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3.1 Introduction

Smart systems represent a broad class of systems defined as intelligent, miniaturized
devices incorporating functionality like sensing, actuation, and control. In order
to support these functions, they must include sophisticated and heterogeneous
components and subsystems such as: application-specific sensors and actuators,
multiple power sources and storage devices, intelligence in the form of power
management, baseband computation, digital signal processing, power actuators, and
subsystems for various types of wireless connectivity (as shown in Fig. 3.1).

Smart components and subsystems are developed and produced with very differ-
ent technologies and materials specific to the corresponding domain and technology.
The heterogeneity involves not only the language or framework adopted, but also
different levels of abstraction and different communication and synchronization
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Fig. 3.1 Typical components of a smart system

styles. As of today, no design methodology and tools exist that can master,
simultaneously and in a seamless manner, all the challenges that designers of
smart micro-systems are confronted with when new products need to be developed.
Nevertheless, modeling and design capabilities for heterogeneous components and
subsystems are today available at specialized design houses and silicon makers in
various forms. On the other hand, system integrators typically have separate tooling
to model the environment. As a result, the challenge in the realization of a smart
system goes beyond the design of the individual components and subsystems (an
already difficult task by itself), but rather consists in accommodating a multitude of
functionality, technologies, and materials.

In this context, simulation is a very critical task, as each component domain
adopts specific tools and frameworks, that do not cover the whole smart system
heterogeneity. On the other hand, simulation is a key phase in the design and
verification process of a system, as it heavily impacts time-to-market and the
competitiveness of the final product.

The goal of this chapter is to ease simulation and validation of smart systems. In
this context, it provides a taxonomy of abstraction level/design domains, to highlight
challenges and tools available for each domain. This allows to identify a precise
role in the design flow for co-simulation and simulation scenarios, and thus to
outline the possible strategies for gaining correct simulation of smart system. The
two complementary approaches are compared with the goal of showing respective
strengths and weaknesses.

The chapter also aims at enhancing reuse and integration by showing how state-
of-the-art and commercial tools can ease the adoption of homogeneous simulation,
with automatic code generation from lower abstraction levels and automatic inte-
gration of heterogeneous interfaces.

As a result, the chapter builds a comprehensive modeling and simulation frame-
work that supports digital, analogue, and circuit-level descriptions simultaneously.
This improves the contemporary smart systems design flow in such a way that a
system-level simulation of all the heterogeneous components/subsystems of a smart
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system will be possible. This advances state-of-the-art approaches by supporting
the development of smart systems, their integration, and efficient simulation.

The chapter is organized as follows. Section 3.2 provides a background on
smart system design, by listing available frameworks and formalisms, together
with state-of-the-art tools. Section 3.3 identifies the typical abstraction levels and
design domains involved in smart system design, with the goal of defining a
taxonomy of the most widespread tools and languages. Finally, Sect. 3.4 proposes
code conversion and generation approaches to gain homogeneous simulation of the
heterogeneous components of a smart system, by working on both language and
formalisms. Section 3.5 provides experimental evidence of the proposed solutions,
and Sect. 3.6 concludes the chapter with some concluding remarks.

3.2 Background on Smart System Modeling

Smart components (and sub-components) are developed and produced with very dif-
ferent technologies and materials, specific to the corresponding domain. The goal of
this section is to provide the necessary background for the proposed methodologies.
Section 3.2.1 outlines the most widespread formalisms and frameworks available in
the literature for tackling smart systems heterogeneity, while Sect. 3.2.2 deepens the
ones adopted in the proposed flow.

3.2.1 Formalisms and Frameworks for Smart System Modeling

The heterogeneity of smart system involves not only the language or framework
adopted, but also different levels of abstraction and communication and synchro-
nization styles. An evidence of this are the adopted description languages, that
only target specific domains, such as digital and software components (SpecC and
SystemC) or analogue components (VHDL-AMS, Verilog-AMS, and SystemC-
AMS).

In the literature, the main approaches proposed for handling such a heterogeneity
are (1) top–down flows, relying either on model-based design (MBD) or on models
of computation (MoCs), and (2) co-simulation, which exploits different simulation
environments to take care of the heterogeneity of the system [13].

In MBD approaches, the system model is at the center of the design process and
it is continually refined throughout a strictly top–down development flow [5, 22,
26]. Components following different synchronization mechanisms are put together
through data conversion, that must be implemented manually, thus not guaranteeing
correct integration.

Several MoCs have been proposed to describe different aspects of smart systems.
As an example, extended finite state machines (EFSMs) [18] are an enhancement of
traditional FSMs suited for describing digital HW components and cycle-accurate
protocols, while hybrid automata have been defined to allow the integration of
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continuous physical dynamics with discrete behaviors [20]. Unfortunately, every
MoC is a stand-alone environment that cannot cover all the domains comprised
in smart system development. Forcing communication through manual conversions
between MoCs does not provide any guarantee of correctness of the final result.

The complementary approach is to integrate existing components in a bottom–
up flow. This is realized with co-simulation environments where each component is
simulated in its native environment and framework. Different simulators are then
connected by defining rules and conversions about time management and event
ordering, supported methods of communication, and rules of process activation
[10, 17]. However, co-simulation assemblies heterogeneous components without
providing a rigorous formal support, and it only moves the problem of integrating
heterogeneous components to the problem of integrating different simulators.

3.2.2 Adopted Platforms for Smart System Design

This section gives a very brief overview of the main tools and platforms used in this
work for smart system modeling and integration: SystemC and SystemC-AMS as
a language supporting a number of abstraction levels (Sect. 3.2.2.1), HIFSuite for
automatic conversion of reused code and components (Sect. 3.2.2.2), SystemVue as
a simulator and co-simulator (Sect. 3.2.2.3), and UNIVERCM as a MoC spanning
across various heterogeneous domains (Sect. 3.2.2.4).

3.2.2.1 SystemC and SystemC-AMS

SystemC is a widely deployed extension to C/CCC for describing HW constructs,
ranging from register-transfer level up to transactional level [1]. The underlying
simulation kernel is entirely event-based, i.e., a centralized scheduler controls
the execution of processes based on events (synchronization, time notifications,
or signal value changes). SystemC provides also a methodology for performing
abstract modeling, simulation through generalized modeling of communication and
synchronization: transaction level modeling (TLM) [3].

The SystemC simulation kernel has not been natively designed to handle the
modeling and simulation of analog/continuous time systems. The recent extension
SystemC-AMS [2] was designed for overcoming this lack, i.e., for modeling and
simulating interacting analog/mixed signal functional subsystems, thus allowing
to extend the adoption of a SystemC-based environment also to extra-functional,
continuous time domains.

SystemC-AMS provides different abstraction levels to cover a wide variety of
domains. Timed data-flow (TDF) models discrete time processes, that are scheduled
statically by considering their producer–consumer dependencies. Linear signal flow
(LSF) supports the modeling of continuous time behaviors through a library of
predefined primitive modules (e.g., integration, or delay), each associated with
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Fig. 3.2 Architecture of the SystemC scheduler as extended with SystemC-AMS support

a linear equation. Electrical linear network (ELN) models electrical networks
through the instantiation of predefined primitives, e.g., resistors or capacitors, where
each primitive is associated with an electrical equation. In case of ELN or LSF
descriptions, a SystemC-AMS AD solver analyzes the ELN and LSF components to
derive the equations modeling system behavior, that are solved to determine system
state at any simulation time.

As highlighted in Fig. 3.2, the key feature of all SystemC extensions is that
overall simulation is handled by the sole SystemC simulation kernel, that interacts
with its extensions to define, time after time, both the execution queue and the
corresponding system evolution.

3.2.2.2 HIFSuite

HIFSuite is a set of tools and application programming interfaces (APIs) that
provide support for modeling and verification of HW/SW systems [15]. The core of
HIFSuite is the HDL Intermediate Format (HIF) language upon which a set of front-
end and back-end tools have been developed to allow the conversion of HDL code
into HIF code and vice versa. HIFSuite allows designers to manipulate and integrate
heterogeneous components implemented by using different hardware description
languages (HDLs). Moreover, HIFSuite includes tools, which rely on HIF APIs,
for manipulating HIF descriptions in order to support code abstraction/refinement
and post-refinement verification, including A2T, a tool for abstracting RTL digital
components to TLM or CCC [8].

3.2.2.3 SystemVue

SystemVue is an electronic design automation (EDA) environment for electronic
system-level (ESL) design, focused on RF and DSP systems [4]. It supports complex
RF envelope carriers and dataflow simulations [21]. In SystemVue, a system is
described as a schematic of components connected with wires and busses. The
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simulation technology is based on a Data-Flow MoC and it is based on the Ptolemy
multi-domain, heterogeneous simulation platform [22].

SystemVue is well suited for the integration of heterogeneous systems. It pro-
vides numerous libraries with parameterized components and interfaces to diverse
modeling formats, ranging from MATLAB to the main HDLs, such as Verilog
and VHDL. Furthermore, it allows to create custom components in math language
or CCC and to add them to a purely SystemVue system. SystemVue supports
multi-domain simulations through links to event-based as well as circuit simulation
engines, such as SystemC and ModelSim, may be extended to analogue simulations.

3.2.2.4 UNIVERCM

UNIVERCM is an automaton-based formalism that unifies the modeling of both
the analogue (i.e., continuous) and the digital (i.e., discrete) domains, as well as
hardware-dependent SW. A formal and complete definition is available in [19].

In each UNIVERCM automaton (depicted in Fig. 3.3), states model the continuous
dynamics of the system as a condition that must be satisfied to perform continuous
evolution (invariant) and a predicate modeling the evolution of variables over time
(flow). Edges between states model the discrete dynamics as evolution of variables
and activation of synchronization events, controlled by a boolean predicate on the
variable state and by synchronization checks.

UNIVERCM is an important resource in smart system design as it is well suited
for the application to heterogeneous domains [19]. Indeed, the computational model
allows to cover the heterogeneity that characterizes such systems, ranging from
analogue and digital HW up to dedicated SW. Guglielmo et al. [19] presented a
comprehensive reuse and design flow based on UNIVERCM, thus showing how it
is possible to provide formal rules and automatic tools to convert the heterogeneity
to UNIVERCM and to produce a homogeneous simulatable implementation of the
generated UNIVERCM system. Thus, UNIVERCM enhances reuse and bottom–up
design.
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Fig. 3.3 Example of UNIVERCM automaton
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3.3 Analysis of Smart System Simulation Solutions

Simulation and design are heavily influenced by the abstraction level of each com-
ponent and, as a consequence, by the level of heterogeneity that characterizes the
system in terms of domains, abstraction levels, and synchronization mechanisms. It
is thus necessary to clearly identify the abstraction level involved in smart system
design (Sect. 3.3.2) and to associate each domain and simulator to the correct level.
For this reason, this section proposes a taxonomy that associates frameworks and
design flows to each domain and abstraction level (Sect. 3.3.3). This constitutes a
necessary starting point for understanding the impact of abstraction levels and of
the heterogeneity/homogeneity trade-off on simulation (Sect. 3.3.4).

3.3.1 Typical Domains of Smart System Design

The typical classes of components of any smart system are identified in terms both
of constituting characteristics and of role w.r.t. the inner information/energy flows.
For this reason, components are sub-divided into six main domains:

• MEMS, sensors, and actuators, in charge of communicating with the surrounding
environment;

• Power sources, necessary to guarantee correct functioning of all other
components;

• Discrete and power devices, as parts of the energy flow, responsible for energy
dispatching and harvesting;

• Analogue and RF components, mainly responsible for signal processing, trans-
mission, and reception;

• Digital HW, core of the system processing and functionality;
• Embedded SW, as system controller and main mean of communication with the

end users.

The main simulation problems of smart systems derive from this heterogeneity
that requires the use of different design languages and different abstraction levels.
Moreover, it is extremely unlikely that a single team has the knowledge to cover
all such design domains, thus, we have to assume that a set of design teams
must cooperate by using their own favorite design languages. In fact, there is no
Esperanto able to effectively model all such domains. A variety of design languages
has rather been proposed in the past decades to cover specific design domains,
and some standards de facto became the reference languages for design teams
specialized in each design domain. This challenging scenario will be the focus of
the next sections.
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3.3.2 Abstraction Levels of Smart System Design

The main factors determining the level of abstraction are: time granularity, inter-
connection model, state space granularity, and data aggregation. Time granularity
is an important dimension in a heterogeneous environment. It may be continuous
or discrete time, or follow an event-based semantics where time ticks only when
the system state changes. The interconnection model describes communication and
synchronization between components as potential or flow quantities (conservative
systems), flow charts, or transactions. The granularity of state space details
data aggregation for simulation purposes, i.e., variables managed by differential
equations, symbolic variables, or objective constructs (i.e., system state describes
the possible behavior, e.g., CCC). Finally, data aggregation states whether the
component is modeled by considering the minimum (black box) or maximum (clear
box) number of state space variables necessary for a correct representation of the
observable behavior.

Given these factors, it is possible to identify five main abstraction levels, typical
of smart systems.

• At transactional level, simulation is strictly event-based and inter-component
communication happens via transactions (that provide a communication protocol
to the system). System state is modeled with variables.

• At functional level, simulation is event-based but communication relies on the
flow chart interconnection style.

• The structural level has two main approaches depending on time granularity.
Continuous time evolution is modeled with differential equations and by observ-
ing conservative laws. Discrete time may adopt both event-based or flow chart
synchronization, and finite set variables are adopted.

• At device level, simulation can be both continuous or discrete time. The major
difference is that at device level all variables are modeled explicitly, while
structural level models only those variables that are strictly necessary for
simulation purposes.

• The physical level adopts continuous time synchronization and the conservative
interconnection style. State space is described with continuous fields as differen-
tial equations and all variables are modeled in a clear box approach.

3.3.3 Design-Domains/Simulation-Level Taxonomy

Given the variety of abstraction levels and the heterogeneous domains typically
present in any smart system, it is possible to build the design-domains/simulation-
level taxonomy shown in Fig. 3.4. Such a chart identifies the abstraction level (rows)
and the domain (column) of the most widespread tool and languages adopted in
the context of smart systems. This allows to correctly differentiate the use of co-
simulation and simulation according to the two dimensions. Text in bold shows the
typical entrance level and tools for each domain.
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Fig. 3.4 Design-domains/simulation-level taxonomy, identifying the abstraction level (rows) and
the domain (column) of the most widespread tool and languages adopted in the context of smart
systems. Text in bold shows the typical entrance level and tools for each domain

Models belonging the lowest abstraction levels (i.e., physical, device, and
structural) are represented by different domain-specific design languages. They
must thus be simulated by using their own simulator (e.g., Matlab, Modelsim,
EMPro). For this reason, a framework covering more than one domain can be
implemented only by using co-simulation techniques which connect different tools
by exchanging simulation data from one tool to another.

Moving to the functional level, there is a convergence in the modeling language,
as all models belonging to different domains are represented in CCC. This would
in principle allow a simulation among different domains. However, the MoC
implemented into each CCC model can be different from domain to domain. Thus,
simulation cannot be simply obtained by linking functional CCC models, but such
models must also be coherent w.r.t. the same MoC. Thus, either the chosen MoC
covers all domains or some data and synchronization conversion is necessary.

At transaction level, simulation frameworks enforce a common transaction-
based communication protocol to all domains. This allows to seamlessly integrate
components belonging to different domains and based on different MoCs and
synchronization mechanisms.

3.3.4 Impact of MoCs on Simulation and Co-simulation
Performance

The taxonomy in Fig. 3.4 helps in further understanding the impact of MoCs and of
heterogeneity on simulation and co-simulation at different abstraction levels.

As mentioned in Sect. 3.3, the heterogeneity of the lowest abstraction levels
forces to simulate each design domain by using ad-hoc simulators. Co-simulation
frameworks are thus built by connecting different simulators, such as shown
in [10, 17]. Unfortunately, explicitly modeling the synchronization between
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simulators, different for language, formalism, and underlying MoC, heavily impacts
simulation performance and effectiveness [19]. Other approaches achieve a lighter
impact by compiling separately the different formats and linking them together, such
as done by ModelSim to co-simulate SystemC and VHDL. This lighter approach is
still affected by the presence of heterogeneous MoCs, as the data sharing mechanism
and time synchronization introduce a heavy overhead.

Functional level brings to a convergence in terms of modeling language and
framework, thus showing the impact of MoCs to the full. If all CCC components
follow the same MoC, then they can easily be integrated with no further overhead.
Else, if the adopted MoCs are heterogeneous, it becomes necessary to introduce a
communication layer for applying data and synchronization conversion.

Communication and synchronization are further eased at transaction level, as
transactions and standard interfaces force a single communication protocol to
all components. This mitigates the effect of having multiple MoCs, as problems
risen by data sharing and time synchronization are moved inside the transactional
communication mechanism.

This analysis highlights that the heterogeneity of smart systems impacts simula-
tion performance in many directions. Contributing elements are indeed the adopted
languages, the levels of abstraction, and the MoCs followed by the components to be
integrated. The weakest approach appears to be co-simulation, mandatory at lowest
levels, as it pays the price of all degrees of heterogeneity. Simulation becomes more
effective at functional and transactional levels, where heterogeneity is constrained
and limited to few synchronization mechanisms. For these reasons, the remainder of
this chapter will focus on code generation for effective simulation of smart systems
at functional and transactional levels.

3.4 Proposed Methodologies

The analysis of the smart system simulation scenarios proposed in the previous
section highlighted that the choices in terms of abstraction level, language, and MoC
may heavily affect simulation performance. This section outlines three alternatives,
different in terms of implementation choices and covered domains. The solutions are
summarized in Fig. 3.5, and they provide different coverage/performance trade-offs,
together with techniques and tools for achieving automatic generation of simulatable
code. Section 3.4.1 focuses on functional level, and it estimates the impact of MoCs
on simulation. On the other hand, Sect. 3.4.2 provides two solutions at transactional
level, based on SystemC and on the SystemVue framework.

3.4.1 Smart System Simulation at Functional Level

The functional level brings all domains to a convergence in terms of modeling
language, usually CCC. This easies the achievement of simultaneous simulation
of components belonging to different domains. At the same time, an effort may
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Fig. 3.5 Proposed solutions
for homogeneous simulation
of heterogeneous smart
systems
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(Section 4.2.1)
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be necessary whenever the CCC representations of components follow different
MoCs, i.e., different synchronization management rules. This section provides an
example for both flows, with the goal of showing the impact of MoCs to the full.

3.4.1.1 Simulation Based on a Single MoC

The UNIVERCM MoC, presented in Sect. 3.2.2.4, was designed to reconcile het-
erogeneous domains to a unique formalism. It supports a full bottom–up approach
where already existing heterogeneous descriptions can be automatically converted
and integrated into UNIVERCM automata for being, subsequently, re-mapped to a
single simulatable model. This section details both the flows, with a focus on the
major conversion issues and solutions.

Mapping from Heterogeneity to UNIVERCM

The strategy to map any component to UNIVERCM strictly depends on the domain
and abstraction level of the starting description [14].

Mapping digital HW descriptions in UNIVERCM requires to reproduce the
simulation semantics of HDLs, both in terms of scheduling and of synchronization.

HDL processes are represented as automata. All edges of an automaton are
guarded by the activation of synchronization labels, reproducing a value change
of any of the signals in the sensitivity list. This activates an automaton in response
to changes in its sensitivity list. Note that the propagation of synchronization events
is straightforward, as labels are instantaneously visible from any automaton.

The typical HDL scheduling routine is in charge of generating and propagating
events and advancing simulation time. This mechanism must be represented in
UNIVERCM so that events are processed in the same order and simulation semantics
is preserved. The main feature that must be preserved is thus the fact that simulation
time is advanced only when there is no event to be processed in the system nor
any signal to be updated. The scheduling routine is represented with an additional
automaton, that advances a continuous variable representing time only when there
is no active label in the system. This allows to process events in the same order as
in the original HDL and to preserve the original simulation semantics.
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HW-dependent SW (HdS) is SW that controls and abstracts HW functionality,
to allow easy and standard access to HW devices and the deployment of more
abstracted SW. HdS is thus in charge of managing communication with HW and
it needs to be reactive to signals and interrupts risen by HW devices. Each HdS
function is mapped to a UNIVERCM automaton, evolving among a certain set of
states via transitions (note that continuous time evolution is not supported for this
domain). Each function is provided with two special labels: an activation label
(representing function invocation and activated by automata willing to execute the
function) and a return label (used to communicate to the caller that the function
has finished its execution). This allows inter-function communication. Automata
representing HdS functions can be also sensitive to events coming from HW
automata, representing HW interrupts. This, together with data sharing for modeling
MMIO mechanisms, allows to reproduce the basics of HW–SW communication.
An example of HW–SW communication, and of mapping to UNIVERCM of the
corresponding components, is provided in Fig. 3.6.
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Fig. 3.6 Mapping to UNIVERCM of a digital HW component firing an interrupt (1) and of the
corresponding interrupt service routine (2)
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UNIVERCM can be easily adopted to model also analogue models described with
differential equations as hybrid automata [16, 27]. The mapping is straightforward,
even if some transformations are necessary to reproduce the synchronization
semantics and to remove hierarchy from the automata.

Once that all starting descriptions have been converted to UNIVERCM, automata
evolve simultaneously through data sharing (i.e., by accessing the same variables)
and by synchronizing via labels. Thus, no additional communication or scheduling
mechanism is necessary.

Mapping from UNIVERCM to CCC

The conversion flow from UNIVERCM to CCC is defined in general for any
automata, with no concern regarding the language of the original description
converter to UNIVERCM.

Each UNIVERCM automaton is mapped to a CCC function, representing the
whole automaton evolution, as depicted in Fig. 3.7. A state variable is used to
store the current state of the automaton. The function body is built as a switch
statement, where each case represents one of the automaton states. Each state
case lists the implementation of all the outgoing edges and of the delay transition
provided for the state.

Each edge is implemented as an if or else if statement, whose guard is a
logic and of the enabling condition on the edge and of the activation condition on
synchronization events. The body executed when the guard is satisfied includes the
update of variables and the activation of synchronization events. Furthermore, the
state variable is updated to the destination state of the edge.

Fig. 3.7 UNIVERCM automaton to be converted to CCC (left) and corresponding generated code
(right)
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Continuous evolution is implemented as an if or else if statement whose
guard is the invariant condition that allows to remain in the state. The body
executed when the guard is true implements a discretized implementation of
the flow predicate, by adopting the Euler numerical integration algorithm with
time discretization step chosen by the designer [11]. It is important to note that
the Euler method can be replaced with one of the many available algorithms for the
approximation of solutions of ordinary differential equations.

Code generated from UNIVERCM automata is ruled by a management function,
in charge of activating automata and of managing the status of the overall system
and parallel composition of automata. The result of this approach is that all code
generated from UNIVERCM automata is controlled by a single function, and it is
thus provided with a simple interface.

If the system is made of more UNIVERCM automata, the management function
is not enough to grant correct composition. Indeed, the starting components come
from heterogeneous domains, and thus the communication means may differ. On
the other hand, communication between UNIVERCM automata happens via variable
sharing and through synchronization events. Thus, any two automata can be easily
composed by checking the correspondence between variables and synchronization
events of the two. Mapping the one in the other must be identified by the designer.
This allows to extend the management function to all operations necessary to
propagate updated values.

Finally, UNIVERCM variables and events are mapped to native CCC constructs.
Variables are mapped to a couple of CCC variables, representing the current
value and the future value, respectively, in order to respect the UNIVERCM
semantics. Value update is performed by the management function, as previously
anticipated. The type of each variable is determined by the variable alphabet for
discrete variables, while continuous variables are mapped to doubles. Support type
libraries may be used, for simulation purposes or to enhance simulation speed [9].
Synchronization events are represented with boolean values, where true states
that the label is active. In detail, labels are mapped to a couple of boolean values,
representing the current value and the next simulation value, respectively. At the end
of each simulation step, the management function will set the new current value to
the future one, and reset the future value to false.

Integration Strategies and Challenges

Simulation based on a single MoC poses no challenges regarding integration. All
starting components, despite of their heterogeneity, are converted to UNIVERCM
automata, by mapping the starting semantics to UNIVERCM native constructs.
This allows to abstract the characteristics of the starting descriptions, and to
represent the system as a number of automata that interact through no conversion
mechanism. This is a winning approach, as no manual intervention is necessary to
allow integration. This reduces by far communication overheads, and it speeds up
simulation.
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3.4.1.2 Simulation Based on Multiple MoCs

UNIVERCM is a very powerful MoC, as it covers a wide number of domains.
However, its representation of digital HW may lead to an explosion of the modeled
automata, both in terms of states and of synchronization labels. Furthermore,
no methodology has been defined yet for mapping circuit-based descriptions, as
electrical behaviors and conservation laws are difficult to reproduce in an automata
based approach. For this reason, it may be necessary to integrate code generated via
UNIVERCM with CCC code generated with other strategies. This section outlines
two additional strategies, necessary to cover all smart system domains efficiently.
The section ends by presenting the integration strategies and challenges, to allow
overall smart system simulation even in presence of different MoCs.

HIFSuite for Efficient Conversion of Digital HW to CCC

HIFSuite (introduced in Sect. 3.2.2.2) is a closely integrated set of tools and APIs
for reusing already developed components and for verifying their integration into
new designs [15].

HIFSuite was first designed for allowing system designers to convert HW/SW
design descriptions from a HDL to a different HDL and to manipulate them in a
uniform and efficient way. For this reason, the underlying HIF core language is made
of a set of objects corresponding to traditional HDL constructs like, for example,
processes, variable/signal declarations, sequential and concurrent statements, and
so forth [6]. Each HIF construct is mapped to a CCC class that describes specific
properties and attributes of the corresponding HDL construct. Such objects can then
be manipulated through powerful CCC APIs which allow to explore, manipulate,
and extract information from HIF descriptions.

All such characteristics make HIFSuite a very convenient infrastructure to define
conversion tools working on digital HW descriptions. The typical conversion flow
from digital HW to CCC is outlined in Fig. 3.8, and it leaves the underlying MoC
of the starting description unchanged.

Any digital HW description, implemented in a HDL language, is converted to its
HIF representation via the HIFSuite front-end tools, performing a straightforward
mapping from HDL constructs to the corresponding HIF objects. The abstraction of
the HIF description is then carried out by two manipulation tools from HIFSuite,
DDT and A2T. DDT replaces the original HDL data types from the starting HW
description with CCC built-in data types in order to greatly improve simulation
performance. Then, A2T implements the methodology in [7] to convert the HDL
processes to functions and the HDL scheduling semantics to a management
function. Additionally, A2T can be guided to generate more performing CCC code
by providing it with profiling information of the starting HDL implementation. If the
repeated execution of asynchronous processes dominates execution time, A2T may
replace the standard dynamic HDL simulation semantics with a static scheduling
approach. Such an approach creates a sequence of processes to be repeated at every
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Fig. 3.8 HIFSuite-based flow for automatic conversion of digital HW descriptions to CCC

simulation cycle, thus avoiding the overhead of event management. This allows to
further abstract the starting HDL description, to customize the generated code with
the goal of optimizing simulation performance. The obtained HIF description is
finally converted to CCC through the back-end tool hif2sc.

The winning aspect of this strategy w.r.t. the UNIVERCM-based conversion flow
presented in Sect. 3.4.1.1 lies in the efficiency of the generated code. HIF natively
preserves the HDL semantics, thus not introducing additional constructs, e.g., for
scheduling or synchronization management. This results in a more compact CCC
implementation of the starting digital HW.

Conversion of Analogue and Mixed Signal Descriptions to CCC

Analogue components can be seen as a set of algebraic and differential equations,
expressing the functionality. These equations can be expressed in different ways:
they can be explicitly listed or they can be hidden by expressing them as intercon-
nections of primitives, as for block diagrams. Thus, when aiming at reproducing
the behavior of an analogue device, it is fundamental to extract the correct set of
equations from the original description. To accomplish this task, HIFSuite analysis
features come in handy, and they are exploited into a framework of front-end,
manipulation and back-end tools. The resulting flow is depicted in Fig. 3.9.

To read analogue descriptions, the Verilog parser of HIFSuite is extended to
support Verilog-AMS. The tool takes care of parsing analogue descriptions, based
on dipole equations, and to map constructs into HIF. The HIF representation is then
used to analyze and manipulate the information expressed by the design. Analysis
and manipulation are performed by OCCAM (Ordinary CCC Code for Analogue
Models), a tool developed on top of HIFSuite that implements an analysis and
manipulation algorithm composed by the following five steps:
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Fig. 3.9 HIFSuite-based flow for automatic conversion of analogue and mixed signal descriptions
to CCC

• Acquisition: Starting from the set of dipole equations acquired by the Verilog
front-end tool, a hash table is created. For each electric branch of the circuit
represented by the original description, current and voltage are labeled and then,
every equation is stored in the hash table, using the left value label as key.
Then, also the inverse equations are computed, stored in the table, and marked as
“linearly linked” to the original equation.

• Enrichment: The system of equations can be partially specified, and some
relations may thus be left implicit. It is necessary to apply Kirchhoff’s current
and voltage laws to retrieve the entire set of equations composing the system.
This is done by employing a modified nodal analysis algorithm on the set of
equations extracted during the acquisition step. The implicit equations, retrieved
by the modified nodal analysis, are inserted into the hash table and marked as
“linearly linked.”

• Assemble: In order to abstract the system, the outputs of interest are fixed by the
designer. For every output of interest, its label is used to fetch an equation from
the hash table. Then, all the terms of the fetched equations are used as label to
fetch other equations, recursively, in order to retrieve all the terms influencing the
chosen output. A tree structure representing these dependencies is built for every
output of interest.

• Preparation: The tree built at the assemble step is visited, and the dependencies
are mapped into a sequence of assignments and function calls, to represent
algebraic and differential operators.

• Dismantle: The sequence of instructions created after the previous steps are
inserted into a function. Since the produced models aim at simulating continuous
time evolution, they have to be repeatedly executed. Thus, the simulation
scheduler will provide to call and execute the function wrapping the behavior,
periodically during the simulation.

Finally, the behavioral representation produced by OCCAM and modeled in HIF
has to be translated into CCC. To do this, the HIFSuite back-end tools have been
extended in order to support this kind of representation, to produce CCC code for
the simulation.
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Integration Strategies and Challenges

The integration of CCC code generated with the presented techniques introduces
major challenges. Indeed, this section clearly highlighted that at functional level
different domains and techniques share a common language, but not the MoC and
the synchronization mechanisms. As an example, an event fired by a component
generated through UNIVERCM may be difficult to detect by code generated through
HIFSuite or through a complex abstraction process, necessary to handle analogue
and mixed signal descriptions.

If execution inside components may be self-sufficient and correct, problems arise
whenever interaction between components is necessary. Due to the complexity of
the task and to the complex configurations that may show up, this task can be
handled only manually, by carefully considering the characteristics of the specific
components into play.

Whenever integrating heterogeneous CCC code, the designer shall consider:

• Functionality activation: Each MoC introduces different scheduling strategies
in the CCC code, ranging from the reconstruction of HDL scheduling up to
simple activation of all automata for UNIVERCM-based code. The designer shall
implement a global scheduling routine, that activates the single domains by
respecting timing and causality relationships;

• Time evolution: Each MoC advances time with specific solutions, that are affected
by the presence of runnable activities. Local scheduling strategies must thus
agree on a shared notion of time, so that events are propagated in the correct
order and that digital synchronous signals such as clocks are coherent w.r.t. the
remainder of the system;

• event propagation: Each local scheduler must be able to detect synchronization
events fired by the other domains. For this reason, the global scheduler must
convert events from one formalism to the other, without introducing delays or
timing misalignments;

• Data sharing: Different components must be able to share data despite of the
implementation differences. The global scheduling routine shall propagate value
changes, thus converting data from one format (or data type) to the other.

This highlights that, even if the single conversion techniques are correct, interaction
of heterogeneous MoC introduces heavy management overheads and it may leave
space for synchronization misalignments.

3.4.2 Smart System Simulation at Transactional Level

The transactional layer brings all domains to a convergence in terms of modeling
language and of underlying framework. The differences in terms of MoC or
abstraction level are not reduced by means of conversion methodologies, but they
are rather preserved to ease the integration process. Ad-hoc interfaces or simulation
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strategies mask this heterogeneity with a transaction-based mechanism, where a
global scheduler satisfies activation requests and performs all conversions and syn-
chronization with no intervention from the user. This section provides two examples
of this strategy, the one relying on the standard language SystemC (Sect. 3.4.2.1)
and the other based on the commercial tool SystemVue (Sect. 3.4.2.2). This will
highlight the characteristics of the transactional level to the full.

3.4.2.1 SystemC-Based Simulation

SystemC, together with its extensions, is a well-established language for the
modeling of smart systems. Its strength, as anticipated in Sect. 3.2.2.1, is the
presence of a single simulation kernel, mastering requests coming from any of the
supported MoCs and libraries.

SystemC can be considered transactional as any of the supported MoCs defines
a precise interface to the simulation kernel, thus wrapping different levels of
abstraction of the instantiated constructs. Each solver communicates with the
simulation kernel through transactions, i.e., activation requests that are satisfied by
the kernel through synchronization with the remainder of the system and through
data sharing and conversion. This section shows how effective SystemC can be at
supporting the heterogeneity of smart systems, ranging from analogue and mixed
signal conservative descriptions up to digital HW components.

Mapping from UNIVERCM to SystemC

Mapping of UNIVERCM to SystemC traces the approach for CCC code generation
proposed in Sect. 3.4.1. However, the presence of a simulation kernel allows to
delegate some management tasks, and to reproduce automata behavior through
native SystemC constructs. Note that this is crucial to ease and enhance the
interaction with SystemC code generated through different design flows.

The main effect of the adoption of SystemC is on the management routine.
UNIVERCM automata are indeed mapped to processes, rather than functions. This
allows to delegate automata activation to the SystemC scheduler, by making each
process sensitive to its input variables. Automata activation is removed from the
management function, that still updates the status of variables and events at any
simulation cycle. The management function itself is declared as a process, activated
with a custom event after all automata have performed one simulation step.

The mapping of synchronization events is left unchanged, despite of the presence
of native SystemC events, i.e., sc_events. Indeed, SystemC events cannot be
used into conditions, while this is a feature necessary to fully support UNIVERCM
transition semantics.

The mapping of UNIVERCM variables changes slightly. Variables shared by
two or more automata are mapped to SystemC signals, to allow data sharing
between processes and ensure correct simulation and process activation. UNIVERCM
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variables used by a single automata are still mapped to a couple of CCC variables,
i.e., current value and future value, that are updated and handled by the management
function.

Mapping of Digital HW to SystemC and SystemC TLM Through HIFSuite

As previously stated in Sects. 3.2.2.2 and 3.4.1.2, HIFSuite is an ideal framework
to convert digital HW descriptions into corresponding SystemC and SystemC-TLM
descriptions. The flow to automatically convert digital HW descriptions to SystemC
at RTL is depicted in Fig. 3.10. The input HW description, written in VHDL or
Verilog, is firstly converted to its HIF representation by the HIFSuite front-end
tools. This step is achieved by parsing the input description and mapping HDL
constructs to corresponding HIF objects. Then, the HIF description is converted
to the corresponding SystemC RTL code by the back-end tool hif2sc. A number
of manipulations on the HIF description are required during this step to account
for the lack of expressiveness of SystemC w.r.t. VHDL and Verilog. In fact, some
VHDL and Verilog constructs do not have a direct mapping to a corresponding
SystemC construct. As such, they must be translated by resorting to an equivalent
implementation through other SystemC constructs.

HIFSuite also features a flow to automatically abstract digital HW descriptions
to SystemC TLM for faster simulation speed. The resulting flow is illustrated in
Fig. 3.11. The first step consists again of converting the input HW description to its
corresponding HIF representation by the HIFSuite front-end tools. If the target is
to generate a TLM description optimized for simulation performance, the following
step consists of invoking DDT from HIFSuite on the generated HIF description
in order to improve simulation performance by replacing the original HDL data
types with CCC built-in data types. This step is however completely optional.
In case it is bypassed, the output TLM description at the end of the flow will
feature SystemC data types. The abstraction of the HIF description from RTL to
TLM is carried out by the manipulation of A2T from HIFSuite. A2T produces code
compliant with the TLM-2.0 standard. The user can select which TLM protocol will
be generated by adopting one of the two TLM-2.0 coding styles, namely loosely
timed (LT) and approximately timed (AT). If the LT coding style is adopted, the

Fig. 3.10 HIFSuite-based flow for automatic conversion of digital HW descriptions to SystemC
RTL
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Fig. 3.11 HIFSuite-based flow for automatic conversion of digital HW descriptions to SystemC
TLM

abstracted design will implement the blocking transport interface, and blocking
transport primitives will be used to achieve communication. Conversely, if the AT
coding style is adopted, the abstracted design will implement the non-blocking
transport interface, and non-blocking transport primitives will be used to achieve
communication. The abstraction process generates CCC functionality code from
RTL processes, and replaces the RTL cycle-accurate communication protocol with
the transaction-based TLM communication protocol. As reported in Sect. 3.4.1.2,
profiling information on the starting HW description can be provided to A2T in
order to generate more efficient CCC code for the design functionality. Finally, the
abstracted HIF description is converted to SystemC TLM through the back-end tool
hif2sc.

Mapping of Analogue Conservative Descriptions to SystemC-AMS

Smart systems often feature heterogeneous components that do not match the
traditional digital design flow. A typical example is MEMS components, often used
as means of sensing and actuation, thus having a crucial role in the interaction of
the system with the surrounding environment. The main complexity introduced by
this kind of descriptions is that they are both behavioral and conservative, i.e., they
feature a certain level of abstraction w.r.t. the actual component realization, but at
the same time they obey physical laws, such as energy conservation laws [12, 25].

The limitations of traditional flows and tools at handling such components are
highlighted by the characteristics of SystemC-AMS that, though being the reference
language for smart system simulation, does not support descriptions that are both
behavioral and conservative (as described in Sect. 3.2.2.1). The limited flexibility
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of SystemC-AMS forces designers to adopt other HDLs (e.g., Verilog-AMS), that
cannot be easily integrated with the frameworks and flows presented in this chapter.

For these reasons, this section shows how SystemC-AMS can be extended
to support behavioral and conservative descriptions. Instead of adding a new
abstraction level (with corresponding libraries and classes), the adopted approach
uses SystemC-AMS existing primitives in a novel way [28]. Note that, due to
the limitations of SystemC-AMS, supported models are strictly linear and time-
invariant.

The starting point of the methodology is a Verilog-AMS behavioral description.
In Verilog-AMS, a circuit is modeled as an abstract graph of nodes connected by
branches [24]. System state is defined in terms of voltages (V()) and currents (I())
associated with nodes and branches. Relationships between nodes are modeled with
algebraic and differential equations, called simultaneous statements.

Since SystemC-AMS is less expressive than Verilog-AMS, any Verilog-AMS
simultaneous statement is reproduced by connecting a number of ELN elements.
Given a Verilog-AMS description, each simultaneous statement is divided into basic
contributions by finding the largest sub-equation that can be represented by a single
ELN object. In linear and time-invariant descriptions, this corresponds to breaking
the equation into the single addends.

Each addend is then mapped to the most suitable ELN primitive. As an example,
an instance of the sca_vsource primitive is used to reproduce independent
voltage sources, e.g., V(a) <+ +8.01. On the other hand, an instance of the
sca_vccs primitive reproduces voltage controlled current sources, e.g., I(a)
<+ +4.02 V(b). ELN primitives must then be connected to reproduce the
relationship expressed by the starting simultaneous statement. If the term on the
left-hand side of the simultaneous statement is a current, SystemC-AMS instances
are connected in parallel. Else, if the term is a voltage, instances are connected in
series, by adding intermediate components. Figure 3.12 exemplifies these concepts
on a simultaneous statement including a voltage controlled current source, a current
controlled current source, and an independent current source.

Differential contributions require a more complex approach, as they model a
derivative (or integrative) relationship between the current or voltage of two separate
circuit nodes. SystemC-AMS, on the other hand, restricts differential behaviors
to dependencies on single network nodes, through the adoption of capacitors
(sca_c ELN module) or inductors (sca_l). To overcome this limitation, it is
necessary to introduce an intermediate node that has no physical correspondence
in the circuit, but that is rather used for describing the differential dependence.
The node is connected to an inductor in case of a derivative construct (e.g., I(a)
<+ ddt(+4.02 V(b))) and to a capacitor in case of an integrative construct
(e.g., I(a) <+ idt(+4.02 V(b))). Suitable ELN primitives are then used to
bind the evolution of the intermediate node to the nodes involved in the starting
differential contribution.

As the application of the proposed approach may be tedious and error-prone, and
thus prevent the application to industrial-size case studies, the whole methodology
has been automated on top of the HIFSuite framework.
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Fig. 3.12 Example of mapping of a Verilog-AMS simultaneous statement to SystemC-AMS. The
simultaneous statement includes a voltage controlled current source (term 1, mapped to an instance
of sca_vccs), a current controlled current source (term 2, mapped to a sca_cccs), and an
independent current source (term 3, mapped to a sca_csource). Since the left-hand side of the
simultaneous statement is a current construct, all ELN instances are connected in parallel. Non-
connected terminals are connected to ground

Integration Strategies and Challenges

The code generation solutions presented in this section tackle the heterogeneity of
smart systems by adopting a common language (i.e., SystemC and its extension),
still preserving the heterogeneity in terms of MoC. However, interaction between
different MoCs does not rely on manual, error-prone synchronization approaches,
as for the functional level (Sect. 3.4.1). All synchronization is indeed transferred to
the simulation kernel, that satisfies requests from all MoCs and abstraction levels.

Synchronization correctness is thus guaranteed by the underlying SystemC
simulation kernel, that natively masters heterogeneous requests and takes care
of synchronization issues between its extensions and MoCs. Furthermore, native
converters allow to perform data conversion and to propagate events from one MoC
to the other, without any manual intervention from the user. Still, the heterogeneity
in terms of MoCs affects simulation performance, as data and synchronization
conversion imply a computation overhead. Thus, the simplicity of integration comes
at a price of simulation performance.

3.4.2.2 SystemVue-Based Simulation

SystemVue is an environment designed for easing the integration process. Its
execution semantics is based on the synchronous dataflow MoC. As such, system
behaviors are described by interconnecting basic blocks, expressing a functionality.
The strength of SystemVue is that it provides predefined blocks as well as a CCC
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API to create libraries of custom components that can be included in a system
simulation together with components shipped with SystemVue. This allows to easily
integrate any CCC code, including manually designed code and code generated
with the methodologies proposed in Sect. 3.4.1.

The first step to integrate a CCC external component in SystemVue is to
specify its interface as names and data types of all the inputs, outputs, and
parameters. The interface of a SystemVue node implemented in CCC is com-
posed by a set of variables that are then specified to belong to the interface
using the macros: DEFINE_MODEL_INTERFACE, ADD_MODEL_OUTPUT, and
ADD_MODEL_INPUT. The data types of these variables, in order to be accepted
by the macros, have to belong to a well-defined subset of the available C data
types. Some data types, such as circular buffers, are implemented in the SystemVue
support library. The other available data types are a subset of the C/CCC data types,
that does not include the standard unsigned integers. This can be an issue, as
normal unsigned int data types do not ensure that the span of data representa-
tion is the same on different architectures. For this reason, in order to assure the pre-
dictability of the number of bits used to represent data on the interface, every vari-
able is declared as double. Then, before any computation step, the data read from
the interface is assigned to a data structure using standard Integer and Boolean
variables for computation. After the computation, the variables of the data structure
are copied into the output variables. Figure 3.13 gives a sketch of the CCC code
generated by HIFSuite for SystemVue. The left-hand side of the figure focuses on

Fig. 3.13 Overview of the SystemVue-compliant CCC generated by HIFSuite
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the interface and it shows the declaration of the interface variables, the input/output
data structure, and the interface declaration. On the right-hand side of the figure the
Run method exemplifies the usage of input/output variables and data structure.

In SystemVue, functionality is implemented in terms of four functions:

• Setup() is used to specify the rate of each port, in particular when using
circular buffers, in the node interface. The default value is uni-rate, and it is not
mandatory to implement this function.

• Initialize() is executed during the initialization of the dataflow, thus
should be used to run all the initialization code necessary to the node
functionality.

• Run() is the main method, as it contains the functionality that has to be executed
at every simulation step. Its execution is scheduled by SystemVue, according to
the dataflow structure, and the rate of the input/output ports of the node.

• Finalize() performs any post-simulation coding that the model needs to
perform, such as closing file or de-allocating memory.

In order to respect this interface, CCC code generation techniques must be
customized and extended to ensure SystemVue support. As an example, the code
generated by HIFSuite uses the Initialize() method to reset all variables and
data structures of the component. The Run() function, as depicted on the left part of
Fig. 3.13, handles the input/output as discussed above and it calls the code generated
by A2T (i.e., simulate) to emulate component evolution, passing the input/output
structure as parameter. When the simulate function returns, the output variables are
written according to computed component evolution.

A final integration issue arises whenever components adopt different MoCs. In
SystemVue, synchronization and communication among different nodes is based in
SDF, that forces the insertion of a delay in every loop among different components.
Thus, it is necessary to insert delays to break the loops between connected
components, for instance, between a bus and a CPU or between bus and peripherals.
However, the generalized insertion of such delays can produce synchronization
problems due to the modification of simulation delays that usually guarantee the
correct behavior of a digital system. For this reason, digital components in loop are
automatically merged by HIFSuite in a single component and abstracted with A2T
as a single component.

By following these guidelines, SystemVue easies the integration of existing code,
as the designer must simply match the APIs for the designed components, while
the synergy with HIFSuite automatically translates pre-design digital and analogue
components and all synchronization issues are left to the simulation kernel.

3.5 Experimental Validation of Proposed Methodologies

The goal of this section is to support the proposed analysis and methodologies with
experimental evidence. To this extent, the proposed examples focus on single code
generation techniques and on the simulation of a complex smart system case study
achieved through SystemVue.
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Table 3.1 Abstraction alternatives of digital components for functional and transactional simula-
tion

Abstract CCC,

Modelsim SystemC RTL, Abstract CCC, Abstract CCC, CCC native

(VHDL/ SystemC HDTLib data types CCC native data data types

Verilog) data types types (SystemC top) (SystemC top) (pure CCC top)

Design T (s) T (s) T (s) S (x) T (s) S (x) T (s) S (x)

AES 72.3 850.9 332.5 2.6 8.0 106.4 7.1 119.8

Camellia 1823.7 25,433.3 9022.6 2.8 8.0 3179.2 3.3 7707.1

DES56 707.5 7608.5 1941.1 3.9 8.5 895.1 4.6 1654.0

SHA512 1758.9 6302.1 2452.4 2.5 12.6 371.2 3.4 1377.2

XTEA 171.8 975.2 260.9 3.7 18.0 54.2 3.4 286.8

3.5.1 Validation of HIFSuite-Based Language
Conversion Techniques

The automatic abstraction of digital components to SystemC/TLM and to CCC
plays a key role in the simulation of a smart platform at both the functional and the
transactional levels. Thus, its effectiveness must be evaluated in depth.

Table 3.1 reports simulation time (T(s)) for some VHDL and Verilog digital
components, together with the speedup achieved through the automatic abstraction
by A2T with the support of HDTLib or DDT for data type abstraction. The reference
simulation time is generated by Modelsim (column Modelsim). The generated code
may be managed through either a SystemC top-level module (columns labeled with
SystemC top) or a CCC main simulation file (pure CCC top). This distinction
allows to analyze all the scenarios outlined in Fig. 3.5, thus covering both the
functional abstraction level (single/multiple MoC) and the transactional abstraction
level (through the adoption of SystemC or SystemVue for component aggregation).

Results clearly conclude that the automatic abstraction of digital components is
extremely efficient (up to three orders of magnitude in speedup) in the case of RTL
modules converted to CCC for single MoC functional simulation or for SystemVue-
based transactional simulation. In the other cases, the effectiveness of the abstraction
process is limited on single components, but it still produces a simulation advantage
whenever the platform model must be built by aggregating different components.

3.5.2 Validation of the Mapping of Analogue Conservative
Descriptions to SystemC-AMS

Mapping of analogue conservative descriptions to SystemC-AMS proved to be
a complex step, due to the requirements in terms of construct coverage and of
application of energy conservation laws. In order to prove the effectiveness of the
overall methodology, we applied the overall approach to a complex industrial case
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Fig. 3.14 Three-dimensional model of the accelerometer in the MEMS+ design simulator

Table 3.2 Characteristics of
the original Verilog-AMS
MEMS design

Lines of code 89

Equations Voltage sources 10

Current sources 15

Node declarations Interface 14

Internal 14

Contributions Independent 4

Voltage 59

Current 0

Derivative 12

Integrative 0

study, developed in the context of the SMAC project. Application to this industrial
case studies was eased though the implementation of an automatic tool, called
ABACuS (Analogue BehAvioural Conservative SystemC-AMS), that leverages
HIFSuite to ease the conversion process.

The adopted case study is a two-dimensional MEMS accelerometer implemented
in Verilog-AMS by means of the MEMS design platform MEMS+, that supports
automatic Verilog-AMS code generation [12], starting from three-dimensional
physical models as the one depicted in Fig. 3.14. Table 3.2 reports the main
characteristics of the MEMS design, both in terms of simultaneous statements and
of types of contributions. The MEMS design features most of types of supported
contributions, thus showing the application and validation of a significant part of
the methodology on a single case study.

Table 3.3 shows the results of the application of ABACuS to the MEMS design.
The table shows the number of lines of code of the resulting SystemC-AMS
implementation, the number of added nodes and of instances of SystemC-AMS
primitives. The number of lines of codes is increased tenfold (precisely, 11.12x),
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Table 3.3 Characteristics of
the generated SystemC-AMS
MEMS design

Lines of code 1474

Added node declarations 12

SystemC-AMS sca_r 93

primitive sca_vsource 4

instantiations sca_vcvs 32

sca_ccvs 0

sca_csource 0

sca_vccs 48

sca_cccs 0

sca_l 12

sca_c 0

Table 3.4 Characteristics of
the execution of ABACuS on
the MEMS design

Overall 17.48 s

HIFSuite Conversion to HIF 1.86 s

tools Conversion to SystemC-AMS 7.81 s

ABACuS Node management 0.94 s

Division into contributions 0.29 s

ELN component instantiations 6.58 s

as the SystemC-AMS generated by the methodology is more verbose than Verilog-
AMS. Each contribution requires the instantiation of the ELN primitive, plus the
corresponding explicit port binding. Furthermore, the number of ELN primitives
is higher than the number of Verilog-AMS contributions. This is due to the
presence of 12 derivative contributions in the original Verilog-AMS code. Each such
contribution determines the instantiation of three ELN primitives (as explained in
Sect. 3.4.2.1). As a result, of the 188 resulting SystemC-AMS ELN instances:

• 93 correspond to resistors added to connect each SystemC-AMS node to ground;
• 59 correspond to voltage source contributions;
• 36 are generated by the 12 derivative constructs, that determine also the

declaration of 12 additional internal nodes.

Fast code generation is a major advantage of the proposed approach. Table 3.4
highlights that code generation is almost instantaneous (17.48 s overall), and that
most of the effort is spent in the HIFSuite conversions (55 %). The most costly
step of ABACuS lies in the mapping from Verilog-AMS contributions to ELN
primitives and in their instantiation (37 %). On the other hand, node management
and the separation of Verilog-AMS equations into single contributions are almost
immediate.

The generated code was validated by comparing its execution w.r.t. the origi-
nal Verilog-AMS code, run by using the Questa simulator [23]. SystemC-AMS
simulation was run by adopting the same input stimula of the Verilog-AMS
implementation, and with a 1us timestep. SystemC-AMS proved to be slightly faster
than the Verilog-AMS execution (28.02 s and 33.72 s, respectively). At the same
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Fig. 3.15 Evolution of the MEMS outputs for Verilog-AMS (solid) and SystemC-AMS (dashed)

time, the average error in the computation of the MEMS outputs is 0.02 %. This
confirms the visual accuracy evident from Fig. 3.15, where the Verilog-AMS and
SystemC-AMS curves are almost totally overlapping. The small error is due to the
different management of time in the two simulators: SystemC-AMS adopts a fixed
timestep, while Verilog-AMS can adapt the length of the timestep over time, thus
reaching a higher accuracy. The low error rate highlights the effectiveness of the
generated code, both in terms of accuracy and of simulation speed.

3.5.3 Adoption of SystemVue for a Heterogeneous Case Study

The final example collects all previous results to show a transactional level simula-
tion of a smart system based on SystemVue integrating a number of heterogeneous
components. The starting point is complex heterogeneous smart system, developed
with the goal of representing a generic smart system. The system, called open source
test case (OSTC), includes eight modules covering digital HW, embedded SW,
RF-transceiver, network elements, and a MEMS sensor (i.e., the accelerometer).
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Fig. 3.16 SystemVue schematic of the OSTC. The left-most component represents the sub-system
memory and CPU. This is connected to the component implementing the bus. Components on the
right-hand side implement the peripherals. Red rhombuses are delays introduced to break dataflow
loops. Red circles represent sinks collecting the outputs of the OSTC

Table 3.5 Simulation time for the three different simulation scenarios in SystemVue

Scenario Simulation time (s) Speed-up

Co-simulation of all digital HW 278:59 –

Co-simulation of one digital HW 153:23 1:8�
CCC-based simulation 36:32 7:7�

Such modules are extremely heterogenous in terms of language, as they are
described in SystemC, VHDL, Verilog, Verilog-AMS and CCC. An exhaustive
description of the OSTC will be the focus.

Figure 3.16 shows the SystemVue representation of the OSTC. Each module
has been imported in SystemVue after its abstraction to CCC, performed by using
HIFSuite. SystemVue supports co-simulation, thus allowing the comparison of the
following scenarios:

• Co-simulation of all digital HW components;
• Co-simulation of one digital HW component;
• Homogeneous CCC-based simulation.

The simulation scenario used for all the models simulates 100 ms of system
execution, with a timestep of 100 ns. The inputs of the accelerometer are sinusoidal
stimula, and the software application is pre-loaded in the memory. The software
takes care of system boot and peripheral initialization. Then, the application
repeatedly reads data from the accelerometer, computes the data, and sends the
results to the digital hardware and the network interface.

Table 3.5 shows the time needed to simulate the three different scenarios. What
appears clear from these results is that the number of simulators instantiated, hence
the number of co-simulation interfaces employed, heavily impacts performance.
In particular, it worth notice that, in this case, every co-simulation interface (two
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in the case of the first entry of the table, one in the second), seems to introduce
around 120 s overhead w.r.t. the simulation without co-simulation interface, thus
introducing an overhead of about 80 %. As a result, the impact of interfaces
and conversion layers between different tools seems highly relevant and strictly
dependent on the number of used interfaces and external tools. The limited speed-
up is mainly affected by the low abstraction capability of the two main digital
components of the OSTC. Such components are indeed described at gate level
rather than at RTL, thus the abstraction to CCC is not extremely effective. Higher
speedups can be obtained by using real RTL components, such as the ones reported
in Table 3.1.

3.6 Concluding Remarks

This chapter provided a formalization of the abstraction levels and design domains
of a smart system. This taxonomy allows to identify a precise role in the design flow
for co-simulation and simulation scenarios, and to examine the impact of heteroge-
neous or homogeneous MoCs. Moreover, a methodology has been proposed to move
from the co-simulated heterogeneity to a simulatable homogeneous representation
of the entire smart system at two level of abstraction: functional level and transac-
tional level. At functional level, all components are implemented in CCC, with the
goal of understanding the role of the underlying synchronization and simulation
semantics and their overhead on simulation performance. At transactional level,
two widespread simulation frameworks, i.e., SystemC and SystemVue, have been
adopted to ease code integration, even in presence of very heterogeneous design
flows.
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