations. In the
first stage, a mapping between electromagnetic models (simulations) of low and
high fidelity is learned, which allows for significantly reducing the computational
effort necessary to set up the high-fidelity training data sets for the actual surrogate
models (second stage), with negligible loss in predictive power. We apply the two-
stage models to design optimization involving several examples of antennas and
microstrip filters.
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1 Introduction

Microwave engineering depends extensively on full-wave electromagnetic simula-
tions as they permit highly accurate evaluation of microwave structures such as
antennas, filters, and circuit components. However, high-fidelity simulations may
pose significant computational demands. Hence the use of accurate electromagnetic
simulations to solve especially tasks involving multiple analyses, such as statistical
analysis, yield-driven design, or parametric design optimization, might become
infeasible under certain conditions. Consider, for instance, global optimization using
metaheuristics such as genetic algorithms [1, 2] that might require thousands of full-
wave analyses of possible geometries of the structure to be optimized. In such cases,
the use of fast and yet accurate models of the microwave structures being analyzed
(so-called surrogates) becomes indispensable. Identified on a training set consisting
of a limited number of input–output pairs, a model of this sort can generalize over
the input space and therefore quickly obtain the desired performance characteristics
for inputs not previously presented to it.

A highly effective approach for constructing surrogate models of antenna struc-
tures is Gaussian process regression (GPR) [3]. In particular, GPR has been shown
to be a very successful tool for modeling antenna performance characteristics such
as input reflection coefficient against frequency [4, 5]. Other kernel-based machine
learning methods that have been used for antenna modeling include standard support
vector regression, e.g., [6], and the more expressive, GPR-based Bayesian support
vector regression [7].

A Gaussian process (GP) is a stochastic process that can be viewed as the
generalization of the Gaussian probability distribution to functions. The Gaussian
nature of the distribution leads to tractable calculations when learning and inference
need to be performed. Gaussian processes are generally easier to implement and
interpret than neural networks—a reason is that training of far fewer parameters (in
the order of the dimension of the input vectors) is required compared to the number
of weights in, for example, a multi-layer perceptron neural network.

An important limitation of approximation-based modeling methods such as
GPR is the high cost of gathering the high-fidelity data necessary to train the
model for sufficient predictive accuracy. Here we address this problem by using
variable-fidelity electromagnetic simulations within a two-stage modeling scheme
[8, 9]: in the first stage, we use full-wave simulations to generate by a low-fidelity
(coarse) training data set of n points, and naux < n points of the corresponding
(computationally expensive) high-fidelity (fine) training set. We then train a model
that maps low-fidelity training targets (RefS11g or ImfS11g) to the high-fidelity
ones, and use it to predict the remaining n – naux high-fidelity targets that were
not simulated. The naux simulated high-fidelity targets and the n-naux predicted
ones—together with the input vectors—then yield the n-point “approximate” high-
fidelity training set. The second stage entails the construction of a final GPR model
using the latter training set. Exploiting the knowledge embedded in the low-fidelity
simulations in this way enables significant reductions in model setup cost without
compromising accuracy.
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Data selection for microwave modeling problems in the past has been accom-
plished through adaptive sampling techniques embedded within optimization con-
texts that aim to reduce the number of samples necessary to achieve the desired
modeling accuracy by iterative identification of the model and adding new training
samples based on the actual model error at selected locations [10] or expected error
values (statistical infill criteria, e.g., [11]). We note that our focus—in contrast
to [10, 11] that are local models—is on global or library type models that give
reliable predictions over the entire input space, and that can be used for a variety
of applications (e.g., optimization, statistical analysis). An alternative approach to
reducing surrogate model setup cost was demonstrated in [12], where only the
support vectors of an initial (global) BSVR model trained on low-fidelity data
were selected for high-fidelity simulation. A 31-to-48 % reduction in computational
expense could be achieved without compromising predictive ability.

The novelty of the methodology described in this chapter lies in that it maps
the correlations between physically related coarse and fine simulation models of
the same antenna via an auxiliary model, blending full-wave simulation data at
two fidelity levels into one final surrogate model by means of training on the
above “approximate” high-fidelity data set. This stands in contrast to [4, 5], where
conventional GPR models were trained on data sets obtained in full from expensive
high-fidelity data; there was no attempt to reduce the costs associated with acquiring
this data, even though this contributed by far the bulk of the model setup costs.

The two-stage approach is demonstrated using both microstrip antenna and filter
examples (cf. Sections 4 and 5, respectively). We also evaluate the accuracy of our
surrogates by using them within a space-mapping (SM) optimization framework.
These sections are preceded by an overview in Section 2 of standard GPR, and
a discussion of two-stage GPR in Section 3. The chapter is concluded by some
summary remarks (Section 6).

2 Fundamentals of Standard Gaussian Process Regression

This section summarizes the basic tenets of GPR along the lines of [3], and explains
how these equations map to practical modeling (using microwave filter modeling as
example).

The multivariate Gaussian probability distribution is fundamental to GPR.
Consider n continuous random variables f1, : : : , fn with joint probability p(f1, : : : ,
fn), or equivalently p(f), where fD [f1 : : : fn]. Assume that variables f are distributed
according to the multivariate Gaussian distribution [3]:

p
�

f
ˇ̌
ˇm;A� D .2�/�n=2jAj�1=2 exp

�
�1
2
.f �m/TA�1 .f �m/

�
D N .m;A/ (1)

with f a multi-dimensional “point” under the distribution; m the mean vector of
length n; and A the covariance matrix of size n� n determining the shape of the
distribution.
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Consider now standard GPR. Of interest is learning a mapping between filter
geometry dimensions and frequency, and jS21j (or Re/ImfS21g; for conciseness we
will refer to jS21j throughout). The first step is to collect a training data set of n
input–output pairs, f(xi,yi) j iD 1, : : : , ng. Input vectors xi are of dimension P, while
the target responses yi are scalars. Specifically, each input vector xi corresponds to
a set of adjustable filter geometry parameters and a frequency value within the band
of interest, while each output scalar yi is the corresponding jS21j value. Also selected
is a test data set of n* input–output pairs f(xi*,yi*) j iD 1, : : : , n*g: input vectors
xi* consisting of previously unseen geometry-values-and-frequency for which jS21j
needs to be predicted, and output scalars yi* that are known associated values of
jS21j, computed for evaluating the model’s predictions.

Under GPR, the n training output scalars (associated with the n input vectors
xi) are modeled by random variables [f1 : : : fn]T D [f (x1) : : : f (xn)]T , and the
n* test output scalars by random variables [f1* : : : fn*]TD [f (x1*) : : : f (xn*)]T ,
where f (x) is a Gaussian process (GP). A GP is a stochastic process that is the
result of generalization of the Gaussian probability distribution (1) to functions.
The latter implies the mean vector m becoming infinitely long, resulting in a mean
function m(x); and the two-dimensional covariance matrix A becoming infinitely
large, with entries given by a covariance function k(x, x0). f (x), which corresponds
to an infinitely long vector, can be seen as a “point” under this distribution. The
mean function is defined in the standard manner as

m .x/ D E Œf .x/� (2)

while the covariance function, which gives the covariance between outputs f (x) and
f (x0) in terms of the associated inputs x and x0, is defined as [3]

k
�
f .x/ ; f

�
x0
�� D k

�
x; x0

� D E
	
.f .x/�m .x//

�
f
�
x0
� � m

�
x0
��


(3)

where E(X) is the expected value of the random variable X. It should be noted that
actual computation of covariance functions takes place through (7) and (8), as will
be explained below. Hence the GP f (x) is a set consisting of an infinite number
of random variables, of which any finite subset, for example, the training outputs
fD [f1 : : : fn], has a jointly Gaussian distribution by virtue of the general properties
of the multivariate Gaussian distribution [3].

Predictions in GPR are carried out using standard probability rules applied to
Gaussian multivariate distributions. A jointly Gaussian distribution (1) with zero
mean is assumed over the n training outputs and the n* test outputs (nC n* random
variables in total). This is referred to as the prior distribution, and can be written as

�
f

f�
�
� N

 
0;

"
K .X;X/ K .X;X�/

K .X�;X/ K .X�;X�/

#!
(4)

(4) indicates that the random variables contained in the vector [f f*]T have a
multivariate jointly Gaussian distribution with zero mean and covariance matrix [•].
In (4), matrices X and X* contain the training and test input vectors, respectively;
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and K(X, X*) is an n� n* sub-matrix of covariances evaluated between all possible
pairs of n training and n* test outputs—for example, K12D k(f (x1), f (x2*))D k(x1,
x2*) (other sub-matrices in (4) are set up in a similar manner).

Since the training outputs y are known, the distribution of the test outputs condi-
tioned on the training outputs y can be computed, yielding the posterior distribution,
a multivariate Gaussian with mean vector p and covariance matrix† [3]

p D K
�
X�;X

�
K.X;X/�1y (5)

† D K
�
X�;X�

� � K
�
X�;X

�
K.X;X/�1K

�
X;X�

�
(6)

The mean vector p contains the jS21j predictions, i.e., the most likely values of the
test outputs associated with the test input vectors in X*. In other words, pD [jS21j1
jS21j2 : : : jS21jn*] where jS21j1 is the prediction for test input vector x1*, jS21j2 is the
prediction for x2*, and so forth. The diagonal of † determines the corresponding
predictive variances, which can be viewed as the confidence of the model in its
predictions.

The covariance functions determine the covariance matrices in the prior and
posterior probability distributions, and hence are critical in determining the shapes
of these distributions and the GPs that will be favored by them. In what follows
we consider two well-known covariance functions for calculating the covariance
between outputs f (xi) and f (xj). The first is the squared-exponential covariance
function with automatic relevance determination (ARD) [3],

kSE
�
xi; xj

� D 
2f exp

 
�1
2

XP

kD1

�
xi:k � xj:k

�2
�2k

!
(7)

where xi,k and xj,k are the kth components of input vectors xi and xj, respectively
(kD 1, : : : , P); � k > 0 is the length-scale parameter that corresponds to component
k of the two input vectors; and 
2

f is the signal variance. The second covariance
function is the rational quadratic function with ARD. This covariance function can
be viewed as a scaled mixture of squared-exponential functions with different length
scales [3]:

kRQ
�
xi; xj

� D 
2f
 
1C 1

2˛

XP

kD1

�
xi:k � xj:k

�2
�2k

!�˛
(8)

In (8), ˛ > 0 is the shape parameter, with the remaining symbols defined as for (1).
Together, 
 f

2 and � k in (1) and (2)—as well as ’ in the case of (8)—constitute the
hyperparameters of the covariance function.

Training in GPR entails finding the set of hyperparameters that minimizes the
negative log marginal likelihood; this is usually accomplished by means of gradient-
based search. The log marginal likelihood can be expressed as [3]

log p
�

y
ˇ̌̌
X
�
D �1

2
yTK�1y � 1

2
log jKj � n

2
log 2� (9)
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In the above, K is shorthand for the n� n matrix K(X, X), and other symbols are
as defined above. Once optimized, the magnitude of hyperparameter � k will reflect
the relative importance of the kth input vector component, as large values of � k

will ensure an insignificant contribution of that component to the covariance. This
property is the above-mentioned ARD.

The computational cost of GPR is O(n3) due to the inversion of K(X, X) which is
of dimension n� n.

3 Two-Stage Gaussian Process Regression

In this section we describe our two-stage GPR approach using filter modeling as
practical example. Our objective is to construct highly accurate GPR surrogate
models Rs that map geometry (design) variables and frequency to either RefS21g,
ImfS21g, or jS21j (in some cases, better results might be obtained if the third quantity
is constructed from separate models of the first two). For the sake of conciseness,
we will only refer to jS21j in the description below.

Assume that in order to ensure sufficient model accuracy, an n-element set of
high-fidelity training data (simulated using a finely discretized mesh) is required:

Dfine D
n
.xi; yfine;i/

ˇ̌
ˇ i D 1; : : : ; n

o
(10)

with P-dimensional input vectors

xi D
	
uT

i foi

T D Œu1i u2i : : : uMi foi�

T (11)

and scalar targets yfine,iDjS21jfine,i. The design vector uiD [u1i u2i : : : uMi]T consists
of M geometry variables of the filter and foi is the ith frequency sample in the
frequency band of interest; hence PDMC 1.

Generating Dfine however may be prohibitively expensive. This can be addressed
by adopting a two-stage modeling approach. It aims to construct a final GPR model
that is based on a fraction of the high-fidelity simulations required to set up Dfine but
is almost as accurate as a GPR model trained on the actual Dfine. The details of the
two modeling stages are described below.

3.1 Two-Stage GPR: First Stage

In this stage, a separate auxiliary GPR model Raux is used to “approximate” the
expensive fine training data set Dfine by a relatively inexpensive data set Dfine,approx

of the same size.
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Initially, we inexpensively simulate the n input vectors of Dfine using a coarse
discretization, yielding the data set

Dcoarse D
n
.xi; ycoarse;i/

ˇ̌
ˇ i D 1; : : : ; n

o
; (12)

with xi as before and ycoarse,iD jS21jcoarse,i. We also simulate at high fidelity a (small)
randomly selected subset of Dfine consisting of naux < n points. Using this subset of
Dfine, we construct a training set Daux for Raux as follows:

Daux D
n
.xaux;k; yfine;k/

ˇ̌
ˇ k D 1; : : : ; naux

o
(13)

where the training input vector (of dimension MC 2)

xaux;k D
	
u1k u2k : : : uMk fok jS21jcoarse;k


T
(14)

is of the form of (7) augmented by the associated coarse jS21j target value from
Dcoarse, and the target yfine,kDjS21jfine,k is the corresponding jS21j value from the
above subset of Dfine (it may be noted that Dcoarse and Dfine have the same set
of input vectors; the only difference lies in the meshing density with which the
targets have been obtained). A mapping is thus learned between coarse and fine
jS21j simulations using training data that correspond to naux specific instances of
sets of design variables and frequency; the first MC 1 elements of the input vector
uaux,k can be viewed as unique identifiers of the jS21j values. The mapping represents
the correlations between the coarse and fine model responses. Due to the fact that
these models are physically related by virtue of being evaluated using the same EM
solver, the mapping learned for a limited number of fine training points is likely to
be preserved across the full design space.

Following training, Raux is used to predict the n – naux fine jS21j values that were
not simulated from their coarsely simulated counterparts; we refer to these predicted
targets as ypred,kD jS21jpred,k, kD (nauxC 1), : : : , n. The naux full-wave simulated fine
jS21j target values in conjunction with the n – naux predicted ones yield—along with
input vectors consisting of geometry parameters and frequency of the form (7)—an
n-point “approximate” fine training data set for Rs,

Dfine;approx D
8<
:

.xk; yfine;k/
ˇ̌
ˇ k D 1; : : : ; naux�

xk; ypred;k
� ˇ̌
ˇ k D .naux C 1/ ; : : : ; n

9=
; (15)

Acquiring the targets ypred,k via model predictions as opposed to direct full-wave
simulations can result in significant savings in computational costs, as described
below.
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3.2 Two-Stage GPR: Second Stage

Here we use Dfine,approx instead of the (unavailable) full Dfine as training set for Rs, the
desired final surrogate that maps design variables and frequency to jS21j by means of
“standard” GPR (cf. Section 2). In Sections 4 and 5 we show that these surrogates
are sufficiently accurate to be used effectively for antenna and filter optimization
using space mapping.

It may be emphasized that reducing the number of simulated high-fidelity
training points without compromising predictive accuracy is possible because we
exploit the knowledge embedded in the low-fidelity model, in particular via the
mapping learned in the first stage that identifies correlations between the low- and
high-fidelity simulation data.

4 Modeling and Optimization of Antennas
Using Two-Stage GPR

In this section, we present examples illustrating how two-stage GPR models for the
reflection coefficients of planar slot antennas can be set up based on substantially
reduced finely discretized full-wave simulations. We then use these models for
design optimization to illustrate their robustness. We consider three examples
of antennas with highly non-linear jS11j responses as a function of geometry
parameters and frequency: a narrowband coplanar waveguide (CPW)-fed slot dipole
antenna, an ultra-wideband (UWB) CPW-fed T-shaped slot antenna, and a dielectric
resonator antenna.

4.1 Slot Dipole Antenna (Antenna 1)

Figure 1 shows the geometry of a CPW-fed slot dipole antenna on a dielectric
substrate. The design vector was uD [W L]T , with the design variable space being
defined by the center and size vectors u0D [7.5 39]T mm and •D [2.5 11]T mm

Fig. 1 Geometry of
CPW-fed slot dipole antenna
(Antenna 1). The ground
plane (GND) is of infinite
lateral extent

W L

εr h

GND s

w0
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such that the variable ranges were u0˙ • mm. Other dimensions and parameters
were w0D 4.0 mm, sD 0.5 mm, hD 1.6 mm, and "rD 4.4. Of interest was S11 over
the frequency band 2.0–2.7 GHz.

Training data input vectors for Rs were defined by randomly selecting 91
geometries from the input space using Latin hypercube sampling (LHS), with three
frequencies per geometry uniformly randomly sampled from the above frequency
band; in general each geometry had a different set of frequencies. The total number
of training input vectors was nD 91� 3D 273; they had the form fxiD [ui

T foi]T

j iD 1, : : : , ng, with foi a frequency value within the range of interest. Test input
vectors were obtained from 100 new LHS geometries, with 71 equally spaced
frequencies per geometry yielding n*D 7100.

The above training input vectors were simulated using CST Microwave Studio
[13] on a dual-core 2.33 GHz Intel CPU with 2 GB RAM at a fine mesh density
(�130,000 mesh cells, simulation time 12 min) resulting in the full high-fidelity
training data set Dfine, and at a coarse mesh density (�5000 mesh cells, simulation
time 30 s) to give Dcoarse. (We refer to the CST simulations at the fine mesh density
as the high-fidelity model Rf , and the simulations at the coarse density as the low-
fidelity model Rc). The test inputs were only simulated at the fine mesh density,
yielding the test data set Dtest used to evaluate the predictions of Rs.

For the first stage of our method we constructed training sets Daux by randomly
selecting naux data points from Dfine, and then trained a model Raux as described in
Section 3.1 that was used to estimate the rest of the high-fidelity target values in
Dfine. This was repeated for naux/n� 100 % 2 f70 %, 60 %, 50 %, 40 %, 30 %,
20 %, 10 %g. Table 1 gives the predictive errors of Raux on the remaining n -
naux training points in Dfine. The results indicate that the remaining training targets
could be predicted with reasonable accuracy by Raux, likely due to the fact that
values of Re/ImfS11gcoarse,k in the training input vectors (13) were well correlated
with the targets Re/ImfS11gfine,k. Fig. 2a gives, for a sample geometry, fine and
coarse responses of RefS11g and ImfS11g against frequency that are indicative of
typical discrepancies for Antenna 1. It may be noted that the overall “shapes” of the

Table 1 Predictive errorsa of auxiliary antenna models Raux on remaining n - naux fine
training data points

RMSE [%]
Antenna 1 (nD 273) Antenna 2 (nD 3348) Antenna 3 (nD 1600)

naux/n� 100 % RefS11g ImfS11g RefS11g ImfS11g RefS11g ImfS11g
70 0.416 0.356 1.35 1.16 0.631 0.634
60 0.401 0.916 1.34 1.22 0.672 0.633
50 0.304 0.604 1.51 1.26 0.754 0.842
40 0.235 0.561 1.27 1.24 0.863 0.805
30 0.219 0.612 1.54 1.51 1.07 0.945
20 0.444 0.648 1.63 1.65 1.48 1.261
10 0.947 1.834 2.09 2.11 3.04 1.948

aRoot mean square error normalized to the target range, expressed as percentage
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Fig. 2 Typical fine (solid line) and coarse (dashed line) responses for RefS11g and ImfS11g against
frequency for (a) Antenna 1: xD [7.9107 35.4954]T mm, (b) Antenna 2: xD [37.5046 25.5961
4.0234 14.8285]T mm, and (c) Antenna 3: xD [7.7187 14.8472 8.8390 0.0149 1.9376 8.1535
8.9098]T mm

Table 2 Predictive errors of surrogate antenna models Rs on fine test data

RMSE [%]
Antenna 1 (nD 273) Antenna 2 (nD 3348) Antenna 3 (nD 1600)

naux/n� 100 % RefS11g ImfS11g RefS11g ImfS11g RefS11g ImfS11g
100 (Rs,full) 1.39 1.29 1.95 1.78 0.854 0.753
30 1.27 1.32 2.36 2.28 1.29 1.08
20 1.34 1.31 2.56 2.46 1.86 1.45
10 1.55 1.38 2.81 2.65 3.85 2.35

coarse and fine model responses as functions of frequency are similar—the major
misalignment relates to the level of the responses. This indicates relatively good
correlation between both models, giving support for the notion of exploiting this
correlation for coarse model enhancement even if a limited number of fine model
training data points are used.

Next we constructed “approximate” fine training sets Dfine,approx (cf. Section 3.1)
for cases where the savings in finely discretised training points were highly
significant, i.e., naux/n� 100 % 2 f30 %, 20 %, 10 %g, and trained GPR models
Rs in each case. The predictive errors of these models on the test data set Dtest are
listed in Table 2. For comparison, the predictive error for the case where the full
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Fig. 3 Geometry of UWB
CPW-fed T-shaped slot
antenna (Antenna 2; top
view). The ground plane
(GND) is of infinite lateral
extent
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Dfine was used as training data (naux/n� 100 %D 100 %) is also given—we refer to
this model as Rs,full. Predictive accuracies were good, especially given the relatively
small proportions of high-fidelity data present in the “approximate” fine training
data sets.

4.2 UWB T-Shaped Slot Antenna (Antenna 2)

Fig. 3 shows the layout of a CPW-fed antenna with T-shaped slot [14]. The
design vector was uD [ax ay a b]T , and the design space was delimited by center
vector u0D [40 27.5 7 20]T mm and size vector •D [5 7.5 5 10]T mm (other
dimensions were w0D 4.0 mm, s0D 0.3 mm, and s1D 1.7 mm; the dielectric
substrate had height hD 0.813 mm and dielectric constant "rD 3.38). Of interest
was the frequency band 2–8 GHz.

The training data represented 270 geometries obtained by LHS, with 12 ran-
domly selected frequencies per geometry (nD 3348). Test data were made up of 50
new LHS geometries, with 121 frequencies that were equally spaced per geometry.

To obtain Dfine we simulated [13] the training input vectors at a fine mesh density
(�2,962,000 mesh cells, simulation time 21 min); coarse mesh density simulations
(�44,500 mesh cells, simulation time 20 s) yielded Dcoarse.

Models Raux and Rs were set up in a manner similar to that described in
Section 4.1, and Tables 1 and 2 give the relevant predictive errors, again showing
that both types of models had good predictive capabilities. In particular, predictive
accuracies for the Rs models appeared to be good given the relatively small fractions
of high-fidelity data present in the “approximate” fine training data sets. Fig. 2b
gives fine and coarse responses of RefS11g and ImfS11g against frequency for a
sample geometry that are representative of the fine/coarse discrepancies observed
for this antenna.

4.3 Dielectric Resonator Antenna (Antenna 3)

Fig. 4 shows the antenna geometry [15]. The design vector was uD [ax ay az ac us

ws ys]T , where ax, ay, and az are dimensions of the dielectric resonator (DR) brick,
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Fig. 4 Geometry of dielectric resonator antenna (Antenna 3): (a) top and (b) side views

ac stands for the shift of the DR center in the Y-direction relative to the slot center,
us is the slot width, ws is the slot length, and ys is the length of the microstrip stub.
The relative dielectric constant and loss tangent of the dielectric resonator were 10
and 0.0001. The substrate consisted of 0.5 mm thick RO4003C laminate [15], and
the metallization of the trace and ground was 50 �m copper. The design variable
space was described by the center vector u0D [8 14 8 1 2 9 8]T mm and size vector
•D [1 1 1 1 1 1]T mm; other dimensions were w0D 1.15 mm and hsD 0.5 mm.
Simulations included the frequency band 4.5–6.5 GHz.

Training data were obtained from 400 LHS geometries, and there were four
randomly selected frequencies per geometry (nD 1600). Test data were constituted
by 50 new LHS geometries with 121 equally spaced frequencies per geometry.

We simulated the training input vectors in CST Microwave Studio at a fine mesh
density (�500,000 mesh cells, simulation time 12.5 min) to obtain Dfine, and at a
coarse mesh density (�15,000 mesh cells, simulation time 30 s) to obtain Dcoarse.

Raux and Rs were set up in a manner similar to those for Antennas 1 and 2.
Tables 1 and 2 list the relevant predictive errors. On the whole these were good
given that this antenna had seven design variables. Fig. 2c gives fine and coarse
responses of RefS11g and ImfS11g against frequency for a sample geometry that are
representative of the fine/coarse disagreement for this antenna.

4.4 Application Examples: Antenna Optimization

We apply Rs within a space-mapping algorithm aimed at optimizing the input
characteristics of the antenna structures considered in Sections 4.1–4.3. This is
intended as a way to validate the proposed modeling methodology where our
GPR surrogates Rs are trained using the “approximate” high-fidelity training set
Dfine,approx rather than the “original” training set Dfine obtained in full through direct
simulations. Optimization results are compared to results obtained by using Rs,full

(i.e., Rs trained on Dfine).



Two-Stage Gaussian Process Modeling of Microwave Structures for Design. . . 173

We note that the GPR surrogates considered in this chapter are intended to be
multiple-purpose library models. Antenna optimization with respect to various sets
of design specifications is one example of a typical application task. Another could
be yield-driven optimization or statistical analysis.

Here, we consider antenna optimization where the initial design is the center
of the region of interest x(0). The design process starts from directly optimizing
the GPR model. Because of modeling error that is nonzero, an iterative design
refinement procedure is used based on space-mapping technology [16, 24, 25]

x.iC1/ D arg min
x

U
�
R.i/

su .x/
�

(16)

where Rsu
(i) is a surrogate model obtained by output space mapping [16]. The

surrogate model setup is carried out using an evaluation of Rf at x(i). U implements
design specifications. For conciseness considerations, we simply use the symbol Rco

below to denote either of Rs.full or Rs, which can be considered the “coarse” models
in the space-mapping context. The surrogate model is then defined as

R.i/
su .x/ D Rco .x/C d.i/ (17)

with

d.i/ D Rf
�
x.i/
� � Rco

�
x.i/
�

(18)

The additive correction term d(i) is computed so that zero-order consistency (i.e.,
Rsu

(i)(x(i))DRf (x(i))) between the surrogate and the high-fidelity model Rf [17] is
ensured at the current design x(i). In practice, because of the good initial accuracy
of the GPR surrogates, one or two iterations of the algorithm (16) usually suffices
with respect to yield an optimized design. It should be noted that the cost of each
iteration (16) in effect corresponds to a single evaluation of the high-fidelity model
(the expense of optimizing the surrogate itself can be neglected as compared to the
evaluation of the high-fidelity model).

Fig. 5 shows, for all three antennas, the responses of models Rs,full and Rf (the
latter being direct high-fidelity CST simulations) at the initial designs, as well as the
response of Rf at the final designs. Fig. 6 likewise gives the responses of the GPR
models Rs trained on the “approximate” high-fidelity data set Dfine,approx (here with
naux/n� 100 %D 20 %) and the Rf model responses at x(0); and the response of Rf

at the final designs. Table 3 provides a summary of the corresponding numerical
results. These indicate that the design quality and cost expressed in terms of number
of Rf evaluations are very similar for the GPR models obtained using the original
and approximate high-fidelity training data sets. In the case of Antennas 1 and 2,
the optimization cost corresponds to three Rf evaluations. For Antenna 3, Rs,full

exhibits better performance with only one refinement iteration necessary to yield
an optimized design (compared to three iterations for Rs). Table 3 also shows the
optimization results with the Rs models trained on Dfine,approx where only 10 % of the
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Fig. 5 Optimization results: responses of Rs, full (dotted line) and Rf (dashed line) at the initial
design, and Rf at the optimized design (solid line) for (a) Antenna 1, (b) Antenna 2, and
(c) Antenna 3. Design specifications marked with horizontal solid line. GPR model responses
(computed from separate models for RefS11g and ImfS11g) are hardly distinguishable from the
corresponding high-fidelity simulation (Rf ) response
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Fig. 6 Optimization results: responses of Rs (dotted line) and Rf (dashed line) at the initial design,
and Rf at the optimized design (solid line) for (a) Antenna 1, (b) Antenna 2, and (c) Antenna 3.
Design specifications marked with horizontal solid line. Note that the GPR model responses are
very close to the high-fidelity model (Rf ) response. The Rs models represented here were trained
on Dfine,approx utilizing 20 % data points simulated at high fidelity
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Table 3 Antenna optimization results

Antenna Model max jS11j at final design (dB)a Optimization costb

1 Rs,full �21.7 3
Rs (20 %)c �21.6 3
Rs (10 %)c �21.5 3

2 Rs,full �12.0 3
Rs (20 %)c �11.5 3
Rs (10 %)c �11.4 3

3 Rs,full �11.5 2
Rs (20 %)c �11.3 4
Rs (10 %)c �11.2 4

amax jS11j at the frequency band of interest: 2.3–2.4 GHz (Antenna 1),
2.3–7.6 GHz (Antenna 2), and 5.28–5.72 GHz (Antenna 3)
bNumber of Rf evaluations including evaluation at the initial design
c20 % refers to the model trained on Dfine,approx utilizing 20 % data points that
are actually simulated at high fidelity (10 % accordingly)

data were high-fidelity-simulated points. Regardless of the fact that these models are
generally less accurate than the 20 % versions (cf. Table 2), they apparently are still
reliable enough—in combination with the particular surrogate-based optimization
technique (16–18)—to optimize our antenna structures. The quality of the final
designs as well as the corresponding design costs therefore is essentially the same
for the 10- and 20 % high-fidelity-simulated GPR models.

For the sake of comparison, we also optimized the three antennas using a
conventional (i.e., not surrogate-based) method, namely a state-of-the-art pattern-
search algorithm [18, 19] that directly relied on high-fidelity full-wave simulations
for its objective function evaluations. Maximum jS11j values at the final designs
obtained for Antennas 1, 2, and 3 (�21.6, �11.6, and �10.4 dB, respectively)
were similar to those obtained using our GPR models and the above space-mapping
procedure—however, the computational expense for the conventional optimization
was at least an order of magnitude larger (i.e., 40, 148, and 117 Rf evaluations for
Antennas 1, 2, and 3, respectively). This confirms that fast and accurate surrogates
are indispensable in the antenna design process, particularly if they can be set up at
relatively low computational cost.

5 Modeling and Optimization of Filters
Using Two-Stage GPR

In this section, numerical verification of the two-stage GPR modeling technique
using two examples of microstrip filters is presented. As before, the GPR surrogates
are also applied for design optimization purposes.
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Fig. 7 CCDBR filter: geometry [20]

5.1 Capacitively Coupled Dual-Behavior Resonator (CCDBR)
Microstrip Bandpass Filter (Filter 1)

The first example is the second-order capacitively coupled dual-behavior resonator
(CCDBR) microstrip filter [20] shown in Fig. 7. The filter structure is described
by three design variables as uD [L1 L2 L3]T . The microstrip line widths are 0.25
and 0.5 mm, whereas the line spacing SD 0.05 mm. The substrate parameters are
hD 0.254 mm and "rD 9.9. The GPR surrogate model is set up in the interval
[u0 – •, u0C •] with u0D [3 5 1.5]T mm and ıD [1 1 0.5]T mm. The objective
is to model the transmission coefficient jS21j for the frequency range of 2–6 GHz.
The rational quadratic covariance function (8) was used during both stages of our
two-stage modeling approach.

The training data input vectors for creating the two-stage GPR surrogate model
Rs were allocated using LHS [21]. Twelve random frequencies were associated
with each training geometry within the frequency range of interest. Consequently, a
different set of frequencies was effectively assigned for each geometry. Furthermore,
the total number of training vectors was nD 600� 12D 7200. The training input
vectors had the form fxiD [ui

T foi]T j iD 1, : : : , ng with foi being the frequency
values. The surrogate models were tested using a split-sample method with 50
separate testing geometries, also obtained with LHS, however, using 81 frequencies
per geometry, distributed uniformly on the frequency scale (n*D 4050).

The training data set Dfine was acquired by means of FEKO [22] simulations
of the high-fidelity model Rf . It consists of n input–output pairs, f(xi,yi) j iD
1, : : : , ng, with xiD [ui

T foi]T D [L1 L2 L3 foi]T , and yiDRefS21gfine,i or ImfS21gfine,i.
Similarly, the training set Dcoarse was acquired through coarse-discretization FEKO
simulations of the low-fidelity model Rc. Total mesh numbers for Rf and Rc were
614 (evaluation time 6 seconds per frequency) and 130 (evaluation time 0.3 seconds
per frequency), respectively. The testing data set Dtest was obtained—for the sake
of evaluating the predictive power of the surrogate—from fine-discretization EM
simulations.
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Table 4 Predictive errorsa of auxiliary filter models Raux on remaining
n - naux fine training data points

RMSE [%]
Filter 1 Filter 2 Filter 3

naux/n� 100 % RefS21g ImfS21g RefS21g ImfS21g jS21j
40 1.45 1.47 1.79 2.03 3.17
30 1.77 1.63 1.73 1.98 3.43
20 1.87 1.97 2.74 2.23 3.75

aNormalized root mean square error (RMSE), expressed as a percentage
of the target value range

The two-stage GPR surrogate model is constructed separately for RefS21g and
ImfS21g, however, the description below is—for the sake of brevity—only provided
for RefS21g. The first stage of the process involves construction of the training set
Daux, which is realized by randomly selecting naux data points from the original
set Dfine. The auxiliary surrogate Raux is then set up as described in Section 3.1.
More specifically, the training set Daux consists of naux input–output pairs f(xaux,k,
yfine,k) j kD 1, : : : , nauxg, with xaux,kD [uk

T fok RefS21gcoarse,k]T D [L1 L2 L3 fok

RefS21gcoarse,k]T and yfine,kDRefS21gfine,k. Upon accomplishing the model training,
it is used to estimate the rest of the high-fidelity target values in Dfine by finding the
mean of the posterior distribution (cf. Eq. (15))—i.e., yielding n – naux RefS21gpred

values. These steps are repeated for naux/n� 100 % 2f40 %, 30 %, 20 %g, and the
predictive errors of Raux (i.e., the root mean square values of the n - naux residuals
of RefS21gpred and RefS21gfine) are listed in Table 4 for each case.

In the second stage, the “approximate” fine training data sets Dfine,approx (as
described by Eq. (15), Section 3.1) corresponding to naux/n� 100 % 2 f40 %, 30 %,
20 %g have been constructed, and the GPR models Rs have been trained on each set.
The n-point “approximate” fine training set corresponding to a specific naux value
was

Dfine;approx D
8<
:

�
ŒL1k L2k L3k fok� ; RefS21gfine;k

� ˇ̌
ˇ k D 1; : : : ; naux�

ŒL1k L2k L3k fok� ; RefS21gpred;k

� ˇ̌
ˇ k D .naux C 1/ ; : : : ; n

9=
;

where nD 7200 is the total number of the training points.
The predictive errors for the surrogates constructed for various naux/n are listed

in Table 5. The test set, which was independent of the training set, was given by

Dtest D
n	

L1j L2j L3j foj

T
; RefS21gfine;j

ˇ̌̌
j D 1; : : : ; n�

o

with n*D 4050.
Apart from the fractional data sets (naux/n� 100 % < 100 %), the predictive

error for the case corresponding to the full Dfine utilized as the training data



Two-Stage Gaussian Process Modeling of Microwave Structures for Design. . . 179

Table 5 Predictive errors of surrogate filter models Rs on fine test data

RMSE [%]
Filter 1 Filter 2 Filter 3

naux/n� 100 % RefS21g ImfS21g RefS21g ImfS21g jS21j
100 (Rs.full)a 3.11 3.22 2.56 2.93 3.92
40 3.14 3.31 3.12 3.37 4.12
30 3.18 3.38 2.99 3.33 4.22
20 3.24 3.36 3.54 3.53 4.39

aRs.full is the benchmark that we compare to, i.e., standard GPR using
Dfine as training data (the fine training data obtained in full via EM
simulations)

Fig. 8 Second-order ring
resonator bandpass filter:
geometry [23]

L2

Input Output

L1

S1

W2

W1 W1

(naux/n� 100 %D 100 %) is also indicated. We refer to this model as Rs,full. It can
be observed that the predictive accuracies are good given the relatively small
proportions of high-fidelity data present in the “approximate” fine training data sets.

5.2 Open-Loop Ring Resonator (OLRR) Bandpass
Filter (Filter 2)

The second example is the second-order ring resonator bandpass filter [23] shown in
Fig. 8. The structure is described by five design parameters uD [L1 L2 S1 W1 W2]T .
The substrate parameters are hD 1.52 mm and "rD 4.32. The region of interest for
the surrogate model construction is [u 0 � ı, u 0C ı] with u0D [20 22 0.2 0.8
1.7]T mm and ıD [2 2 0.1 0.1 0.1]T mm. The objective is to model the transmission
coefficient jS21j for the frequency range of 1–3 GHz.

The overall setup for the models Raux and Rs was similar to that used for Filter 1.
However, the squared-exponential covariance function (7) was used in this case.
Tables 4 and 5 show the predictive errors for the models. It can be concluded from
these results that both types of models had good predictive capabilities. Similarly
as for Filter 1, predictive accuracies of the final surrogate Rs are good, particularly
given greatly reduced number of the high-fidelity training points compared to the
“full” set.
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The training data set selected for this example consists of 400 geometries
allocated using LHS with six randomly selected frequencies per geometry. Thus, the
total number of training points is nD 2400. A separate set of 50 random geometries
(with 81 uniformly distributed frequencies per geometry) is utilized in the testing
stage. The filter models are evaluated in FEKO [22] using the following setup: 828
mesh cells for Rf (simulation time 8 seconds per frequency), and 64 mesh cells for
Rc (simulation time about 0.1 seconds per frequency).

5.3 Application Examples: Filter Optimization

The two filter structures considered in Section 5.2 were optimized—for the sake of
additional verification—using the final GPR surrogate models Rs. Note that the GPR
surrogates considered in this chapter are intended to be multiple-purpose library
models. In particular, such models could be utilized for filter optimization with
respect to various sets of design specifications or robust (yield-driven) optimization
as well as statistical analysis.

The design specifications for the CCDBR filter (Filter 1) are the following:

• jS21j ��3 dB for 3.8–4.2 GHz
• jS21j ��20 dB for 2–3.2 GHz and for 4.8–6 GHz

The initial design is uinitD [3.5 4.5 1.5]T mm.
The design specifications for the second-order ring resonator filter (Filter 2) are:

• jS21j ��1 dB for 1.8–2.2 GHz
• jS21j ��20 dB for 1–1.55 GHz and for 2.45–3 GHz

The initial design is uinitD [18.0 22.0 0.2 0.8 1.7]T mm.
The first stage of the process is to optimize the surrogate model Rs. The second

stage is an iterative design refinement procedure, necessary due to a nonzero error
of Rs. This stage is executed using the space-mapping algorithm described in
Section 4.4 (Eqs. (16–18)). Due to a good initial accuracy of the GPR surrogates,
one or two iterations of the algorithm (16) are usually sufficient to yield an optimized
design. The optimization results are presented in Table 6, as well as in Figs. 9 and 10.

Figure 9 shows, for Filters 1 and 2, the responses of models Rs,full and Rf (i.e.,
direct high-fidelity FEKO simulations) at the initial designs, and the high-fidelity
model response at the final designs. Similarly, Fig. 10 shows the GPR surrogate
model responses trained on the “approximate” high-fidelity data set Dfine,approx (here
with naux/n� 100 %D 20 %) and the Rf model responses at x(0), and the response
of Rf at the final designs.

Table 6 gathers the numerical results. It should be emphasized that the differences
between the design quality and cost (the latter expressed in terms of number of eval-
uations of the high-fidelity model Rf ) are very small for the GPR models obtained
using the original and approximate high-fidelity training data sets. Furthermore, the
average design cost is about three evaluations of the high-fidelity model and it is
similar in all cases, regardless of the naux/n ratio.
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Table 6 Filter optimization results

Filter Model Minimax specification error at final design (dB)a Optimization costb

1 Rs,full �2.4 3
Rs (40 %)c �2.3 4
Rs (30 %)c �2.2 3
Rs (20 %)c �2.4 3

2 Rs,full �0.0 4
Rs (40 %)c �0.1 4
Rs (30 %)c �0.0 4
Rs (20 %)c �0.1 4

aMaximum violation of jS21j specifications at the frequency bands of interest
bNumber of evaluations of the high-fidelity model Rf , including evaluation at the initial design
c40 % refers to the model trained on Dfine,approx utilizing 40 % data points that are actually
simulated at high fidelity (30 and 20 % accordingly)
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Fig. 9 Optimization results for the three filter structures: responses of Rs,full (open circle) and Rf

(dashed line) at the initial design, and Rf at the optimized design (solid line) for (a) Filter 1, (b)
Filter 2. Horizontal solid lines denote design specifications
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Fig. 10 Optimization results for the three filter structures: responses of Rs (open circle) and Rf

(dashed line) at the initial design, and Rf at the optimized design (solid line) for (a) Filter 1, (b)
Filter 2. Horizontal lines denote design specifications. The Rs models represented here were trained
on Dfine,approx utilizing 20 % data points simulated at high fidelity

6 Conclusions

In the chapter, a two-stage methodology for Gaussian Process modeling of compu-
tational electromagnetic (EM) simulation models has been presented. The approach
discussed here involves variable-fidelity EM simulations. The key idea is to
exploit—in the first modeling stage—the knowledge embedded in the low-fidelity
model at hand to set up a mapping between the EM models of different fidelity.
This allows us to substantially reduce the number of actual high-fidelity simulations
that need to be performed, without compromising the predictive power of the final
surrogate. The operation and performance of the two-stage modeling process has
been demonstrated using three examples of antenna structures and two examples
of microstrip filters. This comprehensive verification confirmed that satisfactory
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results can be obtained even if the “approximate” high-fidelity training set contains
only 10–20 % targets obtained using fine-discretization simulations (the rest being
predicted by the auxiliary model in the first stage of the procedure). For the sake of
an additional verification, the two-stage GPR model has been shown to be perfectly
usable in a design/optimization context.
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Efficient Reconfigurable Microstrip Patch
Antenna Modeling Exploiting Knowledge Based
Artificial Neural Networks

Murat Simsek and Ashrf Aoad

Abstract Artificial neural network (ANN) is widely used for modeling and
optimization in antenna design problems. It is a very convenient alternative for using
computationally intensive 3D-Electromagnetic (EM) simulation in design. The
reconfigurable microstrip patch antennas have been considered to ensure operational
frequencies for different kind of purposes. ANN is used for modeling of antenna
design problems to obtain a surrogate based model instead of a computationally
intensive 3D-EM simulation. Further improvement in modeling, a prior knowledge
about the problem such as an empirical formula, an equivalent circuit model,
and a semi-analytical equation is directly embedded in ANN structure through a
knowledge based modeling technique. Knowledge based techniques are developed
to improve some properties of conventional ANN modeling such as accuracy and
data requirement. All these improvements ensure better accuracy compared to
conventional ANN modeling. The necessary knowledge can be obtained by the
coarse model which is a complex 3D-EM simulation in terms of grid size selec-
tion. Knowledge based techniques can improve the performance of conventional
ANN through the guidance of the coarse model. As long as the coarse model
approximates to the computationally intensive 3D-EM simulation, the performance
of the knowledge based surrogate model can converge to the design targets. The
efficiency of modeling strategies is demonstrated by a reconfigurable 5-fingers
microstrip patch antenna. The antenna has four modes of operation, which are
controlled by two PIN diode switches with ON/OFF states, and it resonates at
multiple frequencies between 1 and 7 GHz. The number of training data is changed
in terms of selected parameters from the design space. Three different sets are
used to show modeling performance according to the size of training data. The
simulation results show that knowledge based neural networks ensure considerable
savings in computational costs as compared to the computationally intensive 3D-
EM simulation while maintaining the accuracy of the fine model.
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1 Introduction

Over the years, several numerical and analytical methods that employ detailed
electromagnetic models of active/passive components have been developed for
designing antennas. However, these methods come with their own set of limitations
such as high computational cost and memory requirements. To overcome these
challenges, artificial neural network (ANN) has been used as efficient alternative
to conventional methods in RF and microwave modeling [23]. Several studies have
been carried out for designing antennas using ANN. In the context of reconfigurable
antennas, neural network was recently used as an optimization technique to activate
the switches in order to realize a given reconfiguration state (e.g., resonating at
certain frequency bands) [5, 10].

ANN has been extensively preferred as a modeling technique to obtain a surro-
gate model instead of a fine model which has high computational burden. Surrogate
based modeling [20] is required to overcome this computational burden of the fine
model. Surrogate based models can be fundamentally developed in two ways. First
way only requires input or output mapping without any change in the computa-
tionally cheap coarse model. Space mapping based modeling [3, 9, 14, 16–18] is
developed considering this approach. Second way is based on updating the coarse
model during modeling process for the coarse model. ANN is very convenient to
obtain this kind of coarse model.

ANN provides an efficient strategy to solve modeling and optimization problems
which are essential in engineering design where only input–output data are available
instead of mathematical formulations [4, 7, 11, 23, 24]. ANN modeling is generally
used to construct a mapping from the input to the output depending on the data
obtained from detailed physical/EM simulation models or measurements (fine
model) and generate approximate results depending on some tunable parameters
such as training set, topological structure, and complexity of the fine model.

Since ANN technique constitutes input–output mapping highly depending on the
training set, when the points outside of the training range (extrapolation) are used as
inputs for the final model after training process, responses of the model are probably
unsatisfactory compared to the points inside of the training set (interpolation). ANN
and the existing knowledge about the fine model should be combined in the same
modeling process in order to reduce complexity of the fine model, while improving
extrapolation performance or lowering data requirements for training process.

In some cases, modeling involves numerous training data to satisfy specific
design purposes such as good accuracy, better extrapolation, and less computational
burden. However training process takes longer time and modeling accuracy cannot

MSC codes: 93A30, 65K05, 74P99, 78M50, 90C31, 65D17, 62M45



Efficient Reconfigurable Microstrip Patch Antenna Exploiting KBANNs 187

be good enough with respect to design purposes. To overcome this problem, knowl-
edge based ANN (KBANN) techniques emerged to generate an efficient model.
Knowledge based modeling techniques have been developed to embed existing
knowledge into the conventional ANN modeling [6, 14, 15, 19, 23]. Knowledge
based models utilize less training data as compared to the conventional ANN. The
knowledge provides coarse information for modeling and ANN completes rest of
the information using less training data. This modeling approach provides more
accuracy and better extrapolation performance than ANN models and offers less
computational burden compared to the detailed physical/EM simulation models.

Knowledge based models are applied to reconfigurable 5-fingers microstrip patch
antenna using ANNs in this chapter. Source difference (SD), prior knowledge
input (PKI), and prior knowledge input with difference (PKI-D) [12, 14, 15, 19]
methods are considered as knowledge based neural networks. Employing fine and
coarse models in order to train the networks enables to develop fast and accurate
EM-ANN models. The developed antenna has four modes of operation, which
are controlled by two PIN diode switches with ON/OFF states, and it resonates
at multiple frequencies between 1 and 7 GHz. The antenna has several attractive
features such as reconfigurability, small size, and low cost. This example handles
the increasing requests for the continuing application of ANN in the reconfigurable
microstrip antenna design: reduction of model development cost and improving the
accuracy.

Conventional ANN modeling and knowledge based modeling techniques will
be presented in Section 2 and 3. Design of reconfigurable 5-fingers microstrip
patch antenna will be presented in Section 4. Three different cases such as ON–
ON, ON–OFF, and OFF–OFF will be handled with three training sets which
have different number of samples in Section 4. Simulation results demonstrate
considerable savings in computational costs as compared to the 3D-EM simulation
results obtained by CST while maintaining the same level of accuracy as the 3D-EM
simulation.

2 Conventional ANN Modeling Concept

ANN has been used as an important technique in engineering modeling and
optimization. ANN has been widely preferred for modeling purposes in many
disciplines such as function approximation, pattern recognition, signal processing,
microwave design, and so on [14, 23]. The main reason for ANN being so popular
among other modeling techniques is that ANN needs only input–output information
obtained from the detailed physical/EM simulation models. ANN usually involves
some necessary steps during training such as scaling, initialization of weight
coefficients, calculating error which is used for updating weight coefficients. The
main purpose of the training process is to reduce the error value as given in Fig. 1,
and to increase the generalization capability of the ANN model. Weight coefficients
can be obtained by the optimization process defined as



188 M. Simsek and A. Aoad

Fig. 1 The training process
(updating weight coefficients
in terms of error values) and
the final model of the
conventional ANN technique
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fANN
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e
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YANN

+
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+

»Yfine

w� D arg min
w

��� � � � e.i/T � � �
��� i D 1; 2; : : : ;N (1)

where w indicates weight coefficient of the ANN model and N indicates the number
of training data. i represents which training data is evaluated by the training process.
The error term in (1) can be defined as

e.i/ D ffine

�
x.i/f

�
� fANN

�
x.i/f

�
(2)

where ffine and fANN indicate the fine model and the ANN model responses,
respectively. xf indicates input of the problem. After the training process of the
ANN model, the final response of the ANN model can be given by

YANN D fANN
�
xf
�
: (3)

Since generalization of ANN is mostly determined by training data set, after the
training process the ANN model can generate response in terms of this data set.
Extrapolation data are selected differently than training data that’s why ANN
response will not be highly accurate as interpolation data. The problem specific
knowledge based on experience with respect to the engineering problem is required
to reduce the data dependency of the conventional ANN.

3 Fundamentals of Knowledge Based Modeling Technique

In engineering design problems, an accurate model for a wide application interval
can be obtained by a detailed physical/EM simulation model but it is highly
nonlinear and complex, so it is called fine model that has computationally intensive
mathematical expressions. In contrast, a less accurate and less computationally
intensive model can be utilized instead of the fine model for modeling and
optimization purposes, so it is called coarse model that has computationally less
complex mathematical expressions than the fine model.

Surrogate based modeling and optimization has been developed to dispose the
computational burden of the fine model exploiting a coarse model. In design
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optimization, the coarse model is used for the optimization process to find optimum
design parameters satisfying the design purpose. But the convergence of the
optimization process is directly effected by the accuracy of the coarse model.
When the coarse model generates quite similar response compared to the fine model
response, convergence is probably ensured during surrogate based optimization
process.

The knowledge based ANN (KBANN) has emerged to fulfill the requirement
for a more accurate model generation than the conventional ANN. The KBANN
techniques can create new model exploiting coarse model and this new model can
perform better accuracy and improve the generalization capability for interpolation
and extrapolation data. The key idea behind the success of the KBANN techniques
is that the more accuracy that is needed the more knowledge from the problem space
has to be obtained by the coarse model. Another way to overcome the need for more
knowledge instead of using the coarse model is to have more training data which
requires more effort for data generation.

3.1 Source Difference Method

The source difference method [21, 22] is one of the earliest methods utilizing the
knowledge based concept. The target response of the source difference method is
the difference between the fine and coarse models (existing approximate model)
responses. The coarse model imposes general knowledge behavior of the fine model,
thus extrapolation performance and generalization capability of the difference
method increase while the number of training data set decreases. In Fig. 2, training
phase and final model of SD method are denoted as the dotted line and the bold box,
respectively. The training process of ANN during SD modeling can be defined as

fANN
YSD

+ Yd

+
-

-

YANN

e

ªYd

+

+

+

ffine
Yfine

Ycoarse Ycoarsefcoarse
xf

YSD

Fig. 2 The training process (updating weight coefficients in terms of error values) and the final
model of SD technique embedded the coarse model as the difference between fine and coarse
outputs
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w� D arg min
w

��� � � � e.i/T � � �
��� i D 1; 2; : : : ;N: (4)

The error term in (4) can be defined as

e.i/ D

0
BB@ffine

�
x.i/f

�
� Y.i/coarse„ ƒ‚ …

Yd

1
CCA � fANN

�
x.i/f

�
(5)

where Ycoarse indicates the coarse model response and Yd indicates the difference
between the fine model and the coarse model responses. After the training process
of the SD model, the final response of the SD model can be given by

YSD D fANN
�
xf
�C Ycoarse: (6)

The complexity of ANN can be reduced by the coarse model due to Yd. Therefore
the SD model which is trained by less training data can provide similar accuracy
obtained by the ANN model.

3.2 Prior Knowledge Input Method

One of the knowledge based techniques is PKI which requires coarse model
response as an extra input besides other inputs that belong to the modeling problem
[19, 22]. Since extra inputs which contain extra knowledge other than model inputs
enables complexity reduction for the modeling problem. ANN can be formed easily
to generate a more accurate response. The training process of ANN during PKI
modeling can be defined as

w� D arg min
w

��� � � � e.i/T � � �
��� i D 1; 2; : : : ;N: (7)

The error term in (7) can be defined as

e.i/ D ffine

�
x.i/f

�
� fANN

�
x.i/f ;Y

.i/
coarse

�
: (8)

After the training process of the PKI model, the final response of the PKI model
YPKI can be given by

YPKI D fANN
�
xf ;Ycoarse

�
(9)
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fANN
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YPKI

+
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xf

e +

ffine
Yfine

Ycoarse
»Yfine

fcoarse

Fig. 3 The training process (updating weight coefficients in terms of error values) and the final
model of PKI technique embedded the coarse model as an extra inputs

where Ycoarse is used for extra input to the ANN model, hence the accuracy of the
PKI model can increase higher than conventional ANN modeling. The training
phase and the final model of the PKI are denoted as the dotted line and the bold
box in Fig. 3, respectively.

3.3 Prior Knowledge Input with Difference Method

PKI-D as shown in Fig. 4 is developed [13, 14, 19] to exploit the advantage of
utilizing the coarse model twice. PKI-D combines extra input property of PKI
and learning the output difference Yd calculated as the difference of fine Yfine and
coarse Ycoarse models in difference method [19]. ANN forms nonlinear mapping
from extended input space with coarse model response to difference between fine
and coarse model responses. During the training process, weight coefficients are
updated by

w� D arg min
w

��� � � � e.i/T � � �
��� i D 1; 2; : : : ;N (10)

considering the error term defined as

e.i/ D

0
BB@ff

�
x.i/f

�
� Y.i/coarse„ ƒ‚ …

Yd

1
CCA � fANN

�
x.i/f ;Y

.i/
coarse

�
: (11)
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Ycoarse Ycoarse

YPKI-Dfcoarse

Fig. 4 The training process (updating weight coefficients in terms of error values) and the final
model of PKI-D technique embedded the coarse model two times as the extra input and as the
difference between fine and coarse outputs

After training is completed, the final model response is ready for the test purpose as
follows

YPKI�D D fANN
�
xf ;Ycoarse

�C Ycoarse (12)

where Ycoarse is used for extra input to the ANN model and also used for obtaining
the difference Yd, hence the accuracy of the PKI-D model can increase higher
than conventional ANN modeling due to using this knowledge twice and PKI-D
generally provides better accuracy than even other KBANN methods. The training
phase and the final model of PKI-D are denoted as the dotted line and the bold box
in Fig. 4, respectively.

4 Reconfigurable 5-Fingers Shaped Microstrip
Patch Antenna

The Reconfigurable 5-Fingers Shaped Microstrip Patch Antenna (R5FSMPA) [2]
is used to perform efficiency of the knowledge based modeling through its three
configurations such as ON–ON, ON–OFF, and OFF–OFF states. Since ON–OFF
and OFF–ON generate same result, only ON–OFF state is considered. Design
parameters of R5FSMPA which are indicated in Fig. 5 are L1, L2, and L3 which
represent the length of the radiating patches and W1, W2 which represent the width
of the radiating patches and W3 which represents the unfilled space that includes the
two PIN diodes (D1 and D2) [1]. The feeding coaxial conductor is centered in the
middle of L3 with a radius of 0.065 cm. Two different resistors (RD1 and RD2) are
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Fig. 5 Physical parameters
of R5FSMPA

Table 1 Parameters of reconfigurable 5-fingers shaped microstrip patch antenna (r5fsmpa) and
data sets in terms of number of samples

Training data set Number of samples
Type of parameters Input parameters Minimum Maximum Set-1 Set-2 Set-3

Physical geometry L1 (cm) 1:2825 1:4175 3 4 5

L2 (cm) 0:7125 0:7875 3 4 5

L3 (cm) 0:9975 1:1025 3 4 5

Diode states

(ON or OFF)

RD1 5 (ON) 1000 (OFF)
3 3 3

RD2 5 (ON) 1000 (OFF)

Frequency sweep f 1 GHz 7 GHz 200 200 200

utilized with 1000 ohm and 5 ohm values for ON and OFF states of the PIN diodes
[8]. Right and left patches of R5FSMPA can be activated through ON and OFF states
hence three different combinations can be obtained by two diodes. This section is
divided into three parts in terms of the training data set. Each training set has three
geometrical parameters, two resistors of diode (ON and OFF states)and frequency
as input parameters. Return loss S11 as output response is obtained by CST 3D-EM
simulations. Physical dimensions of R5FSMPA are given in Table 1.

Input–output relationships of R5FSMPA are shown in Fig. 6 and S11 (return loss)
is obtained by 3D-EM simulation of CST in terms of 200 number of frequency
points between 1 GHz and 7 GHz. The relationship between frequency and S11 is
indicated by Fig. 7. Three different states of R5FSMPA are modeled via one ANN
structure while three states were modeled by three ANN structures in the previous
study [2].

In order to demonstrate the efficiency of knowledge based methods, three
different data sets can be considered. Selection of data sets is summarized in Table 2
including three data sets. Each data set is utilized as training samples for two
different number of neurons in ANN hidden layers. Therefore, all methods can be
analyzed in terms of the fundamental ANN properties such as the number of data
and the number of neurons to reveal the correlation between accuracy and other
ANN parameters.

ANN structure for the conventional ANN is realized by feed-forward multi-
layer perceptron (MLP) function in MATLAB Toolbox which utilizes Levenberg-
Marquard algorithm and such optimization parameters are: two hidden layer
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Fig. 6 Input–output relationship of the fine model for R5FSMPA

Fig. 7 Frequency-S11 relationship of the fine model for R5FSMPA

Table 2 Number of samples for three training data sets and test data

Antenna Frequency 1–7
Data type Geometry L1 L2 L3 switching states [GHz] Total samples

Training Set-1 3*3*3 = 27 3 200 3*3*3*3*200 = 16,200

Set-2 4*4*4 = 64 3 200 4*4*4*3*200 = 38,400

Set-3 5*5*5 = 125 3 200 5*5*5*3*200 = 75,000

Test 3 3 200 3*3*200 = 1800

with different number of neurons, learning rate = 0:1, momentum = 0:2, and
regularization = 0:2. Two hidden layer is so suitable for highly nonlinear engineering
problem hence it is preferred to form required ANN structure for the knowledge
based ANN and conventional ANN methods.

Error calculation is an important part of the comparison. Normalized test error
can be formulated by

Normalized Error D jYFine � YModelj
YFine

(13)
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where YFine and YModel indicate the fine model response and the model response
which is compared with the fine model response. Normalized mean error can be
formulated by

Normalized Mean Error D 1

N
�

NX
iD1

jYFine;i � YModel;ij
YFine;i

(14)

where i indicates the number of test samples. Normalized max error can be
formulated by

Normalized Max Error D max
i

� jYFine;i � YModel;ij
YFine;i

�
: (15)

After 20 runs are completed, normalized mean value of S11 is calculated for each
test sample. Normalized mean and maximum errors are calculated using (14) and
(15) in terms of S11 obtained from 20 runs.

4.1 Data Set � 1: 16;200 Samples

In this part, three states of the reconfigurable patch antenna are considered in terms
of the accuracy and time consumption for data set � 1 which consists of three
parameters, three states (ON–ON, ON–OFF, and OFF–OFF) and 200 frequency
points. The total number of data samples is 16; 200 obtained by three samples
selected from the training data interval for three physical geometries which are
multiplied by three states and 200 frequencies. Test data which includes nine
different geometry is selected from the training interval but each test geometry
is different than the training geometry. The test samples consist of three different
geometries for three states. Test performance can be demonstrated by one geometry
for each states of reconfigurable antenna. Conventional ANN and knowledge based
ANN methods run 20 times and average responses of test samples for EM, ANN,
and PKI-D are given in Fig. 8 for three different geometries. In addition, normalized
test errors of PKI-D and the conventional ANN are given in Fig. 9 for three different
geometries.

Accuracy of all methods are summarized in Table 3 for two different ANN
structure such as (30–30) and (30–20). Time consumptions of generating data set
and the training phase for all methods are given in Table 4 for ANN structure with
(30–20) neurons. Since the fine model is computationally complex, it requires more
computational time than the coarse model. The coarse model improves the accuracy
of all knowledge based methods compared to conventional ANN. The coarse model
is used for twice during training of PKI-D, which reduces the complexity of
modeling problem. Therefore, time consumption of PKI-D can be less than other
knowledge based methods such as SD and PKI.
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Fig. 8 MLP with two hidden layers (30–30 neurons) trained by 16,200 samples to show EM,
PKI-D, and conventional ANN results. (a) Magnitude of S11 for Geometry � 3 (ON–ON case)
(b) Magnitude of S11 for Geometry � 6 (ON–OFF case) (c) Magnitude of S11 for Geometry � 9
(OFF–OFF case)
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Fig. 9 MLP with two hidden layers (30–30 neurons) trained by 16,200 samples to show EM,
PKI-D, and conventional ANN results. (a) Normalized test error for Geometry � 3 (ON–ON
case) (b) Normalized test error for Geometry � 6 (ON–OFF case) (c) Normalized test error for
Geometry� 9 (OFF–OFF case)
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Table 3 Normalized mean errors at 16,200 data samples for all switching states

Tow hidden layers Error Coarse (Training) Coarse (Test) ANN SD PKI PKI-D

30–30 Mean 0:0485 0:0479 0:3739 0:0628 0:0748 0:0453

Max 0:4954 0:4719 3:1766 0:4647 1:1451 0:3056

30–20 Mean 0:0485 0:0479 0:3086 0:0630 0:0514 0:0433

Max 0:4954 0:4719 1:7161 0:4683 0:3423 0:3008

Table 4 Time consumption results of all methods trained by 16,200 data samples for all switching
states

ANN SD PKI PKI-D

Fine 1 h, 11 m 1 h, 11 m 1 h, 11 m 1 h, 11 m

Coarse – 0 h, 47 m 0 h, 47 m 0 h, 47 m

Max Training 0.462 m 0.217 m 0.220 m 0.203 m

Total 1 h, 11.462 m 1 h, 58.217 m 1 h, 58.220 m 1 h, 58.203 m

4.2 Data Set � 2: 38; 400 Samples

In this part, three states of the reconfigurable patch antenna are considered in terms
of the accuracy and time consumption for data set � 2 which consists of three
parameters, three states (ON–ON, ON–OFF, and OFF–OFF) and 200 frequency
points. The total number of data samples is 34; 800 obtained by four samples
selected from the training data interval for three physical geometries which are
multiplied by 3 states and 200 frequencies. The same test samples are used for
comparing set � 1 with set � 2. PKI is utilized instead of PKI-D to demonstrate
the general performance of knowledge based methods. Conventional ANN and
knowledge based ANN methods run 20 times and average responses of test samples
for EM, ANN, and PKI are given in Fig. 10 for three different geometries. In
addition, normalized test errors of PKI and conventional ANN are given in Fig. 11
for three different geometries.

Accuracy of all methods are summarized in Table 5 for two different ANN
structure such as (30–30) and (40–30). Time consumptions of generating data set
and the training phase for all methods are given in Table 6 for ANN structure
with (40–30) neurons. Since extra knowledge obtained by the coarse model reduces
the complexity of modeling problem, knowledge based methods require less time
for the training process of ANN structure. Time efficiency in training process of
knowledge based methods can be realized in Table 6.
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Fig. 10 MLP with two hidden layers (40–30 neurons) trained by 38,400 samples to show EM,
PKI, and conventional ANN results. (a) Magnitude of S11 for Geometry � 3 (ON–ON case) (b)
Magnitude of S11 for Geometry�6 (ON–OFF case) (c) Magnitude of S11 for Geometry�9 (OFF–
OFF case)
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Fig. 11 MLP with two hidden layers (40–30 neurons) trained by 38,400 samples to show EM,
PKI, and conventional ANN results. (a) Normalized test error for Geometry�3 (ON–ON case) (b)
Normalized test error for Geometry�6 (ON–OFF case) (c) Normalized test error for Geometry�9
(OFF–OFF case)
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Table 5 Normalized mean errors at 38,400 data samples for all switching states

Tow hidden layers Error Coarse (Training) Coarse (Test) ANN SD PKI PKI-D

30–30 Mean 0:0480 0:0479 0:2338 0:0606 0:0475 0:0409

Max 0:5288 0:4719 1:3846 0:4685 0:3787 0:2645

40–30 Mean 0:0480 0:0479 0:2126 0:0635 0:0428 0:0403

Max 0:5288 0:4719 1:4164 0:4676 0:3269 0:2747

Table 6 Time consumption results of all methods trained by 38,400 data samples for all switching
states

ANN SD PKI PKI-D

Fine 2 h, 44 m 2 h, 44 m 2 h, 44 m 2 h, 44 m

Coarse – 2 h, 34 m 2 h, 34 m 2 h, 34 m

Max training 2.679 m 1.028 m 1.116 m 1.016 m

Total 2 h, 46.679 m 5 h, 19.028 m 5 h, 19.116 m 5 h, 19.016 m

4.3 Data Set � 3: 75; 000 Samples

In this part, three states of the reconfigurable patch antenna are considered in terms
of the accuracy and time consumption for data set � 3 which consists of three
parameters, three states (ON–ON, ON–OFF, and OFF–OFF) and 200 frequency
points. The total number of data samples is 75; 000 obtained by five samples selected
from training data interval for three physical geometries which are multiplied by 3
states and 200 frequencies. The same test data is used for comparing set � 1 and
set � 2 with set � 3. SD is utilized instead of PKI to demonstrate the general
performance of knowledge based methods. Conventional ANN and knowledge
based ANN methods run 20 times and average responses of test samples for EM,
ANN, and SD are given in Fig. 12 for three different geometries. In addition,
normalized test errors of SD and conventional ANN are given in Fig. 13 for three
different geometries.

Accuracy of all methods are summarized in Table 7 for two different ANN
structure such as (45–45) and (50–40). Time consumptions of generating data set
and the training phase for all methods are given in Table 8 for ANN structure with
(50–40) neurons. Time efficiency in training process of knowledge based methods
can be realized in Table 8.

Knowledge based methods generally improve the accuracy of ANN model using
even less training data. This improvement is based on extra knowledge about input–
output relationship of the modeling problem. This extra knowledge enables to
reduce the complexity of the problem. Thus, more accurate results can be obtained
by knowledge based methods which utilize less data and fast modeling process.
Knowledge based methods provide more accurate results for 16; 200 samples
compared to 38; 400 samples for conventional ANN. The performance of knowledge
based methods with less training data can be realized in Table 9. Knowledge based
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Fig. 12 MLP with two hidden layers (50–40 neurons) trained by 75,000 samples to show EM,
SD, and conventional ANN results. (a) Magnitude of S11 for Geometry � 3 (ON–ON case) (b)
Magnitude of S11 for Geometry�6 (ON–OFF case) (c) Magnitude of S11 for Geometry�9 (OFF–
OFF case)
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SD, and conventional ANN results. (a) Normalized test error for Geometry� 3 (ON–ON case) (b)
Normalized test error for Geometry�6 (ON–OFF case) (c) Normalized test error for Geometry�9
(OFF–OFF case)



204 M. Simsek and A. Aoad

Table 7 Normalized mean errors at 75,000 data samples for all switching states

Tow hidden layers Error Coarse (Training) Coarse (Test) ANN SD PKI PKI-D

45–45 Mean 0:0475 0:0479 0:1903 0:0592 0:0409 0:0382

Max 0:6593 0:4719 1:4485 0:4690 0:3682 0:3271

50–40 Mean 0:0475 0:0479 0:2076 0:0583 0:0478 0:0397

Max 0:6593 0:4719 2:0250 0:4684 0:3265 0:3180

Table 8 Time consumption results of all methods trained by 75,000 data samples for all switching
states

ANN SD PKI PKI-D

Fine 4 h, 22 m 4 h, 22 m 4 h, 22 m 4 h, 22 m

Coarse – 3 h, 49 m 3 h, 49 m 3 h, 49 m

Max training 3.718 m 1.620 m 1.508 m 2.229 m

Total 4 h, 25.718 m 8 h, 12.620 m 8 h, 12.508 m 8 h, 13.229 m

Table 9 The accuracy comparison of all methods with different data samples and time
consumption results for all switching states

Methods Data samples Tow hidden layers Mean error Max error Time consumption

SD 16,200 30–30 0.0628 0.4647 1 h, 58.217 m

PKI 0.0748 1.1451 1 h, 58.220 m

PKI-D 0.0453 0.3056 1 h, 58.203 m

ANN 38,400 30–30 0.2338 1.3846 2 h, 46.679 m

ANN 75,000 50–40 0.2076 2.0250 4 h, 25.718 m

methods provide more accurate result for less training data, hence they are so
suitable to embed existing knowledge into modeling step of the engineering design
process.

5 Conclusion

Knowledge based modeling is applied to engineering modeling relevant to reconfig-
urable 5-fingers shaped microstrip patch antenna. The aim of this modeling problem
is to obtain S11 of antenna design parameters corresponding to the frequency.
Number of data and number of neurons directly effect ANN performance hence
both of them are utilized for the analysis and comparison between knowledge based
models and the conventional ANN model. Knowledge based methods with less data
are used in order to obtain more accurate results compared to conventional ANN
with more data. In addition, knowledge based methods require less time consump-
tion and even less training data through the coarse model efficiency. Knowledge
based methods should be selected for the engineering design problem to embed
the existing knowledge into the design process. Reconfigurable 5-fingers shaped
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microstrip patch antenna is selected to demonstrate the efficiency of knowledge
based methods which are easily applied to the modeling problem in the engineering
design process.
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Abstract Majority of practical engineering design problems require simultaneous
handling of several criteria. Although many of design tasks can be turned into single-
objective problems using sufficient formulations, in some situations, acquiring
comprehensive knowledge about possible trade-offs between conflicting objectives
may be necessary. This calls for multi-objective optimization that aims at identifying
a set of alternative, Pareto-optimal designs. The most popular solution approaches
to genuine multi-objective optimization include population-based metaheuristics.
Unfortunately, such methods are not practical for problems involving expensive
computational models, particularly for antenna engineering, where reliable design
requires CPU-intensive electromagnetic (EM) analysis. In this work, we discuss
two methodologies for expedited multi-objective design optimization of a six-
parameter dielectric resonator antenna (DRA) with respect to three design criteria.
The considered solution approaches rely on surrogate-based optimization (SBO)
paradigm, where the design speedup is obtained by shifting the optimization burden
into a cheap replacement model referred to as a surrogate. The latter is utilized for
generating the initial approximation of the Pareto front representation as well as
further refinement of the initially obtained Pareto-optimal solutions.
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1 Introduction

Design closure of contemporary antennas, especially in terms of automated adjust-
ment of geometry parameters with the aim of improving electrical performance, is
a difficult task. A realistic antenna setup comprises not only the radiator together
with the feeding structure but also other components such as connectors, housing,
or nearest environment of the structure [1–4]. This creates a considerable challenge
in terms of automated determination of the antenna geometry using numerical
optimization techniques: accurate performance evaluation can only be realized
using computationally expensive electromagnetic (EM) analysis and (conventional)
optimization algorithms require large number of analyses. Consequently, one of the
most popular approaches to adjustment of antenna geometrical parameters is based
on repetitive parameter sweeps (usually, one parameter at a time)—utilization of
engineering experience allows educated guesses about necessary dimension changes
so that satisfactory designs can be obtained in reasonable time. Nevertheless,
automation of parameter adjustment process is highly desirable. However, as
mentioned above, it may be impractical when conventional numerical optimization
methods (particularly, gradient-based [5], or derivative-free [6]) are utilized. Apart
from a large number of objective function evaluations (and, consequently, EM
simulations) necessary for the algorithm to converge to an optimum solution, there
are other issues, e.g., the presence of numerical noise [7].

Real-world design problems are even more challenging because of the necessity
of handling multiple and often conflicting criteria. Multi-objective optimization
typically aims at yielding the entire set of alternative designs corresponding to
the best possible trade-offs between such conflicting objectives [8]. The typical
performance criteria for antenna design include: minimization of the return loss
response within a defined frequency band [9, 10], maximization of the antenna gain
[11, 12], reduction of the side-lobe level [11, 13], etc. There are also additional
requirements related to antenna geometry, i.e., structure footprint or volume [7, 9,
14]. Conventional design optimization is based on aggregation of many objectives—
for the sake of simplicity—into a scalar merit function. Alternatively, the primary
objective can be optimized directly with the remaining ones handled through
design constraints. Identification of a set of alternative designs representing possible
trade-offs between conflicting objectives usually requires genuine multi-objective
optimization [7, 8]. In many practical situations, a priori preference articulation
regarding design objectives is either not possible or not desirable, e.g., when the
best possible design trade-offs between conflicting objectives (so-called Pareto
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front) are to be found. The most popular solution approaches for multi-objective
optimization involve population-based metaheuristics with particular emphasis on
evolutionary algorithms [9, 11, 15, 16] and particle swarm optimizers [17–20]. The
main advantage of such algorithms is their ability to process and outcome the entire
set of solutions in a single algorithm run. Unfortunately population-based routines
require thousands or even tens of thousands of objective function evaluations to
converge [9, 11]. Thus, in case of antenna design, metaheuristic-based optimization
is only practical when design evaluation time is not of a major concern [20, 21].

The problem related to high computational cost of multi-objective antenna
optimization can be alleviated to some extent by exploiting adjoint sensitivity
techniques, however, their availability in commercial simulation software packages
is still limited [22]. Improved computational efficiency can also be obtained by
means of surrogate-based optimization (SBO) approaches [22–24], particularly
space mapping [25], manifold mapping [26], or shape preserving response pre-
diction [27]. In SBO, the computational cost of the design process is reduced by
replacing the high-fidelity antenna model by an auxiliary low-fidelity representation
(usually in the form of coarsely discretized EM model). The former is iteratively
optimized and corrected to elevate it to the high-fidelity model level. The design cost
may be further reduced by a combination of SBO methods with response surface
approximation (RSA) models [28, 29]. Although SBO is mostly utilized in the
context of single-objective antenna design [30–32], a few successful applications
to multi-objective problems have been reported in the literature [7, 14].

Recently, an efficient procedure for multi-criteria antenna design that combines
SBO, low-fidelity EM models, and multi-objective evolutionary algorithm (MOEA)
has been proposed in [7]. The technique also features a procedure that permits
refinement of the Pareto-optimal solutions obtained by MOEA to elevate them to the
high-fidelity EM model level. An interesting variation of the approach exploiting
co-Kriging surrogates have been proposed in [14]. Unfortunately applicability of
these methods is limited to low-dimensional cases, because computational cost
of training data acquisition for RSA model generation grows exponentially with
the dimensionality of the search space. Thus, it is only practical for cases with
a few adjustable parameters. This challenge has been addressed by utilization
of appropriate design space reduction routines that allows for identification or
the reliable RSA model using reasonably small number of samples even in
higher-dimensional spaces. Design cases with more than a dozen of adjustable
parameters have been successfully solved [33–35] using this approach. In most
test cases demonstrated in the literature only two design objectives are explic-
itly considered (with additional criteria handled through appropriately defined
constraints) [34].

In this work, we discuss two design approaches for fast multi-objective optimiza-
tion of a contemporary antenna with respect to three non-commensurable design
requirements. Both techniques exploit variable-fidelity electromagnetic (EM) mod-
els, fast RSA models, as well as model correction mechanisms which allow for
precise allocation of the high-fidelity Pareto-optimal design solutions. The methods
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are demonstrated and compared using the example of a compact quasi-isotropic
dielectric resonator antenna (DRA). Additionally, we investigate the influence of
possible imperfections and statistical variability of multi-objective evolutionary
optimization of the approximation surrogate (an intermediate step of the design
process leading to the initial approximation of the Pareto front) on the quality of
the final Pareto set.

The chapter is organized as follows. In Section 2, we introduce the considered
DRA and describe the design objectives. The multi-objective optimization problem,
variable-fidelity EM-models, design space reduction techniques, as well as methods
of constructing the surrogate model are discussed in Section 3. In the same
section, we also describe the two alternative algorithmic frameworks for multi-
objective antenna design. The multi-objective optimization algorithms are applied
to our test case in Section 4, where we also discuss comparative experiments and
investigate the influence of evolutionary algorithm imperfections on the accuracy
and repeatability of the results. Section 5 concludes the chapter.

2 Design Case

The design example considered in this chapter is a compact, quasi-isotropic DRA
shown in Fig. 1 [34, 36, 37]. The antenna consists of a cuboid shape Taconic
CER-10 dielectric resonator ("rD 10, tanıD 0.0035) which is driven through a
cylindrical probe, fed from the bottom by a coaxial 50 ohm transmission line. The
design is based on a reference structure of [36] and slightly modified to introduce
additional degrees of freedom for the probe location, so that a better control of the
structure behavior during optimization process is ensured. The antenna geometry is
parameterized by a variable vector xD [a b c o1 o2 l]T , whereas dimensions dD 1.26
and gD 0.82 remain fixed to ensure 50 ohm input impedance. The conductor
thickness is fixed to TD 0.05 (all dimensions are in mm).

The design objectives are: F1—minimization of the antenna return loss
jS11j D jS11(x,f )j in the frequency band from fLD 2.4 GHz to fH D 2.5 GHz,
F2—reduction of the difference between minimal and maximal E-field strength
�GD�G(x,f ) in x–z plane (see Fig. 1c) at the center frequency fCD 2.45 GHz,
and F3—minimization of antenna volume defined as a cuboid VD a� b� c. The
requirements can be rigorously formulated as follows:

F1 .x/ D max fjS11 .x; f /j W fL � f � fHg (1)

F2 .x/ D �G .x; f / D fjmax fG .x; f /g �min fG .x; f /gj W f D fCg (2)

F3 .x/ D V (3)
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Fig. 1 A compact DRA: (a) structure visualization, as well as geometry of the antenna with
highlighted dimensions: (b) bottom-view and (c) cross-section view [35]. The light- and dark-
shade gray represent metallization (copper) and TLC-10, respectively; the white color represents
vacuum

It should be noted that only the designs for which the in-band return loss is below
�10 dB are considered acceptable. Consequently, design objectives (1) and (3) are
reformulated by introducing the penalty function components

Ui .x/ D Fi .x/C ˇi

�
max

� ˇ̌ˇ̌�10� Fi .x/

�10
ˇ̌
ˇ̌ ; 0

��
(4)

where i is objective index (1 or 3) for (1) and (3), respectively, and ˇi are
experimentally selected penalty factors (here, ˇ1D 105 and ˇ3D 100).

The initial solution space is defined using the following bounds: lD [3 3 3 –
0.45•a –0.45•b 0]T and uD [30 30 30 0.45•a 0.45•b 0.9•c]T . The linear constraints
are necessary to ensure that the probe is located within the resonator. The reference
design is x0D [27 27 14.5 1 0 0.9]T .

The high-fidelity antenna model Rf consists of about �1,000,000 hexahedral
mesh cells and its average evaluation time on a dual Intel Xeon E5540 machine with
6 GB RAM is 21 min. Due to high computational cost of evaluating the Rf model
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its direct multi-objective optimization is impractical. The process can be accelerated
by utilizing an auxiliary low-fidelity model Rc, which is a coarse-discretization
counterpart of Rf . It can be made significantly faster than Rf [7], which can be
achieved at the expense of some accuracy degradation (cf. Section 3.2). The low-
fidelity model Rc contains �55,000 mesh cells (evaluation time 35 s). Both models
are implemented in CST Microwave Studio and evaluated using its time domain
solver [38].

3 Multi-Objective Design Problem: Optimization
Methodology

In this section, we briefly outline the procedures for expedited multi-objective
optimization of expensive electromagnetic (EM) simulation models. We begin
by formulating the multi-objective design problem. Subsequently, we discuss
surrogate modeling techniques for narrowband antenna structures and briefly
recall data-driven modeling using Kriging interpolation. We also describe design
space reduction techniques, multi-objective optimization algorithm, and Pareto set
refinement method based on response correction. The section is summarized by a
description of the algorithm flows.

3.1 Problem Formulation

Let Rf (x) denote a computational model of the antenna structure under design.
This original (or high-fidelity) model is normally obtained through accurate but
computationally expensive electromagnetic (EM) simulation. The response vector
Rf (x) represent relevant figures of interest such as antenna return loss versus
frequency, gain, directivity, etc. Designable parameters (i.e., antenna dimensions)
are represented by a vector x.

Let Fk(x), kD 1, : : : , Nobj, be a kth design objective. Normally, the primary
design goal is to minimize the antenna return loss response (in particular, to
ensure jS11j ��10 dB in a predefined frequency band [9]). However, other objec-
tives, related to minimization of geometry (e.g., maximal lateral size, height, the
maximal area of the footprint, volume, etc.), maximization of gain, or minimiza-
tion/maximization of other performance measures may also be of interest [8, 21].

If Nobj > 1 then any two designs x(1) and x(2) for which Fk(x(1)) < Fk(x(2)) and
Fl(x(2)) < Fl(x(1)) for at least one pair k¤ l, are not commensurable, i.e., none is
better than the other in the multi-objective sense. In this case, a Pareto dominance
relation  is utilized [8]. For any two designs x and y, one says that x dominates
over y (x y) if Fk(x)�Fk(y) for all kD 1, : : : , Nobj, and Fk(x) < Fk(y) for all at
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least one k. A goal of multi-objective optimization is to find a representation of a
so-called Pareto-optimal set XP composed of the non-dominated designs from the
solution space X, such that for any x 2 XP, there is no y 2 X for which y x [8].

3.2 Surrogate Models for Narrowband Antenna Design

Considerable numerical cost of evaluating the high-fidelity model Rf makes its
direct multi-objective optimization prohibitive. Computational speedup can be
obtained using surrogate-assisted techniques [1, 7, 33], where the optimization
burden is shifted into the cheaper low-fidelity representation of the structure of
interest referred to as Rc. For the sake of brevity we omit here the detailed
description of the low-fidelity model setup. The details can be found in [23, 29].

Evaluation cost of the considered DRA antenna model (cf. Section 2) is reduced
by means of coarse mesh discretization. Consequently, the Rc is lacking accuracy
and it has to be corrected to become a reliable representation of Rf , especially in
terms of its return loss response (other characteristics, e.g., gain, are normally well
aligned for both Rf and Rc). In case of narrowband antennas such as the considered
DRA, the major type of discrepancy is frequency shift which can be reduced by
suitable frequency scaling.

The frequency-scaled Rc model (denoted as RcF) is defined as

RcF .x/ D Rc .x;’F/ (5)

where Rc(x,F) denotes explicit dependency of RcF on frequency F (in particular, it
can be evaluation of antenna jS11j for a range of frequencies). Further, we have

’F D ˛0 C ˛1F (6)

where (6) describes the affine frequency scaling [39]. The frequency scaling
parameters are obtained as

Œ˛0 ˛1� D arg min
Œ˛0 ˛1�

NrX
kD1

ˇ̌ˇ̌
Rf
�
xref :k

� � Rc
�
xref :k; ˛0 C ˛1F

�ˇ̌ˇ̌
(7)

where xref.k, kD 1, : : : , Nr , are certain reference designs (normally, the extreme
points of the Pareto set, cf. Section 3.4). The remaining (vertical) misalignment
can be reduced using multi-point response correction of the form

Rc .x/ D A � RcF .x/ (8)
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Fig. 2 Low-fidelity model correction of the return loss: (a) low- (dashed line) and high-fidelity
model (solid line) responses at one of the reference designs, as well as corrected low-fidelity model
response (open circle) at the same design; (b) corrected low- (open circle) and high-fidelity (solid
line) model response at another design [35]

where ĀD diag([a1 : : : am]) is a diagonal correction matrix obtained as

A D arg min
A

NrX
kD1
jjRf

�
xref :k

� � A � Rc
�
xref :k; ˛0 C ˛1F

� jj 2 (9)

The problem (9) can be reformulated as a linear regression problem which has an
analytical least-square solution.

The return loss characteristics of the low- and the high-fidelity model of the
antenna structure considered in Section 2, as well as corrected low-fidelity model
Rc at one of the reference designs and some other (verification) design are shown in
Fig. 2.

While the coarsely discretized model Rc is usually 10–50 times faster than Rf ,
it is still too expensive to be directly utilized for multi-objective optimization of
the considered DRA. Instead, we utilize a fast RSA surrogate model Rs, which
is constructed from sampled Rc data. Here, the RSA model is created using
Kriging interpolation [24]. The model accuracy is determined using cross-validation
technique [24], and the number of training samples is adaptively increased to ensure
that the average relative root mean square (RMS) error of the model (calculated as
jjRs(x) – Rc(x)jj/jjRc(x)jj and averaged over the testing set) is at most 3 %. The
selected design of experiments technique utilized to allocate the training samples is
Latin hypercube sampling (LHS). For more detailed description of the methods for
automated construction of the RSA model see [29, 33].
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3.3 Kriging Interpolation

Kriging is one of the most popular techniques for approximating sampled data
sets [40]. Here it is utilized to construct surrogate model Rs for multi-objective
optimization procedure, in particular, to generate the initial approximation of the
Pareto-optimal set and its further refinement [7, 33]. In this section, we provide a
brief background information about Kriging interpolation. Detailed surveys can be
found in [41, 42].

Let XBDfx1, x2, : : : , xNg denote a base set, such that the responses Rc(xj) are
known for jD 1, 2, : : : , N. Let Rc(x)D [Rc.1(x) : : : Rc.m(x)]T (components of the
model response vector may correspond to certain parameters, e.g., return loss or
gain evaluated at m selected frequency points). Here, ordinary Kriging (Simpson
et al. [40]) is utilized to estimate deterministic function f as fp(x)D�C "(x), where
� is the mean of the response at base points, and " is the error with zero expected
value, and with a correlation structure being a function of a generalized distance
between the base points. Here, we use a Gaussian correlation function of the form

R
�
xi; xj

� D exp
hXN

kD1�k

ˇ̌
ˇxi

k � xj
k

ˇ̌
ˇ 2i (10)

where � k are unknown correlation parameters used to fit the model, while xk
i and

xk
j are the kth components of the base points xi and xj.
The Kriging-based coarse model Rs is defined as follows:

Rs .x/ D ŒRs:1 .x/ : : : Rs:m .x/�
T (11)

where

Rs:j .x/ D �j C rT .x/R�1
�
f j � 1�j

�
(12)

with 1 being an N-vector of ones,

f j D
	
Rc:j

�
x1
�

: : : : : :Rc:j
�
xN
�
T

(13)

r is the correlation vector between the point x and base points

rT .x/ D 	R �x; x1� : : : : : :R
�
x; xN

�
T
(14)

whereas R is the correlation matrix between the base points

R D 	R �xj; xk
�


j;kD1;:::;N (15)
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The mean �j is given by �j D
�
1TR�11

��1
1TR�1f j. The corelation parameters � k

are found by maximizing [43]

� 	N ln
�

2
�C ln jRj
 =2 (16)

in which the variance 
2j D
�
f j � 1�j

�T
R�1

�
f j � 1�j

�
=N and jRj are both functions

of � k. Here, the Kriging model is implemented using the DACE Toolbox [44].

3.4 Design Space Reduction by Means of Single-Objective
Optimizations

Because of its low evaluation cost, the Kriging interpolation surrogate Rs can
be directly utilized (cf. Section 3.5) for generating the initial Pareto set using
MOEA. Even despite large number of model evaluations required to complete
the optimization process, the cost of such optimization is negligible compared to
simulation cost of the high-fidelity EM model. On the other hand, the number
of training points required to ensure desired accuracy of the interpolation model
grows very quickly with the number of design variables. Consequently, the cost of
setting up the Kriging model in high-dimensional spaces may quickly surpass the
computational savings of the entire surrogate-based multi-objective optimization
procedure. Moreover, the initial ranges of antenna geometrical parameters are
usually set rather wide to ensure that the Pareto-optimal set can be captured.
Clearly, construction of the RSA model in the large initial space may be impractical.
Therefore, the reduction of the initially defined design spaces is considered a crucial
step for successful EM-driven optimization.

Fortunately, the Pareto-optimal set normally resides in a very small region of the
initial design space [33]. Consequently, the ranges of parameters can be limited so
that the reduced space is as small as possible yet contains majority of the Pareto
front. The reduction procedure can be formulated as follows. Let l and u be the
initially defined lower and upper bounds for the design parameters. We define

x�.k/c D arg min
l�x�u

Fk .Rc .x// (17)

where kD 1, : : : , Nobj be an optimum design of the coarsely discretized antenna
model Rc obtained with respect to the kth objective. In the second stage, we obtain
the corresponding (approximate) high-fidelity model optima

x�.k/f D arg min
l�x�u

Fk
�
Rf .x/

�
(18)

The designs xf
*(k) are found using SBO. The most popular techniques utilized to

solve (18) include frequency scaling combined with additive response correction is
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Fig. 3 Reduction of the initial solution space X by means of single-objective optimizations (three-
objective case) [33]. The extreme Pareto-optimal points corresponding to the approximate extreme
Pareto solutions of the low- (filled square) (cf. (8)) and the high-fidelity model (filled circle) (cf.
(9)) determine the reduced design space XR (dashed lines)

utilized [7]. The typical cost of such a process corresponds to a few evaluations of
Rf [33]. The bounds of the reduced design space XR (see Fig. 3) are then defined as
follows:

l� D min

�
x�.1/c ; : : : ; x

�.Nobj/
c ; x�.1/f ; : : : ; x

�.Nobj/
f

�
(19)

and

u� D max

�
x�.1/c ; : : : ; x

�.Nobj/
c ; x�.1/f ; : : : ; x

�.Nobj/
f

�
(20)

It is worth mentioning that for typical shapes of the Pareto front the refined solution
space contains both the front for the low- and the high-fidelity models. The former
is essential because the RSA model created in [l*, u*] is a representation of Rc. The
latter is important to ensure sufficient room for improving the high-fidelity designs
if the refinement of the initial Pareto-optimal set is to be performed (cf. Section 3.6).

3.5 Initial Pareto Set Approximation

The initial approximation of the Pareto front is obtained by optimizing the Kriging
surrogate model Rs using a MOEA. In this work, a standard MOEA with fitness
sharing, Pareto-dominance tournament selection, and mating restrictions is utilized
[7, 8]. For the sake of brevity we omit the description of the algorithm components.
Interested reader is referred to [8, 45].

It should be noted that because the RSA model is very fast, one can afford
execution of MOEA at this stage of the process. In particular, in order to obtain a
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good representation of the Pareto front for the design problem with three objectives,
significant amount of model evaluations is needed. The algorithm setup utilized in
the numerical experiments reported in Section 4 is: 2000 individuals per iteration for
50 generations with a total of 106 Rs simulations. Nevertheless, the computational
cost of Rs optimization using MOEA is normally low and corresponds only to a few
evaluations of the high-fidelity EM antenna model, thus, if needed, the number of
EM simulations could be even larger.

Another important aspect of MOEA optimization of Rs is repeatability of the
results. The variance of the obtained Pareto front representations can be greatly
reduced by large population size mentioned in the previous paragraph to the extent
of being practically insignificant as indicated by our numerical experiments reported
in Section 4.4. On the other hand, for one of the algorithms considered here (see
Section 3.8), the initial Pareto set undergoes surrogate-based refinement process (cf.
Section 3.7). The latter allows further reducing statistical variations resulting from
MOEA optimization.

3.6 Design Space Confinement

While the design space reduction step allows for computationally feasible identifi-
cation of the Pareto-optimal solutions, considerable part of the reduced space would
contain designs that violate the fundamental requirement upon acceptable in-band
return loss level (cf. Section 2). This is due to high correlation between antenna
dimensions and its electrical properties [35]. Consequently, even a small change
of certain parameters may lead to unacceptable modification of antenna response.
In order to obtain more precise information about the interesting part of the Pareto
front, an additional confinement procedure is executed as described in the remaining
part of this section. It utilizes the feasible part of the Pareto set obtained within the
initially reduced design space.

Let XFDfxf
(k)gkD 1, : : : ,Nf , be the feasible subset of the initial Pareto set. The aim

of the confinement procedure is to identify a set of vectors vk, kD 1, : : : , n, and
dimensions dp.k, dn.k, kD 1, : : : , n (see Fig. 4 for symbol explanation) which define
the confined space XC, with respect to the center point xcD (1/Nf )

P
kD 1, : : : ,Nf xf

(k)

(XC center).
Let us assume that the vectors v1, : : : , vk–1 are already known and let MkDRn \

span(fv1, : : : ,vk–1g) be the orthogonal complement of the n-dimensional Euclidean
space Rn and the subspace spanned by v1 through vk–1; we also have MkDRn for
kD 1. The vector vk is found as the direction at which the diameter of the orthogonal
projection of XF – fxcg onto Mk, Pk(XF –fxcg) reaches minimum, i.e.,

vk D arg min
v2Mk

D .Pk .XF � fxcg/ ; v/ (21)
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Fig. 4 Conceptual illustration of the design space confinement technique: (a) the initial Pareto-
optimal set obtained within the initially reduced solution space XR and (b) its feature space
representation. The feasible and infeasible solutions (i.e., those with return loss above and below
the level of �10 dB) are marked using black and gray dots, respectively. The confined solution
space XC (c) is a box of the smallest possible volume that contains all feasible Pareto-optimal
solutions (d) obtained by MOEA optimization of the model identified within XR. The positive and
negative dimensions of the XC are obtained with respect to the center point xc (filled square). The
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Here, the diameter of a set Y in the direction of v, D(Y,v), is defined as

D .Y; v/ D max
y2Y

˚
vTy

 �min
y2Y

˚
vTy


(22)

Having the vectors vk, one can determine the sizes of the confined portion of the
space:

dp:k D max
x2XF

˚
vT

k x


dn:k D �min
x2XF

˚
vT

k x


(23)
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for kD 1, : : : , n. The obtained dimensions determine the maximum distance
between the center point xc and the points from XF (both “positive” and “negative”
as xc is not necessarily the confined space center) along the directions of the
vectors vk. A conceptual illustration of the space confinement technique is shown
in Fig. 4.

The confined design space XC is normally significantly smaller (volume-wise)
than the initially reduced one and the reduction rate will increase with the number
of the design variables. Consequently, the number of training samples necessary for
creating a reliable RSA model within XC is expected to be smaller than in XR.

The overall design space reduction scheme can be then summarized as follows:

1. Perform initial design space reduction;
2. Sample the reduced space XR, acquire Rc data, and construct the RSA;
3. Find initial Pareto set by optimizing RSA using MOEA;
4. Confine design space;
5. Reset the RSA model in the confined space.

3.7 Pareto Set Refinement

As shown in Section 3.2, the low-fidelity model Rc can be refined prior to
construction of the RSA model using appropriate correction techniques. While this
step allows obtaining more accurate representation of the Pareto front, it is not
mandatory. On the other hand, the Pareto set obtained by optimizing Rs model
constructed using only the low-fidelity model data is merely an approximation
of the true Pareto front, corresponding to the RSA model (which, in turn, is
an approximation of the low-fidelity EM simulation model Rc). The refinement
procedure [7, 33] described below aims at elevating a set of the selected designs
xs

(k), kD 1, : : : , K, extracted from the initial Pareto set found by MOEA to the
high-fidelity EM model level. The refinement stage exploits the additive response
correction (output space mapping, OSM) [23, 25, 33] of the following form:

x.k:iC1/f D arg min
x

F1
�
Rs .x/C

	
Rf
�
x.k:i/s

� � Rs
�
x.k:i/s

�
�
(24)

subject to

Fq .x/ � Fq
�
x.k:i/s

�
; q D 2; : : : ;Nobj (25)

The optimization process (24) is constrained not to increase the remaining
objectives as compared to xs

(k). The surrogate model Rs is corrected using the OSM
term Rf (xs

(k.i)) – Rs(xs
(k.i)) that ensures zero-order consistency between the models

(here, xf
(k.0)D xs

(k)) [46]. Consequently, the corrected surrogate coincides with Rf at
the beginning of each iteration. In practice, only 2–3 iterations of (10) are sufficient
to find a refined high-fidelity model design xf

(k). After completing this stage, a set
of Pareto-optimal high-fidelity model designs is created.



Expedited Simulation-Driven Multi-Objective Design Optimization. . . 221

3.8 Optimization Flows

The flow of the first multi-objective optimization algorithm considered in this
chapter can be summarized as follows [33] (Algorithm I):

1. Reduce design space using sequential single-objective optimizations (cf. Sec-
tion 3.4);

2. Sample the reduced solution space XR and acquire Rc model data;
3. Construct the Kriging interpolation model Rs (cf. Section 3.3);
4. Obtain the initial Pareto front by MOEA optimization of the RSA;
5. Refine selected elements of the Pareto set, xs

(k), to obtain the corresponding high-
fidelity model designs xf

(k) (cf. Section 3.7).

It should be noted that the algorithm involves high-fidelity model evaluations
only at its final stage. Typically, only two to three Rf simulations are required
per design to elevate the low-fidelity Pareto-optimal solutions to the high-fidelity
model level. Moreover, the number of Rf evaluations during the refinement process
is pretty much independent of the dimensionality of the design space. The Pareto
set obtained after Stage 5 is the final outcome of the multi-objective optimization
process.

The algorithm is numerically efficient and simple to implement. However, in
more problematic cases, such as the DRA considered in this chapter (more than two
objectives and majority of the Pareto set containing unacceptable designs from the
point of view of electrical performance of the antenna structure), it may yield a very
sparse representation of the interesting part of the Pareto front.

Better results can be obtained with the algorithm exploiting the design space
confinement of Section 3.6 and summarized here [35] (Algorithm II):

1. Perform design space reduction (cf. Section 3.4);
2. Correct low-fidelity model (cf. Section 3.2);
3. Sample the reduced design space XR and acquire the Rc data;
4. Construct the Kriging interpolation model Rs;
5. Obtain the initial Pareto front by optimizing Rs using MOEA;
6. Confine design space (cf. Section 3.6);
7. Reset the RSA model in the confined solution space XC;
8. Find final Pareto-optimal set by MOEA optimization of the RSA model.

The major difference between the algorithms are Steps 6–8 where the emphasis is
put on the part of the design space that contains acceptable Pareto-optimal solutions.
It should be noted that low computational cost of the algorithm is ensured by
utilization of the high-fidelity model only during Rc model correction step. At
the same time, the number of low-fidelity simulations required for construction
of the RSA model is typically a few hundred to more than a thousand, so that
the computational cost of the optimization process corresponds to a few dozen of
high-fidelity model evaluations (depending on the time evaluation ratio between
Rf and Rc which is problem dependent). On the other hand, the method requires
construction of two RSA models instead of just one as in the first algorithm.
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4 Numerical Results

In this section we discuss numerical results of multi-objective design optimization of
the compact dielectric antenna of Section 2. Two approaches are considered: design
of the antenna within initial solution space and further refinement of the initial
Pareto set using response correction technique as well as design of the structure
using corrected surrogate model identified within confined solution space. Both
considered methods are compared. Moreover, the influence of MOEA operation on
the shape of the Pareto front is also investigated.

4.1 Antenna Optimization Using Algorithm I

Here, we present the optimization results of the DRA of Section 2 using Algorithm
I (cf. Section 3.8). In the first step, the initial search space X has been refined using
the technique of Section 3.4. The ranges of the reduced solution space are: lrD [3.3
24.5 14.5 –0.03•a 0.37•b 0.63•c]T and urD [29.8 30 15.8 0.16•a 0.45•b 0.98•c]T .
The refined space is four orders of magnitude smaller (volume-wise) than the initial
one. Subsequently, a Kriging interpolation model Rs has been identified using 576
Rc samples (500 samples obtained using LHS scheme [47] supplemented with 64
corners of the hypercube and a total of 12 samples obtained at the center of each
design space face). The average relative RMS error of the Rs model, determined
using cross-validation [24], is 3 %. The initial Pareto front has been obtained using
MOGA. Finally, a set of 14 designs selected along the initial Pareto front has been
refined using response correction technique (cf. Section 3.7). Figure 5 shows the
initial front and the refined high-fidelity model designs.

Detailed information on the selected Pareto-optimal designs is provided in
Table 1. The high-fidelity design featuring the smallest E-field discrepancy of
4.97 dB has the volume of 9781 mm3 and return loss of �10 dB. The smallest
antenna design listed in Table 1 is characterized by the largest E-field discrepancy
of 8.1 dB and return loss of �10.8 dB. Finally, the lowest in-band jS11j D�13.2 dB
has been obtained for the design with E-field discrepancy of 5.43 dB and volume
of 10,164 mm3. The ranges of variability of the three objectives F1, F2, and F3

along the Pareto front are 3.2 dB, 3.1 dB, and 7308 mm3, respectively. The results
indicate that the influence of antenna miniaturization on the remaining objectives
is significant. The return loss characteristics and the radiation patterns of selected
high-fidelity antenna designs are shown in Figs. 6 and 7.

The overall cost of DRA optimization corresponds to about 75 Rf simulations
(�26.2 h of CPU-time) and includes: 610 Rc and 567 Rc evaluations for determina-
tion of reduced space bounds and identification of the Kriging interpolation model,
as well as 42 Rf evaluations required for the refinement of the selected Pareto-
optimal designs.
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Fig. 5 The initial (cross) and refined (open circle) Pareto set representation obtained by the first
multi-objective optimization algorithm of Section 3.8. Thick-line circles denote selected designs
listed in Table 1. Note that considerable fraction of the initial Pareto set violates the requirement
concerning maximum acceptable in-band return loss jS11j

Table 1 Selected Pareto-optimal designs of the DRA antenna

Design variables [mm]
No. F1 [dB] F2 [dB] F3 [mm3] a b c o1 o2 l

1 �10.0 5.0 9780 25.5 25.5 15.1 1.0 11.0 9.9
2 �10.2 5.9 6564 16.1 27.2 15.0 1.0 11.8 9.9
3 �10.4 6.9 4792 11.3 28.5 14.8 0.8 11.6 10.2
4 �11.8 7.8 3962 9.2 29.7 14.6 1.0 12.1 10.0
5 �13.2 5.4 10,163 26.6 26.3 14.5 1.3 11.1 9.2
6 �12.6 6.0 7870 19.9 27.3 14.5 1.6 12.3 9.2

4.2 Antenna Optimization Using Algorithm II

In this section, we present the optimization results of the DRA using the algorithm
of Section 3.8. The initially reduced solution space is the same as the one obtained
in Section 4.1. Next, the Rf responses of the extreme designs that form the refined
space XR (cf. Section 3.4) have been simulated and utilized for correction of the Rc

model responses (cf. Section 3.2). The RSA model has been constructed using the
same set of 576 samples and optimized using MOGA to determine the initial Pareto
front. In the next step, the acceptable part of the Pareto set (i.e., the designs with
in-band return loss below �10 dB) has been utilized to confine the solution space
using the procedure of Section 3.6. The confined space is five orders of magnitude
smaller (volume-wise) than X. Subsequently, the Rs model has been reset within XC

using only 170 Rc samples generated using LHS scheme [47]. The average relative
RMS error of the final RSA model is only 1.5 %. Finally, the Pareto front has
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Fig. 6 Return loss characteristics of the DRA designs from Table 1
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Fig. 7 E-field radiation patterns of the DRA designs from Table 1

been obtained by MOGA optimization of the new Rs model. It should be noted
that due to correction of the Rc model responses prior construction of the RSA, the
obtained results are the final outcome of the design optimization procedure (no need
for further refinement).

The Pareto-optimal set obtained within the confined solution space is shown in
Fig. 8, whereas dimensions of the selected high-fidelity model designs evaluated for
verification purposes are listed in Table 2. Overall, the results are in good agreement;
however, a slight misalignment of jS11j between Rs and Rf model responses can
be observed. It is due to residual inaccuracy of the corrected low-fidelity model
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Fig. 8 The initial (cross) and refined (open circle) Pareto set representation obtained by the first
multi-objective optimization algorithm of Section 3.8. The thin-line circles denote high-fidelity
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gathered in Table 2

Table 2 Selected Pareto-optimal designs of the DRA antenna

Design variables [mm]
No. F1 [dB] F2 [dB] F3 [mm3] a b c o1 o2 l

1 �10.0 4.8 11,337 29.2 25.2 15.4 2.5 10.7 10.0
2 �11.3 5.1 10,812 28.9 25.4 14.7 2.0 10.3 9.4
3 �10.8 5.9 6760 16.5 27.2 15.1 0.9 11.5 9.7
4 �11.4 6.8 5699 13.3 28.6 15.0 1.7 11.1 9.7
5 �10.6 7.9 3514 8.0 29.6 14.8 0.8 11.7 10.6
6 �10.5 5.4 8522 21.4 26.2 15.2 1.2 10.9 9.8

(the discrepancies are below 0.5 dB). At the same time, the responses of F2 and
F3 remain accurate. Among the evaluated high-fidelity designs, the antenna with
smallest volume exhibits largest E-field discrepancy of 7.9 dB and return loss of
�10.6 dB. The design with lowest E-field variations of 4.81 dB features the largest
volume of over 11,000 mm3 and barely acceptable return loss of �10 dB. Finally,
the lowest in-band return loss of �11.4 dB has been obtained for relatively compact
design with a volume of almost 5700 mm3 and E-field discrepancy of 6.84 dB.
The ranges of variability of objectives F1, F2, and F3 along the Pareto front are
2.3 dB, 3.1 dB, and 7823 mm3 (69 %), respectively. Return loss characteristics and
radiation patterns of antenna designs from Table 2 are shown in Figs. 9 and 10,
respectively.
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Fig. 9 Return loss characteristics of the DRA designs from Table 2
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Fig. 10 E-field radiation pattern of the DRA designs from Table 2

The cost of multi-objective DRA optimization using the space confinement
technique corresponds to about 42 Rf simulations (�14.5 h of CPU-time) and
includes: 610 Rc evaluations for the initial design space reduction, 4 Rf and 567
Rc simulations for correction of the Rc and identification of the initial RSA model,
as well as 170 Rc to establish second Kriging model within the confined design
space.
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4.3 Comparison of the Methods

The obtained results indicate that the cost of space reduction using the confinement
technique (cf. Section 3.6) is significantly larger than for the basic method of Sec-
tion 3.4. On the other hand, correction of the low-fidelity data prior to construction
of the RSA model allows reducing the overall cost of multi-objective optimization
within the confined space (cf. Section 4.2) by 44 % in comparison to the results of
Section 4.1. This is because the cost of model correction for the first algorithm of
Section 3.8 grows approximately linearly with the number of samples selected for
correction, whereas for the second algorithm it is pretty much independent of the
size of the sample set. At the same time, both methods provide similar results in the
feasible region of the solution space.

The most important feature of the confinement technique is its ability to
accurately capture the region of the search space that contains acceptable designs.
Thus, more comprehensive information about the Pareto-optimal designs that are
acceptable for the electrical performance standpoint can be obtained. This is not the
case for Algorithm I, where most of the Pareto-optimal designs are of no practical
value because of violating design specifications with respect to the return loss (see
Fig. 5).

4.4 Statistical Analysis of MOEA

The influence of the MOEA operation on the results of the discussed design
optimization algorithms has been verified through statistical analysis. It should be
noted that the quality of the results obtained by MOEA may be of importance only
for the procedure described in Section 4.2, because MOEA optimization is the final
stage of the design process. In Algorithm I, the designs are further refined (cf.
Section 4.1).

The MOEA has been reset 50 times within refined solution space. Clearly the
Pareto fronts for the design problems with three objectives form a landscape, so that
the results of statistical analysis and their mean are shown only for selected planes
(see Fig. 11 for plots). The calculated standard deviation and average distance from
the mean value are 0.04 dB and 0.03 dB, respectively. At the same time the largest
discrepancy between the obtained Pareto sets and the mean within defined solution
space is 0.32 dB. Such variability of the results has no meaningful influence on
the structure behavior from the engineering standpoint. Consequently, the effect of
the MOEA operation on the results of the discussed multi-objective optimization
scheme is negligible.
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Fig. 11 Projections of the Pareto-optimal sets obtained in 50 runs of MOEA (gray lines) and the
average (black line). Discrepancies between individual runs are insignificant from the engineering
point of view, particularly given the range of variability for the design objectives. It should be
noted that the results beyond the red plane violate the requirements upon minimal acceptable in-
band jS11j (assumed to be below �10 dB), so that they are irrelevant

5 Conclusions

In this chapter, the problem of fast multi-objective design optimization of narrow-
band DRA with respect to three non-commensurable objectives is considered. The
presented techniques exploit RSA models, variable-fidelity EM simulations, MOEA
and surrogate-based correction techniques. Construction of an accurate RSA model
is possible by restricting the initial search space to the region that contains Pareto-
optimal solutions.

Two reduction techniques based on sequential single-objective optimizations and
confinement of the feasible fraction of Pareto set are discussed. The second method,
allows for more precise identification of the relevant part of the Pareto front, in
particular, identification of those designs are acceptable from the point of view of
electrical performance parameters. For both algorithms, the computational cost of
obtaining a representative subset of the Pareto-optimal designs corresponds to only
a few dozen of evaluations of the high-fidelity EM simulation model of the antenna
structure.

The obtained results indicate that changes of the antenna geometry noticeably
influence its return loss response and radiation pattern characteristics. Statistical
analysis of MOEA revealed that its stochastic nature has negligible influence on
accuracy of the optimization results. Overall, the frameworks discussed in this
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work may be considered as a step towards computationally efficient multi-objective
design optimization of antenna structures involving expensive EM simulation
models.
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Optimal Design of Photonic Crystal
Nanostructures

Abdel-Karim S.O. Hassan, Nadia H. Rafat, and Ahmed S.A. Mohamed

Abstract Simulated-driven optimization plays a vital role in the optimal design of
engineering systems. The presented work in this chapter considers approaches for
obtaining the optimal design of some photonic crystal (PC) nanostructures. PCs are
periodic dielectric/dielectric or dielectric/metallic nanostructures manipulating the
flow of light. They are one of the most emerging physical systems that have attracted
the attention of engineers and scientists, in the last few decades, for their promising
applications in many areas. Two optimization approaches are used for achieving
the optimal design of one-dimensional (1D) PC nanostructures. The first approach
is based on minimax optimization criterion that best fits the design specifications,
while the second one is based on design centering criterion, to maximize the
probability of satisfying design specifications. The proposed approaches allow
considering problems of higher dimensions, in addition, optimizing over the PC
layers’ thickness and/or its material type. Two practical examples are given to
demonstrate the flexibility and efficiency of these approaches. The first is a 1D
PC-based optical filter operating in the visible range. The second example is a 1D
PC-based spectral control filter, working in the infrared range, and enhances the
efficiency of thermophotovoltaic systems.
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1 Introduction

Simulated-driven optimization plays a vital role in the design cycle of engineering
systems. Besides achieving the optimal system design, it provides an important
road map to save time and money before doing the fabrication step. In general,
an engineering system is characterized by a set of designable parameters � 2 R

n;

where n is the number of design parameters, and its performance is described in
terms of some measurable quantities fi .�/ ; i D 1; 2; : : : ;m: These performance
measures are usually evaluated through numerical system simulations. According to
the application, design specifications are suggested by designer through specifying
bounds on the performance measures. These design specifications define a region
in the design parameter space called feasible region Rf . If a point � lies inside the
feasible region Rf , then all the corresponding design specifications are satisfied. The
objective is to find the optimal design point within Rf that best fits the predefined
design specifications. Generally, the problem of finding optimal design point can
be formulated as an optimization problem according to the used criterion [1],
i.e., finding the optimal design point of the system necessitates the solution of an
optimization problem.

Various optimization criteria can be used to achieve the optimal design that best
fits the required specifications of the system. These criteria may be, for example,
least-squares criterion, minimax criterion, and design centering criterion. Accord-
ingly, several optimization techniques can be employed in optimizing engineering
systems. Each technique has its own advantages and drawbacks. Nevertheless, there
is no specific technique that has the absolute superiority over the others. The
superiority of a technique over another depends on the type of application and
engineering system involved.

Photonic crystal (PC) structures are one of the most emerging physical systems
that have attracted the attention of engineers and scientists, in the last few decades,
for their promising applications [2]. Generally, the PCs are composed of dielectric–
dielectric or metallic–dielectric nanostructures which are repeated regularly in a
way that may result in the appearance of what is being called photonic band gap
(PBG). The PBG is defined as a range of forbidden frequencies within which
transmission of light is blocked, as it is totally reflected and/or absorbed. This PBG
exists as a result of the multiple Bragg scattering of the incident electromagnetic
waves (EMW). According to the number of directional axes in which dielectric
materials exhibit periodicity, PCs can be classified into three types: one-, two-, or
three-dimensional PC structures.

The one-dimensional photonic crystal (1D PC) structures consist of a periodi-
cally repeated configuration of double/triple layers. Although they are the simplest
among these types due to the ease of fabrication and analyzing, they have received
the most attention of researchers and engineers because of their numerous promising
applications. Among these applications: high reflecting omni-directional mirrors,
anti-reflection coatings, low-loss waveguides, low threshold lasers, high quality
resonator cavities, and photonic-based active devices [3, 4]. Moreover, these 1D PC
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Fig. 1 Basic structure of a 1D PC

structures can form the basis of photonic filters operating over frequency spectrum
ranging from radio waves up to optical wavelengths, passing by infrared and
ultraviolet ranges.

Nowadays 1D PC filters, consisting of a periodically repeated configuration of
double/triple layers as shown in Fig. 1, are playing a vital role in a wide range
of applications of many areas of science. For instance, these applications include
ultrahigh speed wireless communications, eye protection glasses, and anti-reflecting
coating for solar cells. They are also utilized in biological, chemical imaging, and
security screening. In addition to this, photonic filters are commonly used in space
science and laser applications as well as thermophotovoltaic (TPV) applications
[4–20].

According to the application type and the desired specifications, the required
filter differs among wide band, narrow band, or selective pass/stop filters at selected
wavelength ranges. However, the only common factor among these cases remains in
the problem of finding the optimal design which best fits the desired performance.
The traditional design of such 1D PC filters is the quarter-wave thick (QWT) design,
in which, for a given material type the layer thickness is adjusted to satisfy the
condition: njdj D �0

4
, where nj and dj are the layer refractive index and thickness,

respectively. �0 may be the central wavelength of band gap or stopband of the
corresponding filter.

In order to improve the characteristics and performance of a given 1D photonic
filter, it is necessary to change the design approach from the traditional design
of QWT layers design to a non-quarter-wave thick design [12]. This leads to an
increase of the designable parameters which makes the filter design problem much
more complicated. Also, it becomes so hard to predict, by intuitive PBG analysis, the
behavior of the filter response due to specific variations of parameters. Therefore, the
need for employing a simulated-driven optimization approach, seeking to achieve
the optimal filter design, highly increases.
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The general structure of 1D PC filter, like any engineering system design, is
characterized by a set of designable parameters � which might be the refractive
index of the layer nj, the layer thickness dj, and the number of periods N, as
shown in Fig. 1. The filter performance is described in terms of some measurable
quantities fi .�/ ; i D 1; 2; : : : ;m: These performance measures may be the output
transmittance, reflectance, or absorbance response of the filter and are usually
evaluated through numerical system simulations. As previously mentioned, the
design specifications can be defined by specifying bounds on the performance
measures. These design specifications define the feasible region Rf in the design
parameter space such that if a point � lies within Rf then all the corresponding
design specifications will be satisfied. The objective is to find the optimal design
point within the feasible region Rf that best fits the desired defined design
specifications. Such problem of finding optimal filter design point can be formulated
as an optimization problem according to the used criterion [21–29]. In this study
we will use two different criteria in obtaining the optimal design namely: minimax
optimization criterion and design centering optimization criterion.

The optimal design of 1D PC filters has been treated, in literature, through
different strategies [12–18]. For example, Asghar et al. obtained the optimal design
of a wide band pass optical filter (WBP-OF) by employing an approach based on
genetic optimization algorithm [12]. Another design technique based on genetic
algorithm was also studied, by Jia et al. [13]. Besides, Celanovic et al. [14] and Xuan
et al. [15] applied genetic algorithm to achieve the optimal design of EMW filters.
Moreover, Baedi et al. [16] have achieved the optimal design of a narrow band
pass filter by using an approach based on particle swarm optimization. Recently,
Badaoui and Abri [17] have proposed an optimization technique based on simulated
annealing to obtain the optimal design of selective filters.

However, all these presented approaches have some drawbacks, mainly, the
excessive number of required function evaluations, some practical cases need more
than thousands of function evaluations, and low convergence rate in reaching to an
optimal design point. Also, all of these approaches are not guaranteed to converge
to an optimal design point, starting from any initial point, since their optimization
algorithms are based on uncertainties. Inflexibility to adapt the aforementioned
techniques to other filter design problems is another pitfall.

Another strategy, seeking to find the optimal refractive index values of multi-
layered structures using convex optimization, was proposed by Swillam et al. [18].
However, this approach fixes the layers thickness to their QWT values, in order
to guarantee a convex optimization problem. In addition, the complexity of the
corresponding design problem increases in order to realize values of the optimized
refractive indices.

In this chapter the optimal design of one-dimensional (1D) PC structures is
treated through two different optimization approaches. The first approach is based
on minimax optimization criterion [26–29] that belongs to the class of nominal
design optimization where nominal values of designable parameters are varied to
achieve a feasible design point that best fits the design specifications. This approach
is very commonly used in Electromagnetic (EM)-based design [30–33]. The second
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approach is based on statistical design centering criterion belonging to design
centering optimization approaches [1, 21–25, 34, 35], in which the objective is to
maximize the probability of satisfying design specifications (yield function). The
aim of the design centering approach is to make the optimized system immune
against statistical variations, occurring in the system parameters, inherent to the
fabrication process and model uncertainties.

The proposed optimization approaches allow considering problems of higher
dimension than usually done before. The validity, flexibility, and efficiency of the
proposed approaches are demonstrated by applying them to obtain the optimal
design of two practical examples. The first is a 1D PC-based optical filter operating
in the visible range. Contrarily, the second example is a 1D PC-based spectral
control filter, working in the infrared range, which is used for enhancing the
efficiency of thermal-photovoltaic systems. The approaches show very good ability
to converge to the optimal solution, for different design specifications, regardless of
the starting design point. Optimizing over both layers thickness and material types
is considered as well. The optimized structures exhibit output responses which go
far beyond typical physical intuition on periodic media design. This ensures that the
introduced approaches are robust and general enough to be employed for achieving
the optimal design of all 1-D photonic crystals promising applications.

2 1-D Photonic Crystal Filters: Structure
and Governing Equations

The general structure of photonic filters is a 1-D PC which comprises of a unit cell
repeated N times. This unit cell consists of two or three dielectric/metallic layers,
as shown in Fig. 1. The filter is surrounded from front and back by incident and
substrate media with refractive indices n0 and ns, respectively. This periodic layered
structure of the filter configuration is defined by the number of periods, N, the layer
thicknesses, dj, and their refractive indices, nj.

Generally, the propagation of EMW onto periodic photonic crystal structures is
governed by the decoupled Maxwell’s equation for non-magnetic, charge free, and
current free materials [2] which is stated as:

r � r � E .r/ D !2

c2
"r .r/E .r/ ; (1)

where "r(r) is the periodic relative permittivity of the structure, E is the electric
field vector, ! is the angular frequency, and c is the speed of EMW in free space.
Consider the case of 1D layered structure where the stack layers are normal to the
x-axis (see Fig. 1). Also, assume normal incidence of polarized light, that is, the
light propagates through layers and falls perpendicularly on each layer’s interface.
Thus, Eq. (1) is reduced to:

@2Ez.x/

@x2
C !2

c2
"r.x/Ez.x/ D 0; (2)
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Solving Eq. (2) leads to a general form of the electric field in the j-th layer:

Ej.x/ D aje
injk.x�xj/ C bje

�injk.x�xj/; (3)

where aj and bj are the forward and backward electric field amplitudes in the j-th
layer, respectively (as shown in Fig. 1). While xj is the coordinate of the j-th interface
and k is the free space wave number. By solving Eq. (2) in all regions together
with the boundary conditions, we can determine the transmittance, reflectance, and
absorbance response of the concerned filter.

The standard transfer matrix method (TMM) [36, 37], which is frequently used
in optics, is used to analyze the propagation of the EMW signals through the layered
media of the filter. The TMM is based on applying the simple continuity conditions
of the electric field, that follow from Maxwell’s equations, at each interface. The
tangential component of the electric field and its first derivative must be continuous
across boundaries from one medium to the next. Hence, by imposing these boundary
conditions, the electric field amplitudes between any two successive layers can be
related by the following transfer matrix:

Mj;jC1 D
"
1
2

�
1C �j

�
einjkdj 1

2

�
1 � �j

�
e�injkdj

1
2

�
1 � �j

�
einjkdj 1

2

�
1C �j

�
e�injkdj

#
; (4)

where �j D nj=njC1 is the refractive index ratio between the j-th and the
�

jC 1
�

-th

layer. Thus,
�

ajC1
bjC1

�
D Mj;jC1

�
aj

bj

�
; (5)

A total transfer matrix of the system, MT , arises from the product of all transfer
matrices related to all structure layers MT D M˛N;S M˛N�1;˛N : : :M2;3 M1;2 M0;1

where ˛N is the total number of layers of the concerned structure (as declared in
Fig. 1), and ˛ is equal to 2 or 3 according to the number of layers per unit cell.

The forward amplitude of the incident medium, a0, is assigned to a fixed value
r0, and by introducing one more boundary condition on the backward amplitude of
the substrate, b˛NC1 D bs, to be equal to zero; the amplitude of the transmission and
reflection coefficients (t and r) can be related by the total transfer matrix MT as:

�
t
0

�
D MT

�
r0
r

�
; (6)

Thus, from this relation, the amplitude transmission and reflection coefficients
can be derived from the elements of the total transfer matrix, yielding:

t D
�

M11 � M12M21

M22

�
r0 and r D �M21

M22

r0; (7)

where M11, M12, M21, and M22 are the elements of the total transfer matrix, MT .
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The associated transmittance, T, and reflectance, R, which are often of more
practical use, are calculated from:

T D ns

n0
jtj2 and R D jrj2; (8)

Finally, the absorbance A is obtained from: A D 1 � T � R.

3 Minimax Optimal Design of 1-D PC Filters

In fact, a wide class of engineering system design problems can be formulated as
minimax optimization problem. The minimax objective functions result from lower
and/or upper specifications imposed on the performance measures of the system.
Although the concept of minimax is rather traditional [26], it is still effectively used
in many engineering design problems, especially filter design problems [26–33].
Moreover, the minimax optimization criterion is preferable for such filter design
problems because it tends to achieve an equal-ripple response of the obtained
optimal design [28]. Besides, the minimax approach searches for a better design
point even if all the desired specifications were satisfied which allow to have much
exceeded satisfactions of the desired specifications.

In the presented work, the design problem of 1D PC filter is formulated as a
minimax optimization problem [38]. For solving the resultant minimax optimization
design problem, it is formulated as a nonlinear programming problem. This problem
can be solved by making use of readily available software tools, e.g., MATLAB [39].
The efficiency, reliability, and flexibility of the proposed approach are demonstrated
by applying it to obtain the optimal design of two practical filters, WBP-OF and
spectral filter, that are operating in two different spectrum regions and are used in
two separate applications.

In general, the photonic crystal filter system parameters (dj and nj) are assembled

in a vector, � 2 R
2p, where � D 	

d1 d2 : : : dp n1 n2 : : : np

T

, N is the number of
periods, and p D ˛N is the total number of layers.

A certain photonic filter is required to pass the incident EMW signals related
to wavelength values located at passband region(s) and to stop/reject the signals
within the stopband region(s). The ranges and locations of both the passband and
stopband regions are varying according to the concerned application and needed
filter type. The desirable ideal transmittance response of any filter can be expressed
as satisfying the following condition:

TI .�/ D
�
100%; for � 2 ƒp

0%; for � 2 ƒs
; (9)
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where TI(�) is the ideal transmittance at certain wavelength value �, whereasƒp and
ƒs are the sets of wavelength values located in the passband and stopband regions,
respectively.

In practice, the condition required in Eq. (9) can never be achieved. Therefore,
a set of some design specifications U(�) is introduced to describe an acceptable
transmittance response:

U .�/ �
�
� � �

2
< T < � C �

2
; for � 2 ƒp

T < ˇ; for � 2 ƒs
; (10)

where � and ˇ are bounds of the desired transmittance or average transmittance
at the passband and stopband regions, respectively, whereas � represents the
acceptable percentage of ripples within the passband region (PBR).

Practically, we consider a finite number of wavelength samples in the spectrum
range such that satisfying the specifications at these points implies satisfying them
almost everywhere. Let mp and ms be the number of sample points in the passband
and stopband regions, respectively. In this case the continuous specification function
(10) is approximated by the discrete specification function:

Ui �
�
� � �

2
< T .�i/ < � C �

2
; i 2 I1

T .�i/ < ˇ; i 2 I2
; (11)

where I1 D
˚
1; 2; : : : ;mp


and I2 D f1; 2; : : : ;msg are finite sets of integers.

On the other hand, it should be emphasized that not all the design parameters, �,
are supposed to be optimized; only a subset of �, denoted by the design variables
x � �, is selected. Fabrication techniques or technologies may also introduce
additional restrictions on the possible values of these design variables. Thus, we
may have upper bounds, �uj, or lower bounds, � lj, on some design variables, xj.
These constraints can be stated as follow:

�lj < xj < �uj; j 2 J; (12)

where J D f1; 2; : : : ; ng is a finite set of integers.
Error functions, ei, arise from the deviation between each desired specification,

Ui, and its corresponding calculated response, Ti(x). However, to have a single type
of errors, the upper and lower specifications should be formulated properly. So that,
the constraints on design variables can be defined as:

ei .x/ < 0; for all i 2 I1 [ I2, where

ei .x/ �

8<
:
� � �

2
� T .x; �i/ ; i 2 I1

T .x; �i/ � � � �
2
; i 2 I1

T .x; �i/ � ˇ; i 2 I2

(13)
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It is clear that a negative error function indicates a satisfaction of the correspond-
ing specification, whereas a non-negative error function indicates a violation of the
corresponding specification. The union of all of these error functions forms the
feasible region Rf � R

n, which is defined as:

Rf D fx 2 R
n W ei .x/ < 0; for all i 2 I1[I2g (14)

A certain design point x is called feasible design point if it corresponds to
entirely negative error functions, which in turn implies that it satisfies all the design
specifications.

Now, starting from an initial point, x(0), which may be feasible or infeasible, we
seek to for, not only a feasible point, but also to the optimal feasible design point
which best fits the desired specifications in a minimax optimization criterion. This
point is found by solving the following minimax optimization problem:

min
x

�
max

i
fei .x/g

�

subject to
�lj < xj < �uj

(15)

where i 2 I1 [ I2 and j 2 J: In (15), if the maximum error obtained at the optimal
solution, x*, is negative, then it implies that all the design specifications and the
design variables restrictions are being satisfied. Contrarily, if the maximum error is
positive, it means that at least one specification or restriction is violated.

One of the most efficient methods, used for solving a minimax problem, is to
convert it to a nonlinear programming problem [26], by introducing an additional
variable z and the equivalent nonlinear programming problem becomes:

minimize z

subject to

8̂
<̂
ˆ̂:

fi .z; x/ > 0; i 2 I
xj � �lj > 0; j 2 J
� xj C �uj > 0; j 2 J
� z > 0

(16)

where fi .z; x/ D z�ei .x/, which is the i-th constraint of the nonlinear programming
problem.

The last restriction in (16) is added to enforce assigning the variable z with
negative quantities. Hence, to obtain the optimal minimax solution, we solve
problem (16). Actually, such conventional nonlinear programming problem can
be solved using any nonlinear programming algorithm. Here, MATLAB [39] is
employed.
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4 Minimax Optimal Design of a Wide Band Pass
Optical Filter

4.1 Brief Description of the Filter

As a practical example, the proposed optimal design approach is applied for
achieving the optimal design of a wide band pass optical filter (WBP-OF). The
suggested structure of the filter is a 1-D photonic crystal, which comprises of a
unit cell repeated N times. This unit cell consists of two different dielectric layers
with a single metal layer between them. This structure is denoted by (dielec-
tric1/metal/dielectric2)N . Particularly, the structure of (SiC/Ag/SiO2)N is considered,
due to its good performance as a WBP-OF working in the visible range [19].
Moreover, such materials configuration is applicable and of ease to be fabricated
[40–42].

In this example, we focus on the EMW spectrum range from 300nm to 900nm.
The objective is to achieve a WBP-OF that passes EMW in the visible range (from
450nm to 700nm), and rejects both infrared and ultraviolet ranges. The range under
study is divided into three main regions: the lower stopband region (LSBR) below
350nm, the PBR from 400nm to 700nm, and the upper stopband region (USBR)
above 800nm.

All results of this section are obtained while the refractive indices of the incident
and substrate media are assumed to be 1 and 1.52, respectively. A unity value is
assigned to the forward amplitude of the incident medium (r0), and the refractive
index of SiO2 is set to 1.45, whereas the refractive indices of Ag and SiC are
assigned to practical measured values obtained from [43], so that the frequency
dependency of the layered media can be considered.

The performance of the filter transmittance response is measured with respect to
some figures of merit (FOM). First of these is the band factor, BF, which indicates
the passband sharpness of the calculated transmittance response and is defined as
BF D �œ50=�œ10 [19], where �œ• D œu• � œl•; • D 10 and 50. œl• and œu• are
the wavelengths at which the transmittance equals to •%. The other merits used
are: Tmax, œm, œl10, œl50, œu10, and œu50, where Tmax is the maximum calculated
transmittance and œm is the wavelength at which Tmax occurs. In addition, we
introduce Tavg_LSBR, Tavg_PBR, and Tavg_USBR which are the average transmittance
at LSBR, PBR, and USBR, respectively.

Then, we seek to design a filter having the highest possible Tmax, BF, and
Tavg_PBR. In contrary, the filter should have the smallest possible Tavg_LSBR and
Tavg_USBR. Also, the filter should have �l50 and �u50 which best match the visible
range limits.
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4.2 Optimization Procedures and Results

4.2.1 Periodic Structure with Constant Thicknesses Optimization

First, we consider the case of periodic structure with constant thicknesses (PSCT).
Hence, the optimization variables are limited only to 3-variables, which are assem-
bled to the design vector, x D Œd1 d2 d3�

T , where d1, d2, and d3 are the thickness
of SiC, Ag, and SiO2 layers, respectively. The variables are restricted to �lj D 3 nm
and �uj D 300 nm, for j D 1; 2, and 3. Furthermore, the discretization parameters
mp and ms , the number of sample points in the passband and stopband regions,
respectively, are set to 25 and 20, respectively. However, in order to guarantee a
minimal transmittance of 75 % for all samples located at the PBR, and a maximal
transmittance of 7 % for those sample points located either at the LSBR or at the
USBR; the design specifications’ parameters (� and ˇ) are set to 75 % and 7 %,
respectively. Here, the ripples constraint is ignored; by neglecting the upper bound
on bandpass transmittance, defined in (13), and by setting � to 0. We assign the
design point suggested in [19], x D Œ20 10 70�T nm, to be our initial point, x(0). After
applying our optimization approach, we move (only after 13-iterations with 65-
TMM system simulations) to an optimal design point, x� D Œ18:14 8:94 53:68�T nm,
that achieves the desired specifications. Let’s denote solution A, to this optimal
design point obtained by repeating the optimal design values of the three layers for
the five periods to cover the whole structure as indicated in Table 1. Fig. 2 shows how
the filter response is improved at solution A. The optimized Tavg_PB is incremented
from 82.55 % to 83.33 % without violating any of the defined specifications, as
declared in Table 1. Besides, the transmittance response is slightly shifted to the

Table 1 Figures of merit of the (SiC/Ag/SiO2)5 filter (different design
points)

Design point Initial point [19] Solution A Solution B Solution C

Tavg_LSB (%) 0.75 2.67 0.48 0.78
Tavg_PB (%) 82.55 83.33 84.53 82.04
Tavg_USB (%) 4.56 2.67 1.48 1.04
BF (%) 59.68 73.92 84.08 85.47
Tmax (%) 74.3 89.66 94.03 82.67
œm (nm) 543 502 458 455
œl50 (nm) 496 410 442 432
œu50 (nm) 718 736 743 738
•œ50 (nm) 222 326 301 306
œl10 (nm) 403 349 425 418
œu10 (nm) 775 790 783 776
•œ10 (nm) 372 441 358 358
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Fig. 2 (a) The transmittance and (b) The absorbance of (SiC/Ag/SiO2)5, before and after
optimization, starting from an initial point: d1 D 20nm; d2 D 10nm and d3 D 70nm. The case
of PSCT is considered

left such that it becomes more centered around the visible spectrum. Finally, the
achieved enhancement in the FOM of the filter, for solution A, is summarized in
Table 1.

4.2.2 Periodic Layered Structure with Variable Thickness Optimization

In order to enhance the performance of the filter response, the dimensionality of
the problem is increased; by considering a periodic layered structure with variable
thickness (PLSVT) assigned to each layer. Thus, the designable variables become
x D Œd1 d2 : : : d15�

T , where dj is the j-th layer thickness. The new values of the
parameters of the optimization approach are set as follow: mp D 25, ms D 20;
� D 82%, ˇ D 5%; �lj D 3 nm and �uj D 300 nm, for j D 1; 2; : : : 15.
We also ignored the ripples constraint for this design problem. Starting from the
design point solution A, we apply the proposed design approach with the new
considerations. Accordingly, we move (after 108-iterations with 1862-TMM system
simulations) into the new optimal design point x� 2 R

15, namely, solution B
(see Table 2). Fig. 3 shows the optimal response at solution B, where Tavg_PB is
incremented to 84.53 % without violating any other specification. In fact we could
achieve a transmittance lower than 3 % over the whole stopband spectrum except for
wavelength value of 800nm at which 5 % of transmittance is obtained. Moreover the
sharpness (as indicated in Fig. 3) of the response’s edges is considerably improved.
The characteristics of the optimized filter are illustrated in Table 1.

4.2.3 Optimizing for the Least Level of Ripples at the PBR

Now, we try to find the optimal flat response which corresponds to the highest
possible PBR transmittance with the least possible level of ripples. Thus, this time
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Table 2 Design data of the
filter (SiC/Ag/SiO2)5 (three
different design solutions)

Design variable (nm) Solution A Solution B Solution C

d1 18:14 30:05 29:31

d2 8:94 17:31 17:05

d3 53:68 18:60 11:66

d4 18:14 51:44 41:40

d5 8:94 16:87 10:24

d6 53:68 13:80 75:43

d7 18:14 48:32 29:81

d8 8:94 16:20 21:80

d9 53:68 18:58 11:66

d10 18:14 52:36 55:98

d11 8:94 17:62 16:03

d12 53:68 3:00 3:00

d13 18:14 37:94 38:22

d14 8:94 3:00 4:80

d15 53:68 65:37 71:00

Fig. 3 (a) The transmittance and (b) The absorbance of (SiC/Ag/SiO2)5, before and after the
optimization. Solution A is assigned to the initial design point. The case of PLSVT is considered

the ripples constraint, defined in (13), is considered. We set the acceptable ripples
parameter, � , to be 2 % and by adjusting the other parameters as: mp D 25,
ms D 20; � D 82%, ˇ D 5%; �lj D 3, �uj D 300, for j D 1; 2; : : : 15. The
approach is applied, starting from solution B (see Table 2). We obtain an optimal
design point (after 79-iterations with 1375-TMM system simulations) denoted by
solution C (see Table 2). The obtained response and the FOM of solution C are
illustrated in Fig. 4 and Table 1, respectively. Although the PBR’s transmittance
is slightly degraded, the transmittance response became almost flat around 82 %.
Actually, such flat response is much preferable for many applications, as it prevents
phase noise, resulting from the passband ripples.
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Fig. 4 (a) The transmittance and (b) The absorbance of (SiC/Ag/SiO2)5, before and after
optimizing; Solution B is assigned to the initial design point. The case of PLSVT is considered
and the ripples constraint is taken into consideration

5 Minimax Optimal Design of a Spectral Filter

5.1 Brief Description of the Filter

In this section, the proposed minimax optimization approach is applied to obtain the
optimal design of spectral control filters, required for enhancing the efficiency of
thermophotovoltaic (TPV) systems.

The TPV system is an energy converter that converts thermal heat into electrical
energy [11]. It consists of an emitter, a photovoltaic (PV) cell, and a spectral control
filter. The emitter is a thermal heater. It emits EMW onto the PV cell. Some of the
radiation is reflected at the front surface of the cell (due to difference in refractive
indices between cell and incident medium) and returned back to the emitter and the
rest is transmitted through the cell. Photons of such transmitted radiation having
energy greater or equal to the band gap of the PV cell can be absorbed by the cell
and electron–hole pairs are generated. Photons having energy less than the band gap
will not be absorbed by the cell and will be lost which limits the overall efficiency
of the TPV system. Hence, in order to enhance the TPV efficiency, a spectral filter
is located between the emitter and the PV cell to transmit photons that are suitable
to the PV cell and reflect the remaining back to the emitter. In other words, an ideal
spectral filter can be considered as a low band pass photonic filter that passes all
the radiations with wavelength below the PV cell band gap wavelength (�g), and
reflects all the radiations corresponding to wavelength higher than �g, where �g is
the wavelength of the incident radiation in free space corresponding to photons of
energy equals the band gap.

The performance of the spectral filter and the whole TPV system is assessed with
respect to three suggested FOM which are: (1) the passband efficiency of the filter
(�p) which is the ratio between the above band gap power density transmitted from
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the filter to the PV cell (Pabg) and that transmitted from an ideal filter (PabgjI); (2)
the filter stopband efficiency (�s) which is the ratio between the amount of below
band gap power density (Pbbg) reflected from the filter back to the emitter and that
amount of power reflected in case of an ideal filter .PbbgjI/; and (3) the spectral
efficiency of the TPV system (�sp) which is the ratio of Pabg to the net power density
(Pnet) radiated by the emitter, where Pnet is the total power density radiated from the
emitter minus the amount of the power reflected from the filter and returned back to
the emitter. These power density quantities are estimated as follow:

Pabg D
Z �g

0

I .�;Tem/ T .�/ d�; (17a)

Pbbg D
Z 1

�g

I .�;Tem/R .�/ d� (17b)

where T(�) and R(�) are the transmittance and reflectance responses of the filter,
respectively. I(�, Tem) is the radiant intensity of the blackbody at wavelength � and
temperature Tem. It is calculated as [11]:

I .�;Tem/ D 2 hc2

œ5
�
ehc=œKTem � 1� ; (18)

where h, K, and c are Planck constant, Boltzmann constant, and the speed of EMW
in free space, respectively.

For an ideal spectral filter �p, �s, and �sp equal 100 %. However, a practical
filter does not perfectly transmit power in the passband, which negatively affects
the above band gap power radiated to the PV cell, i.e., decreases �p. Besides, in
order to obtain a very high passband transmittance response, the filter will not be
able to effectively reflect all the below band gap power which decreases �s—as it
is practically impossible to have a sharp edge transition at �g. Therefore, we should
compromise between the passband efficiency and the stopband efficiency to achieve
the highest possible spectral efficiency.

5.2 Optimization Procedures and Results

All results of this subsection are obtained, assuming the emitter radiation as an
ideal blackbody radiation with 1500 K temperature. The PV material is assumed
to be gallium antimonide (GaSb), which is the most common material used for the
fabrication of TPV cells [11, 15]. GaSb has a refractive index of 3.8 and a band
gap energy of 0.7 eV, which is equivalent to band gap wavelength �g D 1:78 �m.
Thus, the spectral filter is supposed to transmit all photons below 1.78 µm to the
PV cell, and to reflect all photons above 1.78 µm. However, due to low energy of
the blackbody radiation below 0.85 µm and above 6.5 µm, the filter is just designed
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to have a transmittance as high as possible in the wave band of 0.85–1.78 µm and
becomes as low as possible in the band of 1.79–6.5 µm. In order to guarantee a
steep transition at �g, the passband and the stopband regions are defined strictly
closed to each other, and as an alternative approach the design specifications (� and
ˇ) are defined on the average transmittance of the passband and stopband regions,
respectively. Moreover, the ripples constraint is ignored for this design problem due
to the minor impact of the passband ripples in this application.

The filter structure is suggested as a 1-D PC comprising of N periodically
repeated unit cell. The unit cell consists of two consecutive metallic (M) and dielec-
tric (D) layers. Thus, the filter is denoted by D(MD)N , where the first dielectric layer
is added to improve the filter matching with the incident medium. Initially, the metal
and dielectric layers are assumed to be Ag and SiO2 in respective [20]. The number
of periods, N, is fixed to 3. The refractive indices of the incident and substrate media
are assumed to be 1 and 3.8, respectively, and a unity value is assigned to the forward
amplitude of the incident medium (r0). The refractive index of SiO2 is set to 1.5.
Besides, the absorption and frequency dependency of Ag-layers are considered, by
using the Drude model [11] to calculate the refractive index of Ag.

5.2.1 Thickness Optimization

First, the designable parameters are supposed to be the thickness of the layers. Thus,
the design vector is considered as x D Œd1 d2 : : : d7�

T , where dj is the thickness
of j-th layer. The variables are restricted to �lj D 3 nm and �uj D 300 nm, for
j D 1; 2; : : : 7, and the discretization parameters (mp and ms) are set to 20 and 40,
respectively. Initially, the Ag-layers thickness is set to 10nm and the thickness of
SiO2 is assumed to follow the well-known quarter-wave thick design (QWTD), at
which: nSiO2dSiO2 D �g

4
, where nSiO2 and dSiO2 are the refractive index and thickness

of the SiO2 layers, respectively.
Figures 5 and 6 show optimal responses of two solutions, obtained using the

proposed minimax optimization approach, namely solution 1 and solution 2, respec-
tively. In Fig. 5, we optimize for the highest possible transmittance in the passband,
whilst we optimize for the least possible transmittance within the stopband in Fig. 6.
In solution 1, the design specifications are set as � D 83% and ˇ D 3:5%, to have
the highest possible transmittance in the passband. Contrarily, to obtain the least
possible stopband transmittance in solution 2, the design specifications are adjusted
as � D 79% and ˇ D 2%. Solution 1 is obtained after 54-iterations and 486-TMM
system simulations. In contrast, 62 number of iterations and 558-TMM system
simulations are executed, till achieving solution 2. Table 3 shows the optimized
values obtained, for the two solutions. The FOM regarding the two solutions and the
initial point are compared in Table 4. Starting from initial passband efficiency equal
to 15.2 % in the initial point, �p significantly improved to 83.7 % in solution 1, as
opposed to only 77.6 %, achieved, in solution 2. However, solution 2 is practically
better than solution 1, because it achieves much reflection of the radiation in the
stopband; resulting in higher spectral efficiency than solution 1 (67 % comparing to
59.8 % in solution 2).
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Fig. 5 (a) The transmittance and (b) The absorbance of the SiO2.Ag=SiO2/
3 spectral filter, before

and after optimizing for the highest passband transmittance. The initial point is assumed as the
QWTD for SiO2-layers, while the Ag-layers are fixed to 10 nm. The obtained optimal solution is
referred as solution 1

Fig. 6 (a) The transmittance and (b) The absorbance of the SiO2.Ag=SiO2/
3 spectral filter, before

and after optimizing for the least stopband transmittance. The initial point is assumed as the QWTD
for SiO2-layers, while the Ag-layers are fixed to 10 nm. The obtained optimal solution is referred
as solution 2

Table 3 Design data of the
D(Ag/D)3 spectral filter,
where D refers to a dielectric
layer

Design variable Solution 1 Solution 2 Solution 3

d1(nm) 131.22 120.59 80.87
d2(nm) 3.14 4.15 7.91
d3(nm) 256.74 259.74 164.34
d4(nm) 3.05 3.61 6.28
d5(nm) 245.93 238.82 154.96
d6(nm) 3.00 3.00 5.06
d7(nm) 332.71 327.15 194.60
nD 1.5 1.5 2.38

Three optimized design points are given
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Table 4 Figures of merit of the D(Ag/D)3 spectral filter, where D
refers to a dielectric layer

Design point Initial point Solution 1 Solution 2 Solution 3

Tavg_PB (%) 20:88 83:95 79:42 82:51

Tavg_SB (%) 0:01 3:23 1:53 1:06

�p (%) 15:23 83:69 77:63 79:50

�s (%) 97:27 87:40 92:44 94:92

�sp (%) 47:90 59:82 66:95 77:46

Different design points are considered

Fig. 7 (a) The transmittance and (b) the absorbance of the D(Ag/D)3 spectral filter, before and
after optimizing for the least possible stopband transmittance, where D refers to a dielectric layer.
Solution 2 is considered as an initial point. Both the refractive index of the dielectric layers and the
thickness of layers are optimized

5.2.2 Dielectric Material Optimization

In order to improve the performance and efficiency of the filter, the type of dielectric
material can also be optimized. Thus, the designable parameters are the thickness of
the layers (dj), as well as the refractive index of the dielectric material, nD, i.e., the
design vector becomes x D Œd1 d2 : : : d7 nD�

T . Although performing optimization
on the refractive index of the dielectric material may seem just a theoretical study as
it may result on non-realizable materials, it is still a potential future study as we may
be capable of fabricating materials with these exact refractive indices values once
day. Another solution to address this problem is to replace the optimized refractive
index with its nearest, in refractive index value, realizable (already exact) material.

The optimization parameters are set as: mp D 20, ms D 40; � D 82:5%,
ˇ D 1:5%; �lj D 3 nm and �uj D 300 nm, for j D 1; 2; : : : 7. Besides, the dielectric
refractive index is bounded as 1 � nD � 5: Starting from solution 2, we apply the
proposed design approach under these new considerations. Accordingly, we obtain
(after 77-iterations with 798-TMM system simulations) the new optimal design
point x� 2 R

8, namely, solution 3 (see Table 3). Fig. 7 shows the obtained optimized
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response, where the passband transmittance is significantly enhanced. The FOM of
the optimized filter are illustrated in Table 4. The spectral efficiency is noticeably
incremented to 77.5 % with considerably high passband efficiency, �p D 79:5%.
Fortunately, the optimized refractive index value (nD

� D 2:38) is very near to the
refractive index of Titanium Dioxide (TiO2) dielectric material which is commonly
used in the fabrication of 1-D PC structures [9]. That makes the achieved spectral
efficiency in solution 3, 77.5 %, applicable in reality.

6 Design Centering of 1-D PC Filters

In general, system parameters are subject to known but unavoidable statistical
fluctuations inherent to the manufacturing processes used or due to model uncer-
tainties. This may cause some of the manufactured devices to violate the design
specifications. The percentage of outcomes that satisfy the design specifications is
called the production yield. Production yield is an important factor of the fabrication
cost, it is always said “the smaller the yield, the higher the manufacturing cost.”
A vital goal of optimal system design is to maximize the production yield prior
to the fabrication process. Production yield maximization can be achieved through
design centering process, which seeks the values of optimal designable system
parameters that maximize the probability of satisfying design specifications (yield
function). Therefore, we propose a second optimization approach, belonging to
class of design centering optimization approaches. The introduced approach is a
statistical design centering optimization approach [23, 24, 35, 44–50] in which the
objective is to maximize the yield function. The aim of this approach is to achieve a
robust optimized system which has immunity against statistical variations that affect
the system parameters. In this design centering approach, the design problem is
formulated as an unconstrained yield optimization problem. This problem is solved
by using derivative-free trust region based algorithm (NEWUOA) coupled with a
variance reduction technique for estimating the yield function values. This enables
to reduce the large number of required system simulations.

To demonstrate efficiency of the approach, it is employed to obtain opti-
mal design center point of the aforementioned practical example WBP-OF. The
approach can be applied starting from either an initial infeasible, feasible design
point or the minimax point, for example.

6.1 Design Centering Problem Formulation: Statistical
Design Centering

In order to simulate the statistical fluctuations that affect the system parameters,
the parameters are assumed to be random variables with a joint probability density
function (PDF) P(x, �), where � the distribution parameters like the mean vector �
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and covariance matrix †. Thus, the probability that a certain design point x satisfies
the desired design specifications (yield function) can be defined as:

Y . �/ D
Z
Rf

P .x; �/ dx:; (19)

where Rf is the feasible region defined by (14).
The design centering optimization process assumes that yield function depends

only on the nominal values of system design parameter x0 and seeks for their optimal
values that maximize the yield function. Hence, the design centering problem is
formulated as:

maxx0 Y .x0/ ; (20)

In general, design centering approaches can be classified as statistical and
geometrical. Geometrical approaches optimize the yield function implicitly by
approximating the feasible region using a convex body, e.g., a hyperellipsoid. Then
the center of this body is considered as the design center. Statistical approaches,
on the other hand, optimize the yield function in a straightforward way, regardless
the size of the problem or its convexity [1]. Hybrid methods, combining both
approaches, may also be used for solving such problems [25].

For statistical design centering the evaluation of the yield values requires
computing an n-dimensional integral (19) over a non-explicitly-defined region (Rf ).
Therefore, the yield value for a given nominal design point x0 cannot be evaluated
analytically; however, it can be estimated. The Monte Carlo method [51] is one of
the famous methods used to estimate the yield values (19). The method depends on
introducing an acceptance index function, Ia W Rn ! R, defined as:

Ia .x/ D
�
1 if x 2 Rf

0 if x … Rf
; (21)

where Rf is the feasible region (14). By using this acceptance index function the
yield integral (19) can be rewritten as:

Y .x0/ D
Z
Rn

Ia .x/P .x; x0/ dx D E fIa .x/g ; (22)

where P(x, x0) is the PDF of the design parameters and Ef.g denotes expectation.
The yield value at a nominal vector x0 can be estimated by generating a set of

samples in the designable parameter space using the PDF of designable parameters.
Let x(i), iD 1, 2, : : : , K be the generated samples around the nominal parameter
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vector x0. The system is simulated for each sample point x(i), and the acceptance
index function is evaluated. Hence, the yield function at the nominal parameter value
x0 can be estimated as:

Y .x0/ 	 1

K

KX
iD1

Ia
�
x.i/
� D k

K
; (23)

where x(i) is the generated i-th sample, k is the number of acceptable sample points,
K is the total number of generated samples.

In fact, the error (variance) in estimating the yield value, using (23) is inversely
proportional to the number of generated samples K [52]. Therefore, to obtain
an accurate yield estimation, a large number of samples should be generated.
This means that a large number of system simulations are required which, in
turn, necessitates large computational time. However, several variance reduction
techniques (like—importance sampling [52], stratified Monte Carlo method [49],
and Latin Hypercube Sampling (LHS) [53]) can be used to achieve the same
accuracy level with much smaller number of required samples. The notion of
such variance reduction techniques is to spread the generated samples as evenly
as possible around the interior design space. In this work, LHS technique is used,
since it is computationally inexpensive and does not require any a priori knowledge
about the simulated system, as well as it provides more accurate estimate of the
yield function value than the other techniques. The main idea of this technique is
to divide the design space into equiprobable non-overlapping sub-regions. Then K
samples are selected such that all sub-regions are sampled.

In general, statistical design centering has some permanent special difficulties.
One of these difficulties is the cost of finding a multitude of the yield function
evaluations during the optimization process. Another difficulty in statistical yield
optimization is the need for a derivative-free optimizer due to the absence of any
exact or approximate gradient information about the yield. Any method can be
used to approximate the gradient of the yield highly increases the computational
overhead. Moreover the estimated yield values are usually contaminated by some
numerical noise resulting from the estimation uncertainty.

One of the most reliable derivative-free trust region optimization algorithms
is NEWUOA [54, 55]. The NEWUOA algorithm uses a quadratic interpolation
scheme and a trust region mechanism to recursively construct and maximize
quadratic models of the yield within a trust region. It guarantees global convergence
together with fast local convergence. The basic idea of NEWUOA is to approximate
the yield function Y(x0) using a quadratic model, which is maximized within a
trust region (sphere, for example). Then, the quadratic model is updated iteratively
through the optimization process. The estimated yield function values submitted to
the optimizer via system simulations and employing the LHS sampling technique.
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7 Design Centering of a Wide Band Pass Optical Filter

In this section, the proposed design centering approach is applied to achieve the
optimal design center point of the WBP-OF described in Section 4. The feasible
region of this problem is defined by the following constraint functions:

fi .r .x// D
8<
:

ri .x/� LB; for 300nm < �i < 350nm
UB � ri .x/ ; for 450nm < �i < 700nm
ri .x/� UB; for 800nm < �i < 900nm

; (24)

where ri .x/ D T .�i/ is the transmittance at wavelength �i, whereas LB and UB are
lower and upper bounds of the desired transmittance proportion at the passband and
stopband regions, respectively.

Two design problems, differ in dimension, are considered and their results are
reported separately. The first is a 3-D structure of periodic thickness, whereas the
second problem is a 15-D problem with an aperiodic thickness structure. All results
of this section are obtained while the designable parameters are assumed to have
normal statistical distributions. All yield values are estimated by 100 sample points.
For the two problems, both the independent and the correlated parameter cases are
studied. Yield values and graphs are given to compare the obtained results either to
the initial design points or to the results obtained using the minimax optimization
approach.

7.1 Periodic Thickness

In this subsection, we consider a periodic filter structure, both from materials and
thicknesses points of view, i.e., the unit cell is repeated 5-times with the same
materials and thicknesses. Thus, the designable parameter vector x includes only
three variables, namely d1, d2, and d3, which are the periodic thicknesses of SiC, Ag,
and SiO2 layers, respectively.

Initially we consider the case of uncorrelated parameters with maximum devi-
ation of 0.1 nm for each variable. In other words, we start the yield optimization
with a diagonal covariance matrix †1, whose all diagonal elements are set to 0.1.
The constraints are adjusted as LB D 75% and UB D 7%. Then, starting from an
infeasible initial design point x.0/ D Œ20 10 70�T , as in [19], with initial yield equal
to 0 %, we can achieve (after 53-TMM system simulations) an optimal solution
x�1 D Œ21:4604 10:0851 54:0878�T which raises the yield to 54 %. Although the
achieved yield is still small, it reflects the large sensitivity of our problem. The
transmittance and absorbance response of the filter are compared in Fig. 8 for both
the initial and optimal design center points. It is obvious that, the transmittance
response is increased and slightly shifted to the left such that it becomes more
centered around the visible spectrum. On the other hand, in order to visually declare
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Fig. 8 (a) The transmittance and (b) the absorbance of (SiC/Ag/SiO2)5, before and after design
centering

Fig. 9 The transmittance responses of samples generated around (a) initial nominal design point
x(0) and (b) optimal nominal design x*

1. The covariance matrix †1 is considered

the achieved enhancement of the yield, Fig. 9 compares between the transmittance
responses of the samples generated around the nominal design points x(0) and x*

1.
For comparison, the yield value is estimated at the minimax solution and it was
47 %.

Secondly, the parameters are considered to be correlated with covariance matrix
which best describes the feasible region of the concerned problem. We fix the design
parameters and optimize over the elements of the covariance matrix leading to the
oriented ellipsoidal covariance matrix †2 given as:

†2 D
0
@ 0:1656218 0:01169495 �0:07308409

0:01169495 0:003012833 �0:01386125
� 0:07308409 �0:01386125 0:5322393

1
A
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Fig. 10 The transmittance responses of samples generated around (a) initial point x(0) and
(b) optimal design x*

2. The covariance matrix †2 is considered

The optimal design point, x�2 D Œ20:9968 9:9625 54:1049�T , is obtained (after
64-TMM system simulations) when the correlated covariance matrix †2 is being
considered. Figure 10 illustrates how the yield is improved to 96 % when †2 is
considered. For comparison, the yield value is estimated at the minimax solution
and it was 89 %.

7.2 Aperiodic Thickness (Different Thicknesses)

Here, we consider the filter periodicity to be on materials only. Thus, the designable
parameter vector becomes x D Œd1 d2 : : : d15�

T , where dj is the j-th layer thickness
in nm. The feasible region is defined by the same constraints defined in (24).
An uncorrelated covariance matrix, regarding the 15-designable parameters, is
considered namely Cov1, which is the periodic repetition of the uncorrelated
covariance matrices, †1, defined in the previous subsection. The constraints to be
set as LB D 80% and UB D 10%. Then, starting from the same infeasible initial
design point x(0) [19], we obtain (after 259-TMM system simulations) the optimal
center point

�
18:623; 9:986; 69:558; 20:198; 11:194; 68:912; 18:854; 11:065; 61:159;

20:473; 10:189; 69:325; 18:884; 7:784; 70:856

�

which is denoted by center point (CP1). A dramatic increase of the yield, from 0 % to
90 %, is achieved at CP1. Also, a very good filter response enhancement is achieved
in the new design point, CP1, as shown in Fig. 11. The transmittance responses of
the samples generated around the nominal design points x(0) and CP1 are depicted
in Fig. 12. The yield value at the minimax point using the same covariance matrix
Cov1 is 79 %.
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Fig. 11 (a) The transmittance and (b) the absorbance of (SiC/Ag/SiO2)5, before and after
optimization. The initial point is x(0) and the optimal point is CP1

100
a b

90
80
70
60
50

S
am

pl
es

 T
ra

ns
m

ita
nc

e 
%

40
30
20
10
0

Satisfy Specs

Y = 0%

Violate Specs

λ (nm)

300 400 500 600 700 800 900

100
90
80
70
60
50

S
am

pl
es

 T
ra

ns
m

ita
nc

e 
%

40
30
20
10
0

Satisfy Specs

Y = 90%

Violate Specs

λ (nm)

300 400 500 600 700 800 900

Fig. 12 The transmittance responses of samples generated around (a) the initial nominal design
point x(0) and (b) the optimal nominal design point CP1. The covariance matrix Cov1 is considered.
The constraints LBD 80% and UBD 10% are considered
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Abstract In this chapter, the two primarily important highly nonlinear design
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1 Design Optimization of LNAs

1.1 LNA Design Problem

As the electronic industry moves towards higher integration and lower cost, RF and
wireless design demands increasingly more “concurrent” engineering. Typically,
today’s most receivers are hand-held or battery-operated devices; one of the major
challenges in these receivers is to design a low-noise amplifier (LNA) that has
very low power consumption and operates from a very low supply voltage with the
provided trade-off of noise measure and mismatch losses. Since the two transistor
configurations consume more power from the higher voltage supply than the single
transistor configurations, the two transistor configurations are unsuitable for this
type of applications. Thus, after selection of a transistor among the available high
technology transistors, then a low-noise design approach consists of trading off
among the often contrasting goals of low noise, high gain, and input and output
match within the device operation domain.

The design optimization method used for a microstrip LNA is given in a flow
chart in Fig. 1. However the method can easily be applied to the LNAs using
different wave guiding systems.

1.2 Feasible Design Target Space (FDTS)

Since the design optimization of an LNA necessitates the physical limits and
compromise relations of the design hexagon consisting of bias voltage VDS, bias
current IDS, noise F, gain GT, input VSWR Vin, and output VSWR Vout belonging
to the employed transistor, in the other words, the “Feasible Design Target Space
(FDTS)” must be constructed as an important stage of the design optimization
procedure. Certainly, within the optimization process, one can easily embed the
desired performance goals without knowing the physical realizability conditions
and compromise relations appropriately, but in this case, the device is utilized either
under its performance potential or unrealizable requirements that result in failure in
the design.

The block diagram of the FDTS is given in Fig. 2 where all the compatible
performance quadrates (noise figure F, input VSWR Vin, output VSWR Vout,
transducer gain GT); the corresponding operation bandwidth B and the source ZS

and load ZL terminations are obtained as the continuous functions of the device’s
operation parameters which are bias condition (V, I) and frequency at a chosen
configuration type. Let us consider the most commonly used configuration which
is common source configuration. Firstly a soft model of the transistor is constructed
using either a suitable artificial intelligent network or an equivalent circuit built
by a parameter extraction method to obtain the device’s scattering S and noise N
parameters as the continuous functions of the operation parameters VDS, IDS, f.
Typical works for the S and N parameters modeling of a microwave transistor can



Design Optimization of LNAs and Reflectarray Antennas Using the Full-Wave. . . 263

�

�

Fig. 1 Design flow chart of the microstrip LNA

be found in [1–7]. Secondly, potential performance of the microwave transistor is
analyzed in terms of the S and N parameters at a chosen bias condition. This analysis
has been achieved by solving the highly nonlinear performance equations of the
transistor using either the analytical approaches based on the constant performance
ingredient circles [8–14] or optimization methods without using the complicated
microwave theory [15–17].
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Fig. 2 Block diagramme for performance data sheets
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Fig. 3 3D EM simulation-based SVRM model of the microstripline

1.3 Feasible Design Variables (FDVs)

The second stage is modeling of the feasible design variables (FDVs) using the 3-D
EM simulation-based support regression vector machine (SVRM). In this modeling,
one-to-one mapping is built between the input domain consisting of the microstrip
width W, substrate ("r, h) parameters, and frequency f, and the output domain
defined by the equivalent transmission line parameters which are the characteristic
impedance Z0 and effective dielectric constant "eff (Fig. 3) [18, 19].
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Fig. 5 LNA with the T-type microstrip matching networks

1.4 Design of Input and Output Matching Circuits

Final stage is the design of the input and output matching circuits. Transistor with
the Darlington equivalencies of the compatible performance terminations ZS, ZL are
given in Fig. 4. Input IMC and Output Matching Circuit (OMCs) are designed using
either the gain or port impedance optimization of the two independent matching
circuits given in Fig. 5 by either a gradient or metaheuristic algorithm. In the next
subsection design strategies of LNA are given briefly.

1.5 Design Strategies

Here to fore the two different design strategies can be put forward for the
LNAs: In the first strategy, considering F(ZS) and Vin(ZS, ZL) as the free vari-
ables, GTmin�GT�GTmax and the corresponding termination ZS, ZL couple are
determined solving the nonlinear transistor’s performance equations with either
analytical approaches using the constant performance ingredient circles or a con-
strained optimization problem. Thus, with the resulted Vout, the FDTS can be built
consisting of the compatible (F�Freq, Vin � 1, Vout � 1, GTmin�GT�GTmax) and
the associated ZS, ZL terminations [8–11, 15, 16].
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In the second strategy, only noise F(ZS) is considered as a free variable and the
nonlinear performance equations are solved for the input termination ZS satisfying
simultaneously both the maximum gain GTmax and the required noise F, again
either in the analytical way or as a constrained maximization problem. Then the
load ZL is obtained by the conjugate-matched output port VoutD 1 condition.
Mismatching at the input port can be adjusted by degrading either noise and
mismatching at the output port. Thus a different FDTS can be built up consisting of
the compatible (F�Freq, Vin� 1, Vout� 1, GTmin�GT�GTmax) and the associated
ZS, ZL terminations [12–14, 17].

Both design strategies are based on the following balance equation:

 
1 �

ˇ̌̌
ˇVin .ZS;ZL/� 1
Vin .ZS;ZL/C 1

ˇ̌̌
ˇ
2
!
:Gop .ZL/ D

 
1 �

ˇ̌̌
ˇVout .ZS;ZL/� 1

Vout .ZS;ZL/C 1
ˇ̌̌
ˇ
2
!
:Gav .ZS/

(1)

Where Gop(ZL) and Gav(ZS) are the operation and available power gains, respec-
tively, which will be taken into account in the study case. Typical LNA designs
based on these design strategies using either gradient or metaheuristic algorithms
can be found in [20–26]. In the next section, a front-end amplifier design worked
out by our research group in [26] will briefly be given as a case study based on the
above methodology.

1.6 Case Study: HBMO Design Optimization of an LNA
with Support Vector Microstrip Model

In this section, a HBMO design optimization procedure is given in subject to
the design flow chart in Fig. 1 for a front-end amplifier so that all the matching

microstrip widths, lengths f
n�!

W;
�!̀og can be obtained to provide the (ZS, ZL)

terminations on a given substrate ("r, h, tan•) for the maximum power delivery and
the required noise over the required bandwidth of a selected transistor, respectively
[26]. Thus, in the following subsection all the stages of the design procedure will be
considered.

1.6.1 Feasible Design Target (FDT)

In this LNA design optimization problem, the design objective is to ensure the
maximum output power delivery and the required noise. Thus, hereafter the
problem of determination of the source impedance ZSD rSC jxS of a microwave
transistor can be described as a mathematically constrained optimization problem
so that the transducer gain GT(rS, xS, rL, xL) will be maximized simultaneously
satisfying the required noise figure F(rS, xS) provided that the stability conditions
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are ensured at each sample frequency throughout the required operation bandwidth.
The transistor’s load impedance ZL can be determined using the balanced Eq. (1)
by the conjugate-matched output, that is, Vout D 1 () ZL D Z�out .ZS/. Thereby
the multi-objective cost function of this constrained optimization process can be
expressed as:

Cost .rS; xS; fi/ D e� 1GAV .rS; xS;fi/ C  2
ˇ̌
F .rS; xS; fi/� Freq .fi/

ˇ̌
(2)

with the following constraints for the physical limits and stability of the transistor

<e fZSg > 0; <e fZLg > 0; Freq � Fmin (3)

<e fZing D <e

�
z11 � z12 z21

z22 C ZL

�
> 0; <e fZoutg D <e

�
z22 � z12z21

z11 C ZS

�
> 0

(4)

Here the performance measure GT, GAV, and F functions can be expressed in terms
of the transistor’s z-parameters and ZS, ZL terminations as follows [27]:

GT D PL

Pavs
D GAV .ZS/ :Mout .ZS; ZL/ (5)

where

GAV .ZS/ D jz21j2
jz11 C ZSj2

rS

rout
; rout � Re fZoutg ;

Mout .ZS;ZL/ D 1 �
ˇ̌
ˇ̌Zout � Z�L

Zout C ZL

ˇ̌
ˇ̌2 � 1; (6)

F .ZS/ D
�

S
.

N

�
i�

S
.

N

�
o

D Fmin C Rn

ˇ̌
ZS � Zopt

ˇ̌2
ˇ̌
Zopt

ˇ̌2
rS

(7)

Besides, 1 and 2 in the Eq. (2) are the weighting coefficients which can be chosen
during the optimization process by trial, which in our case are taken as unity. Thus,
the smaller cost is the fitter optimization process we have.

Here, for the ultra-wideband LNA design, the three alternatives are consid-
ered for the required noise figure Freq f of the selected transistor NE3512S02
using the honey bee mating optimization (HBMO): (1) Freq(!i)DFmin(!i); (2)
Freq(!i)D constantD 1.0 dB; (3) Freq(!i)D constantD 1.5 dB (Fig. 6).

In Fig. 6, the maximum gain variations of the transistor NE3512S02 for the
matched output against the input mismatching Vin are given as compared with
the analytical counterparts [14, 15]. Besides the corresponding terminations of the
maximum gain for the matched output and F(f )D 1 dB are given in Tab. 1.
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Fig. 6 Maximum gain against input VSWR Vin and for j¡outjD 0 for NE3512S02 at the bias
condition VDSD 2 V, IDSD 10 mA

Table 1 The source ZS and load ZL terminations for the maximum gain for j¡outjD 0 and
F(f )D 1 dB for NE3512S02 at the bias condition VDSD 2 V, IDSD 10 mA

f(GHz) Vin GTMAX(dB) Real(ZL) � Imag(ZL) � Real(ZS) � Imag(ZS) �

5 3.09 15:0 16.32 29:97 14.66 23:23

6 1.87 13:06 19.31 26:14 14.31 12:36

7 1.49 11:55 21.78 22:19 14.78 3:09

8 1.38 10:40 23.52 17:42 15.97 �5:00
9 1.36 9:43 25.35 12:18 18.08 �12:03
10 1.40 8:62 27.06 6:791 20.77 �18:72
11 1.49 7:92 29.34 0:872 24.72 �24:68
12 1.50 7:94 35.67 �5:91 35.37 �28:85

1.6.2 Design Objective for the Matching Networks

Thus, we have the transistor terminations solving the nonlinear performance
equations subject to the objective of Eq. (2–7). A novel metaheuristic the HBMO
is used in the solution procedure of the equations of Eq. (2–7) that will briefly
be given in the following section. In the design optimization procedure, the gain
of the input/output matching two-port terminated by the complex conjugate of the
(ZS(!i)/ ZL(!i)) as given in Fig. 5 is maximized over the required bandwidth:
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cost
� �!

W;
�!̀� D Minimum

X
i

�
1 �GTi

�
fi;
�!
W;
�!̀� �

(8)

where
n�!

W;
�!̀o

is the design variable vector which consists of the microstrip widths

and lengths of the problem matching circuit and GTi is the transducer power gain
of the same matching circuit at the sample frequency fi. In the worked example,
T-type matching circuits are considered to be designed. The proposed method can

1.6.3 Design Variables: Microstrip Widths and Lengths fW; `g

In this design optimization procedure, the microstrip widths and lengths
n�!

W;
�!̀o

on a selected substrate f"r, h, tanıg are directly used by the HBMO optimization of
the LNA (Fig. 1) and the cost function (Eq. 8) is evaluated by means of the SVRM
microstrip model (Fig. 1). The 3-D SONNET-based SVRM model of the microstrip
[18, 19] is employed that provides an accurate, fast, and cost effective generalization
from the highly nonlinear discrete mapping from the input domain M (R4) of the
microstrip width W, substrate f"r, h, tanıg, and frequency f to the output domain of
the characteristic impedance Z0 and effective dielectric constant "eff .

Here, the range of input and output domains is given as f0.1 mm�W� 4.6 mm,
2 � "r � 10, 0.1 mm� h� 2.2 mm, 2 GHz� f� 14 GHzg and
f3��Z0� 240�g and f1:5 � "eff � 9:7g, respectively.

1.6.4 Building Knowledge-Based Microstrip SVRM Model

Knowledge-based microstrip SVRM is given as block diagram in Fig. 3 where the
quasi-TEM microstrip analysis formula is used as a coarse SVRM model database
by means of which nfreq � n" � nh � nw D 5 � 5 � 4 � 10 D 1000

��!x i;
�!y i

�
data

pairs are obtained to train the coarse SVRM, where nfreq, n", nh, nw are the number
of the samples for the frequency, the dielectric constant, the substrate height and
width, respectively. Tab. 2 gives the accuracy of the “Z0” coarse model with the
number of the SVs and the radius of selection tube –. 402 and 367 fine SVs obtained
from 3-D SONNET simulator are used to train the fine “Z0” and “"eff ” SVRMs,
respectively, with the accuracy at least 99.4 % (Fig. 7b). Thus the substantial

Table 2 Accuracy of the fine
SVRM model

Epsilon (–) Number of SVs Accuracy (%)

0.05 583 99.4
0.07 402 98.6
0.1 279 97.9

be applied without any difficulty to another different type of matching circuit. In that
case, the gain function GTi given in Eq. (8) should be evaluated for the considered
matching circuit.
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reduction (up to 60 %) is obtained utilizing sparseness of the standard SVRM in
number of the expensive fine discrete training data with the negligible loss in the
predictive accuracy and the resulted fine microstrip SVRM model can be considered
as accurate as the 3-D EM simulator and as fast as the analytical formulae. The
typical comparative prediction curves of the microstrip SVRM model take place in
Fig. 7a–d give Z0 and "eff variations with respect to the microstrip width W resulted
from the fine SVRM model for the dielectrics at fD 4GHz and 8 GHz, respectively.

1.6.5 HBMO with Royal Jelly for the Amplifier’s Matching Network
Design Problem

HBMO is a recent swarm-based optimization algorithm to solve highly nonlinear
problems, whose based approach combines the powers of simulated annealing,
genetic algorithms, and an effective local search heuristic to search for the best
possible solution to the problem under investigation within a reasonable computing
time.

The flow diagramme of the algorithm is given by Fig. 8. The user-defined
parameters of the algorithms are the number of the Drone bees NDrone, maximum
iteration number tmax, sizes of the genetic inheritance of the Master Queen QM,
and each Drone bee Dj, mQ, mD; maximum number of feeding times of the Master
Queen QM with Royal Jelly NRJ, maximum Emax and minimum Emin energies of the
Queen at the start and end of the mating flights, respectively, and the required cost
costreq. In the algorithm, the numbers of the Hive NHive, Brood NBrood, LarvaNLarva,
Fertilization Nfertilization are set equal to NGen which is taken to be equal to tmax and
the total egg number NEggD (NGen) 5.

The proposed HBMO algorithm is used effectively and efficiently to design a
front-end amplifier. The working mechanism of the HBMO version can briefly
be summarized as follows (Fig. 8): In the proposed HBMO algorithm, after
initialization, a genetic pool is built by the mating process of a single queen with the
drone bees, governed by the probabilistic annealing law, thus a complete solution
space between the predefined lower and upper limitations is generated in the form
of the queen’s and the successful drones’s genetic inheritances. Here the entire
colony is divided into the Nhive hives that facilitates “Sorting” process applied to
the sub-colonies step by step, in the other words the search for the new candidates
is performed in reduced number of sub-matrices instead of making a search for
a single gigantic matrix. This gains the algorithm both simplicity and efficiency.
The mating process is also simplified to only energy-based probabilistic decision
rule to enable the fittest solutions. Furthermore, a sub-solution space as the “Egg-
Population” is built by crossover processing of the entire huge solution space of the
genetic pool. Accelerated exploration in the form of the five steps is applied into
the egg population to obtain the best solution: 1-Fertilization (Nfertilization), 2-Larva
(NLarva), 3-Brood (Nbrood), 4-Hive (NHive), and 5-Generation (NGen), size of each of
these steps is equal to maximum iteration number which is taken to be equal to
20 in our application. The accelerated exploration is based on the “sorting” step
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Fig. 9 Mismatching at the input port using standard metaheuristic algorithms

by step and can briefly be summarized as follows: In each step, the current entire
population is divided into the subpopulations having (NGen) members, then the best
member with the minimum cost value of each subpopulation is promoted to the next
step, and the rest members are discarded. In this final step, only (Wj, `j) couples
having the minimum cost of the competition will be chosen as the new Master
Queen bee which will take new mating flights to give born to new members of
the next generation of the colony. Besides “Royal Jelly” feed is used in algorithm
to make a local search in order to improve the fitness of the Master Queen bee at
the end of the each generation or iteration. Thus comparison with the counterpart
population-based algorithms (Figs. 9, 10, 11, 13, 14 and 15) verified that a robust
and fast convergent algorithm with the minimal problem information is resulted for
the most successful design of a front-end amplifier.

1.6.6 Implementation

The user-defined parameters of the HBMO algorithms are set to the following values
in the design of the front-end amplifier: NDroneD 20, tmaxDNGenD 20, mQD 1000,
mDD 100, NRjD 1000, EmaxD 1, EminD 0.2, costreqD 0.02.

In the implementation, NE3512S02 is selected as the microwave transistor and
maximum gain GTmax(f ) variations constrained by the minimum noise figures
Fmin(f ), FD 1 dB and FD 1.5 dB are evaluated numerically using the HMO and
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Fig. 10 Mismatching at the output port using standard metaheuristic algorithms
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compared the analytical counterparts [14, 15] in Fig. 6 and the transistor source ZS

and load ZL terminations are given for FD 1 dB in Tab. 1. The gain performance
GTmax (f) constrained by FD 1 dB at the bias condition (2 V, 10 mA) is designed on
the substrate of Rogers 4350 ("rD 3.48, hD 1.524 mm, tan•D 0.003, tD 0.001 mm)
along the bandwidth of 5–12 GHz. The solution space of the T-type matching
circuits in Fig. 5 is shown in Tab. 2. Impedance mismatching at the input and
output ports are given as compared with the genetic algorithm (GA), particle swarm
optimization (PSO), and HBMO with and without Royal Jelly in Figs. 9 and 10,
respectively. The resulted gain, noise performances, input and output reflections
of the amplifier designed by HBMO with Royal Jelly take place by are given in
Figs. 11, 12, 13, and 14, respectively, as compared with the targeted performances
and obtained by the AWR circuit and 3-D EM simulators. Furthermore the cost and
execution time with iteration number of the used counterpart’s algorithms which
are GA, PSO, and HBMO with and without Royal Jelly are given in Fig. 15. The
optimization parameters of the studied algorithms are given in Tab. 5, the parameters
of the PSO and GA are taken as their default values of the MATLAB optimization
tool, MATLAB 2010b. The cost values and execution times at the 20th iteration of
a random run are given in Tab. 3 performed by the Intel Core i7 CPU, 1.60 GHz
Processor, 6 GB RAM (Tabs. 4, 5 and 6).
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Table 3 Benchmarking of
cost variation for 10 tries at
20th iteration for all
algorithms

Algorithm Worst Best Mean

HBMO and Royal Jelly 0.29 0.12 0.18
HBMO 0.9 0.65 0.74
GA 1.27 0.95 0.99
PSO 1.15 0.9 0.96

Table 4 Solutions of the T-type input and output microstrip match-
ing elements for the maximum output power and the noise figure
F(f )D 1 dB

W1(mm) W2(mm) W3(mm) W4(mm) W5(mm) W6 (mm)

4.58 4.99 4.32 1.28 3.79 4.13
`1 (mm) `2 (mm) `3 (mm) `4 (mm) `5 (mm) `6 (mm)
13.93 5.37 0.77 1.73 5.65 14.36

Table 5 Benchmarking at
20th iteration

Algorithm Cost Execution time(Sec)

HBMO and Royal Jelly 0.17 84
HBMO 0.77 71
PSO 1.15 84
GA 1.05 89
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Table 6 User-defined parameters of the algorithms

Algorithm Population Maximum iteration Special parameters

HBMO and Royal Jelly Iteration 5 25 NDroneD 20, EmaxD 1,
EminD 0.2, NRJD˙0.01

HBMO Iteration 5 25 NDroneD 20, EmaxD 1,
EminD 0.2

GA 30 25 Gaussian mutation
PSO 30 25 Learning factors c1D c2D 2

1.7 Summary

In this part of the chapter a front-end amplifier is formulated as a constrained
optimization problem each ingredient of which is carried out rigorously on the
mathematical basis. The significance of the work for the microwave circuit theory
can mainly be itemized as follows:

(1) First of all, the design needs solely the fundamental microwave circuit
knowledge; (2) Design target is feasible based on the potential performance of
the used active device that is obtained by solving numerically the nonlinear gain,
noise, and input and output mismatching equation using a metaheuristic algorithm
subject to the design objective; (3) In the design of the input and output microstrip
matching circuits, the cost effective microstrip SVRM model is used as a fast and
accurate model so that it facilitates to obtain directly all the matching microstrip

widths, lengths
n�!

W;
�!̀o

on a chosen substrate to satisfy the feasible design target

(FDT) over the required bandwidth of a selected transistor; (4) Microstrip matching
circuit in any configuration can be easily synthesized by either gradient/nongradient
optimization.

It can be concluded that the paper presents an attractive design method for a
front-end amplifier design based on the transistor potential performance, and it can
be adapted to design of the other types of linear amplifiers.

2 Design Optimization of Reflectarray Antennas

Reflectarray antenna (RA) is able to provide equivalent performance of a traditional
parabolic reflector, but their simple structures with the low profiles, light weights,
and no need any complicated feeding networks. This can be achieved by designing
each RA element to reflect the incident wave independently with a phase compen-
sation proportional to the distance from the phase center of the feed-horn to form
a pencil beam in a specified direction (™0, ¥0) as is well-known from the classical
array theory. Thus, “Phasing” is very important process in designing reflectarray. In
literature different approaches of compensating the phase of each element have been
proposed, however, phasing method using the variable size patches is preferable
choice in many designs due to its simplicity [28, 29].
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Since it is simple to manufacture the microstrip RA on a single layer, in order
to satisfy requirements as the capability to radiate a shaped beam or multi-beams,
or also to enhance the frequency behavior and bandwidth, the advanced patch
configurations are necessary to be worked out in which the structure has a lot of
degrees of freedom and all concur to the performances of the whole antenna. The
management of different parameters and the need of satisfying requirements that
could be also in opposite each other could however make the design of a reflectarray
quite complex. Therefore first of all for a computationally efficient optimization
process, an accurate and rapid model for the reflection phase of a unit element is
needed to establish it as a continuous function in the input domain of the patch
geometry and substrate variables, then it could be convenient to carry this model out
adopting a hybrid “globalC local” search method to find the best solution among
all the possible solutions.

Thus, the systematic design optimization procedure for the Minkowski RA is
presented in this chapter. It can briefly be summarized in the following steps: The
first step is devoted to the discretization of the 5-D Minkowski space of (m, n,
"r, h, f ) to obtain the training and validation data for MLP NN. In the next part,
the gain and bandwidth optimization of MLP NN model with respect to the input
variables will be presented using the hybrid combination of Genetic and Nelder-
Mead algorithms. In addition, the sensitivity and yield analyses are performed for
the tolerance analysis in order to specify the tolerance limits of optimized design
parameters. Design and performance analysis of the Minkowski RAs with the
optimized or non-optimized antenna parameters will be taken place in the fourth
and fifth sections, respectively. Finally the paper ends with the conclusions.

2.1 Reflection Phase Characterization of a Minkowski Element

2.1.1 Minkowski Space

In the design of microstrip RA, the shape and geometry selection of the RA element
is the crucial part as well as the substrate properties chosen. In this work, the
geometry of radiating element has been proposed to be a resonant element shape
for a periodic RA structure, which is a first fractal type, as called the Minkowski
shape. Fig. 16a shows the geometrical representation of Minkowski shape patch
element.

The relationship between the Minkowski parameters is formulated as:

n D s

m=3
; 0 � n � 1 (9)

In Eq. (9), s is the indention and m is the width of the patch, respectively,
and n refers the indention ratio. The reflection response of unit cell and phase of
reflected wave are generated by the 3-D CST MWS-based analysis implemented
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Fig. 16 (a) Minkowski patch geometry, (b) The H-wall waveguide simulator

to the H-wall waveguide simulator which is shown in Fig. 16b. The top and
bottom surfaces of the H-wall waveguide simulator are perfectly electric conducting
walls, while the right and left walls are perfectly magnetic field walls [29]. The
vertically polarized incoming waves will be incident normally onto the element at
the end of the waveguide at the broadside direction and then scattered back also
at the broadside direction with a set of amplitude and phase information. The 5-D
discretized Minkowski space of (m, n, "r, h, f) is constructed by totally 5400 samples
to be used in the training and validation of the MLP NN model using the H-wall
waveguide simulator analyzed by 3-D CST MWS as follows:

The operation bandwidth of 8–12 GHz is swept as the intervals of 1 GHz and the
resulted number of the sample frequencies is fs D 5. Then, Minkowski sampling
matrix (Fig. 17) is generated as n s�ms for each sampled substrate properties ("r, h)
at each sampling frequency where n s D 6 and ms D 5 are the number of samples
for the indention factor and patch width within the ranges of 0:15 � n � 0:9

and m ˙ .�m=m/max D m ˙ % 20 where m is the resonant length at 11 GHz,
respectively. Simultaneously the substrate thickness h is sampled as the intervals of
0.5 mm between them 0:5 mm � h � 3 mm and the total number of the thickness
sampling is h s D 6. In addition, the dielectric permittivity of substrate

�
"r) is totally

sampled "s D 6 times between 1 � "r � 6: Thus, the entire Minkowski space is
discretized totally into the "s� fs� hs�ms� ns D 5400Minkowski configurations
[30–32].

2.1.2 The Modeling of MLP NN

The employed MLP NN model of Minkowski patch, which is generalization
process, is depicted in Fig. 18. The MLP NN has the two hidden layers each of
which consists of 10 neurons activating by the tangential sigmoid function. The
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Fig. 17 Sampling Minkowski patch variation matrix (ns x msD 6 x 5D 30)

input and output vectors (�!x ;�!y
�

are 5- and 1-dimensioned, respectively, and can

be expressed as Eq. (10):

�!x D Œm n "r h f �t; �!y D Œ'11�t D '11
��!x ;�!w � (10)

where �!w is the weighting vector of the MLP NN given in Fig. 13. The output
function '11

��!x ; �!w � can be built using the MLP NN theory [8]. The weighting
vector �!w is determined by the optimization with mean-squared error (Eq. 11) over
the training data using the Levenberg-Marquardt algorithm [33, 34]:

MSE D
X
k2Tr

.'11k � dk/
2

(11)
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Fig. 18 The MLP NN structure for Minkowski patch

where Tr is an index set of the training data which consists of 3240
��!x ; '11� data

pairs corresponding to the patch lengths of 4.328, 5.41, and 6.491, the rest of 2160��!x ; '11� data pairs are used to validate the MLP NN model. The linear regression
scattering plots for the training and the validation process are given with their MSE
errors in Fig. 19.

Fig. 20 gives the 3-D view of the reflection phase variations with the patch width
m and the relative permittivity of substrate ("r) for the constructed and targeted
data at the fixed conditions of hD 1.5 mm, nD 0.6, f D 11 GHz. Some examples
of modeling performances are depicted in Fig. 21 where the constructed phasing
characteristics are compared with their targets. Furthermore thus, it can be inferred
that the MLP NN model works very well in generalization of the 5400

��!x ; '11� data
pairs to the entire domains to obtain the continuous Minkowski reflection phasing
function '11

��!x �. In the next section, this '11
��!x � function will be used directly

to determine the phase calibration characteristic and later it will be reversed to
synthesize the Minkowski RA in the Memetic optimization procedure.
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Fig. 19 Regression scattering plots for the complete Minkowski MLP NN model (a) training
(MSE ErrorD 9.9564x10�5) and (b) validation (MSE errorD 1.7264x10�4)

Fig. 20 3-D view of reflection phase variations w.r.t. the patch width m and the relative
permittivity "r for the fixed conditions of hD 1.5 mm, nD 0.6, f D 11 GHz for (a) target and
(b) constructed data
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Fig. 21 Reflection phase characteristics for (a) hD 1 mm, nD 0.60, f D 11 GHz; taking dielectric
constant "r as parameter; (b) "rD 3, hD 1.5 mm, f D 11 GHz and indention ratio n is parameter
(c) "rD 3, nD 0.90, f D 11 GHz and substrate thickness h is parameter



286 F. Güneş et al.

2.2 The Optimization Process

2.2.1 Objective Function

In the optimization process, a multi-objective procedure is established where
the phase calibration characteristic is selected among the phasing characteristics
obtained in the previous section as the one having the slower gradient and the wider
range with respect to the indention of patch (n) and substrate ("r, h) to achieve
the wider band and smaller susceptibility to the manufacturing errors. Thus, this
objective can be expressed as the sum of the three ingredients as follows:

Objective D Min
n; h; "r

( X
iDl;c;u

#i .n; h; "r/

)
(12)

with the following objective ªi at the frequency fi:

#iD

8̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
:̂

6X
"rD1

�"rD0:01

3 mmX
hD0:5mm
�hD0:01mm

0:9X
nD0:15
�nD0:01

W1:2 1 .fi/CW2:2 2 .fi/CW3:2 3 .fi/

9>>>>>>=
>>>>>>;

(13)

where,

2 1 D e�.
'max�'min

360 / (14)

2 2 D j'max � 'centerj � j'min � 'centerj (15)

2 3 D 1-

�
�'center

�mcenter

�
(16)

In Eq. (14), 21 is used to maximize the phase range while 22;23 provide the
centralization of the characteristic with the angle of  /4. In Eqs. (14), (15), and
(16), ®max, ®min, and ®center, are the reflection phase values at mmax, mmin, and
mcenter for a certain (n, "r, h ) set, respectively, at the fi where l, c, u stand for the
lower, center, and the upper frequencies. In the optimization process, the operation
frequency range is defined as follows: fl D 10 GHz; fc D 11 GHz; fu D 12 GHz:
In Eq. (16), the phase difference between ®max and ®min is normalized by dividing
360 and (�®center/�mcenter) is the gradient of the phasing characteristic at the point
of (®center ,mcenter) which is aimed at to be equal to unity corresponding to optimum
angle  /4. All weighting coefficients in the objective function ªi at the frequency fi
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in Eq. (13) have been taken as unity. Optimization process is completed as soon as
the iteration number has reached to its maximum value or the predefined cost value.
In our case, the optimization ends when the cost value reaches to 0.4353 with the
optimized values of all the weighting coefficients.

2.2.2 The Memetic Algorithm: Hybrid Combination
of GA-NM Algorithm

A Memetic algorithm (MA) is essentially a combination of a population-based
global optimization algorithm with a local search [35]. Recently, Memetic algo-
rithms consisting of the hybrid GA-NM and bacterial swarm optimization BSO-NM
algorithms are successfully implemented to designs of the low-noise microwave
amplifier and Bow–Tie antennas in [36] and [37], respectively. In this work, a
Genetic Algorithm (GA) is used as a population-based global optimizer and a simple
local search algorithm called Nelder-Mead (NM) [13] is employed along with the
GA to reduce the cost of the solution at each iteration of the optimization procedure.

The GA uses the evolution operations which are the crossover, mutation, and
recombination together with the concept of fitness. The population is built by the
chromosomes as the solution candidates, binary encoded randomly varied as 0
and 1. The objective function corresponding to each chromosome is evaluated,
then chromosomes are ranked according to their fitness’s and the least fit ones
are discarded and the remaining chromosomes are paired at randomly selected
crossover points. In order to prevent the solution from being trapped into the local
minima, mutation process is applied by transforming a small percentage of the bits
in the chromosome from 0 to 1 or vice versa. The mutation process per iteration is
applied for 1 % of the chromosomes.

The MA used in our work can be briefly described through the following abstract
description [37]:

Begin
Population initialization
Local search
Evaluation
Repeat
Crossover
Recombination
Mutation
Local Search
Evaluation
Selection
Until termination criterion is satisfied
Return best solution
End
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Fig. 22 The convergence curves of the genetic and Memetic optimization

Here, the initial populations are usually generated in a random or controlled
manner and then the evolution of these populations is carried out by the genetic
operators such as crossover, mutation, and recombination. Local search is utilized
to reduce the cost of the resulted solution from the global optimization.

In our GA-NM application, the MATLAB [34] is used for the Memetic algo-
rithm with the selection stochastic uniform operators consisting of a population
(chromosome) of 60, number of generation of 900, crossover probability of
0.8 (or crossover fraction for reproduction is 0.8), and mutation probability of
0.001. Mutation function is constraint dependent. Crossover function is scattered.
Migration direction is just forward numbered 0.2. The convergence occurs very
quickly typically within the 30 iterations shortening 5 times as compared with the
60 iterations GA process, which takes 1 min and 12 s and 5 min and 41 s with Core
i7 CPU, 1.60 GHz Processor, 4 GB RAM depending on the initialization values. A
typical convergence curve is given in Fig. 22 [38].

2.3 Tolerance Analysis of the Optimized Parameters

The design parameters may usually change in a certain tolerance region during
the manufacturing process. Thus it is of interest to which percentage the design
specifications are fulfilled. Thus the yield analysis is applied to compute an expected
tolerance as percentage. In the implementation of yield analysis, variations in the
design parameters are assumed to be small so that the linearization via the sensitivity
analysis can be valid. For this reason a yield analysis can only be applied after a
successful run of the sensitivity analysis. In the sensitivity analysis, the derivatives
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of output function with respect to geometric and/or material design parameters can
be calculated without re-meshing the example. The first derivative of the network
function with respect to a design parameter can be calculated with the information of
the nominal value in a small neighborhood of that nominal value. Also the sensitivity
information is used for a more efficient optimization.

In this study, sensitivity analysis is applied to the optimum dielectric constant
"roptD 3.164 by rounding up the other parameters, as noptD 0.85, hoptD 1.8. Then
the yield analysis is applied to the results of the sensitivity analysis for the three
values of the standard deviation belonging to the dielectric constant. The graphics
for these results are shown in Fig. 23 [38].

As is seen from Fig. 23, the best tolerance is at the nominal design parameter
value with a lower and upper bound (�3*sigma, C3*sigma) of the dielectric
permittivity when the sigma is equal to 0.01. The upper and lower bound indicate
as the worst case limits of the tolerance for the dielectric property of substrate.
The substrate that has closest specifications to the optimized parameters had been
searched, and the two commercially available substrates which are Rogers RO3003
and RO4232 have been found. As is seen from Fig. 24, RO4232 is the fittest
substrate as commercially available for our optimized parameter result.

2.4 Design of the Variable–Size RA

2.4.1 Phase Compensation

In this study, the 15� 15 variable sizes Minkowski RA with half-wave spacing
at resonant frequency of 11 GHz are designed. The radiation analysis has been
generated using available full-wave simulation tool of CST MWS. In the phase
compensation unit, a coordinate system has been used to determine the progressive
phase distribution on the microstrip reflectarray surface of M�N arbitrarily spaced
patches with a centered focal point that will produce a pencil beam in a direction of
normal to the surface [8]. Thus, the required phase to compensate path difference
4R(x) for a reflectarray element can be given as a function of its radial distance x
to the center and the operation frequency f as follows:

' .x; f / D �ˇ .�Rmax ��R.x// D �2�f

c
F

�q
1C .D=F/2=4 �

q
1C .x=F/2

�

(17)

where the minus sign expresses delay, c is the velocity of light. In Eq. (17) D and
F are the diameter and the focal length of the feed to the array center, respectively.
Quadrature symmetry characteristic of the phase compensation with respect to the
element position for the 15� 15 reflectarray where frequency is considered as the
parameter and F/D is taken as 0.8.
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R
ef

le
ct

io
n 

P
ha

se
 (

D
eg

re
e)

R
ef

le
ct

io
n 

P
ha

se
 (

D
eg

re
e)

R
ef

le
ct

io
n 

P
ha

se
 (

D
eg

re
e)

0

0

0

-50

-100

-150

-200

-250

-300

-350

-50

-100

-150

-200

-250

-300

-350

-50

-100

-150

-200

-250

-300

-350

4.5

nominal
-3*sigma
+3*sigma

nominal
-3*sigma
+3*sigma

nominal

-3*sigma

+3*sigma

5.0 5.5

m

m

m

sigma=0.05

sigma=0.05
a

b

c
sigma=0.1

6.0

4.5 5.0 5.5 6.0

4.5 5.0 5.5 6.0

Fig. 23 Sensitivity analysis results for the optimum dielectric constant for the standard deviation
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2.4.2 Determination Size of Each Radiator

Size of each radiator is determined to meet the necessary compensation phase using
the phase calibration characteristic. For this purpose, the established ANN model
is reversed by inputting optimum values corresponding to the phase calibration
characteristic and while input m changes itself using the adaptable size 4m which
get exponentially smaller with an adaptation parameter £ as decreasing the squared
error as given in Fig. 25 [32].

2.5 Implementation

In the implementation stage, all the radiation performance analyses are made using
3-D CST Microwave Studio. The fully optimized X-band Minkowski reflectarray
antenna with the parameters "ropt D 3:1694, hoptD 1.7916 mm, noptD 0.8438 is
designed using the general design procedure (Fig. 25) and its realized gain patterns
at the frequencies 10.5, 11, and 11.9 GHz are given in Fig. 26a. Furthermore for
the purpose of comparison, the realized gain patterns of an arbitrary non-optimized
RA antenna with the parameters of "rD 2.2, hD 1.5 mm, nD 0.90 at the same
frequencies are obtained with the same procedure and depicted in Fig. 26b and the
compared performance values take place in Tab. 7. In order to examine the influence
of dielectric property optimization, the gain variation with respect to the frequency
is obtained with the same optimized indention ratio noptD 0.8438 and thickness
hoptD 1.7916 mm, but on some traditional substrates which are Taconic RF-35 with
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Fig. 25 Design flow chart for the optimum reflectarray antenna

"r D 3:5, Taconic TRF41 with "r D 4:1, Rogers TMM4 with "r D 4:5 and depicted
in Fig. 27. The performance values corresponding to Fig. 27 take place in Tab. 8,
Fig. 28 depicts the gain versus frequency variations of the optimized RAs designed
on the dielectric "ropt D 3:1694 and the traditional substrates. The performance
values belonging to Fig. 28 are given in Tab. 8 (Tab. 9).

2.5.1 Summary

Doubtlessly, microstrip reflectarrays are of prime importance in today’s antenna
technology, since they combine the advantages of both the printed phased arrays
and parabolic reflectors to create a new generation of high gain antennas.

In this part of the chapter, a robust and systematic method is put forward to be
used in the design and analysis of a Minkowski reflectarray. The most important
and critical stage of a reflectarray design is the design optimization of its element.
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Fig. 26 (a) Fully optimized RA with "ropt D 3:1694, hoptD 1.7916 mm, noptD 0.8438; (b) Non-
optimized reflectarray with "r D 2:2, hD 1.5 mm, nD 0.90

Therefore, firstly a complete, accurate and fast MLP ANN model of a Minkowski
patch radiator is built based on the 3-D CST Microwave Studio MWS that takes
into account all the main factors influencing the performance of the Minkowski
RA. When the outputs of performed MLP ANN model and 3-D simulations are
compared, it is verified that the MLP is very accurate and fast solution method to
construct the highly nonlinear phasing characteristics within the continuous domain
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Table 7 Performance comparison of the fully optimized reflectarray with a non-optimized
reflectarray

Antenna
Frequency
(GHz)

Realized
gain (dB)

Side lobe
level (dB)

Angular width
(3 dB) (Deg.)

Optimized RA "roptD 3.1694,
hoptD 1.7916, noptD 0.8438

10.5 22.5 �12.5 7.9

11 25 �18.6 7.4
11.9 22.5 �13.2 7.1

Non-optimized RA "rD 2.2,
hD 1.5, nD 0.90

10.5 19.2 �13.2 8.8

11 24.4 �17.5 7.5
11.9 21 �12.4 6.3

Fig. 27 Realized gain versus frequency graphs for the fully optimized RA and the other RAs on
the different substrates with the optimized parameters nopt, hopt

of the geometrical and substrate parameters of the RA element and frequency.
All the stages of building the MLP ANN model and its utilization in design of
a Minkowski RA are given in details as a general systematic method that can be
applied to the differently shaped patch radiators.

Overall parameters of Minkowski RA including dielectric permittivity of the
substrate "r are optimized for an optimum linear phasing range of an ultra-wideband
RA in the X-band by applying a standard novel evolutionary hybrid combination of
Global Genetic (GA) and Local Nelder-Mead (NM) algorithms.

In addition to optimization process, the sensitivity and yield analyses are
performed as tolerance analysis in order to specify the tolerance limits of optimized
design parameters and the commercially available substrate options which are com-
patible with our optimized design parameters. The optimum dielectric permittivity
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Table 8 Comparison of the fully optimized RA and the other RAs designed on the
different substrates with same optimized parameters nopt, hopt

Realized gain (dB)

Frequency (GHz)

Fully optimized RA
"roptD 3.1694,
hoptD 1.7916 mm,
noptD 0.8438

Rogers RT5880
"rD 2.2,
hoptD 1.7916 mm,
noptD 0.8438

Rogers TMM4
"rD 4.5,
hoptD 1.7916 mm,
noptD 0.8438

10 17 13.2 17.7
10.5 22.5 18.2 22.3
11 25 23.9 23.5
11.5 24.3 24.7 18.5
12 21.2 23.5 8.5

Fig. 28 Gain variations of fully optimized RA with only patch geometry nopt optimized RAs on
the given dielectric permittivity "r and substrate thickness ˜

tolerance limits are qualified rounding up the values of the optimum substrate
thickness hopt and indention ratio of Minkowski microstrip patch nopt for the three
characteristic values of the standard deviation. Thus this tolerance analysis results
in the limits of design parameters and the proper commercial available dielectric
substrate as Rogers RO4232. Finally, a fully optimized 15� 15 Minkowski RA
is designed as a worked example. Thus, its radiation characteristics are analyzed
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Table 9 Comparison of the fully optimized RA and RAs with the optimized Minkowski
shapes on the traditional substrates

Realized gain (dB)

Frequency
(GHz)

Optimized
reflectarray
"roptD 3.1694,
hoptD 1.7916,
noptD 0.8438

Taconic RF-35
"rD 3.5, hD 1.52,
noptD 0.7848

Taconic TRF41
"rD 4.1, hD 3.05,
noptD 0.6212

Rogers TMM4
"rD 4.5,
hD 1.524,
noptD 0.3604

17 14.5 18.5 16.7
10.5 22.5 20.9 21.8 21.7
11 25 24 24.8 24.5
11.5 24.3 22 23.8 24.1
12 21.2 16.3 19.9 20.7

based on the 3-D CST Microwave Studio MWS and graphically represented, then
compared with the performances of the non-optimized and the partially optimized
Minkowski RAs.

It may be concluded that the presented method can be considered as a robust and
systematic method for the design and analysis of a microstrip reflectarray antenna
built by the advanced patches.
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4. Güneş, F., Türker, N., Gürgen, F.: Signal-noise support vector model of a microwave transistor.
Int. J. RF Microw. Comput. Aided Eng. 17, 404–415 (2007)

5. Marinkovic, Z.Z., Pronic -Rancic, O., Markovic, V.: Small-signal and noise modelling of class
of HEMTs using knowledge-based artificial neural networks. Int. J. RF Microw. Comput.
Aided Eng. 23, 34–39 (2013)
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13. Demirel, S., Güneş, F.: Performance characterisation of a microwave transistor for maximum
output power and the required noise. IET Circuits Devices Syst. 7(1), 9–20 (2013)

14. Ciccognani, W., Longhi Patrick, E., Colangeli, S., Limiti, E.: Constant mismatch circles and
application to low-noise microwave amplifier design. IEEE Trans. Microw. Theory Tech.
61(12), 4154–4167 (2013)
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20. Güneş, F., Cengiz, Y.: Optimization of a microwave amplifier using neural performance data
sheets with genetic algorithms. In: International Conference on Artificial Neural Networks
(ICANN), Istanbul, pp. 26–29, June 2003
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32. Güneş, F., Nesil, S., Demirel, S.: Design and analysis of Minkowski reflectarray antenna using
3-D CST microwave studio-based neural network model with particle swarm optimization. Int.
J. RF Microw. Comput. Aided Eng. 23, 272–284 (2013)

33. Zhang, Q.J., Gupta, K.C.: Models for RF and Microwave Components. Neural Networks for
RF and Microwave Design. Artech House, Norwood, MA (2000)

34. MATLAB and Neural Networks Toolbox Release: The Math Works, Inc., Natick, Mas-
sachusetts, United States (2012b)

35. Konstantinidis, A., Yang, K., Chen, H.-H., Zhang, Q.: Energy-aware topology control
for wireless sensor networks using Memetic algorithms. Elsevier Comput. Commun. 30,
2753–2764 (2007)

36. Mahmoud, K.R.: Design optimization of a bow-tie antenna for 2.45GHz RFID readers using a
hybrid BSO- NM algorithm. Prog. Electromagn. Res. 17, 100–105 (2010)

37. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313
(1965)
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Abstract In solving municipal solid waste (MSW) planning problems, it is gen-
erally preferable to formulate several quantifiably good alternatives that provide
multiple, disparate perspectives. This is because MSW decision-making typically
involves complex problems that are riddled with incompatible performance objec-
tives and possess competing design requirements which are very difficult—if not
impossible—to quantify and capture at the time when supporting decision models
must be constructed. By generating a set of maximally different solutions, it is
hoped that some of the dissimilar alternatives can provide very different perspectives
that may serve to satisfy the unmodelled objectives. This maximally different
solution creation approach is referred to as modelling-to-generate-alternatives
(MGA). Furthermore, many MSW decision-making problems contain considerable
elements of stochastic uncertainty. This chapter provides a firefly algorithm-driven
simulation-optimization approach for MGA that can efficiently create multiple
solution alternatives to problems containing significant stochastic uncertainties that
satisfy required system performance criteria and yet are maximally different in their
decision spaces. It is shown that this new computationally efficient algorithmic
approach can simultaneously produce the desired number of maximally different
solution alternatives in a single computational run of the procedure. The efficacy of
this stochastic MGA approach for “real world,” environmental policy formulation
is demonstrated using an MSW case study.
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1 Introduction

The processing of municipal solid waste (MSW) is a multibillion-dollar industry
in North America [1, 2]. Since MSW systems generally possess all of the charac-
teristics associated with environmental planning, problems of MSW management
have provided an ideal setting for testing a wide variety of modelling techniques
used in support of environmental decision-making [3–5]. MSW decision-making
frequently involves complex problems that possess design requirements which
are very difficult to incorporate into any supporting modelling formulations and
tend to be plagued by numerous unquantifiable components [6–13]. Numerous
objectives and system requirements always exist that can never be explicitly
captured during the problem formulation stage [14, 15]. This commonly occurs in
“real world” situations where final decisions must be constructed based not only
upon clearly articulated specifications, but also upon environmental, political, and
socio-economic objectives that are either fundamentally subjective or not articulated
[16–18].

Moreover, in public MSW policy formulation, it may never be possible to
explicitly convey many of the subjective considerations because there are numerous
competing, adversarial stakeholder groups holding diametrically opposed perspec-
tives. Therefore many of the subjective aspects remain unknown, unquantified, and
unmodelled in the construction of any corresponding decision models. MSW policy
formulation can prove even more complicated when the various system components
also contain considerable stochastic uncertainties [19, 20]. Consequently, MSW
policy determination proves to be an extremely challenging and complicated
undertaking [10, 21, 22].

Numerous ancillary mathematical modelling approaches have been introduced
to support environmental policy formulation (see, for example: [4, 7, 11, 14,
23–25]. However, while mathematically optimal solutions may provide the best
answers to these modelled formulations, they generally do not supply the best
solutions to the underlying real problems as there are invariably unmodelled
aspects not apparent during the model construction phase [6, 10, 11, 21, 26–29].
Furthermore, although deterministic optimization-based techniques are designed to
create single best solutions, the presence of the unmodelled issues coupled with the
system uncertainties and opposition from powerful stakeholders can actually lead
to the outright elimination of any single (even an optimal) solution from further
consideration [8, 9, 15, 18–20, 30–33]. Under such conflicting circumstances where
no universally optimal exists, it has been stated that “there are no ideal solutions,
only trade-offs” [34] and some behavioral aspects taken by decision-makers when
faced with such difficulties are described in [26].



Stochastic Decision-Making in Waste Management Using a Firefly: : : 301

In the MSW decision-making domain, there are frequently numerous stake-
holder groups holding completely incongruent standpoints, essentially dictating that
policy-makers have to establish decision frameworks that must somehow consider
numerous irreconcilable points of view simultaneously [8, 9, 14, 20, 33, 35, 36].
Hence, it is generally considered desirable to generate a reasonable number of very
different alternatives that provide multiple, contrasting perspectives to the specified
problem [1, 13, 33, 37, 38]. These alternatives should preferably all possess near-
optimal objective measures with respect to all of the modelled objective(s) that
are known to exist, but be as fundamentally different from each as possible other
in terms of the system structures characterized by their decision variables. By
generating such a diverse set of solutions, it is hoped that at least some of the
dissimilar alternatives can be used to address the requirements of the unknown
or unmodelled criteria to varying degrees of stakeholder acceptability. Several
approaches collectively referred to as modelling-to-generate-alternatives (MGA)
have been developed in response to this multi-solution creation requirement [17,
18, 21, 24, 25, 29, 37–42].

The MGA approach was established to implement a much more systematic
exploration of a solution space in order to generate a set of alternatives that are
good within the modelled objective space while being maximally different from
each other in the decision space. The resulting alternatives provide a set of diverse
approaches that all perform similarly with respect to the known modelled objectives,
yet very differently with respect to any unmodelled issues [13, 43]. Obviously
the policy-makers must conduct subsequent comprehensive comparisons of these
alternatives to determine which options most closely fulfill their very specific
circumstances. Thus, a good MGA process should enable a thorough exploration of
the decision space for good solutions while simultaneously allowing for unmodelled
objectives to be considered when making final decisions. Consequently, unlike the
more customary practice of explicit solution determination inherent in most “hard”
optimization methods of Operations Research, MGA approaches are necessarily
classified as decision support processes.

As mentioned earlier, the components of most MSW systems contain consid-
erable stochastic uncertainty. Hence, deterministic MGA methods are rendered
unsuitable for most MSW policy formulation [2, 11, 14, 19, 28, 30, 31, 35, 44,
45]. Yeomans et al. [46] incorporated stochastic uncertainty directly into MSW
planning using an approach referred to as simulation-optimization (SO). SO is a
family of optimization techniques that incorporates inherent stochastic uncertainties
expressed as probability distributions directly into its computational procedure
[47–49]. To address the deficiencies of the deterministic MGA methods, Yeomans
[36] demonstrated that SO could be used to generate multiple alternatives which
simultaneously integrated stochastic uncertainties directly into each generated
option. Since computational aspects can negatively impact SO’s optimization
capabilities, these difficulties clearly also extend into its use as an MGA procedure
[7, 20]. Linton et al. [4] and Yeomans [20] have shown that SO can be considered an
effective, though very computationally intensive, MGA technique for MSW policy
formulation. However, none of these SO-based approaches could ensure that the
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created alternatives were sufficiently different in decision variable structure from
one another to be considered an effective MGA procedure.

In this chapter, a new stochastic MGA procedure is described that efficiently
generates sets of maximally different solution alternatives by implementing a
modified version of the nature-inspired Firefly Algorithm (FA) [5, 50, 51] combined
with a concurrent, co-evolutionary MGA approach [3, 52–55]. For calculation
and optimization purposes, Yang [51] has demonstrated that the FA is more
computationally efficient than such commonly used metaheuristic procedures as
genetic algorithms, simulated annealing, and enhanced particle swarm optimization
(PSO) [56, 57]. The new FA-driven stochastic MGA procedure extends the earlier
deterministic approach of [3, 52–55] by extending FA into SO for stochastic
optimization and by exploiting the concept of co-evolution within the FA’s solution
approach to simultaneously generate the desired number of solution alternatives
(see [3]). Remarkably, this novel algorithm can concurrently produce the overall
best solution together with n locally optimal, maximally different alternatives in a
single computational run. Hence, this stochastic FA-driven procedure is extremely
computationally efficient for MGA purposes. The efficacy of this approach for envi-
ronmental decision-making purposes is demonstrated using the MSW case study
taken from [46]. More significantly, the practicality of this new stochastic MGA
FA-driven approach can easily be adapted to many other stochastic systems and,
therefore, can be readily modified to satisfy numerous other planning applications.

2 Modelling-to-Generate-Alternatives

Most mathematical programming methods appearing in the optimization literature
have concentrated almost exclusively upon producing single optimal solutions to
single-objective problem instances or, equivalently, generating noninferior solution
sets to multi-objective formulations [10, 13, 17, 43]. While such algorithms may
efficiently generate solutions to the derived complex mathematical models, whether
these outputs actually establish “best” approaches to the underlying real problems is
certainly questionable [6, 10, 17, 21]. In most “real world” decision environments,
there are innumerable system objectives and requirements that are never explicitly
apparent or included in the decision formulation stage [6, 13]. Furthermore, it may
never be possible to explicitly express all of the subjective components because
there are frequently numerous incompatible, competing, design requirements and,
perhaps, adversarial stakeholder groups involved [1, 9, 14]. Therefore most sub-
jective aspects of a problem necessarily remain unquantified and unmodelled in
the resultant decision models. This is a common occurrence in situations where
final decisions are constructed based not only upon clearly stated and modelled
objectives, but also upon more fundamentally subjective socio-political-economic
goals and stakeholder preferences [1, 37, 38]. Numerous “real world” examples
describing these types of incongruent modelling dualities in environmental decision-
making appear in [17, 18, 21].



Stochastic Decision-Making in Waste Management Using a Firefly: : : 303

When unquantified issues and unmodelled objectives exist, non-conventional
approaches are required that not only search the decision space for noninferior
sets of solutions, but must also explore the decision space for discernibly inferior
alternatives to the modelled problem. In particular, any search for good alternatives
to problems known or suspected to contain unmodelled objectives must focus not
only on the noninferior solution set, but also necessarily on an explicit exploration
of the formulation’s entire inferior feasible region.

To illustrate the implications of an unmodelled objective on a decision search,
assume that the optimal solution for a quantified, single-objective, maximization
decision problem is X* with corresponding objective value Z1*. Now suppose that
there exists a second, unmodelled, maximization objective Z2 that subjectively
reflects some unquantifiable component such as “political acceptability.” Let the
solution Xc, belonging to the noninferior, 2-objective set, represent a potential best
compromise solution if both objectives could somehow have been simultaneously
evaluated by the decision-maker. While Xc might be viewed as the best compromise
solution to the real problem, it would appear inferior to the solution X* in
the quantified mathematical model, since it must be the case that Z1c � Z1*.
Consequently, when unmodelled objectives are factored into the decision-making
process, mathematically inferior solutions for the modelled problem can prove
optimal to the underlying real problem.

Therefore, when unmodelled objectives and unquantified issues might exist,
different solution approaches are needed in order to not only search the decision
space for the noninferior set of solutions, but also to simultaneously explore
the decision space for inferior alternative solutions to the modelled problem.
Population-based solution methods such as the FA permit concurrent searches
throughout a decision space and thus prove to be particularly adept procedures for
searching through a problem’s feasible region.

The primary motivation behind MGA is to produce a manageably small set
of alternatives that are quantifiably good with respect to the known modelled
objective(s) yet are as different as possible from each other in the decision space.
In doing this, the resulting alternative solution set is likely to provide truly
different choices that all perform somewhat similarly with respect to the modelled
objective(s) yet very differently with respect to any unknown unmodelled issues.
By generating a set of good-but-different solutions, the decision-makers can explore
desirable qualities within the alternatives that may prove to satisfactorily address the
various unmodelled objectives to varying degrees of stakeholder acceptability.

In order to properly motivate an MGA search procedure, it is necessary to apply a
more mathematically formal definition to the goals of the MGA process [1, 21, 38].
Suppose the optimal solution to an original mathematical model is X* with objective
value Z*DF(X*). The following maximal difference model, subsequently referred
to in the chapter as problem [P1], can then be solved to generate an alternative
solution that is maximally different from X*:
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Maximize � D
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where � represents some difference function (for clarity, shown as an absolute
difference in this instance), D is the original mathematical model’s feasible domain,
and T is a targeted tolerance value specified relative to the problem’s original
optimal objective Z*. T is a user-supplied value that determines how much of the
inferior region is to be explored in the search for acceptable alternative solutions.

3 Firefly Algorithm for Function Optimization

While this section supplies only a relatively brief synopsis of the FA procedure,
more detailed explanations can be accessed in [3, 50–55, 57]. The FA is a nature-
inspired, population-based metaheuristic. Each firefly in the population represents
one potential solution to a problem and the population of fireflies should initially
be distributed uniformly and randomly throughout the solution space. The solution
approach employs three idealized rules. (1) The brightness of a firefly is determined
by the overall landscape of the objective function. Namely, for a maximization
problem, the brightness is simply considered to be proportional to the value of
the objective function. (2) The relative attractiveness between any two fireflies is
directly proportional to their respective brightness. This implies that for any two
flashing fireflies, the less bright firefly will always be inclined to move toward the
brighter one. However, attractiveness and brightness both decrease as the relative
distance between the fireflies increases. If there is no brighter firefly within its visible
neighborhood, then the particular firefly will move about randomly. (3) All fireflies
within the population are considered unisex, so that any one firefly could potentially
be attracted to any other firefly irrespective of their sex. Based upon these three
rules, the basic operational steps of the FA can be summarized within the pseudo
code of Figure 1 [51].

In the FA, there are two important issues to resolve: the formulation of attractive-
ness and the variation of light intensity. For simplicity, it can always be assumed
that the attractiveness of a firefly is determined by its brightness which in turn
is associated with its encoded objective function value. In the simplest case, the
brightness of a firefly at a particular location X would be its calculated objective
value F(X). However, the attractiveness, ˇ, between fireflies is relative and will
vary with the distance rij between firefly i and firefly j. In addition, light intensity
decreases with the distance from its source, and light is also absorbed in the media,
so the attractiveness needs to vary with the degree of absorption. Consequently, the
overall attractiveness of a firefly can be defined as
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Objective Function F(X), X = (x1, x2,… xd)
Generate the initial population of n fireflies, Xi, i = 1, 2,…, n
Light intensity Ii at Xi is determined by F(Xi)
Define the light absorption coefficient γ
while (t < MaxGeneration)

for i = 1: n , all n fireflies
for j = 1: n ,all n firef lies (inner loop)

if (Ii < Ij), Move firefly i towards j; end if
Vary attractiveness with distance r via e- γr

end for j
end for i
Rank the fireflies and find the current global best solution G*

end while
Postprocess the results

Fig. 1 Pseudo code of the firefly algorithm

ˇ D ˇ0 exp
���r2

�

where ˇ0 is the attractiveness at distance rD 0 and � is the fixed light absorption
coefficient for the specific medium. If the distance rij between any two fireflies i
and j located at Xi and Xj, respectively, is calculated using the Euclidean norm, then
the movement of a firefly i that is attracted to another more attractive (i.e., brighter)
firefly j is determined by

Xi D Xi C ˇ0exp
�
���rij

�2� �
Xi–Xj

�C ˛©i:

In this expression of movement, the second term is due to the relative attraction
and the third term is a randomization component. Yang [51] indicates that ˛ is a
randomization parameter normally selected within the range [0,1] and "i is a vector
of random numbers drawn from either a Gaussian or uniform (generally [�0.5,0.5])
distribution. It should be explicitly noted that this expression represents a random
walk biased toward brighter fireflies and if ˇ0D 0, it becomes a simple random
walk. The parameter � characterizes the variation of the attractiveness and its value
determines the speed of the algorithm’s convergence. For most applications, � is
typically set between 0.1 and 10 [51, 57].

In any given optimization problem, for a very large number of fireflies n� k,
where k is the number of local optima, the initial locations of the n fireflies should
be distributed relatively uniformly throughout the entire search space. As the FA
proceeds, the fireflies begin to converge into all of the local optima (including the
global ones). Hence, by comparing the best solutions among all these optima, the
global optima can easily be determined. Yang [51] proves that the FA will approach
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the global optima when n!1 and the number of iterations t is set so that t� 1. In
reality, the FA has been found to converge extremely quickly with n set in the range
20–50 [50, 57].

Two important limiting or asymptotic cases occur when �! 0 and when �!1.
For �! 0, the attractiveness is constant ˇDˇ0, which is equivalent to having a
light intensity that does not decrease. Thus, a firefly would be visible to every other
firefly anywhere within the solution domain. Hence, a single (usually global) optima
can easily be reached. If the inner loop for j in Figure 1 is removed and Xj is replaced
by the current global best G*, then this implies that the FA reverts to a special case
of the accelerated PSO algorithm. Subsequently, the computational efficiency of this
special FA case is equivalent to that of enhanced PSO. Conversely, when �!1,
the attractiveness is essentially zero along the sightline of all other fireflies. This
is equivalent to the case where the fireflies randomly roam throughout a very thick
foggy region with no other fireflies visible and each firefly roams in a completely
random fashion. This case corresponds to a completely random search method. As
the FA operates between these two asymptotic extremes, it is possible to adjust the
parameters ˛ and � so that the FA can outperform both the random search and the
enhanced PSO algorithms [57].

The computational efficiencies of the FA will be exploited in the subsequent
MGA solution approach. As noted, between the two asymptotic extremes, the
population in the FA can determine both the global optima as well as the local
optima concurrently. The concurrency of population-based solution procedures
holds huge computational and efficiency advantages for MGA [37, 38]. An addi-
tional advantage of the FA for MGA implementation is that the different fireflies
essentially work independently of each other, implying that FA procedures are
better than genetic algorithms and PSO for MGA because the fireflies will tend
to aggregate more closely around each local optimum [51, 57]. Consequently, with
a judicious selection of parameter settings, the FA can be made to simultaneously
converge extremely quickly into both local and global optima [50, 51, 57].

4 A Simulation-Optimization Approach for Stochastic
Optimization

The optimization of large stochastic problems proves to be very complicated
when numerous system uncertainties have to be incorporated directly into the
solution procedures [47–49]. SO is a broadly defined family of stochastic solution
approaches that combines simulation with an underlying optimization component
for optimization [47]. In SO, all unknown objective functions, constraints, and
parameters are replaced by discrete event simulation models in which the decision
variables provide the settings under which the simulation is performed. While SO
holds considerable potential for solving a wide range of difficult stochastic prob-
lems, it cannot be considered a “procedural panacea” because of its accompanying
processing time requirements [47, 48].
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The general process of SO can be summarized in the following way. Suppose
the mathematical representation of the optimization problem possesses n decision
variables, Xi, expressed in vector format as XD [X1, X2, : : : , Xn]. If the problem’s
objective function is designated by F and its feasible region is represented by D,
then the related mathematical programming problem is to optimize F(X) subject to
X 2 D. When stochastic conditions exist, values for the constraints and objective are
determined by simulation. Thus, any direct solution evaluation between two distinct
solutions X1 and X2 requires the comparison of some statistic of F modelled with
X1 to the same statistic modelled with X2 [20, 47]. These statistics are calculated
by a simulation performed on the solutions, in which each candidate solution
provides the decision variable settings in the simulation. While simulation presents
a mechanism for comparing results, it does not provide the means for determining
optimal solutions to problems. Hence, simulation, by itself, cannot be used as a
stochastic optimization procedure.

Since all measures of system performance in SO are stochastic, every potential
solution, X, must be determined through simulation. Because simulation is com-
putationally intensive, an optimization algorithm is employed to guide the search
for solutions through the problem’s feasible domain in as few simulation runs
as possible [20, 49]. As stochastic system problems frequently contain numerous
potential solutions, the quality of the final solution could be highly variable unless
an extensive search has been performed throughout the problem’s entire feasible
region. Population-based metaheuristic such as the FA are conducive to these
extensive searches because the complete set of candidate solutions maintained in
their populations permit searches to be undertaken throughout multiple sections of
the feasible region, concurrently.

An FA-directed SO approach contains two alternating computational phases;
(1) an “evolutionary phase” directed by the FA module and (2) a simulation
module [5]. As described earlier, the FA maintains a population of candidate
solutions throughout its execution. The evolutionary phase evaluates the entire
current population of solutions during each generation of the search and evolves
from the current population to a subsequent one. Because of the system’s stochastic
components, all performance measures are necessarily statistics calculated from
the responses generated in the simulation module. The quality of each solution
in the population is found by having its performance criterion, F, evaluated in
the simulation module. After simulating each candidate solution, their respective
objective values are returned to the evolutionary FA module to be utilized in the
creation of the ensuing population of candidate solutions.

A primary characteristic of FA procedures is that better solutions in a current
population possess a greater likelihood for survival and progression into the
subsequent population. Thus, the FA module advances the system toward improved
solutions in subsequent generations and ensures that the solution search does not
become trapped in some local optima. After generating a new candidate population
in the FA module, the new solution set is returned to the simulation module for
comparative evaluation. This alternating, two-phase search process terminates when
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an appropriately stable system state (i.e., an optimal solution) has been attained. The
optimal solution produced by the procedure is the single best solution found over
the course of the entire search [5].

5 FA-Driven SO Algorithm for Stochastic MGA

Linton et al. [4] and Yeomans [20] have shown that SO can be used as a com-
putationally intensive, stochastic MGA technique. Yeomans [58] examined several
approaches to accelerate the search times and solution quality of SO. This section
introduces an FA-driven MGA method that incorporates stochastic uncertainty using
SO [5] to efficiently generate sets of maximally different solution alternatives.

The FA-driven stochastic MGA approach is designed to generate a pre-
determined small number of close-to-optimal, but maximally different alternatives,
by essentially adjusting the value of T in [P1] and using the FA to solve each
corresponding, maximal difference problem instance. This algorithm provides a
stochastic extension to the deterministic approach of [3, 54, 55]. By exploiting
the co-evolutionary solution structure within the population of the FA, stratified
subpopulations within the algorithm’s overall population are established as the
fireflies collectively evolve toward different local optima within the solution space.
In this process, each desired solution alternative undergoes the common search
procedure driven by the FA. However, the survival of solutions depends not only
upon how well the solutions perform with respect to the modelled objective(s), but
also by how far away they are from all of the other alternatives generated in the
decision space.

A direct process for generating these alternatives with the FA would be to
iteratively solve the maximum difference model [P1] by incrementally updating
the target T whenever a new alternative needs to be produced and then re-
running the algorithm. Such an iterative approach would parallel the seminal Hop,
Skip, and Jump (HSJ) MGA algorithm of [17] in which, once an initial problem
formulation has been optimized, supplementary alternatives are created one-by-one
through a systematic, incremental adjustment of the target constraint to force the
sequential generation of the suboptimal solutions. While this direct approach is
straightforward, it is relatively computationally expensive as it requires a repeated
execution of the specific optimization algorithm employed [1, 37, 38, 52, 53].

In contrast, the concurrent FA-driven MGA approach is designed to generate
the pre-determined number of maximally different alternatives within the entire
population in a single run of the FA procedure (i.e., the same number of runs as if FA
were used solely for function optimization purposes) and its efficiency is based upon
the concept of co-evolution [52–55]. In this FA-driven co-evolutionary approach,
pre-specified stratified subpopulation ranges within the FA’s overall population are
established that collectively evolve the search toward the creation of the stipulated
number of maximally different alternatives. Each desired solution alternative is
represented by each respective subpopulation and each subpopulation undergoes
the common processing operations of the FA.
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The FA-driven approach can be structured upon any standard FA solution proce-
dure containing the appropriate encodings and operators that best correspond to the
problem. The survival of solutions in each subpopulation depends simultaneously
upon how well the solutions perform with respect to the modelled objective(s)
and by how far away they are from all of the other alternatives. Consequently, the
evolution of solutions in each subpopulation toward local optima is directly influ-
enced by those solutions currently existing in all of the other subpopulations, which
necessarily forces the concurrent co-evolution of each subpopulation toward good
but maximally distant regions of the decision space. This co-evolutionary concept
enables the simultaneous search for, and production of, the set of quantifiably good
solutions that are maximally different from each other according to [P1] [38].

By employing this co-evolutionary concept, it becomes possible to implement an
FA-driven MGA procedure that concurrently produces alternatives which possess
objective function bounds that are analogous, but inherently superior, to those
created by a sequential HSJ-styled solution generation approach. While each
alternative produced by an HSJ procedure is maximally different only from the
single, overall optimal solution together with a bound on the objective value which is
at least x% different from the best objective (i.e., xD 1 %, 2 %, etc.), the concurrent
co-evolutionary FA procedure is able to generate alternatives that are no more than
x% different from the overall optimal solution but with each one of these solutions
being as maximally different as possible from every other generated alternative that
is produced. Co-evolution is also much more efficient than a sequential HSJ-styled
approach in that it exploits the inherent population-based searches of FA procedures
to concurrently generate the entire set of maximally different solutions using only a
single population. Specifically, while an HSJ-styled approach would need to run n
different times in order to generate n different alternatives, the concurrent algorithm
need run only once to produce its entire set of maximally different alternatives
irrespective of the value of n. Hence, it is a much more computationally efficient
solution generation process.

The steps involved in the stochastic FA-driven co-evolutionary MGA algorithm
are as follows:

1. Create the initial population stratified into P equally sized subpopulations. P
represents the desired number of maximally different alternative solutions within
a prescribed target deviation from the optimal to be generated and must be set a
priori by the decision-maker. Sp represents the pth subpopulation set of solutions,
pD 1, : : : ,P and there are K solutions contained within each Sp. Note that the
target for each Sp could be a common deviation value (e.g., all P alternatives
need to be within 10 % of optimal) or the targets for each Sp could represent
different selected increments (e.g., one alternative would need to be within 1 %
of optimal, another alternative would need to be within 2 %, etc.).

2. Evaluate each solutions in S1 using the simulation module and identify the best
solution with respect to the modelled objective. S1 is the subpopulation dedicated
to the search for the overall optimal solution to the modelled problem. The



310 R. Imanirad et al.

best solution residing in S1 is employed in establishing the benchmarks for the
relaxation constraints used to create the maximally different solutions as in P1.

3. Evaluate all solutions in Sp, pD 2, : : : ,P, with respect to the modelled objective
using the simulation module. Solutions meeting the target constraint and all
other problem constraints are designated as feasible, while all other solutions
are designated as infeasible.

4. Apply an appropriate elitism operator to each Sp to preserve the best individual
in each subpopulation. In S1, this is the best solution evaluated with respect
to the modelled objective. In Sp, pD 2, : : : ,P, the best solution is the feasible
solution most distant in decision space from all of the other subpopulations (the
distance measure is defined in Step 7). Note: Because the best solution to date is
always placed into each subpopulation, at least one solution in Sp will always be
feasible. This step simultaneously selects a set of alternatives that, respectively,
satisfy different values of the target T while being as far apart as possible (i.e.,
maximally different in the sense of [P1]) from the solutions generated in each
of the other subpopulations. By the co-evolutionary nature of this algorithm, the
alternatives are simultaneously generated in one pass of the procedure rather than
the P implementations suggested by the necessary HSJ-styled increments to T in
problem [P1].

5. Stop the algorithm if the termination criteria (such as maximum number of
iterations or some measure of solution convergence) are met. Otherwise, proceed
to Step 6.

6. Identify the decision space centroid, Cip, for each of the K’ � K feasible
solutions within kD 1, : : : ,K of Sp, for each of the N decision variables Xikp,
iD 1, : : : , N. Each centroid represents the N-dimensional center of mass for the
solutions in each of the respective subpopulations, p. As an illustrative example
for determining a centroid, calculate CipD (1/K’) 


X
k

Xikp. In this calculation,
each dimension of each centroid is computed as the straightforward average
value of that decision variable over all of the values for that variable within the
feasible solutions of the respective subpopulation. Alternatively, a centroid could
be calculated as some fitness-weighted average or by some other appropriately
defined measure.

7. For each solution kD 1, : : : , K, in each Sq, calculate Dkq, a distance measure
between that solution and all other subpopulations. As an illustrative example
for determining a distance measure, calculate DkqDMin f

X
i
j Xikp - Cip j;

pD 1, : : : ,P, p ¤ qg. This distance represents the minimum distance between
solution k in subpopulation q and the centroids of all other subpopulations. Alter-
natively, the distance measure could be calculated by some other appropriately
defined function.

8. Rank the solutions within each Sp according to the distance measure Dkq

objective—appropriately adjusted to incorporate any constraint violation penal-
ties. The goal of maximal difference is to force solutions from one subpopulation
to be as far apart as possible in the decision space from the solutions of each
of the other subpopulations. This step orders the specific solutions in each
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subpopulation by those solutions which are most distant from the solutions in
all of the other subpopulations.

9. In each Sp, apply the appropriate FA “change operations” to the solutions and
return to Step 2.

6 Case Study of Stochastic MGA for Municipal Solid Waste
Management Planning

As described in the previous sections, MSW decision-makers generally prefer to be
able to select from a set of “near-optimal” alternatives that significantly differ from
each other in terms of the system structures characterized by their decision variables.
The efficacy of this new FA-driven SO MGA procedure will be illustrated using the
MSW management planning study of Hamilton-Wentworth taken from [46]. While
this section briefly outlines the case, more extensive details and descriptions can be
found in both [1] and [46].

Located at the Western-most edge of Lake Ontario, the Municipality of
Hamilton-Wentworth covers an area of 1100 km2 and includes six towns
and cities; Hamilton, Dundas, Ancaster, Flamborough, Stoney Creek, and
Glanbrook. The Municipality is considered the industrial center of Canada,
although it simultaneously incorporates diverse areas of not only heavy industrial
production, but also densely populated urban space, regions of significant suburban
development, and large proportions of rural/agricultural environments. Prior to the
study of [46], the municipality had not been able to effectively incorporate inherent
uncertainties into their planning processes and, therefore, had not performed
effective systematic planning for the flow of wastes within the region. The MSW
management system within the region is a very complicated process which is
impacted by economic, technical, environmental, legislational, and political factors.

The MSW system within Hamilton-Wentworth needed to satisfy the waste
disposal requirements of its half-million residents who, collectively, produced more
than 300,000 tons of waste per year, with a budget of $22 million. The region
had constructed a system to manage these wastes composed of: a waste-to-energy
incinerator referred to as the Solid Waste Reduction Unit (or SWARU); a 550
acre landfill site at Glanbrook; three waste transfer stations located in Dundas
(DTS), in East Hamilton at Kenora (KTS), and on Hamilton Mountain (MTS);
a household recycling program contracted to and operated by the Third Sector
Employment Enterprises; a household/hazardous waste depot, and a backyard
composting program.

The three transfer stations have been strategically located to receive wastes from
the disparate municipal (and individual) sources and to subsequently transfer them
to the waste management facilities for final disposal; either to SWARU for incin-
eration or to Glanbrook for landfilling. Wastes received at the transfer stations are
compacted into large trucks prior to being hauled to the landfill site. These transfer
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stations provide many advantages in waste transportation and management; these
include reducing traffic going to and from the landfill, providing an effective control
mechanism for dumping at the landfill, offering an inspection area where wastes can
be viewed and unacceptable materials removed, and contributing to a reduction of
waste volume because of the compaction process. The SWARU incinerator burns up
to 450 tons of waste per day and, by doing so, generates about 14 million kilowatt
hours per year of electricity which can be either used within the plant itself or sold
to the provincial electrical utility. SWARU also produces a residual waste ash which
must subsequently be transported to the landfill for disposal.

Within this MSW system, decisions have to be made regarding whether waste
materials would be recycled, landfilled, or incinerated and additional determinations
have to be made as to which specific facilities would process the discarded materials.
Included within these decisions is a determination of which one of the multiple
possible pathways that the waste would flow through in reaching the facilities.
Conversely, specific pathways selected for waste material flows determine which
facilities process the waste. It was possible to subdivide the various waste streams
with each resulting substream sent to a different facility. Since cost differences from
operating the facilities at different capacity levels produced economies of scale,
decisions have to be made to determine how much waste should be sent along
each flow pathway to each facility. Therefore, any single MSW policy option is
composed of a combination of many decisions regarding which facilities received
waste material and what quantities of waste are sent to each facility. All of these
decisions are compounded by overriding system uncertainties.

The complete mathematical model used for MSW planning appears in the
subsequent section. This mathematical formulation was used not only to examine
the existing municipal MSW system, but also to prepare the municipality for several
potentially enforced future changes to its operating conditions. Yeomans et al.
[46] examined three likely future scenarios, with each scenario involving potential
incinerator operations. Scenario 1 considered the existing MSW management
system and corresponded to a status quo case. Scenario 2 examined what would
occur should the incinerator operate at its upper design capacity; corresponding
to a situation in which the municipality would landfill as little waste as possible.
Scenario 3 permitted the incinerator to operate anywhere in its design capacity
range; from being closed completely to operating up to its maximum capacity.

6.1 Mathematical Model for MSW Planning
in Hamilton-Wentworth

This section provides the complete mathematical model for MSW planning in
Hamilton-Wentworth. Extensive details and descriptions of it can be found in [46].

In the model, any uncertain parameter A is represented by
$
A . In the model, the

various districts from which waste originates will be identified using subscript i;
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where iD 1, 2, : : : , 17 denotes the originating district. The transfer stations will be
denoted by subscript j, in which jD 1, 2, 3 represents the number assigned to each
transfer station, where DTSD 1, KTSD 2, and MTSD 3. Subscript k, kD 1, 2, 3,
identifies the specific waste management facility, with landfillD 1, SWARUD 2,
and Third SectorD 3. The decision variables for the problem will be designated by
xij, yjk, and zik where xij represents the proportion of solid waste sent from district
i to transfer station j; yjk corresponds to the proportion of waste sent from transfer
station j to waste management facility k, and zik corresponds to the proportion of
waste sent from district i to waste management facility k. For notational brevity, and
also to reflect the fact that no district is permitted to deliver their waste directly to
the landfill, define zi1D 0, for iD 1, 2, : : : , 17.

The cost for transporting one ton of waste from district i to transfer station j

is denoted by
$
t xij, that from transfer station j to waste management facility k is

represented by
$
t yjk, and that from district i to waste management facility k is

$
t zik.

The per ton cost for processing waste at transfer station j is
$
ı j and that at waste

management facility k is
$
� k. Two of the waste management facilities can produce

revenues from processing wastes. The revenue generated per ton of waste is
$
r 2 at

SWARU and
$
r 3 at the Third Sector recycling facility. The minimum and maximum

processing capacities at transfer station j are
$
K j and

$
M j, respectively. Similarly, the

minimum and maximum capacities at waste management facility k are
$
L k and

$
N k,

respectively. The quantity of waste, in tons, generated by district i is
$
W i, and the

proportion of this waste that is recyclable is
$
a i. The proportion of recyclable waste

flowing into transfer station j is
$
R Wj. The proportion of residue (residual wastes

such as the incinerated ash at SWARU) generated by waste management facility j is$
Q j, where

$
Q 1D 0 by definition. This waste residue must be shipped to the landfill

for final disposal.
Formulating any single MSW policy corresponds to finding a decision variable

solution satisfying constraints (2) through (31), with cost determined by objec-
tive (1).

Minimize Cost D
5X

pD1
Tp C

6X
qD1

Pq �
3X

rD2
Rr (1)

Subject to:

T1 D
17X

iD1

3X
jD1

$
t xij xij

$
W i (2)

T2 D
17X

iD1

3X
kD1

$
t zik zik

$
W i (3)
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xij � 0; yjk � 0; zik � 0 i D 1; 2; : : : ; 17; j D 1; 2; 3; k D 1; 2; 3 (31)

In the objective function (1), the total transportation costs for wastes generated are
provided by equations (2)–(6). Equation (2) calculates the transportation costs for
waste flows from the districts (i.e., the cities and towns) to the transfer stations, while
equation (3) provides the costs for transporting the waste from the districts directly
to the waste management facilities. The total cost for transporting waste from the
transfer facilities to the waste management facilities is determined in equation (4).
The transportation costs for residue disposal created at SWARU and the Third Sector
are given by equations (5) and (6), respectively. The total processing costs for
the transfer stations and waste management facilities are expressed in (7) through
(12). Here, Pk represents the processing costs at waste management facility k,
kD 1,2,3, and P.jC3/ represents the processing costs at transfer station j, jD 1,2,3.
The processing cost, P1, in (7) indicates that the landfill receives wastes from
both SWARU and the Third Sector in addition to the waste sent from the transfer
stations. The relationship specifying the processing costs at KTS, P5 in (11), is
more complicated than for DTS and MTS, since KTS must also process the Third
Sector’s unrecyclable residue (this waste processing pattern can also be observed
in equations (16) and (19)) and this residue may have been sent there directly from
the districts or from the other transfer stations. The revenue generated by SWARU,
R2, and by the Third Sector, R3, are determined by expressions (13) and (14). All of
these cost and revenue elements are amalgamated into objective function (1).

Upper and lower capacity limits placed upon the transfer stations DTS, KTS,
and MTS, are provided by constraints (15) through (20), while capacity limits
established for the landfill, SWARU, and the Third Sector are given by (21) to
(25). The waste processing relationship for the landfill is more complicated than
for the other waste management facilities, since the landfill receives residue from
both SWARU and the Third Sector. Furthermore, while there is no lower operating
requirement placed upon the use of the landfill, both SWARU and the Third Sector
require minimum levels of activity in order for their ongoing operations to remain
economically viable. Mass balance constraints must also be included to ensure
that all generated waste is disposed and that the amount of waste flowing into
a transfer facility matches the amount flowing out of it. Constraint (26) ensures
the disposal of all waste produced by each district. Recyclable waste disposal is
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established by constraint (27). In (27), it is recognized that not all recyclable waste
produced at a district is initially sent to the Third Sector recycling facility (i.e., some
recyclable waste may initially be discarded as “regular” garbage) and that some,
but not all, recyclable waste received at a transfer station is subsequently sent for
recycling. The expression in (28) ensures that all waste received by each transfer
station must be sent to a waste management facility. Equation (29) provides the
mass balance constraint for the wastes entering and leaving KTS (which handles
more complicated waste patterns than the other two transfer stations). Constraint
(30) describes the mass balance requirement for recyclable wastes received by the
transfer stations that are then forwarded to the Third Sector. Finally, (31) establishes
non-negativity requirements for the decision variables. Hence, any specific MSW
policy formulated for Hamilton-Wentworth would require the determination of
a decision variable solution that satisfies constraints (2) to (31) and would be
evaluated by its resulting cost found using objective (1).

Yeomans et al. [46] ran SO for a 24-hour period to determine best solutions for
each scenario. For the existing system (Scenario 1), a solution that would never cost
more than $20.6 million was constructed. For Scenarios 2 and 3, Yeomans et al. [46]
produced optimal solutions costing $22.1 million and $18.7 million, respectively. In
all of these scenarios, SO was used exclusively as a function optimizer with the goal
being to produce only single best solutions.

6.2 Using the Co-Evolutionary MGA Method for MSW
Planning in Hamilton-Wentworth

As outlined earlier, when public policy planners are faced with difficult and
controversial choices, they generally prefer to be able to select from a set of
near-optimal alternatives that differ significantly from each other in terms of the
system structures characterized by their decision variables. In order to create these
alternative planning options for the three MSW system scenarios, it would be
possible to place extra target constraints into the original model which would force
the generation of solutions that were different from their respective, initial optimal
solutions. Suppose, for example, that ten additional planning alternative options
were created through the inclusion of a technical constraint on the objective function
that increased the total system cost of the original model from 1 % up to 10 % in
increments of 1 %. By adding these incremental target constraints to the original
SO model and sequentially resolving the problem 10 times for each scenario (i.e.,
30 additional runs of the SO procedure), it would be possible to create a specific
number of alternative policies for MSW planning.

However, to improve upon the process of running 30 separate instances of
the computationally intensive SO algorithm to generate these solutions, the FA-
driven MGA procedure described in the previous section was run only once for
each scenario, thereby producing the 30 additional alternatives shown in Table 1.
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Table 1 Annual MSW costs ($ millions) for 11 maximally differ-
ent alternatives for Scenario 1, Scenario 2, and Scenario 3

Annual MSW system costs Scenario 1 Scenario 2 Scenario 3

Best solution overall 20.611 22.102 18.712
Best solution within 1 % 20.744 22.221 18.847
Best solution within 2 % 20.899 22.439 18.896
Best solution within 3 % 21.093 22.620 19.119
Best solution within 4 % 21.388 22.685 19.368
Best solution within 5 % 21.432 23.076 19.540
Best solution within 6 % 21.762 23.348 19.745
Best solution within 7 % 21.997 23.635 19.884
Best solution within 8 % 22.189 23.826 20.019
Best solution within 9 % 22.303 23.943 20.122
Best solution within 10 % 22.464 24.079 20.325

Each column of the table shows the overall system costs for the ten maximally
different options generated for each of the three scenarios. Given the performance
bounds established for the objective in each problem instance, the decision-makers
can feel reassured by the stated performance for each of these options while
also being aware that the perspectives provided by the set of dissimilar decision
variable structures are as different from each other as is feasibly possible. Hence, if
there are stakeholders with incompatible standpoints holding diametrically opposing
viewpoints, the policy-makers can perform an assessment of these different options
without being myopically constrained by a single overriding perspective based
solely upon the objective value.

Furthermore, it should also be explicitly noted that the alternatives created do
not differ from the lowest cost solution by at least the stated 1 %, 2 %, 3 %, : : : ,
10 %, respectively, but, in general, actually differ by less than these pre-specified
upper deviation limits. This is because each of the best alternatives produced in
S2, S3, : : : ,S11 has solutions whose structural variables differ maximally from those
of all of the other alternatives generated while simultaneously guaranteeing that
their objective values deviate from the overall best objective by no more than 1 %,
2 %, : : : , 10 %, respectively. Thus, the goal of the alternatives generated in this
MGA procedure is very different from those produced in the more straightforward
HSJ-style approach, while simultaneously establishing much more robust guaran-
tees of solution quality.

Although a mathematically optimal solution may not provide the best approach
to the real problem, it can be demonstrated that the co-evolutionary procedure does
indeed produce very good solution values for the originally modelled problem,
itself. Table 2 clearly highlights how the alternatives generated in S1 by the new
MGA procedure are all “good” with respect to their best overall cost measurements
relative to the optimal solutions found in [46]. It should be explicitly noted that the
cost of the overall best solution produced by the MGA procedure (i.e., the solution
in S1) is actually identical to the one found in the function optimization of [46] for
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Table 2 Best annual MSW performance costs (in millions of $) found for (a) existing system
structure (Scenario 1), (b) incinerator at maximum operating (Scenario 2), and (c) incinerator at
any operating level (Scenario 3)

Scenario 1 Scenario 2 Scenario 3

Yeomans et al. [46] using SO 20.6 22.1 18.7
Best solution found using co-evolutionary algorithm 20.6 22.1 18.7

each scenario—which is clearly not a coincidence. Expanding the population size
in the SO procedure to include the subpopulations S2, S3, : : : ,S11 does not detract
from its evolutionary capabilities to find the best, function optimization solution in
subpopulation S1. Hence, in addition to its alternative generating capabilities, the
MGA procedure simultaneously performs exceedingly well with respect to its role
in function optimization.

This example has demonstrated how the FA-driven SO MGA modelling can be
used to efficiently generate multiple, good policy alternatives that satisfy required
system performance criteria according to pre-specified bounds within highly uncer-
tain environments and yet remain maximally different in the decision space. As
described earlier, public sector, environmental policy problems are typically riddled
with incongruent performance requirements that contain significant stochastic
uncertainty that is also very difficult to quantify. Consequently, it is preferable to
create several quantifiably good alternatives that concurrently provide very different
perspectives to the potentially unmodelled performance design issues during the
policy formulation stage. The unique performance features captured within these
dissimilar alternatives can result in very different system performance with respect
to the unmodelled issues, thereby incorporating the unmodelled issues into the
actual solution process.

In summary, the computational example underscores several important findings
with respect to the concurrent FA-driven MGA method: (1) The FA can be employed
as the underlying optimization search routine for SO purposes; (2) Because of
the evolving nature of its population-based solution searches, the co-evolutionary
capabilities within the FA can be exploited to simultaneously generate more good
alternatives than planners would be able to create using other MGA approaches;
(3) By the design of the MGA algorithm, the alternatives generated are good for
planning purposes since all of their structures are guaranteed to be as mutually and
maximally different from each other as possible (i.e., these differences are not just
simply different from the overall optimal solution as in the HSJ-style approach to
MGA); (4) The approach is very computationally efficient since it need only be run
once to generate its entire set of multiple, good solution alternatives (i.e., to generate
n maximally different solution alternatives, the MGA algorithm would need to be
run exactly the same number of times that the FA would need to be run for function
optimization purposes alone—namely once—irrespective of the value of n); and, (5)
The best overall solutions produced by the MGA procedure will be identical to the
best overall solutions that would be produced by the FA for function optimization
purposes alone.
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7 Conclusions

MSW decision-making problems provide multidimensional performance specifica-
tions which are invariably complicated by unquantifiable performance objectives
and incongruent modelling features. These problems often possess incompatible
design specifications which are difficult—if not impossible—to capture when the
supporting decision models are formulated. Consequently, there are invariably
unmodelled problem components, not apparent during model construction, that
can greatly impact the acceptability of the model’s solutions. These ambiguous
and competing components force MSW decision-makers to incorporate many
conflicting requirements into their decision process prior to the final solution
determination.

Because of this, ancillary modelling techniques used to support the decision
formulation process must somehow consider all of these aspects while remaining
flexible enough to simultaneously capture the impacts from the inherent stochastic
and planning uncertainties. In such situations, instead of determining a single,
mathematically optimal solution to the problem formulation, it is more desirable to
produce a set of quantifiably good alternatives that provide distinct perspectives to
the potentially unmodelled issues. The unique performance features captured within
these dissimilar alternatives result in the consideration of very different system
performance features, thereby addressing some of the unmodelled issues during the
policy formulation stage.

In this chapter, a stochastic FA-driven MGA approach was introduced that
demonstrated how the co-evolutionary solution aspects of the computationally
efficient, population-based FA could be used to guide a stochastic SO algorithm’s
search process in order to concurrently generate multiple, maximally different, near-
best alternatives. In this stochastic MGA capacity, the co-evolutionary approach
produces numerous solutions possessing the required problem characteristics, with
each generated alternative guaranteeing a very different perspective. Since FA
techniques can be adapted to solve a wide variety of problem types, the practicality
of this new FA-driven stochastic MGA approach could clearly be extended into
numerous disparate “real world” environmental applications and can be readily
modified to many other planning situations. These extensions will be considered
in future research studies.
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Abstract While system identification of linear systems is largely an established
body of work encoded in a number of key references (including textbooks), nonlin-
ear system identification remains a difficult problem and tends to rely on a “toolbox”
of methods with no generally accepted canonical approach. Fairly recently, methods
of parameter estimation using evolutionary optimisation have emerged as a powerful
means of identifying whole classes of systems with nonlinearities which previously
proved to be very difficult, e.g. systems with unmeasured states or with equations
of motion nonlinear in the parameters. This paper describes and illustrates the
use of evolutionary optimisation methods (specifically the self-adaptive differential
evolution (SADE) algorithm) on a class of single degree-of-freedom (SDOF)
dynamical systems with hysteretic nonlinearities. The paper shows that evolutionary
identification also has some desirable properties for linear system identification and
illustrates this using data from an experimental multi-degree-of-freedom (MDOF)
system.
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1 Introduction

System Identification (SI) is a technique of considerable importance within the
discipline of structural dynamics. In the absence of a complete physics-based
description of a system or structure, SI can provide the missing pieces of information
that allow the formulation of a descriptive or predictive model. When the structure of
interest has linear dynamical behaviour, the problem of SI is well established, to the
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extent that authoritative textbooks and monographs exist [1, 2]. In the case of linear
dynamical systems, it is usually sufficient to consider sets of linear second-order
differential equations (modal models) or first-order differential equations (state-
space models) as the appropriate mathematical model structure. In that case, the SI
problem is largely reduced to determining the correct number of equations and the
numerical parameters in the model. Unfortunately, most structures will in reality
display nonlinear characteristics to some extent and the SI problem for nonlinear
structures and systems is by no means solved. One of the main problems in nonlinear
SI is the number and variety of possible model structures once the variety of possible
nonlinearities is taken into account [3, 4].

It is not necessary here to provide a detailed classification of nonlinear SI models
and approaches; however, it will prove useful to give a higher-level breakdown of
model structures based on their motivation. Predictive models can be divided into
three classes: white, grey and black-box models.

White-box models are taken here to be those whose equations of motion have been
derived completely from the underlying physics of the problem of interest and
in which the model parameters have direct physical meanings. Finite element
models constitute one sub-class of such models.

Black-box models are, by contrast, usually formed by adopting a parametrised
class of models with some universal approximation property and learning the
parameters from measured data; in such a model, like a neural network, the
parameters will not generally carry any physical meaning.

Grey-box models, as the name suggests, are usually a hybrid of the first two types
above. They are usually formed by taking a basic core motivated by known
physics and then adding a black-box component with approximation properties
suited to the problem of interest. A good example of a grey-box model is the
Bouc–Wen model of hysteresis which will be discussed in more detail later. In
the Bouc–Wen model, a mass-spring-damper core is supplemented by an extra
state-space equation which allows versatile approximation of a class of hysteresis
loops [5, 6].

One can immediately see that black and grey box models are essentially
surrogate models; they can represent a (perhaps drastically) simplified view of
the physics in order to make predictions consistent with measured data. Even if
the detailed physics is known, SI allows the formation of surrogates which can be
run much faster than full physics-based models. Apart from the hysteretic systems
which will be discussed in much more detail later, another good example of the use
of SI-based surrogates is provided by the need to model friction. While physics-
based models for friction are available, they can be computationally expensive to
use and simpler grey-box models like the LuGre model can prove very useful [7].

Once a model structure has been chosen, the problem of SI reduces to estimating
any free parameters in the model to bring its predictions into close correspondence
with measured data.1 For linear SI, fairly straightforward linear least-squares

1Although it is usually the basis for system identification, fidelity-to-data is only one means of
assessing the validity of a model. An essential part of validation is to assess how well an identified
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algorithms are often sufficient (in the absence of substantial coloured noise) [1, 2].
The situation is usually more complicated for nonlinear SI and no general approach
is sufficient to deal with all classes of nonlinearity. The aim of this paper is to discuss
and demonstrate one powerful approach to parameter estimation, based on evolu-
tionary optimisation, which can prove effective in a wide range of circumstances.
There is no intention here to provide a survey of nonlinear SI methods (the reference
[4] is a fairly recent step in that direction) or even evolutionary SI methods; the
discussion will be very much focussed on previous work by the current authors in
order to provide illustrations via simulated and experimental data.

The layout of the paper is as follows. The next section discusses how evolutionary
SI can be implemented using a specific algorithm—Differential Evolution—and
shows how a self-adaptive version of DE offers advantages. It is also shown that
confidence intervals for parameters can be obtained within the methodology. The
implementation is demonstrated on simulated data from a Bouc–Wen hysteretic
system. Section 3 shows how the self-adaptive DE algorithm (SADE) also proves
effective in linear SI and is demonstrated on a multi-degree-of-freedom (MDOF)
experimental structure. The final section of the paper is concerned with brief
conclusions.

2 Identification of a Nonlinear System: The Bouc–Wen
Hysteresis Model

2.1 The Bouc–Wen Model

Hysteretic systems are a useful and challenging test of nonlinear system identifica-
tion algorithms. In the first case, they are of significant importance as they appear
in many different engineering contexts. Such systems show significant memory-
dependance and the type of phenomena this can cause are observed in many
areas of physics and engineering such as electromagnetism, phase transitions and
elastoplasticity of solids [8]. This paper will focus attention on one particular
parametric model for hysteresis—the Bouc–Wen (BW) model [5, 6]. The second
reason why the BW model is interesting is because it shows many of the properties
which have traditionally caused technical problems for system identification.

The general BW model is a nonlinear single-degree-of-freedom (SDOF) model
where the total internal restoring force is composed of a polynomial non-hysteretic
and a hysteretic component based on the displacement y.t/ and velocity Py.t/ time-
histories. The general representation described in the terms of Wen [6] is represented

model works in a context independent of the training/identification data. This validation process
might be as simple as checking fidelity-to-data on a test data set completely independent of the
identification process; this would actually be regarded as the minimum in the machine learning
community.
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below where g.y; Py/ is the polynomial part of the restoring force and z.y; Py/ the
hysteretic,

mRyC g.y; Py/C z.y; Py/ D x.t/ (1)

where m is the mass of the system and x.t/ is the excitation force. For the purposes
of this paper, the polynomial g will be assumed linear, so that g.y; Py/ D cPy C ky.
The overall system equation of motion is then

mRyC cPyC kyC z.y; Py/ D x.t/ (2)

The hysteretic component z is then defined by Wen [6] via an additional equation
of motion,

Pz D APy � ˛jPyjzn � ˇPyjznj (3)

for n odd, or,

Pz D APy � ˛jPyjzn�1jzj � ˇPyzn (4)

for n even.
The parameters ˛, ˇ and n govern the shape and smoothness of the hysteresis

loop. To simplify matters from the point of view of parameter estimation, the
stiffness term in equation (2) can be combined with the term APy in the state equation
for z. As a system identification problem, this set of equations presents a number of
difficulties, foremost are:

• The variables available from measurement will generally be the input x and
some form of response: displacement, velocity or acceleration. In this paper
the response variable will be assumed to be displacement y, although the
identification problem can just as easily be formulated in terms of velocity or
acceleration. Even if all the response variables mentioned are available, the
state z is not measurable and therefore it is not possible to use equation (3) or
equation (4) directly in a least-squares formulation.

• The parameter n enters the state equations (3) and (4) in a nonlinear way; this
means that a linear least-squares approach is not applicable to the estimation of
the full parameter set, some iterative nonlinear least-squares approach is needed
as in [9] or an evolutionary scheme can be used as will be shown here.

How these problems are addressed in the context of evolutionary optimisation is
discussed in the following section.
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2.2 Hysteretic System Identification Using Differential
Evolution

Evolutionary computation began with the basic Genetic Algorithm (GA) and even
the simplest form of that algorithm proved useful in the identification of hysteretic
systems [10]. However, once real-parameter evolutionary schemes like Differential
Evolution (DE) emerged [11], it quickly became clear that they offered major
advantages for SI. The first application of DE for the BW model appeared in [12].
Later in this paper, an advanced, more adaptive form of the DE algorithm will
be demonstrated; for now, the basic algorithm will be introduced and illustrated.
As in all evolutionary optimisation procedures, a population of possible solutions
(here, the vector of parameter estimates) is iterated in such a way that succeeding
generations of the population contain better solutions to the problem in accordance
with the Darwinian principle of “survival of the fittest”. The problem is framed here
as a minimisation problem with the cost function defined as a normalised mean-
square error (NMSE) between the “measured” data and that predicted using a given
parameter estimate, i.e.,

J.m; c; k; ˛; ˇ/ D 100

N
2y

NX
iD1
.yi � Oyi.m; c; k; ˛; ˇ//

2 (5)

where 
2y is the variance of the “measured” sequence of displacements yi and the
caret denotes a predicted quantity; N is the total number of samples. With the
normalisation chosen in equation (5), previous experience has shown that a cost
value of less than 5.0 represents a good model or parameter estimate, while one with
less than 1.0 can usually be considered excellent. Note that this definition of cost
function could quite easily be used with velocity or acceleration data; this means that
whatever data is sampled, there will be no need to apply numerical differentiation or
integration procedures. A further advantage of this approach is that the optimisation
does not need measurements of z; the correct prediction for the state is implicit in the
approach. This overcomes the first of the problems discussed in the last subsection.

The standard DE algorithm of reference [11] attempts to transform a randomly
generated initial population of parameter vectors into an optimal solution through
repeated cycles of evolutionary operations, in this case: mutation, crossover and
selection. In order to assess the suitability of a certain solution, a cost or fitness
function is needed; the cost function in equation (5) is the one used here. Figure 1
shows a schematic for the DE procedure for evolving between populations. The
following process is repeated with each vector within the current population being
taken as a target vector; each of these vectors has an associated cost taken from
equation (5). Each target vector is pitted against a trial vector in a competition which
results in the vector with lowest cost advancing to the next generation.

The mutation procedure used in basic DE proceeds as follows. Two vectors A
and B are randomly chosen from the current population to form a vector differential
A�B. A mutated vector is then obtained by adding this differential, multiplied by a
scaling factor F, to a further randomly chosen vector C to give the overall expression
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Fig. 1 Schematic for the standard DE algorithm

for the mutated vector: C C F.A � B/. The scaling factor, F, is often found to have
an optimal value between 0.4 and 1.0. The quantity F would be referred to in the
machine learning literature as a hyperparameter; this is a parameter of the algorithm
which must be specified before the algorithm can be applied and is thus distinct
from the parameters of the proposed model which are estimated by the algorithm.
The hyperparameters can affect the effectiveness of the algorithm to a considerable
extent and usually require careful choice. Best practice in a machine learning context
would be to optimise the hyperparameters in some sense; one of the simplest means
of doing this is via cross-validation on an independent validation set [13].

The trial vector is the child of two vectors: the target vector and the mutated
vector, and is obtained via a crossover process; in this work, uniform crossover
is used. Uniform crossover decides which of the two parent vectors contributes to
each chromosome of the trial vector by a series of D � 1 binomial experiments.
Each experiment is mediated by a crossover parameter Cr (where 0 � Cr � 1). If a
random number generated from the uniform distribution on [0,1] is greater than Cr ,
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the trial vector takes its parameter from the target vector, otherwise the parameter
comes from the mutated vector. The crossover parameter Cr is another example of
a hyperparameter.

This process of evolving through the generations is repeated until the population
becomes dominated by only a few low cost solutions, any of which would be
suitable. The algorithm is designed so that the cost function must stay constant or
decrease with each generation. Because the cost is monotonically non-increasing
and bounded below (by zero) it must clearly converge. Like the vast majority of
optimisation algorithms, convergence to the global minimum is not guaranteed;
however, one of the benefits of the evolutionary approach is that it is more resistant
to finding a local minimum.

The illustration presented here is from computer simulation. The coupled
equations (2) and (4) were integrated forward in time using the Matlab function
ode45 for initial value problems. The function in question implements an adaptive
.4; 5/th-order Runge–Kutta method. The parameters for the baseline BW system
chosen were: m D 1, c D 20, ˛ D 1:5, ˇ D �1:5, A D 6680:0 and n D 2.
(The parameters are chosen relative to SI unit choices of kg for the mass, N for the
force, etc.) The excitation was a Gaussian white noise sequence with mean zero and
standard deviation 9.92. The step-size (or sampling interval) was taken as 0.004 s,
corresponding to a sampling frequency of 250 Hz. The data was not corrupted by
any artificial noise. The “training set” or identification set used here was composed
of 1000 points corresponding to a duration of 4 s. The response variable used in the
identification algorithm here was the displacement.

For the identification, DE was implemented using a parameter vector
.m; c; k; ˛; ˇ/. (The parameter n was not included here; the reasons for this are
discussed in [14], this does not affect the validity of this data as an illustration of the
method.) The DE algorithm was initialised with a population of randomly selected
parameter vectors or individuals.

The parameters for the initial population were generated using uniform distribu-
tions on ranges covering one order of magnitude above and below the true values as
in [12]. A population of 30 individuals was chosen for the DE runs with a maximum
number of generations of 200. In order to sample different random initial conditions
for the DE algorithm, 10 independent runs were made. The initial conditions of the
algorithm are essentially another set of hyperparameters; the other hyperparameters
chosen here for DE were an F-value of 0.9 and a crossover probability of 0.5; these
were chosen on the basis of experience, they have proved effective in a range of
applications. This completes the specification of the DE.

Each of the 10 runs of the DE algorithm converged to an acceptable solution to
the problem in the sense that cost function values of less than 0.1 were obtained in
all cases; the summary results are given in Table 1. The best solution gave a cost
function value of 0.059. A comparison between the “true” and predicted responses
for the best parameter set is given in Figure 2. The parameter estimates for m, c
and A are all very accurate; only ˛ and ˇ show significant deviations from the
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Table 1 Summary results for 10 DE identification runs on the simulation data

Parameter
True
value

Best
model % error Minimum Maximum Mean

Standard
deviation

m 1.0 1.0017 0.17 0.9885 1.0104 1.0002 0.0064

c 20.0 20.014 0.07 19.940 20.355 20.073 0.139

˛ 1.5 1.555 3.67 1.144 1.609 1.411 0.170

ˇ �1.5 �1.225 16.6 �2.554 �0.150 �1.141 0.711

A 6680.0 6719.3 0.59 6577.5 6772.3 6704.0 55.1
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Fig. 2 Comparison of measured and predicted responses for DE algorithm

true parameters. Despite errors in the parameter estimates, the predicted response
(Figure 2) is excellent; this is simply because the response is more sensitive to some
parameters than others.

In fact, for a rather subtle reason which is discussed in [14], the identification
procedure was impeded by the use of the adaptive ODE solver; the effect being to
mask the global minimum of the NMSE in artificial “noise”. The solution to this
was simply to use a fixed-step 4th-order Runge–Kutta algorithm [15]. When a set
of 10 DE runs were made with the same hyperparameters as before, the results
were as shown in Table 2. The results are markedly better than those obtained using
the adaptive solver; the best solution gave a vastly improved cost function value
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Table 2 Summary results for 10 DE identification runs on the simulation data: fixed-step
solver used

Parameter
True
value

Best
model % error Minimum Maximum Mean

Standard
deviation

m 1.0 0.9995 0.05 0.996 1.002 1.000 0.001

c 20.0 20.011 0.06 19.950 20.043 20.011 0.029

˛ 1.5 1.496 0.27 1.419 1.535 1.494 0.032

ˇ �1.5 �1.423 5.13 �1.683 �1.243 �1.501 0.143

A 6680.0 6678.6 0.02 6657.8 6695.2 6676.6 11.3

of 7:36 � 10�5. A comparison between the “true” and predicted responses for the
best parameter set produced traces which were completely indistinguishable, so the
comparison is not shown here. It is important to note here that this model has not
been properly validated in the sense discussed earlier; the fidelity of the model is not
demonstrated here on an independent test data set. This is simply justified here by
the fact that the “true” parameters are known, so fidelity of the model is assured by
the very close correspondence shown here between “true” and estimated parameters.
In the general case, the “true” parameters would not be known and a principled
approach to validation would be required. This is illustrated later in this paper when
an experimental data set is used for identification.

2.3 System Identification Using SADE

A potential weakness of the standard implementation of the DE algorithm as
described above is that it requires the prior specification of a number of hyper-
parameters. Apart from the population size, maximum number of iterations, etc.,
the algorithm needs a priori specification of the scaling factor F and crossover
probability Cr . The values above were chosen on the basis of previous studies
where they gave good results; however, they are not guaranteed to work as well
in all situations and an algorithm which establishes “optimum” values for these
parameters during the course of the evolution is clearly desirable. Such an algorithm
is available in the form of the SADE algorithm [16, 17]; the description and
implementation of the algorithm here largely follows [17] (the local search option
in the latter reference is not implemented here).

The development of the SADE algorithm begins with the observation that Storn
and Price, the originators of DE, arrived at five possible strategies for the mutation
operation [18]:

1. rand1: M D AC F.B � C/
2. best1: M D X� C F.B � C/
3. current-to-best: M D T C F.X� � T/C F.B� C/
4. best2: M D X� C F.A � B/C F.C �D/
5. rand2: M D AC F.B � C/C F.D � E/
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where T is the current trial vector, X� is the vector with (currently) best cost and
.A;B;C;D;E/ are randomly chosen vectors in the population distinct from T. F is a
standard (positive) scaling factor. The SADE algorithm also uses multiple variants
of the mutation algorithm as above; however, these are restricted to the following
four:

1. rand1
2. current-to-best2: M D T C F.X� � T/C F.A� B/C F.C �D/
3. rand2
4. current-to-rand: M D T C K.A � T/C F.B� C/

In the strategy current-to-rand, K is defined as a coefficient of combination and
would generally be assumed in the range Œ�0:5; 1:5�; however, in the implementa-
tion of [17] and the one used here, the prescription K D F is used to essentially
restrict the number of tunable parameters. The SADE algorithm uses the standard
crossover approach, except that at least one crossover is forced in each operation on
the vectors. If mutation moves a parameter outside its allowed (predefined) bounds,
it is pinned to the boundary. Selection is performed exactly as in DE; if the trial
vector has smaller (or equal) cost to the target, it replaces the target in the next
generation.

The adaption strategy must now be defined. First, a set of probabilities are
defined: fp1; p2; p3; p4g, which are the probabilities that a given mutation strategy
will be used in forming a trial vector. These probabilities are initialised to be all
equal to 0.25. When a trial vector is formed during SADE, a roulette wheel selection
is used to choose the mutation strategy on the basis of the probabilities (initially, all
equal). At the end of a given generation, the numbers of trial vectors successfully
surviving to the next generation from each strategy are recorded as: fs1; s2; s3; s4g;
the numbers of trial vectors from each strategy which are discarded are recorded as:
fd1; d2; d3; d4g. At the beginning of a SADE run, the survival and discard numbers
are established over the first generations, this interval is called the learning period
(and is another example of a hyperparameter). At the end of the learning period, the
strategy probabilities are updated by

pi D si

si C di
(6)

After the learning period, the probabilities are updated every generation but using
survival and discard numbers established over a moving window of the last NL

generations. The algorithm thus adapts the preferred mutation strategies. SADE also
incorporates adaption or variation on the hyperparameters F and Cr. The scaling
factor F mediates the convergence speed of the algorithm, with large values being
appropriate to global search early in a run and small values being consistent with
local search later in the run. The implementation of SADE used here largely follows
[16] and differs only in one major aspect, concerning the adaption of F. Adaption
of the parameter Cr is based on accumulated experience of the successful values for
the parameter over the run. It is assumed that the crossover probability for a trial
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is normally distributed about a mean Cr with standard deviation 0.1. At initiation,
the parameter Cr is set to 0.5 to give equal likelihood of each parent contributing
a chromosome. The crossover probabilities are then held fixed for each population
index for a certain number of generations and then resampled. In a rather similar
manner to the adaption of the strategy probabilities, the Cr values for trial vectors
successfully passing to the next generation are recorded over a certain greater
number of generations and their mean value is adopted as the next Cr. The record of
successful trials is cleared at this point in order to avoid long-term memory effects.
The version of the algorithm here adapts F in essentially the same manner as Cr

but uses the Gaussian N.0:5; 0:3/ for the initial distribution. At this point, the reader
might legitimately argue that SADE has simply replaced one set of hyperparameters
(F, Cr) with another (duration of the learning period, etc.). In fact, because DE
and SADE are heuristic algorithms, there is no analytical counter to this argument.
However, the transition to SADE is justified by the fact that the algorithm appears
to be very robust with respect to the new hyperparameters.

The SADE algorithm is now illustrated on the same identification problem as
considered earlier. To show how robust the algorithm is, the results are presented for
the first attempt with the algorithm, where the learning period was simply taken as a
plausible ten generations; updates were subsequently applied every ten generations.
The insensitivity of SADE to these hyperparameters is shown by the fact that a
simple first guess at their values leads to good control of the mutation strategy
and rapid convergence to an excellent minimum of the cost function. As before,
the algorithm used a population of 30 individuals and was allowed to run for 200
generations for 10 independent runs with different initial populations, this means
that the same number of cost function evaluations took place as in the standard DE
run. As before, the solver made use of a fixed step. The results of the SADE run are
given in Table 3.

The results from SADE show a radical improvement on the results from the
standard DE given in Table 2. The cost function value for the best run is 1:51�10�9,
an improvement over DE of over four orders of magnitude. There is little point here
in showing a comparison between the model predictions and the original data as the
curves are indistinguishable.

Table 3 Summary results for 10 SADE identification runs on the simulation data: fixed-
step solver used

Parameter
True
value

Best
model % error Minimum Maximum Mean

Standard
deviation

m 1.0 1.000 0.0005 1.000 1.000 1.000 0.00008

c 20.0 20.00 0.0006 19.999 20.001 20.000 0.0008

˛ 1.5 1.500 0.0004 1.498 1.501 1.499 0.0008

ˇ �1.5 �1.500 0.005 �1.502 �1.495 �1.499 0.0022

A 6680.0 6680.0 0.003 6679.7 6682.0 6680.2 0.67
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2.4 Confidence Intervals for Parameter Estimates

A drawback of the optimisation-based approach to SI discussed so far is that it does
not immediately provide a measure of confidence in those estimates. In contrast,
it is well known that when linear-algebraic least-squares methods are applicable
to the identification problem, the methods provide an estimate of the covariance
matrix for the parameters [1, 2]. From the covariance matrix, one can extract the
standard deviations of the parameter estimates and thus form appropriate confidence
intervals. Some means of deriving confidence intervals for the optimisation-based
approach is clearly desirable. In fact, a means is available and has been reported
in the literature as far back as the classic work by Box and Jenkins on time-series
analysis [19]. The discussion here follows that in [20].

The basic principle is straightforward; if the parameter estimates are obtained
by minimising a cost function, one would expect the accuracy/precision of the
estimates to be related to the curvature of the cost function in the vicinity of the
minimum. If the cost function has a very shallow minimum, the algorithm will be
likely to converge over a larger range of estimates. If the minimum is very narrow,
one would expect a correspondingly narrow range of possible estimates. According
to basic principles of differential geometry, the curvature of the cost function is
approximated by the second derivatives with respect to the parameters. The relevant
equation for the covariance matrix is [19],

†.w/ 	 2
2� ŒS��1 (7)

where w is the vector of parameters and the matrix ŒS� is defined by its elements,

Sij D @2J0.w/
@wi@wj

ˇ̌̌
ˇ
wDw�

(8)

where w� is the optimum derived for the parameter estimate and 
2� is the residual
variance unexplained by the model. The function J0.w/ is the sum-of-squares
function and is here directly related to the cost function in equation (5) by

J0.w/ D N
2y
100

J.w/ D
NX

iD1
.yi � Oyi.w//

2 (9)

One also sees that the residual variance is estimated by


2� D
J0.w/

N
(10)

Equation (7) will be used to estimate the parameter covariance. However, it has
been observed that the definition (7) can present problems due to the presence
of the second derivatives [21]. In practice, these are evaluated numerically from
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Table 4 Summary results for 10 SADE identification runs on the simulation data
with 5 % noise: fixed-step solver used

Parameter
True
value

Best
model Minimum Maximum Mean

Standard
deviation

m 1.0 0.9975 0.9975 0.9978 0.9976 0.00007

c 20.0 20.088 20.083 20.089 20.088 0.002

˛ 1.5 1.440 1.440 1.444 1.440 0.001

ˇ �1.5 �1.539 �1.567 �1.537 �1.542 0.009

A 6680.0 6663.0 6661.8 6664.7 6663.0 0.7

Table 5 Parameter confidences from estimated covariance matrix (7)

Parameter True value Standard deviation 95 % confidence interval

m 1.0 0.002 [0.993, 1.001]

c 20.0 0.06 [19.97, 20.21]

˛ 1.5 0.06 [1.33, 1.55]

ˇ �1.5 0.29 [�2.07, �1.01]

A 6680.0 17.0 [6629.7, 6696.3]

evaluations of the cost function at points close to the minimum and can sometimes
be inaccurate. As an alternative, the book [22] provides an estimator for the
covariance matrix which only requires first derivatives.

The first stage is of course to obtain parameter estimates using the optimisation
scheme. Exactly the same procedure as above was followed, except that Gaussian
white noise with a standard deviation 5 % of the response standard deviation was
added to the simulated response (in order that sensible confidence intervals were
obtained from the simulated data). The results of the consequent 10 SADE runs are
given in Table 4.

Note that the standard deviation in the final column of Table 5 is not an estimate
derived from a covariance matrix, it is simply the standard deviation of the estimates
over the 10 runs of the SADE algorithm. The NMSE for the best set of parameters
was 0.225. The set of parameters from the best run (column 3 in Table 4) will be
used as the vector w� in the covariance matrix estimates. In order to estimate the
covariance matrices using equation (7) one needs to evaluate the cost function at
points near the optimum w� and numerically estimate first and second derivatives.
Centred differences were used to estimate the derivatives here. One issue that arises
is choice of the step-size for the differences. This was defined here in terms of a
fraction of the parameter size by h D wi=df with a user-specified parameter df . A
simple convergence study showed that a value of df D 50 was appropriate, and this
value was used. The estimator of the covariance matrix based on equation (7) gave
the results shown in Table 5.
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The estimator for the covariance matrix gives sensible results; the 95 % con-
fidence intervals bracket the true parameters as one would expect for unbiased
estimates. Furthermore, the estimator based on first-derivatives [22] was shown to
agree with these results in [23] as was an estimator based on Markov Chain Monte
Carlo.

3 Linear System Identification of an Experimental Structure

Although the main advantages of the evolutionary SI approach are felt for nonlinear
structures, there is no reason why it cannot be applied to linear systems and
structures. In fact, there is a reason, alluded to above, why the evolutionary approach
may be desirable. The reason is that the identification method can work with a
single type of measured response from the system of interest, e.g. a displacement
corresponding to each degree of freedom. In contrast, a direct parameter estimation
based on linear least-squares analysis would require measurements of acceleration,
velocity and displacement for all degrees of freedom of interest. This means that
either extensive instrumentation is required (three times the number of sensors and
measurement channels) or troublesome numerical integration or differentiation must
be employed [24]. For MDOF systems, there is thus a clear advantage of adopting
an explicit optimisation-based approach over a “classical” least-squares strategy. In
this section, the use of SADE on an experimental MDOF structure is demonstrated.

3.1 The Experimental Rig and Data Capture

For the purposes of the present illustration, a small-scale simulated shear building
model was used. This was designed to correspond closely with a structure previously
designed and built at Los Alamos National Laboratories (LANL). Within LANL, the
experimental rig was referred to informally as the “bookshelf” rig and this informal
nomenclature is also adopted here. The bookshelf structure, illustrated in Figure 3
has four levels, floors or shelves, with the lower level being considered the base.
Each shelf/floor is composed of a substantial rectilinear aluminium block with a
mass of 5.2 kg and dimensions 35�25:5�0:5cm (L�w�h). The shelves are joined
by upright beams at each corner; each beam having a mass of 238 g and dimensions
55:5 � 2:5 � 0:6 cm. The blocks used to connect the main plates and the upright
beams have a mass of 18 g and dimensions 2:5� 2:5� 1:3 cm. For each block, four
bolts were used, each of Viraj A2-70 grade and with a mass of 10 g. The structure
was mounted on a rail system which was securely clamped onto a substantial testing
table; linear bearings were used in order to minimise friction in the rail system. In
order to introduce the excitation into the structure, an electrodynamic shaker with a
force transducer was connected to the base.
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Fig. 3 The “bookshelf” experimental rig showing accelerometer positions, shaker attachment and
guide rail system

The experimental data were acquired using an LMS CADA system connected
to a SCADAS-3 interface. A total of 93,184 points per channel were recorded at
a sampling frequency of 1024 Hz. Lateral accelerations were recorded for each
shelf from piezoelectric accelerometers fixed to the edges (as shown in the figures).
Transmissibilities between the relative accelerations of the floors and the base
acceleration were produced by applying the Welch method to the raw measurement
data and are given in Figure 4; the structures shown indicate that a three-DOF model
of the rig is likely to capture the main dynamics. The use of relative accelerations
allows the expression of the four-DOF dynamics in terms of the three-DOF model.
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Fig. 4 “FRFs” between the base acceleration of the rig and the relative accelerations of the upper
floors

4 System Identification Using SADE

Having established by the FRF analysis that the base-excited system appears to
correspond well to a three-DOF system, the model equations considered were

m1Rz1 C c1Pz1 C c2.Pz1 � Pz2/C k1z1 C k2.z1 � z2/ D �m�Ry0
m2Rz2 C c2.Pz2 � Pz1/C c3.Pz2 � Pz3/C k2.z2 � z1/C k3.z2 � z3/ D �m�Ry0

m3Rz3 C c3.Pz3 � Pz3/C k3.z3 � z2/ D �m�Ry0 (11)

where the fzi D yi � y0 W i D 1; : : : ; 3g are displacement coordinates relative
to the base displacement. As it is not clear what the actual masses are prior to the
identification, an estimate m� is used for the RHS of the equations. The estimate is
based on the physical masses of the shelves and associated fixings. Including m1,
m2 and m3 in the parameter vector w D .m1;m2;m3; c1; c2; c3; k1; k2; k3/ allows the
identification algorithm to correct for the contribution of the vertical beams, etc.
Based on the design geometry and materials, m� was taken here as 5.475 kg.
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The cost function referred to above was defined again in terms of the prediction
errors associated with each DOF. A set of NMSEs Ji were defined by

Ji.w/ D 100

N
2Rzi

NX
iD1
.Rzi � ORzi.w//

2 (12)

where 
2Rzi
is the variance of the measured sequence of relative accelerations and

the caret denotes the predicted quantity; N is the number of “training” points used
for identification. The total cost function J was then taken as the average of the Ji.
In order to generate the predictions ORzi, the coupled equations (11) were integrated
forward in time using a fixed-step fourth-order Runge–Kutta scheme as before. The
excitations for the predictions were established by the measured base accelerations
Ry0 and the initial estimate m�. Although a great deal of data were measured in the
experiments, the SADE identification scheme is computationally expensive, with
the main overhead associated with integrating trial equations forward in time. For
this reason, the “training set” or identification set used here was composed of only
N D 5000 points. To avoid problems associated with transients, the cost function
was only evaluated after the first 200 points of each predicted record.

Once the data were generated, the SADE algorithm was applied to the identifi-
cation problem using a parameter vector w. Initial ranges for the parameters were
required as usual; the initial parameters were generated using uniform distributions
on those ranges. Estimates based on engineering judgement were used. The masses
in the model were not considered as a problem as the inertia of the system was
considered very likely to be dominated by the shelves and fixings, it was therefore
expected that the true values would be close to the estimate m� given above. For
this reason, a short range Œ4:5; 6:0�was taken for the initial population. The situation
with the stiffness parameters is a little more complicated as it is not clear what the
appropriate boundary conditions are for the upright beams connecting the floors.
An approximate value of k� D 5:2� 105 N/m can be obtained by assuming encastre
conditions; however, the true value may vary substantially from k� if the bolts do
not impose a true fixed condition, for example. Because of the uncertainty in the
initial physical estimates of the stiffness, the initial ranges for SADE were taken on
roughly an order of magnitude below and above k� i.e. Œ5 � 104; 5 � 106�. Taking
into account the values of m� and k� and assuming damping ratios in the vicinity of
0.1 % for aluminium, the initial ranges for the damping parameters were estimated
at Œ0:1; 10:0�, again an order or magnitude below and above a nominal value of
c� D 1:0 Ns/m. It was anticipated that the damping would be at the higher end of
the ranges as a result of damping from joints etc.

A population of 100 individuals was chosen for the SADE runs with a maximum
number of generations of 200. In order to sample different random initial conditions
for the DE algorithm, 5 independent runs were made. The other parameters chosen
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Table 6 Parameter estimates from 5 independent SADE runs

Parameter Best Maximum Minimum Mean
Standard
deviation

Coefficient
of variation

m1 5.037 5.044 4.902 5.000 0.062 0.012

m2 6.000 6.000 5.536 5.753 0.166 0.029

m3 5.424 5.535 5.190 5,359 0.129 0.024

c1 9.612 9.683 6.044 8.701 1.522 0.175

c2 0.100 9.632 0.100 2.167 4.185 1.931

c3 1.445 9.022 1.445 4.000 3.090 0.772

k1 (�10�5) 0.644 2.936 0.644 1.292 0.953 0.738

k2 (�10�5) 6.946 6.946 3.362 6.031 1.521 0.252

k3 (�10�5) 0.736 5.941 0.500 1.877 2.326 1.239

J 3.383 3.466 3.383 3.418 0.042 0.012

used for SADE were a starting value for F of 0.9 and a starting value for Cp of 0.5
(these values proved to be effective in a number of previous studies); this completes
the specification of SADE for the problem.

Each of the 5 runs of the DE algorithm converged to a good solution to the
problem in the sense that cost function values of around 2 % or below were obtained
in all cases; the summary results are given in Table 6. The best solution gave a
cost function value of 1.591. A visual comparison of the experimental responses
and predicted responses for the best parameter set is given in Figure 5. As the true
parameters are not known in this case, a more rigourous approach to validation is
required, so the comparison is based upon a set of 5000 points of testing data that
was distinct from the training data used to fit the parameters. If the cost function is
deconstructed into the individual errors for degrees of freedom, the result is the
set (3.370, 2.952, 3.827) for the training data and (4.882, 5.885, 7.772) for the
testing data. The errors on the training data (all less than 5 %) indicate a good
model; however, there is some degradation on the testing set. The increased error
on the testing set is an indication that the model is not generalising perfectly to
independent data sets. There could be a number of explanations for this, a likely one
here is that the experimental rig is not perfectly linear; if the linear bearings are at
all misaligned, there may be a contribution from contacts or friction. This issue will
require further investigation and tuning of the rig.

The results are interesting. Although there are only small variations in the
prediction errors, the coefficients of variation (standard deviation of estimate/mean
of estimate) are quite high for a number of parameters. This indicates that the errors
are rather insensitive to some of the parameters. This would be confirmed by a full
sensitivity analysis (in fact, sensitivity analysis is a potential ingredient in a rigorous
programme of model validation).
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Fig. 5 SADE model
predictions on testing data:
(a) Rz1, (b) Rz2 , (c) Rz3
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5 Conclusions

As the purpose of this paper is to illustrate the use of evolutionary SI rather than
to display new results, extensive conclusions are not warranted. The example of
a hysteretic system is used to show how evolutionary methods overcome some
of the problems which mean that linear least-squares methods are ineffective for
nonlinear SI. In particular, the Bouc–Wen system is singled out as one which
has unmeasured states and is nonlinear-in-the-parameters. It is also shown how
confidence intervals for parameter estimates can be obtained straightforwardly
within the evolutionary methodology. Another strength of the optimisation-based
approach to SI is that one does not need simultaneous measurements of acceleration,
velocity and displacement data and this is illustrated via a case study of an
experimental three-storey building model.
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1 Introduction

Many industrial design optimization problems require expensive simulations for
evaluating their candidate solutions. Employing surrogate models to replace com-
putationally expensive exact function evaluations is a routine approach to address
these problems [22]. Because many real-world problems have constraints, con-
strained expensive optimization is receiving increasing attention. However, most
research works focus on computationally expensive local optimization [1, 12]. This
chapter focuses on handling global optimization problems with both expensive
simulations (i.e., only very few exact evaluations are allowed) and complex
inequality constraints, which can be found in many real-world applications such
as mm-wave integrated circuit design (e.g., [19]). Constraints in many industrial
design optimization problems come from design specifications (e.g., power �
1.5 mW) which are inequality constraints and equality constraints are often self-
contained in the simulator (e.g., Maxwell’s equations). For complex constraints,
this chapter mainly aims at a number of constraints, active constraints (tight design
specifications), disconnected feasible region, and complex (sophisticated landscape)
constraint functions.

Surrogate-model-assisted evolutionary algorithms (SAEAs) have been accepted
as an effective approach to deal with expensive optimization. SAEAs take advan-
tages of both evolutionary algorithms (EAs) and surrogate modeling techniques.
To develop an SAEA for constrained expensive optimization problems, one must
consider three highly related issues:

• Which surrogate modeling method should be used to approximate the objective
function and the constraints?

• Which SAEA framework should be used?
• How should the constraints be handled?

The Gaussian process (GP) modeling is one of the most popular surrogate mod-
eling methods used in SAEAs. Some principled expensive optimization approaches
with the GP model and with prescreening, such as the efficient global optimization
(EGO) method [10], have been well investigated and documented. Moreover, very
few empirical parameters are necessary in a GP model, making the surrogate model-
ing more controllable. Due to these, the GP modeling is adopted for approximating
the objective function and the constraints.

To deal with the second issue, several SAEA frameworks have been proposed
for accommodating surrogate models. Successful examples include the surrogate-
model-assisted memetic evolutionary search (SMMS) framework [16, 34], the
meta-model-assisted EA (MAEA) framework [5], and the surrogate model-aware
evolutionary search (SMAS) framework [20]. These frameworks balance the sur-
rogate model quality and the optimization efficiency in different manners and
have been tested mainly on unconstrained optimization problems. The SMAS
framework considers EA-driven function optimization and high-quality surrogate
model construction at the same time by controlling the locations of the generated
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candidate solutions. It has shown clear advantages (up to eight times fewer exact
evaluations) over the SMMS and the MAEA frameworks on a set of widely used
unconstrained test instances with 20–50 variables in terms of solution quality with
a limited number of exact function evaluations [20]. Therefore, SMAS is especially
suitable for quite expensive industrial design optimization problems. For this reason,
the SMAS framework is selected.

With regard to constraint handling, a number of techniques have been suggested
and used in EAs for general (often inexpensive) constrained optimization. Besides
static penalty function-based methods and the superiority of the feasibility (SF)
method [3], some advanced constraint handling methods have been developed for
handling complex constraints [21, 25, 31, 32], such as the self-adaptive penalty
function-based methods [31], stochastic ranking-based methods [25], and multi-
objective ranking-based methods [32]. All these techniques aim at maintaining
the population diversity while driving their populations from infeasible region to
feasible one by adaptively trading off the objective function optimization and the
total constraint violation minimization. In the context of expensive optimization,
some general constraint handling methods have successfully been applied to
constrained expensive optimization (e.g., [5, 7]). Several prescreening methods
have been generalized from unconstrained expensive optimization to constrained
expensive optimization [5, 6, 28]. Some modeling methods and model updating
methods for constraint function satisfaction and objective function optimization
have been developed [2, 14, 26]. In addition, surrogate-model-assisted expensive
integer nonlinear programming has been investigated [11].

One focus of this chapter is to handle complex constraints in an efficient manner
(i.e., using the SMAS framework). It is not straightforward to combine the above
advanced constraint handling methods for inexpensive and expensive constrained
optimization with SMAS. The diversity maintenance methods in most advanced
constraint handling methods rely on the population updating of a standard EA [21],
while the population updating of SMAS is completely different and is critical for its
efficiency.

Another focus is to reduce the computational overhead of surrogate modeling.
Independent modeling of the constraint functions is needed for constrained expen-
sive optimization problems [5]. When the number of decision variables is large (e.g.,
20–50 variables), surrogate model construction itself may cost a few minutes for a
single function in some cases (e.g., [20]), and it should be conducted at each iteration
for both the objective function and all the constraints. Thus, the computational
cost of surrogate modeling can be tremendous, especially for problems with many
constraints.

To address these challenges, an improved SMAS framework for efficient con-
strained expensive optimization, a diversity maintenance method for the SMAS
framework to handle complex constraints, and an adaptive surrogate model updating
(ASU) method for adaptively saving the computational overhead of surrogate mod-
elling are introduced. Using these three techniques, a Gaussian Process SAEA for
computationally expensive inequality constrained optimization problems (GPEEC)
is constructed. Empirical studies on 8 benchmark problems that are challenging in



350 B. Liu et al.

terms of constraint handling, a self-developed 20-dimensional benchmark problem
whose objective function is highly multimodal and whose constraint function is
very complex, and a real-world mm-wave integrated circuit design optimization
problem are used as examples. Results show that comparable solution quality
is obtained compared to the state-of-the-art constrained optimization methods
(without surrogate models), and that only 1–10 % of the number of exact function
evaluations are needed compared to the standard EA with the popular SF method.

The remainder of this chapter is organized as follows. Section 2 introduces the
basic techniques. The general framework of GPEEC is then presented in Section 3.
Sections 4–6 provide details of the algorithm. Section 7 presents the experimental
results of GPEEC. The parameter settings of GPEEC are also discussed. The
summary is presented in Section 8.

2 Problem Definition and Basic Techniques

2.1 Problem Definition

The following constrained optimization problem is considered in this chapter:

minimize f .x/
subject to gi.x/ � 0; i D 1; : : : ;m:

x 2 Œa; b�d;
(1)

where f .x/ is the objective function, gi.x/ � 0 (i D 1; : : : ;m/ are the constraints,
and Œa; b�d is the search region. We assume that some constraints gi.x/ � 0 can be
active. In other words, these constraints become almost equalities at the globally
optimal solution. The problem can have disconnected feasible regions, the function
of f .x/ can be highly multimodal and the function landscape of gi.x/ can be quite
complex. We further assume that the calculations of f .x/ and the different gi.x/ can
be done in a single simulation, which is the case for many real-world expensive
optimization problems (e.g., [18]), or can be done in parallel considering the rapid
development of parallel computation techniques.

2.2 GP Modeling

To model an unknown function y D f .x/; x 2 Rd, the GP modeling assumes that
f .x/ at any point x is a Gaussian random variable N.�; 
2/, where � and 
 are
two constants independent of x. For any x, f .x/ is a sample of � C �.x/, where
�.x/ � N.0; 
2/. For any x; x0 2 Rd, c.x; x0/, the correlation between �.x/ and
�.x0/, depends on x � x0. More precisely,
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c.x; x0/ D exp.�
dX

iD1
�ijxi � x0ijpi/; (2)

where parameter 1 � pi � 2 is related to the smoothness of f .x/ with respect to xi,
and parameter �i > 0 indicates the importance of xi on f .x/. More details of the GP
modeling can be found in [24].

2.2.1 Hyper Parameter Estimation

Given K points x1; : : : ; xK 2 Rd and their f -function values y1; : : : ; yK , then the
hyper parameters �, 
 , �1; : : : ; �d, and p1; : : : ; pd can be estimated by maximizing
the likelihood that f .x/ D yi at x D xi .i D 1; : : : ;K/ [10]:

1

.2�
2/K=2
p

det.C/
exp

�
� .y � �1/TC�1.y � �1/

2
2

�
(3)

where C is a K � K matrix whose .i; j/-element is c.xi; xj/, y D .y1; : : : ; yK/T and 1
is a K-dimensional column vector of ones.

To maximize (3), the values of � and 
2 must be:

O� D 1TC�1y
1TC�11

(4)

and

O
2 D .y � 1 O�/TC�1.y � 1 O�/
K

: (5)

Substituting (4) and (5) into (3) eliminates the unknown parameters � and 
 from
(3). As a result, the likelihood function depends only on �i and pi for i D 1; : : : ; d.
Equation (3) can then be maximized to obtain estimates of O�i and Opi. The estimates
O� and O
2 can then readily be obtained from (4) and (5).

2.2.2 The Best Linear Unbiased Prediction and Predictive Distribution

Given the hyperparameter estimates O�i, Opi, O�, and O
2, one can predict y D f .x/ at
any untested point x based on the f -function values yi at xi for i D 1; : : : ;K. The
best linear unbiased predictor of f .x/ is [10, 27]:

Of .x/ D O�C rTC�1.y � 1 O�/ (6)
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and its mean squared error is:

s2.x/ D O
2Œ1 � rTC�1rC .1 � 1TC�1r/2

1TC�1r
� (7)

where r D .c.x; x1/; : : : ; c.x; xK//T . N.Of .x/; s2.x// can be regarded as a predictive
distribution for f .x/ given the function values yi at xi for i D 1; : : : ;K.

More detailed derivations about the hyperparameter estimation and prediction
can be found in [9].

2.2.3 Lower Confidence Bound

We consider minimization of f .x/ in this chapter. Given the predictive distribution
N.Of .x/; s2.x// for f .x/, a lower confidence bound (LCB) of f .x/ can be defined
as [4]:

flcb.x/ D Of .x/ � !s.x/ (8)

where ! is a predefined constant. In the GPEEC algorithm, flcb.x/ instead of Of .x/
itself is used to measure the quality of x. The use of LCB can balance the search
between promising areas (i.e., with low Of .x/ values) and less explored areas (i.e.,
with high s.x/ values). Following the suggestion in [4, 5], ! D 2 is used for
balancing the exploration and exploitation of LCB.

2.3 Differential Evolution

The differential evolution (DE) algorithm is used as the search engine in the GPEEC
algorithm. DE is an effective and popular global optimization algorithm. It uses a
differential operator to create new candidate solutions [23]. There are quite a few
different DE variants and DE/best/1 is used here to generate new solutions for
prescreening. The DE/best/1 mutation uses the current best solution as the base
vector, so as to increase the speed of generating promising candidates.

Suppose that P is a population and the best individual in P is xbest. Let x D
.x1; : : : ; xd/ 2 Rd be an individual solution in P. To generate a child solution u D
.u1; : : : ; ud/ for x, DE/best/1 works as follows.

A donor vector is first produced by mutation:

v D xbest C F � .xr1 � xr2/ (9)

where xr1 and xr2 are two different solutions randomly selected from P and also
different from xbest. F 2 .0; 2� is a control parameter, often called the scaling factor
[23]. Then the following crossover operator is applied to produce u:
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1. Randomly select a variable index jrand 2 f1; : : : ; dg,
2. For each j D 1 to d, generate a uniformly distributed random number rand from
.0; 1/ and set:

uj D
�
vj; if (rand � CR/jj D jrand

xj; otherwise
(10)

where CR 2 Œ0; 1� is a predefined constant called the crossover rate.

3 Algorithm Framework

As described above, GPEEC adopts and improves the SMAS framework originally
proposed for unconstrained expensive optimization [20]. GPEEC maintains a
database and iteratively updates surrogate models for the objective function and
the constraints until a stopping criterion is met.

• The database is composed of all the evaluated solutions and their exact function
values. At the first step, ˛ solutions from Œa; b�d are sampled by an experimental
design method and are evaluated (through exact function evaluations) to form the
initial database.

• Surrogate models for the objective function and each constraint are constructed
at the first step and are then updated at the consecutive iterations.

In each iteration, GPEEC works as follows:

Step 1: Selecting working population: Select the � best solutions from the current
database to form a population P.

Step 2: Diversity maintenance: Check the diversity of P. When necessary, conduct
diversity enhancement operations on P.

Step 3: Generating child population: Apply evolutionary operators on P to
generate � child solutions.

Step 4: Prescreening of child solutions: Adaptively update the surrogate models
for the objective function and for the constraint functions using information
extracted from the database and the available surrogate models. Estimate the
quality of the � child solutions generated in Step 3 based on the updated surrogate
models and prescreening methods.

Step 5: Function evaluation: Perform exact function evaluation on the estimated
best candidate solution xb from Step 4 and then add xb and its exact function
values to the database.

Since the working population P consists of the best solutions in the current database,
the search concentrates on the current promising subregion, which is moving in the
search space for exploration. This is necessary because the computational budget
for exact function evaluations is very limited. In surrogate modeling, training data
points that are close to the child solutions can be obtained so as to construct high-
quality surrogate models. This will further be illustrated in Section 5.
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4 Constraint Handling and Diversity Maintenance

This section explains and discusses the implementation of Step 1 and Step 2 of
GPEEC for handling constraints.

4.1 Basic Constraint Handling Method

It is natural to use the information of constraint satisfaction to rank the candidate
solutions. For simplicity and efficiency, a revised SF method proposed in [3] is
adopted in Step 1 for selecting the � best candidate solutions from the database.
The ranking rules based on SF are as follows:

1. Feasible solutions rank higher than infeasible ones.
2. Feasible solutions are ranked solely based on their objective function values in

ascending order.
3. Infeasible solutions are ranked solely based on their total constraint violation

values (
Pm

iD1 maxf0; gi.x/g) in ascending order.

4.2 The Diversity Maintenance Method

Many constrained optimization procedures have the following phases [21]: (1)
The population moves towards the feasible region and the main driving force is
the minimization of the total amount of constraint violations. (2) A part of the
population is in the feasible region and the other part is in the infeasible region, and
the main driving forces are both the minimization of the total constraint violations
and the optimization of the objective function. (3) Most candidate solutions of the
population are in the feasible region and the main driving force is optimization of the
objective function. An early stage and a late stage are used, which are separated by
T, the number of feasible solutions generated so far, which should be set to several
multiples of � (the reason is explained in Section 7). This indicates that at the end
of the early stage, most candidates are feasible while a substantial effort is used for
objective function optimization; the late stage, on the other hand, mainly focuses on
optimizing the objective function.

There are d decision variables xi (i D 1; : : : ; d/ in Problem (1). Let x� be its
globally optimal solution and let Pi contain the xi values of all the solutions in the
current population P. Ideally, each Pi will converge to the xi value in x�. However,
due to complex constraints and other reasons, some Pi may get trapped at some
wrong position and thus lose its diversity at some search stages. If Pi is trapped
at a value, xi is called a trapped variable. Figure 1 provides an example with two
variables, illustrating why the trapping of some Pi may happen. In this example,˝1

and ˝2 are two parts of the feasible region. For each value of x2, the feasible range
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Fig. 1 An illustrative figure
of the trapping of variables
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of x1 is different. In Figure 1, the feasible range of x1 for each fixed x2 value consists
of two disconnected intervals since the feasible region is disconnected. When the
early stage begins, the major driving force is the minimization of the total amount
of constraint violations. When there are many constraints in Problem (1), it is very
likely that the total amount of constraint violations drops significantly when some
elements in P1 enter the interval I1 instead of I2. Therefore, once some elements in
P1 fall in I1, most elements in P1 will enter I1 very soon. Since I2 is not connected
with I1, it is very difficult for x1 to get out of I1 just by reproduction operators such
as crossovers and small mutations, and P1 may lose its diversity and then get stuck
at a value in I1 because of the objective function optimization near the end of the
early stage. To deal with this issue, the following method is used to improve the
diversity.

The variables x1; : : : ; xd in x are treated separately in the DM procedure.1 For
each xk, its diversity in P, Dk.P/, is:

Dk.P/ D maxQxD.Qx1;:::;Qxd/2TPfjQxk � xbest
k jg

where TP contains the top � solutions in P based on the SF ranking, xbest D
.xbest
1 ; : : : ; xbest

d / is the best solution in P, and � is a control parameter.

1We assume that all the decision variables are at least related to one of the constraints; otherwise,
they can be easily eliminated from the DM method.
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The DM method (Step 2 in GPEEC in Section 3) works as follows:

If the total number of feasible solutions in the current database � T
FOR k D 1; : : : ; d

IF Dk.P/ � ".
For every solutionex D .ex1; : : : ;exd/ 2 P, resetexk to a uniformly distributed

random number in Œa; b�.
END

END

Several remarks can be made on the above method:

• The DM method is applied when the total number of feasible solutions generated
so far is less than a predefined number T. In other words, this method will not be
used at the late search stage. A major consideration is that the algorithm should
focus on optimizing the objective function starting from a diversity maintained
(if necessary) population at the late stage.

• When Dk.P/ � ", the xk values of the top � solutions in P are very close. It
indicates that the current population P does not have a good diversity in xk. Note
that TP is the best subset of P and thus the current database. To prevent the search
from being trapped in a locally optimal area, the value of xk is randomly reset for
each solution in P.

• At the early search stage, some xi.s/ (often trapped variables) converge much
faster than others (see definition and explanation of the trapped variables).
Therefore, in the for loop of the DM method, not all the variables will be
re-sampled from Œa; b�. The newly generated solutions still inherit variables with
good diversity in the current population. The re-sampling of trapped variables
after the detection, in contrast to the random sampling in the beginning of the
early stage, is effective for jumping out of the premature convergence. As said
above, substantial effort must be spent on objective function optimization when
the trapped variable can be detected (i.e., it converges to a very narrow range ").
Hence, many feasible solutions should have been generated and P should be
around the feasible region, i.e., most constraints are satisfied. This implies that
after re-sampling, each interval of a trapped variable has nearly equal chance to
be selected considering the feasibility and the value of the objective function.

• The DM method can easily be used in the SMAS framework, since it improves
the population diversity by only using information extracted from the decision
space, rather than trading off the objective function value and the constraint
satisfaction like most advanced constrained optimization methods.

The parameters in the DM method are set as follows: T D 5 � �, � D 10 and
" D 0:1 assuming a Œ�10; 10� search region (we can make this assumption come
true by scaling). More details are in Section 7.
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5 Surrogate Modeling

This section discusses the implementation of Step 4 of GPEEC for the surrogate
modeling and prescreening.

5.1 Surrogate Modeling Based on Improved SMAS

The idea of SMAS [20] is used in GPEEC. Different from other SAEA frameworks,
SMAS concentrates both its search and its surrogate modeling on the current
promising region and gradually moves the promising region for exploration. It uses
the � best candidate solutions to form its working population, and only evaluates
the exact function value of the estimated best candidate solution.

Training data points with a higher quality can be generated using the SMAS
framework than using an SAEA framework which relies on a standard EA. The
solutions in P (Step 1) are not necessarily far away from one another since they are
the current best candidate solutions. Also, because at most a single new solution
enters P in each iteration, the selected estimated best solutions (which are generated
from P in step 3 and which will serve as training data points) in several consecutive
iterations will not be far away from one another. As a consequence, most training
data points are also in or near the current promising region. Therefore, a high-quality
surrogate model for this region can be constructed for prescreening newly generated
solutions. That is why SMAS is a surrogate model-aware search mechanism. In
contrast, new solutions often spread in different regions in standard EAs and thus
often no sufficient number of training data points are around candidate solutions to
be prescreened, affecting the surrogate model quality negatively.

To select training data points, the median of the � new solutions for each decision
variable is computed to construct a vector mv . The � available training data points
that are nearest to mv are selected to construct the surrogate model. � should be set
between 5 � d and 7 � d. � D 6 � d is used in all the experiments.

Note that the LCB prescreening is used only for the objective function, while for
constraints the predicted value is used (i.e., ! D 0). The reason is to prevent that
many near-feasible solutions are selected, since in SMAS only a single candidate
solution is selected and evaluated in each iteration.

5.2 The Adaptive Surrogate Model Updating Method

The ASU method in GPEEC adaptively decides whether the surrogate model will be
updated or not, with the goal of reducing the computational overhead of surrogate
modeling. This is important for GPEEC, because the computational overhead of
surrogate model construction for constrained expensive optimization problems can
be tremendous (see Section 1).
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Since the goal is to minimize f .x/, the quality of the surrogate model for f .x/
does matter. For this reason, the surrogate model for f .x/ is updated at every
iteration. As to the surrogate model for each gi.x/, there are different considerations
for the different search stages. In the early stage, the purpose of most surrogate
models for gi.x/ is to estimate maxf0; gi.x/g. Therefore, one needs high-quality
models at this stage in order to estimate the total amount of constraint violations
reliably. In contrast, when the search has almost entered the feasible region (the late
stage), the surrogate models for gi.x/ serve the purpose as long as the models can
distinguish feasible solutions from infeasible ones. Therefore, it is not necessary to
update the models of gi.x/ at every iteration in the late stage. For those iterations
where the surrogate model updating is not conducted, previous models are used for
estimating the constraint function values. Therefore, the ASU method is applied
when the total number of feasible solutions in the current database is larger than the
parameter T which was introduced in Section 4.

At each iteration t at the late stage (t � T), the surrogate model is updated for
gi.x/ if

• remaining.t; tc/ D 0; or
• one of the � most recently evaluated points does not satisfy gi.x/ � 0
where tc and � are control parameters.

Several remarks can be made:

• The update of the surrogate models for constraint functions is conducted at every
iteration in the early stage and after every tc iterations in the late stage to reinforce
the reliability of the surrogate models.

• At the late stage, since many candidate solutions in P are deep inside the feasible
region, it is unlikely that all of the � new solutions are infeasible. Thus, there is
a high probability that some infeasible solution (considering gi.x/) among the �
new solutions should be predicted as feasible and ranked as the best. In this case,
it is possible that the search region is near the boundary of gi.x/ D 0 or that the
previous GP model cannot work. Hence, the surrogate model is updated for gi.x/
in this case. For j 2 f1; : : : ;mg and j ¤ i, the surrogate model of gj.x/ is then not
updated.

tc D 10 and � D 5 are used in all the experiments. Their settings are discussed in
Section 7.

6 Implementation Details

Some implementation details included in Step 1, Step 3 and Step 5 are as follows.
Note that various alternative methods can be investigated and applied in the general
GPEEC framework:
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• In Step 1, the selected experimental design method is Latin hypercube sampling
(LHS) [29]. LHS is widely used for the initial database generation in SAEA
research. ˛ (the number of initial samples) is often relatively small and the
empirical rule for setting ˛ for the SMAS framework is in [20], which is also
applicable to GPEEC.

• The selected EA operators in Step 3 are the DE/best/1 mutation operator and the
DE crossover operator. Section 2 has provided more details.

• In Step 5, sometimes a modified form of the estimated best candidate solution
(xb) is used. The purpose is to avoid the repeated expensive evaluation of the
same candidate solution and to perform local search. A Gaussian distributed
random number with zero mean and with 5% of the search range of each decision
variable as variance is added to modify xb if xb has been evaluated before.

7 Experimental Studies

7.1 Test Problems and Parameter Settings

The GPEEC algorithm is tested with ten problems, which are shown in Table 1.
First, 8 hard benchmark test problems for constrained optimization are used (G1 to
G10 from the CEC 2006 special session on constrained real-parameter optimization
[15], except G3 and G5 which use equality constraints: GN1–GN8 correspond to
G1, G2, G4, G6, G7, G8, G9, G10 in [15], respectively), involving many constraints,
disconnected feasible regions and active constraints. In addition, to test the ability of
GPEEC on handling complex objective and constraint functions, a 20-dimensional
test function is constructed with the Ackley and Griewank test functions [30] (please
see the Appendix). Finally, a real-world problem from the mm-wave integrated
circuit (IC) design field is used to demonstrate the capabilities of GPEEC.

Table 1 Test problems used in the experimental studies

Problem Opt. d � (%) a m � Neval

GN1 (G1 in [15]) �15 13 0:011 6 9 40 1000

GN2 (G2 in [15]) �0.8036 20 99:99 1 2 40 2000

GN3 (G4 in [15]) �30665.54 5 52:12 2 6 30 800

GN4 (G6 in [15]) �6961.81 2 0:006 2 2 30 1000

GN5 (G7 in [15]) 24.31 10 0:00 6 8 40 1000

GN6 (G8 in [15]) �0.0958 2 0:86 0 2 30 800

GN7 (G9 in [15]) 680.63 7 0:52 2 4 30 800

GN8 (G10 in [15]) 7049.33 8 0:00 3 6 40 1000

GN9 0 20 0:00 0 2 40 1500

Opt. is the globally optimal objective function value of each problem
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In Table 1, � is an estimate of the ratio of the feasible space to the entire
search space. a is the number of active constraints and m is the total number of
constraints. All the parameter setting rules of GPEEC have been described above.
For GN1–GN9, ˛ D 50 is used for problems with 10–20 variables, and ˛ D 40

for problems with less than ten variables. The population size � and the number of
exact function evaluations Neval are shown in Table 1. Note that we assume that the
calculations of f .x/ and the different gi.x/ can be done in a single simulation or
can be done in parallel, which is common to many expensive optimization problems
nowadays. In all the experiments, DE/best/1 is used and the crossover rate CR is
set to 0.8 according to the suggestions in [23]. Note that a relatively large scaling
factor F (e.g., F 2 Œ0:75; 0:95�) is necessary to promote exploration for the SMAS
framework, in order to avoid getting stuck in local optima. F is set to 0.8 in the
experiments. ! in LCB prescreening is set to 2 according to [5].

The experiments are carried out on a 2.66 GHz computer with 7.8 Gb RAM in
the MATLAB environment on the Linux system. The ooDACE toolbox [8] is used
for GP modeling.

7.2 The GPEEC Performance and Analysis

7.2.1 Reference Results

To evaluate the solution quality of GPEEC, a state-of-the-art constrained optimiza-
tion method (without surrogate modeling) is used to provide a reference result. The
method is the self-adaptive penalty function (SAPF) method from [31]. In [31],
the real-coded genetic algorithm is used as the search engine. For fair comparison,
the same DE as in GPEEC is used with � � Neval evaluations (the average is about
40,000 evaluations). Twenty runs are performed for each case. The results are shown
in Table 2.

Table 2 Statistics of the best function values obtained by the first reference method
SAPF for GN1–GN9 over 20 runs (� � Neval function evaluations)

Problem Best Worst Mean Median Std Rinf

GN1 �15 �12.01 �14.51 �15 1.06 0

GN2 �0.75 �0.53 �0.61 �0.60 0.06 0

GN3 �30665.53 �30664.04 �30665.07 �30665.03 0.16 0

GN4 �6961.22 �6898.73 �6935.50 �6937.11 18.56 0

GN5 25.37 29.57 26.60 26.02 1.49 0

GN6 �0.0958 �0.0958 �0.0958 �0.0958 1.9e�17 0

GN7 680.64 680.65 680.64 680.64 0.0034 0

GN8 8075.23 15419.02 9545.32 8681.38 2.30eC3 0

GN9 0.61 0.83 0.74 0.75 0.0761 0

Rinf refers to the percentage of runs providing an infeasible final result
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Table 3 Statistics of the best function values obtained by the second reference method
SF for GN1–GN9 over 20 runs (� � Neval function evaluations)

Problem Best Worst Mean Median Std Rinf

GN1 �15 �11 �13.44 �13 1.34 5 %

GN2 �0.77 �0.42 �0.62 �0.62 0.11 0

GN3 �30665.53 �30664.30 �30664.05 �30665.03 0.41 0

GN4 �6961.81 �6944.68 �6959.42 �6961.81 6.48 30 %

GN5 24.31 512.25 73.65 24.31 154.12 0

GN6 �0.0958 �0.0958 �0.0958 �0.0958 1.03e�17 0

GN7 680.63 680.63 680.63 680.63 5.73e�4 0

GN8 7050.92 20101.53 9880.37 7222.31 4295.13 55 %

GN9 0 0.020 0.011 0.015 0.0095 0

Rinf refers to the percentage of runs providing an infeasible final result.

Compared to [31], the results of SAPF for GN1, GN2, GN4, and GN8 are worse
than the published results and the results of GN3, GN5, GN6, GN7 are better
than the published results. This is because different search engines with different
parameter settings are used inside SAPF.

Then, as a second reference, the SF method [3] is used with DE. Also, � � Neval

evaluations are used. The results are shown in Table 3. Note that the results of some
runs are infeasible, so the statistics only considers the runs that provide feasible final
results.

It can be seen that some SF results for GN1, GN4, and GN8 are infeasible. For
GN1 and GN5, it can be observed that premature convergence largely harms the
performance in some runs. The SAPF method shows clear advantages on these
problems. On the other hand, for GN7 and GN9, the SF method performs better
than the SAPF method. This indicates that in some cases when the additional
diversity enhancement does not help much, the SF method shows its advantage of
fast convergence (being more efficient). Tables 2 and 3 will be used for comparison
with GPEEC.

7.2.2 The Effect of the DM Method

The method to simulate the SMAS framework is shown in [20]. The same method
is used here for the GPEEC framework. To simulate it, the GP modeling and
prescreening are removed. Instead, exact function evaluations are conducted on all
the � child solutions in each iteration, and randomly select one from the top ˇ
solutions. ˇ D 5 is used. By this simulation, the search (optimization) ability of the
GPEEC framework can be analyzed and then it can be seen whether the surrogate
modeling and prescreening/prediction work as expected or not. We first simulate the
GPEEC framework without the DM method (without Step 2 in Section 3). Similar
results are obtained compared to Table 3, the SF method. Then, the DM method is
added to simulate the GPEEC framework. These results are in Table 4.
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Table 4 Statistics of the best function values obtained by the simulated GPEEC
framework for GN1–GN9 over 20 runs

Problem Best Worst Mean Median Std Rinf

GN1 �15 �13 �14.51 �14.92 0.71 0

GN2 �0.73 �0.50 �0.61 �0.63 0.09 0

GN3 �30665.53 �30664.17 �30664.81 �30665.04 0.42 0

GN4 �6961.81 �6928.37 �6957.16 �6961.74 10.41 0

GN5 24.47 25.08 24.73 24.62 0.25 0

GN6 �0.0958 �0.0958 �0.0958 �0.0958 1.02e�17 0

GN7 680.63 680.66 680.64 680.64 0.0095 0

GN8 7273.61 8331.37 7457.52 7335.19 318.99 0

GN9 0 0.096 0.026 0.017 0.028 0

Rinf refers to the percentage of runs providing an infeasible final result

Compared to Table 2 (the SAPF method), it can be seen that, except for GN1,
GN2, GN3, and GN6, where the results are comparable to that of the SAPF method,
the results are better than the SAPF method for the other five test problems. For
GN5, GN8, and GN9 considerably better results are observed. Compared to Table 3
(the SF method), it can be seen that no infeasible solution has been provided by
GPEEC. For GN1, GN4, GN5, and GN8, which are difficult to solve by the SF
method, the DM method is seen to be a very effective solution method. Therefore,
it can be concluded that the simulated GPEEC framework incorporates both a high
constraint handling ability and a fast convergence, which is effective for problems
with complex constraints. Moreover, experiments show that the DM method can be
triggered more than once and to more than one variable for problems with complex
constraints, while it often is not triggered for problems that can be solved well by
the SF method.

7.2.3 Integrating the GP Modeling

GPEEC with surrogate modeling and prescreening but without the ASU method is
then tested. Neval evaluations are used (see Table 1). The results are in Table 5.

It can be seen from Table 5 that: (1) All the final solutions are feasible. (2) Except
for GN2, the results are comparable to the results provided by the SAPF method.
For GN2 with 20 variables, experiments have shown that GP modeling is not very fit
for the properties of this function. For GN2 with fewer variables, on the other hand,
the performance of GP modeling is good. It is no surprise that a single surrogate
modeling method has difficulty to work well on all kinds of problems [13, 16],
and the GPEEC method is compatible with hybrid surrogate models. (3) Thanks
to the improved SMAS framework, the surrogate modeling works as expected.
There is a little degradation compared to the simulation results in Table 4 for some
problems, but GN5, GN7, and GN8 show better results than the simulation results.
The advantages of using surrogate models in terms of solution quality have been
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Table 5 Statistics of the best function values obtained by the GPEEC framework
without the ASU method for GN1–GN9 over 20 runs (Neval function evaluations)

Problem Best Worst Mean Median Std Rinf

GN1 �15.00 �12.93 �14.29 �14.85 0.94 0

GN2 �0.77 �0.38 �0.53 �0.53 0.12 0

GN3 �30665.53 �30664.01 �30664.33 �30664.21 0.43 0

GN4 �6956.70 �6769.34 �6902.68 �6915.19 58.81 0

GN5 24.31 25.01 24.39 24.32 0.22 0

GN6 �0.0958 �0.0932 �0.0954 �0.0958 8.66e�4 0

GN7 680.63 680.63 680.63 680.63 4.56e�4 0

GN8 7056.87 7583.43 7290.59 7247.08 192.75 0

GN9 1.42e�10 0.014 0.006 0.007 0.006 0

Rinf refers to the percentage of runs providing an infeasible final result

Table 6 Statistics of the best function values obtained by GPEEC for GN1–GN9 over 20 runs
(Neval function evaluations)

Problem Best Worst Mean Median Std Rinf M/S

GN1 �14.99 �12.88 �14.36 �14.96 0.98 0 1610/17 %

GN2 �0.75 �0.40 �0.51 �0.48 0.12 0 1623/27 %

GN3 �30665.42 �30661.14 �30663.79 �30664.21 1.21 0 1869/36 %

GN4 �6961.54 �6764.85 �6886.90 �6898.43 75.31 0 0/0

GN5 24.31 25.03 24.60 24.32 0.36 0 4816/56 %

GN6 �0.0958 �0.0918 �0.0952 �0.0957 0.0012 0 666/29 %

GN7 680.63 680.63 680.63 680.63 9.27e�4 0 2216/58 %

GN8 7050.20 7310.41 7119.88 7097.64 89.20 0 3041/46 %

GN9 1.25e�9 0.72 0.08 2.39e�9 0.24 0 2038/47 %

Rinf refers to the percentage of runs providing an infeasible final result. M/S indicates the number
of surrogate model constructions using the ASU method, and the percentage compared to updating
every surrogate model in each iteration

discussed in [5, 16]. (4) Note that a fixed number of Neval function evaluations
are used and the convergence is earlier than that for most problems, which will
be illustrated later on.

7.2.4 The GPEEC Performance and the Effect of the ASU Method

At last, when also integrating the ASU method, the full GPEEC algorithm is tested.
Neval function evaluations are used. The results are in Table 6.

In terms of optimality, it can be observed that the results are comparable to the
results from Table 5, as well as with the SAPF results from Table 2. In terms of the
necessary number of surrogate modeling, less than half or about half the surrogate
modeling runs are used in most cases compared to not using ASU. For GN1 (13-
dimensional, 9 constraints), GN2 (20-dimensional), and GN9 (20-dimensional),



364 B. Liu et al.

when not using ASU, the surrogate modeling time often costs more than 15 h. When
using the ASU method, the surrogate modeling only costs a few hours. The ASU
method is especially useful when the exact evaluation is not very expensive but with
many constraints, or when the number of decision variables is quite large.

7.2.5 Comparisons

The SF method is widely used in constrained optimization; its main advantages
are its simplicity and efficiency [3]. To observe the speed enhancement of GPEEC,
GPEEC (Table 6) is compared with SF (Table 3). Note that only the objective
function values of the feasible runs of the SF method are used for comparison. In the
experiments, Neval evaluations are used for GPEEC, but most convergence happens
earlier than that. To mark the convergence, a threshold, ı, is used, which means that
after Nec evaluations, the current best solution is feasible and the improvement to the
objective function is less than ı after that. Thus, it can be considered that GPEEC
converges at Nec evaluations. Because the objective function values for different test
problems are in different scales (e.g., GN6 between �0.1 and 0, GN8 about 104),
the selected ı are shown in Table 7.

To make the comparisons, the following information for GPEEC and SF are
reported.

• GNec : the median of the best function values obtained using Nec exact function
evaluations by GPEEC;

• SNec : the median of the best function values obtained using Nec exact function
evaluations by SF;

• HNec : the number of exact function evaluations needed for SF to achieve GNec . If
the final results of the SF method after � � Neval evaluations are worse than the
GPEEC result with Nec exact function evaluations, we denote this as N.A.

The comparison results are shown in Table 8. It can be seen that 6 out of 9 of the
problems, tens to even more than a hundred times less exact function evaluations
are needed by GPEEC.

Table 7 ı for GN1–GN9 Problem GN1 GN2 GN3 GN4 GN5

ı 0.1 0.01 1 1 0.1

Problem GN6 GN7 GN8 GN9

ı 0.001 0.1 1 0.1
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Table 8 Comparisons between GPEEC and SF for GN1–GN9
over 20 runs

Problem Nec GNec SNec HNec Speedup

GN1 268 �14.9 �7.0 N.A. >150

GN2 1959 �0.47 �0.33 4880 2.5

GN3 209 �30663.7 �29961.1 840 4

GN4 134 �6898.4 �4520.9 1280 10

GN5 920 24.3 1008.4 24640 27

GN6 535 �0.0957 �0.0916 840 1.6

GN7 523 680.4 1738.5 8040 15

GN8 992 7097.6 14615.3 N.A. >40

GN9 724 0.094 148.29 12800 18

7.2.6 Discussions on Parameter Setting

The parameters of GPEEC can be classified into three categories: (1) parameters
for the improved SMAS framework, (2) parameters for the DM method, and (3)
parameters for the ASU method.

The parameter setting for the SMAS framework has followed the practice in
[17, 20] where the setting has been discussed in detail.

As to parameter setting in the DM method, " is the threshold for Dk.P/ to
measure the diversity of the current population on xk. A small number is needed
depending on the range of each decision variable. " D 0:1 is used assuming a
Œ�10; 10� search region (we can make this assumption come true by scaling). T
is used to define the division of the two search stages. In the late stage, the search is
conducted mainly in the feasible region and a substantial effort is made to optimize
the objective function. Although every solution in the population P will be feasible
after � feasible solutions have been generated due to the ranking rules used in
Section 4.1, experiments show that many child solutions produced from P are still
infeasible until after 3 � � to 4 � � feasible solutions have been generated. Based
on this observation, T is set to be 5� �. � is used to determine whether a variable is
trapped or not. A big � value may not be necessary. It is suggested to be from 5 to
10. In the following, GN5 and GN7 are used as examples to test the impact of T and
�. It can be seen from Table 9 that if � and T are selected in the suggested ranges,
the DM method performs well and is robust.

As to parameter setting in the ASU method, note that this method is only used
when the number of generated feasible solutions is larger than T and the surrogate
models for constraint functions are used to differentiate feasible solutions and
infeasible ones. � is used to judge if the search is near the boundary of the feasible
region. A small � value may lead to a wrong judgement, while a large � value may
cause unnecessary model updating and thus may waste computational efforts. It is
suggested to be set around 5. tc defines how often the surrogate model for each
constraint function must be updated regularly. Considering the help of � and the
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Table 9 Statistics of the best function values obtained by the GPEEC framework
without the ASU method for GN5 and GN7 over 20 runs (Neval function evaluations)
with different DM parameters

Problem Best Worst Mean Median Std Rinf

GN5, � D 5, T D 5� � 24:31 25:21 24:61 24:32 0.35 0

GN5, � D 10, T D 4� � 24:31 25:05 24:57 24:34 0.34 0

GN5, � D 10, T D 6� � 24:31 25:01 24:47 24:32 0.30 0

GN7, � D 5, T D 5� � 680:63 680:63 680:63 680:63 0.0014 0

GN7, � D 10, T D 4� � 680:63 680:63 680:63 680:63 2.7e�4 0

GN7, � D 10, T D 6� � 680:63 680:63 680:63 680:63 4.4e�4 0

Rinf refers to the percentage of runs providing an infeasible final result

Table 10 Statistics of the best function values obtained by GPEEC for GN5 and
GN7 over 20 runs (Neval function evaluations) with different ASU parameters

Problem Best Worst Mean Median Std Rinf

GN5, tc D 20, W D 5 24:31 25:07 24:45 24:32 0.28 0

GN5, tc D 10, W D 3 24:31 25:01 24:59 24:36 0.35 0

GN5, tc D 10, W D 7 24:31 25:01 24:47 24:33 0.27 0

GN7, tc D 20, W D 5 680:63 680:63 680:63 680:63 5.3e�4 0

GN7, tc D 10, W D 3 680:63 680:63 680:63 680:63 8.8e�4 0

GN7, tc D 10, W D 7 680:63 680:64 680:63 680:63 0.0027 0

Rinf refers to the percentage of runs providing an infeasible final result

main goal of the late stage, the regular updating does not need to be very frequent. tc
is suggested to be set between 10 and 20. In the following, GN5 and GN7 are used as
examples to test if the suggested setting is robust. It can be observed from Table 10
that GPEEC performs well when � and tc are not very far from the suggested values.
When using � in the suggested range, tc is not sensitive.

7.3 mm-Wave IC Design Optimization Example

This section provides a real-world engineering application of GPEEC: the design
optimization of a 60 GHz power amplifier in a 65 nm CMOS technology. At mm-
wave frequencies, the simple equivalent circuit models typically used for passive
components at low frequencies are no longer accurate, and the way left to the
designers is “trial and error.” Therefore, the global optimization of mm-wave ICs
is very important. However, electromagnetic (EM) simulation is needed in the
evaluation of candidate designs, which is computationally expensive. In power
amplifier design, the 1 dB compression point (P1 dB), the power added efficiency
(PAE@P1dB) and the power gain (Gp) are key performances. In practical design,
the goal is often to maximize P1 dB or PAE@P1 dB, with constraints on the other two
specifications.
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Fig. 2 Schematic of the 60 GHz power amplifier [33]

The problem is defined in (11). The circuit configuration is shown in Figure 2.
The design parameters (in total 18) include the inner diameters and metal width
of the primary and secondary inductors of every transformer (in total three trans-
formers; each transformer has two inductors), 5 biasing voltages and the number
of fingers of the driver stage. The inner diameter has a range from 20 to 100�m.
The metal width has a range from 3 to 10�m. The 5 biasing voltages have ranges
from 0.5 to 2 V. The number of fingers can be 2/3/4. This is a simulation-based
(black-box) optimization problem, so no explicit analytical expression is available.
A Xeon 2.66 GHz computer is used for the synthesis (design optimization). GPEEC
is programmed in MATLAB and the simulation is carried out in Cadence and
ADS-Momentum (IC and electromagnetic simulation software). All the programs
are run on the Linux system. The evaluation of a candidate design of this power
amplifier needs 10–13 min using the simulation software to obtain the values of
P1 dB, PAE@P1 dB, and Gp. The total computational time is restricted to about 2 days
to reach the practical requirement of a design automation software tool acceptable
in industry.

maximize PAE@P1dB

subject to P1 dB � 13 dBm
Gp � 10 dB

(11)

The initial number of samples ˛ is set to 70. All the other settings are the same
as those used in the benchmark problem tests. After 200 exact function evaluations,
GPEEC gets the optimized result: P1 dB is 14.34 dBm, PAE@P1dB is 9.52 % and Gp

is 10.47 dB. The time cost is 41.6 h (wall clock time).
The high quality of this optimized result by GPEEC can be verified by comparing

to a manual design [33] using the same circuit structure in the 65 nm technology.
The reference result is as follows: P1 dB is 10.8 dBm, PAE@P1dB is 4.5 % and Gp is
10.2 dB. It can be seen that the result of GPEEC fully dominates the experience-
based manual design result on all the performances. To verify the efficiency of
GPEEC, the SF method with the same DE optimizer is used and the optimization
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time is set to 10 days. The result is P1 dB D 9:44 dBm, PAE@P1 dB D 7:95%, and
Gp D 12:60 dB. It can be seen that the P1 dB constraint is not satisfied and the PAE
value is much worse than that obtained by GPEEC.

8 Conclusions

This chapter has presented the GPEEC algorithm for dealing efficiently with
computationally expensive inequality constrained optimization problems, which is
of great importance for the industry. GPEEC has the ability to handle complex
constraints in an efficient manner. Thanks to the improved SMAS framework and
the ranking method, an efficient SAEA for constrained expensive optimization has
been constructed. Thanks to the DM method, complex constraints can be handled
effectively under the improved SMAS framework. The ASU method saves more
than half the computational effort on surrogate modeling for most test problems
compared to updating the surrogate models in each iteration, which is especially
useful for problems with several tens of variables or/and with many constraints.
In addition, although the ideas behind the key components of GPEEC are not
easy, their implementation is straightforward, showing GPEEC potential usage in
industrial applications. Experimental studies on a set of widely used test problems
have shown that comparable results in terms of optimality can be obtained when
compared to a SAPF method (without surrogate model), and that several tens to
more than one hundred times less exact function evaluations are needed compared to
an efficient SF method. GPEEC is also applied to a mm-wave IC design optimization
problem and have obtained a high-performance result with an affordable amount of
computational effort.

Appendix

Benchmark test problems:
GN9

minimize f .x/ D 1CPd
iD1

.100�xi/
2

4000
�Qd

iD1 cos. .100�xi/p
i
/

subject to g1.x/ D �20e�0:2
q
1
d

Pd
iD1 x2i � e

1
d

Pd
iD1 cos.2�xi/

�5 � 0
g2.x/ D �P20

iD1 xi � 10 � 0
xi 2 Œ�6; 6�; i D 1; : : : ; 20
minimum W f .x�/ D 0

(12)
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Sobol Indices for Dimension Adaptivity
in Sparse Grids

Richard P. Dwight, Stijn G.L. Desmedt, and Pejman Shoeibi Omrani

Abstract Propagation of random variables through computer codes of many
inputs is primarily limited by computational expense. The use of sparse grids
mitigates these costs somewhat; here we show how Sobol indices can be used to
perform dimension adaptivity to mitigate them further. The method is compared to
conventional adaptation schemes on sparse grids (Gerstner and Griebel, Computing
71(1), 65–87, 2003), and seen to perform comparably, without requiring the expense
associated with a look-ahead error estimate. It is demonstrated for an expensive
computer model of contaminant flow over a barrier.
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CFD
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1 Introduction

Uncertainty quantification (UQ) in computational modelling consists of taking
into account lack-of-knowledge (epistemic uncertainty) and physical randomness
(aleatory uncertainty) when making predictions with simulation codes [16]. One
sub-problem of UQ is uncertainty propagation (UP): given inputs of a code with
known uncertainty, determine uncertainty on the code output. This can be regarded
as a kind of sensitivity analysis. However, when the uncertainty is specified via
random variables, this is also a necessary component in more general statistical
modelling, such as Bayesian calibration [13, 27].
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Problem statement 1 (Uncertainty propagation). Given a standard multivariate
random variable

X W ˝ D Œ0; 1�d ! R
d;

with probability density function (pdf) �X.x/, and a computer code regarded as a
function of d-inputs and a scalar output

f W Rd ! R;

approximate statistical moments of the random variable

Y D f .X/;

which are defined by (m 2 N
C):

EXYm WD
Z
Rd
Œf .x/�m�X.x/ dx: (1)

We may also be interested in the pdf of Y, denoted �Y.y/.

The primary difficulty in solving this problem is the computational expense.
If f .�/ is a simulation of a complex system or fluid, it is likely computationally
costly – with many hidden equations and degrees-of-freedom. If the dimension of
the input parameter space d is large, then the integral in (1) will require a large
number of evaluations of f .�/ at different input values. In practice, there is often a
computational budget of no more than 50–100 evaluations of f allowed to perform
this calculation [22].

What makes this a realistic proposition is that requirements on the accuracy of the
moment approximation are also low. This is due to the fact that, typically: (a) input
uncertainties X are not specified to high accuracy, and (b) the resulting uncertainty
on Y is not the primary output, but serves more the role of an error estimate [6].

The goal is to get a rough approximation of EY and Var.Y/ with as few
evaluations of f as possible. As a result we are less than usually interested in the
convergence behaviour in the limit of small error, and more interested in coarsely
approximating the large-scale structure of the model response in the parameter
space.

1.1 Solution methods

At a high level of abstraction there are only two classes of numerical approach to
the UP problem:

1. Monte-Carlo [18] and related techniques, notably: quasi-Monte-Carlo [4], which
gives improved convergence for small d using low-discrepancy sequences [24];
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multi-level Monte-Carlo, which blends samples from fine and coarse versions
of f [11]; importance sampling, or adaptive Monte-Carlo, which can improve
convergence if an approximation of f is known [5], etc.

2. Surrogate modelling methods, notably: polynomial chaos [10], stochastic col-
location [3], and probabilistic collocation [15], all of which use truncated
polynomial series to approximate f , either with collocation or Galerkin projec-
tion; Gaussian-process regression [1, 2, 13], which approximates f with a random
process (also known as Kriging); moment methods [19] which approximate f as
a Taylor-series, usually about EX, etc.

There are many more methods in both classes not mentioned here. Any surrogate
model can be applied to evaluate integral (1), and methods have been developed that
re-purpose reconstruction techniques developed in other areas to the UP problem.
A good example is Simplex-Stochastic Collocation [7, 28], which is WENO
reconstruction [14] developed for simulating compressible fluids (with shocks),
applied to the parameter space in order to deal with discontinuities there.

Surrogate models can be applied in the parameter space R
d directly, or the

transformed space Œ0; 1�d, where the cumulative distribution of Xi, denoted FX;i W
R ! Œ0; 1� provides the mapping for each component of X separately, assuming
they are independent.

Sparse grids, being a form of quadrature/interpolation designed to scale well
as d increases, are a natural fit for the UP problem. They have been used by a
number of authors, Matthies & Keese (2005) [17], Xiu & Hesthaven (2005) [29],
and Ganapathysubramanian & Zabaras (2007) [8], and Nobile et al. (2008) [20, 21]
are a few examples.

1.2 Outline

Sparse grids are introduced in Section 2, together with a brief description of their
application to uncertainty propagation. In Section 3 Sobol indices are introduced,
their interpretation as a form of global sensitivity analysis, and their computation
using sparse grids. Section 4 introduces a novel technique of using Sobol indices
to drive dimension adaptivity in sparse grids. It is compared to a reference adaptive
method from Gerstner & Griebel [9]. Finally in Section 5 the adaptive method is
applied to a case of practical interest: the release of an explosive heavy gas from an
industrial facility or tanker accident. Three uncertain parameters control specifics of
the release, and the ambient wind conditions; the scalar quantity-of-interest is the
distance from the release point at which the concentration of the gas has dropped to
a safe level.
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2 Sparse-Grid Surrogate Models

Sparse grids are a class of numerical quadrature/interpolation methods, designed
to scale well to high-dimensional problems. They were first introduced by Smolyak
(1963) [23]. Sparse grids uses tensor products of hierarchical 1-dimensional quadra-
ture rules to construct an d-dimensional grid on a hypercube, which can be used for
multivariate integration on that volume. The major difference from standard tensor-
product rules – as used in uncertainty quantification by polynomial chaos, etc. – is
that only carefully chosen subsets of all possible products of the 1d-rules are used.
The hierarchical nature of the 1d rules ensures that many sample points of these
product rules coincide – leading to an efficient sampling plan.

We follow the notation of Gerstner and Griebel [9] to form the numerical
quadrature rule for smooth functions f .d/.x/ W Rd ! R over the d-dimensional
hypercube˝ D Œ�1; 1�d. The rule should approximate the integral:

If .d/ WD
Z
˝

f .d/.x/ dx (2)

by a sum:

If .d/ ' Qf .d/ WD
NX

iD1
wif

.d/.xi/;

with some weights w and sample-locations xi.
The construction begins with a set of hierarchical 1-dimensional quadrature

formulas for a univariate function f .1/:

Qlf
.1/ WD

NlX
iD1

wl
if
.1/.xl

i/

where l indicates the level of the rule in the hierarchy, and superscripts of w and x
indicate level. So for example if Clenshaw-Curtis quadrature [12, 26] is chosen for
the 1d rule, Q1 is the level 1 rule with a single quadrature point (N1 D 1), Q2 is the
level 2 rule with three points (N2 D 3), and Q3 has five points (N3 D 5). The rule
is hierarchical, so that, e.g., fx21; : : : ; x2N2g � fx31; : : : ; x3N3g, i.e. all points at the lower
levels are included in the higher-level rules.

“Difference” formulas are then defined in 1d by:

�lf
.1/ WD .Ql �Ql�1/f .1/with

Q0f
.1/ WD 0:

Note that, since Ql are hierarchical,�l has the same support as Ql; only the weights
are different.
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Fig. 1 Tensor product of a
1-point rule and a 3-point
rule, resulting in a 2D grid
containing 3 points

Fig. 2 A level 3 sparse grid
simplex in 2 (left) and 3
(right) dimensions
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Now define a multi-index k 2 N
d which, for each dimension of the parameter

space, specifies the level of rule to use in that dimension. Together with the hierarchy
Ql, k specifies a tensor-product integration rule in d-dimensions, see Figure 1.
Finally define the simplex index-set KS;L WD fk W jkj1 � L C d � 1g, then a sparse
quadrature rule is given by Smolyak’s formula:

Qsp
L f .d/ WD

X
k2KS;L

.�k1 ˝ � � � ˝�kd/f
.d/: (3)

This is called a level L sparse-grid quadrature rule.
The index-set K as defined above is visualized in Figure 2 for L D 3. Each

multi-index in K is represented as a block. The constraint jkj1 � L C d � 1
leads to a simplex-form of the multi-indices contributing to the sum in (3), with
the highest-level rule L being achieved in one dimension only if the level in all other
dimensions is 1.

Limiting the level in each direction in this way clearly has an impact on the
approximation fidelity of the grid. This can be understood in terms of polynomial
representation. Consider for example the 2d sparse grid shown on the right of
Figure 3. In 1d the level-3 CC rule Q3 can support polynomials of degree 4 (x4) as
it has 5-points. A full tensor product Q3˝Q3 can therefore support all polynomials
up to x4y4. The sparse-grid rule, on the other hand, can support x4 � 1 (via Q3˝Q1),
1 � y4 (via Q1 ˝ Q3), and x2y2 (via Q2 ˝ Q2), but not x4y4. In other words, high-
order interactions of multiple variables are not captured. It is an empirical fact
that, in functions of multiple variables found in nature and engineering, higher-
order interactions tend to be dominated by single-variable and low-order interaction
effects. If this is the case, then the sparse-grid approximation is appropriate.
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Fig. 3 Sparse-grid components in the 2-dimensional level 3 simplex (left) and the resulting sparse
grid (right). In this figure the grid is constructed using nested quadrature rules

The choice of K used above is standard; however, the construction (3) is
a valid quadrature rule whenever the index-set satisfies the basic requirement
(admissibility):

k 2 K ; ki > 1 H) k � 1i 2 K ; 8i 2 f1; : : : ; dg;
where 1i 2 N

d
0 is the unit vector in the i-th direction 1i D .0; : : : ; 0; 1; 0; : : : ; 0/.

This condition demands only that all rules of lower level in every dimension are
included in the sum (3). The condition does not therefore require adding any more
points to the sparse grid.

This flexibility in the choice of K immediately provides a framework for
dimension-adaptivity: if dimension i requires more resolution, we can adapt the
index-set in that dimension, see, for example, the index-sets in Figure 9. Gerstner &
Griebel [9] use a traditional look-ahead error estimate to decide which multi-indices
to include at each adaptation step. Later we offer an alternative approach using Sobol
indices to assess the importance of each dimension, see Section 4. First, however,
we introduce Sobol indices.

3 Global Sensitivity of Functions: Sobol Indices

Consider a multivariate real function f W Rd ! R. Sobol indices are one measure
of the global sensitivity of the function with respect to its arguments x. Usually
sensitivity measures are local, that is, they concern themselves only with the
linearized behaviour of f function at a reference point x0 2 R

d. For instance local
sensitivities might be defined as:

Si WD 
i
@f

@xi

ˇ̌̌
ˇ
x0

i 2 f1; : : : ; dg; (4)
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where 
i is a measure of how much variable xi is expected to vary. This definition
ignores the behaviour of f away from x0. For example f .x/ D 1010x2 at x0 D
0 is considered to be “insensitive” to x, and f .x/ D H.x/, (with H.�/ the
Heaviside function) is “insensitive” to x everywhere (except possibly at the origin).
Furthermore S provides no information on the effect of interactions of multiple
variables on f .

Global sensitivity measures attempt to address these limitations. The first step
is to specify what is meant by “global”. In the case of variance-based sensitivity
indices (of which Sobol indices are an example) this is achieved by defining a
probability density function (pdf) for each input variable, specifying the range of
that variable which is of interest:

�.x1/; : : : ; �.xd/;

with the corresponding random variables denoted X D .X1; : : : ;Xd/. These are
comparable in purpose to 
i in the local case. To continue the derivation of Sobol
indices, the analysis of variance (ANOVA) decomposition must be introduced.

3.1 ANOVA Decomposition

Assume that f .x/ is square-integrable1 with respect to the metric generated by X.
Furthermore let X1; : : : ;Xd � U .0; 1/ be independently uniformly distributed on
Œ0; 1�. Any input space can be transformed onto this unit hypercube, so there is no
loss of generality. Then f .X/ is a random variable with finite variance, which we
represent in the form:

f .X/ D f; C
dX

sD1

X
1�i1<���<is�d

fi1:::is.Xi1 ; : : : ;Xis/: (5)

Or in long-hand:

f .X/ D f;
C f1.X1/C � � � C fd.Xd/

C f12.X1;X2/C f13.X1;X3/C � � � C fd�1d.Xd�1;Xd/

C f123.X1;X2;X3/C : : :
C : : :

C f1:::d.X1; : : : ;Xd/

1Incidentally, a much weaker condition on f than that required by (4).
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The most convenient form is the third form:

f .X/ D
X
u�U

fu.Xu/ (6)

where the indexing set u is here called a dimension-index, U D f1; 2; : : : ; dg, and
the sum is over all subsets of U . Now Xu is the set of random variables whose
indices lie in u, and fu is the component function only dependent on Xu. If it is
true that – in physical and engineering models – low-order interactions of variables
have the main effect on the output, and if this is captured by the decomposition
above, then we should be able to truncate the sum without substantial loss of
fidelity. Compare this to sparse grids, in which high polynomial order interactions
of multiple variables are also preferentially eliminated.

This formula is called an ANOVA decomposition if and only if:

Z
fu.xu1 ; : : : ; xus/d�.xi/ D 0 for i 2 u: (7)

This implies:

Efu WD
Z

fu.xu/d�.xu/ D 0 for u ¤ ;; (8)

i.e., all fu have zero mean, with the exception of f;, and

cov.fu; fv/ D
Z

fu.xu/fv.xv/d�.xu [ xv/ D 0 for u ¤ v; (9)

i.e., fu, fv are orthogonal. Let u0 be the complement of u, so that fu [ u0g D U and
fu \ u0g D ;. These properties are satisfied when the component functions fu are
defined as:

f; D
Z

f .x/d�.x/;

fu D
Z

f .x/d�.xu0/ �
X
w	u

fw.xw/ for u ¤ ;;

which can be rewritten in terms of conditional expectations:

f; D Ef ;

fi D E.f jXi/ � f0;

fij D E.f jXi;Xj/ � fi � fj � f0;

: : :
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at which point the terms can be interpreted. For example, it is evident that fi captures
the effect of varying Xi alone, with all other variables integrated out. And fij captures
the effect of varying Xi and Xj simultaneously, minus the effect of their individual
variations, and so on.

3.2 Sobol Variances

The variances of these terms are therefore our desired sensitivity measures:

Du WD var.fu/ D
Z

f 2u d�.xu/; (10)

which implies that all Sobol variances are non-negative. It can be shown that Du

simplifies to:

Du WD
Z �Z

f .x/d�.xu0/

�2
d�.xu/�

X
w	u

Z
.fw.xw//

2 d�.xu/;

D
Z �Z

f .x/d�.xu0/

�2
d�.xu/�

X
w	u

Dw; (11)

which is a readily computable expression for Du, and allows computation in order
of increasing order, first Di, then Dij, then Dijk, etc. As well as Du � 0 we have

D WD var.f / D
X
u�U

Du;

i.e., the variance of f has been decomposed into the effects due to individual
combinations of variables. This property suggests the definition of Sobol indices,
which are just normalized Sobol variances:

Su WD Du

D
:

We say that Su is a Sobol index of order p, if juj D p, where juj is cardinality of
u. For example, given u D f0; 1g we speak of the 2nd-order interaction between
variables x0 and x1.

Sobol indices provide a quantitative means to verify the assertion we made in
Section 2, that “higher-order interactions tend to be dominated by single-variable
and low-order interaction effects”, and thereby justify the use of sparse grids.
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3.3 Computation of Sobol Indices on Sparse Grids

Computation of Sobol indices boils down to evaluating the integrals in (11). Sparse
grids are ideally suited to this task [25], with some important caveats:

1. Sparse grids deliberately limit interaction between variables. Consider a standard
level-2 sparse grid in 2d: i.e., with K D fk W k1C k2 � 3g. Tensor-product rules
Q1˝Q1, Q1˝Q2, and Q2˝Q1 are included, but the 1-point Q1 rule approximates
a variable’s influence as constant. Therefore the sparse-grid approximation will
model no interaction between the two variables2. Hence, when evaluated on the
sparse grid, S12 � 0, regardless of the level of interaction in the true underlying
function. The same holds for higher orders and higher dimensions: on level-3
sparse grids third-degree interactions are necessarily zero: S123 � 0, and so on.

2. In order to evaluate the double integral in (11), it is necessary to: first (a)
perform sparse-grid integration of f over a subset of the variables u0, then (b)
reconstruct the result of the integration squared in the remaining variables u, then
(c) integrate over this reconstruction. Consider again a polynomial representation
of the sparse-grid model 	.x/ – this time in 1-variable: if our 1d rule has M C 1
points, it supports polynomials 	 up to degree M. Then .

R
	 dx/2 is a polynomial

of degree 2MC2. The MC1-point rule is not sufficient to integrate this accurately,
which can lead to gross errors in the computed indices.

Item 2. is solved by interpolating the sparse-grid approximation of f to a globally
refined sparse grid before computing the integrals (no additional evaluations of the
underlying function are required). In the case of polynomial approximations the
exact Sobol indices of the sparse-grid approximation can be obtained by using two
levels of global refinement.

Item 1. is not so easy to address – and the user must be aware of this limitation
when considering high-degree Sobol indices. For example this is critical to the
Sobol-based adaptive procedure, which we discuss next.

4 Dimension Adaptive Sparse-Grid Refinement

This section introduces two adaptive grid refinement methods based on sparse
grids. The first, Gerstner and Griebel (G&G), is a (now) standard look-ahead
approach [9]. The second is our proposed Sobol-based adaptive approach. Both
require the following definitions:

2This can be seen by considering what space of polynomials can be reconstructed on the sparse
grid, namely 	.x; y/ D a0 C a1xC a2x2 C a3yC a4y2, which include no interaction (xy) terms.
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Fig. 4 Diagram showing the
forward neighbours of a level
2, 2-dimensional sparse grid.
The multi-indices of the
sparse grid are shown in
dark-grey, while the three
forward neighbours are
light-grey

Definition 1. The forward neighbours of a multi-index k are defined as the d multi-
indices fk C 1j; 1 � j � dg. Generalizing, the forward neighbours of an index-set
K is the set of all forward neighbours of elements of K , which are not in K
themselves.

As an example consider a level-2, 2-d sparse grid. The index-set is: f.1; 1/; .2; 1/;
.1; 2/g. The set of forward neighbours for this index-set is: f.3; 1/; .2; 2/; .1; 3/g, see
Figure 4.

Definition 2. The backward neighbours of a multi-index are the set of multi-
indices:

fk� 1j W kj > 1; 1 � j � dg:

Compare this definition to the requirement on admissibility of an index-set in
Section 2. We have: an index-set K is admissible if all backward neighbours of
all k 2 K are in K .

4.1 Gerstner and Griebel Adaptivity

The Gerstner and Griebel adaptive approach is explained in detail in [9] together
with implementation optimizations; we briefly develop the main idea here. Start
with an initial index-set K , e.g., f.1; : : : ; 1/g. Let A be the set of forward
neighbours of K with the property that for all a 2 A the index-set K .a/ WD
K [ fag is admissible. The set A is called the active set. For each element a of A
compute the error measure:

ga WD
ˇ̌
ˇQsp

K f � Qsp
K .a/f

ˇ̌
ˇ ;

where Qsp
K is the sparse-grid quadrature of (3) using the index-set K . This error

measure is with respect to the function of interest f , and therefore requires evaluation



382 R.P. Dwight et al.

Fig. 5 Pseudo-code for Gerstner and Griebel sparse-grid adaptation

of f on the grid implied by K [ A – i.e., a global refinement of the sparse grid.
A global error estimate � is then

� D
X
a2A

ga: (12)

The adaptive iteration proceeds by selecting K .aC/ as the new index-set where

aC WD arg max
a2A ga;

a new active set is found and the iteration continues. The iteration finally terminates
when � becomes less than some user-specified threshold �min (Figure 5).

This algorithm has the benefit of an accurate error estimate in �, but in order
to compute it, it must test all members of the active set. This constitutes “global
refinement” in a sparse-grid sense, and requires many evaluations of the underlying
computational code. For example, consider the case d D 3, with a Clenshaw-Curtis
rule, and a simplex index-set of level 3:

KS;3 WD fk W jkj1 � 3C d � 1g:

Computing the integral approximation requires 25 code evaluations. Computing �
requires an additional 44. For d D 10, the integral costs 221 evaluations, the error
estimate an additional 1360 evaluations. What is more, � itself is only reliable when
the error approaches zero, yet this is unlikely ever to be achieved with a code-eval
budget of maximally 100. The benefit is a refinement scheme guaranteed to converge
to the correct solution.



Sobol-Adaptive Sparse Grid 383

4.2 Sobol-Adaptive Refinement Algorithm

Rather than use a conventional error estimate to drive dimensional refinement, we
propose to use Sobol indices to indicate which variables to adapt. The idea is that, in
practice, only a small subset of variables and interactions are likely to be responsible
for the vast majority of the variance. These variables and interactions should be
approximated finely, the remainder coarsely. Since the Sobol indices are not an error
estimate, they do not provide a termination criteria. Our method is as follows:

1. Initialization: Begin with K D KS;2 – i.e., a one-factor-at-a-time sample plan.
Note: on this grid all Sobol indices of 2nd-degree and higher are zero (see
Section 3.3).

2. Compute Sobol: Compute all Sobol indices representable on the sparse grid.
3. Dimension-index selection: Sort all dimension-indices according to their Sobol

indices from largest to smallest: u1; u2; : : : with Su1 � Su2 � : : : . Find the
smallest m such that

mX
iD1

Sui � NS

where the threshold NS D 0:95, 0:98, or 0:99 according to the accuracy required.
The set of dimension-indices to adapt is:

U WD fuij1 � i � mg:

4. Dimension-index augmentation: If an interaction v is not represented on the
current sparse grid, and if u 2 U for all u � v, then augment U with v. That
is, flag a dimension-index v for adaptation if all its “parents” are flagged, and its
own Sobol index is 0 on the sparse grid. This step is necessary to overcome the
catch-22: Sv D 0, so v will not be adapted, so Sv D 0. It is the only means by
which new higher-order interactions are introduced.

5. Index-set extension: We now have U, the set of dimension-indices we wish
to adapt, and we need a corresponding adapted index-set. Let A be the active
set of K , as in the previous section. Let F.a/ D fi j ai > 1g, then for each
a 2 A augment K with a if F.a/ 2 U. That is, use all members of the active
set that represent interactions in U. This may be more than one multi-index per
dimension-index in U.

6. Termination criteria: If the maximum number of samples Ntol is exceeded, stop.
7. Goto 2.

To clarify the importance of Step 4, consider the 2d case at the first iteration,
so K D f.1; 1/; .1; 2/; .2; 1/g. Assume S0 D S1 D 1

2
, i.e., both variables are

significant, so both .3; 1/ and .3; 1/ should be added to K . However no interaction
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Fig. 6 Pseudo-code for Sobol-index sparse-grid adaptation

is approximated on K , so S01 D 0 on this grid, and .2; 2/ is not added in Step 3.
The criteria of Step 4 are satisfied, however, so .2; 2/ is added, and S01 is potentially
non-zero at the next iteration.

This method is sensitive to the choice of threshold NS, and the criteria for
introducing higher-order interactions in Step 4. It will not in general converge as
Ntol ! 1, therefore should only be used with small Ntol. The exception to this if
for NS D 1 so that all interactions are included, in which case the algorithm simply
produces a standard sparse grid. It does not use look-ahead, in the sense that no new
samples of the computer code are needed to determine the next adaptation step –
unlike G&G.

In the following section the two adaptive methods are compared for an industrial
case (Figure 6).

5 Industrial Application – Heavy Gas Release

This section introduces an industrial case, against which the performance of the
standard sparse grid, the Gerstner and Griebel adaptive sparse grid, and the new
Sobol-adaptive sparse grid are compared. Section 5.1 will present the specifics of
the case. Section 5.2 presents the results for the three different methods. Finally,
Section 5.3 will compare and discuss the differences between the methods.
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5.1 Test-case Definition

The case that will be studied is a release of a heavy gas - in this case propane - over a
barrier located downstream of the release point. The quantity of interest is the effect
distance: the distance from the release point where the molar concentration propane
gas drops below 1%, which is roughly half of the lower explosion limit (LEL). The
effect distance is measured at a height of 1m above the ground.

The scenario being modelled is a truck transporting a heavy gas becoming
involved in an accident, causing an uncontrolled release. The effect distance
determines the area which must be potentially evacuated, and within which special
precautions must be taken by emergency services. Since the release, environment,
and potential obstacles are uncontrolled, it is necessary to consider a range of
scenarios. Uncertainty is specified on a subset of the unknowns, using knowledge of
possible and likely conditions.

Figure 7 details the geometry. Parameters are:

• Barrier height (fixed at 4m),
• Gas release location (60m upstream of the barrier),
• Gas release height of (1m),
• Release gap diameter (1:243m),
• Wind direction (0 degrees, i.e., perpendicular to the barrier),
• Atmospheric boundary-layer velocity UABL (range of 3 to 7m=s),
• Gas release velocity Urel (range of 18 to 22m=s),
• Gas release temperature Trel (range of 270 to 310K).

A preliminary one-factor-at-a-time parameter study identified three input parame-
ters influential on the effect distance: UABL, Uref , and Trel. Two cases are considered:
uniform distributions on each parameter, and truncated-normal distributions on each
parameter. Variability in other parameters is neglected to save computational effort.
In particular, the geometry is fixed.

Fig. 7 Top view diagram of the release of propane gas flowing over a barrier
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The problem has reflectional symmetry, so only half of the domain is modelled.
The ground is a no-slip boundary, the other four boundaries are permeable to both
air and propane. The problem is modelled using steady-state RANS equations.

5.2 Sparse-grid results

A total of 69 simulations were performed, corresponding to a standard sparse grid
of level L D 4 in 3-dimensions (index-set KS;4). All simulations were run until the
solver residual converged to 10�6. A single computation took between 12 and 24
hours on one core. This data-set is used to test both adaptive methods described in
the Section 4.

5.2.1 Standard sparse grid

The sparse grid sampling plan for levels L D 3 and L D 4 for the heavy gas release
is shown in Figure 8. Sobol variances are computed in the two cases: uniform and
truncated-normal distributions for the three uncertain inputs. Their values are given
for levels L 2 f2; 3; 4g in Table 1. The level 1 grid is omitted since it approximates
the total variance as zero. These results demonstrate the fact that on a level p
sparse grid, Sobol variances of order p and higher are zero. We observe roughly the
same mean and Sobol indices in the uniform and normal cases, but a much greater
variance in the uniform case.
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Fig. 8 Full sparse grids for the heavy gas release. Left: level L D 3 (index-set KS;3); right: L D 4

(index-set KS;3)
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Table 1 Sobol variances
calculated on a standard
sparse grid. Indices 0; 1, and
2 correspond to the
atmospheric boundary-layer
velocity UABL, the propane
release velocity Urel and the
propane release temperature
Trel, respectively.

Uniform input parameters
Variable Level 2 Level 3 Level 4

Grid points 7 25 69

Mean 184.7 183.1 182.8

Variance 446.2 363.9 346.6

D0 375.9 261.3 253.0

D1 60.18 73.59 75.73

D2 10.15 0.5088 0.9390

D0;1 0 3.826 2.417

D0;2 0 24.86 13.24

D1;2 0 0.002394 0.1490

D0;1;2 0 0 1.096

Truncated-normal input parameters
Variable Level 2 Level 3 Level 4

Grid points 7 25 69

Mean 182.8 181.3 180.9

Variance 264.4 166.3 158.6

D0 222.7 114.6 111.0

D1 35.66 40.30 40.56

D2 6.014 1.391 2.560

D0;1 0 1.343 0.8433

D0;2 0 8.651 3.536

D1;2 0 0.0008375 0.03190

D0;1;2 0 0 0.09199

5.2.2 Gerstner and Griebel adaptive sparse-grid results

Iterations of the Gerstner and Griebel are given in Table 2, showing the current
estimate of the mean, and the multi-index to be included in the index-set on the
subsequent iteration.

The algorithm is initialized with the index-set K D f.1; 1; 1/g, and begins by
refining only in the direction of the first parameter, until it reaches the multi-index
.4; 1; 1/, i.e., a 9-point rule in the direction UABL. The forward neighbour .5; 1; 1/ is
not part of the pre-computed data-set, so further refinement is no longer possible
in this variable. We manually remove .5; 1; 1/ from the active set and continue
with the adaptation. We can justify this choice as follows: it is a general principle
when performing polynomial interpolation of potentially noisy data-sets, to limit
the maximum degree of the approximation. With .5; 1; 1/ the rule would have 17-
points, or polynomial degree 16 in UABL. A tiny amount of noise in the code output
would lead to oscillation in the response, and likely to poor error estimates.

The iteration continues by refining Trel once, followed by interactions of UABL

and Trel. The index-set after 6 iterations is shown in Figure 9 (right).
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Table 2 Iterations of Gerstner and Griebel adaptivity

Uniform input parameters
Iteration Grid points (+active) Mean Added multi-index

0 1 (7) 180.04 (2, 1, 1)

1 3 (9) 184.65 (3, 1, 1)

2 5 (13) 182.44 (4, 1, 1)

3 9 (21) 182.22 (1, 1, 2)

4 11 (27) 182.41 (2, 1, 2)

5 15 (31) 183.00 (3, 1, 2)

6 19 (31) 182.81 –

Truncated-normal input parameter
Iteration Grid points (+active) Mean Added multi-index

0 1 (7) 180.04 (2, 1, 1)

1 3 (9) 182.77 (3, 1, 1)

2 5 (13) 181.02 (4, 1, 1)

3 9 (21) 180.68 (1, 1, 2)

4 11 (27) 180.79 (2, 1, 2)

5 15 (31) 180.99 (3, 1, 2)

6 19 (31) 180.91 –
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Fig. 9 Index-sets of the final sparse grids for the heavy gas release case. From left to right:
simplex, Sobol, and Gerstner and Griebel sparse grids. In the latter, the red outlines represent
multi-indices included for the error estimate computation, the red filled cube represents a limit on
the adaptation in that direction

The progress of the adaptation is identical for the uniform and truncated-normal
input parameter distributions. In both cases the error in the mean obtained (using 31
grid points) is the approximately that of the level 4 simplex sparse grid (requiring
69 points).
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Fig. 10 Evolution of the Sobol-adapted sparse grid for the heavy gas release. Left l D 3, right
l D 4

5.2.3 Sobol-adaptive sparse-grid algorithm

Unlike G & G, Sobol adaptivity can add multiple multi-indices at each adaptation
iteration. As a consequence only two iterations are needed to reach an accuracy
comparable to the level 4 simplex sparse grid. The sample points after 1- and 2-
iterations are shown in Figure 10, denoted “Level 3 and 4”, respectively. In this case
too the adapted grids were identical for the uniform and truncated-normal distributed
cases.

The Sobol variances on the adaptation iterations are given in Table 3. In this
table, the indices 0, 1, and 2 correspond to UABL, Urel, and Trel, respectively. It
can be seen that the variances change somewhat from one iteration to the next, but
not substantially. This suggests that coarse-grid indices are accurate, and therefore
reliable as adaptation indicators. The exception is those indices that are not resolved
on the coarse sparse grid, and therefore zero.

Already on the initial grid, UABL and Urel dominate the total variance. The cutoff
value has been set to NS D 0:95, given which Trel is not adapted, and refinement
only occurs in UABL and Urel, including their interaction (multi-index .2; 2; 1/). The
interaction is seen to be negligible (S0;1 < 1 � NS D 0:05), and not adapted further.
Variances D0;2, D1;2, and D0;1;2 are necessarily approximated as 0. The second
refinement iteration only adds points in the direction of UABL and Urel. The final
index-set is plotted in Figure 9 (centre).

5.2.4 Convergence comparison

The mean effect-distance from Tables 1, 2, and 3 is plotted in Figure 11 for
uniformly distributed inputs. Truncated-normal results are substantially identical.
Both adaptive methods lead to a good approximation of the mean with a significant
reduction in the sample points. In the G & G case we plot the total number of
samples, including those needed for the error estimate. On the final iteration, we
incorporate all samples into the approximation for the mean – hence two different
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Table 3 Evolution of Sobol
variances on the
Sobol-adapted sparse grid

Uniform input parameters
Variable Iter 0 Iter 1 Iter 2

Grid points 7 15 23

Mean 184.7 182.5 182.4

Variance 446.2 309.6 312.5

D0 375.9 222.6 225.6

D1 60.18 72.71 72.80

D2 10.15 10.15 10.15

D0;1 0 3.826 4.013

D0;2 0 0 0

D1;2 0 0 0

D0;1;2 0 0 0

Truncated-normal input parameters
Variable Iter 0 Iter 1 Iter 2

Grid points 7 15 23

Mean 182.8 181.1 180.8

Variance 264.4 150.3 151.1

D0 222.7 102.9 103.4

D1 35.66 40.01 40.08

D2 6.014 6.014 6.014

D0;1 0 1.343 1.546

D0;2 0 0 0

D1;2 0 0 0

D0;1;2 0 0 0

approximations for 31 grid points for G & G. Sobol adaptivity needs no such “look-
ahead”, and therefore at every iteration, all samples are used in the estimate of the
mean.

Ultimately the two methods perform similarly, also in terms of the index-set they
select (see Figure 9). This suggests Sobol adaptivity is performing almost optimally,
without the benefit of “look-ahead”.

5.3 Analysis of parametric variability

To judge the performance of the surrogate model, it is informative to look at the
response surface. Sobol indices indicate that UABL and Urel are the two influential
parameters, therefore to visualize the 3D response we fix Trel D 270; 290; 310K,
and plot surfaces of the other two variables, see Figure 12. The level 4 simplex grid
is used – i.e., all available data. The following trends are visible:

• The effect distance increases with increasing Urel and with decreasing UABL and
Trel. UABL is the most important parameter followed by Urel.
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Fig. 11 Convergence of the mean for the standard sparse grid, Sobol-adaptive sparse grid and the
Gerstner and Griebel adaptive sparse grid, assuming a uniform input parameter distribution
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Fig. 12 The effect distance as a function of UABL and Urel for Trel D 270K, 290K, and 310K

• Trel does not have a large effect on its own, but there is an interaction between
UABL and Trel. When both values are low, the effect distance increases substan-
tially more than in the separate contributions. Neither of the adaptive schemes
catch this interaction.

• The variation of effect distance with UABL comes mainly from values between 3
and 4m=s, where the gradient becomes much steeper. This effect would not have
been visible in a linear sensitivity analysis at the nominal conditions.

• The maximum effect distance occurs for UABL D 3m=s, Urel D 22m=s, and
Trel D 270K. The minimum effect distance occurs for UABL D 7m=s, Urel D
18m=s, and Trel D 310K. The maximum distance therefore is a clear function of
the width of the uncertain parameter values. If only maximum distance was of
interest, an optimization could have been performed instead.
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We turn to study the physics of the problem: in Figure 13 molar concentration
of propane at 1m above the ground is shown, for UABL D 3; 5; 7m=s. These fields
come without further calculation, from the existing samples. Of course we choose
to look at changes with respect to UABL due to its large Sobol variance.

These plots suggest the behaviour of the gas just upstream of the barrier is critical
to the effect distance (ED). The time the propane needs to reach the barrier depends
on wind to a large extent (UABL), and the release velocity of the gas to a lesser
extent (Urel). The propane gas has a higher density than air and will settle to the
ground – but the speed of settling depends on the concentration of propane. As the
air and propane gas mix, this effect will becomes weaker. A lower UABL gives more
time and space for the propane to mix, so that by the time the barrier is reached the
mixture has concentration low enough to overcome it. This can be seen in Figure 13
(top), where penetration occurs not at high- or low-concentrations, but off-centre,
at intermediate values. Hence, the counter-intuitive result that less wind results in
larger ED.

The release temperature plays a role in the gas density too, but as the sensitivity
analysis shows, in this case, the variation in density is very small, so that the effect of
the release temperature is insignificant. The molar concentrations at the maximum
and minimum values of ED are plotted in Figure 14.

6 Conclusions

Sparse grids are an effective way of reducing the effort required for uncertainty
propagation through expensive computer simulations. They also allow for simple
computation of Sobol indices – a measure of global sensitivity. Isotropic sparse
grids are rarely optimal, however, as the influence of different parameters on the
output quantity-of-interest can vary by orders of magnitude. Dimension adaptivity
should automatically select those variables for which a higher resolution is needed.
We have compared two dimension adaptive approaches: that of Gerstner & Griebel
(2003) [9], based on a standard error estimator, and our own based on Sobol indices
computed on the sparse grid. For the twin requirements of: low number of samples
(e.g. � 100), and relatively low accuracy (e.g. ' 1%), which are common in
industrial problems, our method performs better thanks to not requiring a look-ahead
error estimate. This is demonstrated for a computationally expensive industrial
problem.
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Fig. 13 Molar concentration of propane gas at a height of 1m for 3 values of UABL. Here Trel D
290K and Urel D 20m=s. The thin gray lines indicate effect distance
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Antennas (cont.)
dielectric resonator, 171–172
optimization, 172–176
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Computational fluid dynamics (CFD)
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Correlation analysis, 35
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D
Darboux frame, 82
Data-driven surrogate models, 56
DesParO software, 38
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210
algorithm I, 222–224
algorithm II

E-field radiation pattern, 225–226
MOGA, 223
multi-objective DRA optimization, cost

of, 226
Pareto-optimal set, 224–225
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RSA model, 223
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352–353
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380
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383–384
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Direct mathematical optimization, 77–78
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E
Efficient global optimization (EGO) method,

348
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Electromagnetic bandgap (EBG), 112
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microstrip experiments, 115–116
miniaturized, 119–120
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removable, 116–119
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filter optimization
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problem formulation, 123–124

Electromagnetic (EM) simulation, 162,
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Evolutionary algorithms (EAs), 57
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Feasible design variables (FDVs), 264
FFD. See Free-form deformations (FFD)
Filter cell synthesis, ASM algorithm, 148–150
Filters

EBG (see Electromagnetic bandgap (EBG))
two-stage GPR

CCDBR microstrip filter, 177–179
OLRR bandpass filter, 179–180
optimization, 180–182

Firefly algorithm (FA), 302
for function optimization, 304–306
stochastic MGA approach, 308–311

Free-form deformations (FFD), 90–91

G
Gas laws, 31–32
Gas transportation networks, 2

elements, 32
examples

histograms, 45, 47, 48, 51, 52
metamodel and correlations, 45, 47
network schematics, 44
parameters and criteria, 4–5
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gas laws, 31–32
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isothermal Euler equations, 30–31
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POD, 15–18
network simulation, 3
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pipe network modeling, 3–7

numerical examples
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