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Abstract Evolutionary Robotics (ER) makes use of evolutionary algorithms to

evolve controllers and morphologies of robots. Despite successful demonstrations

in laboratory experiments, ER has not been widely adopted by industry as means of

robot design. A possible reason for this is that current ER approaches ignore issues

that are important when designing robots for practical use. For example, the avail-

ability and cost of components used for robot construction should be considered. A

robot designed by the ER process may require specialised custom components to be

built to support the physical functioning of the design, if the components selected by

an ER process are not widely available. Alternatively, the ER designed robot may be

too expensive to be constructed. This paper demonstrates that standard off-the-shelf

components can be used by the ER process to design a robot. A robot arm is used as

a sample problem, which is successfully optimised to use components from a fixed

list while minimising cost.
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1 Introduction

Evolutionary Robotics is a subset of Evolutionary Algorithms(EA) and deals with

evolving morphologies and controllers for robots. Morphologies are the physical

layout of the robot. The physical layout would depend on the robot type as well as

the task to be performed. Each robot type can have multiple layouts where the layout

of the robot includes the specific components, their placement and mounting to form

a robot. The controller describes how the physical layout must work to perform the

desired task.

ER has been successfully applied to evolve morphologies and controllers for sev-

eral robots. The ER process has shown great promise by creating novel controllers

and unique morphologies with minimal human input. However, ER has not been

widely adopted by industry and the use of EA is mostly limited to merely optimising

design parameters of physical robots. A possible reason for the limited adoption of

ER is that it does not fit in well with the standard design process. In the traditional

robotic design process the available components and overall budget are known to

the designer and the design will be done within these limitations taken into account

from the start. In contrast, evolving a morphology and controller using ER generates

a design for a robot which must be constructed after the fact. This design does not

necessarily take into account component availability or cost. The resultant robot may

thus be infeasible to construct in the real world or simply be too expensive.

This research attempts to address the above mentioned shortfalls in the ER process

by being a proof of concept study to demonstrate that standard off-the-shelf com-

ponents can be incorporated into ER throughout the entire process. A simple robot

morphology and controller is evolved which makes use of standard off the shelf com-

ponents to achieve the design. This will enable the optimisation of cost along with

the creation of the robot.

The robot evolved in this study is a robot arm of which the end effector must

travel from a start point to an end point while avoiding an obstacle in the environ-

ment. The morphology of this arm will not be a fixed morphology. Rather the entire

morphology will be evolved to suit the task and optimise obstacle avoidance, posi-

tional accuracy and cost. As this is a preliminary study this will be evolved only in

simulation and the mechanical strength of the components will be ignored. Motors

are thus assumed to be strong enough to lift and support the required weights.

The rest of this paper is structured as follows: Related work is discussed in Sect. 2

followed by the new proposed approach in Sect. 3. This approach will be studied

using a sample problem described in Sect. 4. The implementation of this sample

problem will be described in Sect. 5 after which the results will be discussed in

Sect. 6 and conclusions drawn in Sect. 7.
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2 Related Work

Simulation is typically used to evolve robots after which the final design is trans-

ferred to the real world. The algorithm uses a simulator to test the fitness of the robot

produced. New generations are produced in the same manner that they are produced

in an EA: reproduction operators. Generations of robots are created until a stopping

condition is reached. The algorithm then outputs the controller and/or the body plan

of the robot which then may be used in the creation of a physical robot [4].

ER can evolve novel controllers and morphologies. Lego morphologies are cre-

ated by Funes [3] who shows that arbitrary morphologies can be created from basic

building blocks to perform specific tasks while Lipson [8] co-evolves the robot’s con-

troller and morphology simultaneously, creating the robot’s morphology and con-

troller in a single process. Feasible robot evolution [2] investigations have shown

results such that the robots produced through the ER process can be applied to real

world applications. The robots used modular components which could be assembled

and used to create robots designed to perform a described task.

There is lack of research which takes the physical construction of the robot into

account during the ER process. An exception to this is using modular robots in the

ER process. Modular robots are self-contained units which are assembled to cre-

ate larger robots [1]. The modular robots are used as the base component for the

chromosome in the evolutionary process [6]. The modular robot components are

mirrored in the real world and the result is a robot which can be immediately assem-

bled. Several researchers have investigated using modular robots in ER [1, 2, 6].

Despite the promising research on modular robots, modularity may limit the optimal

performance of the robot [7].

The sample problem for this paper is the creation of a robot arm. Although no

previous work has been done on evolving the entire structure of a robot arm, previous

work has been done in optimising fixed robot arm morphologies [12, 13]. Optimising

fixed arm morphologies is done by optimising link parameters such as link length or

angle of twist. The goal in parameter optimisation is often to maximise the workspace

of the robot arm [12, 13].

3 Proposed Approach

This paper proposes the use of standard components for robot evolution. Standard

components refers to non-custom parts which are commercially available and typi-

cally inexpensive. Evolved robots can thus be simply constructed in the real world

while various factors such as cost can be included in the optimisation process.

The described problem is a multi-objective optimisation problem. This is chal-

lenging as the various objectives of the algorithm must be balanced. However, in

this particular instance the objectives can be categorised as either primary or sec-

ondary. Primary goals are prerequisite requirements while secondary goals are not
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vital to task completion but do affect the robot. Cost would usually be a secondary

goal while avoiding collisions would be a primary goal. An expensive robot can

complete the task while a robot which collides with an obstacle does not.

4 Sample Problem

To show that standard components can be used in ER a sample problem of evolving

a robot arm is examined. The robot arm is required to perform a single task. This

task is to move from an initial position to a final position. In order to make the task

and the controller more complex, an obstacle is inserted between the start and end

position. The controller thus requires a path planning component which generates a

safe path for the robot to traverse without colliding with the obstacle.

In papers by Rout [11], Panda [9] and Patel [10] it can be seen that typically in

robot arm optimisation the structure is fixed and the parameters are continuous. This

differs from this study where the structure is dynamic and the parameters are fixed by

the components. Link length is not a continuous variable, it is a discrete parameter

of the component selected.

The sample problem will use an obstacle starting at (0.3, 0.3) and made from

the two line segments y = 0.3 and y = 0.3x. This obstacle is infinitely defined in the

z-axis thus the obstacle can be seen as an infinitely high wall. The path planning algo-

rithm was required to not create new points any closer than 0.1 m to the obstacle. The

target points the robot was required to reach were (0.35, 0.1, 0.1) and (0.35, 0.5, 0.2).
The robot will have an accuracy threshold that defines how close the end-effector of

the arm must be to the target point to be deemed to have successfully reached that

point. This threshold value was selected to be 0.03m. This arm has primary objec-

tives of reaching the threshold value without the arm colliding with the obstacle and

a secondary objective of minimising the cost of the arm. This task is shown in Fig. 1.

A robot arm or manipulator in this scenario is a set of motors connected serially

to provide a large working area. The motors are connected by links which are simple

connectors which only differ in length. A discrete set of links and motors is avail-

able for the creation of the robot arm. The physical characteristics of a catalogue of

commercially available servo motors was captured [5]. Mounting the components

to each other is determined by three factors: a mounting type, a side to which it is

mounted and an angle at which it is mounted.

5 Implementation

The goals of the sample problem were solved by splitting the problem into two free-

standing evolutionary algorithms. The purpose of the first algorithm is to generate

the sequence of points which would result in a collision free path. The second algo-

rithm takes the result of the first algorithm as an input and evolves a robot arm along
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with a set of motor angles which will result in the end effector reaching each point

in the path. Section 5.1 describes the first algorithm while Sect. 5.2 describes the

second. Various parameter choices were motivated through preliminary parameter

optimisation tests. The fitness was maximised in both algorithms.

5.1 Path Finding Algorithm

5.1.1 Representation and Initialisation

The path finding EA is represented by a variable-length chromosome containing a

sequence of points in three dimensional space. The chromosomes were initialised to

have one to three genes upon creation. The first point in the sequence is the starting

point and the final point the end point of the path. Genes were randomly initialised

in a cube with one corner at the base of the robot and sides of length equal to R. R
is defined as the distance between the base of the robot and the furthest goal point

(either the start or end point depending on the problem).

5.1.2 Operators

A two parent crossover was used to generate a single offspring individual. Two sep-

arate random points were chosen in each parent. The offspring individual is made up

of the genetic material of the first parent up to the first parent’s crossover point com-

bined with the genetic material from the second parent’s crossover point up to the

end of the second parent’s chromosome. Tournament selection was used with a tour-

nament size of 20 % of the population size. Two mutation operators are used, the first

to introduce small amounts of local variation, while the second is used to introduce

large changes. The first mutation operator adds random values from a normal dis-

tribution with a standard deviation of
R
10

.The second mutation operator consisted of

reinitialising genes flagged for mutation. The mutation operator was applied with a

probability of 0.05 with each operator having an equal chance of being used. Elitism

was implemented by saving the best result of the previous generation in the new

generation.

5.1.3 Fitness Function

The fitness function was created to reward individuals for creating shorter paths and

punish individuals for collisions. The algorithm functions by determining if the line

between two successive points intersects with the obstacle. If an intersection is found

the individual is punished. The general algorithm is given in Algorithm 1
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D = 0; P = 0;

for each successive pair of points in the chromosome: p1, p2 do
D = D + Distance(p1,p2);

if a collision occurs between p1 and p2 then
P = P + 10000;

end
end
Fitness = -(D + P);

Algorithm 1: Fitness of path finding algorithm

5.2 Robot Arm Evolution

5.2.1 Representation and Initialisation

Each gene in the chromosome represents a component. A component can either be

a servo motor or a link, with the first component in the chromosome being a motor.

The successive components in the chromosome alternate between motors and links.

For each motor a sequence of N angles is stored, where N is the number of destina-

tion points found by the Path Finding Algorithm. Components are mounted based

on a mounting type and variables which determine mounting information for each

component is stored in the chromosome. Angles are randomly initialised within the

valid travel range of the relevant servo motor, while mounting values are randomly

selected from the list of valid mounting combinations. The chromosome itself was

initialised to have two to ten components on creation.

5.2.2 Operators

The crossover, selection operators as well as elitism used in the path finding algo-

rithm were used in the robot arm evolution. A restriction on the crossover was added

such that the resulting child conforms to a valid representation. Two mutation oper-

ators are used in this EA. The first mutation operator potentially adds random values

from a normal distribution with a standard deviation of 5◦ to each angle in the gene

with a probability of 0.1. The second mutation operator was applied with a prob-

ability of 0.05 and consisted of reinitialising the component in genes flagged for

mutation.

5.2.3 Fitness Function

The fitness function aims to create a robot arm that can successfully perform the

task at the cheapest cost. The end effector of the arm must reach the threshold for

all targets without colliding with the obstacle at any point while travelling through

the path. The fitness of the arm then depends on the distance from the target at each
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target point, the magnitude of the penetration into the obstacle and the overall cost of

the arm. These separate fitnesses are weighted and added to create a single fitness for

the individual. Additionally, the fitness function for the arm was designed such that

it could create robots which could achieve largest distance remaining (LDR) values

even lower than the threshold value. This was achieved by lowering the influence of

the position of the arm once it has reached the threshold. The general algorithm is

given in Algorithm 2.

Target = target list;

N = length of target list;

Component = list of components in chromosome x;

Lx = length of chromosome x;

Pcollision = 0; Ptargetdistance = 0; C = 0;

for 1 to N do
for c = 1 to Lx - 1 do

line = line between Component[c] and Component[c+1];

if line intersects with the obstacle then
Pcollision = Pcollision + Penetration Amount;

end
end

end
for n = 1 to N do

q = the end effector position when attempting to reach Target[n];

if Distance(q,Target[n]) > Threshold then
Ptargetdistance = Ptargetdistance + Distance(q,Target[n]);

end
else

Ptargetdistance = Ptargetdistance +
Distance(q,Target[n])

1000
;

end
end
for c = 1 to Lx do

C = C + Cost(Component[c]);

end
Fitness = −(Ptargetdistance × 1000000 + Pcollision × 1000000 + C);

Algorithm 2: Fitness of chromosome x

6 Evaluation

The ER process used to evaluate the sample problem was run for 30 instances. The

path finding and robot arm EAs had population sizes of 100 and 50 respectively

and were run for 2000 and 20,000 generations respectively. The path finding EA

produced a path which added a single intermediate point to produce a collision free

path as shown in Fig. 1.
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Fig. 1 Solution to the

path-finding problem

Table 1 contains the output data of the 30 instances. This data is divided into mul-

tiple columns: the total magnitude of all vectors from the end effector to each target

point i.e. the distance remaining summation (DRS); the largest distance remaining

(LDR) which is the magnitude of the largest vector from the end effector to any

target point; the sum of penetration distances(SPD) which indicates if the arm has

penetrated the obstacle at any point along its path of travel; the total cost of all com-

ponents in the arm; finally, the table contains the total components used to construct

the arm i.e. the number of motors and links. A solution was considered successful if

and only if it satisfies the primary objectives such that LDR was lower than 0.03 m

and SPD was zero.

Twelve instances produced successful robots. The average cost for all thirty

instances was evolved from an initial value of R1501.92 down to R601.38. The low-

est cost for an arm was R332.76. This arm was the most successful by having the

lowest cost while satisfying primary objectives. If minimising LDR was the goal,

then the arm which had an LDR of 3.44 × 10−5m and a cost of R482.08 would have

been the most successful.

Figure 2 shows a 3D view of the best result. The LDR for this result was 0.0236 m

and had a total cost of R332.76. This arm’s structure had a motor at the base which

rotated a link around the z-axis. The next motor was mounted at 90
◦

to the link and

would raise or lower the next link as required. The third motor was mounted in-

line with the previous link allowing for further height modification with a shorter

link. The last motor was mounted at 90
◦

around a different axis, rotating its link

in the xy plane instead of the yz plane the previous two motors worked in. Using

this layout, three configurations are shown. Each configuration represents the end

effector attempting to reach P1, P2 and P3. Starting in configuration 1 the robot
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Table 1 Results

DRS [mm] LDR [mm] SPD Total cost Nr. components Notes

0.07 0.03 0 482 10 Success—most accurate

2.68 1.88 0 635 10 Success

11 10.1 0 594 13 Success

21.3 11.7 0 591 8 Success

14.4 14.3 0 603 10 Success

31.9 17 0 605 9 Success

23.3 23.2 0 566 9 Success

23.6 23.6 0 333 8 Success—least expensive

32.4 27.4 0 644 11 Success

51 28.5 0 487 12 Success

29.3 29 0 791 14 Success

36.3 29.6 0 670 10 Success

33.4 32.5 0 796 14

34.6 34.5 0 680 8

78.4 69.6 0 1100 10

77.5 77.5 0 670 8

78.2 78.1 0.00232 495 10

102 79.6 0 700 9

199 91 0 513 7

114 96.3 0 563 7

108 108 0 630 7

122 111 0 624 8

142 141 0 653 13

177 146 0.000319 552 12

149 149 0 715 9

182 154 0 414 6

206 186 0 449 8

211 189 0 453 6

253 199 0 598 6

279 262 0 433 4

would rotate the base and lift up the midsection of the arm to move to configuration

2. This movement shifts the end effector of the arm from P1 to P2. Moving from

configuration 2 into configuration 3 requires the rotation of the base towards the

obstacle and the lowering the midsection to point at P3 with the final section rotating

to point in the same direction as the rest of the arm. Configuration 2 allows the arm to

safely retract and extend without colliding with the obstacle. The solution shown in

Fig. 2 created a workspace that could reach all the target points within the threshold

value while not colliding with the obstacle at any point.
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Fig. 2 Lowest cost arm top and orthographic views
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7 Conclusion

The algorithm succeeded in producing a robot arm using the ER process and standard

off-the-shelf components. 40 % of the results produced in the evaluation set were

successes. The ER process succeeded in solving a multiple objective optimisation

problem in that results which satisfied the primary objectives were produced while

reducing cost. This is another step towards industrial application of ER.

Future work would be constructing and testing a solution in the real world. This

would require the integration of torque to the fitness function. The task may or may

not have a load associated with it but for the arm to be constructed in the real world,

the forces acting on the arm must be calculated to ensure that the motors selected can

handle the forces and possibly loads from the arm and task. This would add torque

to the fitness function as a similar factor like SPD in that a robot would fail if any

motor could not handle the torque acting on it.

Only rotational servos were present in the current data set, adding linear servos in

future work would be an interesting addition as the results could potentially mimic

a more traditional robot arm design.
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