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Abstract Human populations are constantly inundated with viruses, some of
which are responsible for various deadly diseases. Molecular biology approaches
have been employed extensively to identify pathogenic viruses despite the limita-
tions of the approaches. Nevertheless, recent advances in the next generation
sequencing technologies have led to a surge in viral genome sequence databases
with potentials for Bioinformatics based virus identification. In this study, we have
utilised the Gaussian radial basis function neural network to identify pathogenic
viruses. To validate the neural network model, samples of sequences of four dif-
ferent pathogenic viruses were extracted from the ViPR corpus. Electron-ion
interaction pseudopotential scheme was used to encode the extracted sample
sequences while cepstral analysis technique was applied to the encoded sequences
to obtain a new set of genomic features, here called Genomic Cepstral Coefficients
(GCCs). Experiments were performed to determine the potency of the GCCs to
discriminate between different pathogenic viruses. Results show that GCCs are
highly discriminating and gave good results when applied to identify some selected
pathogenic viruses.

Keywords Cepstral ⋅ Dengue ⋅ Ebolavirus ⋅ Electron ⋅ Enterovirus ⋅
Genomics ⋅ Hepatitis ⋅ Radial ⋅ Neural ⋅ Network

E. Adetiba (✉) ⋅ O.O. Olugbara ⋅ T.B. Taiwo
ICT and Society Research Group, Durban University of Technology, 1334,
Durban 4000, South Africa
e-mail: emmanuela1@dut.ac.za

O.O. Olugbara
e-mail: oludayoo@dut.ac.za

T.B. Taiwo
e-mail: tunmike.bukola@yahoo.com

© Springer International Publishing Switzerland 2016
N. Pillay et al. (eds.), Advances in Nature and Biologically Inspired Computing,
Advances in Intelligent Systems and Computing 419,
DOI 10.1007/978-3-319-27400-3_25

281



1 Introduction

Application of advanced technologies in molecular biology has greatly accelerated
the ease with which known disease pathogens were identified within the last few
years. Novel pathogens were discovered with ease using molecular approaches such
as immune screening of cDNA libraries and polymerase chain reactions. Examples
of pathogenic viruses that were discovered as a result of these efforts are the
“hepatitis C” and “sin nombre” [1]. Despite this huge success, the effective iden-
tification of several viral pathogens has been elusive. On this account, the devel-
opment of new techniques for identification of pathogens has become of interest.
Modern DNA sequencing technologies hold promise because of the avalanche of
genomic sequences of viral from laboratory and environmental surveillance studies
that are made publicly available online. The availability of huge datasets has made
automatic identification of species of the DNA sequences, an open challenge in
Bioinformatics and Genomic Signal Processing (GSP) [2, 3].

In GSP, which is a somewhat new area in Bioinformatics, digital signal pro-
cessing techniques are employed to analyse genomic data and the biological
knowledge gained can be translated to a system based application [3]. Several
studies reported in the literature have addressed the identification of species from
nucleotide sequences using the digital signal processing techniques alongside the
machine learning techniques. A classification model based on data mining and
Artificial Neural Network (ANN) was developed for the identification of species
from DNA sequences [3]. The authors mined nucleotide patterns from selected
DNA sequences and used Multilinear Principal Component Analysis (MPCA) to
reduce the dimensions of the mined patterns. The technique was validated on two
different species and they reported good classification accuracies. In [4], a classi-
fication model was developed to classify eight different eukaryotes species. The
authors utilized Frequency Chaos Game Representation (FCGR) to encode genomic
sequences and they utilised a neural network technique to obtain the classification
accuracy of 92.3 %. A model based on the Naïve Bayesian technique was used to
classify archeal and bacterial genomes [5]. The authors used the dinucleotide
composition of the genome sequences to report a classification accuracy of 85 %. In
[6], the classification of proteins of three different species was reported. The authors
used a Markov model to obtain classification accuracies 83.51, 82.12 and 66.63 %
of the proteins of microbes, eukaryotes and archaea respectively.

However, the success of any genome identification (or classification) system is
hugely dependent on critical factors such as the availability of valid datasets, feature
extraction method that truly reflects the attributes of the genetic sequences, the
classification algorithm and the objective evaluation of the identification system [7].
The immediate motivation for the study at hand, is the need to obtain a set of
discriminating genomic features to improve the identification of species in genomic
sequences [7]. The genomic sequences of four pathogenic viruses were extracted
from the Virus Pathogen Database and Analysis Resource (ViPR) corpus. The
extracted genomic sequences were numerically encoded using a low computational
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Electron-Ion Interaction Potential (EIIP) scheme. Thereafter, a set of Genomic
Ceptral Coefficients (GCCs) was computed from the encoded sequences and
transmitted to the Gaussian Radial Basis Function (RBF) neural network to learn
the genome sequences. Section 2 of this paper contains materials and methods,
Sect. 3 contain the results and discussion and the paper concludes in Sect. 4.

2 Materials and Methods

In this section, we describe the viral dataset, the EIIP nucleotide mapping scheme,
the cepstral analysis technique on which the GCCs is based, the RBF neural net-
work classifier and the experiments performed. All the computational techniques
described were implemented in MATLAB R2012a.

2.1 Dataset

We extracted genome sequences of featured viruses from the Virus Pathogen
Database and Analysis Resource (ViPR) corpus for our experimentations. The
ViPR corpus provides free access to records of gene sequences and proteins of
various viral pathogens so as to facilitate research and development of diagnostics,
vaccines and therapeutics. The extracted viruses are Ebolavirus, Dengue virus,
Hepatitis C and Enterovirus D68. These viruses are currently classified as featured
viruses on the ViPR databases because they are responsible for diseases that are
presently attracting serious attention from health sectors, scientists and governments
worldwide [22]. Complete genome sequences of seven strains of the Bundibuggo
specie of Ebolavirus were extracted while ten complete genomes of each of the
remaining three viruses were extracted from the ViPR for our experiments. We
extracted a small dataset (37 instances of virus sequences) in order to examine the
efficacy of the GCCs. The sequence length of each of these viruses is shown in
Table 1. As illustrated in the Table, the length of each of the genomic sequences
varies from one virus to the other and from one strain of the virus to another strain
of the same virus. For instance, the sequence length of the Ebolavirus varies from
18939 to 18941 while that of Enterovirus D68 varies from 420 to 809.

Table 1 The range of the
genome sequence length of
the selected viruses

Virus Range of the length of genome sequence

Ebolavirus 18939–18941
Enterovirus D68 420–809
Dengue virus 10176–15287
Hepatitis C virus 9220–9587
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2.2 Electron-Ion Interaction Potential (EIIP)

Nucleotide sequence is a string of four distinct characters representing four
nucleotides, which are A (Adenine), C (Cytosine), G (Guanine) and T (Thymine)
[2, 8]. To apply DSP techniques to process these characters, it is necessary to first
convert them into numeric sequences. This problem was solved by Voss [9] using
four binary indicator sequences, which are uA[n], uT[n], uC[n] and uG[n]. These
indicator sequences take the value of one or zero depending on whether or not the
corresponding character exists at n location. These four binary indicator sequences
are said to contain some redundancy and they can be transformed into three
non-redundant sequences as reported in [10, 11]. Moreover, the authors in [12]
proposed a nucleotide encoding scheme by replacing the four indicator sequences
with just one sequence and they named the scheme “EIIP indicator sequence”.
Doing so, they calculated the energy of delocalized electrons in amino acid and
nucleotides as the Electron-Ion Interaction Pseudopotential (EIIP). Substituting the
EIIP values for A, C, G and T in a nucleotide string x[n], we obtain the “EIIP
indicator sequence” that represents the distribution of the energies of free electrons
along the sequence [13]. The EIIP values for the four nucleotides are shown in
Table 2, where A = 0.1260, G = 0.0806, C = 0.1340 and T = 0.1335. Using the
EIIP scheme, the computational overhead of binary indicator sequence is signifi-
cantly reduced by 75 % [12, 13].

The corresponding Discrete Fourier Transform (DFT) of EIIP encoded sequence
ui[n] where i = A, G, C or T is:

Ui½k�= ∑
N − 1

n=0
ui½n�e

− j2πkn
N , k=0, 1, 2, . . .N − 1 ð1Þ

and the power spectrum is defined as:

P½k�= UA½k�j j2 + UG½k�j j2 + UC½k�j j2 + UT ½k�j j2 ð2Þ

2.3 Cepstral Analysis Technique

A cepstrum is defined as the inverse DFT of the logarithmic magnitude of the DFT
of a signal as illustrated with a block diagram in Fig. 1. In other words, a cepstrum

Table 2 Electron-Ion
Interaction Pseudopotential
for Nucleotides

Nucleotide EIIP value

A 0.1260
G 0.0806
C 0.1340
T 0.1335

284 E. Adetiba et al.



can be considered as a spectrum of logarithmic spectrum that comprises of loga-
rithmic amplitude scale, but linear frequency scale [14]. Cepstrum analysis is used
as a tool for detection of periodicity in a spectrum because the harmonic structure of
the spectrum is emphasized by the logarithmic amplitude scale. Areas where cep-
stral coefficients are applied include radar analysis, speech processing, marine
exploration, diastolic heart sound analysis and electroencephalogram pattern clas-
sification [14–16]. This current study utilizes cepstral analysis to obtain Genomic
Cepstral Coefficients (GCCs) for identification of pathogenic viruses from their
genome sequences. This effort strongly aligns with the practice in the field of
Genomic Signal Processing (GSP) in which DSP techniques are applied to solve
biological problems based on nucleotide sequences [9–12].

In this study, the real and complex cepstral [15] are considered to obtain real and
complex genomic cepstral features.

The real cepstrum of a signal x[n] is calculated by computing the natural log-
arithm of the magnitude of its Fourier transform and taking the inverse Fourier
transform of the result given as:

cx½n�= 1
2π

Zπ

− π

log XðejwÞ�� ��ejwndw ð3Þ

The complex cepstrum of the signal is also computed by calculating the complex
natural logarithm of the Fourier transform and taking the inverse Fourier transform
of the result using:

x⌢½n�= 1
2π

Zπ

− π

½log XðejwÞ�� ��ejw + j argðXðejwÞÞ�ejwndw ð4Þ

The phase of the signal is represented as arg() in Eq. (4). Both the real and
the complex cepstral analysis produce cepstral coefficients and truncating the
coefficients at different linear frequency scale allows the preservation of differ-
ent amount of spectral details. It has been reported in the literature that the first 12
to 15 coefficients of a cepstrum are a compact representation of the spectral
envelope [16].

Radial Basis Function Neural Network
An ANN is a parallel biologically inspired computational system that mimics the
configuration of the human nervous system. The human brain, which is the central

DFT |( )|

x

Log( ) IDFT

c[n]

Fig. 1 Block diagram of the computational components of a signal cepstrum
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organ in the nervous system is made up of 1014–1015 interconnections of neurons
and learning involves adjustments to the synaptic connections between these neu-
rons [17]. Artificial neuron was motivated principally from the structure and
functions of the human brain and in order to learn problem that cannot be handled
by one neuron, an aggregate of several neurons called ANN are engaged. The two
main types of ANN architectures are the feed-forward and recurrent networks. In
feed-forward architecture, signal flows from input to output stringently in a forward
path while there are feedback paths in recurrent networks.

Radial Basis Function (RBF) and Multilayer Perceptron (MLP) neural network
are feed-forward networks that have been used extensively in the Bioinformatics
and artificial intelligence research communities for pattern classification [18–20].
However, we selected the RBF neural network in this study as a biologically
inspired computational platform to identify the GCCs extracted from selected
pathogenic viruses. This is because the RBF neural network is reported to be very
robust to input noise, always guarantee high accuracy and have lower design rigour
than MLP neural network [21]. The input layer of the RBF neural network receives
input signal x and transmits it to the hidden layers where the signal is processed
and further transmitted in a forward direction to the output layer to generate the
output signal y. To process information received in the hidden layer, an RBF
network utilizes several kernel functions such as Gaussian, cubic, thin plate spline,
Cauchy and inverse multiquadric. However, one of the most commonly used kernel
is the Gaussian function, which is used in this study. This kernel function is
represented as:

f ðxÞ= expð− x2

σ2
Þ ð6Þ

Where σ is the width or scaling parameter that characterises the input space under
the influence of the basis function. The output y, from the RBF neural network is
defined as:

yk = ∑
N

j=1
σj, k.f ð cj − x

�� ��
2Þ ð7Þ

Where cj is the centroid of the jth basis function, N is the number of neurons in the
hidden layer and jjxjj is the radial distance of its argument, which is usually taken as
Euclidean distance.

The RBF neural network used in this study was configured to appropriately
identify virus sequences in our experimental dataset of GCCs. The number of
neurons in the input layer vary from 12 to 15 because this range of elements was
tested for the GCCs. The number of neurons in the hidden layer by default is equal
to the number of instances in the training dataset which is equal to 37 in this study.
The dataset is partitioned to 70 % training, 15 % validation and 15 % testing.
Meanwhile, the output layer contains 4 neurons because there are four virus classes
in our experimentation dataset with each virus representing a class. The other
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configurations of the RBF neural network in this study are MSE goal of 0 and
spread of 0.1. To perform an evaluation of the results computed by the RBF neural
network, we utilized four different widely used metrics, which are the accuracy,
Mean Square Error (MSE), sensitivity and specificity [8, 23].

Experiments
In this study, two experiments were performed to determine the potency of complex
and real GCCs to discriminate between different pathogenic viruses. The purpose of
the first experiment is to use the complex GCCs to identify pathogenic viruses,
while the purpose of the second experiment is to use real GCCs to identify
pathogenic viruses. In the experiments, the number of GCCs used as features varied
from 12 to 15 in order to determine their effects on the identification accuracy.

In the first experiment, the nucleotide sequences of all the virus sequences were
first encoded using the EIIP scheme. Thereafter, we obtained the vectors of com-
plex GCCs, which were transmitted to train the configured RBF neural network to
learn virus identification task. In the second experiment, we used the same
nucleotide encoding scheme (EIIP) to encode the genome sequences of pathogenic
viruses. The real GCCs were thereafter computed to train the RBF neural network
to learn the task of virus identification.

3 Experimental Results and Discussion

The spectral plots of the complex GCCs for all the viruses obtained from the first
experiment are shown in Fig. 2. These plots clearly show that the complex cepstrum
of each virus is unique. For instance, the spectral shape of Dengue virus has a
downward peak at the end of the spectrum. The Ebolavirus spectral shape shows
both upward and downward peaks at the end of the spectrum. The Enterovirus D68
has a dense spectrum with peaks at the beginning and terminates with a downward
peak. The Hepatitis C virus has intermittent dense spectral details across the length
of the spectrum that terminates in an upward spike.

In this first experiment, although the number of GCCs varied from 12, 13, 14 to
15, when training the RBF neural network to learn GCCs, we obtained the same
results for all the performance metrics. The identification results yield an accuracy
of 83.3 %, MSE of 0.0497, sensitivity of 0.9063 and specificity of 0.9520 as shown
in Table 3. These results imply that retaining any number of elements of the
complex GCCs from 12 to 15 does not affect the performance of the pathogenic
virus identification system.

Figure 3 shows the plots of the real GCCs for all the virus sequences in the
second experiment. These plots show that the real GCCs of each virus is unique. It
can be observed from the plots that Dengue virus has many tiny spikes across the
length of the spectrum, Ebola virus has a flat spectrum with a few tiny spikes,
Enterovirus has a zig-zag spectrum while Hepatitis C virus has a dense spectrum
with a spectral envelope of low amplitude.
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The results obtained in this second experiment after training the RBF neural
network to learn the real GCCs are tabulated in Table 4. These results show that the
same performance values were obtained for real GCCs with 12 and 13 elements,
whereas the results improved for real GCCs with 14 elements. There is also an
improvement in the results with respect to sensitivity and specificity when the
numbers of elements in the real GCCs were increased from 14 to 15. The best
performance accuracy of 97.3 %, MSE of 0.0309, sensitivity of 0.9919 and
specificity of 0.9919 were obtained with 15 element real GCCs.

Comparatively, Tables 3 and 4 show the results of real GCCs to be better than
the results obtained with complex GCCs, which led to the realization of our
experimental objective. The result of this study is significant because each patho-
genic virus with sequence length ranges of 18939–18941, 420–809, 10176–15287,
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Fig. 2 The complex Genomic Cepstral Coefficients of the four viruses

Table 3 Results of the first experiment

No of elements in GCCs Accuracy MSE Sensitivity Specificity

12 0.8330 0.0497 0.9063 0.9520
13 0.8330 0.0497 0.9063 0.9520
14 0.8330 0.0497 0.9063 0.9520
15 0.8330 0.0497 0.9063 0.9520
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and 9220–9587 can be represented using 15 element real GCCs with good
discriminating power. Despite an extensive literature search for a similar study that
used the same dataset and neural network for pathogenic virus identification, the
closest work we found was Karthika et al. [4]. The authors used FCGR to encode
the genomic sequences of eight eukaryote species and neural network as the
classifier to obtain an accuracy of 92.3 %. This previous study in [4] corroborates
our position of the need for discriminating features from genomic sequences for
species identification. Hence, the high level of accuracy, sensitivity, specificity and
low MSE achieved in this study is a promising endeavour. This result forms the
basis for proposing a genomic computational model that incorporates the EIIP
scheme, 15 element real GCCs and RBF neural network for accurate identification
of pathogenic viruses from genome sequences.
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Fig. 3 The real Genomic Cepstral Coefficients of the four viruses

Table 4 Results of the second experiment

No of elements in GCCs Accuracy MSE Sensitivity Specificity

12 0.9460 0.0541 0.9393 0.9824
13 0.9460 0.0541 0.9393 0.9824
14 0.9730 0.0309 0.9773 0.9773
15 0.9730 0.0309 0.9919 0.9919
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4 Conclusion

In this study, we have been able to apply cepstral analysis technique to obtain
genomic cepstral coefficients from genome sequences of pathogenic viruses. These
features were incorporated into the proposed computational model for accurate
identification of pathogenic viruses from genome sequences. The efficacy of the
model has been validated using appropriate data and evaluation metrics. The
implementation of the model holds a lot of promises for genomic based diagnosis of
microbial diseases in humans, DNA Barcoding, bio-diversity study and wildlife
forensic. In the future, we hope to improve the robustness of the proposed model by
incorporating more pathogenic viruses and validating the model on a large data set.
In addition, we hope to experiment with other classification algorithms that can
enhance the performance of the model when more pathogenic virus sequences are
elicited.
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