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Abstract A major question in philosophy of science involves the unreasonable
effectiveness of mathematics in physics. Why should mathematics, created or dis-
covered, with nothing empirical in mind be so perfectly suited to describe the laws of
the physical universe? To answer this we review the well-known fact that the defining
properties of the laws of physics are their symmetries. We then show that there are
similar symmetries of mathematical facts and that these symmetries are the defining
properties of mathematics. By examining the symmetries of physics and mathemat-
ics, we show that the effectiveness is actually quite reasonable. In essence, we show
that the regularities of physics are a subset of the regularities of mathematics.

Introduction

One of the most interesting problems in philosophy of science and philosophy of
mathematics deals with the relationship between the laws of physics and the world
of mathematics. Why should mathematics so perfectly describe the workings of the
universe? Significant areas of mathematics are formed without anything physical in
mind, and yet such mathematics can be used to describe the laws of physics. How
are we to understand this?

This mystery is seen most clearly by examining the power of mathematics to
determine the existence of physical objects before there is empirical evidence of those
objects. One of the more famous examples of the predictive abilities of mathematics
is the discovery of Neptune by Urbain Le Verrier simply by making some calculation
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about the abnormalities of the orbit of Uranus. Other examples are P.A.M. Dirac’s
prediction of the existence of positrons and James Clerk Maxwell’s extrapolation
that varying electric or magnetic fields should generate propagating waves.

Even more amazing is that there existed entire established fields of mathematics
longbefore physicists realized that theywere useful for understanding various aspects
of the physical universe. The conic sections studied by Apollonius in ancient Greece
were used by Johannes Kepler in the beginning of the seventeenth century to under-
stand the orbits of the planets. Complex numbers were invented several centuries
before physicists started using them to describe quantum mechanics. Non-Euclidian
geometry was developed decades before it was used in an essential way for general
relativity. (Details of these and other remarkable mathematical discoveries can be
found in [5].)

Why should mathematics be so good at describing the world? Of all thoughts,
ideas, or ways of expressing things, why should mathematics work so well? What
about other modes of thought?Why does poetry fail to describe the exact movements
of the celestial bodies? Why can’t music capture the full complexity of the periodic
table? Why is meditation not very helpful in predicting the outcomes of experiments
in quantum mechanics?

The problem of why mathematics works so well was famously addressed by
Nobel prize winning physicist Eugene Wigner in a paper titled “The unreasonable
effectiveness of mathematics in the natural sciences” [4]. Wigner did not arrive at
any definitive answers to the questions. He wrote that “the enormous usefulness of
mathematics in the natural sciences is something bordering on the mysterious and
… there is no rational explanation for it.”

Albert Einstein described the mystery succinctly:

How can it be that mathematics, being after all a product of human thought which is indepen-
dent of experience, is so admirably appropriate to the objects of reality? Is human reason,
then, without experience, merely by taking thought, able to fathom the properties of real
things? [1]

To be clear, the problem really arises when one considers both physics and math-
ematics to each be perfectly formed, objective and independent of human observers.
With such a conception, one can ask why these two independent disciplines har-
monize so well. Why can an independently discovered law of physics perfectly be
described by (already discovered) mathematics?

Many researchers have pondered this mystery and offered various solutions to
the problem. Theologians solve the mystery by positing a Being who perfectly set
up the laws of the universe and used the language of mathematics to describe these
laws. However the existence of such a Being adds to the mystery of the universe.
Platonists (and their cousins Realists) believe that there exists some realm of “perfect
Forms” which contains all mathematical objects, structures and truths. In addition,
this “Platonic attic” also contains all the physical laws. The problem with Platonism
is that, in order to explain the relationship between our mathematical world and
the physical universe, it invokes yet another Platonic world. Now one must explain
the relationship between all three of these worlds. Other questions also arise: are
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imperfect mathematical theorems also a perfect Form? Do outdated laws of physics
also reside in Plato’s attic? Who set up this world of perfect Forms?

The reason most cited (see [2]) to answer the unreasonable effectiveness is that
we learn mathematics by examining the physical universe. We understand some
of the properties of addition and multiplication by counting stones and sheep. We
learned geometry by looking at physical shapes. From this point of view, it is not a
surprise that physics follows mathematics since the mathematics that we know was
formed by scrutinizing the physical world. The main problem with this solution is
that mathematics is very useful in areas distant from human perception. Why is the
hidden world of subatomic particles so perfectly described by a mathematics learned
from observing stones and sheep?Why is special relativity, which deals with objects
that move near the speed of light, described by a mathematics that was learned by
watching objects that move at normal speeds?

While these and other purported solutions to the unreasonable effectiveness of
mathematics have some merit, the mystery still remains. A deficiency in most of the
discussions is that it is assumed that everyone already knows exactly what mathemat-
ics is. The true nature of mathematics is usually taken as so obvious that it is not even
discussed. In our discussion we take aim to rectify this by giving an exact definition
of mathematics. In two recent papers [6, 7], Mark Zelcer and I have formulated a
novel view of the nature of mathematics. We show that just as symmetry plays an
important defining role in physics, so too, symmetry plays an important defining
role in mathematics. This view of mathematics supplies an original solution to the
unreasonable effectiveness problem.

This essay is organized as follows. First we recall how symmetry plays a major
role in modern physics. We then go on to discuss the importance of symmetry in
mathematics. The next part brings these two sections together to explainwhy physical
laws are naturally expressed in a mathematical language. We close the essay with
some thoughts on some deeper questions.

What is Physics?

Before we can contemplate the reason why mathematics describes physical laws
so well, we have to be exact as to the definition of a physical law. To say that a
physical law describes some physical phenomenon is a bit naïve. It is much more.
As a first attempt we might say that each law describes many different physical
phenomena. For example, the law of gravity describes what happens when I drop
my spoon; it describes what happened when I dropped my spoon yesterday; and
it describes what happens if I drop my spoon on the planet Saturn next month. A
law of physics describes a whole bundle of many different phenomena. However
this definition is not enough. A single physical phenomenon can be perceived in
many different ways. One can perceive a phenomenon while remaining stationary
at the same time as another perceives the same phenomenon while moving (in a
uniform constant frame, or an accelerating frame). Physics states that no matter how
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a single phenomenon is perceived, it should be described by a single physical law.
We conclude that a physical law describes a whole bundle of perceived physical
phenomena. For example, the law of gravity describes my observation of a spoon
falling in a speeding car while I am in the car; a stationary friend’s observation of
the spoon falling in the speeding car; an observation by someone standing on his
head near a black hole of the falling spoon in the speeding car on Saturn, etc. Every
physical law describes a large bundle of perceived physical phenomena. That single
law should be able to describe all the diverse perceived physical phenomena.

The question then arises as how to classify all perceived physical phenomena into
different laws orwhich perceived physical phenomena should be boundup together as
one. When do two perceived physical phenomena really represent the same physical
law? Physicists use the notion of symmetry for this. Colloquially the word “sym-
metry” is used to describe physical objects. We say a room has symmetry if the left
side of the room is the same as the right side of the room. In other words, if we swap
the furnishings from one side to the other, the room would look the same. Scien-
tists have extended this definition of symmetry to describe physical laws. A physical
law is symmetric with respect to a type of translation if the law still describes the
translated phenomenon. For example, physical laws are symmetric with respect to
location. This means that if an experiment is done in Pisa or Princeton, the results
of the experiment are the same. The phenomenon occurring in Pisa is bundled up
with the phenomenon occurring in Princeton. Physical laws are also symmetric with
respect to time, i.e., performing the same experiment today or tomorrow should give
us the same result. In terms of bundles, that means that all experiments performed
at any time are bundled up to be in the same class of perceived physical phenomena.
Another obvious symmetry is orientation. If you change the orientation of an exper-
iment, the results of the experiment remain the same. We use both the languages of
bundles of perceived physical phenomena and of symmetries of physical laws.

There aremanyother types of symmetries that physical laws have to obey.Galilean
relativity demands that the laws of motion remain unchanged if a phenomenon is
observedwhile stationary ormoving at a uniform, constant velocity. Special relativity
states that the laws of motion must remain the same even if the observers are moving
close to the speed of light. General relativity states that the laws are invariant even if
the observer is moving in an accelerating frame.

Physicists have generalized the notion of symmetry inmany different ways: gauge
transformations, local symmetries, global symmetries, continuous symmetries, dis-
crete symmetries, etc. Victor Stenger [3] unites the many different types of symme-
tries under what he calls point of view invariance. That is, all the laws of physics must
remain the same regardless of how they are viewed. He demonstrates howmuch—but
not all—ofmodern physics can be recast as laws that satisfy point of view invariance.
This means that different perceived physical phenomena are bundled together if they
are related to the same physical phenomenon but are perceived from different points
of view.

The real importance of symmetry came when Einstein formulated the laws of
special relativity. Prior to him, one first found a law of nature and then found its
symmetries. In contrast, Einstein used the symmetries to discover the laws. In order
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to find the laws of special relativity, he posited that the laws must be the same for
a stationary observer and an observer moving close to speed of light. Given this
presupposition, he went on to formulate the equations that describe special relativ-
ity. This was revolutionary. Einstein had realized that symmetries are the defining
characteristics of laws of physics. Before Einstein physicists would say

A physical law satisfies symmetries.

After Einstein, they say

Whatever satisfies symmetries is a physical law.

To elaborate, Einstein’s revolution was the realization that a physicists selects from
the many different perceived physical phenomena those that have symmetry. Those
perceived physical phenomena that exhibit symmetries are bundled together and
called a law of physics.

In 1918, Emmy Noether showed that symmetry is even more central to physics.
She proved a celebrated theorem that connected symmetry to conservation laws that
permeate physics. The theorem states that for every symmetry of a certain type there
exists a conservation law and vice versa. For example, the fact that the laws of physics
are invariant with respect to translations in space corresponds to conservation of lin-
ear momentum. Time invariance corresponds to conservation of energy. Orientation
invariance corresponds to conservation of angular momentum. Equipped with the
understanding given by Einstein and Noether of the centrality of symmetry, physi-
cists have been searching for novel and different types of symmetries in order to find
new laws of physics.

With this broad definition of physical law, it is not hard to see why the laws have
a feeling of being objective, timeless and independent of human observations. Since
the laws are applied in every place, at every time, and from every perspective, they
have a feeling of being “out there.” However, we can look at it another way. Rather
than saying that we are looking at many different instances of an external physical
law, we may say that we humans select those perceived physical phenomena that
have some type of regularity and bundle them together to form a single physical law.
We act like a sieve that picks and chooses from all the physical phenomena that we
perceive. We bundle together what is the same physical law, and we ignore the rest.
We cannot eliminate the human element in understanding the laws of nature.

From the bundle point of view, one can understand unification of physical laws.
Newton’s insight was that the same law of physics that describes celestial mechanics
also describes terrestrial mechanics. In other words, the phenomenon of the moon
being pulled towards the earth can be bundled together with the phenomenon of an
apple being tugged towards the earth. James Clerk Maxwell showed that the laws of
electricity andmagnetism can be bundled into one lawwenowcall electromagnetism.
StevenWeinberg, Abdus Salam and SheldonLeeGlashow showed that the seemingly
separate bundles of phenomena that correspond to the electromagnetic force can be
bundled up with the weak force to form the single electroweak force.

Before we proceed, we must mention a symmetry that is so obvious it has not
been articulated. A law of physics must satisfy symmetry of applicability. That is, if
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a law works for a particular physical object of a certain type then it will work for any
other physical object of the same type. For example, if a law is true for one positively
charged subatomic particle moving close to the speed of light, then it will work for
another positively charged subatomic particle that is also moving close to the speed
of light. In contrast, that law might not work for a macroscopic object moving at a
slow speed. The perceived physical phenomena for all these objects will be bundled
together as one law. Symmetry of applicability will be of fundamental importance
when we discuss the relationship of physics to mathematics.

What is Mathematics?

Let us spend a fewminutes considering the real essence ofmathematics.We illustrate
with several examples.

Long ago a farmer realized that if you take nine apples and combine them with
four apples, there will be thirteen apples. Not long after that it was noticed that if nine
oranges are combinedwith four oranges, there will be thirteen oranges. That is, if you
swap every apple for an orange, the amount of fruit remains the same. At some point
an earlymathematician looked atmany instances of this and bundled them together to
summarize with the mathematical expression 9 + 4 = 13. This pithy little statement
encapsulates all the instances of this type of combination. The expression will be
true for any whole discrete object that can be exchanged for apples.

Topologists discuss the Jorden Curve Theorem. This says that any closed (starts
and finishes at the same point) simple (non-self-intersecting) curve on a plane splits
the plane into an “interior” region and an “exterior” region. No matter how large
or complicated the curve is, the theorem says that there will always be two separate
regions. This works for every closed simple curve. If we change one curve for another
curve, we will get another two different regions.

On a more sophisticated level, a major theorem in algebraic geometry is Hilbert’s
Nullstellensatz which is essential for understanding the relationship between ideals
in polynomial rings and algebraic sets. For every ideal J in a polynomial ring there
is a related algebraic set, V (J ), and for every algebraic set S there is an ideal I(S).
The relationship between these two operations is given as follows: for every ideal J
we have I (V (J )) = √

J where
√

J is the radical of the ideal. If we change one ideal
for another ideal, we get a different algebraic set. If we swap one algebraic set for
another, we get a different ideal. Essentially, the bundling together of all the different
instances of this law is Hilbert’s theorem.

One of the basic ideas in algebraic topology is the Hurewicz homomorphism. For
any topological space X and positive integer k there exists a group homomorphism
from the kth homotopy group to the kth homology group h∗ : πk(X) → Hk(X). This
homomorphism has special properties depending on the space X and the integer k.
If the space X is swapped for space Y and k is exchanged for k ′ there will be
another group homomorphism πk ′(Y ) → Hk ′(Y ). Once again, no single instance of
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the statement has any mathematical content. Rather, it is the realization that all the
instances of the statement can be bundled together that makes this mathematics.

In these examples, we focused on changing the semantics of the mathematical
statements. We exchanged oranges for apples. We switched one closed simple curve
for another closed simple curve. We swapped one ideal for another. We replaced
one topological space for a different one. Our main point is that when you make
the appropriate changes, the mathematical facts remain true. We claim that this
ability to alter the semantics of a mathematical statement is the defining property of
mathematics. That is, a statement is mathematics if we can swap what it refers to and
it remains true.

Associated with every mathematical statement is a class of entities called the
domain of discourse for that statement. The statement is stating something about all
the elements of this domain of discourse.When amathematician says “For any integer
n…,” “Take a Hausdorff space…,” or “Let C be a cocommutative coassociative
coalgebra with an involution…,” she is setting up the domain of discourse for that
statement. If the statement is true for some element in the domain of discourse, it
is true for any other. Notice that the associated domain of discourse for a single
statement can consist of many types of entities.

With the concept of domains of discourse in mind one can see why the uses of
variables are central to mathematical practice. Variables are placeholders in math-
ematical expressions that tell how to transform referents in statements. A variable
indicates the type of object that is being dealt with and the way to change its value
within the statement. In Hilbert’s Nullstellensatz, the variable J stands for any ideal.
In the Hurewicz theorem example, X was a topological space and k was a natural
number. We can change X for any topological space and k for any number.

This swapping of one element in the domain of discourse for another can be
seen as a type of symmetry. If you swap one referent for another referent within the
domain of discourse, the fact will remain true. We call this symmetry of semantics.
Mathematics is invariant with respect to symmetry of semantics. We are claiming
that this symmetry is as fundamental tomathematics as symmetry is to physics. In the
same way that physicists formulate laws, mathematicians formulate mathematical
statements by determining which bundle of ideas satisfies symmetry of semantics.
Mathematicians would say that

Mathematical statements satisfy symmetry of semantics.

But they should now say

Any statement that satisfies symmetry of semantics is mathematics.

Logicians will find symmetry of semantics to be a familiar notion. They call a
logical statement valid if it is true for every element of the domain of discourse. Here
we are saying that a statement satisfies symmetry of semantics if we can exchange
any element of its domain of discourse with any other element of its domain of
discourse. The novelty we are expressing here is that validity can be seen as a form
of symmetry and that this symmetry is the defining feature of mathematics.
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One might object to this definition of mathematics as being too broad. They
would say that what we are defining is any general statement. The argument would
be that a statement that satisfies symmetry of semantics is not just a mathematical
statement but is a general statement. There is a two-prong defense to this criticism.
First, modern mathematics is very broad. Mathematics is not just about numbers
and quantities. Looking at modern mathematics one finds shapes, propositions, sets,
categories, microstates, macrostates, qualities, etc. In order to deal with all these
objects, our definition of mathematics needs to be broad. A second defense is that
there are many general statements that do not satisfy symmetry of semantics. “It is
cold in New York during the month of January,” “Flowers are red and green,” and
“Senators are honest people” are general statements but do not satisfy symmetry of
semantics and hence are not mathematical. As long as there are any counterexamples
to such statements within their implied domain of discourse, they may be general,
but they are not mathematical. The fact that symmetry of semantics does not permit
any counterexamples within the domain of discourse implies a certain precision of
thought and language which people associate with mathematics.

Mathematical statements also have other types of symmetries that they satisfy. A
simple example is symmetry of syntax. This says that a mathematical object can be
described (syntax) in many different ways. For example we can write 6 as 2 × 3, or
2 + 2 + 2 or 54 ÷ 9. Similarly we can talk about a “non-self-intersecting continuous
loop,” “a simple closed curve,” or “a Jordan curve” and mean the same thing. Our
point is that the results of the mathematics will be the same regardless of which
syntax is used. In practice mathematicians tend to use the simplest syntax possible,
like “6” instead of “5 + 2 − 1”.

Other symmetries that mathematical statements possess are so obvious and taken
for granted that even mentioning them seems strange. For example, mathematical
truths are invariant with respect to time and space: if they are true now then they will
also be true tomorrow and they were true before human beings even existed. If they
are true in Albany they are true on Alpha Centauri. It is similarly immaterial if the
mathematical truth is asserted by Mother Teresa or by Oswald Teichmüller. No one
cares where, when, or in what language a theorem is stated. It is even irrelevant if
the mathematical statement was stated at all.

With mathematics satisfying all of these different types of symmetries, it is easy
to see why mathematics—like physics—also has the feel of being objective, time-
less, and independent of human observers. Since the facts of mathematics apply to
many different objects, are discovered by many different individuals working inde-
pendently, and in many different times and places, one can start believing that math
is somehow “out there.” But, we need not make that leap. Symmetry of semantics
is at the core of how we determine mathematical truths. Human beings function like
sieves that pick and choose from among thoughts and ideas. We bundle the thoughts
that are related by symmetry of semantics and declare such statements to be math-
ematics. We do not say that there exists some perfect mathematical truths and we
humans findmany different instances of that truth. Rather, we say that there are many
different instances of a mathematical fact and we humans bundle them together to
form a clear mathematical statement.
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From this symmetry formulation ofmathematics, it is easy to see what the concept
of unification in mathematics is all about. When you have two distinct fields of
mathematics and they are shown to be intimately related in a way that results of
one field can be used to get results of another field, you have a type of unification.
An example of such unification is monstrous moonshine. This subject describes the
shocking connection between the monster group and modular functions. Another
example is theLanglands programwhich connectsGalois groups in algebraic number
theory to automorphic forms and representation theory of algebraic groups. The
Erlangen program can also be seen as a way of unifying different types of geometries
using group theory. In all these examples of unifications, there is a function (or an
isomorphism) from the domain of discourse of one field to the domain of discourse
of another field. The symmetries of one field (the true mathematical statements)
will than map to symmetries of the other field. Category theory is an entire branch of
mathematics that was created to describe such unifications. The founders of category
theory invented a language that was based on algebraic topology, which is a branch
of mathematics that unifies algebra and topology. Category theory is now used in
many areas to show that seemingly different parts of mathematics (and physics and
theoretical computer science) are closely related.

See [6, 7] for much more discussion about the nature of mathematics and how
other issues in the philosophy of mathematics are dealt with from this perspective.

Why Mathematics Works Well at Describing Physics?

Armed with this understanding of the nature of physics and mathematics we can
tackle the question of why mathematics works so well at expressing physical laws.
Let us look at three physical laws.

Our first example is gravity. A description of a single instance of a perceived
physical phenomenon of gravity might look like this: “On the second floor of 5775
Main Street in Brooklyn, New York at 9:17:54 PM, I saw an 8.46 ounce spoon fall
and hit the floor 1.38 s later.” While it might be totally accurate, it is not very useful
and it is not the description of all the instances of the law of gravity. As we explained,
a law consists of all the perceived instances of that law. The only way to capture all
of the bundled perceptions of physical phenomena of a particular law is to write it in
mathematical language which has all its instances bundled with it. Only Newton’s
formula F = G m1m2

d2 can capture the entire bundle of perceived physical phenomena
of gravity. By substituting the mass of one body into m1 and the mass of the other
body into m2 and the distance into d, we are describing an instance of gravity.

In a similar vein, to find the extremum of an action one needs to use the Euler–
Lagrange equations: ∂L

∂q = d
dt

∂L
∂q̇ . The symmetries of an action and its local maxi-

mums or minimums can be expressed with these equations that are defined with the
symmetry of semantics. Of course, this can also be expressed by a formula that uses
other variables or other symbols. By symmetry of syntax, we can even write the
formula in Esperanto. It is irrelevant how and in what language the mathematics is
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expressed. As long as it is mathematics because only mathematics can capture the
action principle in all its instances.

The only way to truly encapsulate the relationship between pressure, volume,
number of moles and temperature of an ideal gas is the ideal gas law: PV = n RT .
This small mathematical statement has all the instances of that law built into it.

In the three examples given, all the perceived instances of the physical laws can
only be expressed with a mathematical formula. The perceived physical phenomena
that we are trying to express are all implied by all the instances which are inherent in
the mathematical statement. In terms of symmetry, we are saying that the physical
symmetry of applicability is a special type of the mathematical symmetry of seman-
tics. In detail, for any physical law, symmetry of applicability states that the law can
deal with swapping any appropriate object for any other appropriate object. If there is
a mathematical statement that can describe this physical law, then we can substitute
different values for the different objects that one is applying. In terms of bundles,
we are saying that every bundle of perceived physical phenomena is a sub-bundle of
instances of the mathematical law that describes it.

The point we are making is that mathematics works so well at describing laws
of physics because they were both formed in the same way. The laws of physics
are not living in some Platonic attic nor are the central ideas of mathematics. Both
the physicist and the mathematician chose their statements to be applicable in many
different contexts. We bundle perceived physical phenomena in the same way we
bundle instances of mathematical truth. It is not a mystery that the abstract laws of
physics are stated in the abstract language of mathematics. Rather the regularities
of phenomena and thoughts are seen and chosen by human beings in the same way.
The fact that some of the mathematics could have been formulated long before the
law of physics is discovered is not so strange since they were formed with the same
notion of symmetry.

We have not completely solved the mystery concerning the unreasonable effec-
tiveness of mathematics. There are still deep questions lurking here. For one, we can
ask why humans even have physics or mathematics. Why do we notice regularities
or symmetries of physical phenomena or of thought? The answer is that part of being
alive is being somewhat homeostatic, that is, living creatures must act to preserve
themselves. The more they comprehend of their environment, the better off they will
be. Inanimate objects like sticks and stones do not react to their environment. In
contrast, plants turn towards the sun and their roots search for water. As living crea-
tures become more sophisticated they notice more about their environment. Human
beings notice many regularities of the world around them. While chimpanzees do
not seem to understand abstract algebra and clever dolphins do not write textbooks
in quantum field theory, humans do have the ability to grasp the regularities of their
perceived physical phenomena and the thoughts that go through their head. We call
the regularities of our thoughts “mathematics” and some of these regularities man-
ifest themselves as regularities of perceived physical phenomena, which we call
“physics.”

From this perspective, we can understand the usual answer toWigner’s unreason-
able effectiveness. Many people say that the reason why mathematics is so effective
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is that we learn mathematics from the physical world. While that is not totally true,
we can say that many times the symmetries or regularities of the physical world have
taught us some symmetries and regularities of the mathematical world.1

On the deepest level one can ask why there are any regularities at all in perceived
physical phenomena?Why should it be that an experiment performed in Poughkeep-
sie will yield the same results as if it was performed in Piscataway? Why should
balls roll down ramps at the same speed even if they are released at different times?
Why should chemical reactions be the same when they are perceived by different
people and in different ways? To answer such questions, we appeal to the anthropic
principle. This is a type of reasoning that formulates answers from the very fact that
we exist. If the universe did not have some regularities, no life would be possible.
Life uses the fact that the physical universe contains some repeating patterns. Since
there is life in the universe, there has to be certain regularities in the laws of physics.
If the universe was totally random or like a psychedelic vision, no life—in particular
no intelligent human life—would survive. Anthropic reasoning does not eliminate
the question. It tells us that the fact that we are here means that the universe must be
a certain way, and had the universe been another way, we could not exist to ask the
question. But the anthropic principle does not tell us why the universe is that way.We
are still left with those deep—and, as yet, unanswerable—questions of “Why is the
universe here?” “Why is there something rather than nothing?” and “What’s going
on here?”

The previous paragraph is a partial answer to why there are any regularities in
perceived physical phenomena. Now let us ask why there are any regularities of
thought called mathematics. First notice that the physical universe would go on
perfectly well without any human being understanding the mathematics behind the
laws of physics. It is not hard to think of some crazed politician starting global
thermonuclear war and ending all life on Earth. After such a catastrophic event, the
laws of nature will go on their merry way without the slightest pause or hiccup. So
the existence of physics does not depend on the existence of mathematics. We are
left with the question of why there exists any mathematics at all.

Perhaps we can borrow a trick that physicists use to explain why the universe is
fine-tuned for intelligent life to help us understand why there is any regularity of
thought called mathematics. Some physicists looking at the physical world say that
the universe is, in fact, not fine-tuned for intelligent life. Everywhere they look in the
universe they do not see intelligent life. There are billions of billons of stars eachwith
many planets which seem to be devoid of any life. The Fermi paradox asks “Where is
everyone?” If the universe is so fine-tuned for life, why have extraterrestrials neither
been seen nor stopped by for tea. One—of many—answers to the Fermi paradox is

1Sometimes what we learn from the physical world might be an error. The world around us looks
continuous. Space looks continuous and time feels continuous. In order to talk about space, time,
and space-time, we use the continuous real numbers. However modern physicists tell us that space,
time and space-time are not continuous. There is a minimum distance called Plank length and a
minimumduration called Plank time. In a sense, the real numbers were invented bymistake. Perhaps
if we were much smaller and were better aware of the discreteness of time and space we would
have never come to invent the real numbers. One can only speculate on such matters.
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that ET is not there. Of the billions and billions of planets, none (or very few) other
than ours has developed intelligent life forms. Even in our planet there are large parts
that are underwater, too hot, too cold, or too dry to support intelligent life forms. So
rather than saying that the universe is fine-tuned for intelligent life, these physicists
assert that the vast majority of our universe is not fine-tuned for intelligent life. They
say that a miniscule percentage of the universe is fine-tuned for intelligent life. This
takes away some of the mystery of the so called fine-tuned universe. We can perhaps
say the same thing about mathematics. We asked why there is any regularity of
thought which we call mathematics. We can answer that the vast majority of thought
does not, in fact, show any regularity. Most thought has counterexamples and does
not have the precision that is necessary to be called mathematics. Only a miniscule
percentage of thought has any regularity. We humans just pick out minute parts of
thought that does have regularity and call that mathematics. This takes away some
of the mystery of the existence of mathematics.

While we have not eliminated all the mysteries, we have shown that any existing
structure in our perceived physical universe is naturally expressed in the language of
mathematics.
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