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    Chapter 5   
 The TGF-β Signalling Network in Muscle 
Development, Adaptation and Disease                     

       Justin     L.     Chen    *,     Timothy     D.     Colgan    *,     Kelly     L.     Walton    ,     Paul     Gregorevic     , 
and     Craig     A.     Harrison    

    Abstract     Skeletal muscle possesses remarkable ability to change its size and force- 
producing capacity in response to physiological stimuli. Impairment of the cellular 
processes that govern these attributes also affects muscle mass and function in path-
ological conditions. Myostatin, a member of the TGF-β family, has been identifi ed 
as a key regulator of muscle development, and adaptation in adulthood. In muscle, 
myostatin binds to its type I (ALK4/5) and type II (ActRIIA/B) receptors to initiate 
Smad2/3 signalling and the regulation of target genes that co-ordinate the balance 
between protein synthesis and degradation. Interestingly, evidence is emerging that 
other TGF-β proteins act in concert with myostatin to regulate the growth and 
remodelling of skeletal muscle. Consequently, dysregulation of TGF-β proteins and 
their associated signalling components is increasingly being implicated in muscle 
wasting associated with chronic illness, ageing, and inactivity. The growing under-
standing of TGF-β biology in muscle, and its potential to advance the development 
of therapeutics for muscle-related conditions is reviewed here.  
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5.1       Introduction 

 Skeletal muscle is a highly adaptive tissue, capable of responding to imposed physi-
ological stimuli, to tune its performance as a contractile tissue, a metabolic regula-
tor, and a secretor of factors that infl uence other organs. Finely regulated processes 
controlling protein synthesis and degradation enable changes in muscle mass and 
function as demands require. 

 The adaptive properties of skeletal muscle also make it susceptible to loss of 
mass and functional capacity, when protein turnover is adversely affected in patho-
logical contexts. Signifi cant wasting of skeletal muscle is associated with many 
diseases, including (but not limited to) advanced progression of certain cancers, 
sepsis, organ failure, HIV/AIDS, anorexia, disuse, advanced ageing and neuromus-
cular disorders (Ciciliot et al.  2013 ; Dam et al.  2014 ; Jung et al.  2014 ; Mondello 
et al.  2015 ; Puthucheary et al.  2013 ; Tang et al.  2002 ; Visvanathan and Chapman 
 2009 ; Wall et al.  2014 ). As the debilitating effects of muscle wasting reduce quality 
of life and survival, placing signifi cant burden on our healthcare system, it is neces-
sary to understand the mechanisms that regulate muscle attributes, and use this 
information to advance the development of muscle-directed therapeutics. 

 Increasingly, muscle wasting observed in chronic illness is being linked with 
perturbed regulation of the transforming growth factor-β (TGF-β) signalling net-
work. The TGF-β ligand family comprises 34 structurally-related proteins 
(Cusella-De Angelis et al.  1994 ; Wu and Hill  2009 ) broadly classifi ed as: TGF-β 
isoforms, growth differentiation factors (GDFs), bone morphogenetic proteins 
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(BMPs), activins and inhibins (Massague  1998 ). Other members include Nodal, 
lefty and anti-Müllerian hormone. Myostatin (also known as GDF-8) has been iden-
tifi ed as a critical regulator of muscle development and homeostasis (Mcpherron 
et al.  1997 ), although subsequent studies have begun to identify other TGF-β pro-
teins, such as TGF-β1, activins and several BMPs, as also having crucial roles in 
muscle. This review considers the signifi cance of signalling regulated by the TGF-β 
network as a regulator of muscle attributes in relation to musculoskeletal disorders.  

5.2     The TGF-β Signalling Network in Overview 

 In the human body, the vast majority of cell types express at least one TGF-β family 
ligand and their cognate receptors (Blobe et al.  2000 ). Together, TGF-β proteins and 
their signalling components exert physiological control over proliferation, differen-
tiation, apoptosis, adhesion and extracellular matrix deposition, thereby controlling 
embryogenesis, organogenesis and adult tissue homeostasis (Buijs et al.  2007 ; 
Chang et al.  2002 ; Massague  1990 ; Shi and Massague  2003 ). While this review 
focuses on myostatin and other TGF-β family proteins with emerging roles in the 
biology and disease of skeletal muscle, it is benefi cial to review the processes that 
control ligand synthesis and activity. 

5.2.1     Ligand Synthesis and Secretion 

 Like most TGF-β family proteins, myostatin is synthesised as a precursor protein 
comprising an N-terminal prodomain and a C-terminal mature domain (Fig.  5.1 ). 
During biosynthesis, hydrophobic residues at the N-terminus of the prodomain bind 
to residues in the mature domain, an interaction that is critical for correct protein 
formation (Walton et al.  2010 ). Two monomers are linked covalently at a site within 
the mature domain (Husken-Hindi et al.  1994 ), and non-covalently between the two 
prodomains. Following complex assembly, proprotein convertases cleave between 
the pro- and mature domains (Dubois et al.  1995 ; Gentry et al.  1988 ), resulting in a 
covalently bound mature protein non-covalently associated to its prodomain dimer. 
From herein, TGF-β family proteins are referred to as to the ‘mature dimer’ and the 
resultant prodomain dimer is described as the ‘prodomain’. Following synthesis, the 
mature dimer and prodomain complex is secreted from the cell, and in many 
instances, localised to the extracellular matrix (ECM).

   Some TGF-β proteins, such as myostatin, activins and TGF-β isoforms, bind to 
the ECM via specifi c interactions (Ramirez and Rifkin  2009 ; Rifkin  2005 ; Sengle 
et al.  2008a ). The ECM network of glycoproteins plays essential roles in the struc-
ture, survival, migration and proliferation of cells (Assoian et al.  1983 ; Brunner 
et al.  1989 ; Gentry and Nash  1990 ), and can also act as an important intermediate 
reservoir for many members of the family prior to their activation (Fig.  5.2 ) (Sengle 
et al.  2008a ). ECM components vary between organs as they are temporally and 
spatially expressed and secreted by proximal tissues, but the three major proteins 
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  Fig. 5.1     Synthesis of TGF-β proteins . ( a ) TGF-β proteins are synthesised as precursor proteins 
consisting of an N-terminal prodomain and a C-terminal mature domain. Prodomains form tight 
contacts within their mature domains, which facilitate folding and dimerisation. ( b ) Dimeric pre-
cursors are cleaved between the pro- and mature domains by proprotein convertases, such as furin, 
to form ( c ) a complex comprising prodomain non-covalently associated to the mature TGF-β dimer       

  Fig. 5.2     Localisation of TGF-β proteins to the extracellular matrix . The prodomains target 
TGF-β proteins to the ECM in the vicinity of target cells. ( a ) Some TGF-βs, such as BMP-7 bind 
directly to fi brillin microfi brils in the ECM, ( b ) while others, such as activin A, bind fi brillin- 
associated proteins, such as perlecan. ( c ) The TGF-β isoforms bind to LTBPs, which then bind to 
fi brillin in the ECM       
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comprising the ECM are collagen, fi bronectin and fi brillin (Vakonakis and Campbell 
 2007 ). Interestingly, TGF-β proteins are also critical regulators of ECM production, 
regulating collagen synthesis and deposition by fi broblasts (Akhurst and Hata  2012 ).

   The prodomains of the TGF-β isoforms bind the ECM via an intermediate asso-
ciation with latent TGF-β-binding proteins (LTBPs). Prodomain binding to LTBPs 
promotes the formation of large latent complexes (LLCs). The C-terminal region of 
LTBPs binds to the N-terminal region of fi brillin, targeting LLCs to the ECM, an 
interaction that is essential for normal TGF-β signalling (Ramirez et al.  2008 ). 
Other TGF-β proteins, including BMP-2, -4, -7, -10 and GDF-5 can bind directly to 
fi brillin via their prodomains (Sengle et al.  2008a ), whereas activin prodomains can 
bind heparin sulphate proteoglycans, such as perlecan, in the ECM (Li et al.  2010 ).  

5.2.2     Prodomains Control TGF-β Ligand Activity 
and Localisation in the Extracellular Matrix 

 Prodomains can modulate the signalling potential of their associated TGF-β pro-
teins. For the majority of TGF-β family members, the interaction between the 
mature protein and their associated prodomains is weak, allowing them to be readily 
displaced in the presence of their target receptors (Sengle et al.  2008b ; Walton et al. 
 2009 ). However, myostatin, GDF-11, TGF-β1, TGF-β2, TGF-β3, BMP-10 and 
human GDF-9 bind their prodomains with high affi nity and are secreted in a latent 
form (Simpson et al.  2012 ). The prodomains confer latency by shielding the 
receptor- binding epitopes (Bottinger et al.  1996 ; De Crescenzo et al.  2001 ; Ge et al. 
 2006 ; Hill et al.  2002 ; Thies et al.  2001 ). 

 The latency of some TGF-β proteins provides an additional barrier in activity 
regulation. Myostatin is expressed in skeletal muscle and is a potent negative regu-
lator of muscle mass, therefore an additional level of regulation is necessary to 
constrain its effects. The BMP-1/tolloid family of metalloproteinases is hypothe-
sised to activate latent myostatin, by cleaving after the aspartate-76 residue within 
the myostatin prodomain and releasing mature active myostatin.(Lee  2008 ; Wolfman 
et al.  2003 ). Other latent TGF-βs can be activated by thrombospondin-1 and integ-
rins, which alter the conformation of the prodomain enabling the release of the 
mature active proteins (Fig.  5.3 ) (Annes et al.  2004 ; Ribeiro et al.  1999 ).

5.2.3        TGF-β Family Members Target Specifi c Receptor 
Complexes and Transcription Factors 

 The biological effects of myostatin are initiated upon engagement of the ligand with 
two specifi c transmembrane serine/threonine kinase receptors (Fig.  5.4 ). Binding of 
mature myostatin to the extracellular domain of a type II activin receptor (ActRII) 
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  Fig. 5.3     TGF-β activation . ( a ) The TGF-β isoforms, myostatin and GDF-11 bind their prodo-
mains with high affi nity, with the prodomains shielding the receptor-binding epitopes. In order for 
these ligands to signal, they must be liberated from their prodomains via an activation mechanism, 
enabling them to bind to their receptors. ( b ) For the other TGF-β proteins, such as activin A, they 
are secreted in an ‘active’ form. These ligands have a higher affi nity for their signalling receptors 
than their prodomains and do not require an activation step       
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leads to recruitment, phosphorylation and activation of a type I activin receptor 
(ActRI), also known as an activin receptor-like kinase (ALK) (Ten Dijke and Arthur 
 2007 ). Type II and type I transmembrane receptors are classifi ed by their structural 
and functional properties. There are fi ve mammalian type II receptors: ActRIIA, 
ActRIIB, TβRII, BMPRII and AMHRII, and seven type I receptors: activin receptor- 
like kinases (ALK) 1-7 (Shimasaki et al.  2004 ). Predominantly, the type II receptors 
facilitate ligand engagement, whereas the type I receptors determine the signalling 
specifi city by phosphorylating specifi c Smad proteins that modulate intracellular 
signalling and regulate target gene transcription (Ten Dijke and Arthur  2007 ).

  Fig. 5.4     TGF-β signalling pathway . TGF-β signalling is divided into two main intracellular 
pathways (the TGF-β and BMP pathways) according to the type I and II receptors the ligands tar-
get and the intracellular Smads they activate. The binding of a growth factor to a type II receptor 
leads to recruitment of a type I receptor. The TGF-β subgroup phosphorylate type I receptors. In 
turn, type I receptors phosphorylate Smads 2 or 3. Conversely, activation by the BMP subgroup 
leads to phosphorylation of Smads 1, 5 or 8. All Smads form complexes with Smad4, and translo-
cate to the nucleus to regulate gene transcription with co-activators, co-repressors and additional 
transcription factors. Smad6 and 7 are inhibitory Smads that prevent Smads forming complexes 
with Smad4, and also bind to type I receptors       
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   Myostatin can signal through the type II receptors ActRIIA/B and BMPRII, and 
the type I receptors ALK4 and ALK5 (Sidis et al.  2006 ; Tsuchida et al.  2004 ). 
Activation of ALK4 and ALK5 receptors proceeds to phosphorylate intracellular 
Smad2 or 3 transcription factors (Wrighton et al.  2009b ), which then bind to Smad4, 
and the resulting Smad complex translocates to the nucleus to regulate gene tran-
scription (Massague and Gomis  2006 ; Wrighton et al.  2009a ). Other TGF-β pro-
teins that initiate Smad2/3 signalling include the TGF-β isoforms, activins and 
Nodal. Notably, in parallel with this ActRII-Smad2/3 signalling pathway, the TGF-β 
network supports signalling mediated by other ligands that activate ALKs1, 2, 3 and 
6 to phosphorylate Smad1/5/8. BMPs, other GDFs and AMH can employ this axis 
via their binding to discrete type II receptors (Massague and Gomis  2006 ). 

 As there are only a handful of type I and type II receptors for the large number of 
TGF-β proteins, several TGF-β proteins can utilise the same receptor complexes. 
For example, activin A, activin B, BMP-4, BMP-7 and GDF-5 can bind ActRIIA/B 
(Greenwald et al.  2003 ; Harrison et al.  2004 ; Tsuchida et al.  2004 ). Similarly, BMP- 
2, BMP-4, BMP-7, BMP-15 and GDF-9 bind BMPRII (Shi et al.  2000 ). In some 
circumstances, more than one ligand can utilise the same receptor complex; both 
myostatin and activin A can initiate signalling via ActRIIA/B and ALK4 (Tsuchida 
et al.  2004 ). The interplay of numerous ligands and receptor combinations and the 
interaction of downstream Smad signalling with other pathways varies by cell type 
and context, thus creating a system for highly varied and nuanced effects of the 
TGF-β network.  

5.2.4     Extracellular Regulation of TGF-β Signalling 

 Further regulation of TGF-β signalling is facilitated by extracellular, membrane- 
bound and intracellular proteins. Some members of the TGF-β family also require 
accessory receptors, such as betaglycan, endoglin and cripto, to enhance their inter-
action with signalling receptors. For example, betaglycan acts as a co-receptor for 
the TGF-β isoforms, most notably TGF-β2, and inhibin (Cheifetz et al.  1990 ; Lewis 
et al.  2000 ). Within cells, inhibitory Smad proteins 6 and 7 govern TGF-β signalling 
through a negative feedback loop. Smad6 and 7 bind to type I receptors, to inhibit 
the phosphorylation of receptor-regulated Smads (Gazzerro and Canalis  2006 ). In 
addition, Ski binds to Smad4 to prevent the formation of Smad complexes, as well 
as retaining existing Smad complexes bound to DNA to prevent binding of new 
complexes (Luo  2003 ). 

 Follistatin is an extracellular protein found in circulating and membrane-bound 
forms, and exhibits high affi nity binding for activins, but also bind myostatin, GDF- 
11 and some BMPs (Lee and Mcpherron  2001 ; Nakamura et al.  1990 ; Tsuchida 
 2006 ). In the case of activins, follistatin neutralises activity by shielding 
 approximately a third of the residues on the mature ligand, including both the type 
I and type II receptor-binding sites (Harrington et al.  2006 ). Follistatin-related gene 
(FLRG) is an inhibitor of TGF-β signalling that also contains a follistatin-binding 
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domain, which binds similar ligands as follistatin (Tsuchida et al.  2000 ). There are 
also specifi c extracellular BMP antagonists, such as noggin, that preferentially bind 
certain BMP family members and reduce their access to signalling receptors 
(Gazzerro and Canalis  2006 ; Shimasaki et al.  2004 ). Collectively, these extra- 
cellular proteins confer an additional layer of regulation to control the bioactivity of 
the TGF-β family of ligands.   

5.3     The Role of TGF-β Signalling in Skeletal Muscle 
Development and Homeostasis 

 The formation of skeletal muscle (myogenesis) commences early during embryonic 
development. Pluripotent muscle progenitor cells originating from the somites give 
rise to myoblasts, the precursor cells of skeletal muscle fi bres (Kubota et al.  1989 ; 
Mauro  1961 ). The fusion of myoblasts produces multi-nucleated muscle fi bres, 
which, remarkably, can be maintained for life. In parallel, a population of progenitor 
cells persist as ‘satellite cells’, which reside in proximity with muscle fi bres as a 
reservoir of cells for repair of muscle fi bres. Proliferation and recruitment of the 
resident satellite cells occurs when damaged muscle fi bres must be repaired (or 
regenerated). Post-natal adaptation of muscle mass occurs largely via changes in the 
size of existing muscle fi bres, although in some instances recruitment of satellite 
cell may also provide a means of contributing additional nuclei to existing fi bres 
during episodes of growth. 

 Myostatin, in particular, has been defi ned as a potent negative regulator of skel-
etal muscle mass (Mcpherron et al.  1997 ). Myostatin knockout mice ( Mstn   -/-  ) exhibit 
dramatically increased muscle mass as a result of increased fi bre numbers being 
formed during development, and increased fi bre size in adulthood. The signifi cance 
of myostatin in skeletal muscle is evident from its conservation across species, as 
loss of myostatin during development has been associated with a ‘hypermuscular’ 
phenotype in rodents (mice, rats), dogs, birds (chickens, turkeys), sheep, pigs, 
horses and humans. Although other members of the TGF-β family have also been 
found to exert unique effects upon muscle development and post-natal adaptation 
(Kollias and Mcdermott  2008 ; Lee et al.  2005 ), myostatin remains arguably the 
most dominant regulator of skeletal muscle phenotype in development. 

5.3.1     Skeletal Muscle Development 

 Cells of somatic origin are directed down a program of myogenesis commencing 
early in embryonic development according to episodes of determination, differen-
tiation and maturation. Determination begins with the formation of pluripotent 
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muscle progenitor cells (Mauro  1961 ) that give rise to myoblasts, the precursor cells 
of skeletal muscle fi bres (Kubota et al.  1989 ). Myoblasts completing an active pro-
liferative phase typically undergo differentiation, which entails irreversible with-
drawal from the cell cycle, and the expression of early muscle-specifi c genes, 
including the MyoD and MEF2 family of transcription factors (Joulia-Ekaza and 
Cabello  2006 ). These myogenic factors support myoblast commitment and fusion, 
and the subsequent expression of late muscle-specifi c genes (Acharyya et al.  2004 ; 
Megeney et al.  1996 ; Wheeler et al.  1999 ). As myoblasts fuse into post-mitotic 
syncytial structures spanning from tendon to tendon, the specialised proteins 
required to assemble the excitation-contraction apparatus are synthesised, and sup-
port the maturation of muscle fi bres. For most species, the number of skeletal mus-
cle fi bres is determined before birth and maintained largely until approaching 
senescence.  

5.3.2     Myostatin as a Regulator of Myogenesis 

 During embryonic myogenesis, myostatin signalling initiates the Smad2/3 complex 
to translocate to the nucleus and block production of the muscle transcription factor 
MyoD. Inhibition of MyoD prevents myoblast proliferation, differentiation and 
fusion through cell cycle arrest (i.e., myoblasts accumulate in the G1 and G2 phase 
of the cell cycle) (Allen and Unterman  2007 ; Langley et al.  2002 ; Rios et al.  2002 ; 
Thomas et al.  2000 ; Zhu et al.  2004 ). This coincides with up-regulation of p21, a 
potent inhibitor of the cyclin-Cdk complexes (Thomas et al.  2000 ) that support cell 
cycle progression. Cyclin-Cdk complex inhibition results in reduced phosphoryla-
tion of Rb, a tumour suppressor protein that inhibits cell growth. Hypo- 
phosphorylated Rb inhibits cell cycle progression by binding and repressing the 
activity of the E2F family of transcription factors (Lam and La Thangue  1994 ), 
thereby preventing their transcription of S-phase-specifi c genes (La Thangue  1996 ).  

5.3.3     Myostatin as a Regulator of Muscle Fibre Size 

 In mature muscle fi bres, the maintenance of size is dependent on the balance 
between protein synthesis and protein degradation. While these processes are para-
mount to maintaining muscle health and homeostasis, the interaction of signalling 
pathways that infl uence protein turnover in muscle continues to be expanded upon. 
As with the process of muscle fi bre formation, myostatin appears to play a promi-
nent role in governing the processes controlling muscle fi bre size. 

 Stimulation of the canonical Smad2/3 pathway by myostatin suppresses the tran-
scription and activity of MyoD and the myogenic regulatory factor myogenin to 
limit protein synthesis. While these effects serve to maintain satellite cells in a qui-
escent state (Langley et al.  2002 ; Liu et al.  2001 ), the same process limits the growth 
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of muscle fi bres by restricting expression of muscle proteins. Although myostatin 
has been shown to activate the canonical Smad pathway in muscle, crosstalk with 
other non-Smad pathways also contributes to the regulation of protein turnover in 
muscle fi bres (Kollias and Mcdermott  2008 ; Mcpherron et al.  1997 ) (Fig.  5.5 ).

  Fig. 5.5     Increased activation of the Smad2/3 signalling pathway results in muscle wasting . 
Heightened activation of the Smad2/3 signalling pathway, as when myostatin or activin A are 
overexpressed, leads to inactivation of Akt and additional dephosphorylation of the transcription 
factor FoxO3. Dephosphorylated FoxO3 can translocate to the nucleus and induce the expression 
of the muscle-specifi c ubiquitin ligases, atrogin-1 and MuRF-1. These ligases ubiquitinate myofi -
brillar proteins, such as myosin, targeting them for degradation via the ubiquitin-proteasome sys-
tem, resulting in muscle wasting. Akt is also a central mediator of protein synthesis, where its 
phosphorylation by PI3K activates mTOR-mediated phosphorylation of S6 ribosomal protein to 
increase protein translation       
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   The IGF-1/PI3K/Akt signalling cascade is a regulator of processes associated 
with cell cycle proliferation and cell survival, and in muscle, is also a key governor 
of protein synthesis and glucose metabolism (Chen et al.  2014 ; Morissette et al. 
 2009 ; Trendelenburg et al.  2009 ; Zdychova and Komers  2005 ). Phosphorylation of 
Akt results in increased protein synthesis through activation of mTOR, and subse-
quently 4E-BP1 and S6K (Bodine et al.  2001 ; Laplante and Sabatini  2012 ). mTOR 
is a key contributor to skeletal muscle growth and as such, can be regulated through 
a variety of signalling targets.  In vitro  and  in vivo  studies have demonstrated that the 
absence of myostatin results in increased Akt activity and therefore elevated mTOR 
signalling (Lipina et al.  2010 ). Prevention of muscle atrophy also occurs down-
stream of Akt through inhibition of apoptotic factors such as Bax, and the Forkhead 
box O (FoxO) transcription factor family (Fig.  5.5 ) (Hribal et al.  2003 ). During the 
differentiation of myoblasts, as myostatin expression increases, FoxOs are dephos-
phorylated and enter the nucleus, where they promote transcription of the muscle- 
specifi c E3-ubiquitin ligases, atrogin-1 and MuRF-1 (Zhao et al.  2007 ). These 
muscle-specifi c ligases mark muscle proteins for degradation via the ubiquitin- 
proteasome pathway. During homeostasis, the protein synthesis and degradation 
pathways are in balance to maintain muscle mass (Lokireddy et al.  2011 ; Sartori 
et al.  2009 ). In the  Mstn   -/-   mouse, the IGF-1/PI3K/Akt pathway is de-repressed, 
increasing protein synthesis, while FoxO proteins remain in the cytoplasm in the 
phosphorylated form, unable to initiate transcription of the catabolic E3-ubiquitin 
ligases (Mcpherron et al.  1997 ). Thus, elevated expression of myostatin promotes 
increased atrogin-1 and MuRF-1 transcription, while myostatin inhibition has the 
opposite effect. 

 While the Smad/Akt/FoxO axis is a major regulator of muscle size, other cellular 
pathways intersect with this network, adding an additional layer of control to the 
system. Crosstalk exists between the Smad pathway and the mitogen-activated pro-
tein kinase (MAPK) pathways of the extracellular signal-related kinase 1/2 
(ERK1/2), p38 and JNK (Hanafusa et al.  1999 ; Mulder  2000 ; Philip et al.  2005 ). 
TGF-β proteins can bind to MAPK receptors in a cell-specifi c and context- dependent 
manner, but MAPKs that are not activated by TGF-βs are capable of regulating 
Smad proteins and Smad complexes (Javelaud and Mauviel  2005 ; Rahimi and Leof 
 2007 ). To date, the role of ERK1/2 in skeletal muscle mass remains incompletely 
defi ned. Further research in this area could yield new insights into muscle regulation 
in the future.  

5.3.4     Other TGF-β Proteins as Regulators of Muscle 
Development and Maturation 

 Although myostatin is well characterised as a negative regulator of muscle, other 
members of the TGF-β are also essential in guiding myogenesis and supporting 
muscle homeostasis. For instance, TGF-β1 expressed during myogenesis inhibits 
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the expression of muscle-specifi c mRNA and proteins  in vitro  (Massague et al. 
 1986 ), and inhibits differentiation of myoblasts (Cusella-De Angelis et al.  1994 ; 
Massague et al.  1986 ; Olson et al.  1986 ). TGF-β1 has also been shown to inhibit 
skeletal muscle satellite cell differentiation, proliferation and fusion  in vitro , 
 suggesting a role in regulating muscle regeneration (Allen and Boxhorn  1987 ; 
Li et al.  2004 ). 

 Other members of the TGF-β family are also implicated in muscle homeostasis. 
The broad spectrum TGF-β antagonist, follistatin, binds several TGF-β family 
members in addition to myostatin, including activins, GDF-11, and BMP-2, -4, -6, 
and -7 (Glister et al.  2004 ; Schneyer et al.  2008 ; Sidis et al.  2006 ). Transgenic mice 
over expressing follistatin exhibit dramatically increased muscle mass as a product 
of increased muscle fi bre number and size(Lee and Mcpherron  2001 ). Similarly, 
transgenic overexpression of a dominant negative ActRIIB in mice, which binds 
similar TGF-β proteins as follistatin, also yields a hypermuscular phenotype (Lee 
and Mcpherron  2001 ). Importantly, when follistatin or the dominant negative 
ActRIIB were overexpressed in  Mstn   -/-   mice, which already exhibit twice the mus-
cle mass of wild type mice, a further increase in muscle mass was still observed 
(Lee  2007 ; Winbanks et al.  2012 ). As this additional increase occurred in the 
absence of myostatin, at least one other TGF-β protein capable of binding follistatin 
and ActRIIB must contribute to the negative regulation of muscle mass under 
homeostatic conditions. Recent studies have subsequently revealed that activin A 
and B contribute to the negative regulation of muscle mass (Chen et al.  2015 ). 

 Historically, research into the control of muscle homeostasis has focussed on the 
Smad2/3 signalling arm of the TGF-β family. This has largely left the role of the 
Smad1/5/8 pathway in skeletal muscle unchartered. However, recent reports have 
begun to show that the Smad1/5/8 axis is a positive regulator of muscle mass (Sartori 
et al.  2013 ; Winbanks et al.  2013 ). Increases in muscle mass and Smad1/5 phos-
phorylation were observed when BMP-7, or a constitutively active ALK3, were over-
expressed in muscle (Winbanks et al.  2013 ), with growth mediated by increased 
mTOR activity. Interestingly, while blockade of Smad2/3 signalling results in muscle 
hypertrophy, overexpression of Smad6, an inhibitor of Smad1/5/8 signalling, had no 
effect on endogenous muscle mass (Lee  2007 ; Lee and Mcpherron  2001 ; Lee et al. 
 2005 ; Winbanks et al.  2013 ). Collectively, the studies to date suggest that the Smad2/3 
arm of the TGF-β signalling pathway is prominent in regulating muscle mass, but 
that the parallel opposing arm of Smad1/5/8 is required for sustaining or promoting 
muscle hypertrophy. This latter aspect is noted from observations that muscles up-
regulate expression of BMPs and their signalling receptors to protect against muscle 
atrophy in models of denervation. Inhibiting BMP signalling in this context exacer-
bates muscle wasting (Sartori et al.  2013 ; Winbanks et al.  2013 ). Mechanistically, the 
BMP-Smad1/5/8 signalling axis was shown to negatively regulate the transcription 
of E3 ubiquitin ligases that drive proteasome-mediated protein breakdown (Sartori 
et al.  2013 ; Winbanks et al.  2013 ). Thus, the BMP-Smad1/5/8 signalling arm of the 
TGF-β network exerts positive effects on protein synthesis and degradation in muscle 
depending on the context. These fi ndings suggest multiple TGF-β family members 
contribute simultaneously to the establishment of skeletal muscle attributes.   
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5.4     The Role of TGF-β Signalling in Post-natal Muscle 
Regeneration 

 The regeneration of muscle fi bres after damage recapitulates many of the events 
involved in myogenesis during embryonic development. Myostatin tightly governs 
the activity of transcription factors involved with lineage progression within both 
satellite cells and myoblasts, and by doing so is a key regulator in muscle regenera-
tion following injury (Cornelison et al.  2000 ; Langley et al.  2002 ; Mccroskery et al. 
 2003 ). 

 To better dissect the role of myostatin during regeneration, several injury models 
have been employed. Following injection with myotoxic agents, the muscles of 
24-month-old senescent  Mstn   -/-   mice regenerate similarly to their wild-type counter-
parts (Wagner et al.  2005 ). However, while wild-type muscles eventually estab-
lished a similar histological profi le, injured  Mstn   -/-   muscles were able to attain larger 
myofi bre diameters at an earlier phase of regeneration than was possible for wild- 
type muscles (Wagner et al.  2005 ). These fi ndings provide evidence for myostatin 
playing a more complex role in muscle regeneration than solely governing lineage 
control within muscle itself, and highlight the possibility of non-muscle factors con-
tributing to this regenerative phenotype. 

 Using a dry-ice injury-regeneration model in  Mstn   -/-   and wild-type bovine mus-
cle, it was demonstrated that myostatin can govern chemokine secretion following 
injury (Iwasaki et al.  2013 ). The injured muscles of  Mstn   -/-   cows did not parallel the 
level of elevation of chemokines (CXCL1, CXCL2, CXCL6 and CCL2) found in 
wild-type counterparts, as measured by protein level and transcript abundance: a 
result that is mirrored  in vitro . Whether these chemokines are typically all of muscle 
origin in an  in vivo  setting is yet to be established. These fi ndings, however, high-
light that a complete picture of myostatin and TGF-β signalling in muscle regenera-
tion is still being pieced together. Similarly control of muscle size can be heavily 
infl uenced by the infl ammatory response, which also plays a major role during 
muscle regeneration. 

 Infl ammatory cells feature heavily in the regenerative process, and are also 
implicated in pro-fi brotic signalling, throughout which TGF-β is a major coordina-
tor of fi brotic deposition (Bernasconi et al.  1999 ; Gosselin et al.  2004 ). After injury, 
migration of macrophages and fi broblasts increase the production of ECM compo-
nents (Serrano and Munoz-Canoves  2010 ). TGF-β, in conjunction with other sig-
nalling molecules, including tumour necrosis factor-alpha (TNF-α), promotes the 
production of ECM components collagen and elastin (Gosselin and Martinez  2004 ; 
Gosselin et al.  2004 ). ECM components provide a support framework within the 
damaged muscle, which is then degraded during the regeneration process (Serrano 
and Munoz-Canoves  2010 ). While external factors can modulate TGF-β signalling 
during regeneration, myostatin expression is signifi cantly down-regulated in satel-
lite cells, enabling lineage progression and myofi bre re-population (Cornelison 
et al.  2000 ). This tight regulation of TGF-β signalling is important in controlling 
muscle remodelling following trauma through injury or disease.  
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5.5     TGF-β Signalling in Skeletal Muscle Disease 

 The majority of the 34 TGF-β proteins play critical and overlapping roles in organo-
genesis and post-natal tissue homeostasis. Intriguingly, these potent signalling pro-
teins only utilise a very small number of receptors. The canonical signalling pathway 
uses fi ve type II receptors (TβRII, ActRII, ActRIIB, BMPRII and AMHRII) and 
seven type I receptors (ALKs 1-7) to fi nely regulate the inputs of the distinct TGF-β 
proteins. These receptors can interact with multiple TGF-β proteins. Therefore, the 
expression and activity of ligands is tightly regulated, and this strict control extends 
to all their associated components including signalling receptors, inhibitors and the 
downstream molecules that transduce their signals to the nucleus for gene 
expression. 

 Owing to these ligands’ secreted nature, altered expression of specifi c TGF-β 
family proteins in disease settings can exert deleterious effects in either the tissue of 
origin or at distal sites. Given the diverse biological roles of TGF-β family proteins, 
it is not surprising that disruption within the signalling network has detrimental 
consequences for cell function. As examples, many mutations in TGF-β proteins or 
their associated signalling components have been identifi ed in human disease (Table 
 5.1 ). Though mutations within the TGF-β signalling network often result in devel-
opmental disorders, vascular diseases and cancer (Gordon and Blobe  2008 ), ongo-
ing research is revealing that altered TGF-β network signalling also exerts 
detrimental effects on tissue function, including in skeletal muscle. Consequently, 
manipulation of TGF-β signalling may offer the means to target TGF-β actions in 
muscle to improve specifi c disease states.

5.5.1       Muscular Dystrophy 

 Collectively, muscular dystrophies are a group of disorders characterised by pro-
gressive loss of functional muscle mass and an accumulation of non-functional 
fi brotic tissue. A large array of genetic mutations have been identifi ed within dystro-
phic muscle fi bres (Cohn and Campbell  2000 ), predominantly within genes encod-
ing for proteins that make up the dystrophin-associated protein complex (DAPC) 
(Tsuchida  2006 ). The DAPC is a highly specialised and regulated network of scaf-
folding proteins anchoring the outside of the muscle fi bre to the inside, which pro-
tects muscle fi bres from injury under typical mechanical loading (Campbell and 
Kahl  1989 ; Ervasti et al.  1990 ). Proteins of the DAPC not only provide physical 
links, but also act to transmit signals regarding membrane stability and force trans-
duction (Constantin  2014 ).

  As the most common heritable neuromuscular disorder, Duchenne muscular dys-
trophy (DMD) is a severe and debilitating condition that typically affects young 
males, confi ning them to a wheelchair early in their youth (Engvall and Wewer 
 2003 ). In DMD, mutations in the dystrophin gene prevent the production of 
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   Table 5.1    Mutations in the TGF-β signalling pathway in human disease   

 Protein/gene  Disease  References 

 TGF-β1  Atherosclerosis, Camurati-Engelmann 
disease, childhood asthma, 
cardiovascular disorders, fi brosis, 
hypertension, osteoporosis, 
otosclerosis, psoriasis; breast, colon, 
pancreatic, and prostate cancers; 
tumour invasion & metastasis 

 Baran et al. ( 2007 ), Border and 
Noble ( 1994 ), Gordon and Blobe 
( 2008 ), Kinoshita et al. ( 2000 ), Li 
et al. ( 1999 ), Maehara et al. ( 1999 ), 
Salam et al. ( 2007 ), Thys et al. 
( 2007 ), Yamada et al. ( 1998 ) 

 TGF-β2  Cleft palate, breast and pancreatic 
cancer 

 Gordon and Blobe ( 2008 ), Slayton 
et al. ( 2003 ) 

 TGF-β3  Cleft palate  Tanabe et al. ( 2000 ) 
 GDF-3  Microphthalmia, isolated type 7, 

Klippel–Feil syndrome type 3 
 Harrison et al. ( 2011 ) 

 GDF-5  Brachydacyly type A2 and C, Du Pan 
syndrome, Hunter-Thompson 
chondrodysplasia, Grebe 
chondrodysplasia, Proximal 
symphalangism 

 Harrison et al. ( 2011 ), Lehmann 
et al. ( 2007 ), Thomas et al. ( 1996 , 
 1997)  

 GDF-6  Bilateral anophthalmia, 
microphthalmia 

 Harrison et al. ( 2011 ) 

 BMP-2  Breast cancer  Clement et al. ( 2005 ) 
 BMP-4  Breast cancer, microphthalmia 

syndromic type 6, Non-syndromic 
orofacial cleft type 11 

 Gordon and Blobe ( 2008 ), Harrison 
et al. ( 2011 ) 

 BMP-7  Breast cancer and ocular 
developmental disorders 

 Gordon and Blobe ( 2008 ), Harrison 
et al. ( 2011 ) 

 BMP-10  Cardiomyopathy  Gordon and Blobe ( 2008 ) 
 BMP-15  Premature ovarian failure  Harrison et al. ( 2011 ) 
 Lefty-1  Situs Ambiguus  Gordon and Blobe ( 2008 ) 
 Nodal  Situs Ambiguus, visceral heterotaxy 

autosomal type 5 
 Gordon and Blobe ( 2008 ), Harrison 
et al. ( 2011 ) 

 Inhibin-α  Premature ovarian failure  Gordon and Blobe ( 2008 ) 
 ALK1  Familial primary pulmonary 

hypertension, Hereditary 
haemorrhagic telangiectasia, 
gondadotroph tumour 

 Berg et al. ( 1997 ), D’abronzo et al. 
( 1999 ), Loscalzo ( 2001 ) 

 ALK2  Fibrodysplasia Ossifi cans Progressiva  Groppe et al. ( 2007 ), Shore et al. 
( 2006 ) 

 ALK3  Bannayan–Riley–Ruvalcaba, Cowden 
disease, juvenile polyposis 

 Howe et al. ( 2001 ), Zhou et al. 
( 2001 ) 

 ALK5  Breast, cervical, head and neck, and 
pancreatic cancers; chronic 
lymphocytic leukaemia, familial 
thoracic aortic aneurysm syndrome, 
Furlong syndrome, Loeys–Dietz 
syndrome 

 Blobe et al. ( 2000 ), Loeys et al. 
( 2005 ), Matyas et al. ( 2006 ), Pannu 
et al. ( 2006 ) 

 ALK6  Breast cancer, brachydactyly type A2  Lehmann et al. ( 2003 ) 

(continued)
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 functional dystrophin protein (Hoffman et al.  1987 ; Jacobs et al.  1981 ; Koenig et al. 
 1987 ). Dystrophin is a pivotal member of the DAPC acting both as a large, central 
tether and as a marshalling molecule for many associated proteins that assemble in 
its proximity (Constantin  2014 ). The mutations that cause the loss of dystrophin, or 
similarly important structural proteins from the DAPC, weaken the overall integrity 
of muscle fi bres. These more fragile fi bres are susceptible to contraction- induced 
injury and subject to bouts of ongoing degeneration and regeneration. Repeated 
cycles of breakdown and repair are hypothesised to compromise the regenerative 
process over time (Jiang et al.  2014 ). Similarly, muscles comprised of structurally 

Table 5.1 (continued)

 Protein/gene  Disease  References 

 AMH  Persistent Müllerian duct syndrome  Belville et al. ( 1999 ) 
 AMHR2  Persistent Müllerian duct syndrome  Belville et al. ( 1999 ) 
 BMPR2  Familial primary pulmonary 

hypertension 
 Lane et al. ( 2000 ) 

 TGFBR2  Breast, cervical, colon, endometrial, 
gastric, glioma, liver, lung, 
lymphoma, pancreatic and prostate 
cancers; atherosclerosis, Loeys–Dietz 
syndrome, familial thoracic aortic 
aneurysm syndrome, Sphrintzen–
Goldberg syndrome 

 Baldwin et al. ( 1996 ), Chen et al. 
( 2013 ,  2014) , Goggins et al. ( 1998 ), 
Gordon and Blobe ( 2008 ), Grady 
et al. ( 1999 ), Knaus et al. ( 1996 ), 
Loeys et al. ( 2005 ), Matyas et al. 
( 2006 ), Myeroff et al. ( 1995 ), Pannu 
et al. ( 2006 ), Villanueva et al. ( 1998 ) 

 Endoglin  Atherosclerosis, hereditary 
haemorrhagic telangiectasia 

 Mcallister et al. ( 1994 ), Mccaffrey 
et al. ( 1997 ), Shovlin et al. ( 1997 ) 

 Decreased 
betaglycan 

 Pancreatic and prostate cancer  Gordon and Blobe ( 2008 ) 

 Noggin  Multiple synostoses syndrome, 
proximal symphalangism, Stapes 
ankylosis 

 Brown et al. ( 2002 ), Gong et al. 
( 1999 ) 

 Fibrillin-1  Marfan syndrome  Dean ( 2007 ), Ramirez and Dietz 
( 2007 ) 

 Smad2  Colorectal, lung and hepatocellular 
cancers 

 Eppert et al. ( 1996 ), Riggins et al. 
( 1997 ) 

 Smad3 
mutations 

 Lung cancer  Gordon and Blobe ( 2008 ) 

 Increased 
Smad3 nuclear 
localisation 

 Prostate cancer  Gordon and Blobe ( 2008 ) 

 Smad4  Bladder, breast, colorectal, head and 
neck, hepatocellular, gastric, lung, 
pancreatic, prostate, oesophageal, 
ovarian and renal cancers 

 Hahn et al. ( 1996 ), Thiagalingam 
et al. ( 1996 ) 

 Smad4  Familial juvenile polyposis  Howe et al. ( 1998 ) 
 Increased 
Smad4 nuclear 
localisation 

 Prostate cancer  Gordon and Blobe ( 2008 ) 
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impaired fi bres are vulnerable to infi ltration by adipose, fi brotic and infl ammatory 
cells, which further impair the muscles’ regenerative capacity (Acharyya et al.  2007 ; 
Andreetta et al.  2006 ; Jacobs et al.  1981 ). 

 During muscle regeneration after injury, TGF-β1 is increased to regulate a short 
infl ammatory response in damaged muscles, enabling the removal of cellular debris 
from sites of new fi bre formation (Serrano and Munoz-Canoves  2010 ). In dystro-
phic muscle, the repeated cycles of regeneration leaves the muscles persistently 
exposed to TGF-β1, infl ammatory cells and their signalling molecules (Cohn et al. 
 2007 ). This aberrant signalling promotes the production of collagen and other ECM 
proteins, exacerbating fi brotic accumulation (Sabatelli et al.  2012 ; Zanotti et al. 
 2010 ). As TGF-β signalling is often associated with facilitating ongoing fi brotic 
infi ltration, TGF-β inhibition has been proposed as potential therapeutic strategy in 
the dystrophic setting (Chen et al.  2005 ; Zanotti et al.  2010 ). 

 Several studies have investigated the potential outcomes of inhibiting the TGF-β 
signalling pathway in DMD. Administration of neutralising antibodies against 
TGF-β signifi cantly resolved fi brosis in treated  mdx  mice, a model for DMD, when 
compared to their untreated littermates (Andreetta et al.  2006 ). While no change 
was observed regarding the ongoing cycles of degeneration and regeneration, there 
was an increase in infl ammatory CD4+ lymphocytes, highlighting a potential hurdle 
when considering immunomodulation accompanying long-term treatment 
(Andreetta et al.  2006 ). As an alternate approach, the angiotensin II type 1 receptor 
blocker losartan, a widely-used FDA-approved drug for hypertension, has been 
demonstrated to inhibit TGF-β effects when administered to  mdx  mice, broadly rep-
licating the effects of TGF-β inhibition by neutralising antibodies (Cohn et al. 
 2007 ). Losartan administration to  mdx  mice was reported to enhance limb grip 
strength compared to untreated  mdx  mice (Cohn et al.  2007 ), and reduce cardiac, 
diaphragm and skeletal muscle fi brosis (Spurney et al.  2011 ). Though effects on 
fi brotic signature have been signifi cant, improvements in cardiac and limb muscle 
function to date appear relatively modest. These fi ndings suggest that targeting 
TGF-β signalling may be benefi cial in ameliorating fi brosis associated with dystro-
phy, but offers modest potential to enhance muscle strength.

  Consequently, interventions that target other TGF-β members may be required. 
In this regard, several alternate strategies have been pursued to inhibit the actions of 
myostatin and other related TGF-β family members that repress muscle mass. These 
include treatment with a soluble form of the ActRIIB receptor, which comprises the 
extracellular domain fused to an IgG-Fc domain (Morine et al.  2010 ; Pistilli et al. 
 2011 ), myostatin- neutralising antibodies (Bogdanovich et al.  2002 ), and the admin-
istration of a myostatin prodomain fused to an IgG-Fc domain (Bogdanovich et al. 
 2005 ). Increased expression of soluble follistatin (as an inhibitor of myostatin and 
activins) via gene delivery using adeno-associated virus-based vectors (AAV) has 
also been pursued (Rodino-Klapac et al.  2009 ). Promising early studies in mice 
have supported clinical evaluation of viral vector-mediated administration of fol-
listatin to treat Becker muscular dystrophy and sporadic inclusion body myositis 
(Mendell et al.  2015 ). Each of these intervention approaches has been demonstrated 
to increase muscle mass and functional capacity to an extent, thus supporting the 
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 suggestion that strategic manipulation of TGF-β network activity in dystrophic 
muscles may hold promise for maintaining or restoring the functionality of muscu-
lature in this setting.  

5.5.2     Marfan Syndrome 

 Marfan syndrome (MFS) is an autosomal dominant disease resulting from muta-
tions in the fi brillin-1 gene, causing loss of this key protein in the ECM and a crucial 
regulator of TGF-β signalling (Dietz et al.  1991 ; Hollister et al.  1990 ; Kaartinen and 
Warburton  2003 ; Neptune et al.  2003 ). Patients with MFS exhibit a range of clinical 
symptoms, including defects in the musculoskeletal, cardiovascular and ocular sys-
tems. Altered ECM integrity contributes to reduced ability of the aortic wall to 
withstand intraluminal pressure, which can result in the formation of an aortic aneu-
rysm, a leading cause of morbidity in patients with MFS (Judge and Dietz  2005 ). 
Although the most visible manifestation of the disease is the increase in bone growth 
that results in hyper-fl exible joints and malformations of digits, limbs and the chest 
wall, respiratory muscle dysfunction, poor skeletal muscle development and clinical 
weakness are also observed (Behan et al.  2003 ).

  The mutations in fi brillin-1 associated with MFS render the fi brillin-1 protein 
sensitive to proteolysis and degradation (Ramirez and Dietz  2007 ; Ramirez and 
Rifkin  2009 ; Reinhardt et al.  1997 ). As fi brillin-1 is required for TGF-β localisation 
via LTBPs (Kaartinen and Warburton  2003 ; Neptune et al.  2003 ), the lack of ECM 
structural integrity in patients with MFS enhances the level of active TGF-β that is 
released from the matrix (Kaartinen and Warburton  2003 ; Neptune et al.  2003 ). 
TGF-β protein levels that are signifi cantly elevated in the sera of patients with MFS 
are hypothesised to contribute to MFS aetiology by disrupting signalling during tis-
sue development and adaptation (Hillebrand et al.  2014 ; Neptune et al.  2003 ). Mouse 
studies have also identifi ed TGF-β signalling to be a major contributor to the prolaps-
ing of the mitral valve, a pathology common in MFS (Ng et al.  2004 ). The dysregula-
tion of TGF-β that can manifest pathologies, such as those found in MFS, highlights 
the importance of regulating TGF-β signalling through ligand release and activation 
within the ECM production, as well as ligand production (Ramirez and Dietz  2007 ). 

 Administration of a TGF-β neutralising antibody or losartan to fi brillin-1- defi cient 
mice modelling MFS can restore muscle fi bre diameter (reduced in the diseased 
state) to wild-type dimensions, enhance the regenerative capacity of  muscles, and 
slow the progression of aortic pathology (Cohn et al.  2007 ; Habashi et al.  2006 ). 
However, while murine studies show promise for the drug, the use of losartan in 
individuals with MFS has yielded mixed results. Depending on the study, clinical 
use of losartan has had modest effects on normalising circulating TGF-β levels 
(Franken et al.  2014 ; Groenink et al.  2013 ; Lacro et al.  2013 ,  2014 ; Pees et al.  2013 ). 
Moreover, there has been some discrepancy in the apparent effects of losartan treat-
ment on measures of aorta morphology (Franken et al.  2014 ; Groenink et al.  2013 ; 
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Lacro et al.  2013 ,  2014 ; Pees et al.  2013 ). Collectively, these fi ndings serve to pro-
vide a unique insight into treating MFS via TGF-β inhibition, highlighting that this 
disease may be more nuanced than originally anticipated and that researchers will 
require an even greater understanding of the disease aetiology. Whether TGF-β inhi-
bition through losartan therapy will be clinically effective for all patients with MFS 
remains to be conclusively determined. While the mismatch between preclinical and 
clinical trial results could emphasise the innate differences that exist between the 
physiology of mouse and man, the fi ndings are indicative of a fi eld moving forward 
in their understanding of the complex relationship between TGF-β regulation and 
disease pathology.  

5.5.3     Muscle Wasting Associated with Disuse 

 Muscle atrophy is a major problem in conditions of disuse, such as limb casting, 
immobilisation, or patients undergoing intensive care unit hospitalisation. In 
patients confi ned to extended bed rest, signifi cant muscle atrophy leads to a poorer 
prognosis for recovery, increasing their hospital stay duration, and can also severely 
impair the successfulness of long-term rehabilitation post discharge. 

 Animal studies of limb immobilisation have demonstrated that ensuing disuse 
atrophy of muscles is a product of simultaneous reductions in protein synthesis and 
increases in protein degradation (Booth and Seider  1979 ). This contrasts with dener-
vation-induced muscle atrophy, where both protein synthesis and degradation 
increase, though protein breakdown exceeds protein synthesis (Argadine et al.  2009 ).

  Recently, Zhang  et al.  provided an important link between mechanical load- 
sensing via the dystrophin-associated protein complex and the protein synthesis/
degradation pathways in unloaded muscles, which implicated the TGF-β network 
(Zhang et al.  2014 ). In wild-type mice, plantaris muscles comprising fast-twitch 
muscle fi bres and soleus muscles comprising slow twitch muscle fi bres lost differ-
ing amounts of mass and exhibited differing expression of dystrophin mRNA over 
the course of unloading (Zhang et al.  2014 ). Comparisons of unloading atrophy in 
wild-type and dystrophin-defi cient mice revealed relative sparing of some 
dystrophin- defi cient muscles, accompanied with reduced expression of the E3 ubiq-
uitin ligases MuRF-1 and atrogin-1, responsible for controlling ubiquitin/protea-
some degradation. These observations point to a role of the dystrophin-associated 
protein complex as a regulator of protein degradation pathways in unloaded mus-
cles. Additionally, wild-type mice exhibited up-regulation of TGF-β1 and increased 
phosphorylation of Smad3 subsequent to unloading, while these proteins, which 
were expressed at a greater basal rate in  mdx  mice, were reduced after the unloading 
period. As the TGF-β1/Smad3 pathway infl uences protein synthesis and degrada-
tion processes, these fi ndings suggest that regulation of TGF-β network signalling 
downstream of the dystrophin-associated protein complex contributes to changes in 
muscle mass with unloading. As a comparison, examination of denervated muscles 
has determined that myostatin transcription is increased in neurogenic atrophy 
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(Baumann et al.  2003 ). Subsequent studies have identifi ed a peak in myostatin pro-
tein level anywhere between 3-28 days post-denervation, where Smad2 phosphory-
lation is at its highest level around 3 days (Shao et al.  2007 ; Zhang et al.  2006 ). 

 Collectively, these studies implicate increased myostatin and Smad2/3 signalling 
as contributing to muscle atrophy in mouse models of disuse or denervation. The 
involvement of myostatin in disuse atrophy in humans remains unclear. While some 
studies have reported unchanged myostatin mRNA levels following unloading (De 
Boer et al.  2007 ; Jones et al.  2004 ), increased myostatin transcripts have been 
observed in reduced limb use associated with chronic osteoarthritis (Reardon et al. 
 2001 ). Whether myostatin is elevated temporally or only in discrete models of dis-
ease is yet to be identifi ed. As myostatin levels can be controlled independently of 
transcription, further investigation may need to pursue protein detection techniques 
to analyse myostatin activity in sera or in muscle itself.  

5.5.4     Sarcopenia 

 Sarcopenia is defi ned as the loss of muscle mass and functional capacity specifi cally 
associated with advancing age (Roubenoff  2000 ). Hallmarks of sarcopenia include 
muscle fi bre atrophy, reduced muscle fi bre number, diminished satellite cell activity, 
and progressive deterioration of pre-synaptic structures of the neuromuscular junc-
tion. Rodent studies of sarcopenia have identifi ed gene signatures associated with 
oxidative stress and motoneuron degeneration as early indicators of sarcopenia, but 
at the signalling level, there is also evidence that the TGF-β network plays a role in 
ageing-associated muscle wasting. Muscle biopsies from human septuagenarians 
have been noted to exhibit increased myostatin expression relative to the muscles of 
young adults (Leger et al.  2008 ). Aged mice and humans also demonstrate elevated 
levels of TGF-β1 protein with an accompanying elevation in Smad3 phosphoryla-
tion (Carlson et al.  2009 ), the sera of which can inhibit the myogenic potential of 
satellite cells  in vitro  (Carlson et al.  2009 ). These fi ndings point to mechanisms by 
which elevated TGF-β1 and myostatin may contribute to the suppressed regenera-
tive capacity of aged muscle. 

 Seeking to prevent or overcome sarcopenic muscle atrophy, other studies have 
identifi ed the inhibition of myostatin-Smad2/3 signalling as a potential therapeutic 
target. Mice lacking myostatin have been reported to exhibit reduced susceptibility 
to ageing-associated atrophy of fast twitch muscle fi bres compared with wild-type 
mice. Treatment of aged mice with neutralising antibodies that target myostatin has 
also been shown to preserve muscle mass and force-producing capacity, and reduce 
markers of apoptosis (Murphy et al.  2010 ). Similar effects have been achieved using 
recombinant viral vectors to deliver myostatin prodomain constructs to old animals 
(Collins-Hooper et al.  2014 ) or via the administration of soluble ActRIIB receptors 
as ligand traps (Chiu et al.  2013 ). In aged mice, attenuation of TGF-β signalling 
using a receptor kinase inhibitor has also proven benefi cial for enhancing muscle 
regeneration after experimental injury (Carlson et al.  2009 ). Paralleling the benefi ts 
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of losartan treatment in mouse models of muscular dystrophy, administering losar-
tan to aged mice confers improvements in muscle mass and function and reduced 
fi brosis (Burks et al.  2011 ). Combined, these studies support further investigation 
into blocking TGF-β signalling as a preventative or restorative intervention for 
sarcopenia.  

5.5.5     Cachexia 

 As many as 80 % of all patients contending with the progression of advanced cancer 
exhibit symptoms of cachexia, a debilitating syndrome characterised by the loss of 
body mass and fatigue (Tisdale  2009 ). The loss of muscle mass is a leading contrib-
uting factor for increased morbidity and mortality among cancer patients, account-
ing for nearly 30 % of cancer-related deaths (Anker et al.  2003 ; Tisdale  2002 ,  2009 ). 
Perturbation of the autoimmune, neuromuscular and infl ammatory systems has also 
been implicated in the manifestation of cachexia (Jespersen et al.  2006 ; Tan and 
Fearon  2008 ). The degree of weight loss experienced by patients varies by cancer 
type, with cachexia occurring especially frequently and being particularly severe in 
association with pancreatic and gastric cancers (Dewys  1986 ). Although a common 
side effect of cancer and chemotherapy is decreased appetite (Theologides  1979 ), 
cachexia is a hypercatabolic state that cannot be reversed by hyper-caloric food 
intake (Bosaeus et al.  2001 ). Importantly, cachexia is not unique to patients with 
cancer, as patients with other forms of chronic illness can present with similar 
degrees of wasting. A particularly striking example is that of cardiac cachexia diag-
nosed in patients with chronic heart failure. Severe loss of muscle mass in these 
individuals has similar implications as in patients with cancer, with signifi cant 
weight loss representing a contributing factor to death in a signifi cant percentage of 
patients with heart disease (Glass and Roubenoff  2010 ; Wigmore et al.  1997 ). 

 Our understanding of the aetiology of cancer cachexia has greatly improved in 
recent years, with the current model recognising the condition as a product of the 
combined insult of tumour- and host-derived factors (Fearon et al.  2013 ; Morley 
et al.  2006 ). Increased expression and excess signalling of the pro-infl ammatory 
cytokines TNF-α, IL-6 and IL-1β are heavily implicated in the manifestation of 
cachexia (Iwase et al.  2004 ; Kuroda et al.  2007 ; Moses et al.  2009 ; Oliff et al.  1987 ; 
Scott et al.  1996 ), but in tandem with these pro-cachectic factors, a growing body of 
work has identifi ed specifi c TGF-β family proteins as dominant players in patho-
genesis of cachexia (Zhou et al.  2010 ). 

 TGF-β family members that have been associated with cancer cachexia include 
TGF-β1 (Ikushima and Miyazono  2010 ), activin A (Pirisi et al.  2000 ; Wildi et al. 
 2001 ), BMP-4 (Thawani et al.  2010 ), GDF-15 (Bauskin et al.  2006 ) and myostatin 
(Lokireddy et al.  2012 ). Several studies have also established direct effects of spe-
cifi c TGF-β proteins as cachectic factors. Administration of TGF-β1 into mice 
xenografted with human breast cancers induced severe weight loss and fi brosis 
(Zugmaier et al.  1991 ). Elevated levels of activin A and activin B induced in mice 
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as a consequence of inhibin knock-out promotes rapid loss of muscle and fat mass 
that is ultimately fatal (Matzuk et al.  1992 ,  1994 ). Systemic overexpression of myo-
statin or activin A in mice by implantation of genetically engineered Chinese ham-
ster ovary cells also promotes extensive wasting of lean and fat mass (Zhou et al. 
 2010 ; Zimmers et al.  2002 ). Importantly, both activin and myostatin have also been 
shown to induce signifi cant muscle wasting if over expressed in healthy mice in the 
absence of other tumour-derived factors (Chen et al.  2014 ). These fi ndings illustrate 
that excessive levels of specifi c TGF-β family ligands can be considered as direct 
contributors to the development of cachexia, and thus may also serve as sensitive 
biomarkers of patient prognosis. 

 The growing interest in the TGF-β network as a factor in the etiology of cachexia 
has spurred considerable effort to evaluate interventions that might modulate the 
actions of excessive TGF-β ligand levels. SB431542, a small molecule inhibitor of 
TGF-β signalling via selective antagonism of ALK4/5/7 (Laping et al.  2002 ), has 
proven capable of reducing the tumourigenic effects of TGF-β (Halder et al.  2005 ; 
Watt et al.  2010 ). Treatment mice bearing activin-expressing tumours with antibod-
ies against activin A was effective at reversing cachexia and prolonging survival 
(Zhou et al.  2010 ). Antibodies designed to neutralise myostatin have also demon-
strated effi cacy in protecting mice bearing cachexia-inducing carcinomas (Murphy 
et al.  2011 ). Arguably, the most potent effects have been observed in studies evalu-
ating the administration of soluble ActRIIB receptors as ‘ligand traps’ for circulat-
ing TGF-β family members (Zhou et al.  2010 ). Promising results in mouse models 
have motivated the clinical evaluation of soluble ActRIIA and ActRIIB designs 
(Attie et al.  2013 ).

  The use of modifi ed receptors, however, has raised concerns about the potential 
off-target effects as they still retain their capacity to bind multiple ligands (Massague 
 1998 ), which could disrupt normal endogenous signalling. One such concern is the 
potential disruption of BMP-9 and BMP-10, which operate as regulators of angio-
genesis (Allen and Unterman  2007 ; Vallese et al.  2013 ; Zhang and Bradley  1996 ). 
Concerns over adverse events have recently tempered enthusiasm for continued 
development of soluble ActRIIB receptors for long-term. However, the exploration 
of TGF-β network antagonism as a treatment for diseases associated with muscle 
wasting is still a fi eld of in its infancy. Continued study will hopefully yield useful 
interventions for long-term patient benefi ts (Attie et al.  2013 ).

  One alternative to soluble ActRII-based interventions currently showing promise 
is the use of antibodies directed against the endogenous ActRIIB receptor (Lach-
Trifi lieff et al.  2014 ). This intervention has been demonstrated to increase muscle 
mass in both animals and human subjects with conditions of muscle wasting. 
However, given the previously reported side-effect risks of using soluble ActRIIB 
receptors (Attie et al.  2013 ), it may also eventuate that targeting the endogenous 
ActRIIB receptor at the systemic level may present similar challenges. Consequently, 
ligand-specifi c inhibitors may prove the most effective strategy to mitigate muscle 
wasting with minimal risk of off-target effects. These may take the form of antibod-
ies (Yaden et al.  2014 ) or proteins that mimic the prodomain of specifi c TGF-β 
ligands (Chen et al.  2015 ). The latter approach was recently shown to effectively 
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prevent activin-induced muscle wasting in mouse models (Chen et al.  2015 ). 
Ongoing research should help to identify the most promising approaches for modu-
lating the TGF-β network to combat muscle wasting.   

5.6     Concluding Remarks 

 The complexity of the TGF-β network provides the means for this system to fi nely 
regulate a variety of different cellular processes in many different cell types and 
organ systems, including skeletal muscle. Considerable effort has provided us with 
an appreciation for the role of the TGF-β network as a regulator of skeletal muscle 
development and adaptation, and when perturbed, as a contributor to muscle dis-
ease. However, it is clear that our understanding of the signifi cance of the TGF-β 
network in muscle will be enhanced with continued examination of TGF-β family 
members and their signalling mechanisms. Novel approaches to modulating the 
TGF-β network are increasingly showing promise as prospective interventions for 
muscle disease. Though hurdles remain to be faced in realising the widespread clin-
ical use of these approaches, continued dedication to better understanding the 
TGF-β network in muscle will hopefully aid the development of invaluable new 
therapeutics, and help us to more completely defi ne the mechanisms that govern the 
attributes of skeletal muscle in health and disease.     
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