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    Chapter 7   
 Ovarian Toxicity of Environmental 
Contaminants: 50 Shades of Grey                     

       M.  A.     Dominguez    ,     J.  C.     Sadeu    ,     M.  T.     Guerra    ,     H.  C.     Furlong    ,     Sharnjit     Baines    , 
and     Warren     G.     Foster    

    Abstract     Exposure to environmental contaminants is thought to be important in 
the development of adverse effects on reproductive health. While the adverse effects 
of environmental contaminants on semen quality and testicular function have been 
well studied, effects on ovarian function are less well defi ned. Epidemiological 
studies have linked exposure to environmental contaminants with adverse effects on 
menstrual cycle characteristics, infertility, and earlier age of menopause onset; yet 
direct evidence of effects on ovarian function is lacking. Environmental contami-
nant concentrations have been quantifi ed in human ovarian follicular fl uid establish-
ing target tissue exposure; however, such data is sporadic and limited to women 
undergoing assisted reproductive therapies making generalization of results to the 
broader population of women diffi cult. We note that the relationship between serum 
and follicular fl uid concentrations can be orders of magnitude different and thus 
target tissue distribution requires further study. Animal studies revealed effects of 
environmental contaminants on ovarian follicle dynamics, oocyte maturation, ste-
roidogenesis, and epigenetic changes. Issues of dosing such as concentration of test 
chemicals used, route of administration, and use of multiple dose groups remain 
important limitations of the current literature. While animal studies establish a basis 
for biological plausibility of effects and support conclusions of reproductive hazard, 
we conclude that exposures in the general human population are too low to present 
a demonstrable risk to human ovarian function.  

        M.  A.   Dominguez    
  Facultad de Medicina Veterinaria y Zootecnia ,  Universidad Autónoma de Tamaulipas , 
  Cd. Victoria ,  Tamaulipas ,  Mexico     

    J.  C.   Sadeu    •    H.  C.   Furlong    •    S.   Baines    •    W.  G.   Foster      (*) 
  Department of Obstetrics & Gynaecology ,  McMaster University , 
  1280 Main Street West ,  Hamilton ,  ON   L8S 4K1 ,  Canada   
 e-mail: fosterw@mcmaster.ca   

    M.  T.   Guerra    
  Department of Morphology ,  Biosciences Institute, UNESP , 
  Botucatu ,  São Paulo   CEP 18618-970 ,  Brazil    

mailto:fosterw@mcmaster.ca


216

  Keywords     Ovary   •   Toxicology   •   Toxicants   •   Chemical contaminants
    Steroidogenesis  

7.1       Introduction 

 Worldwide, estimates of infertility range widely from 50 to 186 million couples of 
which 7.3 million American women alone are infertile (Boivin et al.  2007 ; Chandra 
et al.  2005 ; Mascarenhas et al.  2012 ; Rutstein and Shah  2004 ; Stephen and Chandra 
 2006 ). Established  risk factors   for infertility include: advanced age, diet, prescrip-
tion medication use, pre-existing health status, genetic mutations, and infections; 
however, for many women the cause of their infertility is unknown. Thus, exposures 
to environmental contaminants are thought to adversely affect human fertility. 
Indeed, an association between farm or industrial work and infertility was demon-
strated using a questionnaire on reproductive and occupational health histories, life-
style and demographics (Fuortes et al.  1997 ), while residue levels of specifi c 
compounds were not measured. Infertile women had higher odds of working in 
industry (OR, 95 % CI = 6.7, 2.3–19.6) or farms (1.8, 1.2–2.7), adjusted for age, date 
of outcome and smoking compared to a fertile control group. Among specifi c infer-
tility types, ovulatory dysfunction was highest and shows an association with indus-
try/occupation (10.9, 3.5–33.7). In a National survey conducted in French in vitro 
fertilization (IVF) clinics between 2011 and 2012 (Alvarez and Devouche  2012 ), 
one in eight women reported  sexual problems   (mostly dyspareunia, insensitivity 
and bleeding). Of the 348 responding women (mean age: 34.9 ± 5.3 years), 20 % 
smoked cigarettes, 1.4 % cannabis, and 23 % consumed alcohol, whereas 8.6 % 
reported occupational exposure to chemicals. Work stress was reported by 41 % and 
family stress by 14 %. Taken together, these data suggest that exposures to environ-
mental contaminants are potentially associated with reduced fertility, however, the 
strength of this association and potential mechanisms are poorly defi ned. 

 While the effects of environmental contaminants on  male reproductive health   
have received research attention, the effects on female fertility and ovarian function 
in particular remain to be elucidated. We propose that environmental contaminants 
affect reproductive health in part via impaired ovarian function (Augood et al.  1998 ; 
Foster  2003 ; Pocar et al.  2003 ; Sadeu et al.  2010 ). Moreover, we postulate that the 
ovary is potentially vulnerable to the adverse effects of environmental contaminant 
exposure owing to its rich blood supply, rapid cell division associated with follicle 
development, and ovulation. Moreover, environmental contaminant effects on the 
ovary have far reaching consequences on reproduction and general health owing to 
its central role in the production of the gonadal steroids estradiol (E 2 ) and progester-
one (P 4 ), the fi nite and non-renewable number of follicles present in the ovary at 
birth, and development of female gametes (oocytes).  
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7.2     Epidemiology 

 Determining the effect of environmental contaminants on reproductive health in 
women and on ovarian function in particular is diffi cult to assess. The relationship 
between  environmental contaminant exposure and reproductive function   in women 
has primarily been limited to measurement of time-to-pregnancy (TTP), infertility, 
menstrual cycle characteristics, duration of menstrual bleeding, amenorrhea, dys-
menorrhea, age at menopause, and premature ovarian failure (POF). Measurement 
of circulating follicle stimulating hormone (FSH), ovarian hormones (activin and 
inhibin), gonadal steroid hormones (E 2  and P 4 ), and more recently quantifi cation of 
anti-Müllerian hormone (AMH) concentrations have been employed as markers of 
impaired reproductive health that provide indirect insight into ovarian function. 

 A questionnaire on reproductive health and lifestyle histories of  women   who 
presented with natural menopause revealed that only women who had been breast-
fed as babies showed a signifi cantly earlier natural menopause ( p  = 0.014), while 
alcohol consumption ( p  = 0.080) and smoking ( p  = 0.081) had no signifi cant effect 
on timing of natural menopause (Dvornyk et al.  2006 ). Other factors such as the use 
of oral contraceptives also had no signifi cant effect. In contrast, a survey of 443 
hairdressers, aged 21–55, revealed a greater likelihood of premature ovarian failure 
(POF; 3.2 vs. 1.4 %,  p  = 0.06) compared to 508 women employed in other occupa-
tions (Gallicchio et al.  2009 ). While hairdressers also smoked signifi cantly more 
than the controls, the overall relative risk (RR, 95 % CI) for POF was 1.90, (0.76–
4.72) and thus was non-signifi cant.  Hairdressers   are exposed to several chemicals 
such as solvents, bleaches, hair dyes, non-lye relaxers, alcohols, ethylene glycol, 
methacrylate and phthalates; all of which are potentially hazardous to ovarian func-
tion. Sub-analysis of the data revealed that Caucasians over 40 years had a RR of 
5.58 (1.24–25.22) illustrating that age is an important variable in assessing the 
impact of environmental factors on ovarian function. In another study, ovarian fail-
ure was reported (Koh et al.  1998 ) in 16 laborers exposed to cleaning solvent con-
taining 2-bromopropane (n-propyl bromide).  Amenorrhea   was reported in 26 
women after occupational exposure in South Korea, of which 16 were diagnosed 
with primary ovarian failure. Between these two groups, there were signifi cant dif-
ferences (P < 0.05) in levels of LH: 32.9 mIU/ml (range = 10.1–93.0) vs. 8.5 (1.1–
13.9); FSH: 87.7 mIU/ml (31.8–119.7) vs. 9.8 (3.3–28.3); and E2: 11.0 pg/ml 
(7.0–28.0) vs. 48.0 (12.0–205.0). While the effects of occupational exposure to 
environmental contaminants are well known, effects arising from exposure to envi-
ronmental contaminants at exposure levels representative of the concentrations 
reported in contemporary biomonitoring studies involving the general population 
are less clear. 

 Persistent Organic Pollutants ( POPs     ) are a group of chemicals including the 
chlorinated organic chemicals that have been used in the manufacture of a diverse 
group of chemical compounds such as pesticides, chlorine, bleaches, plastics, 
fl ame-retardants and metal production. Since they are stable and lipophilic, they 
easily accumulate in the food chain, and humans may acquire them via food or 
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direct (occupational or accidental) exposure (Hombach-Klonisch et al.  2005 ). 
Polybrominated diphenyl ethers ( PBDEs     ) are a family of structurally related chemi-
cals used as fl ame retardants, and have been detected in human follicular fl uid 
(Johnson et al.  2012 ). Several  organochlorine compounds   including the polychlori-
nated biphenyls (PCBs) and metabolites of the pesticide DDT, have also been quan-
tifi ed in follicular fl uid (De Felip et al.  2004 ; Foster  1995 ; Mahalingaiah et al.  2012 ; 
Meeker et al.  2009 ; Petro et al.  2012 ; Schlebusch et al.  1989 ; Younglai et al.  2002 ) 
(Table  7.1 ). In a longitudinal study of 501 couples who discontinued contraception 
to achieve pregnancy (Bloom et al.  2007 ) the fecundability odds ratios (FOR) was 
decreased by 18–21 % in women with PCB congeners 118, 167 & 219. The stron-
gest effect found was for PCB167 (FOR = 0.79; 95 % CI = 0.64–0.97). These cor-
relations suggest that  PCB exposure   is associated with adverse effects on fertility 
although the direct ovarian effects of PCBs remain equivocal. Mean total PCB con-
centrations (3.1 ± 1.9 μg/L) were positively correlated with menstrual cycle length 
reported by 2314 women ( p  = 0.02) (Cooper et al.  2005 ). The majority of 37 follicu-
lar fl uid samples from an IVF clinic contained 0–1 and 1–2 μg/kg of PCB138, 153, 
or 180, but the highest levels reached 15–16 μg/kg (Schlebusch et al.  1989 ). In 
women attending a fertility clinic, follicular fl uid concentrations of PCB180 were 
lower in women who became pregnant vs. those who did not (85 ± 14 vs. 147 ± 11 pg/
ml, respectively,  p  < 0.05). German women had higher serum PCB concentrations 
(0.35 ± 0.049 vs. 0.17 ± 0.02 μg/kg,  p  < 0.01) compared to women in Tanzania (Weiss 
et al.  2006 ). In contrast, follicular fl uid levels did not show regional differences 
(0.26 ± 0.02 vs. 0.22 ± 0.06 μg/kg). These studies suffer from relatively small sample 
sizes and recruitment exclusively from women attending fertility clinics and thus 
generalization of results to the entire population is diffi cult. Although 2,3,7,8 
tetrachlorodibenzo-  p -dioxin ( TCDD  ) is widely regarded as one of the most toxic 
environmental contaminants, adverse effects on ovarian function are poorly defi ned. 
A long-term study was carried out in Italy after a chemical plant explosion in 1976 
that exposed a town to TCDD (Eskenazi et al.  2005 ). Serum residue concentrations 
of 43.7 ppt (range, 2.5–6320) were found in 616 women that were exposed between 
1 month and 40 years of age. While there was a trend toward earlier menopause with 
increasing TCDD concentrations, suggesting potential effects on ovarian function, 
signifi cance could not be documented.

   The common pesticide 1,1-bis-(4-chlorophenyl)-2,2,2-trichloroethane (  p,p′ -
DDT  ) has been banned in many industrialized countries, but continues to be used in 
developing nations. Although widely studied, the relationship between exposure to 
this pesticide and its metabolites on fertility and ovarian function remains equivocal. 
The DDT metabolite 1,1-bis-(4-chlorophenyl) 2,2-dichloroethene (  p,p′ -DDE  ) is fre-
quently detected in serum and follicular fl uid (De et al.  2004 ; Mahalingaiah et al. 
 2012 ; Petro et al.  2012 ; Younglai et al.  2002 ) although effects on fertility have been 
mixed (Table  7.1 ). A study that compared the fertility of 289 women born in the USA 
between 1960 and 1963 to that of their daughters’ 30 years later showed a 32 % 
decrease in the probability of pregnancy of the daughters for every 10 μg/L in mater-
nal serum DDT, but also an unexpected 16 % increase in the probability of pregnancy 
for every 10 μg/L in maternal serum DDE (Cohn et al.  2003 ). While in Brazil, sales 
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of pesticides in 1985 were correlated with reproductive alterations and cancer rates a 
decade later (Koifman et al.  2002 ), no association between serum DDE levels (mean 
value: 30.0 ± 19.6 μg/L) and menstrual cycle dysfunction (cycle length and missed 
periods) was found in two American studies (Cooper et al.  2005 ; Mahalingaiah et al. 
 2012 ). A study comparing German and Tanzanian women attending fertility clinics 
(Weiss et al.  2006 ) found that Tanzanian women had higher DDE levels (12.77 ± 9.7 
vs. 0.78 ± 0.75 μg/kg, P < 0.01). In contrast, in a Canadian study (Younglai et al. 
 2002 ), pesticide concentrations in the follicular fl uid were not related to pregnancy 
rates whereas in a Belgian study of infertility patients (Petro et al.  2012 ), an associa-
tion between follicular fl uid DDE levels (392 ± 348 pg/ml) and reduced fertilization 
rates and embryo quality was described. We postulate that equivocal fi ndings may be 
related to study design, sample size, analytical methods, regional differences, and 
potential interactions amongst the myriad chemicals to which people are exposed. 

   Organophosphates   are a widely used family of pesticides to increase crop produc-
tivity by eradicating pests. Despite substantial available information involving the 
impact of organophosphates on the environment and different animal species (Patel 
et al.  2007 ), evidence of toxicity in humans remains scarce. Exposures to high con-
centrations of organophosphates in a short period, especially during the manufacture, 
formulation, and application of chemicals can lead to toxic effects (Dyer et al.  2001 ). 
In Iowa and North Carolina, the association between pesticide use and menstrual 
function among 3103 women living on farms was examined (Farr et al.  2004 ). These 
women were premenopausal, between the ages of 21–40 years of age, not pregnant or 
breastfeeding, and not taking hormonal contraceptives. Results revealed that women 
who were exposed to pesticides experienced a non-signifi cant increase in menstrual 
cycle length (odds ratio = 1.2, 95 % CI: 0.66, 2.2) and increased odds of missed peri-
ods (odds ratio = 1.5, 95 % CI: 1.2, 1.9) compared with women who have never used 
pesticides (Farr et al.  2004 ). Women who were exposed to organophosphates experi-
enced longer menstrual cycles (odds ratio = 1.3, 95 % CI: 0.55, 2.9) and increased 
odds of missed periods (odds ratio = 1.4, 95 % CI: 0.93, 2.2) compared with women 
who had never used pesticides. Women with suspected exposure to hormonally active 
or ovotoxic pesticides (parathion and trichlorfon) had fewer cases of irregular men-
strual cycles (odds ratio = 0.53, 95 % CI: 0.37, 0.78) but 60–100 % increased odds of 
long cycles (odds ratio = 1.6, 95 % CI: 1.0, 2.5), missed periods (odds ratio = 1.7, 95 % 
CI: 1.3, 2,2), and intermenstrual bleeding (odds ratio = 1.3, 95 % CI: 1.0, 1.6) than 
women who had never used pesticides (Farr et al.  2004 ). The fi ndings suggest a pos-
sible but weak correlation between the use of certain hormonally active pesticides and 
decreased menstrual function among women living on farms. Further detailed data on 
menstrual cycle and organophosphate exposure is required to strengthen the associa-
tion between organophosphate exposure and menstrual cycle characteristics . 

 Of the  metals  , exposure to cadmium (Cd), mercury (Hg), lead (Pb), selenium 
(Se) and zinc (Zn) are the most commonly encountered and linked with adverse 
reproductive effects (Dickerson et al.  2011 ; Jackson et al.  2011 ; Pollack et al.  2011 ; 
Yang et al.  2002 ). Cd, Hg and Pb have been measured in follicular fl uid (Al-Saleh 
et al.  2008 ; Bloom et al.  2012b ) providing direct evidence of target tissue exposure 
(Table  7.2 ). The effects of metals including Cd on ovarian function have been 
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 evaluated by several research groups (Davis et al.  2001 ; Laughlin et al.  1987 ; Zhang 
and Jia  2007 ; Zhang et al.  2008 ). An inverse relationship between serum Cd concen-
trations and circulating concentrations of FSH were reported in the absence of any 
effect on circulating E 2  concentrations (Pollack et al.  2011 ). The relationship 
between menstrual cycle characteristics and circulating  metal   concentrations was 
investigated previously; however, only Cd was associated with higher serum E 2  con-
centrations (Jackson et al.  2011 ) which contrast with the results described by others 
who could not fi nd an effect (Pollack et al.  2011 ). For each μg/l increase in Cd there 
was a 24.3 % increase in circulating E 2  concentrations during the follicular phase 
(95 % CI = 1.1–52.9). Although the source of exposure was not confi rmed, cigarette 
smoking is thought to be the primary source.  Cigarette smoking   is associated with 
elevated levels of blood Cd that are 2.5–4 times higher than in non-smokers 
(Batariova et al.  2006 ; Wong and Lye  2008 ; Zhang and Jia  2007 ). However, these 
results contrast with studies that have reported decreased circulating concentrations 
of E 2  in female smokers (Windham et al.  2005 ).

   While a positive association between  blood Pb concentrations and circulating P4 
levels   have been reported (Pollack et al.  2011 ) an inverse association between fol-
licular fl uid Pb concentrations and fertilization rates (relative risk = 0.68, P = 0.026) 
was found in women undergoing fertility treatments in another study (Bloom et al. 
 2012b ). The mean blood and follicular fl uid Pb concentrations were 0.82 ± 0.31 and 
0.25 ± 0.31 μg/L, respectively. In another study (Jackson et al.  2011 ), Pb levels of 
0.87 μg/dl were reported in human whole blood samples, but were not associated 
with toxic effects. An increased odds ratio for dysmenorrhea (1.66; 1.07–2.59) 
compared to non-exposed controls was found in a study of normal cycling women 
with occupational exposure to Hg vapor in a Chinese lamp factory (Yang et al. 
 2002 ). In another study (Dickerson et al.  2011 ), Hg, Zn and Se concentrations were 
measured in patients attending a fertility clinic. Only Hg showed a negative correla-
tion with the number of oocytes collected and follicle number after ovarian stimula-
tion, after adjusting for age and BMI. There were no effects on fertilization, cleavage 
rates or embryo quality. Despite evidence of reproductive hazard, the literature 
relating metal exposure with reproductive effects lacks consistency across studies 
and thus the evidence  is   judged as weak. 

 Unlike POPs and metals, newer generation commercial chemicals are engineered 
to be more labile and hydrophilic in order to obviate concerns with bioaccumulation 
and toxicity to mammalian systems. Of these  bisphenol A   (BPA) has received 
extensive research attention and has been linked with reproductive effects in women, 
yet considerable controversy continues to surround the health risk associated with 
this chemical. For example, urinary concentrations of BPA have recently been asso-
ciated with a shorter luteal phase but not with adverse effects on the follicular phase 
length, TTP or early pregnancy loss (Jukic et al.  2015 ). In a subsequent study of 
women (n = 44) attending a fertility clinic (Fujimoto et al.  2011 ), serum unconju-
gated (free) BPA concentrations were measured by HPLC. In this study, the median 
unconjugated BPA was 2.53 ng/ml and ranged from non-detectable to 67.4 ng/ml. 
Serum BPA concentrations were inversely associated with E 2  (β = −0.16; 95 % 
CI = −0.32, 0.01) and with E 2  concentration normalized to the number of mature- 
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sized follicles at the human chorionic gonadotropin (hCG) trigger (β = −0.14; 95 % 
CI = −0.24, −0.03). However, the concentration of unconjugated BPA in the serum 
was not associated with oocyte maturation rate, but intracytoplasmic sperm injec-
tion (ICSI) or conventional IVF patients had a 55 % decrease in the probability of 
fertilization for each doubling in BPA levels (adjusted relative risk = 0.45, 95 % 
CI = 0.21–0.66). Although preliminary, these data suggest that free BPA in the cir-
culation is potentially associated with a reduced serum E 2  response to ovarian stim-
ulation in IVF and reduced fertility. Limitations of the above studies are the focus 
on study participants who are attending fertility programs and thus  are   not necessar-
ily representative of the population overall.  

7.3     Exposure Data 

 Insight into whole body and target tissue exposure is essential for dose setting in 
experimental studies as well as for transparent and defensible evidence-based regu-
latory decisions and advice to guide industry action. However, exposure data is 
frequently lacking for many environmental contaminants and quantifi cation of tar-
get tissue exposure is complicated by diffi culty in accessing the ovary and ovarian 
follicular fl uid. Therefore, understanding the relationship between circulating con-
centrations of contaminants and the concentrations in the follicular fl uid is poten-
tially valuable. Herein we summarize the available exposure data and explore the 
relationship between  serum and follicular fl uid concentrations  . 

 Advances in analytical chemistry have enabled the measurement of increasingly 
smaller concentrations of environmental contaminants, many with reproductive and 
developmental toxicity, in the  human circulation and reproductive fl uids   (Calafat 
et al.  2008 ; Silva et al.  2004 ). Environmental contaminants have  been   quantifi ed in 
serum (Bloom et al.  2007 ,  2011 ; Fujimoto et al.  2011 ; Mahalingaiah et al.  2012 ; 
Younglai et al.  2002 ) and ovarian follicular fl uid (Baukloh et al.  1987 ; Foster et al. 
 1995 ; Ikezuki et al.  2002 ; Jarrell et al.  1993 ; Jirsova et al.  2010 ; Neal et al.  2008 ; 
Trapp et al.  1984 ,  1990 ; Younglai et al.  2002 ) of women participating in  assisted 
reproductive therapy (ART) programs  . Although exposure to environmental con-
taminants has been linked to adverse effects on fertility (Bloom et al.  2011 ; Fujimoto 
et al.  2011 ; Ikezuki et al.  2002 ; Mahalingaiah et al.  2012 ; Takeuchi et al.  2004 ; 
Younglai et al.  2002 ), the available literature is limited to studies involving patients 
attending  ART programs   and thus is not representative of the general population. 
Thus improved methods of estimating target tissue exposure are needed. 

  Organofl uorine compounds   include the surfactants perfl uorooctane sulfonic acid 
(PFOS) and perfl uorooctanoic acid (PFOA); used as stain repellents in the manufac-
ture of textiles, carpets and furniture (La Rocca et al.  2012 ), have been measured in 
follicular fl uid (Petro et al.  2014 ). A study on the effects of long-term PFOS expo-
sure in drinking water (Knox et al.  2011 ) found serum levels of 16.9 ± 9.9 19.1 ± 12.9 
and 24.8 ± 16.3 ng/ml for 3 age groups (18–42, 43–51 and 52–65 years, respectively). 
PFOS exposure was negatively associated with estrogen levels (E 2  decreased from 
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~88 to 72 pg/ml,  p  < 0.0001 and ~32 to 22 pg/ml,  p  < 0.007, for the 1st compared to 
the 5 th  quintile of PFOS levels, respectively) in the two oldest age groups described 
above. Similarly there was an increased odds of experiencing early menopause for 
the 5th vs. the 1st quintile of PFOS concentrations (OR, 95 % CI = 1.4, 1.1–1.8 and 
2.1, 1.6–2.8 for both age groups, respectively). A positive effect of PFOA levels in 
follicular fl uid on fertilization rate and proportion of viable embryos collected from 
IVF patients has been described (Petro et al.  2014 ); however, the mechanism for this 
effect is unclear. A study of 53 couples attending a fertility clinic in Italy (La Rocca 
et al.  2012 ) revealed that patients with unexplained infertility had detectable PFOS 
(>0.5 ng/g whole blood). Of those exhibiting infertility factors (PCOS, endometrio-
sis or male-factor infertility), 30 women had >20-fold lower limit (3–144 ng/g). 
Whole blood PFOA concentrations were below the detection limit in 90 %  of   sam-
ples. It is worth noting that serum and follicular fl uid concentrations of the perfl uo-
rinated compounds are close to identical (Petro et al.  2014 ) suggesting that serum 
concentrations are useful surrogate markers of target tissue exposure. 

 The concentrations of total BPA (free + conjugated) in the serum from healthy 
non-pregnant and pregnant women, and follicular fl uid from women attending an 
IVF clinic have been reported (Ikezuki et al.  2002 ). Concentrations ranged from 
1.4 ± 0.9 to 2.4 ± 0.8 ng/ml in most cases suggesting exposure to BPA in women. 
While these data suggest exposure of estrogen sensitive target tissues at critical 
stages of steroid regulated development, these reports are limited to measures of 
total BPA and thus the concentration of the bioactive form of BPA, free BPA, in 
ovarian follicular fl uid remains unknown.     Polycystic ovarian syndrome (PCOS)   and 
serum concentrations of BPA were linked through two independent studies, one 
conducted in Japan and the other in Greece (Kandaraki et al.  2011 ; Tsutsumi  2005 ). 
Serum BPA concentrations were 0.64 ± 0.1 for normal cycling women compared to 
1.04 ± 0.1 ng/ml for women with PCOS (Tsutsumi  2005 ). In the second study 
(Kandaraki et al.  2011 ), women referred to a PCOS clinic were stratifi ed by BMI 
and serum BPA concentrations were again higher in women with PCOS and a BMI 
≥25 (0.96 ± 0.46  vs.  0.72 ± 0.39 ng/ml,  p  < 0.05) or <25 (1.13 ± 0.63  vs.  0.70 ± 0.36 ng/
ml,  p  < 0.001) compared to healthy cycling women, respectively. However, the anti-
body based ELISA method employed to quantify circulating BPA concentrations in 
these studies employed an antibody with signifi cant cross reactivity with  BPA   
metabolites and thus the assay cannot discriminate between free (bioactive) BPA 
and its metabolites. Therefore, it is unclear, on the basis of this evidence, what role 
if any BPA may play in the development or progression of this disease. Free BPA 
could not be detected in the follicular fl uid of women (Krotz et al.  2012 ) raising 
further concern that the reported link between  BPA and PCOS   may be spurious; 
however, we note that the data in this study is limited to only fi ve study subjects and 
thus cannot be taken as conclusive. Regardless of the fi ndings with free BPA, the 
authors were able to quantify phthalate metabolites in ovarian follicular fl uid of 
these same fi ve women suggesting that technical limitations are unlikely to account 
for the failure to detect free BPA in these samples. The phthalate metabolites quanti-
fi ed in the follicular fl uid included: mono-2-ethylhexyl phthalate (m-EHP, 
9.34 ± 3.33 ng/mL), monoethyl phthalate (m-EP, 3.19 ± 2.97 ng/mL), mono-n-butyl 
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phthalate (m-BuP, 1.62 ± 0.59 ng/mL) and monomethyl phthalate (m-MP, 
1.19 ± 0.25 ng/mL) (Krotz et al.  2012 ) but these concentrations are considered to be 
200–1000 times lower than those harmful to reproductive function in laboratory 
animals (Kay et al.  2013 ). Therefore, although human exposure is recognized as 
wide-spread, the concentrations present in the ovary are thought too low to have an 
adverse effect. While regulatory action seems inappropriate, health conscious indi-
viduals who remain concerned can minimize their personal exposures to these 
chemicals through consumption of fresh foods and reducing personal exposure to 
plastics and canned goods. 

 Finally, parabens are another group of contemporary chemicals used as  anti- 
microbial agents   in the production of cosmetics, food and pharmaceuticals (Ahn 
et al.  2012 ; Taxvig et al.  2008 ). Urinary parabens concentrations were measured in 
patients attending a fertility clinic (Smith et al.  2013 ) yielding median concentra-
tions of 158, 35.5 and 1.53 μg/L for methyl, propyl and butyl parabens (mPB, pPB 
and bPB), respectively. Although serum or follicle fl uid levels were not measured, 
the authors suggested a correlation between urinary paraben concentrations and 
ovarian reserve. This provocative suggestion requires additional study in both clini-
cal samples and animal studies to confi rm and explore potential mechanisms of 
action. Although widely appreciated, we feel compelled to remind the reader that 
evidence of exposure cannot be equated with evidence of an adverse health effect or 
increased risk of an adverse health outcome at a later date. Risk is the product of 
exposure, evidence of a health hazard usually derived from experimental animal 
studies and an uncertainty factor that accounts for differences between experimental 
animals and humans.  

7.4     Experimental Animal Evidence 

 Well-controlled animal studies allow for testing with known concentrations of pure 
test compounds, using relevant routes of exposure, to genetically homogenous ani-
mals at well-defi ned developmental stages, and under carefully regulated environ-
mental conditions that cannot be replicated in human populations. Consequently, 
animal studies are important to understanding the potential health hazards associ-
ated with exposure to environmental contaminants and contribute essential data to 
evidence based regulatory decisions. 

 Different reproductive and developmental toxicology test protocols have been 
developed by  government bodies   such as the Organization for Economic Cooperation 
and Development (OECD), the United States-Environmental Protection Agency 
(US-EPA), and the National Toxicology Program (NTP). While these protocols 
exploit good laboratory practices rendering their results highly reproducible and 
thus attractive for regulatory purposes, they have been criticized for the superfi cial 
nature of the outcome measures employed and lack of mechanistic insight. Animal 
testing for reproductive and developmental effects using these protocols provides 
indirect evidence for toxicant effects on ovarian function as shown by changes in 
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estrous cycle length, sexual maturation, fertility index, weight of reproductive 
organs and histology, and circulating reproductive hormone concentrations. By 
comparison, academic scientists operate in less restrictive environments and thus 
are able to develop innovative protocols designed to assess reproductive function 
and provide mechanistic insight that is lacking in traditional regulatory toxicity test-
ing paradigms. For example, a series of elegant studies have shown that BPA expo-
sure can affect oogenesis and aneuploidy in mouse and non-human primate oocytes 
(Hunt et al.  2003 ,  2012 ), insight that could not be achieved through traditional test-
ing paradigms. Moreover, access to primary (Haney et al.  1984 ) and immortalized 
ovarian granulosa cell lines (Kwintkiewicz et al.  2010 ) has also allowed for direct 
assessment of test chemical effects. Recent developments have seen the introduc-
tion of isolated ovarian follicle cultures employed to assess test chemical effects on 
stage dependent effects of follicle growth, steroidogenesis, follicle survival, and 
ovulation (Cortvrindt et al.  1998 ; Cortvrindt and Smitz  2002 ; Lenie et al.  2004 ; 
Lenie and Smitz  2009 ; Neal et al.  2007 ,  2010 ; Sadeu and Foster  2011a ,  b ; Van 
Wemmel et al.  2005 ), a model that has been extended to three dimensional cultures 
of follicles (Songsasen et al.  2011 ). While these studies provide much needed mech-
anistic insight, they suffer from the need for sophisticated testing, and high level of 
expertise in the fi eld. Regardless of their limitations, results arising from both  regu-
latory and academic scientifi c studies   contribute essential data to the risk assess-
ment process and thus are central to evidence based regulatory decisions. Chief 
among the effects detected are depletion of the ovarian follicle reserve, interference 
with the cumulus oocyte complex (COC) communication, and steroidogenesis. 

7.4.1     Effects on Ovarian Reserve 

 With each menstrual cycle, a cohort of primordial follicles enters one of the waves 
of growing  follicles   (Baerwald et al.  2003a ,  b ). Typically one follicle from the grow-
ing pool of follicles is selected to ovulate while the remainder become atretic. Of the 
estimated 500,000 follicles present in the human ovary at the start of reproductive 
life, only about 400 reach the pre-ovulatory stage and ovulate whereas follicle atre-
sia is the fate for the vast majority of female germ cells (Byskov  1978 ). The number 
of follicles formed  in utero,  the rate of recruitment into the growing pool, and rate 
of follicle destruction are all potentially modifi able by environmental contaminant 
exposure with important implications to fertility, sterility, premature ovarian failure, 
and menopause. Indeed, contaminant exposures that disrupt the number of follicles 
formed during development, affect the rate of follicle recruitment, follicle develop-
ment, or follicle loss can have serious implications for circulating steroid concentra-
tions, fertility, and ultimately the reproductive life span for a woman. Since estrogens 
are important  mediators of   cell proliferation, neurogenesis, growth and maintenance 
of bone, and cardiovascular health, the consequences to general health arising from 
ovarian toxicity are potentially profound and reach across the life span with impor-
tant implications to health care needs and costs. 
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 Contaminant exposure in  adult animals   has been shown to decrease ovarian fol-
licle counts but the most sensitive follicle stage to the toxic effects of environmental 
contaminants is variable. For example, 4 vinylcyclohexene diepoxide (VCD) has 
been shown to selective target primordial and primary follicles (Appt et al.  2006 ; 
Sahambi et al.  2008 ; Sobinoff et al.  2010 ), the follicles at the earliest stages of 
development. Similar effects have also been shown with polycyclic aromatic hydro-
carbons such as 9,10- dimethyl benzanthracene, 3-methylcholanthrene, and benzo[a]
pyrene and (Borman et al.  2000 ), all of which involve activation of the apoptosis 
pathway. Of note, repeated exposure to low concentrations may be more toxic that 
exposure to a single high concentration of an environmental contaminant (Borman 
et al.  2000 ), an effect that could have important implications for humans who are 
typically exposed to low concentrations of contaminants over long periods of time. 
Similar effects on follicle counts have been demonstrated with several different 
POPs. For example, PCB treatment-related increase in ovarian follicle loss 
(Baldridge et al.  2003 ) has been documented with fewer preantral follicles (15 ± 0.6 
vs. 56 ± 0.7/section,  p  < 0.05), and fewer small and large antral follicles (18 ± 0.9 vs. 
41 ± 2 and 8 ± 0.9 vs. 30 ± 0.6/section, respectively,  p  < 0.05), as well as more atretic 
follicles (59 ± 0.9 vs. 26 ± 1.2,  p  < 0.05). Similarly, in a study on the  long-term repro-
ductive effects   of dioxin exposure (Franczak et al.  2006 ), prepubertal rats were 
treated orally with vehicle or 10 μg TCDD/kg at 29 days of age (acute treatment) 
while pregnant rats were treated (0, 50 or 200 ng/kg) on GD 14, 21 and postnatal D7 
and 14. Subsequently, the female pups were given the same weekly doses until 
8 months of age (chronic treatment). The acute treatment delayed ( p  < 0.05) vaginal 
opening (37.8 ± 1.5 vs. 33.2 ± 1.0 d), reduced reproductive lifespan (287.2 ± 9.7 vs. 
319.2 ± 4.1d), and prolonged diestrus (0.65 ± 0.01 vs. 0.58 ± 0.02 of cycle).  Treatment   
also reduced E 2  output ( p  < 0.05). Chronic treatment had no effect on follicle and 
corpus luteum numbers or structure but at 8 months only 25–30 % of treated females 
showed normal cycles (vs. 100 % in controls,  p  < 0.05). Although the two largest 
doses of TCDD used accelerated reproductive ageing (fewer had normal cycles at 9 
and 11 months,  p  < 0.05), there was no effect of TCDD treatment on follicle counts 
(Shi et al.  2007 ). In another study TCDD (0 or 5 μg/kg, i.p.) treatment decreased ER 
gene expression in the ovary and other tissues in 6-to-8-week-old mice (Tian et al. 
 1998 ). Available studies have primarily evaluated the effect of test chemicals under 
basal conditions. In a provocative study (Jung et al.  2010 ), TCDD treatment 
decreased ovulation rate (2.7 ± 1.9 vs. 20.3 ± 3.6,  p  < 0.05) and increased Aryl hydro-
carbon Receptor (AhR) expression in granulosa cells in 25-day-old rats treated with 
1 dose of TCDD (0 or 32 μg/kg, by gavage) plus hCG and LH (1 and 3 d later, 
respectively) to induce follicle development and ovulation. Treatment also decreased 
the number of follicles available for ovulation. Taken together these data suggest 
that TCDD may have direct effects upon the ovary although the mechanisms remain 
to be determined. 

 In addition to direct effects of  TCDD   in adults, evidence has been brought for-
ward in the literature that suggests effects may be transmitted across generations. In 
a transgenerational study (Nilsson et al.  2012 ), F3 females also exhibited fewer pri-
mordial follicles than controls (~14 to 9, p < 0.005), with no effect on antral follicle 
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counts, but developed cystic structures similar to PCOS following treatment of 
pregnant rats with TCDD (0 or 100 ng/kg BW/d i.p.) on gestation day (GD) 8–14. 
However, the underlying mechanisms remain unclear. 

  Clinical markers   of adverse effects of environmental contaminants on ovarian 
function are sparse; however, AMH has received increasing interest as a marker of 
ovarian reserve and has been used in toxicology to access Methoxychlor (MXC) 
effects on the ovary. In a developmental study (Masutomi et al.  2003 ), rats were 
treated with MXC (0, 24, 240, or 1200 ppm in the diet) from GD 3 to PND 21. Only 
the highest dose (1200 ppm) decreased body and ovarian weight, accelerated vagi-
nal opening, and caused irregular estrous cycles. Furthermore, longer estrous cycles 
(6.28 ± 1.91 vs. 3.76 ± 0.25 days,  p  < 0.001), fewer corpora albicantia from previous 
cycles, fewer corpora hemorrhagica, and more degenerate oocytes were found in 
MXC treated rats (Quignot et al.  2012a ,  b ). MXC (0, 1, 10, 50, 100, or 500 mg/kg/d) 
exposure from 3 to 10 days of age resulted in antral follicle loss but increased the 
growing follicle pool, and increased AMH expression at 20 days of age (Uzumcu 
et al.  2006 ). Doses of 50, 100, and 500 led to 1.6 ± 0.2, 1.85 ± 0.6 and 2.2 ± 0.5 times 
the AMH expression of the control group ( p  < 0.05), as measured using immunohis-
tochemistry. Antral follicle counts were reduced (~6/section after 100 or 500 mg, 
vs. ~17 in controls,  p  < 0.05), whereas preantral follicles increased (~13 and 15 after 
100 and 500 mg, vs. ~8 in controls,  p  < 0.05). The effects of VCD on circulating 
AMH concentrations (Sahambi et al.  2008 ) further support the notion that AMH is 
a potentially useful minimally invasive marker of toxicant effect. 

 The  adverse effects   of legacy chemicals such as the POPs on ovarian follicle 
counts are not unique and can be extended to contemporary commercial chemicals 
such as BPA. In a study on prenatal exposure (Markey et al.  2003 ), pregnant mice 
were exposed to BPA on GD 9 to term (via s.c. pump delivering 0, 25 or 250 μg/kg/
day). Treatment did not affect age at vaginal opening, but more mice showed persis-
tent estrus/metestrus (≥4 days) after exposure to 25 μg (55.7 %) and 250 μg (55.6 %) 
than controls (37.1 %,  p  < 0.05). A proportion of exposed females showed blood- 
fi lled ovarian bursae at 3 months (11 and 16 vs. 0 %), and those exposed to 250 μg 
had a greater ovarian area occupied by antral follicles (15.5 ± 2.7 vs. 6.4 ± 2.8 %, 
 p  < 0.05). In a transgenerational study (Nilsson et al.  2012 ), pregnant rats were 
treated with BPA (0 or 50 mg/kg BW/d i.p.) on GD 8–14, F3 females exhibited 
fewer primordial follicles than controls (~14 to 9,  p  < 0.005), with no effect on antral 
follicle counts, but developed cystic structures similar to PCOS. 

 In another study on  pre- and postnatal exposure   (Signorile et al.  2012 ),  pregnant 
mice   were treated with BPA (0, 100 or 1000 μg/kg) on GD 1-PND 7. Exposed 
females showed fewer primordial follicles (median numbers: 7.75, 3.8 and 2.65, 
respectively,  p  < 0.001), reduced numbers of developing follicles (11.9, 5.5 and 4.5, 
p < 0.001), and increased the number of atretic follicles (1.55, 3.3 and 3.4,  p  < 0.001). 
In another study (Xi et al.  2011 ), female mice and their pups were treated with BPA 
(0, 12, 25 or 50 mg/kg/d, by gavage) from GD 1 to PND 20, and from PND 20 to 
49, respectively. Exposure led to a dose-dependent increase in E 2  (~150, 300, 550 
and 600 pMol/L), which altered feedback signals within the hypothalamic-    pituitary- 
gonadal axis. 
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  Neonatal exposure   to BPA (PND 1, 3, 5 and 7) was examined (Rodriguez et al. 
 2010 ) in rats treated with oil (negative control), DES (positive control, 0.2 or 20 μg/
kg) or BPA (0.05 or 20 mg/kg). BPA treatments (20 mg/kg) led to the highest pro-
portion of recruited follicles on PND 8: ~30 % of follicles for control, ~45 % for 
DES0.2 ( p  < 0.001), ~40 % for DES20 ( p  < 0.01), ~55 % for BPA20 ( p  < 0.001), and 
~30 % for BPA0.05 (NS). The BPA (20 mg/kg) dose also led to more EsR1-positive 
follicles than negative controls (~65 vs. 15 %,  p  < 0.05), which may explain the 
higher recruitment rate. In contrast, EsR2 positive staining was not affected by treat-
ment. Taken together the data consistently show BPA exposure induced primordial 
follicle loss and suggest accelerated follicle recruitment into the growing pool. 

 In contrast to the examples of BPA, more primordial follicles and more primary 
follicles and altered gene expression for  steroidogenic enzymes   such as  StAR  and 
 Cyp11a1  were found (Ahn et al.  2012 ) in rats treated with methyl, propyl or butyl 
parabens (mPB, pPB and bPB, respectively, at 0, 62.5, 250 or 1000 mg/kg/d each, 
s.c.) or E 2  (40 μg/kg/d, positive control) for 7 days (PND 1-7). In a gestational expo-
sure study (Taxvig et al.  2008 ), rats were exposed to s.c. oil, ethyl paraben (ePB, 
400 mg/kg/d) or bBP (200 or 400 mg/kg/d) on GD 7-21. The females and the fetuses 
showed no histologic alterations in the ovaries, but treatment increased EsR2 gene 
expression. Additionally, female rats maternally exposed to bPB from GD 6 to PND 
20 (100 mg/kg/day) presented early vaginal opening with no alterations in ovarian 
weight and histology (Kang et al.  2002 ), possibly due to the estrogenic action of 
parabens in the female HPG axis during development. In contrast, prepubertal mPB 
and isopropyl paraben exposure (250 and 1000 mg/kg from PND 21-40) leads to a 
delay in vaginal opening, a decrease in the number of corpora lutea and an increase 
in the number of cystic follicles in the ovary (Vo et al.  2010 ). 

 In summary, multiple contaminants from different chemical classes have been 
shown to affect ovarian follicle counts and thus establish the ovary as a potentially 
important target organ for adverse effects of environmental contaminant exposure. 
Moreover, we postulate that the accelerated loss of primordial follicles has the poten-
tial to shorten reproductive life span as well as advance the age of onset for health 
problems such as  osteoporosis and cardiovascular disease   arising from loss of estro-
gen. The mechanisms of ovarian follicle loss are unclear and may include decreased 
number of oocytes and follicles formed during development (Yin et al.  2015 ), increased 
recruitment of follicles into the growing pool (Rodriguez et al.  2010 ), and increased 
rate of follicle loss through either apoptosis (Jurisicova et al.  2007 ; Matikainen et al. 
 2001 ; Takai et al.  2003 ) or autophagy (Gannon et al.  2012 ,  2013 ). Regardless of the 
mechanism, the underlying initiating events remain to be elucidated and have impor-
tant implications for fertility preservation as well as life- long health benefi ts.  Tissue 
culture studies   have shown that the adverse effects of polycyclic aromatic hydrocar-
bons such as benzyo[a]pyrene can be attenuated by co-treatment with AhR antagonists 
such as resveratrol and 3,4 dimethoxyfl avone (Casper et al.  1999 ; Neal et al.  2010 ). 
These data raise the encouraging possibility that the ovary can be protected from the 
adverse effects of some contaminants on ovarian follicle loss. Fertility preservation is 
an exciting area of reproductive biology that is receiving renewed interest which we 
anticipate will uncover  novel   therapeutic interventions to protect ovarian function.  
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7.4.2     Steroidogenesis 

 Steroid production in the ovary is regulated by gonadotrophins and involves andro-
gen production by theca cells and subsequent conversion of androgens to estrogens 
by  granulosa cells  . Results of animal studies demonstrate that  CdCl 2  exposure   
decreased serum E 2  and P 4  concentrations by altering expression and/or activity of 
granulosa cell steroidogenic enzymes P450scc and StAR in adult female rats 
injected s.c. with CdCl 2  (0, 2.5, 5 and 7.5 mg/kg) (Zhang and Jia  2007 ; Zhang et al. 
 2008 ). CdCl 2  has a MW of 183, but only 112 of it is Cd. 1M would be 112 g/L; 1 μM 
would be 112 μg/L; 20 μM (lowest signifi cant effect) would be 2.24 mg/L, a level 
much higher than the 0.29 ± 0.30 μg/l reported in follicular fl uid in Saudi Arabian 
women for both controls and women under fertility treatment (Al-Saleh et al.  2008 ). 
Lead acetate was given to adult rhesus monkeys over several years at different doses 
(3.6, 5.9 and 8.1 mg/kg/d) in drinking water (Laughlin et al.  1987 ).  Lead   was 
detected in blood at concentrations that ranged between 51 and 88 μg/dl. Although 
the monkeys were still fertile, treated females showed menstrual cycles that were 
longer (50.9 vs. 32.9 days) and more variable, with shorter menses (2.3 vs. 3.4 d, 
 p  < 0.05). Chronic lead exposure suppressed circulating concentrations of LH, FSH 
and E 2  in cynomolgus monkeys (Foster  1992 ) and  suppressed   luteal function at 
moderate blood levels (Foster et al.  1996 ). 

 Toxic effects of  phthalates and phenols in   experimental animal studies have been 
examined by several authors (Guerra et al.  2010 ; Kimura et al.  2006 ; Laskey and 
Berman  1993 ; Masutomi et al.  2003 ; Nagao et al.  2000 ; Willoughby et al.  2005 ) and 
have recently been reviewed elsewhere (Kay et al.  2013 ). Pregnant rats were exposed 
to di-η-butyl-phthalate (DBP) from GD 12 to PND 21 (0 or 100 mg/kg/d by gavage); 
the dose used did not affect ovarian development, puberty, hormone levels or fertil-
ity (Guerra et al.  2010 ). In another study (Masutomi et al.  2003 ), rats were treated 
with diisononyl phthalate (DINP, 0, 400, 4000, or 20,000 ppm in the diet) from GD 
3 to PND 21; the highest dose decreased body and ovarian weight, whereas the 
lower doses had no adverse effects. Using a different approach, adult rats were 
treated with bis(2-diethylhexyl) phthalate (DEHP) (0 or 1500 mg/kg/day by gavage) 
for 10 days and their ovaries collected at different cycle stages for culture and mea-
surement of steroid output (Laskey and Berman  1993 ). In diestrus, treated rats pro-
duced more E 2  and testosterone than controls, whereas in estrus, they produced 
more E 2 . Another study (Mlynarcikova et al.  2009 ) also evaluated the effects of 
phenols and phthalates, by treating cumulus-oocyte- complexes (COCs) with 
4-Chloro-3-methyl phenol (CMP), di(2-ethylhexyl) phthalate (DEHP) and benzyl 
butyl phthalate (BBP), in a range of 10 2 –10 −4  μM. Only the highest levels of CMP 
and BBP decreased COC expansion rate. The highest level of CMP decreased 
oocyte maturation rate (50.0 % reached metaphase II (MII) vs. 81.5 % in controls; 
 p  < 0.001) and only the second highest level of DEHP increased P 4  output (~50 % 
more than control  p  < 0.05). In another study  from   this group (Mlynarcikova et al. 
 2007 ), porcine granulosa cells were treated with 10 −8 M to 10 −4 M 4-octylphenol 
(OP), 4-nonylphenol (NP), and 4- tert -octylphenol (tOP), diisononyl phthalate 
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(DiNP), diisodecyl phthalate (DiDP) or dioctyl phthalate (DOP), with or without 
FSH. OP (10 −5 M) reduced P 4  output ( p  < 0.05), and NP (10 −8  M) decreased E 2  output 
( p  < 0.05). FSH stimulated E 2  concentration in the media was reduced by OP, NP 
( p  < 0.05), as well as DiDP and DiNP ( p  < 0.01) treatment. Taken together these data 
suggest that ovarian steroidogenesis can be affected by some of the phenols and 
phthalates used as plasticizers. To evaluate the effect of phthalate treatment on 
oocyte maturation equine COCs were incubated with di-(2-ethylhexyl) phthalate 
(DEHP) at 0, 0.12, 12 or 1200 μM (Ambruosi et al.  2011 ). The lowest concentration 
of DEHP (0.12 μM) inhibited oocyte maturation (P < 0.05) with increased apoptosis 
and reduced ROS levels ( p  < 0.001). Higher concentrations did not affect oocyte 
maturation, but apoptosis and ROS were higher ( p  < 0.0001). Treated oocytes also 
exhibited higher ATP content ( p  < 0.05). Taken together these data suggest that the 
COC is sensitive to the adverse effects of environmental contaminants; however, the 
underlying mechanisms are uncertain. We postulate that contaminant effects on gap 
junction communication are an area that may yield interesting results (Ganesan and 
Keating  2014 ; Gittens et al.  2003 ,  2005 ; Kidder and Mhawi  2002 ; Li et al.  2007 ). 

 While contaminant effects on ovarian steroidogenesis have been established, the 
mechanisms remain ill-defi ned and thus different culture methods have been 
employed in an effort to clarify this issue. Cocultures of  granulosa and theca cells   
were isolated from pig antral follicles (Ptak et al.  2006 ) and treated with 
4-Chlorobiphenyl (PCB3) or two of its metabolites (4-OH or 3,4-diOH PCB3, at 
6 ng/ml). PCB3 and metabolite treatment decreased P 4  output by 55–65 % and 
70–80 % of control ( p  < 0.05), respectively. All 3 compounds increased E 2  output 
(130–330 % of controls,  p  < 0.05), via increasing P 4  conversion to androgen and sub-
sequently androgen aromatization.    Chronic TCDD exposure upregulated the expres-
sion of 19 genes of known function (e.g. Cyp1a1, indicating activation of AHR) and 
downregulated the expression of 31 genes (e.g. 17α-OHase); FSH receptor, aroma-
tase and inhibin were not affected (Valdez et al.  2009 ). Thus, TCDD alters ovarian 
steroidogenesis by affecting genes related to androgen synthesis. Similarly, rat granu-
losa cells from punctured follicles treated with 2,2-bis-( p - hydroxyphenyl)-1,1,1-
trichloroethane (HPTE, the main metabolite of methoxychlor) produced a 
dose-dependent inhibition of P 4  output, blocked FSH-induced P450scc, 3β-HSD and 
P450arom mRNAs, but not StAR (Zachow and Uzumcu  2006 ). Thus, HPTE alters 
steroidogenesis by inhibiting several of the corresponding enzymes. The cells were 
incubated for 48 h with androgens (as aromatase substrates) and FSH (30 ng/ml) in 
the presence or absence of HPTE (0.1, 1, or 10 μM). The effects of  methoxychlor   
(MXC) on ovarian steroidogenesis have been demonstrated by treating granulosa 
cells from pig antral follicles for 48 h with DDE (10 0 –10 3  μM) or MXC (10 −2 –
10 1  μM), E 2  (0.1 μM, positive control) or negative control (10 % new born calf serum), 
with a fi nal FSH exposure (Chedrese and Feyles  2001 ). In addition to stimulating cell 
proliferation, DDE affected FSH-induced cAMP production. MXC inhibited P 4  but 
not cAMP. The authors concluded that the mechanism appeared to be non-estrogenic. 
In rats, exposed prenatally (GD 19–22) and postnatally (PND 0–7) to 0, 20 or 100 μg/
kg/d MXC exhibited 83–100, 78─100 and 0–11 % regular cycles and E 2  levels of 
~27, 20, 18 pg/ml, respectively ( p  < 0.05), at 13–15 months of age (Gore et al.  2011 ). 
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 In tissue culture experiments (Grasselli et al.  2010 ),  granulosa cells   aspirated 
from pig antral follicles were treated with BPA (0, 0.1, 1, or 10 μM) and cell prolif-
eration, E 2 , P 4 , and VEGF output were measured. Cell proliferation was not affected 
by BPA whereas the lowest dose of BPA increased estradiol, while the two higher 
ones inhibited it ( p  < 0.001), and all BPA levels inhibited progesterone (p < 0.01). 
VEGF output was increased after treatment with 1 and 10 μM BPA ( p  < 0.05). The 
authors concluded that BPA alters follicle steroidogenesis and VEGF production. In 
one study (Mlynarcikova et al.  2005 ), granulosa cells from pig antral follicles were 
treated with BPA or BPA-dimethacrylate (DMA) at 10 −4 –10 −8  M and E 2  and P 4  out-
put was determined. P 4  concentrations were increased by 10 −6  BPA treatment 
( p  < 0.05) whilst 10 −4  BPA inhibited P 4  output ( p  < 0.001). At all concentrations 
tested,    BPA inhibited FSH-induced E 2  production ( p  < 0.05). In another study 
(Mlynarcikova et al.  2009 ), porcine COCs were treated with BPA (10 2 –10 −4  μM) 
during FSH-induced oocyte maturation. Subsequently, cumulus expansion, oocyte 
maturation and P 4  output were determined. Only the highest BPA concentration 
tested reduced the COC expansion rate compared to controls (16.9 % vs. 39.3 %, 
 p  < 0.05), oocyte maturation rate (50.0 % reached MII vs. 81.5 %,  p  < 0.001), and P 4  
output (47.4 % less than controls,  p  < 0.01). Although equivocal, the data lend some 
support to the observation that BPA is associated with an impaired response to ovu-
lation induction (Fujimoto et al.  2011 ). 

  Human cells   have also been used to study potential ovariotoxic effects. KGN 
cells, an ovarian granulosa-like tumour cell line that expresses a functional FSH 
receptor, as well as human granulosa cells (GLC) from IVF patients were treated 
with BPA (0, 40, 60, 80 or 100 μM), with or without FSH (Kwintkiewicz et al. 
 2010 ). In the KGN cells, BPA exhibited a dose-dependent reduction on FSH- 
induced IGF1, aromatase and E 2 . In the GLC, only aromatase was examined, with 
similar effects to those seen in KGN cells (but the cells were more sensitive to lower 
doses). BPA also induced PPARγ, an aromatase inhibitor, which was seen as a pos-
sible mechanism for lower aromatase expression. Human fetal (21–22 weeks) ovar-
ian explants were incubated with BPA (0 or 30 μM) for 1, 2 and 3 weeks 
(Brieno-Enriquez et al.  2012 ). Oocytes and fi broblasts were isolated for RNA 
extraction. BPA led to higher expression ( p  < 0.05) of genes related to double-strand 
break generation, signaling and repair ( Rpa, Spo11, H2ax, Blm, Stra8 ,  Nalp5 ), onset 
of meiosis ( Stra8 ) ,  estrogen receptors and primordial follicle formation ( Nalp5 ). 
However, the importance of these fi ndings to risk assessment is unclear in the 
absence of accurate measures of free BPA concentrations in the follicular fl uid. 
Assuming that the total BPA concentrations previously reported in follicular fl uid 
were composed entirely of free BPA then the concentrations as added to the culture 
media used in this study would be approximately 4500 times greater than the con-
centrations measured in follicular fl uid. 

 Isolated ovarian  follicle culture techniques   have been developed to assess the 
effect of test chemicals on stage-dependent follicle development and ovulation (Sun 
et al.  2004 ). In one study (Lenie and Smitz  2009 ), mouse follicles were isolated and 
cultured for 12 days to determine follicular development. Ovulation was stimulated 
(with recombinant hCG and recombinant epidermal growth factor), and evaluated 
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on day 13. During development, follicles were exposed to the active metabolite of 
di (2-ethylhexyl) phthalate (DEHP), mono (2-ethylhexyl) phthalate (MEHP, 
10–200 μM). MEHP led to a fi vefold increase in P 4  output by day 12, but no change 
after ovulation stimulus. Testosterone/E 2  ratios showed that, despite increased tes-
tosterone output, less E 2  was produced with increasing MEHP. In another study 
(Treinen et al.  1990 ),  MEHP   was added to cultures of rat granulosa cells collected 
from freshly ruptured follicles (the rats had been treated with DES to induce granu-
losa cell proliferation). MEHP decreased up to 40 % cAMP production. Treatments 
containing 10, 25, 50 and 100 μM MEHP produced 30, 35, 40 and 70 % less P 4  than 
controls ( p  < 0.05), and cAMP production was similarly inhibited. Human granulosa 
cells from IVF patients were treated with MEHP (0 or 0.6–500 μM) and aromatase 
mRNA, cell viability and steroid output were measured. MEHP decreased aroma-
tase and E 2  output (Reinsberg et al.  2009 ) whereas P 4  output and cell viability 
decreased only at the highest dose. The large variety of phthalate compounds 
appears to have varying effects, and again, most studies involve laboratory animals, 
where signifi cant effects are seen only at higher concentrations. The lowest dose 
with an effect was 0.12 μM of DEHP (Ambruosi et al.  2011 ), a dose equivalent to 
47 μg/L (or ng/mL); a concentration that is substantially higher than the highest 
concentration of a phthalate metabolite (9.3 ng/ml) previously measured in follicu-
lar fl uid (Krotz et al.  2012 ). In preliminary data from our lab, using an isolated 
mouse ovarian follicle culture system, BPA treatment signifi cantly decreased the 
number of follicles as a percentage of the controls progressing to the preantral 
(18.04 ± 5.5 %), antral (28 ± 13.7 %) and preovulatory (54.5 ± 20.4 %) stage, and 
follicle survival (50.6 ± 18.8 %), but only at the highest concentration (5.0 μM) 
tested (Fig.  7.1 ). Treatments had no effect on gonadal steroid output in these cul-
tures (Fig.  7.2 ). Thus,  effective   concentrations as added in cultures ranged between 
1.14 and 2.28 mg of BPA/ml; concentrations far in excess of human exposure.

7.4.3         Genetic and Epigenetic Effects 

 The  mutagenic effects   of environmental toxicants have been well documented and 
effects on DNA repair mechanisms have also been described (Ganesan et al.  2013 , 
 2014 ; Ganesan and Keating  2015 ). In addition to transcriptional regulation of genes 
through toxicant changes in transcription factor expression and microRNA 
(miRNA), contemporary studies have revealed that contaminant exposures are also 
associated with changes in the epigenome involving histone modifi cations includ-
ing DNA methylation. Marks on the DNA that regulate gene expression and may be 
carried across generations. 

  Epigenetic effects   of dietary factors such as phytoestrogens and environmental 
contaminants have been documented on the rodent uterus and lung whereas effects 
on the ovary remain largely unexplored (Zama and Uzumcu  2010 ). In one study 
identifi ed in our literature search (Zama and Uzumcu  2009 ), MXC induced 
treatment- related effects on estrous cyclicity, ovarian steroidogenesis, and produced 
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changes in DNA methylation with potential effects across generations. Effects of 
MXC on DNA methylation have been documented in pregnant rats exposed to 
MXC (0, 20 μg or 100 mg/kg/d i.p.) from GD 19 to PND 7. Female pups were also 
treated from day 0 to PND 7 and euthanized after a cycle on PND 50-60. DNA 
methylation showed that 10 ovarian genes were hypermethylated after the highest 
MXC dose, including genes related to follicle maturation and ovulation, such as 
 PAPP-A . Ovarian EsR1 was not affected, but EsR2 expression was reduced with 
100 mg MXC (19.9 ± 1.06 vs. 36.7 ± 5.47,  p  < 0.05). Environmental contaminant- 
induced changes in ovarian epigenetic marks is an important emerging area in 
reproductive biology that holds great promise for  increased   mechanistic insight.   

7.5     Future Directions 

 Understanding the hazard to reproductive health and ovarian function arising from 
exposure to environmental contaminants is diffi cult to appreciate in the absence of 
direct measures of exposure and more sensitive markers of an adverse effect. While 

  Fig. 7.1    Effect of BPA-exposure on  in vitro  follicle growth and survival.   Follicular development 
at ( a ) 4, ( b ) 8, and ( c ) 12 days of culture and ( d ) follicular survival at 12 days of culture. All the 
follicles were follicular at day 0 (start) of culture. Each experiment was repeated at least 3 times in 
duplicate plate/condition, n = 826 follicles (10–16 follicles/plate).  Bars  with different letters 
(within the same follicular stages) differ signifi cantly ( p  < 0.05)       
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circulating concentrations of  AMH   provides insight into the primordial follicle 
count/ovarian reserve, there are a number of limitations with this marker that have 
yet to be adequately resolved. Specifi cally, changes in circulating concentrations of 
AMH as women age as well as relationship with BMI and health status such as 
PCOS and diabetes are yet to be defi ned and normal ranges are only generally 
established. 

 While the concentrations of some chemicals in the serum are representative of 
concentrations that can be measured in ovarian follicular fl uid (e.g. perfl uorinated 
compounds), this is not always the case as shown for  p,p′ -DDE which can be three 
times higher in the serum than the follicular fl uid (Younglai et al.  2002 ). It is encour-
aging that good correlation has been shown between serum and ovarian follicular 
fl uid concentrations of DDT and its metabolites (Mahalingaiah et al.  2012 ). 
Therefore, we suggest that the pharmacokinetics and pharmacodynamics of envi-
ronmental contaminants are essential data for establishing relevant target doses for 
animal and tissue culture studies as well as for risk assessment purposes. 

  Fig. 7.2    Effect of BPA-exposure on steroid outputs during  in vitro  follicle growth. ( a ) Estradiol 
(E 2 ) and ( c ) progesterone (P 4 ) outputs after antral (Day 8) and preovulatory (Day 12) follicle devel-
opment. Relative average increase of ( b ) E 2  between Days 8 and 12 [(Day 12/Day 8) × 100] and of 
( d ) P 4  between Days 12 and 13 [(Day 13/Day 12) × 100]. Values are means ± S.E.M. E 2 : n = 4–8 
replicates; P 4 : n = 4–5 replicates       
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 We note that animal studies are clearly indispensable in the assessment of poten-
tial hazards to human health and reproductive function. We propose that their con-
tribution to the risk assessment process could be enhanced with greater attention to 
issues of comparative endocrinology. For example, emerging evidence suggests that 
women may have more than one wave of follicles developing for ovulation in a 
given cycle (Baerwald et al.  2003a ,  b ; Baerwald and Pierson  2004 ). However, many 
questions remain and the relevance of these observations to human health, fertility 
and toxicology has yet to be defi ned. We further postulate that while the academic 
investigators enjoy a much less restrictive environment that favors development of 
innovative testing strategies to enhance understanding of the mechanisms underly-
ing toxic phenomenon, greater insight into the dose used, route of exposure, and use 
of multiple dose groups would enhance uptake of study results by regulatory bodies. 
Finally, there have been many calls for studies of mixtures and we add to the 
cacophony of voices calling for such testing. 

 Finally, although the literature suggests that effects of environmental contami-
nants at concentrations typically measured in contemporary biomonitoring studies 
are unlikely, precaution is never a poor option. Overall, regulatory decisions appear 
to be effective in protecting the health of general population against adverse effects 
on ovarian function; however, we note that chemicals continue to enter the environ-
ment. Manufacturing practices have improved substantially over the last decades 
with reductions in chemical emissions or releases into the environment. However, 
leaching of chemicals from fi nished products continues to be a problem and thus is 
an issue for engineering to insure safety. While calls to regulatory authorities for 
chemical bans continue, we caution against replacement of suspected chemicals 
with alternatives that are potentially more hazardous to human health such as 
Bisphenol S and Bisphenol F, replacements for BPA (Eladak et al.  2015 ; Rosenmai 
et al.  2014 ). Toxicity  testing   has progressed substantially over the last several 
decades as techniques have improved and understanding of reproductive physiology 
and endocrinology have advanced. We note that it will never be possible to prove 
absolute safety; however, enhancements to existing regulatory testing paradigms 
and continued interest of academic investigators promises to insure that potential 
health effects of environmental contaminants are identifi ed and brought forward in 
the literature for use in the risk assessment process. In addition to partnering with 
chemical engineers to identify safer alternatives, academic investigators are encour-
aged to explore mechanisms of action as well as potential therapeutic interventions 
that can protect the ovary and aid in fertility preservation. Renewed interest in this 
area could have spill-over benefi ts for women undergoing cancer therapies that are 
well known to damage ovarian health.  

7.6     Conclusions 

 Human exposure to potential ovarian toxicants has not been well defi ned and of 
greater concern is the lack of data on internal exposure dose and measurement of 
parent and metabolite concentrations in the ovary. While there is a robust animal 
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literature illustrating the potential hazard to ovarian function and reproductive 
health from exposure to environmental contaminants, the concentrations at which 
effects were documented were frequently orders of magnitude beyond human expo-
sure. While a robust literature was uncovered, the environmental contaminants 
addressed represent only a very small proportion of the many thousands of chemi-
cals in commercial use that enter the environment, the food chain, and ultimately 
result in human exposure. Thus the available literature provides only an incomplete 
picture of the potential impact of environmental contaminants on reproductive 
health and ovarian function. We note that some environmental contaminant expo-
sures have been linked with decreased circulating concentrations of E 2 , shorter or 
longer menstrual cycle length, attenuated response to ovulation induction strategies, 
impaired fertility, and earlier menopause. However, the available literature is equiv-
ocal and highly variable with respect to study design, populations studied, sample 
size, exposure assessment, analytical methods employed, and outcomes assessed. 
Therefore, we propose that the state-of-the science is presently inadequate to con-
clude that exposure to environmental contaminants are or are not associated with 
adverse effects on ovarian function or human fertility.     
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