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Abstract In this chapter, we investigate time minimal transfers in the elliptic
restricted 3-body problem. We study the controllability of the problem and show
that it is small-time locally controllable at the equilibrium points. We present results
about the structure of the extremal trajectories, based on a previous study of the time
minimum control of the circular restricted 3-body problem. We use indirect numer-
ical methods in optimal control to simulate time-minimizing space transfers using
the elliptic model from the geostationary orbit to the equilibrium points L1 and L2 in
the Earth-Moon system, as well as a rendezvous mission with a near-Earth asteroid.
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1 Introduction

The general three-body problemmodels themotion of three bodies under theirmutual
gravitational fields. This classic problem of celestial mechanics [31, 47] has aroused
the curiosity of mathematicians for more than three hundred years, since its for-
mulation at the end of the seventeenth century by Isaac Newton [43]. A standard
simplification of the general problem consists of considering the motion of a mass-
less body subjected to the gravitational attraction of two main bodies moving in a
circular motion around their center of mass. This is the spatial circular restricted
three-body problem [48]. When the motion of the massless body is restricted to the
plane defined by the motion of the two main bodies, the problem is referred to as

M. Chyba · G. Patterson · G. Picot (B)
Department of Mathematics, University of Hawaii at Manoa,
2565 McCarthy Mall, Honolulu, HI 96822, USA
e-mail: gautier@math.hawaii.edu

M. Chyba
e-mail: mchyba@math.hawaii.edu

G. Patterson
e-mail: geoff@math.hawaii.edu

© Springer International Publishing Switzerland 2016
B. Bonnard and M. Chyba (eds.), Recent Advances in Celestial and Space Mechanics,
Mathematics for Industry 23, DOI 10.1007/978-3-319-27464-5_6

179



180 M. Chyba et al.

the planar circular restricted three-body problem. This problem has been addressed
extensively from the geometrical and dynamical systems point of view. In particu-
lar, the structure of invariant manifolds in the vicinity of the colinear equilibrium
points [32, 33] or complex fractal regions of unstable and chaotic motion in space
[8] have been used to design space missions with low energy cost. Recently, optimal
control approaches, inspired by founding studies on the Kepler problem [10, 18,
29, 30], have led to new techniques for determining low-thrust space transfers in
the Earth-Moon system. In [19, 45], indirect methods of optimal control are used
to compute numerical time-minimal and energy-minimal trajectories of the circular
restricted three-body problem. These computations provided numerical simulations
of low-thrust space transfers from the geostationary orbit to a parking orbit around the
Moon [45] and rendezvous missions with near-Earth asteroids temporarily captured
by the gravitational field of the Earth [19]. In a contemporary chapter of Caillau and
Daoud the authors study the controllability properties of the time-minimum control
of the restricted three-body problem and provide an analysis of the structure of the
time-minimizing controls [17].

The goal of this chapter is to generalize the results presented in [17] from the
circular to the elliptic restricted three-body problem [48]. In this context, the two
main bodies are assumed to move on elliptic orbits about their center of mass and the
problem is reduced to the circular one when the eccentricity of the orbit is assumed to
be zero. The main difference that arises when considering the elliptic case is that the
mechanical potential of the problem is non-autonomous. As a consequence, there is
no first integral which increases the complexity of the problem. Numerous in-depth
studies on the dynamics of the elliptic problem have been carried out to improve
the understanding of this model. In the 1960s, research has been conducted on the
stability of the triangular equilibrium points and the integrals of motion for orbits
with small eccentricities near the two main bodies of the problem [20, 23]. In a more
recent past, a canonical transformation based on the Deprit-Hori method of Lie trans-
forms has been applied to normalize the system dynamics about the circular case and
one of the triangular points [25, 26]. Resonances and Nekhoroshev stability around
triangular points have been analyzed as well [27, 41]. The dynamical properties of
the elliptic restricted three-body problem have been applied to space mechanics.
Among the greatest examples of such applications, we can mention low-fuel space-
craftmissions trajectories constructed using the Lagrangian coherent structures in the
problem [28] or moderate Δv Earth-Mars transfers designed using ballistic capture
[49]. Techniques from control theory have also been developped to derive quasi-
periodic, peridodic and small-Halo orbits around the collinear equilibrium points,
stabilize the motion on libration orbits [6, 35] and to investigate solar sail equilibria
[7] in the elliptic restricted three-body problem.

This paper examines the structure of the time-minimal trajectories of the elliptic
restricted three-body problem, defined as the solutions of a non-autonomous opti-
mal control problem. It is organized as follows. In the first section, we derive the
Hamiltonian forms of the controlled equations of both the circular and the elliptic
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restricted three-body problems to emphasize the intrinsic similarities and differences
between these two models. In the second section, we emphasize the non-existence
of a first integral as an obstacle to generalize the result of controllability previously
established for the circular restricted three-body problem [17] to the elliptic restricted
three-body problem. Nevertheless, we obtain a result of local controllability at the
equilibrium points of the problem. In the third section, we apply the Pontryagin
Maximum Principle and deduce necessary first-order optimality conditions for the
time-minimum controls of the elliptic problem. We then study the structure of these
time-minimum controls. In particular, we demonstrate the reason that the geometric
control analysis performed in [17], based on the bi-input control affine system form
of the equations, still holds in the elliptic case. In the fourth section, we introduce
a shooting method which we use to compute numerical time-minimizing solutions
of the elliptic problem. To overcome the challenges to initialize the algorithm, we
use a continuation method [13, 15, 29, 30]. Our algorithm also verifies second-order
conditions based on the notion of conjugate points [11] and allow us to generate
time-minimum transfers from the geostationary orbit to the collinear equilibrium
points L1 and L2 of the elliptic restricted three-body problem for different values
of the eccentricity of the orbits of the main bodies. We also simulate a rendezvous
mission with a temporarily captured near-Earth asteroid, namely 2006RH120.

2 The Controlled Planar Elliptic Restricted
Three-Body Problem

The planar elliptic restricted three-body problem is the simplest generalization of the
classic planar circular restricted three-body problem [48], derived from the Newton’s
law of universal gravitation [43].

2.1 Controlled Equations of the Planar Circular Restricted
Three-Body Problem

The planar circular restricted three-body problem describes the motion of a massless
body M evolving in the the orbital plane of two main bodies called the primaries
with constant mass M1 and M2 where M1 > M2, and circularly orbiting at constant
angular velocity 1 around their center of mass G under the influence of their mutual
gravitational attraction [48]. In this problem, the distance between the two primaries
is constant and can be normalized to 1. By defining the mass ratio μ = M2

M1+M2
and

using a rotating frame centered at G whose axis of abscissa is set as the line joining
the primaries, the location of M1 and M2 can respectively be fixed to (−μ, 0) and



182 M. Chyba et al.

Fig. 1 Representation of the
primaries M1 and M2 of the
planar circular restricted
three-body problem in both
the synodic frame (G, X, Y)

and the rotating frame
(G, x, y)

(1 − μ, 0), see Fig. 1. Denoting (q1(t), q2(t)) as the coordinates of M in the rotating
frame at time t, the equations of motion of M are

⎧
⎪⎪⎨

⎪⎪⎩

q̈1(t) − 2q̇2(t) = ∂V

∂q1
(q1(t), q2(t))

q̈2(t) + 2q̇1(t) = ∂V

∂q2
(q1(t), q2(t))

(1)

where

V (q1, q2) = q2
1 + q2

2

2
+ 1 − μ

ρ1
+ μ

ρ2
+ μ(1 − μ)

2
(2)

so −V is the mechanical potential of the problem and

ρ1 =
√(

(q1 + μ)2 + q2
2

)
, ρ2 =

√(
(q1 − 1 + μ)2 + q2

2

)

are respectively the distances from M to M1 and M2. Using the so-called Legendre
transformation p = (p1, p2) = (q̇1 − q2, q̇1 + q2), these equations can be written as
a Hamiltonian system associated with the Hamiltonian function

H(q, p) = 1

2
‖p‖2 + p1q2 − p2q1 − 1 − μ

ρ1
− μ

ρ2
+ μ(1 − μ)

2
.

The function H is a first integral of motion, called the Jacobian energy, which equals
the total energy of the system. Thus we can deduce the five phase portraits for
the topology of the possible region of motion, known as the Hill region [48]. The
equilibrium points of the problem, defined as the critical points of the potential
−V , divide into two categories: the collinear points L1, L2 and L3 are located on
the horizontal axis y = 0 joining the primaries and the equilateral points L4 and L5

are located at the vertices of the two equilateral triangles in the plane of motion
sharing the same base given by the segment linking the primaries. We can show,
using Arnold’s stability theorem [5], that the collinear points are unstable whereas
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the equilateral points are stable when μ < 1
2 (1 −

√
69
9 ). In the Earth-Moon system,

whose mass ratio μ = 0.0121536, the colinear points are then stable. The controlled
planar restricted three-body problem is simply derived from (1) and is written as

⎧
⎪⎪⎨

⎪⎪⎩

q̈1(t) − 2q̇2(t) = ∂V

∂q1
(q1(t), q2(t)) + u1(t)

q̈2(t) + 2q̇1(t) = ∂V

∂q2
(q1(t), q2(t)) + u2(t)

(3)

where the control u(t) = (u1(t), u2(t)) is a bounded measurable function valued in
R2 and defined on an interval [0, t(u)] ⊂ R+. We say that u is an admissible control
if there exists a solution q(t) = (q1(t), q2(t)) to (3), called a trajectory associated
with u, defined on [0, t(u)]. With the change of variables

x1 = q1, x2 = q2, x3 = q̇1, x4 = q̇2, (4)

we can rewrite (3) as a first-order differential system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x3(t)

ẋ2(t) = x4(t)

ẋ3(t) = 2x4(t) + ∂V

∂x1
(x1(t), x2(t)) + u1(t)

ẋ4(t) = −2x3(t) + ∂V

∂x2
(x1(t), x2(t)) + u2(t).

(5)

Setting x = (x1, x2, x3, x4), this system can be written as a so-called bi-input con-
trolled system

ẋ(t) = F0(x(t)) + u1(t)F1(x(t)) + u2(t)F2(x(t)) (6)

where the vector fields F0, F1 and F2 are

F0(x) =

⎛

⎜
⎜
⎜
⎝

x3
x4

2x4 + ∂V
∂x1

(x1, x2)

−2x3 + ∂V
∂x2

(x1, x2)

⎞

⎟
⎟
⎟
⎠

, F1(x) = ∂

∂x3
, F2(x) = ∂

∂x4
.

2.2 Controlled Equations of the Planar Elliptic Restricted
Three-Body Problem

The most natural generalization of the planar circular restricted three-body
problem consists of assuming that the two primaries move on elliptic orbits
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Fig. 2 Representation of the
primaries M1 and M2 of the
planar elliptic restricted
three-body problem in both
the fixed frame (G, Ψ, ζ ) and
the rotating frame (G, ξ, η)

η
ζ

ξ

Ψν

M
1

M
2

[25, 26, 28, 35, 48]. The smallest primary M2 is orbiting the largest primary M1

within an elliptic orbit with eccentricity 0 < e < 1 and semimajor axis a which fits
the two-body problem [31]. We denote by ν(t) the true anomaly of M2, defined as
the angular time-dependent parameter given by the angle that the direction of the
periapsis of the ellipse makes with the position of M2 along the ellipse at time t. In
this context, the instantaneous distance ρ between the two primaries is a function of
the true anomaly (Fig. 2)

ρ(ν) = a(1 − e2)

1 + e cos(ν)
.

Furthermore, according to the principle of conservation of the angular momentum
[43], the dynamics of true anomaly satisfies

ν̇ = k(M1 + M2)
1
2
(1 + e cos(ν))2

(a(1 − e2))
3
2

(7)

where k is the universal gravitational constant. The above equation provides a relation
between the true anomaly and the time. By choosing the origin of the coordinate
system at the center of mass G of the two primaries and the axis of abscissa as the
direction of the periapsis of the ellipse, we define an inertial, barycentric coordinate
frame inwhich, up to appropriate normalizations of the units, the primariesM1 andM2

describe ellipses and have respective positions (Ψ1, ζ1) and (Ψ2, ζ2) parametrized by

(Ψ1(ν), ζ1(ν)) =
( −μ

1 + cos(ν)
cos(ν),

−μ

1 + cos(ν)
sin(ν)

)

(Ψ2(ν), ζ2(ν)) =
( 1 − μ

1 + cos(ν)
cos(ν),

1 − μ

1 + cos(ν)
sin(ν)

)
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where μ is the mass ratio defined in Sect. 2.1. By considering ν as the independent
variable and introducing a non-uniformly rotating pulsating coordinate system, the
respective positions of M1 and M2 can be fixed to (−μ, 0) and (1 − μ, 0). In this
system, the coordinates (ξ(ν), η(ν)) of the massless body M satisfy the equations of
motion

⎧
⎪⎪⎨

⎪⎪⎩

d2ξ

dν2
(ν) − 2

dη

dν
(ν) = ∂ω

∂ξ
(ξ(ν), η(ν), ν)

d2η

dν2
(ν) + 2

dξ

dν
(ν) = ∂ω

∂η
(ξ(ν), η(ν), ν)

(8)

where

ω(ξ, η, ν) = 1

1 + e cos ν
V (ξ, η) (9)

so −ω is the non-autonomous mechanical potential of the problem. We remark
that the equations of the circular restricted problem Fig. 1 correspond the equa-
tions of the elliptic problem (8) when e = 0. Using a similar Legendre transforma-
tion q = (q1, q2) = (ξ, η), p = (p1, p2) = (q̇1 − q2, q̇1 + q2) as in Sect. 2.1, we can
rewrite this dynamics as an Hamiltonian system through the new non-autonomous
Hamiltonian function

He(q, p, ν) = 1

2
‖p‖2 + p1q2 − p2q1 − 1

1 + e cos(ν)

(1 − μ

ρ1
+ μ

ρ2
− μ(1 − μ)

2

)

where ρ1 and ρ2 are still respectively the distances from M to M1 and M2. The
function ω being a multiple of the function V , the elliptic restricted three-body
problem has the exact same five equilibrium points as the circular restricted three-
body problem. Previous studies about their stability showed that the three collinear
points are unstable [48], whereas the equilateral points are linearly stable, provided
that both the mass ratio μ and the eccentricity e are appropriately chosen. However,
the Hamiltonian function He being non-autonomous, it is no longer a first integral of
motion. As a consequence, we can not define any possible region of motion such as
the Hill region (Fig. 3).

The controlled equations of the planar elliptic restricted three-body problem is
derived similarly to (3) and is written

⎧
⎪⎪⎨

⎪⎪⎩

d2ξ

dν2
(ν) − 2

dη

dν
(ν) = ∂ω

∂ξ
(ξ(ν), η(ν), ν) + u1(ν)

d2η

dν2
(ν) + 2

dξ

dν
(ν) = ∂ω

∂η
(ξ(ν), η(ν), ν) + u2(ν).

(10)
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Fig. 3 Locations of the
equilibrium points of the
Earth-Moon system,
depicted in the rotating
pulsating frame of the planar
elliptic restricted 3-body
problem. The locations are
the same as in the planar
circular restricted 3-body
problem

where the control u = (u1, u2) is a function of the independent variable ν. Defining
x = (x1, x2, x3, x4) ∈ R4, where

x1 = ξ, x2 = η, x3 = ∂ξ

∂ν
, x4 = ∂η

∂ν
, (11)

we get the first-order differential system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dν

= x3

dx2
dν

= x4

dx3
dν

= 2x4 + ∂ω

∂x1
(x1, x2, ν) + u1

dx3
dν

= −2x3 + ∂ω

∂x2
(x1, x2, ν) + u2.

(12)

which we write as a non-autonomous bi-input controlled system

dx

dν
(ν) = F0(ν, x(ν)) + u1(ν)F1(x(ν)) + u2(ν)F2(x(ν)) (13)

where the non-autonomous drift vector field, F0, is

F0(ν, x) =

⎛

⎜
⎜
⎝

x3
x4

2x4 + ∂ω
∂x1

(x1, x2, ν)

−2x3 + ∂ω
∂x2

(x1, x2, ν)

⎞

⎟
⎟
⎠

and the two constant vector fields F1 and F2 are

F1(x) = ∂

∂x3
, F2(x) = ∂

∂x4
.
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We observe that this controlled equation still admits an Hamiltonian formulation.
Indeed, using the Legendre transformation

q = (q1, q2) = (x1, x2), p = (p1, p2) = (
dx1
dν

− x2,
dx2
dν

+ x1),

the Eq. (12) can be written as an Hamiltonian system

dq

dν
= ∂Hc

e

∂p
(q(ν), p(ν), u(ν), ν),

dp

dν
= −∂Hc

e

∂q
(q(ν), p(ν), u(ν), ν)

with Hc
e (q, p, u, ν) = 1

2‖p‖2 + p1q2 − p2q1 − ω(q, ν) − u1q1 − u2q2. In the rest of
this paper, we study the time-minimal trajectories of the elliptic restricted three-body
problem between two submanifolds M0 and M1 of R4, defined as the solutions x(t)
the optimal control problem

⎧
⎨

⎩

ẋ(ν) = F0(ν, x(ν)) + u1(ν)F1(x(ν)) + u2(ν)F2(x(ν))

minu(.)∈BR2 (0,ε))
∫ νf

0 dν

x(0) = x0 ∈ M0, x(νf ) ∈ M1

(14)

where u is an admissible control on [0, νf ]whose magnitude is bounded by a positive
number ε. Notice that what we call time-minimal trajectories of the problem are,
in fact, true anomaly-minimal trajectories. However, the true anomaly is a strictly
increasing function of the time, since ν̇, given in (7), is strictly positive. Therefore,
we can minimize the final time by minimizing the true anomaly. In Sect. 5, the value
of the control bound ε, that we will use to simulate time-minimizing space transfers
in the Earth-Moon system, corresponds to a 1N maximum thrust capability for the
spacecraft’s engine.

3 Controllability

In this section we study the controllability of the elliptic restricted three-body prob-
lem, our notations follow the ones from [17]. In that paper, the authors establish the
controllability of the circular restricted three-body problem, corresponding to the
case e = 0, over a particular submanifold of R4 containing the collinear Lagrangian
point L2 located between the two primaries, independent of the bound on the control
and the value of the mass ratio μ. More precisely, take any μ ∈ (0, 1), any positive
magnitude ε on the control and set Qμ = R2 \ {(−μ, 0), (1 − μ, 0)} to be the region
of motion where no collisions with the primaries occur, Xμ = TQμ × R2 as the cor-
responding phase space, Jμ(x) to be the Jacobian energy evaluated at a point x ∈ Xμ

and j1(μ) as the Jacobian energy of the Lagrangian point L1. With these, the authors
state that the circular restricted three-body problem is controllable on the connected
component of the of the subset {x ∈ Xμ|Jμ(x) < j1(μ)} containing L2. Their proof
is based on the classical result of geometric control theory [36] which asserts that
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any affine control system ẋ(t) = X0(x(t)) + ∑m
i=1 ui(t)Xi(x(t)) on a connected man-

ifold Mn with u(t) ∈ U ⊂ Rm is controllable provided that the convex hull of U is
a neighborhood of the origin, the drift X0 is a recurrent vector field and the family
of vector fields {X0, X1, . . . , Xm} satisfies the so-called Lie algebra rank condition
Liex{X0, X1, . . . , Xm} = TxM, x ∈ Mn.

Our objective is to investigate the generalization of this result for 0 < e < 1.
Notice that, according to the followinggeneral Lemma, theLie algebra rank condition
still holds in this case.

Lemma 1 A non-autonomous second order controlled system on Rm

q̈(t) + g(t, q(t), q̇(t)) = u(t)

can be written as a control-affine system on R2m where the distribution D spanned
by the vector fields X1, . . . , Xm is involutive and with a non-autonomous drift X0 such
that {X1, . . . , Xm, [X0, X1], . . . , [X0, Xm]} has maximum rank.

Proof The proof is carried out similarly to Lemma 3 in [17], which states the same
result for an autonomous second order control system. Indeed, here we have

X0(t, q, q̇) =
m∑

i=1

q̇i
∂

∂qi
− gi(t, q, q̇)

∂

∂ q̇i

and

Fi(q, q̇) = − ∂

∂qi

so we conclude that [X0, Xi] = − ∂
∂qi

modD for all 1 ≤ i ≤ m which proves the
result.

However, due to the explicit dependence of the drift of the elliptic restricted three-
body problem on the true anomaly ν, it is no longer possible to define a submanifold
of finite volume containing the Lagrangian point L2 on which this vector field is
volumepreserving, as in the circular restricted problem.As a consequence, Poincaré’s
recurrence theorem can not be applied and we can no longer claim that the drift of the
problem is a recurrent vector field on an adequate submanifold. Let us mention that
existing results concerning controllability of nonlinear non-autonomous vector fields
are derivedby considering the corresponding systemaugmentedwith the independent
variable and hold for control-affine systemswith an autonomous drift, i.e., systems of
the form ẋ(t) = F0(x(t)) + ∑m

i=1 Fi(t, x(t))ui(t) [9]. Since our systemdoes not fit the
hypothesis of these results, we instead examine the properties of local controllability
of the problem. First, let us recall the definition of local controllability along a
trajectory of a nonlinear control system [22].

Definition 1 Let (x̄, ū) be a trajectory defined on an interval [t0, t1] of the control
system ẋ = f (t, x, u) where x ∈ Rn and u ∈ Rm. This control system is said to be
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locally controllable along the trajectory (x̄, ū) if, for every ε > 0, there exists η >

0 such that, for every (a, b) ∈ Rn × Rn with |a − x̄(t0)| < η and |b − x̄(t1)| < η,
there exists a trajectory (x̃, ũ) defined on [t0, t1] such that x̃(t0) = a, x̃(t1) = b and
|ũ(t) − ū(t)| ≤ ε, for all t ∈ [t0, t1].
Remark 1 It is well-know that any non-linear, non-autonomous control system ẋ =
f (t, x, u) is locally controllable along a trajectory (x̄, ū) defined on [t0, t1] if the
linearized control system along (x̄, ū),

ẋ = ∂f

∂x
(t, x̄(t), ū(t))x + ∂f

∂u
(t, x̄(t), ū(t))u, t ∈ [t0, t1], (15)

is controllable [22]. Notice that, in this reference, the result is given for non-linear
autonomous control systems ẋ = f (x, u). However, it is easy to verify that the same
proof works for non-linear non-autonomous control systems.

Thus, we can state the following.

Theorem 1 The elliptic restricted three-body problem is locally controllable along
any trajectory (x̄, ū) defined for ν ≥ 0 and such that x̄(.) is three times continuously
differentiable.

Proof Let (x̄, ū) be a trajectory of the elliptic restricted three-body problem and
assume that x̄ is 3 times continuously differentiable. We want to show the controlla-
bility of the non-autonomous linear control system ẋ = A(ν)x + B(ν)u, where

A(ν) = ∂

∂x

(
F0(ν, x̄(ν)) + u1(ν)F1(x̄(ν)) + u2(ν)F2(x̄(ν))

)

=

⎛

⎜
⎜
⎜
⎝

0 0 1 0
0 0 0 1

∂2ω

∂x21
(ν, x̄1(ν), x̄2(ν)) ∂2ω

∂x1∂x2
(ν, x̄1(ν), x̄2(ν)) 0 2

∂2ω
∂x1∂x2

(ν, x̄1(ν), x̄2(ν)) ∂2ω

∂x22
(ν, x̄1(ν), x̄2(ν)) −2 0

⎞

⎟
⎟
⎟
⎠

and

B(ν) = ∂

∂u

(
F0(ν, x̄(ν)) + u1(ν)F1(x̄(ν)) + u2(ν)F2(x̄(ν))

) =

⎛

⎜
⎜
⎝

0 0
0 0
1 0
0 1

⎞

⎟
⎟
⎠ .

Our assumption on the regularity of x̄ asserts that both A(ν) and B(ν) are 3 times
continuously differentiable. Thus, according to the classical result about the con-
trollability of non-autonomous linear control systems [22, 37, 40], it is sufficient to
show that there exist ν ≥ 0 satisfying

rank[M0(ν)|M1(ν)| · · · |M3(ν)] = 4
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where

M0(ν) = B(ν)

Mk+1(ν) = −A(ν)Mk(ν) + ˙̂Mk(ν), for k = 0, . . . , 3.

The matrix B(ν) being constant, computations give, for any ν ≥ 0,

M1 =

⎛

⎜
⎜
⎝

−1 0
0 −1
0 −2
2 0

⎞

⎟
⎟
⎠

so det[M0(ν)|M1(ν)] = 1 which concludes the proof. �

Then, we can deduce from Theorem 1 the property of small-time local controllability
at the Lagrangian points of the problem.

Remark 2 The term “small-time” is ambiguous here, since the independent variable
of the problem is the true anomaly ν and not the time. However, this terminology is
so widespread in the literature that we do not break convention. In the following, we
provide the definition of the notion of small-time controllability for a generic control
system ẋ = f (t, x, u) but the reader should be aware that, in the context of our study,
it would be more accurate to talk about “small-true-anomaly” controllability.

Definition 2 Let (xe, ue) be an equilibrium point of the ẋ = f (t, x, u). This control
system is said to be small-time locally controllable at (xe, ue) if, for every ε > 0, there
exists η > 0 such that, for every pair (x0, x1) with |x0 − xe| < η and |x1 − xe| < η,
there exists a trajectory (x, u) of the system defined on [0, ε] satisfying

x(0) = x0, x(ε) = x1, |u(t) − ue| ≤ ε, for all t ∈ [0, ε]

Corollary 1 The elliptic restricted 3-body problem is small-time locally controllable
at a Lagrangian point Li, 1 ≤ i ≤ 5.

Proof This is a consequence of Theorem1, since anyLagrangian pointLi, 1 ≤ i ≤ 5,
associated with a constant control equal to 0 provide an equilibrium point for the
controlled elliptic restricted three-body problem. �

4 Structure of the Optimal Control

In this section, we provide an analysis of the system to investigate the structure of
the time-minimizing controls and trajectories of the elliptic restricted three-body
problem.
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4.1 Optimality Conditions

Our analysis is based on the application of the Pontryagin maximum principle which
provides first-order necessary conditions for optimality [14, 36, 39, 46]. Let an
admissible control u = (u1, u2) associated with a trajectory x(.), both defined on an
interval [ν0, νf ], be a solution for the time-minimum control of the elliptic restricted
three-body problem

⎧
⎨

⎩

ẋ(ν) = F0(ν, x(ν)) + u1(ν)F1(x(ν)) + u2(ν)F2(x(ν))

minu∈BR2 (0,ε))
∫ νf

ν0
dν

x(ν0) = x0 ∈ M0, x(νf ) ∈ M1

(16)

where F0, F1 and F2 are the vector fields defined in Sect. 2.2 and M0 and M1 are 2
submanifolds of R4 with tangent spaces at x0 and x(νf ). According to the Pontryagin
maximum principle, there exist a constant p0 ≤ 0 and an adjoint vector function
p : [ν0, νf ] → R4 satisfying (p0, p(ν)) 	= 0 for all ν ∈ [ν0, νf ] such that, for almost
every ν ∈ [ν0, νf ]

ẋ(ν) = ∂H

∂p
(ν, x(ν), p(ν), u(ν)), ṗ(ν) = −∂H

∂x
(ν, x(ν), p(ν), u(ν)) (17)

where H is the non-autonomous control Hamiltonian function

H(ν, x, p, u) = p0 + 〈p, F0(ν, x)〉 +
2∑

i=1

ui 〈p, Fi(x)〉 .

Furthermore, the maximization condition

H(ν, x(ν), p(ν), u(ν)) = max
v∈U

H(ν, x(ν), p(ν), v) (18)

is satisfied for almost every ν ∈ [ν0, νf ]. Finally, at ν0 and νf , we have the transver-
sality conditions

p(ν0) ⊥ Tx(ν0)M0, p(νf ) ⊥ Tx(νf )M1. (19)

A 3-tuple (x, u, p) which satisfies the three conditions of the maximum principle is
called an extremal. It is said to be normal if p0 	= 0 and abnormal if p0 = 0. From
now on, wewill denoteH0(ν, x, p) = 〈p, F0(ν, x)〉 the non-autonomousHamiltonian
lift of the drift F0 and Hi(x, p) = 〈p, Fi(x)〉 the autonomous Hamiltonian lift of the
vector field Fi, for i = 1, 2. Thus the Hamiltonian function H is

H(ν, x, p, u) = p0 + H0(ν, x, p) +
2∑

i=1

uiHi(x, p).
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From the maximization condition (18), we deduce that, for almost every ν ∈ [ν0, νf ]
where (H1(x(ν), p(ν)), H2(x(ν), p(ν))) 	= (0, 0), the optimal control is given by

ui(ν) = Hi(x(ν), p(ν))
√

H2
1 (x(ν), p(ν)) + H2

2 (x(ν), p(ν))

.

Thus, the optimal control is a feedback control and extremals are fully described by
the pairs z = (x, p). This observation leads to the definition of the switching function

ψ(ν) = (H1(x(ν), p(ν)), H2(x(ν), p(ν))) (20)

and of the switching surface

Σ = {z = (x, p) ∈ R4 × R4|H1(x, p) = H2(x, p) = 0}. (21)

Therefore, extremals are divided into two categories. Extremals z = (x, p) that do
not lie on Σ are called bang extremal and are smooth. Extremals z = (x, p) lies on
Σ are called singular extremals. Here we call switching point a point of contact
between a bang arc and a singular arc along a given extremal (although generally
switching points may occur in other cases, for example bang-bang, they do not occur
in this study). In the following, we study the nature of such contact points to derive
the structure of time-minimizing trajectories of the problem.

4.2 Singular Flow and Structure of Extremals

Definition 3 Let zs be a singular extremal, with corresponding control us. Then zs

is the flow of the Hamiltonian equation żs = Hs(zs) constrained to the set Σ (21),
called the singular flow of the singular Hamiltonian.

First of all, we recall some useful results, provided in [17] and built upon in [10,
14, 18, 38], from the in-depth study of singularities of the extremal flow of time-
minimizing controls of general autonomous, bi-input, control affine systems of the
form

ẋ(t) = F0(x(t)) + u1(t)F1(x(t)) + u2(t)F2(x(t)), u2
1(t) + u2

2(t) ≤ 1 (22)

defined on a manifold M of dimension four. Denote γb a bang extremal arc,
γs a singular extremal arc and, for any z = (x, p) ∈ T∗M, Fij(x) = [Fi(x), Fj(x)],
Hij(z) = {Hi(z), Hj(z)} for 1 ≤ i, j ≤ 2. Make the assumption

(i) D(x) = det(F1(x), F2(x), F01(x), F02(x)) 	= 0, x ∈ M
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and consider the stratification Σ = Σ− ∪ Σ0 ∪ Σ+ where

Σ− = {z ∈ Σ |H2
12(z) < H2

01(z) + H2
02(z)}

Σ0 = {z ∈ Σ |H2
12(z) = H2

01(z) + H2
02(z)} (23)

Σ+ = {z ∈ Σ |H2
12(z) > H2

01(z) + H2
02(z)}.

The following theorem can be stated.

Theorem 2 Let z0 ∈ Σ−; every extremal is locally of the form γbγsγb (where γs is
empty if H12(z0) = 0); every admissible extremal is locally the concatenation of at
most two bang arcs. Let z0 ∈ Σ+; every extremal is locally bang or singular and
every optimal extremal is locally bang. Optimal singular extremals are given by the
flow of Hs and contained in Σ0 (saturating).

The proof of Theorem 2 is based on the connection between the flow of the specific
form of Hamiltonian function H in the singular case and the singular extremals of the
problem and a nilpotent approximation [10] around a point z0 ∈ Σ \ 0. By defining,
for any x ∈ M,

D1(x) = det(F1(x), F2(x), F12(x), F02(x)),

D2(x) = det(F1(x), F2(x), F01(x), F12(x)),

replacing (i) by

(i’) D2
1(x) + D2

2(x) < D2(x), x ∈ M

and assuming

(ii) D is involutive,

we get the following.

Theorem 3 The switching function is continuously differentiable and every extremal
is locally bang-bang with switchings of angle π (“π -singularities”).

Finally, assuming

(iii) F0 /∈ Span{F1, F2, F01} is involutive,
we have the following.

Theorem 4 In the normal case p0 	= 0, there cannot be consecutive switchings in
Σ1 = Σ ∩ {(x, p) ∈ T∗X|F0(x) ∈ Span{F1, F2, F01}
Notice that this analysis does not apply when considering general bi-input control
affine systems with a non-autonomous drift

ẋ(t) = F0(t, x(t)) + u1(t)F1(x(t)) + u2(t)F2(x(t)), u2
1(t) + u2

2(t) ≤ 1 (24)
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on a manifold of dimension four. Indeed, in this case, the Lie brackets (resp., Poisson
brackets) F01 and F02 (resp., H01 and H02) are, a priori, non-autonomous. As a
consequence, the determinants D, D1 and D2 may depend explicitly on t as well and
the assumptions (i) and (i’) and the stratification (23) are no longer consistent, even
though the switching surface Σ can still be defined in the exact same way as in (21)
since both H1 and H2 remain autonomous. However, in the specific context of the
elliptic restricted three-body problem, straightforward computations give

F01(ν, x(ν)) =

⎛

⎜
⎜
⎝

1
0
0

−2

⎞

⎟
⎟
⎠ , F02(ν, x(ν)) =

⎛

⎜
⎜
⎝

0
1
2
0

⎞

⎟
⎟
⎠ .

so

H01(ν, x(ν), p(ν)) = p1(ν) − 2p4(ν)

and

H02(ν, x(ν), p(ν)) = p2(ν) + 2p3(ν).

Thus, even though the drift F0 of the elliptic restricted three-body problem is non-
autonomous, the Lie brackets of length 2 (resp., Poisson brackets) F01 and F02 (resp.
H01 and H02) are autonomous. In fact, they have the exact same values as in the
circular restricted three-body problem, and so do the determinants D, D1 and D2

which do not depend explicitly on ν. The first consequence is that the assumption
(i), and the stronger one (i’), can be formulated in the context of our study and are
satisfied, in accordance with Lemma 1. By examining the expression of the first
derivative of the switching function ψ , which is necessarily identically zero along
a singular arc, we manage to write singular extremal controls as feedback controls.
Indeed, exactly as stated in [17], in the neighborhood of a point z0 = (x0, p0) ∈ Σ ,
an extremal control is

us(x, p) =
(

− H02(x, p)

H12(x, p)
,

H01(x, p)

H12(x, p)

)
. (25)

Plugging inH, we derive the expression of the non-autonomous singularHamiltonian
function

Hs(ν, x, p) = p0 + H0(ν, x, p) − H02(x, p)

H12(x, p)
H1(x, p) + H01(x, p)

H12(x, p)
H2(x, p). (26)

In addition, the stratification (23) also makes sense in the conditions of our problem,
as well as assumptions (ii) and (iii) which are both clearly verified, once again in
accordance with Lemma 1. The rest of the analysis carried out in [17] can then
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be rigorously reproduced to investigate the structure and regularity of the extremal
trajectories of the elliptic restricted three-body problem. As a conclusion, we can
state the following.

Theorem 5 The elliptic restricted three-body problem has bang-bang time minimiz-
ing controls with finitely many π -singularities.

5 Application to Space Transfers

In this section, we apply our analysis of the time-minimum control of the planar
elliptic restricted 3-body problem to simulate time-minimum space transfers between
the geostationary orbit and the equilibriumpointsL1 andL2 in theEarth-Moon system
and a rendezvous mission with a near-Earth asteroid.

5.1 Numerical Methods

The numerical simulations presented in this paper are based on locally sufficient
second order conditions [1, 11, 14] and indirect methods in optimal control [3,
21]. In this section, we briefly describe these principles which consist of computing
solutions to optimal control problems by generating normal extremal curves solutions
of the Pontryaginmaximumprinciplewhose local optimality is checked using second
order conditions. Consider a generic control problem of the form

⎧
⎨

⎩

ẋ(t) = f (t, x(t), u(t))
minu(.)∈U

∫ tf
0 f 0(t, x(t), u(t))dt

x(0) = x0 ∈ M0, x(tf ) ∈ M1

(27)

where the time tf is not fixed, M and U are two smooth manifolds of respective
dimensions n and m, f : [0, tf ] × M × U → TM and f 0 : [0, tf ] × M × U → R are
smooth, M0, M1 are two submanifolds of M and u is an admissible control valued
in U. By applying the Pontryagin maximum principle and using the maximization
condition [46], we can, under some generic regularity assumptions [1, 11], write
the optimal control ū solution to (27) as a smooth feedback control ū(t, x̄, p̄), where
(x̄, p̄) is an extremal trajectory solution to a smooth Hamiltonian system

ẋ(t) = ∂Hr

∂p
(t, x(t), p(t)), ṗ(t) = −∂Hr

∂x
(t, x(t), p(t)). (28)

Define the exponential mapping expx0 : (t, p0) → x(t, x0, p0) as the function which,
given a pair (t, p0), outputs the projection on M of the extremal trajectory (x, p)

solution to (28) starting from the initial condition (x0, p0) and evaluated at time t.
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We say that a time tc is conjugate to 0 along (x, p) if the restriction of the exponential
function p0 → x(tc, x0, p0) is not an immersion at p0 and we say that x(tc, x0, p0)
is a conjugate point. The notion of conjugate time is connected to the property of
local optimality through the following sufficient second order condition of optimal-
ity: under generic assumptions, we can state that a trajectory x(·) projection of an
extremal solution is locally optimal in the L∞-topology until the first conjugate time
along the extremal [1, 11]. Hence, we can develop a process to compute locally
optimal numerical solutions to the problem (27). Indeed, the boundary conditions to
be satisfied by an extremal trajectory (x, p) can be written in the form

R(x(0), p(0), x(tf , x0, p0), p(tf , x0, p0)) = 0Rn . (29)

Furthermore, since tf is not fixed, the condition Hr ≡ 0 holds along any extremal
[46]. Thus we can generate an extremal trajectory by solving the shooting equation,
i.e., finding a zero to the shooting function

S : (tf , p0) →
(

R(x0, p0, x(x0, p0, tf ), p(x0, p0, tf ))
Hr(x(x0, p0, tf ), p(x0, p0, tf ))

)

, (30)

and proceeding to a numerical integration of the system (28) with the corresponding
initial condition (x0, p0). The local optimality of the projection of the extremal is
verified by checking that there is no conjugate time along the interval [0, tf ], which
amounts to checking a rank condition [11]. The shooting function being smooth,
a Newton-type algorithm can be used to determine its zeroes. The most difficult
aspect of this approach is to choose an accurate initial guess so that the Newton
method converges. This can be achieved by means of a smooth continuation method
[13, 14]. The Hamiltonian function Hr is connected to another Hamiltonian function
H0 through a family of smooth Hamiltonian functions (Hλ)λ∈[0,1], associated with a
family of exponential mapping expλ

x0 , such that Hr = H1 and the shooting method is
easy to solve for H0. Assume that, for every λ ∈ [0, 1], the point expλ

x0(tf , p0) is not
conjugate to x0. Then the solutions of the shootingmethod form a smooth curve para-
metrized by λ [13]. Thus, the continuation process consists of following this curve
to determine a zero of the shooting function (30). This can be managed iteratively:
setting up some discretization 0 = λ0 < λ1 < · · · < λN = 1 of the interval [0, 1],
we can first solve the shooting method for H0 and then solve the shooting method for
each Hi+1 by using the solution of the shooting method for Hi as an initial guess. As a
result, the zero of the shooting function for λN is a zero of the shooting function (30).

Thesemethods are implemented by using the software hampath [15] which allows
one to integrate smooth Hamiltonian vector fields, solve shooting equations and eval-
uate conjugate points along extremal trajectories. Let us mention that this software
also allows one to use a differential path-following method, which was not needed
to obtain the results presented in this paper.
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5.2 Numerical Computations

Wenowpresent results obtained using themethods above, as applied to three different
missions scenarios. We choose to work in the Earth-Moon system, where the mass
ratio μ = 0.0121536 and the eccentricity is e = 0.0549. This choice is justified by
the fact that it is perhaps the most relevant system (arguably, besides the Sun-Earth
system) in the design of actual missions, and that there is existing work for the
Earth-Moon system in the circular restricted three-body problem [16, 17, 19, 45].
For some perspective on how the Earth-Moon system compares to the rest of our
Solar System, Table1 gives the eccentricities of the orbits of several of the other
major bodies. As it can be observed, Mercury has the largest eccentricity of all
planets orbiting around the Sun but due to its close proximity to the Sun it is not
very relevant from spacecraft missions. While still small, the Moon’s orbit around
the Earth presents an eccentricity that is the largest from other well-known moons
orbiting their primary body. This work is centered around the analysis of the impact
of a more complete model on the geometry of the transfers and we will consider
unrealistic scenarios with higher eccentricities to obtain a broader understanding.
For all mission scenarios we assume that the spacecraft has capabilities resembling

Table 1 Eccentricies of the
solar system

Body Eccentricity

(a) Planets around Sun

Mercury 0.2056

Venus 0.0068

Earth 0.0167

Mars 0.0934

Jupiter 0.0484

Saturn 0.0542

Uranus 0.0472

Neptune 0.0086

(b) Moons around planets

Moon (Earth) 0.0549

Io (Jupiter) 0.0041

Europa (Jupiter) 0.0090

Ganymede (Jupiter) 0.0013

Callisto (Jupiter) 0.0074

Mimas (Saturn) 0.0202

Enceladus (Saturn) 0.0047

Tethys (Saturn) 0.0200

Dione (Saturn) 0.0020

Titan (Saturn) 0.0288

Iapetus (Saturn) 0.0286
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those of an electric propulsion system, with a 1N maximum thrust capability and
a high specific impulse so that the mass variation can reasonably be ignored. This
choice was made for simplicity and, again, based on prior work on low-thrust space
transfers in the circular problem [16, 17, 19, 45].

We consider three different missions. For each mission, we select a starting depar-
ture point for the spacecraft x0 ∈ R4 as well as a final arrival point xf ∈ R4. Both
points x0 and xf provide the desired position and the velocity of the spacecraft at ν0
and νf , where ν0 is the true anomaly at the mission’s start time and νf is at arrival
time. The problem is then solved numerically to identify a time-minimal trajectory
x(t) so that x(ν0) = x0 and x(νf ) = xf .

For a chosen eccentricity value, once the initial true anomaly is fixed to a value ν0
then the initial position andvelocity of the spacecraft x0 in the pulsating rotating frame
corresponds to a well-defined point in the fixed frame. However, since the final time
is free, the final true anomaly νf is free as well which creates some complexity in the
problem due to the dependence of the pulsating frame position of the spacecraft with
respect to the true anomaly when converting the pulsating rotating coordinates to or
from the fixed coordinates. For instance, consider the eccentricity of theMoon’s orbit
around the Earth, e = 0.0549. When the true anomaly ν = π

2 the position (x1, x2) =
(0, 1) in the pulsating rotating frame corresponds to a point one unit from the origin in
the fixed frame; however, if the true anomaly is ν = π , the position (x1, x2) = (0, 1)
in the pulsating rotating frame corresponds to a point 1.058 units from the origin
in the fixed frame. To overcome this difficulty, if the destination for the spacecraft
is a specific point in the dimensional frame, the true anomaly must be fixed at νf

rather than at ν0. In this case, the shooting function integrates time backward instead.
Notice however that in the pulsating rotating frame the coordinates of the equilibrium
points Li, i = 1, . . . , 5 do not depend on the true anomaly which therefore makes
them convenient departing and arrival points to design a mission.

We choose to design missions with the following three scenarios:

Mission 1: The first scenario that we consider is a mission from the Geostationary
orbit to the libration point L1. Simulating such a mission is important, as it is
a first step to designing optimal Earth-Moon transfers. Indeed, the vicinity of
the point L1 is a gateway between the Earth and the Moon gravitational fields.
Therefore, Earth-L1 optimal transfers provide good initializations when using a
shooting method to compute Earth-Moon optimal transfers [12, 45].

Mission 2: The second scenario is similar to the first one but the destination is
a different libration point. The goal is to compute minimal transfers from the
Geostationary orbit to L2. This libration point has proved to play an important role
as well for transfers to orbit the Moon, see for instance the Artemis mission [4].

Mission 3: Finally, the last scenario we consider is a transfer to a temporarily
captured asteroid, namely 2006RH120. We choose the starting point to be L2

because it has proved to provide the best transfers in the case of zero eccentricity
[44]. Ideally the spacecraft should be considered on a Halo orbit around the
L2 point, but for simplicity and as a first step to the analysis of the impact of
eccentricity values we assume it unrealistically at the equilibrium point.
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5.2.1 Transfers to L1 and L2

Existing results from [19, 45] provided time-minimal transfers to L1 and L2 from a
geostationary orbit GEO in the Earth-Moon circular restricted three-body problem.
In this paper, we extend these results by using the elliptic model. The positions and
velocities of the libration points in the non-dimensional elliptic frame do not depend
on the eccentricity of the system and (the two we consider) are provided in Table2.
The other relevant location, GEO, requires more subtlety: a selected geostationary
orbit in the inertial reference frame, with inertial coordinates (0.0977, 0, 0, 2.9767),
corresponds to different elliptic frame coordinates depending on both the eccentricity
and the initial true anomaly ν0. Table2 also gives the corresponding elliptic frame
coordinates forGEO for a fewdifferent eccentricity and ν0 (νf for 2006RH120) values.

A continuation-based algorithm was used to compute transfers for 91 different
eccentricity values {ei} = {0.00, .., 0.90} with a step size of 0.01, e.g. e1 = 0.01,
e50 = 0.5, and e90 = 0.9. The initial true anomaly was assumed ν0 = 0 for these
transfers. A known solution from the CR3BP (e0 = 0) served as the seed for the
continuation algorithm, which iterates through the list of eccentricity values in both
an increasing and decreasing fashion. The code can be summarized as follows, with
some justification afterward:

• for k = 1, 2, 3, .., 89, 90

– if a solution exists for ek−1 with transfer time tk−1, and either no solution exists
for ek or the best found solution for ek has a transfer time greater than tk−1,
initialize the shooting algorithm for ek with the solution from ek−1.

Table 2 Departure and arrival positions and velocities for the spacecraft in the non-dimensional
frame

Location e ν x1 x2 x3 x4

L1 Any Any 0.8369 0 0 0

L2 Any Any 1.1557 0 0 0

GEO 0 Any 0.0977 0 0 2.879

GEO 0.1 π/2 0.0977 0 −0.0098 2.879

GEO 0.1 π 0.0879 0 0 3.2195

GEO 0.5 π 0.0489 0 0 5.9046

GEO 0.5 3π/2 0.0977 0 0.0488 2.879

GEO 0.9 0 0.1856 0 0 1.381

GEO 0.9 π 0.0098 0 0 29.757

2006RH120 0 4.019 1.1565 1.5681 1.48 −1.23479

2006RH120 0.0549 4.019 1.11592 1.51308 1.4706 −1.13085
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• for k = 89, 88, .., 2, 1, 0

– if a solution exists for ek+1 with transfer time tk+1, and either no solution exists
for ek or the best found solution for ek has a transfer time greater than tk+1,
initialize the shooting algorithm for ek with the solution from ek+1.

• If any new solution was found, repeat; otherwise, the algorithm is done.

Continuation methods can be simple yet effective means to compute solutions to a
family of problems related by a parameter—in our case, the eccentricity—however,
there is no guarantee for convergence at each step of the algorithm. Moreover, it
is possible that a locally optimal solution is computed which is far from the global
minimum. These points motivate the algorithm described above; looping not only
to identify solutions for each eccentricity value, but also retrying calculations that
may have converged to much higher (locally optimum) transfer times. Recall that
the actual eccentricity of the Earth-Moon system is e ≈ 0.05, so all other values are
strictly hypothetical.

Figure4 shows the minimal transfer times as a function of eccentricity for GEO-
to-L1 and -L2 transfers (blue). For comparison, the first conjugate time is also plotted
(red) and we see that it is always longer than the transfer time, confirming the local
optimality of our solution. For both destinations, higher eccentricity values allow
shorter transfer times. Transfer and conjugate times are also given for select eccen-
tricity values in Table3.

It is interesting to notice the bifurcation that occurs around e = 0.13 and e = 0.34.
At these points, the higher eccentricity of the system seems to enable the spacecraft to
make one less revolution of the Earth before heading directly toward its destination.
We can consider the spacecraft’s trajectory as a closed curve in the plane ifwe connect
the start and end points with a line. Then we can define the winding number wE of
the trajectory as the integer representing the total number of times that curve travels
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Fig. 4 Minimum transfer times (blue circles) and the corresponding first conjugate times (red
squares) for e = 0.0, . . . , 0.9. a GEO-to-L1, b GEO-to-L2
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Table 3 GEO-to-L1 (left) and GEO-to-L2 (right) minimum transfer times tmin
f and associated first

conjugate times tconj , in days, and winding number wE , for selected eccentricity values

e tmin
f tcon j wE

0.0 10.38 15.02 3
0.1 9.95 15.55 3
0.2 8.04 14.55 2
0.3 7.32 15.08 2
0.4 4.57 11.99 1
0.5 3.63 11.86 1
0.6 2.75 11.97 1
0.7 1.95 12.32 1
0.8 1.23 19.05 1
0.9 0.54 16.03 1

e tmin
f tcon j wE

0.0 11.96 19.48 3
0.1 11.82 20.12 3
0.2 10.04 19.51 2
0.3 9.59 18.45 2
0.4 6.23 16.50 1
0.5 5.18 15.74 1
0.6 4.12 14.76 1
0.7 3.07 12.13 1
0.8 2.05 9.87 1
0.9 1.00 6.58 1

counterclockwise around the Earth. For example, in Fig. 5a–c, we have wE = 3, 2,
and 1, respectively. For the L1 transfers, for e = 0.00, . . . , 0.13 the spacecraft makes
three revolutions of the Earth; for e = 0.14, . . . , 0.34 it makes only two revolutions;
and finally, for e = 0.35, . . . , 0.9 the craft only makes one revolution of the Earth.
Similarly for the L2 transfers, for e = 0.00, . . . , 0.12 the spacecraft makes three
revolutions of the Earth; for e = 0.13, . . . , 0.33 it makes only two revolutions; and
finally, for e = 0.34, . . . , 0.9 the spacecraft only makes one revolution of the Earth.
Table3 gives wE for selected eccentricity values.

In Figs. 5 and 6, GEO-to-L1 and -L2 transfers are shown, respectively, with e =
{0, 0.3, 0.8}. The images for e = 0.05 ≈ 0.0549 are indistinguishable from those of
e = 0—the transfer times and conjugate times are given in Table3.

5.2.2 Transfers to a Near-Earth Asteroid

Temporarily captured orbiters (called minimoons for short) are a class of near-Earth
asteroids gaining recent interest [19, 34]. Informally, minimoons are defined as near-
Earth asteroids that are temporarily caught in orbit around the Earth. Although only
one minimoon has ever been confirmed, the authors of [34] give rigorous calcula-
tions that demonstrate there is a steady state of minimoons in orbit around the Earth.
To date, the only confirmed minimoon, known as 2006RH120, was discovered in
2006. It is a few meters in diameter and was in orbit around the Earth for about
one year. The three dimensional partial trajectory of 2006RH120 is shown in Fig. 7
in the inertial geocentric reference frame (ephemeris retrieved from NASA’s HORI-
ZONS database). Ongoing research is investigating methods to more regularly detect
minimoons.

We now compute a time minimal transfer to rendezvous with 2006RH120 starting
from the Earth-Moon L2 point. We pre-select a rendezvous point along the trajec-
tory of 2006RH120 based on it’s vicinity to L2 and zero z-coordinate (elliptic frame
coordinates are given in Table2). The rendezvous location is also marked on Fig. 7.
It is not in the scope of this paper to optimize the chosen rendezvous location, and
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Fig. 5 Time-minimal transfers from GEO to L1, viewed in both the dynamic and fixed frame. a e
= 0, 10.38days, dynamic frame, b e = 0, 10.38days, fixed frame, c e = 0, 7.32days, dynamic frame,
d e = 0, 7.32days, fixed frame, e e = 0, 1.23days, dynamic frame, f e = 0, 1.23days, fixed frame
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Fig. 6 Time-minimal transfers from GEO to L2, viewed in both the dynamic and fixed frame. a
e = 0, 11.96days, dynamic frame, b e = 0, 11.96days, fixed frame, c e = 0.3, 9.59days, dynamic
frame, d e = 0.3, 9.59days, fixed frame, e e = 0.8, 2.05days, dynamic frame, f e = 0.8, 2.05days,
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Fig. 7 Near-Earth asteroid 2006RH120 (gray) viewed in the 3-dimensional fixed frame. Our choice
of rendezvous location (red circle) was chosen based on low absolute z-coordinate and its vicinity
to L2. The moon’s orbit (black) has eccentricity of 0.0549; the major and minor axes of its orbit are
plotted as the solid and dashed black lines, respectively. The true anomaly of themoon at rendezvous
is νf = 4.019

so this choice is admittedly arbitrary. The true anomaly of the moon at the selected
rendezvous point is νf = 4.019 radians, also computed from the JPL HORIZONS
database.

We use the actual eccentricity and mass ratio of the Earth-Moon system (μ =
0.0121536, e = 0.0549), and compare the results to those of the circular problem
(e = 0). As mentioned, the true anomaly is fixed at rendezvous νf = 4.019 radians,
and therefore the initial true anomaly ν0 is free and the shooting method integrates
backward in time. Again, existing results in the circular frame are used to initialize
the algorithm, and the first conjugate time is calculated to verify the local optimality
of our solutions.

Figure8 shows the time-minimal trajectories for both eccentricity values, in both
the non-dimensional and dimensional frames. The trajectories are more or less indis-
tinguishable since the eccentricity of the Earth-Moon system is so low; however,
using the actual eccentricity e = 0.0549 does provide a transfer time that is 6.4h
faster than with e = 0 (10.53days vs. 10.80days). The conjugate times for e = 0
and e = 0.0549 were 17.22 and 16.94days, respectively. It is likely that missions of
longer duration would see larger improvements.
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Fig. 8 Time-minimal transfer from L2 to 2006RH120, viewed in both the dynamic and fixed frame.
a e = 0, 10.8days, dynamic frame, b e = 0, 10.8days, fixed frame, c e = 0.0549, 10.59days, dynamic
frame, d e = 0.0549, 10.59days, fixed frame

6 Conclusion

In this paper, we generalize some results presented in [17] to the time-minimum con-
trol of the planar elliptic restricted three-body problem when the eccentricity e of the
Keplerian orbits of the two primaries is strictly positive. The problem is written in the
form of a non-autonomous control problem which is shown to be small-time locally
controllable in the vicinity of the equilibrium points. We prove that the structure
of the time-minimizing controls is preserved, in the sense that the time-minimizing
controls are bang-bang with a finite number of π -singularities. We use this model
to compute a collection of time-minimal low-thrust transfers from the geostation-
ary orbit to the equilibrium points L1 and L2 of the Earth-Moon system, for a wide
range of eccentricities, by means of a shooting method combined with a continua-
tion method. The local-optimality of these transfers is verified using a second-order
optimality condition related to the concept of conjugate points. We observe, numer-
ically a decreasing relation between the minimum time transfer and the eccentricity
e. Bifurcations occur for e = 0.13 and e = 0.34, causing the spacecraft to complete
less revolutions around the Earth before it reaches its destination. We also simulate
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a time-minimal rendezvous mission with the near-Earth asteroid 2006RH120 in the
Earth-Moon system. The initial guesses chosen to initiate our numerical methods
are time-minimal transfers in the circular restricted three-body problem computed
in [19, 45]. The results show that considering the actual eccentricity of our Moon’s
orbit around the Earth leads to a slightly shorter rendezvous time with the asteroid
2006RH120 than when the eccentricity is neglected. The natural next step of this
study will consist of taking into account the significant influence of the Sun on the
transfers within the Earth-Moon system. One possibility to achieve this goal would
be to derive the equations of a perturbed elliptic three body problem, inspired by
the equations of the restricted four-body problem [42] which can be used to model
a Sun-perturbed circular restricted three-body problem. The theoretical analysis of
the time-minimum control of the perturbed elliptic three body problem will raise
an interesting issue from the geometric control point of view. More on the practical
side, the main objective will be to compare numerical computations performed with
this new model with the ones that are carried out in the present chapter, in order
to design even faster low-thrust transfers in the Earth-Moon system. For the sake
of realism, another interesting problem would be to consider points on a small halo
orbit around the equilibrium points L1 and L2 of the restricted 3-body problem [6]
as initial conditions for a rendezvous mission to near-Earth asteroids.
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