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   Abstract     Rice is an important cereal crop in the world. Annually, a large amount of 
straw is produced as by-product from rice cultivation. Proper disposal of rice straw 
is a concern across the world due to its bulk volume. Composting is an alternative 
way for recycling of rice straw into a valuable end product for agricultural use. 
However, composting of rice straw is time consuming as it is composed of lignocel-
lulosic material. Therefore, the aim of this chapter is to summarize the pioneering 
and recent composting studies and provide information about the uses of potential 
lignocellulolytic microorganisms in composting as an alternative method for 
 sustainable management of rice straw. In addition, the role of rice straw composts in 
maintaining of soil health, plant growth promotion and disease suppression as 
 bioenhancer and bioprotectant is discussed. This knowledge could help build a plat-
form for researchers in this area to understand the recent developments in rice straw 
composting by means of addressing the environmental pollution concerns as well.  

  Keywords     Rice straw   •   Bioconversion   •   Lignocellulolytic   •   Growth enhancer 
  •   Bioprotectant  

1       Introduction 

 Rice ( Oryza sativa  L.) is one of the most important cereal crops in the world, with 
approximately 87 % currently grown in Asia. Rice is the crop that has shaped the 
diets, cultures, and economics of billions of Asians. For them, rice is more than 
food, rice is life. Approximately 120,000 varieties are grown across the world in a 
wide range of climate, water, and soil conditions (Raboin et al.  2014 ). 

 The disposal of rice straw is a problem, as it takes up a large area due to its low 
bulk density, and harbors pests and diseases. Rice straw cannot be used as animal 
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feed due to its low digestibility, high lignin and silica contents which lead to low 
animal production (Van Soest  2006 ). Recycling of straw in the fi eld is not feasible 
because of its slow decomposition rate. In addition, rice straw adds large organic 
carbon, which leads to net immobilization of nitrogen in soil and the succeeding 
crops undergo nitrogen defi ciency, resulting in lower yield. In Malaysia, a large 
 portion of rice straw is disposed of by open-fi eld burning which causes serious 
environmental problems. The burning of rice straw emits smoke and dust particles 
that are harmful to human health, causing asthma and other respiratory problems. It 
also emits greenhouse gases, namely CO 2 , CH 4 , and N 2 O. Global warming has 
adverse effects on world climate such as the increase in global  temperature, rising 
water table, melting icebergs, unpredictable weather patterns, and increasing pest 
infestation and diseases (Gadde et al.  2009 ; Chang et al.  2013 ). Attention has to be 
given to environmentally friendly, nonhazardous, and sustainable methods for proper 
management of rice straw in a short period of time. 

 Composting is a promising alternative for the recycling of rice straw (Sanchez- 
Monedero et al.  2002 ; Yu et al.  2007 ; Mishra and Nain  2013 ; Sharma et al.  2014 ; 
Hottle et al.  2015 ). Composting has long been recognized as one of the environmen-
tally friendly and cost effective alternatives for organic waste recycling (Sanchez- 
Monedero et al.  2002 ). Compost is a valuable asset to farmers due to their local 
availability as a source of multiple plant nutrients (Khaliq et al.  2006 ). It improves 
soil characteristics by lowering bulk density, increasing cation exchange capacity, 
water-holding capacity, soil aeration, buffering capacity, and infi ltration rates. 

 Recent researches have shown that composts suppress plant diseases caused by 
soil-borne pathogens (Yu et al.  2015 ; Wei et al.  2015 ). Composts suppress phyto-
pathogens through various complex biological and physiochemical characteristics 
(Wei et al.  2015 ; Ullah et al.  2015 ). The physiochemical properties reduce disease 
severity by affecting the growth of pathogen or host plant, while the biological 
characteristics include the antibiotic production, lytic and other extracellular 
enzyme production, induction of host-mediated resistance in plants, competition, 
parasitism, and predation, and other interactions between benefi cial microorganisms 
and pathogens that decrease the disease incidence. Compost sterilization reduces 
or eliminates disease suppressiveness and colonization by the diverse range of 
microorganisms resulted in enhanced suppressiveness of diseases (Reuveni et al. 
 2002 ; Noble and Roberts  2004 ; Yogev et al.  2006 ; Faheem et al.  2015 ). 

 One of the imperative aspects of compost application is the degree of maturity and 
stability. Immature compost may produce phytotoxic effects or enhance  anaerobic con-
ditions. Maturity refers to the degradation of phytotoxic compounds produced during 
the early phases of composting and the proportion of stable humus in compost (Wu 
et al.  2000 ; Makan  2015 ). An optimum level of maturity is attained when compost is 
stable, but active enough to sustain microbial activity when  applying as a biocontrol 
agent for the control of phytopathogen. Compost maturity and stability are also infl u-
enced by the structure and composition of organic  materials, and the potential of 
microbes which decomposed the macromolecules in the substrates. 

 Phytotoxic compounds are accumulated during composting of lignocellulosic 
rice straw as it decomposes slowly (Jurado et al.  2015 ). However, humifi cation 
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 process is fed by the intermediate metabolites generated from the bioprocess 
(Perez et al.  2002 ). Hence, the successes of composting as well as the usefulness 
of  compost as an organic amendment are highly dependent on the ability of 
microorganisms. Though, the natural microbial population in rice straw can per-
form the composting, the inoculation with lignocellulolytic microorganisms 
could be a strategy that  perhaps enhances the bioprocess (Elorrieta et al.  2002 ; 
Jurado et al.  2015 ). In addition, composts need to be colonized by a specifi c 
antagonist during the composting process to prepare specifi c disease suppressive 
composts (Blaya et al.  2013 ). As, for example, inoculation of compost with fun-
gal antagonists  Trichoderma viride  gave fruitful results in suppressing  Sclerotium  
root rot in chilli (Kausar et al.  2014 ). 

 The above information implies that composting of rice straw through inoculation 
with lignocellulolytic antagonists at optimum conditions might be a promising 
 technique for producing disease suppressive compost in a short period of time. The 
composting process of rice straw inoculated with lignocellulolytic bioenhancer and 
its uses for crops have not been widely investigated. Therefore, in the present 
 chapter we integrate different methods of microbial composting of lignocellulosic 
rice straw and their effi cacy in enhancing plant growth and disease suppression as 
well as in maintaining soil fertility.  

2     Production and Properties of Rice Straw 

2.1     Rice Straw Biomass 

 Global rice production was 741.3 million tons in 2014 (USDA  2015 ). Approximately 
~1.5 t straw remains in the fi eld as residue for every ton of harvested grain. Thus, 
nearly 740–1110 million tons of straw are accumulated annually as a by-product. 

   Table 1    Rice production of ten leading rice producing countries in the world in 2013 (Statista  2014 )   

 Number  Country 
 Rice production 
(Million metric tons) 

 1  China  203.61 
 2  India  159.2 
 3  Indonesia  71.28 
 4  Bangladesh  51.5 
 5  Vietnam  44.04 
 6  Thailand  36.06 
 7  Myanmar  28.77 
 8  Philippines  18.44 
 9  Brazil  11.78 
 10  Japan  10.76 
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The world’s leading rice producing country is China followed by India. A list of 
10-top leading rice producing countries is presented in Table  1 .

2.2        Properties of Rice Straw 

 Rice straw is a complex and highly heterogeneous lignocellulosic material  consisting 
of nodes, internodes, leaves and chaff. It contains three major components, namely 
cellulose, hemicelluloses, and lignin (Table  2 ). Cellulose and hemicelluloses are 
nonlinear and lignin is a three-dimensional polymer (Perez et al.  2002 ). Cellulose is 
surrounded by a matrix of hemicelluloses and lignin.

2.2.1       Cellulose 

 In nature, cellulose is the most abundant linear biopolymer. It comprises approxi-
mately 35–45 % dry weight of rice straw (Lynd et al.  2002 ). It acts as structural and 
energy-storage components and provides rigidity to the cell wall. In cellulose, 
 glucose unit linked by β-1, 4-glycosidic bonds. Its degree of polymerization can 
be up to 15,000 units. Each repeating glucose unit is rotated 180° relative to its 
neighbors. It is classifi ed according to different intermolecular hydrogen bonding 
patterns as α (insoluble in 17.5 % NaOH) and β (soluble in 17.5 % NaOH) cellulose 
(Kuhad et al.  1997 ).  

2.2.2     Hemicelluloses 

 Hemicelluloses are the second largest natural biopolymer after cellulose. It 
 comprises of over 30 % of dry matter in rice straw. It is a branched biopolymer 
of low molecular weight sugar where the degree of polymerization ranges from 
80 to 200 units. Hemicelluloses consist of different sugar units such as xylose, 
arabinose,  glucose, galactose, mannose, rhamnose, fructose, and various meth-
ylated neutral sugars. It is amorphous in nature and degraded more easily than 
cellulose (Perez et al.  2002 ). Naturally, it remains chemically associated or 
cross-linked to other biopolymers such as cellulose, lignin, proteins, and 

  Table 2    Chemical 
composition of rice straw 
(Garay et al.  2014 ; Kausar 
et al.  2010 ; Liu et al.  2013 )  

 Parameters  Rice straw 

 Cellulose (%)  42–49 
 Hemicelluloses (%)  23–34 
 Lignin (%)  11–16 
 Ash (%)  15–20 
 Silica (%)  9–14 
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pectin. Besides, hemicelluloses form a matrix in primary cell wall together 
with pectin and protein as well as with lignin in secondary cell wall of rice 
plants (Hammel  1997 ).  

2.2.3     Lignin 

 Lignin is the most abundant aromatic biopolymer in the biosphere. It ranges from 
5 to 30 % of plant dry weight in lignocellulosic materials (Lynd et al.  2002 ). It is a 
high-molecular mass, water-insoluble, three-dimensional compound consisting of 
phenylpropane-based monomeric units. Its complicated structure, high molecular 
weight, and non-hydrolyzable bonds make lignin highly resistant to biodegradation. 
Oxidative enzymes catalyze the biodegradation of lignin. Lignin provides mechani-
cal support, strengthens the cell in  vascular tissues, and protects cellulose and 
 hemicelluloses from biodegradation by reducing the surface area available to enzy-
matic attack. It also plays a role as an antioxidant, as a water-proofi ng agent ,and as 
a UV stabilizer (Duval and Lawoko  2014 ).  

2.2.4     Other Cell Wall Components 

 Besides cellulose, hemicelluloses, and lignin, rice straw also contains silica,  terpenes, 
resins, phenols, low molecular weight carbohydrates, gums, alkaloids, and other chem-
icals. Carbonates, oxalates, fat, starch, pectin, protein, and various other cytoplasmic 
constituents are found in the cell wall of straw. These extraneous  materials provide a 
shield against the biodegradation of straw (Kuhad et al.  1997 ; Lee et al.  2015 ).    

3     Biodegradation of Lignocellulosic Materials in Rice Straw 

3.1     Biodegradation of Cellulose 

 A large number of microorganisms produce cellulolytic enzymes on lignocellulosic 
materials. Both cellulolytic and non-cellulolytic microorganisms establish 
 synergistic relationship to break down the cellulose during the biodegradation of 
lignocellulosic materials. The biodegradation of cellulose requires the production 
of either free or cell-associated extracellular cellulases. The biochemical analyses 
of cellulose systems from aerobic and anaerobic microorganisms performed during 
the past two decades have revealed that multiple enzymatic activities are required 
to hydrolyze cellulose into soluble sugar monomers (Zhang and Lynd  2004 ; van Zyl 
et al.  2007 ; Hasunuma et al.  2013 ). Three major cellulase enzymes take part during 
the biodegradation of cellulose. These include endo-1,4-β- D -glucanase, cellobiohy-
drolase (exo-1,4-β- D -glucanase) and 1,4-β- D -glucosidase. Endoglucanase randomly 
cleaves the glycosidic bonds of internal amorphous regions in cellulose to produce 
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oligosaccharides of various degrees of polymerization and generate new chain ends. 
Cellobiohydrolase acts on the non-reducing end of the cleaved cellulose chain 
and removes cellobiose units from cellulose chains. Finally β-glucosidase acts on 
cellobiose and converts it into glucose units. The correct combination of the activi-
ties and production level of each cellulase enzyme is critical for effi cient cellulose 
bioconversion (Chandel et al.  2012 ).  

3.2     Biodegradation of Hemicelluloses 

 Hemicelluloses are a heterogenous group of branched and linear polysaccharides 
that are bound via hydrogen bonds to the cellulose microfi brils in the plant cell 
wall. They are covalently attached to lignin, forming a highly complex structure 
together with cellulose. Hemicelluloses require the synergistic action of hemicel-
lulases enzymes for its complete degradation. Hemicellulases are modular pro-
teins, in addition to their catalytic domains, include other functional modules. The 
most important modules are carbohydrate-binding modules, which facilitate the 
targeting of the enzymes to the insoluble polysaccharides, and dockerin modules 
that mediate the binding of the catalytic domains via cohesin-dockerin interac-
tions, either to the microbial cell surface or to large enzymatic complexes (Bourne 
and Henrissat  2001 ; Shallom and Shoham  2003 ). The catalytic modules of hemi-
cellulases are either  glycoside hydrolases that hydrolyze glycosidic bonds and car-
bohydrate esterases, which hydrolyze ester linkages of acetate or ferulic acid side 
groups. Xylanases are the best studied hemicellulase enzymes. Endoxylanases and 
xylosidases found in  Trichoderma  spp. and  Aspergillus  spp. can completely break-
down xylan polymers. Endoxylanases cleave the backbone of xylan into smaller 
oligosaccharide xylobiose, which is further broken down to xylose by xylosidases 
(Malherbe and Cloete  2002 ).  

3.3     Biodegradation of Lignin 

 Lignin-degrading mechanisms are extracellular and unspecifi c as lignin is a large 
and highly branched biopolymer. Oxidative enzymes cleave stable ether and car-
bon–carbon bonds in lignin (Yang et al.  2013 ). The most important lignin- modifying 
enzymes are lignin peroxidases, manganese peroxidases, functional hybrids of both 
enzymes (versatile peroxidases VP) and laccases (phenol oxidases). All extracellu-
lar peroxidases and laccases catalyze oxidation reactions resulting in the formation 
of radicals that initiate several spontaneous reactions. These enzymes use low 
molecular mass mediators during lignin biodegradation which cleave various bond 
cleavages including aromatic ring fi ssion (Kirk and Farrell  1987 ; Zeng et al.  2013 ) 
in lignocellulosic materials.   
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4     Composting of Rice Straw 

 Composting is the bioconversion of organic materials under moist, self heating, and 
aerobic conditions. It is characterized by a series of different microbial populations. 
There are a few main factors affect the composting process: temperature, C/N ratio, 
aeration, moisture content, porosity, and pH (Table  3 ). Temperature, pH, and nutri-
ents change constantly during composting (Ryckeboer et al.  2003 ). It reduces the 
bulk volume of organic materials, destroys weed seeds and pathogenic microorgan-
isms in the end product (Bernal et al.  2009 ). Typically composting results in a 
25–35 % weight reduction of the starting materials. This weight loss is due to the 
liberation of CO 2  and H 2 O by microbial activity (Fig.  1 ).

    Composting is different from natural rotting. Natural rotting occurs in an 
 unmanaged waste pile, sanitary landfi ll and/or open dump. However, composting is 
a  controlled biochemical process. Different microbial populations mainly bacteria, 
actinobacteria, and fungi convert organic materials into humus-like substances 
 during bioprocess. Microorganisms need food and energy during bioprocess. They 
use carbon as an energy source and nitrogen to build up cell structure, proteins, 
enzymes, and hormones. They take their necessary foods and nutrients from com-

   Table 3    Factors affecting the composting of rice straw (Shafawati and Siddiquee  2013 ; Malińska 
and Zabochnicka-Świątek  2013 )   

 Parameters  Reasonable range  Preferred range 

 Temperature (°C)  42–68  55–60 
 Carbon to nitrogen ratio (C:N)  20.1–30.1  25.1–30.1 
 Aeration (% of oxygen)  >5.0  >5.0 
 Moisture content (%)  45–70  50–60 
 Porosity (%)  30–60  30–36 
 pH  5.5–8.0  6.5–7.5 
 Particle size (diameter—cm)  0.5–5.0  0.5–2.5 

Feedstocks
Rice straw
Manure
Nutrients
Microorganisms
Pathogens
Weed seeds
Water

Composting
Pile

End Product
Organic matter 
Minerals 
Microorganism
Moisture 
content

Water vapour, Heat, NH3, CO2, CH4, N2O

Composting Process

Mixing Mixing

  Fig. 1    Conventional composting process (British Columbia Agricultural Composting Handbook 
1998)       
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plex organic substances. Nutrients released during the composting process remain 
in the compost as humus and the dead bodies of microorganisms (Zainudin et al. 
 2013 ; Qian et al.  2014 ; Vázquez et al.  2015 ). 

 Lignin shields cellulose, hemicelluloses, and other cell wall components in rice 
straw. Only a few microorganisms can cleave the lignin barrier. Lignocellulolytic 
fungi have an advantage in solid state bioconversion as they are fi lamentous 
and produce prolifi c spores. Mixed microbial cultures have higher infl uence on 
 substrate colonization through resistance to contamination and increased enzyme 
production. Strain compatibility is another important determinants in mixed microbial 
consortium that infl uences the density, distribution, organization, and ecological 
balance of communities (Martínez-Sanz et al.  2014 ; Mishra and Malik  2014 ; 
Vázquez et al.  2015 ). Thus, a compatible microbial consortium perhaps plays an 
important role in the rapid bioconversion of rice straw. 

 Composting of rice straw with sewage sludge was evaluated in static piles with 
passive aeration for 90 days. Compost piles prepared with shredded rice straw 
reached the maximum temperatures remained above 55 °C revealed that rice straw 
and sewage sludge were compatible and shredding of straw was necessary to 
 prepare a good blend for composting of these wastes and to guarantee quality 
 compost in sanitation terms (Roca-Pérez et al.  2009 ). 

 Rice straw with different organic amendments and lignocellulolytic actinomy-
cete strains of the genera  Micromonospora ,  Streptomyces , and  Nocardioides  were 
composted for 3 months under aerobic condition. Results showed that thermally 
treated municipal sludge and actinomycetes accelerated the composting where bulk 
volume was reduced by 38.6–64 %, after 3 months, compared to 13.6 % in uninocu-
lated control (Abdulla  2007 ). In another study, Mishra and Nain ( 2013 ) documented 
composting of rice straw amended with poultry manure or urea co-inoculation of 
 Cellulomonas cellulans  and  Phanerochaete chrysosporium  in perforated cemented 
pits for 3 months. Microbial activities reached the highest after second month of 
composting. After 3 months, the carbon content decreased, but nitrogen content 
increased. In addition, pH and EC of the end product was found to be within the 
desirable limits for agricultural use at the end of 3 months of composting. 

 A fungal consortium comprising of  A. niger  and  T. viride  was found to 
 decompose rice straw amended with chicken manure signifi cantly over control 
treatment where the C/N ratio was reduced to 19.5 from an initial value of 29.3 in 
3 weeks of composting (Kausar et al.  2010 ,  2013 ). In another study, Raut et al. 
( 2009 ) found that municipal solid waste amended with  P. chrysosporium  and  T. 
reesei  was composted within 9–12 days as indicated by the reduction of C/N 
ratio and enzyme activities. 

 A study was conducted to monitor the chemical changes during composting of 
rice straw and cattle dung, biogas slurry and a consortium of  A. awamorii , 
 Paecilomyces fusisporus , and  T. viride . At day 90, maximum 17.4 %, dropping in 
organic C was observed in the treatment containing fungal consortium where C:N 
ratio of compostable material reduced from 73.7 to 16.6 %. At day 30, cellulase 
activity was increased from 88 to 252 mg reducing sugar kg −1  dry matter h −1 , xyla-
nase activity was from 9 to 111 mg reducing sugar kg −1  dry matter h −1  in microbial 

Microbial Composting of Rice Straw for Improved Stability and Bioeffi cacy



280

amended treatment. Total humic substances were 121 mg g −1  and 127 mg g −1  
 compost in fi nished product amended with fungal consortium and cattle dung, 
respectively. Carbon dioxide evolution in fi nished product in cattle dung and fungal 
consortium amended treatment was 188 mg 100 g −1  and 174 mg 100 g −1  compost, 
respectively. About 81–87 % seeds of wheat and 78–86 % seeds of mustard were 
germinated in compost extract amended with fungal consortium and cattle dung 
showing their potentiality to be used in the composting of rice straw at large scale 
(Goyal and Sindhu  2011 ).  

5     Role of Rice Straw Compost in Soil Health, 
Plant Growth, and Disease Suppression 

 Composts have been shown to improve soil organic matter, content, resistance against 
soil erosion, water holding capacity and the subsequent mineralization of soil, plant 
nutrients (Puppala et al.  2007 ; Hejduk et al.  2012 ). It increases soil fertility and contains 
plant growth promoting substances, e.g., vitamins, hormones, enzymes that enhance 
plant growth and development (Gutierrez-Miceli et al.  2007 ; Pramanik et al.  2007 ; 
Zaller  2007 ; Ievinsh  2011 ; Papathanasiou et al.  2012 ; Zhang et al.  2012 ). Composts 
promote plant root elongation and density, which improves soil aggregation (Daynes 
et al.  2013 ). The incorporation of composts in soil improved the retention of nutrients, 
including magnesium, copper, and iron as well as of nitrogen, phosphorus, potassium, 
and sequestered carbon (C) (Lehmann et al.  2003 ; Barrow  2012 ; Cheng et al.  2012 ; 
Borchard et al.  2012 ; Clough and Condron  2010 ; Clough et al.  2013 ; Farrell et al.  2014 ). 

 Composts have been used in controlling soil-borne pathogens for a long time 
now. Composts suppress soil borne diseases by complex interactions between biotic 
and abiotic factors (Borrero et al.  2004 ; Litterick et al.  2004 ; Rotenberg et al.  2007 ). 
Composts increase labile carbon pools and soil microbial activities in soils. The 
disease suppressive potential of composts depends on the level of maturity and the 
presence of antagonists (Scheuerell et al.  2005 ). Mature composts sustain biocon-
trol agents by providing all essential nutrients. On the other hand, immature com-
posts do not support biocontrol agents. They contain pathogenic populations and 
negatively affect plant growth (Litterick et al.  2004 ; Trillas et al.  2006 ). 

 Composts induce plant disease resistance by increasing the biocontrol agents in the 
rhizosphere. Plant resistance is induced when biocontrol agents cross the certain 
threshold size in the rhizosphere. Once resistance is induced the populations may 
decline without affecting the plant resistance. Composts containing biocontrol agents 
including  Penicillium ,  Trichoderma ,  Aspergillus ,  Gliocladium , and  Paenibacillus  
antagonize the causal organism of damping-off, stem and root collar rot. The interac-
tions in between the saprophytic microbes and the pathogens and/or the systemic and 
local resistance of composts are involved in this effect (Kavroulakis et al.  2005 ; 
Suárez-Estrella et al.  2007 ). Composts increase the resistance in chilli, tomato, cucum-
ber, wheat, and barley against  Fusarium  wilt,  Pythium  root rot, anthracnose, and pow-
dery mildew (Lashari et al.  2013 ; Cao et al.  2014 ; Verma et al.  2015 ; Yu et al.  2015 ). 
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 Rice straw compost rich is in nitrogen, potassium and silicon (Belal and 
El-Mahrouk  2010 ). It enhances plant growth, development, and disease suppression 
in chilli cultivation (Siddiqui et al.  2008 ; Dukare et al.  2011 ; Kausar et al.  2014 ). 
Rice straw composts were used for chilli cultivation under glasshouse condition. 
Chilli seeds cv. Kulai were sowed in  Sclerotium rolfsii  challenged soil where 
 microbial infused straw compost increased seed germination, seedling establish-
ment, plant growth and suppressed development of foot rot disease compared to 
using commercial compost and fungicide Benomyl (Table  4 ). Use of 15 Mg ha −1  
microbial infused rice straw compost yielded optimum seed germination (98.1 %), 
seedling establishment (96.8 %), and disease suppression (84.6 %) (Fig.  2 ).

    Microbial fortifi ed rice straw compost was applied with  Pyricularia oryzae  
challenged inoculation at 14, 56, and 80 days after sowing for plant growth promo-
tion, resistance, induction, and yield increment on rice variety M4 under green-
house conditions. Microbe amended compost signifi cantly increased plant biomass 
and productivity. Productive tiller number ( r  = 0.96), leaf area index ( r  = 0.96), area 
under disease progress curve ( r  = −0.62), and infected panicle ( r  = −0.59) were 
highly correlated with rice yield with  P. oryzae  inoculation at 80 days after sowing. 
Low productivity was found with  P. oryzae  infection at the later growth stage due 
to increase in panicle blast that caused deterioration of grain quality and resulting 
in severe yield loss (30.99 %) as compared to early infection at 14 days after sow-
ing (Ng et al.  2012 ). 

 Siddiqui et al. ( 2008 ) compared the effi cacy of  Trichoderma  fortifi ed rice 
straw and empty fruit bunch of oil palm compost extracts on occurrence and 
 morphophysiological growth of Choanephora wet rot of okra. They found shoot 
and tap root length, leaves per plant, and leaf area were signifi cantly higher in 

   Table 4    Effect of rice straw compost on seed germination, seedling establishment, and dry matter 
accumulation on chilli in  Sclerotia rolfsii  infested and non-infested soil   

 Treatment 

 Seed germination (%)  Seedling establishment (%)  Dry weight 

 Non-infested  Infested  Non-infested  Infested 
 Non- 
infested  Infested 

 T1  88.1 d  23.1 d  85.0 c  16.2 d  0.8 d  0.4 d 
 T2  91.8 cd  26.8 d  89.3 bc  19.3 d  1.0 d  0.6 d 
 T3  94.3 ac  87.5 b  92.5 ab  84.3 b  3.0 b  1.7 b 
 T4  98.1 a  94.3 a  96.8 a  92.5 a  4.5 a  2.8 a 
 T5  93.1 bc  81.2 c  90.0 bc  75.0 c  2.5 bc  1.3 c 
 T6  95.6 ac  88.7 b  91.8 ac  83.7 b  3.4 b  2.2 b 
 T7  96.8 ab  93.7 a  94.3 ab  91.8 a  3.2 b  2.0 b 

  T1 = Untreated soil (control); T2 = Soil + basal fertilizer; T3 = Soil + basal fertilizer + 7.5 t/ha  micro-
bial infused  rice straw compost; T4 = Soil + basal fertilizer + 15 t/ha  microbial infused  rice straw 
compost; T5 = Soil + basal fertilizer + 7.5 t/ha Best Flora compost (commercial); T6 = Soil + basal 
fertilizer + 15 t/ha Best Flora compost (commercial); T7 = Soil + basal fertilizer + Benomyl @ 
0.55 kg/ha 
 Means within columns followed by the same letter are not signifi cantly different, 5 % level of 

probability, least signifi cant difference (LSD) test  
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rice straw compost extract treated plants than that of empty fruit bunch compost 
extract. Similarly, net photosynthetic rate and chlorophyll content were also 
higher in plant receiving Trichoderma-enriched straw compost extract with a 
76.2 % reduction in Choanephora wet rot incidence compared with rest of the 
treatments. 

 Man and Ha ( 2006 ) found that rice straw compost in combination with 50 % 
NPK fertilizer increased yield of rice from 26.98 to 37.04 % in the dry season and 
from 33.45 to 48.08 % in wet season. They also found that after compost application 
pH value was from 4.60 to 6.74 in dry soil and from 6.38 to 6.83 in wet soil where 
pH was not toxic to plant growth. 

 Rice straw composts amended with rock phosphate and  A. niger ,  T. viride  
and/or farmyard manure were applied as organic phosphate fertilizers on cow-
pea plants in pot experiments. All types of rice straw fertilizers were better than 
superphosphate fertilizer in providing the cowpea plants with phosphorus.  A. 
niger  and  T. vir ide inoculated rice straw composts provided the maximum 
amount of soluble phosphorus (1000 ppm). Cowpea plants receiving compost 
inoculated with farmyard manure,  A. niger  and  T. viride  resulted in maximum 
amount of phosphorus uptake (295 ppm). The highest numbers of phosphate 

  Fig. 2    Effect of microbial infused rice straw compost on plant growth and disease incidence on 
chilli in  Sclerotia rolfsii  infested soil. ( a ) Chilli plants treated with 15 t/ha microbial infused rice 
straw compost; ( b ) Plants in control treatment; ( c ) Single plant from the treatment treated with 
15 t/ha microbial infused rice straw compost; and ( d ) Single control treatment       
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dissolving fungi were found in rhizosphere soil treated with  A. niger  and  T. 
viride  composts, while the highest phosphate dissolving bacterial numbers were 
found in soil receiving farmyard manure and rice straw compost (Zayed and 
Abdel-Motaal  2005 ). 

 Composting of rice straw with poultry manure and oilseed rape cake and its 
effects on growth and yield of faba bean and soil properties was studied in pot 
experiments at Gifu University, Japan in 2001–2002. Compost was rich in organic 
matter and mineral nutrients with higher level of stability. The use of compost (20–
200 g pot-1) increased total N, total C and CEC, decreased particle density and 
increased soil respiration rate. Application of compost at a rate of 20 g/pot signifi -
cantly increased growth, yield, yield components, and total crude protein of faba 
bean (Abdelhamid et al.  2004 ).  

6     Mechanisms of Disease Suppression 

 Composts serve as a potential alternative to chemical fungicides in controlling plant 
diseases. The biocontrol agents, metabolites, plant nutrients, and humic acids pres-
ent in compost suppress diseases. The biocontrol agents compete for infection sites 
with the pathogens. They leave little spaces for pathogens to proliferate or to secrete 
secondary metabolites on the plant surface. They also directly parasitize plant 
pathogens (Bernard et al.  2012 ; Daguerre et al.  2014 ), produce different antibiotics 
which suppress plant pathogens and enhance natural plant defense responses 
(Souleymane et al.  2010 ). 

 In general, biocontrol mechanisms of composts are grouped into two classes. 
These include general and specifi c suppression. The biocontrol agents in composts 
induce the general suppression of phytopathogens such as  Pythium  and  Phytophthora  
(Shen et al.  2013 ; Mehta et al.  2014 ). Propagules of these pathogens do not germi-
nate in compost amended substrates due to the metabolic activity of biocontrol 
agents (Dukare et al.  2011 ; Cray et al.  2015 ). On the other hand,  Rhizoctonia  spp. 
which produce sclerotia are not controlled by the general suppression phenomenon. 
To control damping-off caused by  Rhizoctonia  spp. the presence of specifi c antago-
nists such as  Trichoderma  spp. is required. This type of biocontrol is termed as 
specifi c suppression (Hoitink and Boehm  1999 ; Trillas et al.  2006 ; Olson and 
Michael Benson  2007 ). 

 The antagonistic potential of microorganisms is based on four basic principles: 
competition for space and nutrients, direct parasitism, antibiosis, and the induction 
of systemic resistance in host plants. Compost nutrients serve an indirect role with 
the production of antibiotics, siderophores in phyllosphere or rhizosphere giving 
fungistatic or fungistasis effect on pathogens (Termorshuizen and Jeger  2008 ; 
Bonanomi et al.  2013 ). Biocontrol agents including bacteria ( Bacillus , 
 Pseudomonads ), actinobacteria ( Streptomyces ,  Micromonospora ), and fungi 
( Trichoderma ,  Gliocladium ) induce these mechanisms during plant disease 
suppression. 
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 Fluorescent  Pseudomonads  are the most frequently used rhizobacteria which 
suppress the growth of pathogenic rhizosphere microfl ora (Singh et al.  2011 ; 
Ahemad and Kibret  2014 ). Production of antifungal metabolites such as antibiotics 
and siderophores-mediated iron competition are primary mechanisms of these bac-
teria to suppress diseases. Siderophores serve to chelate the ferric ion (Fe 3+ ) from 
the environment into microbial cells and reduce the iron availability to pathogens. 

 Nonpathogenic  F. oxysporum  suppress Fusarium wilt of tomato (McGovern 
 2015 ). Competition for nutrients is the major mechanism of this strain. They com-
pete with pathogens for colonization to the root surface and tissues and induce sys-
temic resistance in host plants (McGovern  2015 ).  Trichoderma  is an effective 
antagonist against Fusarium wilt diseases. Some  Trichoderma  isolates compete and 
colonize potential infection courts and others induce systemic resistance in plants 
(Marzano et al.  2013 ).  T. hamatum  isolated from compost was reported to suppress 
diseases caused by  F. oxysporum  (Shafawati and Siddiquee  2013 ). 

  T. viride ,  T. virens ,  T. harzianum , and  T. hamatum  have been used as antagonists 
against soil and seed-borne diseases, diseases in the phyllosphere and storage rots 
(Coventry et al.  2005 ; Siddiqui et al.  2008 ). The mycoparasitic activities of  Trichoderma  
spp. include competition, antibiosis, and production of cell wall degrading enzymes or a 
combination of these activities.  Trichoderma  spp. produces non-volatile antibiotics that 
inhibit the hyphae of phytopathogen. When  Trichoderma  recognizes the host, it attaches 
itself to the host and either grows along the host hyphae or coils around them and secretes 
lytic enzymes such as chitinase and hydrolase. Subsequently, disorganization of host 
cell wall occurs, resulting in osmotic imbalance followed by intracellular disruption. It 
has been shown that chitinolytic enzymes isolated from  T. harzianum  inhibit spore ger-
mination and germ tube elongation in several plant pathogens (Viterbo et al.  2001 ).  

7     Conclusions and Future Perspectives 

 Microbial composting reduces the bulk volume of rice straw, destroys pathogens, 
converts nitrogen from unstable ammonia to stable inorganic forms, avoids air 
pollution, and satisfi es the fertilizer needs for agricultural use. Composting is 
highly dependent on C:N ratio, pH, temperature, moisture content, particle size, 
and the potential of microorganisms present in the substrates. Under natural con-
ditions, composting of rice straw usually takes as long as 6 months, but inocula-
tion with lignocellulolytic microbial consortium at optimized conditions could 
reduce the bioprocess only to 3–4 weeks as well as enhance the maturity of end 
product. Fortifi cation with biocontrol agents further enhances rice straw compost 
as biofertilizer and bioprotectant. However, future composting experiments on 
industrial scale and trials of compost amendment soil on different crops and fi eld 
conditions are suggested to ensure the consistency of the obtained results which 
will expand our current knowledge on the sustainable management of bulky rice 
straw more precisely.     
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