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Abstract We prove the non integrability of the colinear 3 and 4 body problem, for
any positive masses. To deal with resistant cases, we present strong integrability
criterions for 3 dimensional homogeneous potentials of degree −1, and prove that
such cases cannot appear in the 4 body problem. Following the same strategy, we
present a simple proof of non integrability for the planar n body problem. Eventually,
we present some integrable cases of the n body problem restricted to some invariant
vector spaces.

Keywords Morales-Ramis theory · Homogeneous potential · Central configura-
tions · Differential Galois theory · Integrable systems

1 Introduction

In this article, we will consider the n body problem whose Hamiltonian is given by

Hn,d = Tn,d(p) + Vn,d(q) =
n∑

i=1

‖pi‖2
2mi

+
∑

1≤i<j≤n

mimj

‖qi − qj‖

The quadratic form T correspond to kinetic energy, V is the potential, which is a
homogeneous function of degree −1 in q. The coordinates q1, . . . , qn correspond
respectively to the coordinates of the bodies m1, . . . ,mn.

Already since Poincare and Bruns [1, 2], it is known that the n-body problem is for
n ≥ 3 not integrable in general. Bruns in [1] proved the non-existence of additional
algebraic first integrals, later generalized by Julliard-Tosel [3], and more recent work
like [4–6] prove themeromorphic non-integrability or non existence of meromorphic
first integrals in some cases.All these proofs strongly suggest that the n-body problem
is never integrable for n ≥ 3, even in particular cases (as proven for example for the
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isosceles 3-body problem in [7]). The colinear problem (in dimension 1) is a priori
more difficult than the non-integrability proof of the n body problem in the plane and
higher dimension, because it needs fewer additional first integrals to be integrable.
Recall that as the energy and the impulsion of the center of mass are first integrals,
in dimension 1 we only need n − 2 additional first integrals for integrability. We will
see that even if the problem is not so easy as the planar case, it can be completely
studied in the case n = 3, 4 through the bounding of eigenvalues of the Hessian
of V at central configurations (see Definition 1). A similar trick allows to obtain
a simple proof of the non integrability of the planar case with positive masses. In
the opposite direction, the n-body problem also possesses explicit algebraic orbits,
linked to central configurations [8]. Restricting the n-body problem to a vector space
associated to a central configuration leads in particular to an integrable problem,
although very simple. Still, as we will see, there are also less trivial invariant vector
spaces of the n-body problem on which the potential is integrable.

In the integrability analysis of the n body problem, and in the more general case
of homogeneous potential, the notion of central configuration/Darboux point plays
a key role.

Definition 1 We consider the potential Vn,d of the n body problem. We will say that
c ∈ C

nd is a central configuration if there exists g ∈ C
d,α ∈ C such that

∂

∂qi
V (c1 − g, . . . , cn − g) = α(c1 − g, . . . , cn − g) i = 1 . . . n

The scalar α is called the multiplier. We say that the central configuration is proper if
α �= 0 (the case α = 0 is called an absolute equilibrium). In the more general setting
of V a homogeneous potential of degree −1, we call c a Darboux point if moreover
g = 0.

We add this constant g in our Definition for the n body problem as the potential is
in this case invariant by translation, and thus we do not (always) want to require that
the center of mass be at 0. Our non-integrability proofs will be based on variational
equations of the corresponding differential system near these central configurations.
The main theorem behind these non-integrability proofs is the following

Theorem 1 (Morales et al. [9]) Let V be a meromorphic homogeneous potential of
degree −1 and c a Darboux point. If V is meromorphically integrable, then the iden-
tity component of the Galois group of the variational equation near the homothetic
orbit associated to c is abelian at any order. Moreover, the identity component of the
Galois group of the first order variational equation is abelian if and only if

Sp(∇2V (c)) ⊂ {
1
2 (k − 1)(k + 2), k ∈ N

}

Note also that in dimension 1, Vn,1 is a rational potential (thus univaluated onCn),
but is not in higher dimension. In the complex domain, the potential Vn,d, d ≥ 2
is properly defined on an algebraic variety S. An extension of Theorem 1 has been
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done in [10], and proves that in the n body problem, the necessary condition for
integrability on the Galois group of variational equations still holds.

Such a Theorem can be either used for each central configuration separately, or
simultaneously using some algebraic properties. In the case of the n body problem, a
direct computation of central configurations is often too difficult. The colinear case
with n = 3, 4 is still tractable, and we prove moreover that a complete computation
of central configurations is not necessary, only upper bounds on eigenvalues of the
Hessian matrix of Vn,1 at Darboux points is necessary.

Using the real algebraic geometry software RAGlib [11], we prove such an upper
bound for n = 3, 4 and we conjecture that a similar upper bound always hold for
any n. The software RAGlib is a Maple package, and the command we will mostly
use is HasRealRoots. This command take in input a system of polynomials with
rational coefficients, and (possibly) a set of polynomial inequalities. The answer
is true/false, saying if the system has (at least) one real solution. This also allows
to prove upper bounds for a (multivariate) rational function f by just looking for
solutions of the equation f = B where B is a (numerically guessed) upper bound.
Note that the real conditions on the masses will be heavily used: in particular some
polynomial integrability conditions cannot be satisfied in the real but would be in
the complex.

We then prove very strong non-integrability Theorem that rules out any potential
which satisfies these bounds. In the planar case, we also prove a similar upper bound,
which holds moreover for any n. This allows to prove the non-integrability of the
planar n-body problem. The main theorems of this article are the following

Theorem 2 For any (m1,m2,m3) ∈ R
∗+
3, the potential V3,1 is not meromorphi-

cally integrable. Moreover, if m1 + m2 + m3 = 1, the variational equations near
the unique real central configuration have an Abelian Galois group (over the base
field C(t)) up to an order

• greater than 1 if and only if there exist ρ ∈ R
∗+ and k ∈ {5, 9, 14} such that

m1 = (ρ + 1)(−8ρ5 + kρ5 − 12ρ4 + 3kρ4 − 8ρ3 + 3kρ3 + 3kρ2 + 3kρ + k)

k(1 + 2ρ3 + ρ4 + 2ρ + ρ2)2

m2 = − (−8ρ4 + kρ4 − 28ρ3 + 2kρ3 + kρ2 − 40ρ2 − 28ρ + 2kρ − 8 + k)ρ2

k(1 + 2ρ3 + ρ4 + 2ρ + ρ2)2
(Ek)

m3 = (ρ + 1)(kρ5 + 3kρ4 + 3kρ3 − 8ρ2 + 3kρ2 − 12ρ + 3kρ − 8 + k)ρ2

k(1 + 2ρ3 + ρ4 + 2ρ + ρ2)2

• equal to 2 if and only if moreover m1 = m3 or (m1,m2,m3) ∈ E9.

Theorem 3 For any m1,m2,m3,m4 > 0, m1 + m2 + m3 + m4 = 1, the potential
V4,1 is not integrable. Moreover, near the unique real central configuration, there
are at most 14 one dimensional irreductible algebraic curves in the space of masses
for which the variational equations have virtually Abelian Galois groups at least
up to order 1. At least one of them, and at most 10 of them correspond to masses for
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which the second order variational equations have a virtually Abelian Galois group.
None of them have a variational equation whose Galois group is virtually Abelian
at order 5.

Theorem 4 For any n-tuplet of positive masses, the planar n body problem is not
meromorphically integrable.

Theorem 5 The planar 5 body problem with masses m = (−1/4, 1, 1, 1, 1) restric-
ted to the vector space

W = {q ∈ R
10, q1,1 = q1,2 = q2,1 + q4,1 = q2,2 + q4,2 = q3,1 + q5,1 = q3,2 + q5,2 = 0}

is integrable in the Liouville sense.
The spatial n + 3 body problem with masses m = (m1, . . . ,mn,−α, 4α, 4α)

restricted to the vector space

W = {
q ∈ R

3(n+3), qn+1,1 = qn+1,2 = qn+1,3 = qn+2,1 = qn+2,2 = qn+3,1

= qn+3,2 = qn+2,3 + qn+3,3 = 0, qi,3|i=1...n
= 0, qi |i=1...n

= βRθc, β, θ ∈ R

}

where c is a central configuration of n bodies with masses (m1, . . . ,mn) in the plane
on the unit circle with center of mass at 0, Rθ being a rotation in this plane and
α chosen such that the configuration c with the central mass −α, is an absolute
equilibrium is integrable in the Liouville sense.

The Theorem 2 implies the non integrability of the colinear 3 body problem,
which was already done in [12] using the systematic approach using all central
configurations and a relation between the eigenvalues of Hessian matrices. This
approach is hard to apply tomore complicated systems as its cost is exponential in the
number of central configurations. This is due to the fact that all central configurations
are analyzed, even if only a few of them would probably be enough to conclude to
non integrability. Also, the physical assumption that the masses are real positive is
not used. In the next section, we thus make a more precise analysis of variational
equations near the unique real central configuration, whose existence and uniqueness
is a result of Moulton [13]:

Theorem 6 (Moulton [13]) For any fixed positive masses m1, . . . ,mn with a fixed
order of the masses, the colinear n body problem admits exactly one real central
configuration.

Remark that also in the not trivially integrable example we found, central config-
urations seem to play a key role. In particular, they all contain continuums of central
configurations (the first case contains the famous 5 body central configuration of
Roberts [14]). According to a conjecture of Smale, proved for n = 4, 5 in [8, 15],
such continuums are not possible with positive masses.
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2 The Colinear 3 Body Problem

2.1 Central Configurations

Proposition 1 (Euler) We pose c = (−1, 0, ρ) with ρ ∈ C\{0,−1}. If c is a central
configuration of the colinear 3 body problem (corresponding to the potential V3,1),
then the following equation is satisfied

(m2 + m3) + (2m2 + 3m3)ρ + (3m3 + m2)ρ
2

−(3m1 + m2)ρ
3 − (3m1 + 2m2)ρ

4 − (m1 + m2)ρ
5 = 0

(1)

In the colinear 3 body problem, we can always translate a central configuration
because the potential is invariant by translation. Moreover, due to this definition,
the set of central configurations is also invariant by dilatation, so for any central
configuration q ∈ C

3, after translation and dilatation, we can always write it q =
(−1, 0, ρ) with ρ ∈ C\{0,−1}. The biggest problem that authors on the subject
(see [4]) seem to have encountered is the fact that we have a polynomial of degree 5,
which is not very easy to use.Wewill see that the complexity of central configuration
equations is not a problem at all if we consider the problem differently.

The Theorem 6 of Moulton suggests that we should work in the opposite way. We
fix ρ > 0 and we seek the masses such that c = (−1, 0, ρ) is a central configuration.
We are then sure that if we consider all possible ρ we will then consider all positive
masses (because for each triplet of masses, there is at least one ρ that is convenient).
More precisely, we have

Proposition 2 The set of masses m1,m2,m3 such that m1 + m2 + m3 = 1 and c =
(−1, 0, ρ) with

ρ ∈ C\{ρ, ρ(ρ + 1)(1 + 2ρ + ρ2 + 2ρ3 + ρ4) = 0} (2)

is a central configuration, is an affine subspace of dimension 1 parametrized by

m1 = s

m2 = −3sρ3 + 3sρ4 + sρ5 + s − 1 + 3ρs − 3ρ + 3ρ2s − 3ρ2

ρ(1 + 2ρ + ρ2 + 2ρ3 + ρ4)

m3 = 2ρs + ρ2s + 2sρ3 + sρ4 + s − 1 − 2ρ − ρ2 + ρ3 + 2ρ4 + ρ5

ρ(1 + 2ρ + ρ2 + 2ρ3 + ρ4)

(3)

Conversely, for each triplet of masses (m1,m2,m3) ∈ R
∗+
3, m1 + m2 + m3 = 1,

there exists a central configuration of the form (−1, 0, ρ) with condition (2) and
ρ ∈ R

∗+. Eventually, for ρ ∈ R, ρ ≥ 1, the m1,m2,m3 are positive if and only if

s ∈
]
0,

1 + 3ρ + 3ρ2

(1 + 2ρ + ρ2 + 2ρ3 + ρ4)(1 + ρ)

[
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Proof Using equation of Proposition 1, we get the following equations

(
3ρ3− 3ρ4− ρ5 1 + 2ρ + ρ2− ρ3− 2ρ4− ρ5 1 + 3ρ + 3ρ2

1 1 1

)⎛

⎝
m1

m2

m3

⎞

⎠ =
(
0
1

)

This is an affine equation and so the space of solutions is an affine subspace. Taking
ρ ∈ C\{ρ, ρ(1 + 2ρ + ρ2 + 2ρ3 + ρ4)}, the matrix has always maximal rank, and
so the space of solution is of dimension 1, which we parametrize by s. Conversely,
the Euler equation (1), thanks to Moulton’s result for n = 3, has always exactly one
real positive solution.

Finally, let us look at the case ρ ∈ R, ρ ≥ 1. We want the masses to be positive,
and according to our parametrization, the masses are affine functions in s. An affine
function changes sign at most once. Solving mi = 0, we get

m1 = 0 ⇒ s = 0

m2 = 0 ⇒ s = 1 + 3ρ + 3ρ2

3ρ3 + 3ρ4 + ρ5 + 1 + 3ρ + 3ρ2

m3 = 0 ⇒ s = 1 + 2ρ + ρ2 − ρ3 − 2ρ4 − ρ5

2ρ + ρ2 + 2ρ3 + ρ4 + 1

The last equality gives us for ρ ≥ 1 s ≤ 0 which is impossible because m1 ≥ 0. So
m3 does not change sign for any s > 0 and is positive. The positivity of m2 gives us
the constraint. �

Let us remark that the constraint ρ ≥ 1 is in fact not a constraint, because using
dilatation and the symmetry which consists of reversing to reverse the order of all
the masses, we exchange ρ by 1/ρ. After this first proposition, we can study the
integrability of the colinear 3 body problem for real positive masses.

In the following, we will note W (c) ∈ M3(C) the 3 × 3 matrix such that

W (c)i,j = 1

mi

∂2

∂qi∂qj
V3(c) (4)

where V3 is the potential of the colinear 3 body problem and c ∈ C
3.

2.2 Non-integrability

In this subsection, we will prove Theorem 2.

Lemma 7 For any ρ ∈ R, ρ ≥ 1, there exists, among the masses (m1,m2,m3) ∈
R

∗+
3 such that m1 + m2 + m3 = 1 and c = (−1, 0, ρ) is a central configuration for
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the triplet of masses (m1,m2,m3), at most 3 triplets of masses for which the Galois
group of first order variational equation has a Galois group whose identity component
is Abelian.

Proof The matrix W for the central configuration of the form c = (−γ + g, g, ργ +
g) is given by

2

γ3

⎛

⎜⎝

m2+3m2ρ+3m2ρ
2+m2ρ

3+m3

(1+ρ)3
−m2 − m3

(1+ρ)3

−m1
m1ρ

3+m3

ρ3
−m3

ρ3

− m1
(1+ρ)3

−m2
ρ3

m1ρ
3+m2+3m2ρ+3m2ρ

2+m2ρ
3

(1+ρ)3ρ3

⎞

⎟⎠

We need to choose γ, g such that the multiplier of the central configuration is −1
and the center of mass is at 0 (because we want an orbit of the form c.φ(t)). We first
compute the spectrum of W which gives

[
0,

4(2ρ2 + 3ρ + 2)

(3ρ3 + 3ρ4 + ρ5 + 1 + 3ρ + 3ρ2)γ3
,−2(sρ4 + 2sρ3 − ρ2 + ρ2s − 2ρ + 2ρs − 1 + s)

ρ3(1 + 2ρ + ρ2)γ3

]

where the masses m1,m2,m3 are parametrized by s according to the formula (3). The
constraint that the multiplier of c should be equal to −1 gives

γ3 = − (sρ4 + 2sρ3 − ρ2 + ρ2s − 2ρ + 2ρs − 1 + s)

ρ3(1 + 2ρ + ρ2)

and so we get

Sp(W (c)) =
{
0, 2,− 4(1 + ρ)ρ3(2ρ2 + 3ρ + 2)

(sρ4 + 2sρ3 − ρ2 + ρ2s − 2ρ + 2ρs − 1 + s)(1 + 2ρ + ρ2 + 2ρ3 + ρ4)

}

Let us note G(s, ρ) this last eigenvalue, which is a fractional linear function in s. The
singularity in s of G is at

s = 1 + 2ρ + ρ2

1 + 2ρ + ρ2 + 2ρ3 + ρ4

This value of s corresponds to the case where the central configuration is in fact an
absolute equilibrium. Indeed, we then have the multiplier of the central configuration
equal to zero. This special case produces the following set of masses

(m1,m2,m3) =
(

(ρ + 1)2

1 + 2ρ + ρ2 + 2ρ3 + ρ4
,

−ρ2

1 + 2ρ + ρ2 + 2ρ3 + ρ4
,

(ρ + 1)2ρ2

1 + 2ρ + ρ2 + 2ρ3 + ρ4

)

The mass m2 is always non-positive, and so this case is impossible. Now in the
general case, we solve the equation

G(s, ρ) ∈ {
1
2 (i − 1)(i + 2) i ∈ N

}
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and we obtain the following solutions

m1 = (ρ + 1)(−8ρ5 + kρ5 − 12ρ4 + 3kρ4 − 8ρ3 + 3kρ3 + 3kρ2 + 3kρ + k)

k(1 + 2ρ3 + ρ4 + 2ρ + ρ2)2

m2 = − (−8ρ4 + kρ4 − 28ρ3 + 2kρ3 + kρ2 − 40ρ2 − 28ρ + 2kρ − 8 + k)ρ2

k(1 + 2ρ3 + ρ4 + 2ρ + ρ2)2
(Ek)

m3 = (ρ + 1)(kρ5 + 3kρ4 + 3kρ3 − 8ρ2 + 3kρ2 − 12ρ + 3kρ − 8 + k)ρ2

k(1 + 2ρ3 + ρ4 + 2ρ + ρ2)2

with k ∈ { 12 (i − 1)(i + 2) k ∈ N}. These solutions are not valid for k = 0, but we
have that if G(s, ρ) = 0 then

(1 + ρ)(2ρ2 + 3ρ + 2) = 0

which is excluded because ρ ∈ R
∗+.

Let us look now what happen if we restrict ourselves to positive masses. We take
ρ ≥ 1 and we look at the sign of the masses given by the curves (Ek). We already
knowaccording to Proposition 2 that the interval I(ρ) to consider for s is the following

I(ρ) =
[
0,

1 + 3ρ + 3ρ2

(1 + 2ρ + ρ2 + 2ρ3 + ρ4)(1 + ρ)

]

and noting that (1 + 2ρ + ρ2) > (1 + 3ρ + 3ρ2)/(1 + ρ) for ρ ≥ 1, the singularity
of G(s, ρ) is never in I(ρ), and so for ρ ≥ 1, G(., ρ) increases on I(ρ).

Then G(., ρ) is a bijection of I(ρ) on

G(I(ρ), ρ) =
]

4(1 + ρ)ρ3(2ρ2 + 3ρ + 2)

(1 + ρ2 + 2ρ)(1 + 2ρ + ρ2 + 2ρ3 + ρ4)
,
4(2ρ2 + 3ρ + 2)(1 + ρ)2

1 + 2ρ + ρ2 + 2ρ3 + ρ4

[

Studying these functions, we prove that the interval G(I(ρ), ρ) is decreasing when
ρ ≥ 1 increases. Knowing that G(I(1), 1) =]2, 16[, the only possible eigenval-
ues corresponding to a Galois group with an Abelian identity component are
5, 9, 14. �

Let us now remark that the potential V3,1 of the colinear 3 body problem can
be reduced. Indeed, this potential is invariant by translation, and by making the
symplectic variable change pi −→ √

mipi, qi −→ qi/
√

mi, the kinetic part in the
Hamiltonian becomes the standard kinetic energy (p21 + p22 + p23)/2. So the set of
potential V3,1 with parameters (m1,m2,m3) ∈ R

∗+
3, m1 + m2 + m3 = 1 is a set of

homogeneous potentials of degree −1 in the plane.

Corollary 1 The colinear 3-body problem with positive masses is not meromorphi-
cally integrable.
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Proof We proved that only the eigenvalues 5, 9, 14 are possible for integrability of
the colinear 3-body problem. In [16], all potentials having these eigenvalues have
been classified and they are not meromorphically integrable. �

Remark that in the limit case when two masses tend to 0, the potential V3,1 after
reduction is not singular and converges to a potential of the formα/q1 + α/q2, which
has the eigenvalue 2 and is integrable.

2.3 Higher Variational Equations

Let us now compute exactly at which order the variational equations near the unique
real Darboux point have a Galois group whose identity component is not Abelian.
Indeed, using [16], we note that on the curves E5,E14, the potentials are integrable
at most up to order 4, and on E9 at most to order 6 (which reduces to 4 in our case,
because the potential V3 is real and integrable cases to order 5, 6 are complex).

2.3.1 At Order 2

To study the Galois group of second order variational equations, we apply Theorem 2
of [17]. We have however to take into account that the kinetic energy is p21/(2m1) +
p22/(2m2) + p3/(2m3) instead of (p21 + p22 + p23)/2. This standard form of kinetic
energy can be obtained by a symplectic change of variable. The Hessian matrix
∇2V (c) after this variable change is simply the matrix W defined in (4) (Fig. 1).

Lemma 8 Letρ∈R, ρ ≥ 1be a real number, k ∈ {5, 9, 14}and masses (m1,m2,m3)

∈ Ek. The variational equations at order 2 near the homothetic orbit associated to c
have a Galois group whose identity component is Abelian if and only if the masses
belong to the set {(

12

35
,
11

35
,
12

35

)
,

(
24

49
,
1

49
,
24

49

)}
∪ E9

Proof We compute the third order derivatives of V at c. Denoting by X2 the eigen-
vector of eigenvalue 2 and X3 the eigenvector of eigenvalue k, we have

D3V (X2,X2,X2) = D3V (X3,X3,X2) = − 3
√
2ρ2 + 3ρ + 2

√
2k

(ρ + 1)2g
4
3
√

k − 2ρ
3
2

D3V (X3,X2,X2) = 0

D3V (X3,X3,X3) = −3
√
2
√
2 ρ2 + 3 ρ + 2(ρ − 1)P(ρ)

(1 + 2ρ3 + ρ4 + 2ρ + ρ2)3ρ
3
2 g

4
3 (ρ + 1)2

√
k(k − 2)m1m2m3

where

g = −4(2ρ2 + 3ρ + 2)(
ρ5 + 3 ρ4 + 3 ρ3 + 3 ρ2 + 3 ρ + 1

)
k
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Fig. 1 Graph of the masses having a first order variational equation with a Galois group whose
identity component is Abelian. The masses are represented in barycentric coordinates. The masses
inside the black triangle are positive. Drawing the curves outside the positive masses reveals that
the curves (Ek) accumulate on the curve (E∞). They also intersect on the points (m1,m2,m3) =
(1, 0, 0), (0, 1, 0), (0, 0, 1) which are the integrable cases (at the limit when the masses are going
to zero through a limiting process)

P(ρ) = (k + 10)ρ6 + (5k + 50)ρ5 + (8k + 120)ρ4 + (7k + 158)ρ3

+ (8k + 120)ρ2 + (5k + 50)ρ + k + 10

According to [17], the condition for integrability of the second order variational
equations are that some of these third order derivative should vanish. Using the
table of [17], the three first third order derivatives never lead to an integrability
condition, but the last one does. In particular, for k = 5, 14, the integrability condition
is D3V (X3,X3,X3) = 0, and there is none for k = 9.

The only real positive solution of equation (ρ − 1)P(ρ) = 0 for k = 5, 14 isρ = 1.
Putting this in the parametrization of (E5), (E14), we obtain that the set of possible
masses is given by

{(
12

35
,
11

35
,
12

35

)
,

(
24

49
,
1

49
,
24

49

)}
∪ E9

�

2.3.2 At Order 3

Let us now look at order 3. We will prove that V3 is never integrable at order 3 near
its unique real central configuration.
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Lemma 9 The potential V3 is never integrable at order 3 at its unique real central
configuration.

Proof We will directly use the main Theorem of [18]. A convenient variable change
sends the potentialV3 to a planar homogeneous potentialwith standard kinetic energy,
and a rotation dilatation puts the central configuration at c = (1, 0). We then find that
the third order integrability condition can be written

−256

715
a2 + 13824

5005
c = 0, b = 0, k = 5

−475136

57057
a2 − 753664

101745
b2 + 19759104

323323
c = 0, k = 9

−2755788800

7436429
a2 + 19729612800

7436429
c = 0, b = 0, k = 14

where the constants a, b, c are

a = −3
√
2ρ2 + 3ρ + 2

√
2k

(ρ + 1)2g
4
3
√

k − 2ρ
3
2

,

b = −3
√
2
√
2 ρ2 + 3 ρ + 2(ρ − 1)P(ρ)

(1 + 2ρ3 + ρ4 + 2ρ + ρ2)3ρ
3
2 g

4
3 (ρ + 1)2

√
k(k − 2)m1m2m3

c = F(ρ, k)

where F is a rational fraction in ρ, k, and

g = −4(2ρ2 + 3ρ + 2)(
ρ5 + 3 ρ4 + 3 ρ3 + 3 ρ2 + 3 ρ + 1

)
k

The constraint b = 0 for k = 5, 14 comes from order 2, and we already know the
unique solution is ρ = 1. The other constraint gives

3024672

1573
7

2
3 �= 0

2137106227200

96577
7

2
3 �= 0

for k = 5, 14 respectively. For k = 9, the third order integrability constraint is

179523957 + 1436191656 ρ + 5144769684 ρ2 + 11297844542 ρ3 + 17938383865 ρ4

+23104821764 ρ5 + 25814403801 ρ6 + 26361946842 ρ7 + 25814403801 ρ8 + 23104821764 ρ9

+17938383865 ρ10 + 11297844542 ρ11 + 5144769684 ρ12 + 1436191656 ρ13 + 179523957 ρ14 = 0

This polynomial has no real positive root, and so the constraint is never
satisfied. �
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Remark 1 One could compute the third order integrability condition for any curve
(Ek), and even test if this condition could be satisfied thanks to the holonomic
approach of third order variational equations in [18].Here the restriction (m1,m2,m3)

∈ R
∗+
3 is only for physical reasons, but a more complete study is possible. Still note

that this constraint has allowed us to easily bound the eigenvalues, and then to study
integrability near the unique real central configuration. If one would allow negative
masses, or even complex masses, some results are no longer valid. Especially, there
are complex masses which possess a non degenerate central configuration which is
integrable at order 3.

3 The 4 Body Problem

The previous approach for non integrability proofs can be extended for more com-
plicated systems, as the 4-body problem, for which a direct approach would be
impossible due to the high number of central configurations. The difficulty of the
problem of finding these central configurations is famous [8], thus we will try to
require the least possible information on them. The most important quantity is the
set of possible eigenvalues of Hessian matrices at the unique real central configu-
ration. In particular, if this set is finite, then the classification approach of [16] is
possible.

3.1 Eigenvalue Bounding

Following the method presented in [16], we will first try to prove a bound on eigen-
values of the Hessian matrices at Darboux points of V4,1. In [16], the potential are
planar, and sowe need to operate a little differently. Instead of trying to bound directly
these eigenvalues (whose expression could be complicated as they appear as roots
of the characteristic polynomial), we simply bound the trace of the Hessian matrix.
Indeed, the eigenvalues of the Hessian matrix are of the form {0, 2,λ1,λ2}, and so
bounding the trace gives a bound on λ1 + λ2. Moreover, thanks to Theorem 1, we
already know that for integrability we must have λ1,λ2 ≥ −1, and thus we get also
a bound on λ1,λ2 (Figs. 2 and 3).

Theorem 10 We consider the colinear 4 body problem with positive masses, whose
potential is given by V4,1. Let c be the real central configuration (existence and
uniqueness up to translation due to Theorem 6) with multiplier −1. Let W ∈ M4(C)

be the matrix

Wi,j = 1

mi

∂2

∂qi∂qj
V i, j = 1 . . . 4

Then tr(W ) < 70.
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Fig. 2 Diagram of the bifurcations between the index i of the Mi that realize the maximum of
tr(W ). The index i(ρ1, ρ2) can only change on one of these curves. Moreover there exists a zone
(near ρ1, ρ2 = 1) where the set Sρ1,ρ2 is empty. Numerical analysis gives a maximum around 69.74

Fig. 3 Graph of the functions Mi, i = 1 . . . 4. We see that M2,M3,M4 are bounded but not M1.
This is why we proved that the curve M1 has only to be considered for ρ1 ≤ 5, allowing us to bound
the function

This value is not the optimal one which has a complicated algebraic expression.
Still considering a better bound than this one is not useful as it will not allow us to
reduce the number of exceptional cases we will have to deal with.
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Proof We first remark that after translation, dilatation and changing the order of
all the masses, a central configuration of V4 can always be written in the form
c = (−ρ1,−1, 1, ρ2) with ρ1 ≥ ρ2 > 1. Moreover, thanks to Moulton Theorem 6,
we also know that for any fixed positive masses, there always exists a unique central
configuration. So we will first fix our central configuration c = (−ρ1,−1, 1, ρ2),
and then compute the masses for which c is a central configuration. Moreover, we
will assume that m1 + m2 + m3 + m4 = 1 because multiplying all the masses by a
constant does not change the trace of the matrix W .

The equation of central configurations is a linear system in the masses, with 3
equations for 4 unknowns. The solution is of the form

(m1,m2,m3,m4) = (J1(ρ1, ρ2,m3), J2(ρ1, ρ2,m3), J3(ρ1, ρ2,m3), J4(ρ1, ρ2,m3))

where Ji are rational in ρ1, ρ2 and affine in m3 (and J3(ρ1, ρ2,m3) = m3). Now we
compute the trace of matrix W , and we obtain that tr(W ) is also rational in ρ1, ρ2
and affine in m3.

Lemma 11 The functions Ji have no singularities for ρ1 ≥ ρ2 > 1, and their coef-
ficient in m3 does not vanish for ρ1 ≥ ρ2 > 1.

Proof We simply build a polynomial whose factors are the denominators of the func-
tions Ji and numerators of the coefficient in m3 of the functions Ji. This polynomial
has no real solutions for ρ1 ≥ ρ2 > 1. �

So we can handle safely these Ji, and solve equations of the form Ji = 0 in m3

without dealing with singular cases. We need to prove

max
Ji>0, i=1...4, ρ1≥ρ2>1

tr(W ) < 70

Let us now remark that for fixed ρ1 ≥ ρ2 > 1, the function tr(W ) in m3 on the set

Sρ1,ρ2 = {m3 ∈ R, Ji(ρ1, ρ2,m3) > 0, i = 1 . . . 4}

has its maximum on the boundary of Sρ1,ρ2 (because tr(W ) is affine in m3). So for
fixed ρ1 ≥ ρ2 > 1, the maximum on the possible m3 has 4 possible values

Mi(ρ1, ρ2) = tr(W )(ρ1, ρ2, Ji(ρ1, ρ2, ·)−1(0)) i = 1 . . . 4

Let us now prove the following Lemma

Lemma 12 The following bounds hold

M2(ρ1, ρ2) ≤ 69.9 M3(ρ1, ρ2) ≤ 69.9 M4(ρ1, ρ2) ≤ 69.9 ∀ ρ1 ≥ ρ2 > 1

M1(ρ1, ρ2) ≤ 69.9 ∀ ρ1 ≥ ρ2 > 1, ρ1 ≤ 5

Proof These inequalities are automatically proved using RAGlib. �
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Lemma 13 If ρ1 ≥ 5, ρ1 ≥ ρ2 > 1, then

max
m3∈Sρ1 ,ρ2

tr(W ) ∈ {M2(ρ1, ρ2),M3(ρ1, ρ2),M4(ρ1, ρ2)}

Proof We set ρ1 ≥ 5 with ρ1 ≥ ρ2 > 1. Assume now that Sρ1,ρ2 �= ∅ and M1(ρ1, ρ2)
is the maximum of tr(W ) on Sρ1,ρ2 . Then the corresponding masses (m1,m2,m3,m4)

should be all non-negative (recall that themaximum could be reached at the boundary
of the domain of positive masses, so for non-negative masses). Solving equation
J1(ρ1, ρ2,m3) = 0 in m3, we get a rational fraction D in ρ1, ρ2. We now prove using
RAGlib that

D(ρ1, ρ2) ≤ 0 ∀ρ1 ≥ 5, ρ1 ≥ ρ2 > 1

So the only possibility left for having all non-negative masses is that m3 = D = 0.
This implies that M1(ρ1, ρ2) = M3(ρ1, ρ2) and so the Lemma follows. �

Using Lemma 13, we know that if ρ1 ≥ 5, ρ1 ≥ ρ2 > 1, the maximum M2, M3

or M4. These are bounded by 69.9 thanks to Lemma 12. For 5 ≥ ρ1 ≥ ρ2 > 1, the
maximum of tr(W ) can be any of the Mi, but due to Lemma 12, all of these are then
bounded by 69.9. So

max
Ji>0, i=1...4, ρ1≥ρ2>1

tr(W ) < 70 �

3.2 Symmetric Central Configurations

For symmetric central configurations, several cases are possible which are not pos-
sible in the non-symmetric case. So we will analyze in this part the case where the
real central configuration is of the form (−ρ,−1, 1, ρ).

Lemma 14 The function tr(W ) has no singularities for ρ1 > ρ2 > 1, and its coef-
ficient in m3 does not vanish for ρ1 > ρ2 > 1.

This Lemma is immediately proved by RAGlib. For ρ1 = ρ2, the coefficient in
m3 of tr(W ) vanishes, making it a special case. On the other hand, this produces an
additional symmetry that reduce the number of parameters by 1 and greatly simplify
the formulas

Theorem 15 (Pacella [19]) We consider the colinear 4 body problem potential V4,1

with positive masses and the central configuration c with multiplier −1 (existence
and unicity up to translation due to 6). Noting W ∈ M4(C) with

Wi,j = 1

mi

∂2

∂qi∂qj
V

the spectrum of W is of the form Sp(W ) = {0, 2,λ1,λ2} with λ1,λ2 > 2.
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This already allows to reduce somewhat the possible set of eigenvalues. We will
now check if some curves (in the space of masses) corresponding to a pair of eigen-
values λ1,λ2 are non-empty for real positive masses.

Lemma 16 If the potential V4,1 with positive masses possesses a real central config-
uration of the form (−ρ,−1, 1, ρ), then the spectrum of the Hessian matrix W at the
real central configuration with multiplier −1 has the form Sp(W ) = {0, 2,λ1,λ2}
with

{λ1,λ2} ∈ {{5, 9}, {5, 14}, {9, 27}, {14, 44}}

Proof Using Pacella Theorem, we obtain a better minoration λ1,λ2 > 2. Knowing
that 2 + λ1 + λ2 < 70, we get the following possibilities

{5, 5}, {5, 9}, {5, 14}, {5, 20}, {5, 27}, {5, 35}, {5, 44}, {5, 54}, {9, 9},
{9, 14}, {9, 20}, {9, 27}, {9, 35}, {9, 44}, {9, 54}, {14, 14}, {14, 20}, {14, 27},

{14, 35}, {14, 44}, {20, 20}, {20, 27}, {20, 35}, {20, 44}, {27, 27}, {27, 35}
(5)

We first compute the characteristic polynomial of matrix W . Using the same nota-
tions as before, the characteristic polynomial has rational coefficients in ρ1, ρ2,m3.
Factoring it, we take out the z(z − 2) factor (corresponding to eigenvalues 0, 2) and
we then get a degree 2 polynomial P in z. The coefficient in z corresponds to the trace
of W , and is affine in m3. We now put ρ1 = ρ2 in the expression of the characteris-
tic polynomial. The coefficient corresponding to the trace only depends on ρ2. The
equation P(z) = (z − λ1)(z − λ2) in ρ2,m3 gives rise to two equations in ρ2,m3, and
we have moreover the constraint of positivity of the masses mi which can be written
as a function of ρ2,m3 with the functions Ji. This polynomial system of equations
and inequalities has real solutions only for λ1,λ2 given by the Lemma. �

3.3 Reduction of Exceptional Curves

In this part, wewill always assume that the real central configuration (−ρ1,−1, 1, ρ2)
is such that ρ1 > ρ2.

Lemma 17 If the potential V4 with positive masses is meromorphically integrable,
then the real central configuration c with multiplier −1 has a Hessian matrix W with
spectrum of the form Sp(W ) = {0, 2,λ1,λ2} with

{λ1,λ2} ∈ {{5, 5}, {5, 9}, {5, 14}, {5, 20}, {5, 27}, {5, 35},
{5, 44}, {5, 54}, {9, 20}, {9, 27}, {9, 35}, {9, 44}, {9, 54}, {14, 44}}
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Proof Using Pacella Theorem, we obtain a better minoration λ1,λ2 > 2. Knowing
that 2 + λ1 + λ2 < 70, we get the possibilities (5). So we only need to eliminate the
cases

{9, 9}, {9, 14}, {14, 14}, {14, 20}, {14, 27}, {14, 35},
{20, 20}, {20, 27}, {20, 35}, {20, 44}, {27, 27}, {27, 35}

We first compute the characteristic polynomial of matrix W . Using the same nota-
tions as before, the characteristic polynomial has rational coefficients in ρ1, ρ2,m3.
Factoring it, we take out the z(z − 2) factor (corresponding to eigenvalues 0, 2) and
we then get a degree 2 polynomial P in z. The coefficient in z corresponds to the
trace of W , and is affine in m3. We then solve the equation tr(W )(ρ1, ρ2,m3) =
2 + λ1 + λ2 in m3 (using Lemma 14, this always produces exactly one solution) and
put this solution in P. So the only equation we have to study is of the form

Z0(ρ1, ρ2) = Pρ1,ρ2(0) − λ1λ2 = 0 ρ1 > ρ2 > 1 (6)

Using RAGlib, we prove that for λ1,λ2 in the upper 12 cases, this equation has no
solutions. This proves the Lemma. �

Remark 2 Remark that all the remaining curves are non empty for ρ1 ≥ ρ2 > 1, but
this does not imply they are non empty for positive masses (contrary to the previous
part where we have taken into account the positivity of the masses). Numerical
evidence suggest that for positive masses, the only possible eigenvalues {λ1,λ2} are

{5, 9}, {5, 14}, {5, 20}, {5, 27}, {9, 20}, {9, 27}, {9, 35}, {9, 44}, {14, 44}

but taking into account this additional constraint seems too complicated.

3.4 Second Order Variational Equations

Using the integrability table of [17], integrability at second order requires that some
of the third order derivatives of the potential vanish. Considering only the eigenvalues
λ1,λ2 (the other ones do not lead to any additional integrability condition) we obtain
the following number of conditions (i.e. the number of third order derivatives that
should vanish)

{5, 5}, {5, 14}, {5, 27}, {14, 44} 4 conditions
{5, 44}, {5, 20}, {5, 35}, {5, 54} 3 conditions

{5, 9}, {9, 27}, {9, 44} 2 conditions
{9, 35}, {9, 54} 1 condition

{9, 20} 0 condition
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The main drawback is that we need a priori to compute the eigenvalues of the
Hessian matrix, and due to the parameters, this is quite difficult in our problem. In
particular, testing the constraint implies solving 2-variables polynomials of degree
172 and this seems too large to rule out real solutions (if there are none at all). Still
in some cases, we can avoid this computation

Proposition 3 Let V be a meromorphic homogeneous potential of degree −1 in
dimension n, c a Darboux point of V with multiplier −1, and E a stable subspace of
∇2V (c). Assume that ∇2V (c) is diagonalizable and

∃B ⊂ N, with max(B) ≤ 2min(B) + 1, Sp
(∇2V (c)

∣∣
E

) ⊂ {k(2k + 3), k ∈ B}
(7)

If the second order variational equation near the homothetic orbit associated to c
has a Galois group whose identity component is Abelian then

D3V (c) · (X,Y ,Z) = 0 ∀X,Y ,Z ∈ E

Proof Using the integrability table of [17], we see that the condition on eigenvalues
(7) implies that the table A for such eigenvalues will only have zeros. So denoting
X1, . . . ,Xp the eigenvectors associated to eigenvalues λi i = 1 . . . p of ∇2V (c), we
obtain the integrability condition

D3V (c) · (Xi,Xj,Xk) = 0 ∀i, j, k = 1 . . . p

These p eigenvectors span the invariant subspace E, and so by multilinearity, this
gives the Proposition. �

We try to avoid computing the eigenvectors associated to eigenvalues {λ1,λ2}
for the Hessian matrix of the real central configuration of V4. In the cases {λ1,λ2} ∈
{{5, 5}, {5, 14}, {5, 27}, {14, 44}}, the hypotheses of Proposition 3 are satisfied using
for E the stable subspace generated by the eigenvectors associated to λ1,λ2. And it
appears that this subspace is much easier to compute. Remark also that when the two
eigenvalues are equal, then finding the eigenvectors is not necessary as any vector in
the corresponding eigenspace is an eigenvector.

Lemma 18 We consider V4 the potential of the colinear 4 body problem with positive
masses, c the real central configuration with multiplier −1, and W ∈ M4(C) the
matrix such that

Wi,j = 1

mi

∂2

∂qi∂qj
V

If Sp(W ) = {0, 2, 5, 5}, {0, 2, 5, 14}, {0, 2, 5, 27}, {0, 2, 14, 44}, then the potential
V4 is not meromorphically integrable.
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Proof We want to consider the stable subspace E of W corresponding to eigenval-
ues λ1,λ2. We already know an eigenvector of eigenvalue 0, v = (1, 1, 1, 1), and
an eigenvector of eigenvalue 2, the vector c = (−ρ1,−1, 1, ρ2). As the matrix is
symmetric, the eigenspaces are orthogonal, and thus we have E = Span(v, c)⊥. We
obtain

E = Span((2,−1 − ρ1, ρ1 − 1, 0), (0, ρ2 − 1,−1 − ρ2, 2))

denoting w1, w2 these two basis vectors of E.
Let us first consider the non-symmetric case. As Lemma 14 applies, we can

consider the polynomial Z0 ∈ R[ρ1, ρ2] given by Eq. (6), and

Z1 = D3V (c)(w1, w1, w1), Z2 = D3V (c)(w1, w1, w2)

Z3 = D3V (c)(w1, w2, w2), Z4 = D3V (c)(w2, w2, w2)

We obtain a system of 5 equations in two variables (the polynomials Zi being of
degree 58), and we prove that this system has no solutions for ρ1 > ρ2 > 1. Thus the
second order variational equation has not a Galois group with an Abelian identity
component.

The symmetric case. Only the cases Sp(W ) = {0, 2, 5, 14}, {0, 2, 14, 44} are pos-
sible. We have ρ1 = ρ2, and then the condition to have these eigenvalues are of
the form of two polynomials in ρ2,m3. The polynomials Zi above are still defined,
and are polynomials in ρ2,m3. This system of 6 equations has no real solutions
for ρ2 > 1,m3 > 0, and thus the second order variational equation does not have
a Galois group with an Abelian identity component. Thus the potential V4 is not
meromorphically integrable in these cases. �

4 Higher Variational Equations

Proof of Theorem 3 The still open cases are

{5, 44}, {5, 20}, {5, 35}, {5, 54}, {5, 9}, {9, 27}, {9, 44}, {9, 35}, {9, 54}, {9, 20}
(8)

The case {9, 20} is particularly interesting (and difficult) as there are no integrability
conditions at order 2, and numerical evidence suggest that this case is really possible
for positive masses. So this curve gives masses for which all integrability conditions
near the unique (up to translation) real Darboux point up to order 2 are satisfied.

In the same manner as in [16], we will compute for these remaining sets of
eigenvalues higher variational equations. We only need to study real 3 dimensional
homogeneous potentials of degree −1. Asuming there exists a real Darboux point c,
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after rotation we can assume that c = (1, 0, 0) (and the potential is still real). Then
the series expansion of V at c will be of the form

V (1 + q1, q2, q3) = q−1
1

⎛

⎝1 + 1

2

(
λ1

q2
2

q2
1

+ λ2
q2
3

q2
1

)
+

∞∑

i=3

i∑

j=0

ui,j
qi−j
2 qj

3

qi
1

⎞

⎠ (9)

As in [16], the main part of the algorithm consists of finding solutions in
C(t)

[
arctanh

(
1
t

)]
of a large system of linear differential equations, which are the

k-th variational equations. These k-th variational equations are put in block trian-
gular form to make computation faster. Only the last equation is solved through
the variation of parameters technique and then its monodromy analyzed through
commutativity condition of monodromy in [17].

Instead of computing a basis of solutions, we only compute several solutions, that
through empirical evidence, will lead to the strongest integrability conditions. The
output of the algorithm is a set of polynomial conditions on higher-order derivatives
of the potential V at the Darboux point c, so here it will be polynomial conditions
on the ui,j. As presented in [16], if a non degeneracy type condition is satisfied (see
[16] Definition 4.1), we will be able to express higher-order derivatives in function of
lower order ones. In our cases, this will always be the case for variational equations
of order ≥ 3 (but we are lucky, because it seems that if eigenvalues are spaced
enough, degeneracy at any order is possible). This allows us in particular to express
all derivatives of order ≥ 4 as functions of u3,0, u3,1, u3,2, u3,3. The possible series
expansions are written in Appendix A. Variational equations up to order 4 have been
analyzed. Still, at order 4, some combinations of eigenvalues are still possible, and
thus looking at order 5 is necessary. However, a speed-up is possible in certain cases:

4.1 An Invariant Subspace of the 5-th Order Variational
Equation

Lemma 19 Let V be a real meromorphic homogeneous potential of degree −1 in
dimension 3. Assume that V has a series expansion of the form

V (1 + q1, q2, q3) = q−1
1

⎛

⎝1 + 1

2

(
λ1

q2
2

q2
1

+ λ2
q2
3

q2
1

)
+

∞∑

i=3

i∑

j=0

ui,j
qi−j
2 qj

3

qi
1

⎞

⎠

with u3,1 = u4,1 = u5,1 = 0 and λ1 ∈ {5, 9, 14, 20}. Then V is not meromorphically
integrable.
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Proof The dynamical system associated to V is of the form q̈ = ∇V (q). Let us
compute ∂q3 V

∂q3 V = q−1
1

⎛

⎝λ2
q3
q2
1

+
5∑

i=3

i∑

j=2

jui,j
qi−j
2 qj−1

3

qi
1

+
∞∑

i=6

i∑

j=1

jui,j
qi−j
2 qj−1

3

qi
1

⎞

⎠

Thus we get that the series expansion of ∂q3 V at order 5 for q3 = 0 is

∂q3 V = u6,1
q5
2

q7
1

+ O
(
(q2, q3)

6 /q8
1

)

As we see, there is only one term left, and it is of order 5. Let us now look at the 5-th
order variational equation.

This variational equation will have an invariant subspaceW corresponding to the
5-th order variational equation of Ṽ , the restriction of V to the plane q3 = 0. Let us
now look the variational equation on W . The potential Ṽ is a 2-dimensional homo-
geneous potential of degree−1, and it has a Darboux point at (1, 0). The eigenvalues
of the Hessian matrix of Ṽ at this point are {2,λ1}. Now using [16], we know that
for any choice of real Ṽ with λ1 ∈ {5, 9, 14, 20}, the 5-th order variational equa-
tion does not have a virtually Abelian Galois group. Thus the 5-th order variational
equation of V does not have a virtually Abelian Galois group, and thus V is not
meromorphically integrable. �

Remark 3 Note that physically, the condition u3,1 = u4,1 = u5,1 = 0 implies that the
plane q3 = 0 is invariant at order 4. At order 5, it is no longer invariant, however the
derivatives in time of q1, q2 do not depend on q3.

We now use Lemma 19. Looking at the series expansions in Appendix A we
have computed, we see that for all of them except the last one, we have either
u3,1 = u4,1 = u5,1 = 0 or u3,2 = u4,3 = u5,4 = 0 (or both). In the first case we can
apply directly Lemma 19. In the second case, we just have to exchange q2, q3, and
the hypotheses of Lemma 19 are satisfied. So except for the case (λ1,λ2) = (9, 20),
the hypotheses are satisfied and thus there is no real meromorphic homogeneous
potential of degree −1 in dimension 3 with c = (1, 0, 0) as a Darboux point of V
with multiplier −1 and these pairs of eigenvalues are meromorphically integrable.

4.2 The Case {9, 20}

In the last subsection, we tried to avoid computing the Galois group of the 5-th
order variational equation as it is computationally expensive. At order 4, the ideal
I4 is zero-dimensional, but still has real solutions (given in Appendix A). As we
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can see in Appendix A, the previous Lemma does not apply for these eigenvalues.
Thus it is necessary to compute completely the 5-th order variational equation. The
coefficients of the series expansion at order 4 are polynomials in u3,0, u3,1, u3,2, u3,3
modulo the ideal I4. As the algorithm never needs to inverse an element of this ring
(which contains zero divisors), it also works at order 5. The output (after one week
of computation) is the ideal I5, which happens to be improper. Thus I5 =<1>, and
so no solutions (even complex) at all. We deduce then

Lemma 20 Let V be a real meromorphic homogeneous potential of degree −1 in
dimension 3. Assume that c = (1, 0, 0) is a Darboux point of V with multiplier −1
and Sp(∇2V (c)) = {2, 9, 20}. Then V is not meromorphically integrable. �

5 The Planar n-Body Problem

Let us prove in this section Theorem 4. The main tool will be the following Theorem

Theorem 21 (Pacella [19] Theorem 3.1) We consider the colinear n body problem
with positive masses and c a configuration with multiplier −1, given by potential
Vn,2. Noting W ∈ Mn(C) with

Wi,j = 1

mi

∂2

∂qi∂qj
Vn,2

the spectrum of W is of the form Sp(W ) = {0, 2,λ1, . . . ,λn−2} with λi > 2, i =
1 . . . n − 2.

Proof For the n body problem in the plane, the Hessian matrix to compute is of the
form W ∈ M2n(C)

Wi,j = 1

mi

∂2

∂qi∂qj
Vn,2

with the notation mi+n = mi. Computing this matrix at a colinear central configura-
tion, we obtain a matrix of the form

W =
(

A 0
0 − 1

2A

)

Due to Pacella Theorem, we have moreover that Sp(A) = {0, 2,λ1, . . . ,λn−2} with
λi > 2, i = 1 . . . n − 2. Then the spectrum of W is of the form

{0, 2,λ1, . . . ,λn−2, 0,−1,− 1
2λ1, . . . ,− 1

2λn−2}
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According to the integrability condition of theMorales-RamisTheorem1, all allowed
eigenvalues for integrability are greater or equal to −1. These conditions cannot
be satisfied as − 1

2λi < −1, i = 1 . . . n − 2. Thus the planar n body problem with
positive masses is not meromorphically integrable. �

6 Integrable n-Body Problems

In this section, we will progress in the opposite way. Instead of trying to prove non
integrability, we come from already known integrable cases, and we try to determine
if after some transformations, they correspond to particular cases of the n body
problem.

Proposition 4 The potential V in n variables q1, . . . , qn

V (q) =
p∑

l=1

al

⎛

⎝
jl+1∑

j=jl+1

q2
j

⎞

⎠
−1/2

(10)

with 0 = j1 < j2 < · · · < jp+1 ≤ n, al ∈ C is integrable in the Liouville sense. For
any complex orthogonal matrix R ∈ On(C), the potential V (Rq) is integrable in the
Liouville sense.

Here the kinetic part is assumed to be T(p) = ‖p‖2/2 and so the potential V is
associated to a Hamiltonian system with H(p, q) = T(p) + V (q).

Proof The potential V of equation (10) is a decoupled linear combination

V (q) =
p∑

l=1

alVl(qjl+1, . . . , qjl+1), Vl(qjl+1, . . . , qjl+1) =
⎛

⎝
jl+1∑

j=jl+1

q2
j

⎞

⎠
−1/2

These potentials are invariant by the rotation groupOjl+1−jl (C) and so are integrable.
Thus the potential V is integrable. As integrability is preserved by any orthog-
onal transformation, the potential V (Rq) will also be integrable in the Liouville
sense. �

Although these potentials seem to have a quite simple expression, the orthogonal
transformation R can mix the variables (the decomposition of V is not necessarily
conserved). However, the potential can always be written

V (q) =
p∑

l=1

alQl(q)
−1/2 (11)

with Qi quadratic forms. And as an orthogonal transformation conserves the rank of
these quadratic forms, we have moreover

∑p
l=1 rank Ql ≤ n.
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The Hamiltonian of the n body problem in dimension d can be written

H(p, q) =
n∑

i=1

‖pi‖2
2mi

+
∑

i<j

mimj

(
d∑

k=1

(qi,k − qj,k)
2

)−1/2

The kinetic part of Hn,d is not ‖p‖2/2 (as in Proposition 4). To transform the kinetic
part to the standard one, we only have to make the variable change qi,k �→ qi,k/

√
mi.

The potential now becomes

Ṽn,d =
∑

i<j

mimj

(
d∑

k=1

(qi,k/
√

mi − qj,k/
√

mj)
2

)−1/2

This expression is similar to Eq. (11), but there could be too many quadratic forms.
After reduction by translation, the potential becomes a (n − 1)d-dimensional poten-
tial. There are n(n − 1)/2 independent quadratic forms, and to be of the form (11),
we need n(n − 1)d/2 ≤ (n − 1)d, which implies n ≤ 2. So in general, the potential
Ṽn,d is not of the form (10), but it could be for some restricted cases.

Definition 2 We say that a vector space W ⊂ R
nd is an invariant vector space if

∀q ∈ W, ∇Vn,d ∈ W

This definition generalizes central configurations, which correspond to the case
dim W = 1. Needless to say, as it is more difficult to find the invariant vector spaces
than to find central configurations, we will not try to be exhaustive in this search. Let
us remark that we already know some invariant vector spaces such as the isosceles
3-body problem and the collinear 3-body problem (which is an invariant vector space
of the planar 3 body problem). Several others can be found using symmetries.

Let us nowestablish some rules for finding vector spacesW andmassesm such that
V |W is of the form (10) up to an orthogonal transformation. A necessary condition is
that it can be written under the form (11). So in the expression of V |W we should try
to have the lowest possible number of independent quadratic forms (corresponding
to mutual distances) with the lowest possible rank.

Remark that if we allow negative masses, some terms in the sum in Vn,d could
cancel each other, thus reducing greatly the number of quadratic forms. So it seems
that finding examples will be easier when negative masses are allowed. And indeed,
all interesting examples we will find require a negative mass. Let us now prove
Theorem 5.
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6.1 An Integrable 5 Body Problem

Proof The vector space W is of dimension 10 − 6 = 4. The mass −1/4 is at the
origin which is the center of mass of the system. On the vector space W , the 2-nd
and the 4-th body are symmetric with respect to the origin, as well as the 3-th and
5-th bodies. Due to these symmetries, the vector space W is invariant. We can thus
restrict our potential to W . Now computing the potential V on W we find V5,2

∣∣
W =

(
(q2,1 − q3,1)

2 + (q2,2 − q3,2)
2
)−1/2 + (

(q2,1 + q3,1)
2 + (q2,2 + q3,2)

2
)−1/2

(12)

There are only two quadratic forms each with rank two for each. As 2 + 2 = 4 =
dim W , we are in the form (11). We can now try to put this potential in the form (10).
This is done by the following orthogonal transformation

R = 1√
2

⎛

⎜⎜⎝

1 −1 0 0
0 0 1 −1
1 1 0 0
0 0 1 1

⎞

⎟⎟⎠

acting on q2,1, q3,1, q2,2, q3,2 in this order. Thus V5,2

∣∣
W is integrable. �

On W , the bodies are always on the edges of a parallelogram whose center is the
origin (where lies the mass −1). Looking at the forces acting on the bodies, we see
that they are not attracted by the center at all (because the repulsion of the central
mass −1/4 exactly compensates the attraction of the opposite mass 1 at twice the
distance). The masses are then only attracted by their neighbours. Looking at the
expression of the potential (12), we see that the force acting on the center of vertices
of the parallelogram (which are (±q2,1 ± q3,1,±q2,2 ± q3,2)) is toward the center.
Thus the motion of these centers are conics with focus at the origin.

Thus the motion of a body of mass 1 is the composition of two conic motions. The
body has a conic motion whose focus is the center of mass of two bodies of mass 1,
and this center of mass has a conic motion with focus at the origin. If the two conics
are ellipses with rational period ratio, this leads to (algebraic) periodic orbits of the
bodies (Fig. 4).

6.2 An Integrable n + 3 Body Problem

Proof The space W is of dimension 3. The forces between the n cocyclic masses
and the central mass exactly compensate. The forces between the 3 last masses also
compensate (as this is also an absolute equilibrium). So the only forces between the
bodies are between the last twomasses and the cocyclic masses. But due to symmetry
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Fig. 4 The configuration of the 5 bodies and examples of motions of a body of mass 1 with ellipses
with rational period ratio

and the fact that the masses are cocyclic, this force only involves one distance. Thus
the potential is of the form

V = γ
(
q2
1,1 + q2

1,2 + q2
n+2,3

)−1/2

This potential corresponds to a central force, and thus is integrable. �

Let us look at an example. The most known cyclic central configuration is the
regular polygon. We have m1 = · · · = mn = 1. The central mass (chosen to produce
an absolute equilibrium) and the potential are then

−α = −1

2

n−1∑

k=1

sin

(
kπ

n

)−1

V = 4nα
(
q2
1,1 + q2

1,2 + q2
n+2,3

)−1/2
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Fig. 5 A configuration of the n + 3 bodies with a regular polygon and an example of motion of
the bodies with an ellipse with non-zero inclination

respectively. The motion is the following: the n bodies describe conics in the plane,
and the two symmetrical last bodiesmove along the vertical line. Note that themotion
of the bodies on the vertical line is not determined by the motion of the bodies in
the plane (this is not a rigid motion as in the case of central configurations). This
vertical motion depends on the “inclination” of the conic orbit chosen for the above
potential (Fig. 5).

Appendix A. Integrable Series Expansions at Order 4

The results are written in the following way. We give a series expansion of the form
(9) of V , such that the k-th order variational equation of V near c has a virtually
Abelian Galois group if and only if (u3,0, u3,1, u3,2, u3,3) ∈ I−1

k (0). The sequence
of ideals Ik is growing, and we compute these conditions up to order 4. For the
eigenvalues in (8), they are given below. Remark that the Hilbert dimension of the
ideals I4 greatly depend on eigenvalues, and that sometimes exceptional possible
solutions appear in the 4-th order variational equation. In particular, the restriction
of these series expansions to the planes in (q1, q2) and (q1, q3) does not always lead
to integrable series expansion at order 4 on these planes.
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