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Chapter 1
Introduction

Nicola Bombieri and Graziano Pravadelli

Smart Systems represent a broad class of systems defined as intelligent, miniaturized
devices incorporating functionality like sensing, actuation, and control. In order
to support these functions, they must include sophisticated and heterogeneous
components and subsystems such as application-specific sensors and actuators,
multiple power sources and storage devices, intelligence in the form of power
management, baseband computation, digital signal processing, power actuators, and
subsystems for various types of wireless connectivity.

It is evident from this heterogeneity that Smart Systems leverage a variety of
different technologies and different materials. The challenge in the implementation
of Smart Systems goes therefore beyond the design of their individual components
(an already difficult task by itself), and rather lies in the co-existence of a multitude
of functionalities, technologies, and materials. The widely acknowledged keyword
in Smart Systems design is in fact integration. There are essentially two dimensions
of integration that represent the main obstacle towards mainstream design of Smart
Systems: Technological and methodological. As already experienced in specific
domains (e.g., in digital and analog design), a solution has been found first for the
technological issues. Advanced packaging technologies such as System-in-Package
(SiP) and chip stacking (3D IC) with through-silicon vias (TSVs) allow today
manufacturers to package all this functionality more densely, combining various
technological domains in a single package. SiP technology works nicely because it
allows merging components and subsystems with different processes, and mixed
technologies using the state-of-the-art advanced IC packaging technologies with
minor impact on the design flow. Therefore, to some extent, technological solutions
aimed towards integration are available.
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2 N. Bombieri and G. Pravadelli

Design methodologies, however, are falling behind: Current design approaches
for Smart Systems use separate design tools and ad-hoc methods for transferring
the non-digital domain to that of IC design and verification tools, which are more
consolidated and fully automated. This solution is clearly sub-optimal and cannot
respond to challenges such as time-to-market and request of advanced sensing
functionalities. A big step towards effective large-scale design of Smart Systems
would be that of changing their design process from an expert methodology to a
mainstream (i.e., automated, integrated, reliable, and repeatable) design methodol-
ogy, so that design costs are reduced, time-to-market is shortened, design of the
various domains is no longer confined to teams of specialists inside IDMs and
system miniaturization can be achieved with limited risks. This objective can be
reached by defining and implementing a structured design approach that explicitly
accounts for integration as a specific constraint.

This book aims at achieving this ambitious objective by proposing a holistic and
multidisciplinary co-design approach, which requires closing several technical and
cultural gaps. The proposed solution is the result of a joint co-operation of research
and industry partners, including EDA vendors, to ensure the approach applicability
in realistic, industry-strength design flows and environments, with a direct impact
on the industrial exploitation.

Behind the growing interest in Smart Systems, there is a potentially huge and
quickly growing market, which is expected to grow in the order of $200B in 2020,
inducing an even larger market of non-hardware services involving all the various
devices envisioned in the Internet of Things. Such a market is much larger than
those of smart- or feature-phones in terms of number of devices. Over 50 billion
devices will be connected to the Internet according to Cisco forecasts, and most of
these devices will be Smart Systems. Miniaturized Smart Systems find applications
in a broader range of key strategic sectors, including automotive, healthcare,
ICT, safety and security, and aerospace. Also, efficient energy management and
environment protection are business sectors in which the utilization of miniaturized
Smart Systems may make a difference. The worldwide market for “Monitoring
& Control” products and solutions, one of the most important fields of Smart
Systems applications, containing solutions for environment, critical infrastructures,
manufacturing and process industry, buildings and homes, household appliances,
vehicles, logistics and transport or power grids, is around 188B Euro. This value
represents 8 % of the total ICT expenditures worldwide, and it is identical to the
whole semiconductor industry world revenues and approximately twice that of the
world mobile phone manufacturers revenues.

In Chap. 2, the book introduces the general definition of a smart electronic sys-
tem, providing a list of real-world examples to show today’s application scenarios.
The chapter analyses the complexity of Smart Systems, describing the technology
domains of the typical components and the main system architectures. The chapter
concludes with a description of the main challenges for Smart Systems designers,
which essentially involves the integration of a number of functionalities, materials,
and technologies in a single device.
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Chapter 3 deals with simulation domains and abstraction levels in Smart Systems
design. The high level of heterogeneity of Smart Systems makes design a very
challenging task, as each domain is supported by specific languages, modelling
formalisms, and simulation frameworks. A major issue is furthermore posed by
simulation, that heavily impacts the design and verification loop and that is further
complicated by such a heterogeneous context. Chapter 3 provides a formalization
of the typical abstraction levels and design domains of a Smart System. This
taxonomy allows identifying a precise role in the design flow for co-simulation and
simulation scenarios, and to examine the impact of heterogeneous or homogeneous
models of computation. It proposes a methodology to move from the co-simulated
heterogeneity to a simulatable homogeneous representation of the entire Smart
System in C++ (or its extension SystemC-AMS). The code generation methodology
supports both digital and circuit-level descriptions, and it is enhanced by scheduling
optimizations to improve the effectiveness of the generated code.

Smart Systems applications often include error resilient computations, due
to the presence of noisy input data, the lack of a unique golden output, etc.
Therefore, computation accuracy constraints can be relaxed to improve a system
efficiency. Recently, a design paradigm called Approximate Computing (AC) has
been proposed to formalize the exploitation of the accuracy dimension as a way
to optimize efficiency in digital computing systems. AC configures as one of the
most promising ways to reduce energy consumption in Smart Systems. Chapter 4
presents an overview of the different AC techniques proposed in literature. The
chapter focuses on Algorithmic Noise Tolerance (ANT), one of the most suitable
AC approaches for Smart Systems applications. In particular, it presents an analysis
of the automatic application of this technique to an existing design. It shows how
this automation can be achieved with a flow that leverages standard EDA tools,
with minimal input from the designer. It concludes by showing how the proposed
technique allows obtaining almost 45 % total power saving for a typical DSP circuit.

Chapter 5 purpose is to present a flexible software platform for design, integra-
tion, and co-simulation of power components by enabling multi-domain simulations
for a variety of power devices and modules. A few of models are built for power
devices, and the integration between multiple physical domains, like the electrical
and the thermal ones, is obtained. In particular three main examples are developed:
(1) the definition of a complete methodology to implement a physics-based macro-
model of a power module (Diodes, IGBTs, or MOSFETs) able to perform the
co-simulation of the thermal and electrical phenomena; (2) the exploitation of an
innovative automatic synthesis flow aimed at extracting compact electro-thermal
models for power MOSFETs; (3) the FEM analysis of power MOSFET failures
during UIS (unclamped inductive switching).

Chapter 6 deals with system-level modelling of Micro-Electro-Mechanical-
Systems (MEMS). It presents an integrated approach of simulating and optimizing
MEMS based systems while taking into account the multi-physical behaviour
between different domains, such as the MEMS device itself, the electronic readout
circuitry, the packaging or the control software. The chapter describes a design
methodology and its software implementation that overcomes the limitations inher-
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ent to methods that concentrate only on one of these domains. Parameterized and
interoperable MEMS models can be generated via a library approach. Subsequent
model-order-reduction techniques are applied to automate the export of MEMS
models in standard hardware description languages in order to reduce the com-
plexity and decrease simulation time by orders of magnitude allowing rapid system
design.

Chapter 7 covers the energy storage and power sources domain. Power sources
are an essential component in applications involving portable and wearable electron-
ics, which are intended to be self-powered for possibly long periods of time. These
devices are indeed assumed to be energy-autonomous, and besides minimizing their
power consumption, they should also make careful use of the energy scavenged
from the environment, namely how the latter is converted, stored, and dispatched to
the components that consume it. The chapter highlights the main characteristics
and challenges in the design of the power dimension of a Smart System. The
chapter details models and techniques suitable for validating power sources via
simulation, thus enhancing design space exploration and system dimensioning.
Finally, the chapter proposes a semi-automatic methodology for efficient power
source simulation based on the standard language SystemC-AMS, that allows easy
integration with functional Smart System design, still guaranteeing high accuracy
and efficient simulation.

Chapter 8 presents two case studies showing how the proposed approach applies
to Smart Systems design and optimization. The former is the virtual prototyping
platform built for a laser pico-projector actuator, where MEMS, analog, and digital
components are simulated with the aim of optimizing the resulting image quality
by means of firmware tuning. The latter, in the context of wearable equipment for
inertial body motion reconstruction, deals with the modelling of an inertial sensor
node, supporting system accuracy evaluation and sensor fusion enhancement.

By covering theoretical and practical aspects of Smart Systems design, the book
targets people who are working and studying on hardware/software modelling,
component integration and simulation under different positions (system integrators,
designers, developers, researchers, teachers, students, etc.). In particular, it is a good
introduction to people who have interest in managing heterogeneous components in
an efficient and effective way on different domains and different abstraction levels.
People active in Smart Systems development can understand both the current status
of practice and future research directions.



Chapter 2
Smart Electronic Systems: An Overview

Alessandro Sassone, Michelangelo Grosso, Massimo Poncino,
and Enrico Macii

2.1 Introduction

The term smart systems is quite general and identifies a broad class of intelligent
and miniaturized devices that are usually energy-autonomous and ubiquitously
connected. They incorporate functionalities like sensing, actuation, and control. In
order to support these functions, they must include sophisticated and heterogeneous
components and subsystems, such as digital signal processing devices, analog
devices for RF and wireless communication, discrete elements, application-specific
sensors and actuators, energy sources, and energy storage devices (as shown in
Fig. 2.1).

These systems take advantage of the progress achieved in miniaturization of
electronic systems, and are highly energy-efficient and increasingly often energy-
autonomous, and can communicate with their environment.

Thanks to their heterogeneous nature, smart embedded and cyber-physical
applications are able to deliver a wide range of services, and their application may
lead to provide solutions to address the grand social, economic, and environmental
challenges such as environmental and pollution control, energy efficiency at various
scales, aging populations and demographic change, risk of industrial decline,
security from micro- to macro-level, safety in transportation, increased needs for
the mobility of people and goods, health and lifestyle improvements, just to name
the most relevant [19].
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Fig. 2.1 Typical components and domains of a smart electronic system

Fig. 2.2 Smart systems as the convergence of more Moore and more than Moore

The deployment of smart systems requires the concurrence of technological
advancements both in the dimension of (1) increased diversification and hetero-
geneity in a single device, i.e., technologies such as 3D integration, Systems-in-
Package, and (2) increased integration capabilities of silicon technologies. These
two dimensions are the well-known technology paths described in the International
Technology Roadmap for Semiconductors (ITRS) and that are traditionally consid-
ered as complementary directions. In that respect, smart systems as a category of
devices represent the convergence between these two dimensions, as depicted in
Fig. 2.2 [25].

Recent years have witnessed a significant increase of the relative weight of the
“More-than-Moore” component in the industry evolution; this will allow to establish
a new “virtuous cycle” no longer based solely on device scaling but relying on
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other innovations at the system, technology, circuit, and device levels, which will
need to address not just front-end technologies but also backend/packaging ones.
Such opportunities are counterbalanced by challenges related to the integration and
manufacturing of such devices, the development of tools and flows for the automated
design of these systems, as well as the coordination of design teams that reflect
the heterogeneity of smart system in their competences (mechanics, electronics,
communication, optics, computer science, etc.).

2.1.1 Evolution of Smart Systems

The smart systems community traditionally classifies smart systems by their degree
of autonomy, meant as both in terms of reduced need of external supervision and
control and of energy self-sufficiency. This has brought to the traditional three-level
categorization into “generations” of smart systems [19], corresponding to different
extents to which the key functionalities are implemented.

First Generation Smart Systems integrate sensing and or actuation as well as
signal processing to enable various types of actions. Such systems have already
been successfully deployed in many application domains, e.g., personal devices to
monitor the health status of persons or safety systems in automotive applications.

Second Generation Smart Systems add perception features and are predictive
and adaptive systems, possibly with self-test capabilities. Moreover, they include
network connectivity of some type and advanced energy scavenging and manage-
ment capabilities. An example of this category are smart RFID labels that are able to
measure multiple parameters (temperature, acceleration, etc.) for transport real-time
monitoring.

Third Generation Smart Systems add human-like perception on top of second
generation systems. They interact independently and without external control or
decision, and implement systematically features like self-calibration, self-test, and
self-healing. An autonomously driving car is the most typical example of such a
system.

Systems of different generation evolve at different speeds; while for first-
generation systems their optimization is still an R&D challenge, in second- and
third-generation systems still basic scientific, materials and manufacturing chal-
lenges have to be assessed. The co-existence of different generations of systems
suggests that adopting a comprehensive design approach will be likely to yield
competitive products today and keep them competitive in the future versions.

This chapter presents an overview of three relevant aspects of smart systems: the
application domains (Sect. 2.2), their architectures (Sect. 2.3), and the main design
challenges (Sect. 2.4), from a system-level perspective and with the objective of
providing a sort of guided path through the topics dealt in the remainder of the book.



8 A. Sassone et al.

2.2 Application Domains

The current technology and market trends show that smart systems are used in an
increasingly wide range of contexts and environments, from everyday life tasks
to highly complex and critical missions. The architecture and the implementation
of each system needs to comply with the application requirements and constraints
in terms of functionality, performance, dependability, autonomy, and safety, while
keeping design and manufacturing costs as low as possible.

In the following, a list of application domain categories is reported. The purpose
of this list is the identification of the smart system application domains of today
and the immediate future, with the aim of being as much general and exhaustive as
possible. Actual examples of smart systems are provided for each category: some
of them are concepts only, others are prototype boards or products, and others have
already reached the status of miniaturized devices.

2.2.1 Transportation

Transportation scenarios include land (i.e., road, off-road, rail, cable, and pipeline),
sea, and air (i.e., air and space) for humans and goods in general. Smart systems can
be used within a moving vehicle or can take part of infrastructures and networks
for transportation enhancement and regulation. Some smart device examples in this
category include heterogeneous sensor-based GPS enhancement systems, engine
sensing and control systems, electronic stability control systems for vehicles,
parking sensors [24], car theft detection and monitoring devices, airplane balancing
aids, vibration analysis instrumentation for model optimization and unmanned aerial
vehicle (UAV) attitude, and operating controls.

Figure 2.3a shows a smart system example in this application domain, i.e., an
accelerometer-enhanced tire pressure monitoring system (TPMS) [8, 20]). Such
system measures important dynamic variables, e.g., forces, load transfer, actual
tire road friction (kinetic friction), and maximum tire road friction available
(potential friction), in order to actively guarantee the car safety. The data acqui-
sition system is based on a distributed architecture composed of a number of
complex intelligent sensors inside the tire that form a wireless sensor network
with coordination nodes placed on the body of the car. The single sensor node
represented in Fig. 2.3b is composed of MEMS sensors, analog and digital circuits
(including a microcontroller), and a UWB radio link. In addition, the sensor
node energy is supplied by means of harvesting, which may be based on elec-
tromechanical vibrational energy or on electromagnetic coupling with an external
illuminator.
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a

b

Fig. 2.3 Intelligent tire system presented in [8]: (a) overview of the system architecture and (b)
architecture of the sensor node-receiver system

The design of this system and especially of the in-tire sensor node is extremely
challenging due to the very limited available energy combined with strict application
requirements for data rate, delay, size, weight, and reliability in a highly dynamic
environment. The integration of the sensor node is especially critical due to the harsh
environment, low-power constraints, and limited size: a compact circuit board hosts
all the sensor node components.



10 A. Sassone et al.

2.2.2 Telecommunications

This application domain deals with the generic transmission of information (e.g.,
audio, video, text, data from sensors, alarm events) through different media, such as
cable, air, water, or void. Smart systems are typically used to improve performance
and reliability of existing infrastructures, or to explore new areas and potentials.

In this category, possible examples are given by MEMS fiber-optics switches,
energy harvesting and autonomous radio repeaters [5], optical MEMS-based devices
for lightwave communication [9], and RF MEMS-based tunable filters and anten-
nas [23].

2.2.3 Military and Defense

This application field includes devices used in defending countries from threats both
foreign and domestic and specifically includes systems for command, control, com-
munications, computing, intelligence, surveillance, reconnaissance, and targeting
(C4ISRT).

Examples include systems for friendly forces monitoring, equipment and ammu-
nition, systems for the reconnaissance of opposing forces and terrain, microrobot
surveillance [3], sensor-enhanced targeting systems, battle damage assessment, and
nuclear, biological, and chemical attack detection and reconnaissance.

2.2.4 Safety and Security

This application domain includes smart systems aimed at delaying, preventing, and
otherwise protecting against accidents or crimes, which may cause adverse effects
to people or organizations.

Examples include free fall sensors and human airbags [17], chemicals/radiation
sensing systems, and anti-theft and anti-intrusion sensor systems.

Figure 2.4a shows an example of mobile human airbag, i.e., a protective system
based on the idea of automobile airbags systems [17]. This system has two modules:
a sensing module (�IMU) and an inflator that connects to two nylon airbags. When
the �IMU detects a fall, it triggers an inflator, which then deploys the airbags before
impact to protect the human body. The gas is supplied from a handy compressed
gas cylinder, rather than the combustion of chemicals. The main components of
the independent mobile airbag system are a set of MEMS sensors (accelerometers
and gyroscopes), an embedded microcontroller unit performing DSP functions,
and a mechanical airbag deployment system. The system is powered by means of
lithium batteries. The sensors are directly connected to the A/D converters inside the
microcontroller. The mechanical part includes the inflator structure for compression,
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a

b

Deployed airbags

Battery

Pipe

Folded airbags
Sensing device Inflator

Compressed gas
cartridge

Fig. 2.4 Intelligent mobile human airbag system of Shi et al. [17]: (a) system components and (b)
system architecture

airbag deployment control, and airbag design. Figure 2.4b provides a high-level
architectural view of the system.

Design and simulation of this type of system require merging non-miniaturized
mechanical parts and electronic components (sensors and digital hardware including
the microcontroller and the software), also taking into account the real-time
application requirements.

2.2.5 Home Automation

Smart systems aimed at improving convenience, comfort, energy efficiency, and
security to residential buildings fall into this category, also known as domotics.

Examples are energy-efficient distributed heating, ventilation and air condi-
tioning (HVAC) sensing and control systems like the energy management system
presented in [14], acoustic monitoring systems, audio/visual switching and distribu-
tion systems, and light control systems.

2.2.6 Industrial Automation and Logistics

Industrial automation deals with the optimization of energy-efficient manufacturing
systems by precise measurement and control technologies. Logistics concentrates
on the flow of goods between the point of origin and the point of destination to
meet the requirements of customers and corporations, and it involves the integration
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a b

Fig. 2.5 Smart active RFID label presented in [8]: (a) system components and (b) system
architecture

(and interaction) of information, transportation, inventory, warehousing, material
handling, and packaging, and often security.

This category of smart systems includes examples such as sensor-enhanced robot
controls, manufacturing plant monitoring systems, and active RFID tags as the one
showed in Fig. 2.5a [16].

Such active radio frequency identification label is designed for the monitoring
of shock, inclination, and temperature during transportation processes. The system
architecture is shown in Fig. 2.5b. Besides the components of a passive label “RF
front-end, memory, and antenna” the system contains a MEMS inertial sensor
system, a temperature sensor, a data logger, and a printed battery. The battery works
as autonomous energy source for the inertial sensor system, the temperature sensor,
and the data logger. The energy for the radio communication of the label is generated
by the antenna from the electric field emitted by the reader.

All these elements have to be integrated on the thin label substrate fulfilling
specific requirements for the sensor system like low power consumption, high signal
to noise ratio, high temperature stability, and low device/sensor thickness.

2.2.7 Laboratory Equipment

Today’s integrated advanced technologies allow the fabrication of compact, accu-
rate, and energy-efficient instrumentation to be used for analysis, measurement, and
manipulation in a wide range of fields.

In this category, possible examples are spectrometers and interferometers [16],
MEMS scanners and projectors [9], and intelligent motion surfaces for manipulation
such as [26].
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2.2.8 Environment and Food/Beverage

Multi-sensing microsystems can be used for environmental applications (including
monitoring and treatment) or food and beverage quality and safety.

Examples in this category include sensor nodes (within networks) for environ-
ment monitoring (e.g., to study influences on crops, livestock) based on system-on-
chip design [2]. Other examples are also general-purpose microsensor modules [7],
macroinstruments for large-scale earth monitoring and planetary exploration, forest
fire detection and flood detection sensors, animal movement tracking systems, and
tagging/tracking in supply chains (RFID).

2.2.9 Healthcare and Biomedical

This category includes systems aimed at generally improving health, by means of
delivering diagnosis, treatment, care, and support of patients in healthcare systems.
Typically different disciplines are involved in this field, including biology, genetics,
physiology, physics, and bioengineering. Given the increasing importance of these
application domains, various examples are available, such as biochips, microinstru-
mentation for microinjection and cell-manipulation, microsystems interacting with
the human body, lab on chips including sensors and active microfluidics, systems
for tele-monitoring of human physiological data, tracking and monitoring systems
for doctors and patients inside a hospital, drug administration systems, and smart
textiles for health monitoring.

Among the available case studies, it is worth mentioning the self-powered
wireless pulse oximeter presented in [21], a wearable battery-free wireless elec-
troencephalograph (EEG) [22], breath monitoring systems, limb tracking systems,
wireless multi-sensor microsystems for human physiological data monitoring [4],
and wearable posture corrective systems using biofeedback [10].

2.2.10 Power Generation, Distribution, and Harvesting

In this application scenario smart systems convert energy from different sources,
store and distribute electricity to the users. Energy harvesting usually refers to the
process by which energy is derived from external sources, captured and stored for
small, autonomous devices at a low scale.

Sensor-based systems for control of wind turbines and portable, multipurpose
energy harvesting bracelets [18] are just some examples of this increasingly studied
field in the today’s efforts aimed at lowering the carbon footprint.
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2.2.11 Consumer Applications

Consumer electronics refer to equipment intended for everyday use, most often
in entertainment, communications, and office productivity. This market segment
includes cellular communication, personal computing, digital photography, multi-
media and entertainment, fitness appliances and gaming, and it is characterized by
fast cycle time, low product price and wide diffusion.

Smart system examples in this category include wireless sensor devices for sta-
tistical data logging (e.g., on balls, players, field, etc.), general-purpose microsensor
modules [7], impact-sensing accelerometer systems for sport helmets [13], sailing
sports wind analysis systems, vibration reduction systems in sporting goods (tennis
rackets, golf clubs, etc.), smart lighting modules, augmented reality devices [12],
interactive screens and interactive museums.

New smart lighting modules are becoming popular in lighting appliances for
building environments.The smart lighting modules are multi featured devices that
extend their functions beyond the lighting, by adding security, safety, comfort,
and wireless control functions to the lighting devices. To provide this broad range
of functionalities, smart lighting modules integrate components from different
technological domains, hence, they can be included in the class of smart electronic
systems. A real example is the smart bulb showed in Fig. 2.6.

The smart bulb is a fully controllable light bulb, embedding light changing
features, complex RF communication, sensors and actuators. The bulb’s light
source, heat sink, and lens system are integrated with the sensors and actuators.
An electronic controllable light shape system is also typically integrated in the
bulb. The smart bulb has wireless secure communication channels and is remotely
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Fig. 2.6 The smart bulb architecture
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controllable, also acting as a network device capable of routing data packets and
related information to other network devices. The multi featured bulb opens new
functions in the lighting sector expanding it beyond the state of the art, which is up
to now represented by the Philips lighting “HUE” bulb [15].

2.3 Smart System Architectures

2.3.1 Module-Level

As mentioned above, smart embedded systems incorporate heterogeneous compo-
nents, i.e., from different technology domains and providing various functions. For
all systems the basic building blocks are conceptually similar, however, in each
instance the specific implementation can greatly differ. A general classification of
the basic building blocks is the following (see Fig. 2.7):

• Energy Source: Harvesting devices capable of converting energy of a physical
source into electricity, such as solar (e.g., photovoltaic cells), thermal (e.g.,
thermoelectric energy generators), and mechanical (e.g., piezoelectric scavenger)
energy generators.

• Energy Storage: Devices capable of storing a limited amount of electrical energy
in the potential, kinetic, chemical, or other forms of energy, and restoring the
stored energy back to the electrical energy on demand. The main types of
energy storage devices which are generally used for smart embedded systems
are batteries, supercapacitors (or ultracapacitors), and fuel cells.

• Energy Conversion: Components that in general convert electric energy from one
form to another. Their functionality is fundamental in order to transfer the energy
within the system and hence to realize the power supply to all components of
the system. Energy conversion devices can be typically divided into DC–DC,
AC–DC, DC–AC, and AC–AC converters.

• Power Devices: Energy management components such as power diodes, thyris-
tors, power FETs, and power MOSFETs.

Fig. 2.7 Basic components included in a smart system
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• Sensor: Devices capable of detecting events or changes of a physical quantity and
converting them into an electrical signal. Examples are MEMS, electro-optical
sensors, image sensors, thermocouples, and acoustic sensors.

• Actuator: Devices capable of converting an electrical signal into another form of
energy, such as electric motors, light-emitting diodes, and loudspeakers.

• Digital: Digital hardware blocks for processing and storing digital information,
such as processor or digital signal processing (DSP) cores, digital accelerators,
device controllers, and also application-specific ASICs. This category includes
also the embedded software executed by the hardware blocks.

• Analog Mixed-Signal and RF: Analog components such as RF communication
devices, signal conditioning, and interface circuits.

2.3.2 System-Level

Given the general classification of basic components defined above, smart systems
can also be categorized based on their general module architecture and main fea-
tures. Each miniaturized intelligent system falls in one of the following categories,
defined by a set of characterizing functions.

• Sensor Node (Within a Network): Characterizing functions are sensing, data
processing, data storage, communication. A sensor node is a device that acquires
data from the environment, optionally performs some kind of elaboration, and
either stores data or directly transmits it to other devices (usually through a
wireless channel). Low power consumption and maintainability are very common
requirements, especially for remote devices.

• Actuator Node: Characterizing functions are data processing, actuating, commu-
nication. This type of device runs operations (e.g., turning on or off some other
device) when programmed or when it receives the required command from the
network. Reliability is fundamental when safety- or mission-critical tasks are
executed.

• Communication Node: Characterizing functions are data processing, data stor-
age, communication. This device communicates within a network and optionally
elaborates data. It can operate as a remote database, a repeater, or an intelligent
node connected to sensors and actuators and can run at a high hierarchical level.

• Autonomous Sensor and Actuator: Characterizing functions are sensing, data
processing, data storage, actuating, communication. These devices include
mainly all the features of the previous categories, incorporating communication
interfaces, sensors and actuators, which can be used for other devices control or
for self-displacement.

From a higher level of abstraction, smart electronic systems can not only consist
of a single heterogeneous device, but can also be arranged in various architectures
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with different degrees of complexity. The following categories summarize the
main system-level architectures characterizing the example devices showed in the
previous section.

• Single Module: A single-module smart system can perform all operations related
to its purpose without communicating to a host or other devices.

• Host-Client System: A host-client system is based on two smart (sub-) system
modules, where one typically is used to access the information stored or
elaborated by the other, or to program or control it.

• Network: The system comprises many devices, either communicating among
them or connected through a network that may also be built on a hierarchical
model. The devices can share a common module architecture or can be hetero-
geneous (e.g., many sensor nodes and an intelligent data collector node). Sensor
networks, which represent one of the most common application of smart systems,
are surveyed in [1] and [11].

2.4 Design Challenges

Smart embedded systems are produced with very different technologies and mate-
rials. This is even more evident from the heterogeneous categories of components
listed in Sect. 2.3.1. Therefore, besides the design of the individual components and
subsystems, the main challenge for smart system designers lies in the integration
of a number of functionalities, materials, and technologies. In general, there are
essentially two dimensions of integration that represent the main obstacle towards
mainstream design of smart systems: technological and methodological.

As already experienced in other domains (e.g., digital and analog design),
technological issues have been the first concern for research and industrial actors.
Today manufacturers are able to package all aforementioned components more
densely, combining the various domains in a single package. This is possible
thanks to advanced packaging technologies such as System-in-Package (SiP) and
chip stacking (3D IC) with through-silicon vias (TSVs). SiP technology is a good
solution because it allows combining components and subsystems with different
processes, and mixed technologies using the state-of-the-art advanced IC packaging
technologies with minor impact on the IC chip design flow.

Nevertheless, the assembly of intrinsically heterogeneous components and the
continuous miniaturization and integration push, motivated by the increasing market
demand for faster, cheaper, and more performing devices, raise the need for new
design and simulation methodologies. Such methodologies are fundamental for
exploring the design space in order to find the most efficient trade-off between
performance and involved resources, and for evaluating and validating system
behavior taking into account the interactions between closely coupled components
of different nature.
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Considering the development of a complex system it is possible to identify
several main steps characterized by their own specific peculiarities: the architecture
definition, the design implementation and its validation, and the product engineering
and industrialization.

During the design phase the application specifications are analyzed, the appro-
priate system architecture is defined usually following a top–down approach and
the appropriate building blocks are identified when already available, or otherwise
requested to be developed. The development team is asked to propose a solution
able to cover the application functionalities supported by a detailed feasibility study.
To achieve this task in a sustainable way, similar systems are evaluated when
possible, expected system performances are addressed, subsystems and building
components are detailed and final system cost forecasted. The mentioned feasibility
analysis is of primary importance because it is the pillar on which company
management takes the decision to proceed or not in the development. Considering
the rhythm on which new high-tech complex products are presented on the market,
to grant an appropriate level of competitiveness another key factor is the ability
to have fast and effective evaluation about the new addressed solution especially
on its innovative features. It is now clear the need of a platform able to manage
the smart system complexity and provide quick but pertinent feedbacks about
functionalities, fair heterogeneous component interoperability, reasonable forecast
on sensible parameter working ranges (i.e., speed, power consumption, autonomy,
efficiency, etc.), adherence on imposed regulations or applicable standards, and at
least a rough estimation of underlying costs. It cannot be neglected the fact that
in the feasibility phase several different proposals, architectures, and technologies
are often addressed, many metrics and complex figures of merit are adopted to
identify, from the beginning, the most promising approach. Also for this purpose, the
capability to rapidly evaluate different scenarios, replacing building blocks, trying
different basic components represent an obvious advantage in order to achieve a
better awareness for all the further development steps.

System integrators typically have separate tools to model the environment.
Design requires merging heterogeneous units from cross-sectional, separate, and
so far loosely correlated domains. Subsystems are designed based on diverse
assumptions and techniques, and are typically modeled with digital, multi-physics,
or analog models, which are available at specialized design houses and silicon
makers in various forms. The involved components are usually described using
different languages, relying on different models of computation and modeling
parameters, and need to be jointly simulated at various abstraction levels.

Figure 2.8 shows an example of operating scenario for a typical smart embedded
system. The functional interactions within the components and between the compo-
nents and the environment must be considered when designing the system: among
them there are analog signals, digital interfaces, mechanical interactions (e.g., a
sensor transfer function). In addition to this it is increasingly important to consider
non-functional interactions that may have an impact on the behavior of the complete
system, either on its specific functionalities or on power consumption, life duration,
etc.: they may correspond to mechanical interference, heat flow, RF interference,
etc. In Fig. 2.8, only thermal flows have been reported as non-functional interactions,



2 Smart Electronic Systems: An Overview 19

Fig. 2.8 Example of smart embedded system scenario with interactions among components and
with the environment

which may lead to effects such as the increasing signal propagation delay within the
microcontroller due to ambient temperature, the rise of temperature of the power
conversion elements, and the variation of the accelerometer transfer functions due
to heating.

The basic building block of a digital circuit has been a single transistor or
standard cell for years, during the rising of the digital era; today a microprocessor
core can be instantiated and networked by a designer with the same simplicity with
which a flip-flop could be inserted in a design 20 years ago. The main difference
is that now this seemingly immediate operation entails even deeper and different
physical interactions in the system, and therefore, wider interdisciplinary design
basics on one hand, and advanced software tools capabilities on the other [6].

The designer needs to be aware of the description of each interaction, including
the nature of the communication, its time scale, and its detail level. The design
tool should enable the instantiation and connection of the models of different
components, and then the simulation of the entire system. The model of each
component should be sufficiently accurate so as to show application-relevant effects
but abstract enough so as not to excessively slow down the simulation. Different
selectable component models may be useful, with variable levels of detail depending
on the application requirements, and with defined validity ranges (e.g., temperature
and frequency). The component models to be used, composing a “library” for
the system integrator, may have different sources, depending on their specific
development flow, but they need to be specified in a shared format readable by
the design platform, they may be the output of abstraction flows of lower-level
models produced by the device designers; otherwise, the models may be built by
the devices suppliers or directly by the system integrators based on datasheets and
characterization tests. It should as well be possible to model non-miniaturized,
electric or mechanical devices. Roughly speaking, the device model to instantiate
should appear as a parameterizable “black box” to conceal design details that cannot
be appreciated by the system integrator and to limit the design complexity. In
addition to this, it is needed to describe the system assembly, including the board



20 A. Sassone et al.

(substrate) material, the distance between components and any contact surfaces
between them. These points have a substantial effect on the system behavior,
especially when, coherently with the miniaturization trend, SiPs are concerned. This
may also require changing some parameters in the device model so as to adapt its
behavior to the desired configuration. Hierarchical modeling and partitioning are
key features when describing complex systems. The user should be able to describe
the relevant features of the use environment together with its interaction with the
system, including temperature, RF fields, vibrations, etc., in static and dynamic
conditions.

Finally, design constraints need to be described and propagated to subsystems
and components in a top–down stream. The design tool should provide different
system-level simulation options by trading-off accuracy (varying model accuracy,
activation/deactivation of physical models, time scale, etc.) and speed. In this way,
initial design space exploration could be easily and quickly performed (maybe
using only a single transaction-level simulator engine), while in later stages pre-
prototype design validation would be achievable together with a constraints check;
if needed co-simulation with logic, circuital, finite element method (FEM) engines,
etc., should also be exploitable in a seamless way.
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Chapter 3
Design Domains and Abstraction Levels
for Effective Smart System Simulation

Sara Vinco, Michele Lora, Valerio Guarnieri, Jan Vanhese,
Dimitrios Trachanis, and Franco Fummi

3.1 Introduction

Smart systems represent a broad class of systems defined as intelligent, miniaturized
devices incorporating functionality like sensing, actuation, and control. In order
to support these functions, they must include sophisticated and heterogeneous
components and subsystems such as: application-specific sensors and actuators,
multiple power sources and storage devices, intelligence in the form of power
management, baseband computation, digital signal processing, power actuators, and
subsystems for various types of wireless connectivity (as shown in Fig. 3.1).

Smart components and subsystems are developed and produced with very differ-
ent technologies and materials specific to the corresponding domain and technology.
The heterogeneity involves not only the language or framework adopted, but also
different levels of abstraction and different communication and synchronization
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Fig. 3.1 Typical components of a smart system

styles. As of today, no design methodology and tools exist that can master,
simultaneously and in a seamless manner, all the challenges that designers of
smart micro-systems are confronted with when new products need to be developed.
Nevertheless, modeling and design capabilities for heterogeneous components and
subsystems are today available at specialized design houses and silicon makers in
various forms. On the other hand, system integrators typically have separate tooling
to model the environment. As a result, the challenge in the realization of a smart
system goes beyond the design of the individual components and subsystems (an
already difficult task by itself), but rather consists in accommodating a multitude of
functionality, technologies, and materials.

In this context, simulation is a very critical task, as each component domain
adopts specific tools and frameworks, that do not cover the whole smart system
heterogeneity. On the other hand, simulation is a key phase in the design and
verification process of a system, as it heavily impacts time-to-market and the
competitiveness of the final product.

The goal of this chapter is to ease simulation and validation of smart systems. In
this context, it provides a taxonomy of abstraction level/design domains, to highlight
challenges and tools available for each domain. This allows to identify a precise
role in the design flow for co-simulation and simulation scenarios, and thus to
outline the possible strategies for gaining correct simulation of smart system. The
two complementary approaches are compared with the goal of showing respective
strengths and weaknesses.

The chapter also aims at enhancing reuse and integration by showing how state-
of-the-art and commercial tools can ease the adoption of homogeneous simulation,
with automatic code generation from lower abstraction levels and automatic inte-
gration of heterogeneous interfaces.

As a result, the chapter builds a comprehensive modeling and simulation frame-
work that supports digital, analogue, and circuit-level descriptions simultaneously.
This improves the contemporary smart systems design flow in such a way that a
system-level simulation of all the heterogeneous components/subsystems of a smart
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system will be possible. This advances state-of-the-art approaches by supporting
the development of smart systems, their integration, and efficient simulation.

The chapter is organized as follows. Section 3.2 provides a background on
smart system design, by listing available frameworks and formalisms, together
with state-of-the-art tools. Section 3.3 identifies the typical abstraction levels and
design domains involved in smart system design, with the goal of defining a
taxonomy of the most widespread tools and languages. Finally, Sect. 3.4 proposes
code conversion and generation approaches to gain homogeneous simulation of the
heterogeneous components of a smart system, by working on both language and
formalisms. Section 3.5 provides experimental evidence of the proposed solutions,
and Sect. 3.6 concludes the chapter with some concluding remarks.

3.2 Background on Smart System Modeling

Smart components (and sub-components) are developed and produced with very dif-
ferent technologies and materials, specific to the corresponding domain. The goal of
this section is to provide the necessary background for the proposed methodologies.
Section 3.2.1 outlines the most widespread formalisms and frameworks available in
the literature for tackling smart systems heterogeneity, while Sect. 3.2.2 deepens the
ones adopted in the proposed flow.

3.2.1 Formalisms and Frameworks for Smart System Modeling

The heterogeneity of smart system involves not only the language or framework
adopted, but also different levels of abstraction and communication and synchro-
nization styles. An evidence of this are the adopted description languages, that
only target specific domains, such as digital and software components (SpecC and
SystemC) or analogue components (VHDL-AMS, Verilog-AMS, and SystemC-
AMS).

In the literature, the main approaches proposed for handling such a heterogeneity
are (1) top–down flows, relying either on model-based design (MBD) or on models
of computation (MoCs), and (2) co-simulation, which exploits different simulation
environments to take care of the heterogeneity of the system [13].

In MBD approaches, the system model is at the center of the design process and
it is continually refined throughout a strictly top–down development flow [5, 22,
26]. Components following different synchronization mechanisms are put together
through data conversion, that must be implemented manually, thus not guaranteeing
correct integration.

Several MoCs have been proposed to describe different aspects of smart systems.
As an example, extended finite state machines (EFSMs) [18] are an enhancement of
traditional FSMs suited for describing digital HW components and cycle-accurate
protocols, while hybrid automata have been defined to allow the integration of
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continuous physical dynamics with discrete behaviors [20]. Unfortunately, every
MoC is a stand-alone environment that cannot cover all the domains comprised
in smart system development. Forcing communication through manual conversions
between MoCs does not provide any guarantee of correctness of the final result.

The complementary approach is to integrate existing components in a bottom–
up flow. This is realized with co-simulation environments where each component is
simulated in its native environment and framework. Different simulators are then
connected by defining rules and conversions about time management and event
ordering, supported methods of communication, and rules of process activation
[10, 17]. However, co-simulation assemblies heterogeneous components without
providing a rigorous formal support, and it only moves the problem of integrating
heterogeneous components to the problem of integrating different simulators.

3.2.2 Adopted Platforms for Smart System Design

This section gives a very brief overview of the main tools and platforms used in this
work for smart system modeling and integration: SystemC and SystemC-AMS as
a language supporting a number of abstraction levels (Sect. 3.2.2.1), HIFSuite for
automatic conversion of reused code and components (Sect. 3.2.2.2), SystemVue as
a simulator and co-simulator (Sect. 3.2.2.3), and UNIVERCM as a MoC spanning
across various heterogeneous domains (Sect. 3.2.2.4).

3.2.2.1 SystemC and SystemC-AMS

SystemC is a widely deployed extension to C/CCC for describing HW constructs,
ranging from register-transfer level up to transactional level [1]. The underlying
simulation kernel is entirely event-based, i.e., a centralized scheduler controls
the execution of processes based on events (synchronization, time notifications,
or signal value changes). SystemC provides also a methodology for performing
abstract modeling, simulation through generalized modeling of communication and
synchronization: transaction level modeling (TLM) [3].

The SystemC simulation kernel has not been natively designed to handle the
modeling and simulation of analog/continuous time systems. The recent extension
SystemC-AMS [2] was designed for overcoming this lack, i.e., for modeling and
simulating interacting analog/mixed signal functional subsystems, thus allowing
to extend the adoption of a SystemC-based environment also to extra-functional,
continuous time domains.

SystemC-AMS provides different abstraction levels to cover a wide variety of
domains. Timed data-flow (TDF) models discrete time processes, that are scheduled
statically by considering their producer–consumer dependencies. Linear signal flow
(LSF) supports the modeling of continuous time behaviors through a library of
predefined primitive modules (e.g., integration, or delay), each associated with
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Fig. 3.2 Architecture of the SystemC scheduler as extended with SystemC-AMS support

a linear equation. Electrical linear network (ELN) models electrical networks
through the instantiation of predefined primitives, e.g., resistors or capacitors, where
each primitive is associated with an electrical equation. In case of ELN or LSF
descriptions, a SystemC-AMS AD solver analyzes the ELN and LSF components to
derive the equations modeling system behavior, that are solved to determine system
state at any simulation time.

As highlighted in Fig. 3.2, the key feature of all SystemC extensions is that
overall simulation is handled by the sole SystemC simulation kernel, that interacts
with its extensions to define, time after time, both the execution queue and the
corresponding system evolution.

3.2.2.2 HIFSuite

HIFSuite is a set of tools and application programming interfaces (APIs) that
provide support for modeling and verification of HW/SW systems [15]. The core of
HIFSuite is the HDL Intermediate Format (HIF) language upon which a set of front-
end and back-end tools have been developed to allow the conversion of HDL code
into HIF code and vice versa. HIFSuite allows designers to manipulate and integrate
heterogeneous components implemented by using different hardware description
languages (HDLs). Moreover, HIFSuite includes tools, which rely on HIF APIs,
for manipulating HIF descriptions in order to support code abstraction/refinement
and post-refinement verification, including A2T, a tool for abstracting RTL digital
components to TLM or CCC [8].

3.2.2.3 SystemVue

SystemVue is an electronic design automation (EDA) environment for electronic
system-level (ESL) design, focused on RF and DSP systems [4]. It supports complex
RF envelope carriers and dataflow simulations [21]. In SystemVue, a system is
described as a schematic of components connected with wires and busses. The
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simulation technology is based on a Data-Flow MoC and it is based on the Ptolemy
multi-domain, heterogeneous simulation platform [22].

SystemVue is well suited for the integration of heterogeneous systems. It pro-
vides numerous libraries with parameterized components and interfaces to diverse
modeling formats, ranging from MATLAB to the main HDLs, such as Verilog
and VHDL. Furthermore, it allows to create custom components in math language
or CCC and to add them to a purely SystemVue system. SystemVue supports
multi-domain simulations through links to event-based as well as circuit simulation
engines, such as SystemC and ModelSim, may be extended to analogue simulations.

3.2.2.4 UNIVERCM

UNIVERCM is an automaton-based formalism that unifies the modeling of both
the analogue (i.e., continuous) and the digital (i.e., discrete) domains, as well as
hardware-dependent SW. A formal and complete definition is available in [19].

In each UNIVERCM automaton (depicted in Fig. 3.3), states model the continuous
dynamics of the system as a condition that must be satisfied to perform continuous
evolution (invariant) and a predicate modeling the evolution of variables over time
(flow). Edges between states model the discrete dynamics as evolution of variables
and activation of synchronization events, controlled by a boolean predicate on the
variable state and by synchronization checks.

UNIVERCM is an important resource in smart system design as it is well suited
for the application to heterogeneous domains [19]. Indeed, the computational model
allows to cover the heterogeneity that characterizes such systems, ranging from
analogue and digital HW up to dedicated SW. Guglielmo et al. [19] presented a
comprehensive reuse and design flow based on UNIVERCM, thus showing how it
is possible to provide formal rules and automatic tools to convert the heterogeneity
to UNIVERCM and to produce a homogeneous simulatable implementation of the
generated UNIVERCM system. Thus, UNIVERCM enhances reuse and bottom–up
design.
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Fig. 3.3 Example of UNIVERCM automaton
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3.3 Analysis of Smart System Simulation Solutions

Simulation and design are heavily influenced by the abstraction level of each com-
ponent and, as a consequence, by the level of heterogeneity that characterizes the
system in terms of domains, abstraction levels, and synchronization mechanisms. It
is thus necessary to clearly identify the abstraction level involved in smart system
design (Sect. 3.3.2) and to associate each domain and simulator to the correct level.
For this reason, this section proposes a taxonomy that associates frameworks and
design flows to each domain and abstraction level (Sect. 3.3.3). This constitutes a
necessary starting point for understanding the impact of abstraction levels and of
the heterogeneity/homogeneity trade-off on simulation (Sect. 3.3.4).

3.3.1 Typical Domains of Smart System Design

The typical classes of components of any smart system are identified in terms both
of constituting characteristics and of role w.r.t. the inner information/energy flows.
For this reason, components are sub-divided into six main domains:

• MEMS, sensors, and actuators, in charge of communicating with the surrounding
environment;

• Power sources, necessary to guarantee correct functioning of all other
components;

• Discrete and power devices, as parts of the energy flow, responsible for energy
dispatching and harvesting;

• Analogue and RF components, mainly responsible for signal processing, trans-
mission, and reception;

• Digital HW, core of the system processing and functionality;
• Embedded SW, as system controller and main mean of communication with the

end users.

The main simulation problems of smart systems derive from this heterogeneity
that requires the use of different design languages and different abstraction levels.
Moreover, it is extremely unlikely that a single team has the knowledge to cover
all such design domains, thus, we have to assume that a set of design teams
must cooperate by using their own favorite design languages. In fact, there is no
Esperanto able to effectively model all such domains. A variety of design languages
has rather been proposed in the past decades to cover specific design domains,
and some standards de facto became the reference languages for design teams
specialized in each design domain. This challenging scenario will be the focus of
the next sections.
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3.3.2 Abstraction Levels of Smart System Design

The main factors determining the level of abstraction are: time granularity, inter-
connection model, state space granularity, and data aggregation. Time granularity
is an important dimension in a heterogeneous environment. It may be continuous
or discrete time, or follow an event-based semantics where time ticks only when
the system state changes. The interconnection model describes communication and
synchronization between components as potential or flow quantities (conservative
systems), flow charts, or transactions. The granularity of state space details
data aggregation for simulation purposes, i.e., variables managed by differential
equations, symbolic variables, or objective constructs (i.e., system state describes
the possible behavior, e.g., CCC). Finally, data aggregation states whether the
component is modeled by considering the minimum (black box) or maximum (clear
box) number of state space variables necessary for a correct representation of the
observable behavior.

Given these factors, it is possible to identify five main abstraction levels, typical
of smart systems.

• At transactional level, simulation is strictly event-based and inter-component
communication happens via transactions (that provide a communication protocol
to the system). System state is modeled with variables.

• At functional level, simulation is event-based but communication relies on the
flow chart interconnection style.

• The structural level has two main approaches depending on time granularity.
Continuous time evolution is modeled with differential equations and by observ-
ing conservative laws. Discrete time may adopt both event-based or flow chart
synchronization, and finite set variables are adopted.

• At device level, simulation can be both continuous or discrete time. The major
difference is that at device level all variables are modeled explicitly, while
structural level models only those variables that are strictly necessary for
simulation purposes.

• The physical level adopts continuous time synchronization and the conservative
interconnection style. State space is described with continuous fields as differen-
tial equations and all variables are modeled in a clear box approach.

3.3.3 Design-Domains/Simulation-Level Taxonomy

Given the variety of abstraction levels and the heterogeneous domains typically
present in any smart system, it is possible to build the design-domains/simulation-
level taxonomy shown in Fig. 3.4. Such a chart identifies the abstraction level (rows)
and the domain (column) of the most widespread tool and languages adopted in
the context of smart systems. This allows to correctly differentiate the use of co-
simulation and simulation according to the two dimensions. Text in bold shows the
typical entrance level and tools for each domain.
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Fig. 3.4 Design-domains/simulation-level taxonomy, identifying the abstraction level (rows) and
the domain (column) of the most widespread tool and languages adopted in the context of smart
systems. Text in bold shows the typical entrance level and tools for each domain

Models belonging the lowest abstraction levels (i.e., physical, device, and
structural) are represented by different domain-specific design languages. They
must thus be simulated by using their own simulator (e.g., Matlab, Modelsim,
EMPro). For this reason, a framework covering more than one domain can be
implemented only by using co-simulation techniques which connect different tools
by exchanging simulation data from one tool to another.

Moving to the functional level, there is a convergence in the modeling language,
as all models belonging to different domains are represented in CCC. This would
in principle allow a simulation among different domains. However, the MoC
implemented into each CCC model can be different from domain to domain. Thus,
simulation cannot be simply obtained by linking functional CCC models, but such
models must also be coherent w.r.t. the same MoC. Thus, either the chosen MoC
covers all domains or some data and synchronization conversion is necessary.

At transaction level, simulation frameworks enforce a common transaction-
based communication protocol to all domains. This allows to seamlessly integrate
components belonging to different domains and based on different MoCs and
synchronization mechanisms.

3.3.4 Impact of MoCs on Simulation and Co-simulation
Performance

The taxonomy in Fig. 3.4 helps in further understanding the impact of MoCs and of
heterogeneity on simulation and co-simulation at different abstraction levels.

As mentioned in Sect. 3.3, the heterogeneity of the lowest abstraction levels
forces to simulate each design domain by using ad-hoc simulators. Co-simulation
frameworks are thus built by connecting different simulators, such as shown
in [10, 17]. Unfortunately, explicitly modeling the synchronization between
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simulators, different for language, formalism, and underlying MoC, heavily impacts
simulation performance and effectiveness [19]. Other approaches achieve a lighter
impact by compiling separately the different formats and linking them together, such
as done by ModelSim to co-simulate SystemC and VHDL. This lighter approach is
still affected by the presence of heterogeneous MoCs, as the data sharing mechanism
and time synchronization introduce a heavy overhead.

Functional level brings to a convergence in terms of modeling language and
framework, thus showing the impact of MoCs to the full. If all CCC components
follow the same MoC, then they can easily be integrated with no further overhead.
Else, if the adopted MoCs are heterogeneous, it becomes necessary to introduce a
communication layer for applying data and synchronization conversion.

Communication and synchronization are further eased at transaction level, as
transactions and standard interfaces force a single communication protocol to
all components. This mitigates the effect of having multiple MoCs, as problems
risen by data sharing and time synchronization are moved inside the transactional
communication mechanism.

This analysis highlights that the heterogeneity of smart systems impacts simula-
tion performance in many directions. Contributing elements are indeed the adopted
languages, the levels of abstraction, and the MoCs followed by the components to be
integrated. The weakest approach appears to be co-simulation, mandatory at lowest
levels, as it pays the price of all degrees of heterogeneity. Simulation becomes more
effective at functional and transactional levels, where heterogeneity is constrained
and limited to few synchronization mechanisms. For these reasons, the remainder of
this chapter will focus on code generation for effective simulation of smart systems
at functional and transactional levels.

3.4 Proposed Methodologies

The analysis of the smart system simulation scenarios proposed in the previous
section highlighted that the choices in terms of abstraction level, language, and MoC
may heavily affect simulation performance. This section outlines three alternatives,
different in terms of implementation choices and covered domains. The solutions are
summarized in Fig. 3.5, and they provide different coverage/performance trade-offs,
together with techniques and tools for achieving automatic generation of simulatable
code. Section 3.4.1 focuses on functional level, and it estimates the impact of MoCs
on simulation. On the other hand, Sect. 3.4.2 provides two solutions at transactional
level, based on SystemC and on the SystemVue framework.

3.4.1 Smart System Simulation at Functional Level

The functional level brings all domains to a convergence in terms of modeling
language, usually CCC. This easies the achievement of simultaneous simulation
of components belonging to different domains. At the same time, an effort may
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Fig. 3.5 Proposed solutions
for homogeneous simulation
of heterogeneous smart
systems
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(Section 4.2.1)
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be necessary whenever the CCC representations of components follow different
MoCs, i.e., different synchronization management rules. This section provides an
example for both flows, with the goal of showing the impact of MoCs to the full.

3.4.1.1 Simulation Based on a Single MoC

The UNIVERCM MoC, presented in Sect. 3.2.2.4, was designed to reconcile het-
erogeneous domains to a unique formalism. It supports a full bottom–up approach
where already existing heterogeneous descriptions can be automatically converted
and integrated into UNIVERCM automata for being, subsequently, re-mapped to a
single simulatable model. This section details both the flows, with a focus on the
major conversion issues and solutions.

Mapping from Heterogeneity to UNIVERCM

The strategy to map any component to UNIVERCM strictly depends on the domain
and abstraction level of the starting description [14].

Mapping digital HW descriptions in UNIVERCM requires to reproduce the
simulation semantics of HDLs, both in terms of scheduling and of synchronization.

HDL processes are represented as automata. All edges of an automaton are
guarded by the activation of synchronization labels, reproducing a value change
of any of the signals in the sensitivity list. This activates an automaton in response
to changes in its sensitivity list. Note that the propagation of synchronization events
is straightforward, as labels are instantaneously visible from any automaton.

The typical HDL scheduling routine is in charge of generating and propagating
events and advancing simulation time. This mechanism must be represented in
UNIVERCM so that events are processed in the same order and simulation semantics
is preserved. The main feature that must be preserved is thus the fact that simulation
time is advanced only when there is no event to be processed in the system nor
any signal to be updated. The scheduling routine is represented with an additional
automaton, that advances a continuous variable representing time only when there
is no active label in the system. This allows to process events in the same order as
in the original HDL and to preserve the original simulation semantics.
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HW-dependent SW (HdS) is SW that controls and abstracts HW functionality,
to allow easy and standard access to HW devices and the deployment of more
abstracted SW. HdS is thus in charge of managing communication with HW and
it needs to be reactive to signals and interrupts risen by HW devices. Each HdS
function is mapped to a UNIVERCM automaton, evolving among a certain set of
states via transitions (note that continuous time evolution is not supported for this
domain). Each function is provided with two special labels: an activation label
(representing function invocation and activated by automata willing to execute the
function) and a return label (used to communicate to the caller that the function
has finished its execution). This allows inter-function communication. Automata
representing HdS functions can be also sensitive to events coming from HW
automata, representing HW interrupts. This, together with data sharing for modeling
MMIO mechanisms, allows to reproduce the basics of HW–SW communication.
An example of HW–SW communication, and of mapping to UNIVERCM of the
corresponding components, is provided in Fig. 3.6.
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Fig. 3.6 Mapping to UNIVERCM of a digital HW component firing an interrupt (1) and of the
corresponding interrupt service routine (2)
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UNIVERCM can be easily adopted to model also analogue models described with
differential equations as hybrid automata [16, 27]. The mapping is straightforward,
even if some transformations are necessary to reproduce the synchronization
semantics and to remove hierarchy from the automata.

Once that all starting descriptions have been converted to UNIVERCM, automata
evolve simultaneously through data sharing (i.e., by accessing the same variables)
and by synchronizing via labels. Thus, no additional communication or scheduling
mechanism is necessary.

Mapping from UNIVERCM to CCC

The conversion flow from UNIVERCM to CCC is defined in general for any
automata, with no concern regarding the language of the original description
converter to UNIVERCM.

Each UNIVERCM automaton is mapped to a CCC function, representing the
whole automaton evolution, as depicted in Fig. 3.7. A state variable is used to
store the current state of the automaton. The function body is built as a switch
statement, where each case represents one of the automaton states. Each state
case lists the implementation of all the outgoing edges and of the delay transition
provided for the state.

Each edge is implemented as an if or else if statement, whose guard is a
logic and of the enabling condition on the edge and of the activation condition on
synchronization events. The body executed when the guard is satisfied includes the
update of variables and the activation of synchronization events. Furthermore, the
state variable is updated to the destination state of the edge.

Fig. 3.7 UNIVERCM automaton to be converted to CCC (left) and corresponding generated code
(right)
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Continuous evolution is implemented as an if or else if statement whose
guard is the invariant condition that allows to remain in the state. The body
executed when the guard is true implements a discretized implementation of
the flow predicate, by adopting the Euler numerical integration algorithm with
time discretization step chosen by the designer [11]. It is important to note that
the Euler method can be replaced with one of the many available algorithms for the
approximation of solutions of ordinary differential equations.

Code generated from UNIVERCM automata is ruled by a management function,
in charge of activating automata and of managing the status of the overall system
and parallel composition of automata. The result of this approach is that all code
generated from UNIVERCM automata is controlled by a single function, and it is
thus provided with a simple interface.

If the system is made of more UNIVERCM automata, the management function
is not enough to grant correct composition. Indeed, the starting components come
from heterogeneous domains, and thus the communication means may differ. On
the other hand, communication between UNIVERCM automata happens via variable
sharing and through synchronization events. Thus, any two automata can be easily
composed by checking the correspondence between variables and synchronization
events of the two. Mapping the one in the other must be identified by the designer.
This allows to extend the management function to all operations necessary to
propagate updated values.

Finally, UNIVERCM variables and events are mapped to native CCC constructs.
Variables are mapped to a couple of CCC variables, representing the current
value and the future value, respectively, in order to respect the UNIVERCM
semantics. Value update is performed by the management function, as previously
anticipated. The type of each variable is determined by the variable alphabet for
discrete variables, while continuous variables are mapped to doubles. Support type
libraries may be used, for simulation purposes or to enhance simulation speed [9].
Synchronization events are represented with boolean values, where true states
that the label is active. In detail, labels are mapped to a couple of boolean values,
representing the current value and the next simulation value, respectively. At the end
of each simulation step, the management function will set the new current value to
the future one, and reset the future value to false.

Integration Strategies and Challenges

Simulation based on a single MoC poses no challenges regarding integration. All
starting components, despite of their heterogeneity, are converted to UNIVERCM
automata, by mapping the starting semantics to UNIVERCM native constructs.
This allows to abstract the characteristics of the starting descriptions, and to
represent the system as a number of automata that interact through no conversion
mechanism. This is a winning approach, as no manual intervention is necessary to
allow integration. This reduces by far communication overheads, and it speeds up
simulation.
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3.4.1.2 Simulation Based on Multiple MoCs

UNIVERCM is a very powerful MoC, as it covers a wide number of domains.
However, its representation of digital HW may lead to an explosion of the modeled
automata, both in terms of states and of synchronization labels. Furthermore,
no methodology has been defined yet for mapping circuit-based descriptions, as
electrical behaviors and conservation laws are difficult to reproduce in an automata
based approach. For this reason, it may be necessary to integrate code generated via
UNIVERCM with CCC code generated with other strategies. This section outlines
two additional strategies, necessary to cover all smart system domains efficiently.
The section ends by presenting the integration strategies and challenges, to allow
overall smart system simulation even in presence of different MoCs.

HIFSuite for Efficient Conversion of Digital HW to CCC

HIFSuite (introduced in Sect. 3.2.2.2) is a closely integrated set of tools and APIs
for reusing already developed components and for verifying their integration into
new designs [15].

HIFSuite was first designed for allowing system designers to convert HW/SW
design descriptions from a HDL to a different HDL and to manipulate them in a
uniform and efficient way. For this reason, the underlying HIF core language is made
of a set of objects corresponding to traditional HDL constructs like, for example,
processes, variable/signal declarations, sequential and concurrent statements, and
so forth [6]. Each HIF construct is mapped to a CCC class that describes specific
properties and attributes of the corresponding HDL construct. Such objects can then
be manipulated through powerful CCC APIs which allow to explore, manipulate,
and extract information from HIF descriptions.

All such characteristics make HIFSuite a very convenient infrastructure to define
conversion tools working on digital HW descriptions. The typical conversion flow
from digital HW to CCC is outlined in Fig. 3.8, and it leaves the underlying MoC
of the starting description unchanged.

Any digital HW description, implemented in a HDL language, is converted to its
HIF representation via the HIFSuite front-end tools, performing a straightforward
mapping from HDL constructs to the corresponding HIF objects. The abstraction of
the HIF description is then carried out by two manipulation tools from HIFSuite,
DDT and A2T. DDT replaces the original HDL data types from the starting HW
description with CCC built-in data types in order to greatly improve simulation
performance. Then, A2T implements the methodology in [7] to convert the HDL
processes to functions and the HDL scheduling semantics to a management
function. Additionally, A2T can be guided to generate more performing CCC code
by providing it with profiling information of the starting HDL implementation. If the
repeated execution of asynchronous processes dominates execution time, A2T may
replace the standard dynamic HDL simulation semantics with a static scheduling
approach. Such an approach creates a sequence of processes to be repeated at every
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Fig. 3.8 HIFSuite-based flow for automatic conversion of digital HW descriptions to CCC

simulation cycle, thus avoiding the overhead of event management. This allows to
further abstract the starting HDL description, to customize the generated code with
the goal of optimizing simulation performance. The obtained HIF description is
finally converted to CCC through the back-end tool hif2sc.

The winning aspect of this strategy w.r.t. the UNIVERCM-based conversion flow
presented in Sect. 3.4.1.1 lies in the efficiency of the generated code. HIF natively
preserves the HDL semantics, thus not introducing additional constructs, e.g., for
scheduling or synchronization management. This results in a more compact CCC
implementation of the starting digital HW.

Conversion of Analogue and Mixed Signal Descriptions to CCC

Analogue components can be seen as a set of algebraic and differential equations,
expressing the functionality. These equations can be expressed in different ways:
they can be explicitly listed or they can be hidden by expressing them as intercon-
nections of primitives, as for block diagrams. Thus, when aiming at reproducing
the behavior of an analogue device, it is fundamental to extract the correct set of
equations from the original description. To accomplish this task, HIFSuite analysis
features come in handy, and they are exploited into a framework of front-end,
manipulation and back-end tools. The resulting flow is depicted in Fig. 3.9.

To read analogue descriptions, the Verilog parser of HIFSuite is extended to
support Verilog-AMS. The tool takes care of parsing analogue descriptions, based
on dipole equations, and to map constructs into HIF. The HIF representation is then
used to analyze and manipulate the information expressed by the design. Analysis
and manipulation are performed by OCCAM (Ordinary CCC Code for Analogue
Models), a tool developed on top of HIFSuite that implements an analysis and
manipulation algorithm composed by the following five steps:
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Fig. 3.9 HIFSuite-based flow for automatic conversion of analogue and mixed signal descriptions
to CCC

• Acquisition: Starting from the set of dipole equations acquired by the Verilog
front-end tool, a hash table is created. For each electric branch of the circuit
represented by the original description, current and voltage are labeled and then,
every equation is stored in the hash table, using the left value label as key.
Then, also the inverse equations are computed, stored in the table, and marked as
“linearly linked” to the original equation.

• Enrichment: The system of equations can be partially specified, and some
relations may thus be left implicit. It is necessary to apply Kirchhoff’s current
and voltage laws to retrieve the entire set of equations composing the system.
This is done by employing a modified nodal analysis algorithm on the set of
equations extracted during the acquisition step. The implicit equations, retrieved
by the modified nodal analysis, are inserted into the hash table and marked as
“linearly linked.”

• Assemble: In order to abstract the system, the outputs of interest are fixed by the
designer. For every output of interest, its label is used to fetch an equation from
the hash table. Then, all the terms of the fetched equations are used as label to
fetch other equations, recursively, in order to retrieve all the terms influencing the
chosen output. A tree structure representing these dependencies is built for every
output of interest.

• Preparation: The tree built at the assemble step is visited, and the dependencies
are mapped into a sequence of assignments and function calls, to represent
algebraic and differential operators.

• Dismantle: The sequence of instructions created after the previous steps are
inserted into a function. Since the produced models aim at simulating continuous
time evolution, they have to be repeatedly executed. Thus, the simulation
scheduler will provide to call and execute the function wrapping the behavior,
periodically during the simulation.

Finally, the behavioral representation produced by OCCAM and modeled in HIF
has to be translated into CCC. To do this, the HIFSuite back-end tools have been
extended in order to support this kind of representation, to produce CCC code for
the simulation.
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Integration Strategies and Challenges

The integration of CCC code generated with the presented techniques introduces
major challenges. Indeed, this section clearly highlighted that at functional level
different domains and techniques share a common language, but not the MoC and
the synchronization mechanisms. As an example, an event fired by a component
generated through UNIVERCM may be difficult to detect by code generated through
HIFSuite or through a complex abstraction process, necessary to handle analogue
and mixed signal descriptions.

If execution inside components may be self-sufficient and correct, problems arise
whenever interaction between components is necessary. Due to the complexity of
the task and to the complex configurations that may show up, this task can be
handled only manually, by carefully considering the characteristics of the specific
components into play.

Whenever integrating heterogeneous CCC code, the designer shall consider:

• Functionality activation: Each MoC introduces different scheduling strategies
in the CCC code, ranging from the reconstruction of HDL scheduling up to
simple activation of all automata for UNIVERCM-based code. The designer shall
implement a global scheduling routine, that activates the single domains by
respecting timing and causality relationships;

• Time evolution: Each MoC advances time with specific solutions, that are affected
by the presence of runnable activities. Local scheduling strategies must thus
agree on a shared notion of time, so that events are propagated in the correct
order and that digital synchronous signals such as clocks are coherent w.r.t. the
remainder of the system;

• event propagation: Each local scheduler must be able to detect synchronization
events fired by the other domains. For this reason, the global scheduler must
convert events from one formalism to the other, without introducing delays or
timing misalignments;

• Data sharing: Different components must be able to share data despite of the
implementation differences. The global scheduling routine shall propagate value
changes, thus converting data from one format (or data type) to the other.

This highlights that, even if the single conversion techniques are correct, interaction
of heterogeneous MoC introduces heavy management overheads and it may leave
space for synchronization misalignments.

3.4.2 Smart System Simulation at Transactional Level

The transactional layer brings all domains to a convergence in terms of modeling
language and of underlying framework. The differences in terms of MoC or
abstraction level are not reduced by means of conversion methodologies, but they
are rather preserved to ease the integration process. Ad-hoc interfaces or simulation
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strategies mask this heterogeneity with a transaction-based mechanism, where a
global scheduler satisfies activation requests and performs all conversions and syn-
chronization with no intervention from the user. This section provides two examples
of this strategy, the one relying on the standard language SystemC (Sect. 3.4.2.1)
and the other based on the commercial tool SystemVue (Sect. 3.4.2.2). This will
highlight the characteristics of the transactional level to the full.

3.4.2.1 SystemC-Based Simulation

SystemC, together with its extensions, is a well-established language for the
modeling of smart systems. Its strength, as anticipated in Sect. 3.2.2.1, is the
presence of a single simulation kernel, mastering requests coming from any of the
supported MoCs and libraries.

SystemC can be considered transactional as any of the supported MoCs defines
a precise interface to the simulation kernel, thus wrapping different levels of
abstraction of the instantiated constructs. Each solver communicates with the
simulation kernel through transactions, i.e., activation requests that are satisfied by
the kernel through synchronization with the remainder of the system and through
data sharing and conversion. This section shows how effective SystemC can be at
supporting the heterogeneity of smart systems, ranging from analogue and mixed
signal conservative descriptions up to digital HW components.

Mapping from UNIVERCM to SystemC

Mapping of UNIVERCM to SystemC traces the approach for CCC code generation
proposed in Sect. 3.4.1. However, the presence of a simulation kernel allows to
delegate some management tasks, and to reproduce automata behavior through
native SystemC constructs. Note that this is crucial to ease and enhance the
interaction with SystemC code generated through different design flows.

The main effect of the adoption of SystemC is on the management routine.
UNIVERCM automata are indeed mapped to processes, rather than functions. This
allows to delegate automata activation to the SystemC scheduler, by making each
process sensitive to its input variables. Automata activation is removed from the
management function, that still updates the status of variables and events at any
simulation cycle. The management function itself is declared as a process, activated
with a custom event after all automata have performed one simulation step.

The mapping of synchronization events is left unchanged, despite of the presence
of native SystemC events, i.e., sc_events. Indeed, SystemC events cannot be
used into conditions, while this is a feature necessary to fully support UNIVERCM
transition semantics.

The mapping of UNIVERCM variables changes slightly. Variables shared by
two or more automata are mapped to SystemC signals, to allow data sharing
between processes and ensure correct simulation and process activation. UNIVERCM
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variables used by a single automata are still mapped to a couple of CCC variables,
i.e., current value and future value, that are updated and handled by the management
function.

Mapping of Digital HW to SystemC and SystemC TLM Through HIFSuite

As previously stated in Sects. 3.2.2.2 and 3.4.1.2, HIFSuite is an ideal framework
to convert digital HW descriptions into corresponding SystemC and SystemC-TLM
descriptions. The flow to automatically convert digital HW descriptions to SystemC
at RTL is depicted in Fig. 3.10. The input HW description, written in VHDL or
Verilog, is firstly converted to its HIF representation by the HIFSuite front-end
tools. This step is achieved by parsing the input description and mapping HDL
constructs to corresponding HIF objects. Then, the HIF description is converted
to the corresponding SystemC RTL code by the back-end tool hif2sc. A number
of manipulations on the HIF description are required during this step to account
for the lack of expressiveness of SystemC w.r.t. VHDL and Verilog. In fact, some
VHDL and Verilog constructs do not have a direct mapping to a corresponding
SystemC construct. As such, they must be translated by resorting to an equivalent
implementation through other SystemC constructs.

HIFSuite also features a flow to automatically abstract digital HW descriptions
to SystemC TLM for faster simulation speed. The resulting flow is illustrated in
Fig. 3.11. The first step consists again of converting the input HW description to its
corresponding HIF representation by the HIFSuite front-end tools. If the target is
to generate a TLM description optimized for simulation performance, the following
step consists of invoking DDT from HIFSuite on the generated HIF description
in order to improve simulation performance by replacing the original HDL data
types with CCC built-in data types. This step is however completely optional.
In case it is bypassed, the output TLM description at the end of the flow will
feature SystemC data types. The abstraction of the HIF description from RTL to
TLM is carried out by the manipulation of A2T from HIFSuite. A2T produces code
compliant with the TLM-2.0 standard. The user can select which TLM protocol will
be generated by adopting one of the two TLM-2.0 coding styles, namely loosely
timed (LT) and approximately timed (AT). If the LT coding style is adopted, the

Fig. 3.10 HIFSuite-based flow for automatic conversion of digital HW descriptions to SystemC
RTL
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Fig. 3.11 HIFSuite-based flow for automatic conversion of digital HW descriptions to SystemC
TLM

abstracted design will implement the blocking transport interface, and blocking
transport primitives will be used to achieve communication. Conversely, if the AT
coding style is adopted, the abstracted design will implement the non-blocking
transport interface, and non-blocking transport primitives will be used to achieve
communication. The abstraction process generates CCC functionality code from
RTL processes, and replaces the RTL cycle-accurate communication protocol with
the transaction-based TLM communication protocol. As reported in Sect. 3.4.1.2,
profiling information on the starting HW description can be provided to A2T in
order to generate more efficient CCC code for the design functionality. Finally, the
abstracted HIF description is converted to SystemC TLM through the back-end tool
hif2sc.

Mapping of Analogue Conservative Descriptions to SystemC-AMS

Smart systems often feature heterogeneous components that do not match the
traditional digital design flow. A typical example is MEMS components, often used
as means of sensing and actuation, thus having a crucial role in the interaction of
the system with the surrounding environment. The main complexity introduced by
this kind of descriptions is that they are both behavioral and conservative, i.e., they
feature a certain level of abstraction w.r.t. the actual component realization, but at
the same time they obey physical laws, such as energy conservation laws [12, 25].

The limitations of traditional flows and tools at handling such components are
highlighted by the characteristics of SystemC-AMS that, though being the reference
language for smart system simulation, does not support descriptions that are both
behavioral and conservative (as described in Sect. 3.2.2.1). The limited flexibility
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of SystemC-AMS forces designers to adopt other HDLs (e.g., Verilog-AMS), that
cannot be easily integrated with the frameworks and flows presented in this chapter.

For these reasons, this section shows how SystemC-AMS can be extended
to support behavioral and conservative descriptions. Instead of adding a new
abstraction level (with corresponding libraries and classes), the adopted approach
uses SystemC-AMS existing primitives in a novel way [28]. Note that, due to
the limitations of SystemC-AMS, supported models are strictly linear and time-
invariant.

The starting point of the methodology is a Verilog-AMS behavioral description.
In Verilog-AMS, a circuit is modeled as an abstract graph of nodes connected by
branches [24]. System state is defined in terms of voltages (V()) and currents (I())
associated with nodes and branches. Relationships between nodes are modeled with
algebraic and differential equations, called simultaneous statements.

Since SystemC-AMS is less expressive than Verilog-AMS, any Verilog-AMS
simultaneous statement is reproduced by connecting a number of ELN elements.
Given a Verilog-AMS description, each simultaneous statement is divided into basic
contributions by finding the largest sub-equation that can be represented by a single
ELN object. In linear and time-invariant descriptions, this corresponds to breaking
the equation into the single addends.

Each addend is then mapped to the most suitable ELN primitive. As an example,
an instance of the sca_vsource primitive is used to reproduce independent
voltage sources, e.g., V(a) <+ +8.01. On the other hand, an instance of the
sca_vccs primitive reproduces voltage controlled current sources, e.g., I(a)
<+ +4.02 V(b). ELN primitives must then be connected to reproduce the
relationship expressed by the starting simultaneous statement. If the term on the
left-hand side of the simultaneous statement is a current, SystemC-AMS instances
are connected in parallel. Else, if the term is a voltage, instances are connected in
series, by adding intermediate components. Figure 3.12 exemplifies these concepts
on a simultaneous statement including a voltage controlled current source, a current
controlled current source, and an independent current source.

Differential contributions require a more complex approach, as they model a
derivative (or integrative) relationship between the current or voltage of two separate
circuit nodes. SystemC-AMS, on the other hand, restricts differential behaviors
to dependencies on single network nodes, through the adoption of capacitors
(sca_c ELN module) or inductors (sca_l). To overcome this limitation, it is
necessary to introduce an intermediate node that has no physical correspondence
in the circuit, but that is rather used for describing the differential dependence.
The node is connected to an inductor in case of a derivative construct (e.g., I(a)
<+ ddt(+4.02 V(b))) and to a capacitor in case of an integrative construct
(e.g., I(a) <+ idt(+4.02 V(b))). Suitable ELN primitives are then used to
bind the evolution of the intermediate node to the nodes involved in the starting
differential contribution.

As the application of the proposed approach may be tedious and error-prone, and
thus prevent the application to industrial-size case studies, the whole methodology
has been automated on top of the HIFSuite framework.
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Fig. 3.12 Example of mapping of a Verilog-AMS simultaneous statement to SystemC-AMS. The
simultaneous statement includes a voltage controlled current source (term 1, mapped to an instance
of sca_vccs), a current controlled current source (term 2, mapped to a sca_cccs), and an
independent current source (term 3, mapped to a sca_csource). Since the left-hand side of the
simultaneous statement is a current construct, all ELN instances are connected in parallel. Non-
connected terminals are connected to ground

Integration Strategies and Challenges

The code generation solutions presented in this section tackle the heterogeneity of
smart systems by adopting a common language (i.e., SystemC and its extension),
still preserving the heterogeneity in terms of MoC. However, interaction between
different MoCs does not rely on manual, error-prone synchronization approaches,
as for the functional level (Sect. 3.4.1). All synchronization is indeed transferred to
the simulation kernel, that satisfies requests from all MoCs and abstraction levels.

Synchronization correctness is thus guaranteed by the underlying SystemC
simulation kernel, that natively masters heterogeneous requests and takes care
of synchronization issues between its extensions and MoCs. Furthermore, native
converters allow to perform data conversion and to propagate events from one MoC
to the other, without any manual intervention from the user. Still, the heterogeneity
in terms of MoCs affects simulation performance, as data and synchronization
conversion imply a computation overhead. Thus, the simplicity of integration comes
at a price of simulation performance.

3.4.2.2 SystemVue-Based Simulation

SystemVue is an environment designed for easing the integration process. Its
execution semantics is based on the synchronous dataflow MoC. As such, system
behaviors are described by interconnecting basic blocks, expressing a functionality.
The strength of SystemVue is that it provides predefined blocks as well as a CCC
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API to create libraries of custom components that can be included in a system
simulation together with components shipped with SystemVue. This allows to easily
integrate any CCC code, including manually designed code and code generated
with the methodologies proposed in Sect. 3.4.1.

The first step to integrate a CCC external component in SystemVue is to
specify its interface as names and data types of all the inputs, outputs, and
parameters. The interface of a SystemVue node implemented in CCC is com-
posed by a set of variables that are then specified to belong to the interface
using the macros: DEFINE_MODEL_INTERFACE, ADD_MODEL_OUTPUT, and
ADD_MODEL_INPUT. The data types of these variables, in order to be accepted
by the macros, have to belong to a well-defined subset of the available C data
types. Some data types, such as circular buffers, are implemented in the SystemVue
support library. The other available data types are a subset of the C/CCC data types,
that does not include the standard unsigned integers. This can be an issue, as
normal unsigned int data types do not ensure that the span of data representa-
tion is the same on different architectures. For this reason, in order to assure the pre-
dictability of the number of bits used to represent data on the interface, every vari-
able is declared as double. Then, before any computation step, the data read from
the interface is assigned to a data structure using standard Integer and Boolean
variables for computation. After the computation, the variables of the data structure
are copied into the output variables. Figure 3.13 gives a sketch of the CCC code
generated by HIFSuite for SystemVue. The left-hand side of the figure focuses on

Fig. 3.13 Overview of the SystemVue-compliant CCC generated by HIFSuite
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the interface and it shows the declaration of the interface variables, the input/output
data structure, and the interface declaration. On the right-hand side of the figure the
Run method exemplifies the usage of input/output variables and data structure.

In SystemVue, functionality is implemented in terms of four functions:

• Setup() is used to specify the rate of each port, in particular when using
circular buffers, in the node interface. The default value is uni-rate, and it is not
mandatory to implement this function.

• Initialize() is executed during the initialization of the dataflow, thus
should be used to run all the initialization code necessary to the node
functionality.

• Run() is the main method, as it contains the functionality that has to be executed
at every simulation step. Its execution is scheduled by SystemVue, according to
the dataflow structure, and the rate of the input/output ports of the node.

• Finalize() performs any post-simulation coding that the model needs to
perform, such as closing file or de-allocating memory.

In order to respect this interface, CCC code generation techniques must be
customized and extended to ensure SystemVue support. As an example, the code
generated by HIFSuite uses the Initialize() method to reset all variables and
data structures of the component. The Run() function, as depicted on the left part of
Fig. 3.13, handles the input/output as discussed above and it calls the code generated
by A2T (i.e., simulate) to emulate component evolution, passing the input/output
structure as parameter. When the simulate function returns, the output variables are
written according to computed component evolution.

A final integration issue arises whenever components adopt different MoCs. In
SystemVue, synchronization and communication among different nodes is based in
SDF, that forces the insertion of a delay in every loop among different components.
Thus, it is necessary to insert delays to break the loops between connected
components, for instance, between a bus and a CPU or between bus and peripherals.
However, the generalized insertion of such delays can produce synchronization
problems due to the modification of simulation delays that usually guarantee the
correct behavior of a digital system. For this reason, digital components in loop are
automatically merged by HIFSuite in a single component and abstracted with A2T
as a single component.

By following these guidelines, SystemVue easies the integration of existing code,
as the designer must simply match the APIs for the designed components, while
the synergy with HIFSuite automatically translates pre-design digital and analogue
components and all synchronization issues are left to the simulation kernel.

3.5 Experimental Validation of Proposed Methodologies

The goal of this section is to support the proposed analysis and methodologies with
experimental evidence. To this extent, the proposed examples focus on single code
generation techniques and on the simulation of a complex smart system case study
achieved through SystemVue.
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Table 3.1 Abstraction alternatives of digital components for functional and transactional simula-
tion

Abstract CCC,

Modelsim SystemC RTL, Abstract CCC, Abstract CCC, CCC native

(VHDL/ SystemC HDTLib data types CCC native data data types

Verilog) data types types (SystemC top) (SystemC top) (pure CCC top)

Design T (s) T (s) T (s) S (x) T (s) S (x) T (s) S (x)

AES 72.3 850.9 332.5 2.6 8.0 106.4 7.1 119.8

Camellia 1823.7 25,433.3 9022.6 2.8 8.0 3179.2 3.3 7707.1

DES56 707.5 7608.5 1941.1 3.9 8.5 895.1 4.6 1654.0

SHA512 1758.9 6302.1 2452.4 2.5 12.6 371.2 3.4 1377.2

XTEA 171.8 975.2 260.9 3.7 18.0 54.2 3.4 286.8

3.5.1 Validation of HIFSuite-Based Language
Conversion Techniques

The automatic abstraction of digital components to SystemC/TLM and to CCC
plays a key role in the simulation of a smart platform at both the functional and the
transactional levels. Thus, its effectiveness must be evaluated in depth.

Table 3.1 reports simulation time (T(s)) for some VHDL and Verilog digital
components, together with the speedup achieved through the automatic abstraction
by A2T with the support of HDTLib or DDT for data type abstraction. The reference
simulation time is generated by Modelsim (column Modelsim). The generated code
may be managed through either a SystemC top-level module (columns labeled with
SystemC top) or a CCC main simulation file (pure CCC top). This distinction
allows to analyze all the scenarios outlined in Fig. 3.5, thus covering both the
functional abstraction level (single/multiple MoC) and the transactional abstraction
level (through the adoption of SystemC or SystemVue for component aggregation).

Results clearly conclude that the automatic abstraction of digital components is
extremely efficient (up to three orders of magnitude in speedup) in the case of RTL
modules converted to CCC for single MoC functional simulation or for SystemVue-
based transactional simulation. In the other cases, the effectiveness of the abstraction
process is limited on single components, but it still produces a simulation advantage
whenever the platform model must be built by aggregating different components.

3.5.2 Validation of the Mapping of Analogue Conservative
Descriptions to SystemC-AMS

Mapping of analogue conservative descriptions to SystemC-AMS proved to be
a complex step, due to the requirements in terms of construct coverage and of
application of energy conservation laws. In order to prove the effectiveness of the
overall methodology, we applied the overall approach to a complex industrial case



3 Design Domains and Abstraction Levels for Effective Smart System Simulation 49

0

0.454214

0.908428

1.36264

1.81686

Displacement Mag. (um)

Z
Y

X

Fig. 3.14 Three-dimensional model of the accelerometer in the MEMS+ design simulator

Table 3.2 Characteristics of
the original Verilog-AMS
MEMS design

Lines of code 89

Equations Voltage sources 10

Current sources 15

Node declarations Interface 14

Internal 14

Contributions Independent 4

Voltage 59

Current 0

Derivative 12

Integrative 0

study, developed in the context of the SMAC project. Application to this industrial
case studies was eased though the implementation of an automatic tool, called
ABACuS (Analogue BehAvioural Conservative SystemC-AMS), that leverages
HIFSuite to ease the conversion process.

The adopted case study is a two-dimensional MEMS accelerometer implemented
in Verilog-AMS by means of the MEMS design platform MEMS+, that supports
automatic Verilog-AMS code generation [12], starting from three-dimensional
physical models as the one depicted in Fig. 3.14. Table 3.2 reports the main
characteristics of the MEMS design, both in terms of simultaneous statements and
of types of contributions. The MEMS design features most of types of supported
contributions, thus showing the application and validation of a significant part of
the methodology on a single case study.

Table 3.3 shows the results of the application of ABACuS to the MEMS design.
The table shows the number of lines of code of the resulting SystemC-AMS
implementation, the number of added nodes and of instances of SystemC-AMS
primitives. The number of lines of codes is increased tenfold (precisely, 11.12x),
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Table 3.3 Characteristics of
the generated SystemC-AMS
MEMS design

Lines of code 1474

Added node declarations 12

SystemC-AMS sca_r 93

primitive sca_vsource 4

instantiations sca_vcvs 32

sca_ccvs 0

sca_csource 0

sca_vccs 48

sca_cccs 0

sca_l 12

sca_c 0

Table 3.4 Characteristics of
the execution of ABACuS on
the MEMS design

Overall 17.48 s

HIFSuite Conversion to HIF 1.86 s

tools Conversion to SystemC-AMS 7.81 s

ABACuS Node management 0.94 s

Division into contributions 0.29 s

ELN component instantiations 6.58 s

as the SystemC-AMS generated by the methodology is more verbose than Verilog-
AMS. Each contribution requires the instantiation of the ELN primitive, plus the
corresponding explicit port binding. Furthermore, the number of ELN primitives
is higher than the number of Verilog-AMS contributions. This is due to the
presence of 12 derivative contributions in the original Verilog-AMS code. Each such
contribution determines the instantiation of three ELN primitives (as explained in
Sect. 3.4.2.1). As a result, of the 188 resulting SystemC-AMS ELN instances:

• 93 correspond to resistors added to connect each SystemC-AMS node to ground;
• 59 correspond to voltage source contributions;
• 36 are generated by the 12 derivative constructs, that determine also the

declaration of 12 additional internal nodes.

Fast code generation is a major advantage of the proposed approach. Table 3.4
highlights that code generation is almost instantaneous (17.48 s overall), and that
most of the effort is spent in the HIFSuite conversions (55 %). The most costly
step of ABACuS lies in the mapping from Verilog-AMS contributions to ELN
primitives and in their instantiation (37 %). On the other hand, node management
and the separation of Verilog-AMS equations into single contributions are almost
immediate.

The generated code was validated by comparing its execution w.r.t. the origi-
nal Verilog-AMS code, run by using the Questa simulator [23]. SystemC-AMS
simulation was run by adopting the same input stimula of the Verilog-AMS
implementation, and with a 1us timestep. SystemC-AMS proved to be slightly faster
than the Verilog-AMS execution (28.02 s and 33.72 s, respectively). At the same
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Fig. 3.15 Evolution of the MEMS outputs for Verilog-AMS (solid) and SystemC-AMS (dashed)

time, the average error in the computation of the MEMS outputs is 0.02 %. This
confirms the visual accuracy evident from Fig. 3.15, where the Verilog-AMS and
SystemC-AMS curves are almost totally overlapping. The small error is due to the
different management of time in the two simulators: SystemC-AMS adopts a fixed
timestep, while Verilog-AMS can adapt the length of the timestep over time, thus
reaching a higher accuracy. The low error rate highlights the effectiveness of the
generated code, both in terms of accuracy and of simulation speed.

3.5.3 Adoption of SystemVue for a Heterogeneous Case Study

The final example collects all previous results to show a transactional level simula-
tion of a smart system based on SystemVue integrating a number of heterogeneous
components. The starting point is complex heterogeneous smart system, developed
with the goal of representing a generic smart system. The system, called open source
test case (OSTC), includes eight modules covering digital HW, embedded SW,
RF-transceiver, network elements, and a MEMS sensor (i.e., the accelerometer).
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Fig. 3.16 SystemVue schematic of the OSTC. The left-most component represents the sub-system
memory and CPU. This is connected to the component implementing the bus. Components on the
right-hand side implement the peripherals. Red rhombuses are delays introduced to break dataflow
loops. Red circles represent sinks collecting the outputs of the OSTC

Table 3.5 Simulation time for the three different simulation scenarios in SystemVue

Scenario Simulation time (s) Speed-up

Co-simulation of all digital HW 278:59 –

Co-simulation of one digital HW 153:23 1:8�
CCC-based simulation 36:32 7:7�

Such modules are extremely heterogenous in terms of language, as they are
described in SystemC, VHDL, Verilog, Verilog-AMS and CCC. An exhaustive
description of the OSTC will be the focus.

Figure 3.16 shows the SystemVue representation of the OSTC. Each module
has been imported in SystemVue after its abstraction to CCC, performed by using
HIFSuite. SystemVue supports co-simulation, thus allowing the comparison of the
following scenarios:

• Co-simulation of all digital HW components;
• Co-simulation of one digital HW component;
• Homogeneous CCC-based simulation.

The simulation scenario used for all the models simulates 100 ms of system
execution, with a timestep of 100 ns. The inputs of the accelerometer are sinusoidal
stimula, and the software application is pre-loaded in the memory. The software
takes care of system boot and peripheral initialization. Then, the application
repeatedly reads data from the accelerometer, computes the data, and sends the
results to the digital hardware and the network interface.

Table 3.5 shows the time needed to simulate the three different scenarios. What
appears clear from these results is that the number of simulators instantiated, hence
the number of co-simulation interfaces employed, heavily impacts performance.
In particular, it worth notice that, in this case, every co-simulation interface (two
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in the case of the first entry of the table, one in the second), seems to introduce
around 120 s overhead w.r.t. the simulation without co-simulation interface, thus
introducing an overhead of about 80 %. As a result, the impact of interfaces
and conversion layers between different tools seems highly relevant and strictly
dependent on the number of used interfaces and external tools. The limited speed-
up is mainly affected by the low abstraction capability of the two main digital
components of the OSTC. Such components are indeed described at gate level
rather than at RTL, thus the abstraction to CCC is not extremely effective. Higher
speedups can be obtained by using real RTL components, such as the ones reported
in Table 3.1.

3.6 Concluding Remarks

This chapter provided a formalization of the abstraction levels and design domains
of a smart system. This taxonomy allows to identify a precise role in the design flow
for co-simulation and simulation scenarios, and to examine the impact of heteroge-
neous or homogeneous MoCs. Moreover, a methodology has been proposed to move
from the co-simulated heterogeneity to a simulatable homogeneous representation
of the entire smart system at two level of abstraction: functional level and transac-
tional level. At functional level, all components are implemented in CCC, with the
goal of understanding the role of the underlying synchronization and simulation
semantics and their overhead on simulation performance. At transactional level,
two widespread simulation frameworks, i.e., SystemC and SystemVue, have been
adopted to ease code integration, even in presence of very heterogeneous design
flows.
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Chapter 4
Energy-Efficient Digital Processing via
Approximate Computing

Daniele Jahier Pagliari, Massimo Poncino, and Enrico Macii

4.1 Introduction

While the most characteristic feature of a smart system is its capability of sensing
a set of environmental quantities and actuating appropriate actions in response
to those signals, it is obvious that a significant part of its functional operations
is involved with the elaboration of the information carried by the signals [14].
This elaboration is usually done after converting the analog, asynchronous envi-
ronmental signals into the digital domain.

Part of the smartness of a smart system is therefore expressed in the autonomous
and transparent operation based on closed loop control and predictive capabilities, as
well as improved signal processing technologies. The former functions are normally
carried out by a micro-controller or processor core, whereas the latter ones rely on
either a digital signal processor (DSP) or an application-specific integrated circuit
(ASIC). Hybrid architectures, that combine one or more general purpose CPUs with
one or more hardware accelerators are also increasingly popular [11].

Such “processing” dimension, coupled with the energy-autonomous nature of
these systems put significant emphasis on their energy efficiency [4, 12]. Measures
for reducing energy (and power) consumption vary according to the engineering
domain of the component being considered. In the computing subsystem, classical
low-power techniques for processors and digital circuits can be fruitfully exploited
[35]. In this chapter, however, we focus on the explicit signal processing task
and show how we can effectively leverage an emerging design paradigm called
approximate computing [20, 52].
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Approximate computing has its foundations in the tradeoff between quality and
energy. It is based on the principle that, accepting a controlled degradation in
output quality, energy consumption can be reduced significantly, by changing either
the implementation of a computing device or its operating conditions. In smart
systems, inputs to the computing subsystem often consist of physical data sampled
by some type of sensor. This information is inherently imprecise, both because of
environmental noise and measurement errors, and because of the limited precision
of transducers and analog-to-digital converters. Therefore, small approximations in
computation may be accepted, as their impact on the final output quality may be
negligible with respect to the effect of input imprecisions.

Moreover, some of the outputs in smart systems are power actuators, which
normally have much longer time constants with respect to electronic elements. As
a consequence, an error that manifests only intermittently for short amounts of time
is automatically “filtered-out” by the actuators.

Both aspects show that the maximum computation accuracy constraint is often
overly restrictive in smart systems applications. In other words, these applications
are error resilient, i.e. can tolerate some computational errors without a significant
impact on the quality of results. This property makes them the ideal targets for
the approximate computing methodology. In fact, if the design constraints of
the processing subsystem are set correctly, approximations can be made negli-
gible with respect to input errors and/or to the resolution of outputs, effectively
reducing energy consumption without impacting the output quality in a significant
manner.

4.2 Error Resilient Computing Paradigms

In modern electronics, energy has become a primary concern, due in particular to
the widespread diffusion of mobile, battery-powered devices. Researchers identified
error resilience as a common characteristic often found in applications performed
by such devices, including smart systems, that can be exploited to optimize their
energy efficiency [10].

4.2.1 Error Resilience

Error resilience, or tolerance, can be defined as the capability of tolerating some
errors without a significant impact on output quality. There are several factors that
affect the resilience of an application. In this section, we try to categorize the most
recurring ones (see Fig. 4.1).

Noisy or Redundant Input Data One cause of resilience is the fact that a system
deals with inputs affected either by errors or by some form of environmental noise.
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Fig. 4.1 Overview of error resilience features and error resilient design paradigms

In this situation, errors in computation can be tolerated, as long as they are negligible
with respect to the imprecisions on inputs. The latter, in fact, effectively constitute an
upper bound on the accuracy that can be obtained at the outputs. One example of this
situation has been already anticipated in Sect. 4.1, and corresponds to applications
that process data coming from analog sensors, which are inherently affected by
environmental noise. Similarly, computing elements inserted in the decoding chain
of a communication system also fall in this category, as their inputs are affected
by noise and interferences in the channel. Another family of resilient applications
are those that process a redundant input data set, as is typical in several machine
learning tasks. In this case, some computations can be approximated or even skipped
completely, because they do not add information (quality) to the results.

Absence of a Unique Golden Output For many applications, the definition of
optimal “golden” results is informal or fuzzy. This may happen because multiple
outcomes are equivalently valuable for the purposes of the system mission. Alter-
natively, the optimality of the results produced by a computation can be inherently
unknown, because of the presence of random, semi-random, or heuristic operations.
In the latter case, slightly perturbing the outputs of an internal operation might
neither worsen nor improve the quality of the final results. The first property is
present in many data mining tasks. As an example, two similar outputs produced
by a web browser search engine might be considered equally good for the end-user,
and it is very difficult to distinguish the optimal. On the other hand, applications
in the domains of optimization and operation research often display the second
feature. In literature, the broad family of recognition, mining, and synthesis
(RMS) applications is often reported as a particularly significant example of error
resilience [10].
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Limited Human Perception Resilience can also come from the fact that the final
results of a computing task are often evaluated by people. Human sense organs have
a limited resolution both in terms of spacial and temporal dimensions and in terms
of discernible “values.” As an example, let us consider the visual system. Two full-
HD images that differ only for a few pixels are hardly distinguishable to the naked
eye (spatial dimension). Similarly, a single altered frame in a video stream is also
practically unnoticeable (temporal dimension). Finally, the two images or videos
are still perceived identical, even if differences are much more frequent in space and
time, as long as the pixels colors are only slightly altered (values dimension). In
summary, approximations that are sufficiently rare, in space or time, or sufficiently
small do not affect the perceived quality. The majority of the applications that belong
to this category are found in the domains of multimedia and telecommunication,
e.g., audio/video compression, imaging tasks, etc. Notice that this feature is partially
overlapped with the previous one, since the fact that certain differences are not
noticeable by humans can be interpreted as a quality equivalence among multiple
outputs.

Algorithmic Features Lastly, an application can be resilient because of the inner
characteristics of the involved algorithms. In particular, certain computational
patterns favor the mitigation or the rejection of errors. A typical example of such
patterns is iterative refinement, used in many recognition and mining applications
as well as for the solution of systems of linear equations [20]. This pattern starts
from an inexact initial solution and iteratively improves it. Because of how it
is constructed, possible additional error contributions introduced by approximate
computations will be reduced as well. Again, there is a partial overlapping between
this characteristic and the absence of a unique golden output. For example, pseudo-
randomness and heuristic decisions can be also thought of as algorithmic features.

In summary, in a resilient application, the quality of results can be thought of
as a continuous function of the quality of computations, as opposed to a boolean
one. Approximate computing is one of the design paradigms that exploits this new
dimension for the optimization of computing systems, mostly in terms of energy
and power consumption (Fig. 4.1).

4.2.2 Error Resilient Paradigms

In literature, approximate computing is distinguished from other similar approaches,
that also leverage error tolerance, such as stochastic and probabilistic computing
[20]. In this section we briefly describe the main characteristics and differences
among these three perspectives.
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4.2.2.1 Stochastic Computing

Stochastic computing (SC) was first theorized in the 1960s by two independent
researchers in Europe and in the USA [16, 42]. In this paradigm, information stored
in streams of bits is interpreted numerically as the probability of occurrence of the
logic value 1. As an example, a 10-bit stream with four 1s and six 0s is interpreted
as the rational number 4/10. In formal terms, a string of n bits with n1 bits at logic 1
corresponds to the real number:

p D n1

n
: (4.1)

It can be seen easily that all numbers in this system belong to the interval [0,1],
and that their representation is not unique. For example:

.0; 0; 0; 1/SC D .0; 1; 0; 0/SC D .0; 0; 1; 0/SC D 0:2510: (4.2)

The initial interest for stochastic computing was motivated by the fact that some
arithmetic operations between bit streams can be implemented very efficiently in
hardware [2]. Moreover, stochastic streams also have good tolerance properties in
response to soft (i.e., transient) faults. In fact, if any of the bits of an n-bit string
changes value because of a transient fault, the error in terms of the corresponding
real number is always 1=n. On the contrary, in binary the impact doubles for each
bit going from the least significant bit (LSB) to the most significant bit (MSB).

However, stochastic computing also has some major drawbacks. First of all,
increasing the precision of a calculation requires an exponential increase in the
length of bit streams. This affects both the speed of calculations and the bandwidth
required for memory access and communication. Moreover, not all possible rep-
resentations of a real number yield the most accurate result when used as input
of an operation. More specifically, correlation between the different inputs of an
operation generates errors at the outputs. To cope with this issue, random or pseudo-
random architectures (e.g., linear feedback shift registers) are used to generate the
input stochastic streams in the “most uncorrelated” way possible. The problematic
aspect is that the probability of correlation errors increases with the number of
levels of logic, and in circuits with feedback. Furthermore, some topological
aspects of circuits, such as reconvergent fanouts, enforce a strong correlation among
streams.

The issues related with data correlation and the large bandwidth requirements
constrained the application of SC away from the field of general purpose computing.
However, this paradigm was used successfully in several domains, such as neural
networks, control systems, and image processing [2]. Recently, SC has regained
interest due to its application to the decoding of low-density parity check (LDPC)
codes. Many of the most efficient algorithms for this task are probabilistic, and
therefore error resilient in nature. It has been shown that fast and low cost
implementations of such algorithms benefit from an SC representation of data [18].
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4.2.2.2 Probabilistic Computing

The trend labeled probabilistic computing (PC) originates from the increasing
reliability issues of integrated circuits as technology scales [41]. Because of physical
phenomena such as thermal noise and aging, standard CMOS devices are increas-
ingly unreliable from one generation to another. Therefore, hardware designers and
manufacturers put great effort in building reliable circuits from unreliable physical
switches via fault tolerant architectures, thermal aware design, etc.

Probabilistic computing reverses this idea, accepting to work with unreliable
circuits. To this end, a probabilistic model is formulated, in which each switching
device is associated with a probability of correctness p < 1, and computing
architectures are built on top of this model. The rationale that motivates PC is that
accepting a small drop in p can provide a large reduction in energy consumption,
hence enabling very efficient computation.

Physical devices exhibiting this type of accuracy vs. energy tradeoff have been
first theorized and then manufactured, giving birth to the logic family known
as probabilistic CMOS (PCMOS). In parallel, probabilistic Boolean logic (PBL)
has been adopted as an abstract model to support designs based on PCMOS [6].
Probabilistic computing devices have been used to design architectures for various
error resilient applications, including decision systems, pattern recognition, and
cryptography, with promising results in terms of power efficiency [41].

4.2.2.3 Approximate Computing

Approximate computing (AC), which is the main focus of this chapter, is allegedly
the most successful error resilient design paradigm to this day [20]. It differentiates
from probabilistic computing because the traditional deterministic logic model for
switching devices is maintained; AC methods do not assume any probabilistic nature
in the underlying physical devices that constitute the computing system. Similarly,
AC is also a separate body of work with respect to stochastic computing. In fact,
in most instances, information is processed and transmitted in standard binary
representations (unsigned, two’s complement, etc.).

Approximate computing focuses on building imprecise or inexact circuits with
deterministic architectures (e.g., based on standard CMOS transistors). Statistical
considerations, for example, on input data, are extensively used, but in general,
a reliable behavior of the hardware at the physical level is assumed. Hence, it is
sometimes referred to also as Inexact Computing [41]. The main goal of AC is, as
mentioned, power and energy reduction, but there are also techniques that exploit
approximation to achieve performance increase and silicon area optimization.

The success of this approach is partly due to the fact that it relies on existing
models and design techniques, modified appropriately to target the error resilient
application domain, rather than completely changing the perspective. This makes it
more accessible to hardware and software engineers accustomed to standard design
flows. As an example, many embodiments of approximate computing are inspired
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by techniques from the hardware and software reliability literature [7, 22, 46], while
others make use of modified versions of standard electronic design automation
(EDA) algorithms [40, 47, 50].

In an attempt to build a topology of approximate computing techniques, a first
order classification can be done to split them in two groups:

• The first family includes techniques that modify the architecture of an existing
hardware or software design, introducing approximations in the computation,
in such a way that the impact of these modifications on the output quality is
statistically negligible, while the power and energy consumption are significantly
reduced (e.g., [34]).

• The second group includes techniques in which power reduction is achieved by
modifying the operating conditions of the target design rather than its structure.
Structural modifications can still be present, but in this case they are a way to
mitigate the quality loss rather than to directly reduce power (e.g., [22]).

A second classification of approximate computing literature can be done accord-
ing to the level of abstraction. This is the organization that will be followed in the
rest of this chapter to describe the details of some of the most successful tech-
niques. In particular, we can identify: (1) transistor/gate-level hardware techniques,
(2) algorithm/architecture-level hardware techniques, (3) processor-level hardware
techniques, (4) cross-level hardware techniques, and (5) software techniques. In this
discussion, we will mostly focus on hardware approaches, since they are currently
the most diffused and effective ones. Software AC will be briefly described in
Sect. 4.4.

4.3 Error/Quality Metrics

Before describing the details of the different approximate computing techniques, it
is important to briefly discuss the matter of quality evaluation. AC is essentially a
tradeoff between quality and some other metric, usually power or energy. To seek
for optimality, both axes of the design space must be quantifiable. Well-established
models are available in literature for the power and energy consumption of digital
circuits [35]. In this section, we focus on metrics to evaluate quality, and in particular
to those suitable for hardware systems. Since quality is a function of the errors
introduced by approximate computations, quality and error metrics are often used
equivalently. In general, a quality metric can be obtained by taking the inverse of
the corresponding error metric.
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4.3.1 Error Rate and Error Significance

Quality is mostly a domain-specific metric, and there is certainly not a universal
function valid for the optimization of any approximate computing target. However,
the overall quality of a computing system is often the result of two concurring
factors, which are commonly referred to as Error Rate and Error Significance (or
Magnitude) [20].

Error rate (ER) is the rate or frequency of occurrence of errors. It is most
commonly measured as the number of erroneous outputs over the number of total
outputs considered, both erroneous (ne) and correct (nc):

ER D ne

.ne C nc/
: (4.3)

Informally, ER can be considered as the average probability of occurrence of an
error over the time interval considered for its evaluation [10].

Error significance (ES) defines instead the severity of a single error. Since the
notion of severity is strictly related to the mission of a system, the number of ES
functions found in literature is much larger than for ER. In this context, we mention
some of the most common ones. The simplest ES metric is the absolute value of
the numerical difference (D) between the correct (vc) and erroneous (ve) values of a
given output at a given time instant [25, 47]:

kDk D kvc � vek: (4.4)

A commonly found alternative definition uses the squared difference D2 instead.
The Hamming distance (HD), defined as the number of bits that differ between
the binary representations of the correct and erroneous values, is often used for
strategies targeting arithmetic circuits [25]:

HD D
X

bit.i/D1

.vc ˚ ve/ (4.5)

where ˚ is the bitwise XOR operator. Finally, the relative difference (RD)
normalizes the error with respect to the correspondent correct value:

RD D
ˇ̌
ˇ̌vc � ve

vc

ˇ̌
ˇ̌ : (4.6)

4.3.2 Composite Metrics and the Fail Small
or Fail Rare Concept

In most approximate computing literature, some form of composite metric is used
that encompasses the information of both ER and ES [27, 32, 48]. The simplest of
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such metrics is rate-significance (RS), defined as the product between the rate and
the maximum significance over a set of vectors [48]:

RS D ER � max.ES/: (4.7)

ER and ES are in turn defined according to one of Eqs. (4.3) and (4.4)–(4.6). In
RS, the contributions of ER and ES can also be assigned a different importance by
means of appropriate weighting. A slightly more refined metric is the mean error
distance (MED), defined as the mean of kDk [see Eq. (4.4)] over the considered set
of N output vectors [32]:

MED D 1

N

NX

iD1

kvc;i � ve;ik: (4.8)

If errors occurring in any time instant only depend on the value of the correct output
in the same instant, MED can be equivalently defined as:

MED D
MX

jD1

kvc;j � ve;jk � P.vc;j/ D E
�kvc;j � ve;jk

�
(4.9)

where M is the number of possible values assumed by the correct output and P

and E stand for probability and expected value, respectively.1 The normalized error
distance (NED) corresponds to the MED normalized to the maximum possible error
on a given output [32]:

NED D MED

max.kDk/
: (4.10)

With respect to the unnormalized version, this metric is better to compare the impact
of errors on buses with different widths or using different data representations. Very
similar to MED is the mean squared error (MSE) [27]:

MSE D 1

N

NX

iD1

.vc;i � ve;i/
2: (4.11)

And again, under the assumption that errors only depend on “present” output
values:

MSE D E
�
.vc;j � ve;j/

2
�

: (4.12)

1However, in many AC architectures errors are either affected by previous history of inputs and
output values, or by external conditions, hence this definition is not valid.
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Up to this point, we mentioned mainly general purpose metrics. However,
many of the most used metrics in AC are domain-specific. The most popular in
digital signal processing and communication applications is the signal-to-noise ratio
(SNR), defined as [1, 22, 27, 46]:

SNR D �2
s

�2
w

(4.13)

where �2
s is the power of the signal component, i.e. of the set of error-free values

carrying useful information and �2
w is the power of the noise component, i.e. of the

combination of all types of disturbances affecting the measured values. Therefore,
when SNR is used, errors due to approximate computations are modeled as a
noise source. One of the advantages of this metric is that it allows to combine
approximations with disturbances caused by other factors, such as limited accuracy
of analog components, external radiations, and crosstalk in a communication
systems, etc. In that case, assuming that computation inexactnesses and other
sources of noise are uncorrelated, the definition of SNR becomes [46]:

SNR D �2
s

�2
noise C �2

appr

: (4.14)

This quantity is often expressed in decibel (dB). Notice that SNR is strictly related
to MSE, as the “noise” due to approximations is defined as:

Nappr D vc � ve (4.15)

and hence its average power �2
appr is exactly expressed by Eq. (4.11). A further

variant is the peak signal-to-noise ratio (PSNR), which considers the ratio between
the maximum value assumed by the correct data (max.kvck) and the noise variance.
Lastly, many literature works use higher level application-specific models of
error/quality [10, 37, 40]. Since these metrics are so specific, they are too many
to be enumerated here.

In general, because of the nature of most error resilient applications, combined
metrics that consider both the rate and the significance of errors are often the most
effective ones. For these applications, the relation between computational errors and
measured quality is perfectly summarized by the rule of thumb of “Fail Small or Fail
Rare” [10]: the quality of outputs produced by an inexact computing system acting
over a set of inputs for a given period of time is acceptable if approximations are
either small in significance or rare in time. This is an essential guideline to the design
of approximate computing systems.
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4.4 Approximate Computing Techniques

A schematic view of the main approximate computing techniques organized by
abstraction level is shown in Fig. 4.2. In this section we provide a brief overview
of each group of approaches, aimed at conveying the general principles, and not
intended as a complete survey. We focus mostly on solutions suitable for the
optimization of DSP tasks commonly found in smart systems, and only mention
the remaining ones. However, we reference the most important publications, in case
the reader is interested. Solutions are examined with a bottom–up order, because
low level techniques often constitute the building blocks of higher level ones.

4.4.1 Transistor/Gate-Level Techniques

In Fig. 4.2 we use the term netlist-level techniques to identify all those approaches
that operate on the transistor or gate-level netlist of circuits. Two main trends
are identified in literature at this abstraction. Some researchers have developed
approximate functional units, building inexact versions of the most common circuits
found in digital datapaths. Others have focused on automation aspects, developing
tools for the logic synthesis of approximate circuits.
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Fig. 4.2 Overview of the main approximate computing techniques organized by abstraction level
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4.4.1.1 Approximate Functional Units

The design of approximate versions of functional units (FU) is one of the most
popular applications of AC. Efforts are mainly directed toward the most common
datapath elements, namely adders and multipliers. A comprehensive survey of these
techniques can be found in [20].

For what concerns approximate adders, two main categories of approaches can be
identified. The first group modifies the structure of a single-bit full-adder (FA) and
then generates multiple-bit adders with the modified FA. The second also starts from
accurate architectures, but considers them from a coarser point of view, changing the
way in which their building elements are connected.

In the category, one of the earliest designs is the so-called lower-part-OR
adder (LOA) [36], in which some FAs are replaced by a simple OR gate (see
Fig. 4.3). In [19, 54] the authors propose a similar idea, but in this case they
generate approximate FAs with transistor-level simplifications. These solutions
directly reduce area and power (by affecting leakage, internal capacitances, and
switching activity) and also decrease the delay of the FA, improving its performance,
or alternatively enabling a more aggressive voltage scaling, to further reduce power
consumption. Both goals are pursued while minimizing the truth table differences
between the approximate versions and the original FA. Approximate FAs are used
in the LSBs of a multi-bit adder, while MSBs are summed accurately (e.g., with a
carry lookahead adder) to preserve quality, as shown in Fig. 4.3.

The second group of approximate adders is mostly constituted by designs that
break the carry propagation chain. Being the critical path, breaking it enables delay
reduction at the expense of possible errors in the sum output. As mentioned, this
can be exploited for voltage scaling. Moreover, the carry chain is also responsible
for most switching activity in an adder, due to its frequent glitches. Therefore,
reaching signal stability earlier also has a direct impact on power. Adders based
on this principle can be found in [24, 34, 56–59]. The authors of [53] use the same
idea to design a variable latency speculative adder, able to identify errors due to
the broken carry chain, and compute the correct result, at the expense of additional
latency. In [25] an accuracy configurable adder is proposed, in which multiple error
configurations can be set at runtime. The configurations that produce larger errors
have a smaller delay, and hence allow to scale the voltage more.
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Fig. 4.3 Lower-part-OR adder block diagram
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Fig. 4.4 Modified 2�2 multiplication Karnaugh map and corresponding netlist

Approximate multipliers have a comparatively small literature. Some solutions
construct multipliers based on approximate adders [24, 34], while others modify
existing array multiplier architectures removing or simplifying the FAs involved in
MSBs calculations [30, 36]. A different approach is proposed in [29], where a multi-
bit unsigned multiplier is constructed starting from an approximate elementary cell
that performs 2-bit multiplication. It is shown that, by changing a single entry in
the truth table of the 2�2 multiplier, hardware complexity can be reduced of almost
50 % (see Fig. 4.4). Moreover, the erroneous condition can be easily detected and
compensated. Thus, the architecture also supports an accurate mode of operation,
used only for quality-critical multiplications, at the expense of additional power.
Finally, [33] proposes an advanced design for an accuracy configurable multiplier,
based on input pre-processing.

4.4.1.2 Approximate Logic Synthesis

Approximate logic synthesis (ALS) deals with the generalization of the concepts
introduced for the approximation of functional units, and applies them to any
gate-level circuit. The rationale is that automation is indispensable to extend the
approach to larger and more complex designs. Some of the first efforts in this
direction are found in [47, 48], where methods for ALS are proposed targeting two-
level and multi-level circuits, respectively. These solutions tackle the ALS problem
directly, using ad-hoc algorithms either to reduce the number of literals [47] or
to simplify some nets as if they were redundant [48], based on a given quality
constraint.

A fundamental work on ALS is the tool developed in [50], named Systematic
methodology for Automatic Logic Synthesis of Approximate circuits (SALSA).
SALSA introduces several novelties with respect to previous approaches, including
the fact that ALS is transformed into a traditional synthesis problem, allowing
to fully leverage the optimization capabilities of commercial tools. Moreover, it
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also unlinks the synthesis procedure from a specific quality metric, allowing the
designer to set their preferred metric as an input, and making the tool much more
flexible. The basic idea of SALSA is to construct the so-called quality constraint
circuit (QCC), shown in Fig. 4.5. The triangular block contains a used-defined logic-
level implementation of the quality function, and its single-bit output Q is at 1
if and only if the desired quality constraint is respected. SALSA considers the
input conditions for which Q is independent from a certain bit in the approximate
circuit outputs POappr;i, i.e. the observability don’t cares (ODCs) of Q with respect
to POappr;i. Since those are the input combinations for which changing the value
of POappr;i does not violate the quality constraint, they are used to simplify
the approximate circuit, reducing area, power, and delay. Both the individuation
of ODCs and the corresponding simplifications are performed with commercial
tools for classic logic synthesis. The process is repeated iteratively on all bits of
POappr, progressively updating the approximate circuit in the QCC. Several opti-
mizations are proposed to reduce the computational complexity of the algorithm.
Recently, the SALSA methodology has been extended to consider also sequential
circuits [44].

4.4.2 Algorithm/Architecture-Level Techniques

Algorithm/architecture-level techniques for approximate hardware can be concep-
tually defined as those that concurrently optimize a signal processing algorithm and
the hardware architecture that implements it. The considered targets can be as simple
as a Multiply and ACcumulate (MAC) or as complex as a complete fast Fourier
transform (FFT). Therefore, there is not a well-defined distinction between this
family of techniques and the previously mentioned netlist-level ones. Architecture-
level methods are often the most effective ones for the DSP applications found in
smart systems.
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4.4.2.1 Voltage Over-Scaling

A large portion of algorithm-level techniques for approximate computing is based
on the voltage over scaling (VOS) principle [27]. In a sequential device, at a
given clock frequency, the critical voltage Vdd;crit can be defined as the smallest
supply voltage that guarantees correct operation, i.e. absence of timing violations in
the worst-case operating conditions. VOS-based approaches let the device operate
at voltages Vdd < Vdd;crit, exploiting the fact that timing errors only occur in
correspondence of certain combinations of inputs. Therefore, in the majority of
cases,2 the circuit still produces the correct result. The clear advantage is that
consumption is reduced significantly, due to the super-linear relation between supply
voltage and both dynamic and leakage power [35].

The first embodiment of VOS to produce approximate circuits was originally
proposed in [22], and is named algorithmic noise tolerance (ANT). Its main idea
is to let an arithmetic or DSP system work in VOS conditions, then leverage an
error-free error control (EC) block to detect the occurrence of a timing violation and
to mitigate its effects on the output quality (see Fig. 4.7). Different types of ANT,
in particular for what concerns the implementation of the EC block, are proposed
in [23, 45, 46] and others. This technique is one of the most suitable for DSP
operations, and is analyzed in detail in Sect. 4.5.

VOS is considered from a different perspective in significance driven design
(SDD) [3, 21, 28, 38]. Instead of reducing errors due to VOS, this family of
techniques tries to confine their occurrence to non-significant computations, i.e.
computations that do not impact drastically the output quality. This goal is achieved
acting both on the algorithm and on the corresponding hardware architecture.
As an example, [3] applies SDD to a hardware implementation of the discrete
cosine transform (DCT). Some DCT coefficients are slightly altered (algorithmic
modification) in order to improve hardware sharing (architectural modification).
This sharing allows to compute high-energy DCT components, which are the most
relevant to determine the visual characteristics of the output image, with a reduced
delay, while long combinational paths are related to less significant components.
Therefore, in VOS conditions, timing errors will only affect the latter.

An important aspect of all VOS designs is that the probability of timing errors
must be as small as possible, to limit the impact on quality. These errors are
induced by combinations of inputs that activate long combinational paths in the
architecture. Therefore, the distribution of path lengths influences significantly the
behavior of a system in VOS conditions; the ideal condition is to have few long
paths and many short ones, as shown in Fig. 4.6. Two different works consider
the problem of easing timing degradation of circuits in VOS [26, 39]. The former
proposes a VOS-friendly gate sizing algorithm, that changes the path distribution to
produce a gradual degradation of quality and enable aggressive over-scaling. In [39]

2The precise rate of timing errors depends on circuit topology and on the characteristics of input
data. Moreover, it can be modified with optimization techniques (e.g., gate sizing).
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Fig. 4.6 Impact of slack distribution on VOS-induced errors

the focus is on architectural modifications of some meta-functions, i.e. recurring
operations common to different error resilient applications, aimed at changing their
path distribution to reduce the error rate and significance at a given voltage.

Other literature involves VOS as key feature for power reduction. In [13, 15,
17] the authors proposed techniques and devices (such as the so-called Razor flip-
flops) that aim at detecting and avoiding VOS-induced errors. Error avoidance is
accomplished by allocating additional clock cycles to let the longest combinational
paths stabilize, for instance, via clock gating or pipeline stalling. These techniques
are very popular, but since they avoid errors rather than accepting them, they do not
strictly belong to the approximate computing domain.

4.4.2.2 Approximate Behavioral Synthesis

Recent works have addressed the approximate synthesis of designs described at
the behavioral level, i.e. starting from a functional model of the system behavior
(typically graph-based) rather than from a net of logic gates. The main effort is
documented in [40], where the authors propose a tool named Automated Behavioral
Approximate CircUit Synthesis (ABACUS), that produces multiple approximate
versions of a circuit starting from an original accurate model in behavioral HDL.
ABACUS operates by transforming the HDL in an abstract syntax tree (AST)
model, then modifying the AST with a series of operators, each of which introduces
some approximations while preserving syntactic correctness. Operators include
LSBs-truncation, variable to constant substitution, loop unrolling, etc. Moreover,
ABACUS can also use models of approximate functional units like those presented
in Sect. 4.4.1.1. Approximated ASTs are then transformed back to HDL and pro-
cessed with a standard synthesis and simulation flow to evaluate their cost (in terms
of area and power) and their accuracy. To avoid an exponential number of synthesis
and simulation phases, ABACUS does not apply all approximating operands to
all feasible locations in the AST. Instead, in each iteration it generates a number
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of approximated ASTs choosing operands and locations at random, then greedily
selects the best solution as the starting point for subsequent iterations. Optimality
is expressed by a fitness function that weights cost and accuracy components. The
entire process is then repeated for a fixed number of iterations. A hard threshold on
accuracy is also set, so that solutions that affect quality too much are not synthesized.

4.4.3 Other Techniques

In this section we present approximate computing techniques that are less interesting
for the context of DSP in smart systems, but nevertheless need to be mentioned to
provide a complete view of the state of the art (see Fig. 4.2).

Processor-Level Techniques In the domain of programmable processors, AC solu-
tions are mostly based on the acceptance of errors due to process variability, aging,
temperature, external radiation, etc. Rather than hardening the entire processor
against these errors, only some cores or units are made reliable with fault tolerance
mechanisms. Those units manage the control flow and execute critical operations,
while error resilient computations are offloaded to unreliable hardware. The total
area and power costs related to hardening are thus significantly reduced [31, 55].
A different approach is found in [51], where the authors propose a vector processor
in which the “quality-level” of each operation can be set at the software level,
thanks to a specific Instruction Set Architecture. Different quality/power levels are
obtained in hardware combining reduction of operands bit-widths with power and
clock gating.

Cross-Level Techniques Another branch of research has focused on methodolog-
ical aspects related to AC, such as the automatic assessment of error resilience, and
the combination (or synergy) of techniques at multiple abstraction levels. The first
objective has produced the so-called application resilience characterization (ARC)
framework [10], able to individuate the error resilient computational kernels in an
application and evaluate the impact of different AC techniques (e.g., approximate
functional units, VOS meta-functions, etc.) on them. The ARC framework is used in
[8] to generate scalable effort hardware architectures, that combine AC techniques
at different abstraction levels to obtain greater power and area savings. A further
improvement is found in [9], where a technique called dynamic effort scheduling is
proposed to set the global quality level at runtime, acting on knobs that affect the
different AC techniques involved.

Software Techniques Most literature on AC at the software level exploits the
previously mentioned iterative refinement (also found as iterative convergence)
computational pattern. A technique called best effort computing has been devised for
these algorithms in [5, 37], based on principles similar to those of best effort com-
munication in the networking stack [49]. An algorithm is divided into guaranteed
computations, which are fundamental for the final result, and optional computations,
which can tolerate errors without a significant impact on output quality. The relaxed
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correctness requirement on the latter group is exploited in the operating system to
perform different types of optimizations, aimed both at performance improvement
and cost containment. For example, optional computations can be skipped entirely,
to avoid exceeding the power budget, or synchronization between threads can be
relaxed to improve performance.

4.5 Algorithmic Noise Tolerance for DSP

Many smart systems applications involve some form of digital signal processing
(DSP). Depending on the complexity of the task, designers can choose different
types of computing devices to implement it. In some cases, a programmable pro-
cessor is mandatory, while in others the entire application can be implemented with
ASIC hardware. Even in the first setting, however, recent trends in industry indicate
that computing platforms are becoming increasingly heterogeneous, combining
general purpose processors with domain-specific hardware accelerators [11]. The
need for accelerators is driven by the double objective of improving performance
while reducing energy consumption; being less flexible, dedicated hardware can be
designed to be faster and more efficient than general purpose processors. Moreover,
for large sells volumes, heterogeneity also reduces costs, as a given performance
level is reached with simpler hardware, thanks to specialization.

In summary, complex smart systems are likely to include some form of spe-
cialized hardware module, which is often in charge of the most computationally
intensive and energy consuming processing tasks. As mentioned in Sect. 4.1,
DSP applications involved in smart systems frequently exhibit error resilience.
Consequently, approximate computing configures as a potential source for further
energy-driven optimization. Smart systems specialized ASICs are often more
complex than a single arithmetic module; examples of frequently found elements
include finite impulse response (FIR) and infinite impulse response (IIR) filters,
FFT or DCT processors, etc. Multiple of such elements are normally integrated in
a single IC. The most suitable approximate computing techniques for this kind of
complexity are those working at the algorithm/architecture level (see Sect. 4.4.2),
because their high-level view allows to optimize the hardware system in its entirety,
rather than each functional unit separately. In particular, ANT for the mitigation
of errors due to VOSis currently the most mature and well-defined approach for
approximating computation in specialized hardware modules of this nature [22].

4.5.1 ANT Overview

The most general scheme of an ANT-based architecture is shown in Fig. 4.7. The
gray box corresponds to the hardware that performs the main functionality (e.g.,
a digital filter) and is referred to as main DSP (MDSP) block. Its primary inputs
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Fig. 4.7 General scheme of
an ANT architecture
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and outputs are labeled X and YM , respectively. The MDSP operates in VOS
conditions (Vdd < Vdd;crit), therefore it consumes significantly less dynamic (Pdyn)
and leakage (Pleak) power than in nominal conditions, according to the well-known
power dependencies for CMOS circuits:

Pdyn � fclkCLV2
dd (4.16)

Pleak � IleakVdd (4.17)

where fclk is the clock frequency, CL is the total load capacitance, and Ileak is the
leakage current. However, the logic in the MDSP is slowed down by the reduced
supply voltage; in fact, the delay of combinational CMOS gates depends on voltage
according to the following equation:

�d D Vdd

ˇ.Vdd � Vth/˛
; ˛ > 1: (4.18)

In ANT, while Vdd is reduced below the critical value, the clock frequency (fclk) used
to drive sequential memory elements such as flip-flops is not modified, in order to
preserve the same performance (latency or throughput) as in nominal conditions.
Consequently, the MDSP is subject to input-dependent timing errors; when a long
combinational path is activated by a certain input combination, the logic can fail
to produce the correct, stable value in time before the following clock edge. To
cope with these errors, the MDSP is coupled with an error control (EC) block,
delimited by the dashed line in Fig. 4.7. The purpose of the EC block is to detect
the occurrence of an error due to a timing violation, and limit its effects providing
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a suitable approximation of the correct result at the global outputs of the ANT
architecture (Y). The combination of MDSP and EC block is sometimes referred
to as soft DSP [22].

Thanks to the fact that the EC block does not need to correct an error, as in a
fault tolerant system, but only to approximate the corresponding correct value, its
hardware complexity is limited. This conveniently reduces the overheads in terms
of additional silicon area and power; clearly, in order to be useful, the complete
ANT system in VOS must consume less than the MDSP in nominal supply voltage
conditions. Moreover, relaxing the objective of complete error correction also allows
to make the EC block timing compliant in VOS. This is a necessary requirement,
because it guarantees that the error mitigation performed in the EC block is not
affected by errors itself.

The EC block is composed of two main elements, an estimator and a decider. The
estimator is the component that produces an approximation of the correct MDSP
output, called Yest. In general, the estimation is obtained using information on MDSP
inputs and outputs, although the most popular ANT implementations only use either
one or the other. The decider, instead, is the module in charge of selecting the output
of the MDSP or that of the estimator, depending on the possible occurrence of a
timing error. Notice that both MDSP and estimator outputs must be latched before
being fed to the decider. Otherwise, the decision logic might end up in the critical
path, becoming prone to delay errors, and rendering the entire ANT architecture
useless. Latching, however, increases of one clock cycle the latency of the system,
with respect to the original MDSP.

4.5.1.1 Decision Scheme

ANT is based on two important assumptions on the nature of timing errors due
to VOS. Firstly, timing violations must be rare in time, so that in most of the
cases the MDSP produces the correct output, and that value can be used as global
output of the system. This allows to maintain an average output quality which is
comparable to that of the MDSP in nominal voltage conditions. The validity of this
assumption depends on the selected VOS voltage, on the input data sequence, and
on the distribution of timing paths in the MDSP. However, techniques such as slack
redistribution can be leveraged to enforce it [26]. Secondly, the errors produced in
correspondence of a timing violation must be large in magnitude, so that they are
easily detectable by the decider. This condition is verified for the large majority
of DSP hardware systems. In fact, these systems are composed of a sequence of
elementary functional units such as adders and multipliers, for which the critical
timing paths are relative to the computation of the MSBs of result. Therefore, when
an error occurs, it most likely affects drastically the output.

The fact that errors are large in magnitude allows to select between MDSP
and estimator outputs using as discriminating factor the absolute value difference
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between the two. The estimator is designed to provide a good approximation of
the correct output. Therefore, if at a given instant its output is significantly different
from that of the MDSP, it is safe to assume that the latter is subject to a VOS-induced
error, and vice versa. In summary, the decision scheme is the following:

yŒn� D
(

yMŒn�; if jyMŒn� � yestŒn�j � Th

yestŒn�; if jyMŒn� � yestŒn�j > Th

(4.19)

where, yŒn�, yMŒn�, and yestŒn� indicate the values of signals Y , YM , and Yest at time
n, respectively.3 It is important to highlight that this decision scheme effectively
mitigates also errors not caused by VOS (e.g., deep sub-micron noise, external
radiation, aging, etc.), whose effects on YM are significant, as long as the EC block
is not affected by the same errors.

4.5.1.2 Quality Metric and Problem Formulation

The main targets of ANT are DSP systems, such as digital filters or FFT acceler-
ators. These systems often process analog data produced by sensors and converted
to the digital domain, or received from a communication channel. Both types of
input are affected by noise. Therefore, in nominal supply voltage conditions (i.e., in
absence of VOS errors) the output of the MDSP can be expressed as:

yM;0Œn� D sŒn� C wŒn� (4.20)

where sŒn� is the signal component, and wŒn� is a generic noise component, that may
be due to different physical sources. A particularly suitable metric for assessing the
processing quality of this type of systems is the SNR, defined in Eq. (4.13). The
ANT strategy saves power accepting to introduce errors due to timing violations,
which are only partially corrected by the EC block. The residual errors on Y can be
modeled as an additional source of noise, as explained in Sect. 4.3. The global output
quality of the ANT system can thus be measured (in decibel) with the following
expression:

SNR D 10 log

�
�2

s

�2
w C �2

err

�
(4.21)

where �2
err (assumed uncorrelated with �2

w) is the power of the additional errors
introduced by ANT:

�2
err D EŒ.yM;0Œn� � yŒn�/2� (4.22)

3In general, we use capital letters to refer to a signal, and lowercase ones to indicate its value at a
given instant in time.
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yŒn� is defined as in Eq. (4.19), so it takes into account the reduction of VOS-induced
errors thanks to the EC block. Clearly, the SNR is not the only possible quality
metric for ANT, but given the nature of the considered MDSPs, it is largely the
most used. A typical goal is to design the EC block so that errors due to VOS timing
violations are negligible with respect to external noise (�2

err << �2
w).

In general, the problem of designing an optimal ANT architecture for a given
MDSP system can be defined as: finding the VOS voltage and feasible EC
block implementation that minimize total power consumption, including EC block
overheads, under a minimum quality constraint, and so that the entire ANT system
consumes less than the single MDSP in nominal conditions. In formal terms:

8
ˆ̂<

ˆ̂:

minŒPant.Vvos; k/�

Q.Vvos; k/ > Qdes

Pant.Vvos; k/ < Pmdsp.Vnom/

(4.23)

In Eq. (4.23), Q represents a generic quality metric (e.g., SNR) and Qdes is
the minimum acceptable quality for the target application. Vvos and Vnom are,
respectively, the VOS and nominal (i.e., error free) supply voltages. Pmdsp is the
power of the MDSP, and only depends on voltage, since the MDSP hardware is
fixed. On the contrary, the power of the entire ANT system (Pant) depends both on
the VOS operating point and on the generic vector of parameters k which determines
the implementation of the EC block:

Pant.Vvos; k/ D Pmdsp.Vvos/ C Pec.Vvos; k/: (4.24)

Depending on how the EC block is designed, k corresponds to a different set of
parameters, as explained in the following.

Two main families of ANT architectures have been proposed in literature:
prediction-based ANT [22, 23] and reduced precision redundancy (RPR) ANT
[45, 46]. Hybrid approaches have also been studied in [46]. In the next sections,
we briefly describe the features of the existing types of ANT, which mainly differ
in the implementation of the estimator. Then, we concentrate on RPR ANT and
provide a complete example of its application.

4.5.2 Prediction-Based ANT

In prediction-based ANT the estimator is a linear forward predictor, that provides an
approximation (Yp) of the correct output based on the recent history of the system.
In particular, the estimate is based on a linear combination of the last Np outputs
produced by the MDSP:

ypŒn� D
NpX

kD1

hpŒk�yŒn � k�: (4.25)
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Fig. 4.8 Prediction-based ANT architecture

The weights hpŒk� are chosen to minimize the MSE of the predictor EŒe2
pŒn�� in

absence of VOS-induced timing violations (i.e., when epŒn� D kyM;0Œn� � ypŒn�k).
The way in which these coefficients are obtained is discussed in detail in [43].

The hardware that implements an estimator with the transfer function of
Eq. (4.25) is shown in Fig. 4.8, where the boxes labeled with a “D” are delay
elements, i.e. flip-flops. The figure also reports one of the possible decision schemes
for this architecture, which follows the same principle of Eq. (4.19). The decider
computes internally the prediction error and compares it to a threshold Th. Given
that prediction coefficients are computed to minimize the approximation error in
absence of VOS, if epŒn� is large it is assumed that a timing violation has occurred.
In that case, the predictor output is used as approximation of the correct value. If
instead the error is less than Th, the MDSP output is selected. Other more complex
decision schemes have been proposed in [23]; they are not reported here for brevity.

The overheads in terms of cost and power of the estimator in prediction-based
ANT depend on the length of the prediction window Np. The simplest version uses
a single past value of the MDSP output; in this case, it is referred to as difference-
based estimator, since the value that is compared with Th is simply the (possibly
weighted) difference between the current and previous values of YM . Clearly, a
longer prediction window allows to obtain a more accurate estimate.

Setting the threshold Th for the decider is one of the main design issues of this
type of architecture. In [23] the authors propose to use a multiple of the standard
deviation of the prediction error (Th D k�ep ). However, notice that this does not
guarantee that the decider always selects the MDSP output when the system is free
of VOS-induced errors. If the MDSP output varies suddenly, causing a large error in
the predictor, the decider may assume a delay error has occurred when in reality it
has not. In general, prediction-based ANT systems have good detection capabilities
when the outputs of the MDSP exhibit a strong temporal correlation, that is when
subsequent values of YM are correlated with each other.
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Another limitation of this scheme is that the predictor output is biased by errors
occurred in the previous Np instants. In this time window, if another error occurs,
detection and output estimation capabilities of the ANT architecture become much
less accurate. In particular, performance degrades significantly when error bursts
happen at the MDSP output.

In summary, despite its simplicity and relatively small overhead, prediction-
based ANT is limited to few MDSP, such as narrowband low-pass filters, that exhibit
strong output correlation. Moreover, it does not allow to aggressively scale the
supply voltage Vvos, since its effectiveness is limited to situations in which delay
errors do not accumulate in the prediction window.

4.5.3 Reduced-Precision Redundancy ANT

RPR ANT uses an alternative scheme for the error control block; the entire
architecture is depicted in Fig. 4.9. In this case, the estimator is a low-complexity
replica of the MDSP, obtained reducing the precision of internal operations. The
replica receives the same inputs as the MDSP at every clock cycle, and produces a
corresponding approximation of the main block results. Thanks to the smaller and
thus faster hardware operands involved, the replica can be designed to be timing
compliant in VOS conditions. Its internal logic is designed so that approximate
results differ from accurate ones in the LSBs; therefore, the approximation error
has a small magnitude. This allows the decider to select between MDSP and
replica outputs based on the absolute value of their difference, as explained for the
prediction-based architecture.

Fig. 4.9 Reduced-precision
redundancy ANT architecture

|-|

X

YM YR

> Th

Y

D
ec

id
er

MDSP Replica



4 Energy-Efficient Digital Processing via Approximate Computing 79

If the entire output images of MDSP and replica, i.e. the sets of output values
produced by any sequence of inputs are known, the decision threshold Th can be
computed as:

Th D max8input
kyM;0Œn� � yRŒn�k (4.26)

where yM;0Œn� and yRŒn� are the error-free MDSP outputs and the replica outputs at
time n, respectively. Equation (4.26) ensures that in absence of VOS-induced errors,
the MDSP output is always selected by the decider. However, the entire images of
YM and YR are easy to compute only for few simple MDSPs. Therefore, statistical
thresholds similar to those proposed for prediction-based ANT might be necessary
also in this case.

In RPR ANT the tradeoff between quality and EC block overheads is explored by
varying the number of bits (Br) used for the internal operands of the replica [which
corresponds to the generic parameter k in Eq. (4.23)]. A larger replica consumes
more power, both switching and leakage, and has a larger silicon cost. However,
it produces a more accurate approximation of the MDSP output, and therefore
it allows to maintain a higher quality at the global output Y . As explained in
Sect. 4.5.1.2, the goal is typically to make errors due to VOS negligible with respect
to external noise.

The advantage of RPR with respect to prediction-based schemes is its higher
flexibility. In fact, since the output estimate is computed based only on the present
value of inputs, this architecture behaves in an equivalent manner regardless of the
correlation between subsequent outputs in the MDSP.4 Also, the error mitigation
capabilities of RPR ANT are not affected by recent errors, except for cases in which
MDSP and replica have internal feedback networks. The drawback of RPR is that,
especially for complex MDSPs, replicas have larger overheads with respect to linear
predictors.

4.5.4 Hybrid ANT

Prediction-based ANT performance degrades when two timing errors occur too
close in time, effectively limiting the minimum Vvos at which the system can be
operated. On the other hand, RPR ANT has a larger power overhead. A hybrid
scheme, proposed in Fig. 4.10 can be used to overcome these limitations, exploiting
the best features of both architectures.

4Different sequences of data may cause a different VOS-error rate, which results in a different
quality, but they have no influence on the error mitigation capabilities of the architecture.
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Fig. 4.10 Hybrid ANT architecture

In hybrid ANT, the EC block is equipped with two different estimators: a linear
predictor and a reduced-precision replica, designed as in Sects. 4.5.2 and 4.5.3,
respectively. An additional finite state machine (FSM) selects between two oper-
ating modes. In normal conditions, the approximation of the correct output is
obtained with the linear predictor (Yest D YP) whereas the replica is turned off via
power/clock gating, eliminating most of its overheads. When an error is sensed by
the decider (kyestŒn� � yMŒn�k > Th) the FSM turns on the replica and switches the
leftmost multiplexer of Fig. 4.10, so that Yest becomes equal to YR. This preserves
the error detection and mitigation capabilities of the EC block, which is not affected
by the accumulation of errors in the predictor. The system remains in “RPR-mode”
until no errors are detected for a given number of clock cycles. Then, it returns to
normal operation. In [46] the authors show that hybrid ANT outperforms both RPR
and prediction-based architectures in terms of output quality, for the particular case
of a digital filter MDSP. The major drawback of this scheme is clearly the larger
silicon area required.

4.6 A Case Study: RPR ANT Applied to a Finite Impulse
Response Filter

To conclude the discussion on approximate computing for digital processing in
smart systems, this section provides a detailed example of application of ANT,
which as explained in Sect. 4.5, is one of the most promising approaches in this
context. With a similar rationale, the hardware architecture that we optimize is a
digital filter, due to its wide range of possible uses in smart systems applications
(e.g., communication, multimedia, control, etc.) [43]. We select a 16th order low-
pass FIR filter, with a cutoff frequency of wc D 0:1� rad/s.

The starting point for our optimization is the Verilog code that models the FIR
filter at the register-transfer level (RTL). The particular implementation considered
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Fig. 4.11 Direct form FIR filter block diagram

in this section uses the so-called direct form architecture, and its input (U) and
output (Y) ports are 12-bit and 24-bit wide, respectively. A simplified block diagram
of the FIR filter is shown in Fig. 4.11. Its transfer function is:

yŒn� D
15X

iD0

uŒn � i� � wŒi�: (4.27)

We adopt reduced-precision redundancy ANT as an optimization technique,
because of its higher flexibility with respect to prediction-based approaches. In
particular, we have anticipated that prediction-based ANT is effective only if the
filter has a narrowband transfer function. RPR, on the contrary, can be exploited
independently from the parameters of the FIR (tap-length and coefficient values),
although the resulting performance may vary.

The objective in RPR ANT is to find the minimum VOS supply voltage and
number of bits in the replica operands that satisfy a given quality constraint
[as in Eq. (4.23)]. Previous approaches [45, 46] have provided a solid theoretical
foundation for this type of optimization. However, their search for the optimal
parameters is based on simplified and often unrealistic assumptions.

The most important limitation is related to the method of evaluation of VOS-
induced errors and of their effects on the output quality. Specifically, the variance
of errors introduced by ANT, expressed by Eq. (4.22), is a fundamental element
for the computation of the SNR and many other quality metrics (e.g., MSE). This
quantity depends both on the accuracy of approximations provided by the EC block,
and on the rate at which the replica output is selected, over the entire time window
considered.

In [45] the rate of VOS-induced errors is evaluated as the percentage of static
timing paths in the MDSP that have a negative slack at a given Vvos. Since path
activation depends on the sequence of input vectors, this method implicitly assumes
that all pairs of inputs are equally probable. However, in most applications, the
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probability of occurrence of input vectors is not uniformly distributed (e.g., in
arithmetic cores often the operands have a Gaussian distribution with zero mean)
let alone that of input pairs. The assumption of uniformly probable path activation
biases also the estimation of error significance, since every possible VOS-induced
error is considered equally likely. This, in turn, affects the evaluation of which errors
are detected and mitigated by the EC block, and of the corresponding approximation
accuracy. All these aspects influence significantly Eq. (4.22), and might produce
misleading results (both overly optimistic or pessimistic) on the number of replica
operand bits required to ensure a minimum quality at a given Vvos.

Another important aspect that is partially neglected by literature is the effect of
voltage scaling on the replica. We have mentioned that the replica must be timing
compliant in VOS, in order to let the ANT system function correctly. However, this
is not trivially achieved, and depends strongly on the topology of the circuit. It does
not suffice to assume that the reduction in critical delay of the replica is proportional
to the number of removed bits in its operands. Timing compliance must be checked
accurately, and can also be enforced, for instance, with gate re-sizing. The latter
technique, however, may increase the power overhead and reduce the total savings
of the ANT system. All these details cannot be taken into account by optimization
methods such as the one proposed in [45], which uses abstract high-level models of
MDSP and replica.

To cope with these issues, we have developed a tool for the automatic generation
of RPR ANT architectures on top of existing MDSPs. Our tool is based on timing
simulations with input stimuli taken from the real application domain of the MDSP,
which are used to evaluate the rate and impact of VOS-induced errors accurately.
These simulations leverage a set of standard cell library characterizations, that
model the target technology (usually CMOS) at different voltage points. This
approach allows to consider non-uniform input/input-pairs distributions as well as
secondary technological effects that have an impact on timing violations.

Moreover, the replica implementation is obtained automatically from the MDSP
netlist, removing some inputs and propagating the simplifications in the internal
logic. To make it timing compliant, the replica is then re-synthesized with state of
the art commercial tools, changing gate sizing if needed. After synthesis, the power
overheads are checked, and if they produce a negative power saving for the entire
ANT system, the configuration is discarded. This procedure is repeated in a clever
way, minimizing the number of synthesis and simulations required, until the optimal
configuration in terms of VOS supply voltage and replica bits is found.

Using this tool, we have studied the application of RPR ANT to the FIR filter
from an engineering perspective, gathering detailed results that were not obtainable
with the methods originally proposed by literature. In the following sections, we
first describe the experimental conditions, then we present some results that confirm
the improvements achieved by our tool in terms of accuracy. In particular, we focus
on the effects of input distributions and timing correlation on VOS-induced errors.
To conclude, we show how the tool can be used to explore the power versus quality
tradeoff.
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4.6.1 Experimental Conditions

We performed experiments on the FIR filter targeting a 45 nm CMOS standard cell
technology. The tool has been instructed to find the optimal VOS voltage in the
range between 1.1 and 0.55 V, with a step of 0.05 V. The clock frequency was set to
250 MHz. This value allows to meet timing constraints exactly (with positive slack
�100 ps) for the single MDSP at Vdd D 1:1 V, which we considered as the nominal
voltage condition. For the synthesis of MDSP and EC block we used Synopsys
Design Compiler F-2011.09, while for timing and power analysis we used Synopsys
PrimeTime Suite F-2011.12, and for behavioral and timing simulations Mentor
Modelsim SE 6.4a. As quality metric, we used the SNR, defined as in Eq. (4.21)
for all experiments. We measured the total power savings and area overheads of the
RPR ANT architecture with the following equations:

Psav D
�

1 � Prpr.Vvos; Br/

Pmdsp.Vnom/

�
� 100 % (4.28)

Aovr D
�

Arpr.Vvos; Br/

Amdsp
� 1

�
� 100 % (4.29)

where Vnom, Vvos, Pmdsp, and Prpr are defined as in Sect. 4.5, Amdsp and Arpr represent
the silicon area of the MDSP and replica, respectively, and Br is the number of bits
in the replica inputs, which in turn determines the widths of internal operands.

4.6.2 Impact of Input Distribution and Correlation

The first set of experiments aims at highlighting the strong dependence of the
distribution and temporal sequence of inputs on the rate of VOS-induced errors,
and consequently on the performance of RPR ANT. For this purpose, we ran our
optimization tool on the FIR filter four times, with identical settings, but using
four different sets of input vectors (S1–S4) in timing simulations. The first two sets
contain uniformly distributed vectors. In S1, vectors are in a random sequence, while
in S2 they are sorted numerically, in order to enforce a strong temporal correlation
in the MSBs (with a large probability, only the LSBs vary between two consecutive
vectors). S3 and S4 instead represent more realistic inputs for a digital filter. They
contain two full swing sinusoids, respectively, at ws3 D 0:01� rad/s, that is one
tenth of the cutoff frequency, and ws4 D wc D 0:1� rad/s. In all cases, we suppose
that input data is noiseless; we measure quality in terms of SNR, but considering
only VOS-induced errors, and we arbitrarily set the minimum quality requirement
to 25 dB. Moreover, we limit our analysis to those VOS voltages that produce an
error rate in the MDSP (computed as number of timing violations over total number
of vectors) greater than 0 % and smaller than 20 %.



84 D. Jahier Pagliari et al.

5

15

25

35

45

55

65

75

0.550.60.650.70.750.80.850.9

]
%[

gnivaSre
woP

VOS-Voltage [V]

S1 S2

S3 S4

Fig. 4.12 RPR ANT power saving vs. Vvos for different input sets

Figure 4.12 reports the maximum power savings obtained at each Vvos point
with the mentioned constraints. The graph clearly shows the impact of different
input vectors on the effectiveness of RPR ANT. Two phenomena are particularly
important. First of all, at a given Vvos the error rates are significantly different
depending on the input set. As a numerical example, at Vvos D 0:7 V, the error
rates in S2 and S4 are 0.05 % and 12 %, respectively. Consequently, depending on
the input set, the replica output is selected more or less frequently, and hence a
different value of Br is required to achieve the desired quality. At Vvos D 0:7 V, the
errors for S2 are so rare that a replica that only considers the 2 MSBs of the filter
input for its computations is sufficient; in the case of S4, instead, 6 bits are required
to achieve 25 dB of SNR. At the end, the noticeable product of these phenomena is
that the power savings in the two cases differ by almost 40 %. Obviously, the input
sets used in this section constitute an extreme example. However, they serve as a
mean to demonstrate that simplified assumptions on VOS-induced errors as those in
[46] may lead to unrealistic results.

Notice that Fig. 4.12 also indirectly shows one of the features that make ANT
effective. We mentioned that the positive slack of the MDSP in nominal conditions
is only 100 ps, meaning that the clock frequency is appropriate (not too small),
according to a classic worst-case design paradigm. However, we discovered that for
voltages between 1.05 and 0.9 V, none of the input sets produces a timing violation
in the MDSP, i.e. the error rate remains 0 %. This means that the critical timing
path of the FIR, which corresponds to the cascade of carry chains in all adders
and multipliers (see Fig. 4.11), is never excited by the provided stimuli. This is an
evident reason why relaxing the 100 % accuracy constraint, working in VOS, and
limiting the impact of the rare errors with ANT is a very effective way to reduce
power.
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4.6.3 Power Versus Quality Tradeoff

In this section, we demonstrate a more realistic use of our tool for the optimization of
the FIR filter, showing how it can be leveraged to explore the quality versus power
tradeoff. To do so, we select a popular application of hardware FIRs, which has
been also considered in [46], that is the low-pass filtering at the receiver of a QPSK
communication system. In particular, we instruct our optimization tool to perform
simulations with a set of inputs generated from a MATLAB model of the IEEE
802.11g WiFi standard, which includes QPSK among the possible modulations. We
assume that the inputs to the FIR are affected by additive white Gaussian noise
(AWGN) due to channel interferences. As explained in [46], a minimum SNR at
the filter output of 21.5 dB ensures a bit error rate of 10�7. Therefore, we add
AWGN to the input set, so that the output SNR of the filter is approximately at such
value. Then, we let the tool generate all feasible replica configurations at each Vvos,
without imposing a quality constraint.5 In this context, feasible means that the ANT
architecture has positive power savings, and that the replica is timing compliant.
The results on a power saving versus quality plane are reported in Fig. 4.13, in
which each curve corresponds to a value of the VOS supply voltage, and points
on it correspond to different replica input widths (Br).

Two trends can be identified in the graph. On the left side, quality is determined
by the channel AWGN noise, and saturates to a horizontal line. Therefore, all
versions of the ANT architecture have the same final quality, independently from Br.
On the right side of the graph, instead, the errors due to VOS become dominant
with respect to channel noise, and the curves assume a typical Pareto shape:
implementations with a smaller Br have smaller overheads, and hence higher total
power savings, but also a worse quality. A quality threshold can be visualized as a
horizontal line on the graph. The optimal RPR architecture for that quality is found
as the rightmost point among all those above the line.

If a designer wants to maintain a quality of 21.5 dB at the output of the FIR filter,
in order to respect the constraints imposed by the 802.11g standard, RPR allows
to save up to 44.96 % of total power. This is achieved by setting the voltage to
Vvos D 0:60 V, and inserting in the EC block a replica that considers the 6 MSBs
of the 12-bit input for its internal computations. The total area overhead of the
EC block, including replica and decider is 88.39 %. Notice that this significant
power saving is obtained without any effective impact on quality. In fact, quality
was already bounded by the noise on the channel.

Interestingly, Fig. 4.13 shows that a lower Vvos does not always correspond to
a larger power saving, for a given quality constraint. This happens because of the
gate re-sizing performed by our tool in order to make the replica timing compliant.
In fact, at lower Vvos, faster gates, which are also larger and more consuming, are
needed to meet timing, and the resulting design often consumes more despite the

5In its normal operating mode, the tool only synthesizes the replica configuration with minimum
Br to satisfy a quality constraint at each Vvos.
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Fig. 4.13 RPR ANT quality vs. power saving tradeoff for a 16th order FIR filter

reduced supply voltage. This trend shows that accurate timing and power evaluations
for the replica, which were not performed in [46], are mandatory to correctly
estimate the effectiveness of RPR. Notice that the same phenomenon is visible also
in Fig. 4.12, since power saving does not increase monotonically with the reduction
of Vvos for some input sets.

4.7 Conclusions

In this chapter, we have surveyed the most popular design solutions based on the
approximate computing paradigm. We have shown how, despite its relatively recent
formalization, AC has stimulated interesting research at all abstraction levels, from
single transistors to complete systems and to software. The growing interest on this
subject is demonstrated by the fact that most cited works have been published in the
last 2 or 3 years. Therefore, it is easy to foresee that in the near future, even more
effort from will be devoted to the progress of this field of research by academia and
industry.

We envision approximate computing as an effective way to reduce power
and energy consumption in smart systems, providing as motivation the fact that
applications performed by these devices are often error resilient. As an example, we
have applied a popular AC technique to the optimization of a digital filter, which is
one of the most commonly found hardware modules in digital signal processing
applications. We have considered the situation in which the filter is part of the
receiver of a digital communication system, affected by noise on the channel, and
we have shown how, in this setting, almost 50 % power saving can be achieved
without an effective impact on output quality. Moreover, higher power savings can
be obtained if a partial quality reduction is accepted.



4 Energy-Efficient Digital Processing via Approximate Computing 87

References

1. R. Abdallah, N. Shanbhag, Minimum-energy operation via error resiliency. IEEE Embed. Syst.
Lett. 2(4), 115–118 (2010)

2. A. Alaghi, J.P. Hayes, Survey of stochastic computing. ACM Trans. Embed. Comput. Syst.
12(2s), 92:1–92:19 (2013)

3. N. Banerjee, G. Karakonstantis, K. Roy, Process variation tolerant low power DCT architec-
ture, in Design, Automation Test in Europe Conference Exhibition, DATE ‘07 (2007), pp. 1–6

4. N. Bombieri, D. Drogoudis, G. Gangemi, R. Gillon, E. Macii, M. Poncino, S. Rinaudo, F.
Stefanni, D. Trachanis, M. van Helvoort, SMAC: smart systems co-design, in Euromicro
Conference on Digital System Design (DSD) (2013), pp. 253–259

5. S. Chakradhar, A. Raghunathan, Best-effort computing: re-thinking parallel software and
hardware, in 47th ACM/IEEE Design Automation Conference (DAC) (2010), pp. 865–870

6. L.N.B. Chakrapani, K.V. Palem, A probabilistic boolean logic for energy efficient circuit
and system design, in Proceedings of the 2010 Asia and South Pacific Design Automation
Conference, ASPDAC ‘10 (IEEE Press, Piscataway, NJ, 2010), pp. 628–635

7. J. Chen, J. Hu, Energy-efficient digital signal processing via voltage-overscaling-based residue
number system. IEEE Trans. Very Large Scale Integr. Syst. 21(7), 1322–1332 (2013)

8. V. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, S. Chakradhar, Scalable effort hardware
design: exploiting algorithmic resilience for energy efficiency, in 47th ACM/IEEE Design
Automation Conference (DAC) (2010), pp. 555–560

9. V. Chippa, A. Raghunathan, K. Roy, S. Chakradhar, Dynamic effort scaling: managing the
quality-efficiency tradeoff, in 48th ACM/EDAC/IEEE Design Automation Conference (DAC)
(2011), pp. 603–608

10. V. Chippa, S. Chakradhar, K. Roy, A. Raghunathan, Analysis and characterization of inherent
application resilience for approximate computing, in 50th ACM/EDAC/IEEE Design Automa-
tion Conference (DAC) (2013), pp. 1–9

11. J. Cong, V. Sarkar, G. Reinman, A. Bui, Customizable domain-specific computing. IEEE Trans.
Des. Test Comput. 28(2), 6–15 (2011)

12. M. Crepaldi, M. Grosso, A. Sassone, S. Gallinaro, S. Rinaudo, M. Poncino, E. Macii, D.
Demarchi, A top-down constraint-driven methodology for smart system design. IEEE Circuits
Syst. Mag. 14(1), 37–57 (2014)

13. S. Das, C. Tokunaga, S. Pant, W.H. Ma, S. Kalaiselvan, K. Lai, D. Bull, D. Blaauw, Razorii:
in situ error detection and correction for PVT and SER tolerance. IEEE J. Solid State Circuits
44(1), 32–48 (2009)

14. 2014 MultiAnnual Strategic Research and Innovation Agenda (MASRIA) for the ECSEL Joint
Undertaking (2014)

15. D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N.S. Kim, K. Flautner, Razor: circuit-
level correction of timing errors for low-power operation. IEEE Micro 24(6), 10–20 (2004)

16. B.R. Gaines, Stochastic computing, in Proceedings of the Spring Joint Computer Conference,
AFIPS ‘67 (1967), pp. 149–156

17. S. Ghosh, S. Bhunia, K. Roy, Crista: a new paradigm for low-power, variation-tolerant, and
adaptive circuit synthesis using critical path isolation. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 26(11), 1947–1956 (2007)

18. W. Gross, V. Gaudet, A. Milner, Stochastic implementation of LDPC decoders, in Conference
Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers (2005),
pp. 713–717

19. V. Gupta, D. Mohapatra, A. Raghunathan, K. Roy, Low-power digital signal processing using
approximate adders. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(1), 124–137
(2013)

20. J. Han, M. Orshansky, Approximate computing: an emerging paradigm for energy-efficient
design, in 18th IEEE European Test Symposium (ETS) (2013), pp. 1–6



88 D. Jahier Pagliari et al.

21. K. He, A. Gerstlauer, M. Orshansky, Controlled timing-error acceptance for low energy idct
design, in Design, Automation Test in Europe Conference Exhibition (DATE) (2011), pp. 1–6

22. R. Hegde, N. Shanbhag, Energy-efficient signal processing via algorithmic noise-tolerance, in
International Symposium on Low Power Electronics and Design (ISLPED) (1999), pp. 30–35

23. R. Hegde, N. Shanbhag, Soft digital signal processing. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 9(6), 813–823 (2001)

24. J. Huang, J. Lach, G. Robins, A methodology for energy-quality tradeoff using impre-
cise hardware, in 49th ACM/EDAC/IEEE Design Automation Conference (DAC) (2012),
pp. 504–509

25. A. Kahng, S. Kang, Accuracy-configurable adder for approximate arithmetic designs, in 49th
ACM/EDAC/IEEE Design Automation Conference (DAC) (2012), pp. 820–825

26. A. Kahng, S. Kang, R. Kumar, J. Sartori, Slack redistribution for graceful degradation under
voltage overscaling, in 15th Asia and South Pacific Design Automation Conference (ASP-DAC)
(2010), pp. 825–831

27. G. Karakonstantis, K. Roy, Voltage over-scaling: a cross-layer design perspective for energy
efficient systems, in 20th European Conference on Circuit Theory and Design (ECCTD)
(2011), pp. 548–551

28. G. Karakonstantis, D. Mohapatra, K. Roy, System level DSP synthesis using voltage over-
scaling, unequal error protection and adaptive quality tuning, in IEEE Workshop on Signal
Processing Systems (SiPS) (2009), pp. 133–138

29. P. Kulkarni, P. Gupta, M. Ercegovac, Trading accuracy for power with an underdesigned
multiplier architecture, in 24th International Conference on VLSI Design (VLSI Design)
(2011), pp. 346–351

30. K.Y. Kyaw, W.L. Goh, K.S. Yeo, Low-power high-speed multiplier for error-tolerant applica-
tion, in IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC)
(2010), pp. 1–4

31. L. Leem, H. Cho, J. Bau, Q. Jacobson, S. Mitra, ERSA: error resilient system architecture for
probabilistic applications, in Design, Automation Test in Europe Conference Exhibition (DATE)
(2010), pp. 1560–1565

32. J. Liang, J. Han, F. Lombardi, New metrics for the reliability of approximate and probabilistic
adders. IEEE Trans. Comput. 62(9), 1760–1771 (2013)

33. C. Liu, J. Han, F. Lombardi, A low-power, high-performance approximate multiplier with
configurable partial error recovery, in Proceedings of the Conference on Design, Automation
& Test in Europe (DATE) (2014), pp. 95:1–95:4

34. S.L. Lu, Speeding up processing with approximation circuits. Computer 37(3), 67–73 (2004)
35. E. Macii, Ultra Low-Power Electronics and Design (Springer US, New Mexico, NM, 2004)
36. H. Mahdiani, A. Ahmadi, S. Fakhraie, C. Lucas, Bio-inspired imprecise computational blocks

for efficient VLSI implementation of soft-computing applications. IEEE Trans. Circuits Syst.
Regul. Pap. 57(4), 850–862 (2010)

37. J. Meng, S. Chakradhar, A. Raghunathan, Best-effort parallel execution framework for
recognition and mining applications, in IEEE International Symposium on Parallel Distributed
Processing (2009), pp. 1–12

38. D. Mohapatra, G. Karakonstantis, K. Roy, Significance driven computation: a voltage-
scalable, variation-aware, quality-tuning motion estimator, in Proceedings of the ACM/IEEE
International Symposium on Low Power Electronics and Design (ISLPED) (2009),
pp. 195–200

39. D. Mohapatra, V. Chippa, A. Raghunathan, K. Roy, Design of voltage-scalable meta-functions
for approximate computing, in Design, Automation Test in Europe Conference Exhibition
(DATE) (2011), pp. 1–6

40. K. Nepal, Y. Li, R.I. Bahar, S. Reda, Abacus: a technique for automated behavioral synthesis
of approximate computing circuits, in Proceedings of the Conference on Design, Automation
& Test in Europe (DATE) (2014), pp. 361:1–361:6

41. K. Palem, A. Lingamneni, What to do about the end of Moore’s law probably, in Proceedings
of the 49th Design Automation Conference (DAC) (2012), pp. 924–929



4 Energy-Efficient Digital Processing via Approximate Computing 89

42. W.J. Poppelbaum, C. Afuso, J.W. Esch, Stochastic computing elements and systems, in
Proceedings of the Joint Computer Conference (AFIPS) (1967), pp. 635–644

43. J.G. Proakis, D.G. Manolakis, Digital Signal Processing. Principles, Algorithms, and Applica-
tions, 3rd edn. (Prentice-Hall, Princeton, NJ, 1996)

44. A. Ranjan, A. Raha, S. Venkataramani, K. Roy, A. Raghunathan, ASLAN: synthesis of
approximate sequential circuits, in Design, Automation and Test in Europe Conference and
Exhibition (DATE) (2014), pp. 1–6

45. B. Shim, N. Shanbhag, Performance analysis of algorithmic noise-tolerance techniques, in
Proceedings of the 2003 International Symposium on Circuits and Systems (ISCAS), vol. 4
(2003), pp. IV-113–IV-116

46. B. Shim, S. Sridhara, N. Shanbhag, Reliable low-power digital signal processing via reduced
precision redundancy. IEEE Trans. Very Large Scale Integr. Syst. 12(5), 497–510 (2004)

47. D. Shin, S. Gupta, Approximate logic synthesis for error tolerant applications, in Design,
Automation Test in Europe Conference Exhibition (DATE) (2010), pp. 957–960

48. D. Shin, S. Gupta, A new circuit simplification method for error tolerant applications, in
Design, Automation Test in Europe Conference Exhibition (DATE) (2011), pp. 1–6

49. A. Tanenbaum, Computer Networks, 4th edn. Prentice Hall Professional Technical Reference
(Prentice Hall, Princeton, NJ, 2002)

50. S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, A. Raghunathan, Salsa: systematic logic
synthesis of approximate circuits, in 49th ACM/EDAC/IEEE Design Automation Conference
(DAC) (2012), pp. 796–801

51. S. Venkataramani, V.K. Chippa, S.T. Chakradhar, K. Roy, A. Raghunathan, Quality pro-
grammable vector processors for approximate computing, in Proceedings of the 46th
IEEE/ACM International Symposium on Microarchitecture (MICRO-46) (2013), pp. 1–12

52. S. Venkataramani, S. Chakradhar, K. Roy, A. Raghunathan, Approximate computing for
efficient information processing, in 12th IEEE Symposium on Embedded Systems for Real-time
Multimedia (ESTIMedia) (2014), pp. 9–10

53. A. Verma, P. Brisk, P. Ienne, Variable latency speculative addition: a new paradigm for arith-
metic circuit design, in Design, Automation and Test in Europe (DATE) (2008), pp. 1250–1255

54. Z. Yang, A. Jain, J. Liang, J. Han, F. Lombardi, Approximate XOR/XNOR-based adders
for inexact computing, in 13th IEEE Conference on Nanotechnology (IEEE-NANO) (2013),
pp. 690–693

55. Y. Yetim, M. Martonosi, S. Malik, Extracting useful computation from error-prone processors
for streaming applications, in Proceedings of the Conference on Design, Automation and Test
in Europe (DATE) (2013), pp. 202–207

56. N. Zhu, W.L. Goh, K.S. Yeo, An enhanced low-power high-speed adder for error-tolerant
application, in Proceedings of the 12th International Symposium on Integrated Circuits (ISIC)
(2009), pp. 69–72

57. N. Zhu, W.L. Goh, W. Zhang, K.S. Yeo, Z.H. Kong, Design of low-power high-speed
truncation-error-tolerant adder and its application in digital signal processing. IEEE Trans.
Very Large Scale Integr. Syst. 18(8), 1225–1229 (2010).

58. N. Zhu, W.L. Goh, G. Wang, K.S. Yeo, Enhanced low-power high-speed adder for error-
tolerant application, in International SoC Design Conference (ISOCC) (2010), pp. 323–327

59. N. Zhu, W.L. Goh, K.S. Yeo, Ultra low-power high-speed flexible probabilistic adder for error-
tolerant applications, in International SoC Design Conference (ISOCC) (2011), pp. 393–396



Chapter 5
Discrete Power Devices and Power Modules

Aleš Chvála, Davide Cristaldi, Daniel Donoval, Giuseppe Greco, Juraj Marek,
Marián Molnár, Patrik Príbytný, Angelo Raciti, and Giovanni Vinci

5.1 Introduction

The purpose of this chapter is to provide to the designers a first-level entry to a
flexible software ambient for some tasks related to the design, integration, and
co-simulation of smart subsystems/components. In particular, the objective is to
create and build models that will make the design and optimization of smart
systems more efficient by enabling multi-domain simulations at various design
levels for the variety of devices found in this kind of systems. The models are built
according to the specific requirements defined in a few of application fields. The aim
is to simplify the modeling-related obstacles affecting multi-domain system-level
simulations. Within each case-study, a model is developed according to the type of
components and subsystems. In particular, the activities are related to the modeling
of discrete power devices and power modules and to the interactions between
multiple physical domains, like electrical and thermal ones, which are key issues
looking to obtain more and more efficient and reliable devices.

In the first part is developed an innovative methodology having as a main
objective the implementation of an integrated power electronics module (IPEM)
physics-based macro-model. The main aim is the co-simulation of the thermal and
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electrical phenomena. In the second part, the analysis of both a low-voltage vertical-
power MOSFET failure during UIS and a DC–DC converter is performed in order
to better predict the physical parameters of the power MOSFET model and the
converter.

5.2 Power Modules Analysis, Modeling, and Simulation

Unlike past decades, when severe criteria on reliability of power electronics were
mainly prerogative of industrial and military context, nowadays, several more
common fields of applications require power electronics equipment able to manage
significant amount of power with low failure rates. The growth of sectors like hybrid
automotive traction or domestic renewable energy plants, pushed electronics players
to develop solutions able to satisfy all requirements requested by system hosts.
More and more integrated electronics systems push the hosted modules to have
high-power density, reduced volume, endurance to mechanical stress, and suitable
management of the generated heat. IPEMs well represent a good example among
all the mentioned requirements, and their production nowadays are moving huge
amount of investments for equipment among the manufacturing companies.

As these IPEMs are confined into small volumes in relation to the power that
they have to handle, it is necessary to address temperature management issues.
Furthermore, as the integrated power modules have to operate in environments
characterized by temperatures that can exceed 100 ıC, the managing of heat flow
becomes a crucial aspect that has to be evaluated already at the design level.
The availability of accurate electrothermal simulation models, able to predict the
evolutions of dynamics in real operating conditions, provides the advantage to
correctly face electrical, thermal, and mechanical aspects at the design phase [1–3].
This aspect leads to a reduced number of prototypes necessary for managing the
characterization experimental tests. The top view of an IPEM is shown in Fig. 5.1.

Fig. 5.1 Top view of an
IPEM
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A few of activities related to IPEMs electrothermal modeling focus on steady-
state and transient thermal analyses of multi-chip power devices, either adopting
finite element approaches (FEAs) [4, 5] or boundary element based methods
(BEMs) [6–8]. In recent years, research activities were mainly addressed to
assemblies of packaged discrete power devices since IPEMs were not yet well-
recognized as stand-alone modules. Novel modeling approaches, having the specific
purpose to obtain an electrothermal model of IPEM are now appearing. In such cases
some techniques try to analyze the IPEM physics with the purpose to model each
domain in a separate way [9].

The understanding of the thermal behavior of the device is essential and
the extraction of the thermal impedance matrix is a quite common strategy
that is extracted either from experimental measurements [10, 11] or by refined
three-dimensional thermal simulations. Among the latter type of simulations, the
numerical computation approach through finite element methods (FEMs) is the most
diffused [12]. More discussion on the state-of-the-art may be found by interested
readers in [13], where the advantages and drawbacks of the available software
packages and methodologies are recalled.

In the case of IPEMs the problem is the modeling of electrical and thermal
systems featuring large different times to reach the steady-state behaviors. The
methodology described in the present chapter allows overcoming many limitations
encountered by using the state-of-the-art techniques. It is an alternative strategy
leading to an electrothermal circuit model that may be directly used in a standard
PSpice-like platform. Moreover, the part of the IPEM model, which is related to the
thermal modeling, is generated through a customized EDA flow able to derive an
equivalent PSpice-like netlist [14]. Finally, effects on the power losses due to non-
ideal interconnections (parasitic phenomena) are taken into account by including in
the implementation of the electric circuit the specific lumped parameters. Finally,
the accuracy and effectiveness of the generated model have been verified by using,
as a benchmark, accurate simulation results obtained by FEM packages.

5.2.1 Physical Domains Involved

During the working operations, electrical, thermal, and mechanical aspects have
to be accounted in order to ensure high reliability and to avoid the breakdown
failure. In fact, the power losses generated into the devices are responsible for
temperature swings, which produce mechanical stress, especially in soldering, due
to the mismatch between the different coefficients of the thermal expansion of the
materials in the IPEM. In order to investigate the issues related to the various
domains, different software packages are necessary, with the resulting need of
exchange of data, which often occurs manually, between them.

In order to overcome these limitations, a new strategy based on a standard
PSpice-like electrothermal model specifically thought for IPEMs has been devel-
oped. The main advantage of the proposed approach relies on the possibility of
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Fig. 5.2 Layered approach scheme adopted for the IPEM electrothermal modeling

reducing a multi-domain electrothermal model to a pure single-domain electrical
one. This result was achieved by adopting a mapping where the thermal quantities
are treated as equivalent electrical ones. The generated model is conceived as a stack
of two layers, respectively, representing the thermal and the electrical contributes
(Fig. 5.2). The thermal layer represents the most complex part to be generated, and
its implementation passes from the processing of a series of simulations results
produced by FEM analyses. In fact, in order to properly evaluate the temperature
rise due to the power losses, the knowledge of the self-heating and cross-heating
effects is necessary.

Electrical and thermal layers are linked together by self-heating active layer,
capable of accepting the junction temperatures as inputs in order to take into account
the dependence on the temperature of some basic parameters of the devices like
VGE(th), VCE(sat), or BVCES.

5.2.2 Links with the Software Platform and Abstraction
Domain Matrix

The design flow of the IPEM starts in an FEM environment (COMSOL Mul-
tiphysics). Once all aspects of the FEM analysis have been defined (geometry,
thermal load, boundary conditions), the post-processing thermal impedance curves
are exported. With the aid of a fitting tool software (curve fitting tool of MATLAB
in this case), the curves are processed and the values of resistance and capacitance
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are estimated in order to build the electrical equivalent circuit topology of the IPEM
thermal model [15, 16]. Hence, the thermal model is in the form of electrical circuit
and it is simulated together with the electrical layer (active and parasitic layers) in
a pure PSpice-like environment. The whole methodology proposed is described in
following sections.

With the use of abstraction tools, like WiCkeD or TRAPPIST, starting from low-
level models (PSpice), the corresponding Verilog-A model can be created in order
to be used into the Keysight’s advanced design system (ADS). The final simulation
may be carried out in SystemVue. The part of the software platform covered by this
chapter is shown in Fig. 5.3.

5.2.3 Model Discrepancies from the Compliance with Specific
User Requirements

The requirements (a–d) for discrete power devices and power modules, and the
features of the IPEM macro-model (•) that are here presented, are discussed below.

(a) At system level there should be a mechanism to distribute the ambient temper-
ature to all subparts of the design. To study the influence of the temperature
on the system’s performance it should be easy to set up multiple simulations at
different temperature.

• The ambient temperature is not distributed to all the subparts of the system
but it is used as reference value in order to calculate the junction temperature.
Parametric studies can be easily performed by setting different values of the
ambient temperature.

(b) The platform should be able to simulate behavioral models written in Verilog-A.
If such a model defines the working temperature of other subparts of the system,
the simulation platform should support the propagation of the temperature value
to the other subparts.

• Not implemented. The model doesn’t define the working temperatures of
other subparts of the system beyond the ambient temperature one.

(c) Temperature variations typically occur at a much lower rate than electrical
signals. Therefore, it should be possible to co-simulate the thermal model at
a different time scale as the other parts of the system.

• By converting the instantaneous power losses in average power losses and by
applying this latter to the thermal layer represented by a PSpice-like circuit,
it is possible to have comparable simulation times for both the electrical
and thermal layers simulations. However, it is required an iterative method
that implies a segregation of the electrical and thermal simulations and
exchange of data between the two layers. In more detail, the two analyses are
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SystemVue

MATLAB/
Simulink

(CT Simulator)
Simulink Models

ADS

M-FileComsol
(FEA Simulator)
Thermal Models

Micro-Fluidic
Models

Power Sources

(DF Simulator)

(DF Simulator)
(EM Simulator)

(Thermal Simulator)

(Circuit simulator)

Circuit Models
DF Models
EM Models

Data-Flow Models
RF Models

VerilogA

TRAPPIST WiCkeD

netlist

Database
Open Access

(Circuit simulator)
Cadence

•Light blue boxes indicate Simulation Tools 

•Light red cylinders indicate Database or external Libraries 

•Bidirectional red lines indicate access to a Database or external Libraries 

•Light green boxes indicate Model Generation Tools 

•Bidirectional green lines indicate Co-simulation Links 
•Unidirectional blue lines indicate Input / Output Models in specific format 
•Dotted unidirectional blue lines indicate Output Modeling Fucntions (extending models by
parameterization) 

•Light orange boxes indicate Modeling Formats 

Fig. 5.3 Design flow in the software platform
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performed in separate ways and, iteratively, power losses and temperatures
values are exchanged between the layers until the error on the temperature
variations is below a prefixed threshold (convergence condition).

(d) Through the platform it should be possible to implement a full electrical–
thermal model of a power system module by providing a final spice-like
macro-model. This model will be logically composed by three main parts:
an electrical spice-like layer containing the passive parasitic components,
a thermal–electrical spice-like equivalent layer that will take into account
the temperature propagation inside the system, and a third “linking” layer
composed by self-heating active power device models that will connect the two
previous layers through a power/temperature feedback.

• The electrothermal model is a full PSpice-like model composed by three
layers: the parasitic layer and the thermal layer that are connected by the
self-heating active layer. Through the platform it is possible to implement the
whole system as a full electrical–thermal model, that in turns it is a macro-
model represented by lumped-parameter circuits.

5.2.4 IPEM Electrothermal Analysis

Smart systems are present in several fields of application and the IPEM represents
a typical element that often is a key part of novel smart systems built in the
field of power electronics applications. Typically, power management modules are
controlled by sensors that provide, through feedback loops, controlling data to
analog or digital drivers with the objective of optimizing the power flow to critical
load by guarantying stability in terms of electrical and thermal response of the
IPEM. Three different application domains may be identified for representing IPEM
modules: discrete and power devices, analog and RF, MEMS sensors and actuators.
Also other domains could be taken into account, but this section will focus only on
the above mentioned domains, being both the most suitable and common ones. In
the described approach, the model abstraction level will be maintained to a physics
domain. However, in some cases, a behavioral approach could be justified by the
need of simulating in a fast and less accurate way the IPEM in a system context
where other complex parts must be considered and, therefore, simulated.

As already introduced, IPEM macro-models belong to discrete & power device
domain. At the physical abstraction level they could interact with the following
domains:

• Analog: the interaction with this domain is necessary because the IPEM must
be controlled and analog drivers often represent the common choice. Transistor
level description is a quite standard approach.
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• Digital: the interaction with this domain is necessary because the IPEM is
also supplied by digital drivers. This block will often be modeled by using a
behavioral approach.

• Sensors: the interaction with this last domain is necessary because the IPEM
should be controlled through feedback signals coming from some sensors that
provide inputs and command for the driving parts.

5.2.4.1 Analysis

The simulation level analyzed for the model development is mainly physical. An
industrial prototype of IPEM device (courtesy of STMicroelectronics) has been used
as workbench (Fig. 5.4). This module has been designed for both hybrid electrical
vehicles (HEVs) and industrial applications up to 100 kW power rating. The module
accommodates six power MOSFETs rated at 600 V/200 A in a three-phase bridge
topology.

The objective is to generate a full coupled electrothermal model of the IPEM.
The starting point is based on the elementary self-heating macro-model of the used
devices. The use of macro-model suffices when the power MOSFET is in stand-
alone behavior condition and it does not receive the thermal effects of other devices.
In the case of a multi-chip power module, as the IPEM, the elementary self-heating
macro-model becomes the first building block of a more general model that will be
composed by three parts:

• Active device macro-model;
• RLC lumped network (electrical layer);
• Thermal impedance network (thermal layer).

Fig. 5.4 Schematic top view
of an IPEM module with a
three-phase DC–AC converter
having six power MOSFETs
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Fig. 5.5 Schematic vertical stack of the IPEM

The IPEM has a common direct bonded copper (DBC) substrate and, generally
speaking, it has a vertical stack as that shown, in principle, in Fig. 5.5.

If a certain power P is the dissipated power within a chip, the other chips
of the IPEM will undergo a junction temperature (Tj) elevation. In order to
evaluate this rise, it is useful to know the thermal impedance curves both for
the self-heating and the cross-heating behaviors. In the steady-state case, the
thermal resistance Rth is taken into account to determine the final temperature
value. However, in the transient case, the thermal impedance Zth is the param-
eter that can provide information on the temperature variations. In general,
a multi-die module, containing n chips, is totally represented by its thermal matrix
impedance shown in the following equation:
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Since the IPEM under investigation in our case-study contains six chips, n will be
equal to 6. In the thermal impedance matrix the diagonal elements Zthii represent the
self-impedances at junction i and so describe the self-heating, whereas the others
elements, Zthij represent the mutual impedances between junctions i and j, hence
represent the cross-heating of the devices. The matrix elements can be identified by
exciting the i-th die by applying to it a power step and measuring the temperature
response on each of the other dies. Such a procedure can be performed by using
numerical simulations or experimental measurements. Once obtained the thermal
impedance curves, it is possible to produce the RC networks by means of a curve
fitting procedure. Our model refers to a power module with six dies and it is
composed by an RC network for each die, and by the networks that connect them.
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Fig. 5.6 Block schematic of the thermal model of the device #1 (self-heating and cross-heating)

The circuital configuration of the models will be Foster-type and will have a number
of RC pairs that are related to the required accuracy.

Part of the thermal model (belonging to the chip number 1) is shown in Fig. 5.6
in a block schematic. This figure shows how device 1 is affected by self-heating,
by means of Zth11, and also by cross-heating due to power dissipated into the others
devices.

In Fig. 5.7 it is shown the block diagram of the electrothermal model containing
all the six chips.

The final objective of this modeling activities is to produce a PSpice-like macro-
model to be used for simulation purposes of an inverter application where analog
driving commands and the actual load conditions are taken into account.

5.2.4.2 General Data-Flow and Interfaces

The interactions of the thermal and electrical layers are depicted in Fig. 5.8, while
a flow diagram related to the modeling activity under investigation is shown in
Fig. 5.9. It can observed that both parts are complementary and have converged in
the generation of the final macro-model of the IPEM (full thermal coupled IPEM
macro-model). Co-simulation interactions have been indicated by white blocks,
where several levels of interaction among simulation domains have been taken into
account.

The implementation of the described flow, in general terms, may be split in the
following four main phases:
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Fig. 5.7 Block diagram of the electrothermal model of a power module

1. CAD IPEM representation—In this phase, the physical structure of the module
has been translated in a CAD format through a 3D modeler. This action
represents a key step because the produced results have been provided as input
to the next phases where physical modeling issues will be analyzed.

2. RLC lumped-parameter parasitic-network implementation—This phase
consists in implementing the RLC parasitic lumped-parameter network
(electrical layer) by using the Ansys Q3D extractor software. Accurate evaluation
of all relevant physical contributions is necessary in order to simplify the whole
complex CAD structure and thus allowing an effective valuable simulation
process.

3. RC thermal network synthesis—In this section of the flow diagram, starting
from a series of thermal simulations performed by the thermal module of the
COMSOL software package, a thermal impedance matrix has been extracted and
then used for synthesizing, through a fitting methodology, the RC mutual thermal
network (thermal layer) that models the thermal behavior of the module.

4. Macro-model assembling—In this last phase, all the relevant data retrieved in
the previous phases have been merged and assembled to obtain the final macro-
model. Hence, the self-heating power MOSFET macro-model has been coupled
together with the thermal and the electrical layers in a feedback configuration
where temperature and electrical quantities have been linked to enable a global
simulation in the frame of the known constraints of different time constants.
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Fig. 5.8 Thermal and electrical layer interaction on IPEM

5.2.4.3 Self-Heating Macro-Model of the Devices

According to the considered power module, the macro-model of each device is
represented by a sub-circuit consisting of MOSFET level 3 SPICE model that is
combined with controlled current and voltage sources and some passive elements,
as depicted in Fig. 5.10 [17].

In the described macro-model, component G4 performs a multiplication of
VDS (detected by (IN1C)–(IN1�) by Id) that is supplied by component H1 that
transduces the current into a voltage. G4 then transduces the power into a current
that is supplied to the thermal network. This macro-model represents an innovative
modeling approach aimed at managing the thermal dependencies between electrical
parameters and temperature, whose components derive from the device physics but
that, taken individually, are modeled in a behavioral way. This model has been
adopted as a base active element for the IPEM electrical and thermal modeling
technique for the envisaged case-study.
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Fig. 5.9 Thermal and electrical layer co-simulation data-flow for IPEM models

5.2.4.4 Parasitic Electrical Layer Extraction

To model the physical structure of the IPEM and to perform the electromagnetic
analysis aimed at extracting parasitic contributions, we take advantage of the
Ansys Q3D Extractor suite. The integrated power module, designed for HEV,
accommodates six power MOSFETs with an embedded current-sensing minor-
MOSFET in a mirror configuration. As known, the power MOSFET features an
embedded body diode. The module is enclosed in a plastic case that with its
five embedded terminals provides 19 I/O pins to the module (Fig. 5.11). We are
interested in extracting the parasitic inductances, resistances, and capacitances of
the whole module by considering the passive contributions of the six dies.

The first step consists in drawing the IPEM geometric model; to do this action
it is necessary to have a detailed geometric description of all components of the
module such as package, PCB, traces, dies, ribbons, bonding wires, etc. The next
step consists in assigning the material properties to the objects of the module and to
the background environment. The main objects to be drawn, the related materials,
and their electrical properties are described in Table 5.1.

A material is defined by its electrical properties such as the relative permittivity,
relative permeability, bulk conductivity, and dielectric loss angle. The electrical
properties of the materials could be retrieved either by the providers of the
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Fig. 5.11 Internal structure of the case-study IPEM: 3_D_S, 2_D_S, and 1_D_S are the AC
terminals, while S and D are the DC terminals, also represented are the control and sensing pins

Table 5.1 Sub-component of the IPEM, materials, and their electrical
properties

Sub-component Material Electrical properties

Ribbon, Bondwire Aluminum Relative permittivity D 1
Relative permeability D 1.000021
Bulk conductivity D 38,000,000 S/m
Dielectric loss tangent D 0

Pin, Trace Copper Relative permittivity D 1
Relative permeability D 0.999991
Bulk conductivity D 58,000,000 S/m
Dielectric loss tangent D 0

Die Silicon Relative permittivity D 11.9
Relative permeability D 1
Bulk conductivity D 0 S/m
Dielectric loss tangent D 0

DBC Alumina Relative permittivity D 9.2
Relative permeability D 1
Bulk conductivity D 0 S/m
Dielectric loss tangent D 0.008

components, or by the literature, or by a library of materials inside the reference
manual of the package Ansys Q3D Extractor.

Once completed the drawing of all featured components and assigned the
pertinent materials, it is possible to define reference simulation ports identified by
the tool as “source” and “sink” terminals. By definition, the sink terminal collects
all the currents while the source terminals act as current injector, once assuming
that the currents enter from the die ports and leave at the end of the pins. Usually
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we need to put a source at the end of the die port, and a sink at the end of the pin. At
this stage, the model is almost ready for the final field solution. The final step is to
define the distinct nets describing the problem. A net is a collection of touching
conductor objects separated by non-conducting materials or by the background
material. Nets can be assigned only to conductive materials. Starting from the pins
a net is composed by all touching conductor objects linking those containing the
sink port with the ones containing the source ports [18]. Finally, as for the solution
setup, according to problem characteristics, we specify a working frequency at
50 kHz for AC resistance/inductance and capacitance/conductance. Once completed
the FEM analysis we have retrieved a numerical matrix of resistance/inductance
or capacitance/conductance that may then be exported into a PSpice-like lumped-
model easy to be integrated in the final IPEM macro-model [5.1]. As a result of the
previous analysis, the complete scheme of the IPEM with the active and parasitic
lumped parameters is shown in Fig. 5.12.

5.2.4.5 Thermal-Layer Implementation

In the case of a multi-chip power module, it is important to take into account the
cross-heating effect among the dies and how it elevates the junction temperature
compared with the self-heating case. In the developed approach, the final objective

Fig. 5.12 Equivalent circuit including part of the Q3D extractor tool output of an IPEM (only
parasitic inductances) and the active part of the DC–AC three-phase power converter (inverter)
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for the implementation of the thermal layer is the synthesis of an electrothermal
impedance network that has been accomplished by the following four main steps:

1. FEM thermal simulations of the IPEM;
2. Thermal impedance matrix extraction;
3. Electrothermal network topology synthesis;
4. Curve fitting for parameters extraction.

While the first step basically depends on the geometries and materials of the
IPEM, the remaining steps are technologically independent since they only depend
on the number of featured dies and on the number of poles used for synthetizing the
Foster-type RC network. This last aspect is strictly related to the expected accuracy
of the curve fitting. In order to generate the thermal impedance matrix we have
performed a number of simulations consisting in applying a power step on a single
die and calculating the thermal responses on all the IPEM dies.

Thermal Simulation by a FEM Package of IPEM

The simulations have been performed by using the FEM simulator COMSOL
Multiphysics [19]. In Fig. 5.13 it is depicted an outcome example of the simulation.
The module has been foreseen to be mounted on a heatsink.

As it turns out, in a FEM simulation, the correctness of the boundary conditions
is fundamental and in the case under investigation a convective type boundary
condition has been applied to a heatsink with a heat transfer coefficient of

Fig. 5.13 3D view of a physical model of the IPEM within COMSOL after power excitation on
die 1
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GND

Fig. 5.14 Example of a Foster-type network configuration with four poles

1000 W/(m2K) by supposing a forced air-convection cooling mechanism. The top
and lateral surfaces of the IPEM have been considered as adiabatic.

Synthesis of the Thermal Model by a Lumped-Parameter Network

The goal is to automate the generation of the thermal-layer model by producing a
spice-like Foster-type RC sub-circuit (Fig. 5.14) that has been used to merge the
thermal and electrical layers together.

The curve fitting is implemented in Matlab language taking advantage of the
curve fitting tool TLSynth (Thermal-Layer Synthesizer) developed for this purpose.
The Matlab code is directly integrated into the tool. The requirements to use
TLSynth are the installation of Matlab with the feature curve fitting tool and the
Perl interpreter with Perl/TK module. The engine of TLSynth is mainly composed
of two steps:

Thermal Impedance Curve Fitting

In order to model the thermal-layer circuit it is necessary to fit all thermal impedance
curves Zth retrieved by several FEM simulations of the physical model performed by
the commercial software. The large amount of work required by the fitting procedure
is automatized by TLSynth that takes as input the curves retrieved by COMSOL
and interfaces itself with the MATLAB framework that using the Foster-type circuit
equation:

Zth.t/ D AMP
nX

iD1

Ri
�
1 � e�t=RiCi

�
(5.2)
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where AMP is an amplification factor and n is the number of Foster poles used
for synthesizing the Foster-type RC network that consists of RC parallels pairs
connected in series as shown in Fig. 5.14.

The fitting is done for each Zij where i � j and the outputs will be the result of the
coefficients Ck, Rk with k D 1 : : : n and the RSQUARE value that is used to measure
the accuracy of the fitting.

Circuit Model Synthesis

The circuit model synthesis is a procedure written in Perl that, using the RC data
retrieved by the fitting, generates the circuit model in Spice-like format. An outline
of the whole EDA modeling flow is shown in Fig. 5.15.

A user interface (Fig. 5.16) allows the user to setup and start the synthesis.
It is divided in four sections: Preferences and Activity logs, Settings data for the
simulation, START button, and status bar.

In detail, the Preferences button (Fig. 5.17) opens the window that shows the
general settings of the program, such as Amplification Factor, Max Step, and
RSQUARE Threshold. The Amplification Factor is used to help the fitting process,
the default value is 100, but it is possible to update the value in the range 1–100.

IPEM 3D Model

COMSOL
Thermal Simulation

Z Data

Matlab TLSynth

Thermal Model

Fig. 5.15 TLSynth flowchart
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Fig. 5.16 TLSynth graphical
user interface

Fig. 5.17 TLSynth
preferences

The Max Step defines the maximum number of attempts of fitting to reach the
RSQUARE Threshold, the default value is set to 3, but it is possible to update
the value in the range 1–4. At last, the RSQUARE Threshold defines the accuracy
threshold of the fitting, the default value is set to 0.97 but it is possible to update the
value in the range 0–1.00 with steps of 0.01.

The Activity Log button opens a window (Fig. 5.18) that allows the user to view
in detail the progress results of the synthesis and the goodness of each fitting.

In the next section follow all the fields required for the synthesis, such as the
number of devices of the module, the number of Foster poles for the fitting, the
path where to keep the source thermal data to fit, and the destination file where
to save the synthesized circuit model in spice-like format. A default value is set
to 6 for the number of devices and to 4 for the number of Foster poles. The user
must compile all data to be able to start the synthesis. Once the setup is completed,
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Fig. 5.18 TLSynth activity log

the following section shows a big button in green to START the synthesis process.
On the bottom of the main window a status bar is present that quickly shows the
progress of the synthesis. If one of the fitting processes doesn’t reach the RQUARE
threshold within the maximum number of iterations set in the preferences, a warning
message is shown.

Thermal Model of the IPEM

Finally, in Fig. 5.19 the thermal model of a power module containing six dies is
represented. According to the above analysis the PSpice network of the thermal
layer has been generated by assuming that the junction temperature of a generic die
may be calculated as the sum of contributions due to the self-heating temperature,
the ambient one (Ta), and the coupling effects due to the heat generation in other
dies. The contribution due to a different die, e.g., die 2 on 1, is evaluated by the flow
of the current Id2, that in the thermal equivalence is the power Pd2, through a current-
controlled current-source (cccs). The Id2 effect on the die 1, T12, is accounted for by
the specific 4-th order Foster-type network Zth,12(t) that is supplied by the current-
controlled current-source.

5.2.4.6 Model Validation

In order to verify the accuracy and validity of the process that has been presented
to obtain a simplified thermal model, a test case has been setup as a workbench on
a PSpice simulation environment. First of all a circuit schematic has been created
by importing the set of generated thermal-layer netlist. Comparisons between the
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Fig. 5.19 Block schematic of the thermal model of an IPEM

FEM data deriving from COMSOL simulations and PSpice simulated results have
been done for a generic power step combination input. As a result of the comparison
a good matching between the FEM and the TLSynth model waveforms was found.
Figures 5.20 and 5.21 show the fine agreement between the junction temperatures on
dies 1 and 4 being the simulations performed by COMSOL and by the synthesized
electrothermal model. The assumption is that the dies 1-3-5 are simultaneously
powered while the dies 2-4-6 are not working.

5.2.4.7 Summary of Features and Limitations

The proposed thermal model is suitable for both steady-state and transient analysis
if the input quantities (instantaneous power losses) are time independent. In case
of time dependent inputs and very small time constants of the electrical system
with respect to the ones of the thermal system, average values of power losses
should be used to get junction temperatures. With this assumption, we got only
spot temperatures in assigned locations of the module and, in some instances, we
lost detailed information in other locations. This happens because the model is not
able to predict true instantaneous variations of the temperature in all the region.
Moreover, in case of very fast electrical transients which have the nature of a
single pulse with high specific energy production, e.g., for short-circuit conditions
analysis, a more accurate thermal model at the transient level should be used to take
into account the specific nature of such a phenomenon (adiabatic process).

Taking into account the limitations mentioned above, once all aspects of the FEM
analysis have been defined, the PSpice-like network allows achieving the accuracy
of the FEM simulation with the lower computational demand of a lumped-parameter
circuit simulation.
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Fig. 5.20 Surface temperatures after a time interval of 80 s that dies 1-3-5 are simultaneously
powered

Fig. 5.21 Comparison between the junction temperatures on dies 1 and 4 obtained by simulation
runs with COMSOL and the ones retrieved by the synthetized electrothermal model by assuming
die 1-3-5 simultaneously powered
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Even if the physical approach is partially used, however the proposed model
largely remains related to the device physics. Therefore high accuracy and validity
could be guaranteed in a wide range of operations. As for the validity of the electrical
characterization, it is important to point out that the tool that has been used for the
parasitic extraction is a quasi-static EM field solver that poses some limitations on
the range of frequency where the model could be considered valid. Usually, this
model is considered applicable if we take into account the electrical length below
�/10 of the operating frequencies.

Two different approaches have to be considered in order to connect the thermal
layer of the model with the active device macro-model, depending on the time
constants of these layers, and specifically if they are or are not with similar order of
magnitude. As a first approach we have linked the two layers by a direct connection.
In this case, which is more appropriate for devices that will feature time constants
of the thermal and electrical layers that are located in near orders of magnitude, or
in case of transient phenomena without exchange of heat, the power losses in the
devices have been evaluated in real-time during the electrical simulation and they
have been directly applied to the thermal layer during a unique simulation run.

In other cases, besides the first ones already considered, the approach consists
instead in the separation of the electrical and thermal simulation runs. In these
cases (systems with larger time constants of the thermal layer in comparison to the
electrical ones) starting from the availability of the device data sheet or the known
device characteristics, and also knowing the driving algorithm of the devices and
the operating conditions (current, voltage, duty cycle, switching frequency, etc.),
estimations of the average power losses may be performed off line [20, 21] and such
values then applied to the thermal layer. Such an approach may be also implemented
by, e.g., look-up tables containing the power losses values as function of different
load conditions, operating parameters, etc. The advantage of this method consists
in the separation of the simulation runs having large difference of the time constant
magnitudes, thus allowing short computation times and lowering the burden of data
for both the systems (electrical and thermal layers) (Fig. 5.22).

5.2.5 Ancillary Considerations on and Applications
of the Electrothermal Model

5.2.5.1 Thermal Impedance Matrix and Symmetry Issues

In general, a multi-die module containing p dies is totally represented by its
equations and the thermal impedance matrix (5.1), here recalled:
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Fig. 5.22 Layer-based electrothermal simulation approach for integrated power electronic
modules

To obtain the thermal impedance matrix, a power step has to be applied to a single
die and the corresponding temperature rise of all the dies have to be evaluated.
Hence in the first step, die 1 is to be powered while all the dies are observed, so to
retrieve the first column of the matrix of (5.3). In order to get all the elements of the
matrix, this process has to be repeated for each die in the module. Thus in the worst
case, the number of simulations required, or experimental measurements, is equal
to that of the active dies on the module.

In the thermal impedance matrix, the diagonal elements, Zth,ii, represent the self-
impedances of the junction i and describe so the self-heating, whereas the others
elements, Zth,ij, represent the mutual impedances between junctions i and j, hence
describing the cross-heating of the dies. In general the matrix may have a symmetric
structure reflecting the physical symmetries into the module. In this case, a reduced
number of different elements allow to write the whole matrix, given by the following
relation:

k D
pX

iD0

.p � i/ (5.4)

Furthermore, if there are identical dies on the module, the number of different
elements of the matrix can be further reduced as well as that of the simulation runs
or the required laboratory measurements. For the module shown in Fig. 5.23 [22],
composed by two IGBTs and two diodes in half bridge configuration, the thermal
impedance matrix has rank four, thus having k D 4 � 4 D 16 elements, but it contains
only six distinct parameters.

k D .4 � 1/ C .4 � 2/ C .4 � 3/ C .4 � 4/ D 6 (5.5)
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Fig. 5.23 Power module in
half bridge configuration with
two IGBTs and two diodes

In fact, besides the two self-heating elements, ZQ1Q1 and ZD1D1, there are the cross-
heating ones between the two IGBTs and between the two diodes, ZQ1Q2 and ZD1D2;
the last two elements are due to the cross-heating in x and y directions, as ZQ1D1

and ZQ1D2. Although the distance between Q1 and D1 could be the same with
respect to that between Q1 and D2, because Q1 and D1 are placed on the same
layer whereas Q1 and D2 on different layers, it occurs that the cross-heating effects
will be different. The only six different elements contained in the thermal impedance
matrix are underlined in (5.6).
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5.2.5.2 Boundary Conditions and Cross-Heating

In a power module, the cross-heating effects depend on the cooling mechanism.
For a simple structure constituted by two identical dies placed on a copper case, as
shown in Fig. 5.24, and having size of 80 mm � 50 mm � 3 mm for the case and
10 mm � 10 mm � 0.28 mm for the dies, two different kinds of boundary conditions
have been taken into account. If the module is cooled by using an ideal heatsink,
that is implemented by means of a boundary condition with a constant temperature
(e.g., Tc D 25 ıC) applied to the bottom of the case, the rise of the temperature of
the die 2, due to a power dissipation within the die 1, is negligible because the
heat flux is mainly directed in the z direction, as shown in Fig. 5.24. In this case
there is no lateral heat spreading in the case and the dies can be considered as in
stand-alone working conditions. The hypothesis of applying a constant temperature
is equivalent to using an infinite heat transfer coefficient and less than one second
of simulation is required to achieve the steady-state temperature of the module. The
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Fig. 5.24 Heat spreading with ideal h for the heatsink (Tc D 25 ıC)

thermal resistance matrix is represented by (5.7). Due to the symmetry, only one
simulation is required to have the matrix elements.

ŒRth� D
�

0:074 0

0 0:074

	
(5.7)

As a different boundary condition is created, when the module is cooled by means of
a realistic heatsink, by applying a heat transfer coefficient (e.g., h D 1000 W/(m2K)),
a heat spreading occurs toward the case also into the x direction, as shown in
Fig. 5.25. In this case, a significant rise of temperature affects the not-powered die
and the junction temperature evaluation has to take into account for the cross-heating
effect. The thermal resistance matrix, related to this latter case, is represented by
(5.8).

ŒRth� D
�

0:516 0:192

0:192 0:516

	
(5.8)

5.2.5.3 Dies Layout and Cross-Heating

In case of power module containing several dies, it is necessary to optimize some
parameter like the thickness of the copper base plate, the distance between the dies,
the cooling mechanism besides to consider other aspects. The right choice of the
base plate thickness is very important because it works as a spreader for a power
module, reducing the thermal resistance. Because this property is proportional to
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Fig. 5.25 Heat spreading with a more common value of h for the heatsink (h D 1000 W/(m2K))

the thickness of the layer, and in particular is Rth D d=�A (where d is the thickness,
� the thermal conductivity, and A the surface crossed by the whole power), a thinner
copper layer would lead to a lower thermal resistance but only in case of one-
dimensional model; conversely, in three-dimensional space, Rth would increase due
to the reduced heat spreading.

An analysis of the junction temperature variation has been performed by using
the distances between the dies placed on different DBC as parameter, in order to
provide some guidelines for design engineer. Simulations have been performed
in order to highlight how both junction temperatures and cross-heating effects
change with the distance between the dies, by keeping constant the thickness of
the copper base plate, d D 3 mm, and by applying a heat transfer coefficient of
h D 1000 W/(m2K) as for forced air-convection cooling mechanism that exchanges
with the ambient having a temperature of 25 ıC.

The longer side of the dies has a length of a D 16.4 mm whereas the sizes of the
copper base plate are 400 mm � 160 mm, large enough in order to have no impact
with the dies position (Fig. 5.26).

The first FEM analysis has been performed by keeping the dies centers at a
distance of 2a and by applying a power step of P D 100 W at the die 1. Other
simulations have been performed by maintaining fixed the dies 2 and 5, and by
moving the other dies at a distance of 3a, 4a, 5a, and 6a. The steady-state junction
temperatures of die 2 (Tj2), subsequently to the simulation runs, have been written
in Table 5.2 when Tj1 reached 73.25 ıC at 50 s. The surface temperature, for a center
die distance of 4a, is shown in Fig. 5.27.
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Fig. 5.26 Geometry and dies numeration of a schematic IPEM

Table 5.2 Junction temperatures and their variations at different distances from the heat source of
device 2

Distance among the six dies along the x direction

n 1 2 3 4 5
2a 3a 4a 5a 6a

Tj2 (ıC) 31.44 28.32 26.79 25.99 25.56
�Tj2,n according to (5.9) 3.12 1.53 0.80 0.43

�Tj2,1 �Tj2,2 �Tj2,3 �Tj2,4

By applying the definition of the following Eq. (5.9), the variations of the
junction temperature �Tj2 has been evaluated and written in Table 5.2, where n
refers to the five hypotheses of distance among the dies.

�Tj2;n D Tj2;.nC1/a � Tj2;.nC2/a (5.9)

Analysis of the simulation results shows that the difference of temperature is halved
for each increase of the distance among the dies at step equal to the parameter a. It
is easy to express such a variation by the following relation (5.10) that may be used
as a rough guideline. Clearly, the above statement is tied both to the heat spreader
and to the cooling mechanism.

�Tn D �T1

2n�1
(5.10)

The variation of Tj2 versus the distance between the dies is shown in Fig. 5.28.
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Fig. 5.27 Surface temperature for center dies distance of 4a

Fig. 5.28 Junction temperature of die 2 versus the distance between the dies

When the distance reaches or overcomes 6a, the variation �Tj2 becomes lower
than 2 % if compared to the previous case obtained for 5a. Thus, it is not suitable
to increase the distance. From another point of view, it is not suitable to place the
dies at large distance due to the parasitic inductances, resistances, and capacitances
that are associated to the module interconnections (metal path, ribbons, bond-wires).
Furthermore, an increase of the distance between the dies goes against the expected
size reduction of the modules too.
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5.3 Electrothermal Simulation of Power Devices

Today’s device and circuit simulators are standard tools in the development,
characterization, and optimization of electronic systems and devices. However,
device FEM electrothermal simulations are very time consuming and require
powerful hardware equipment, particularly for complicated 3-D structures. Circuit
simulations have been limited to electronic functions at a preselected temperature
because the temperature dependences of the parameters of simulation models
available today are taken into account at the best by changing the static global
temperature.

In power electronic systems, in particular, temperature is one of the critical
parameters due to the unneglectable self-heating effects and the fact that many
properties of power semiconductor devices are strongly temperature dependent
[23]. Power devices with high current/voltage capability and large dimension are
required for high-power operation. However, self-heating induced thermal crosstalk
between individual parts and components becomes serious, which degrades device
performance or results in irreversible damage. Therefore, thermal management is
crucially important for the viability of power devises.

Most simulators (such as ADS and Spectre) include recent advanced electrother-
mal models designed for devices in which the electrothermal feedback can be
accounted for by a simple single-pole equivalent network [24]. However, only the
self-heating effect is included and thermal coupling between devices is not taken
into account. This might lead to markedly inaccurate results, particularly when the
temperature of a transistor is affected by other close enough devices. Moreover, the
single-pole thermal circuits have insufficient accuracy when describing the transient
evolution [25].

To be able to simulate the inherent heating dynamically, introduction of an
external equivalent thermal circuit, e.g., RC network and its interactive coupling
with the electrical model, has to be implemented [26, 27]. However, this direct
method usually takes into account 1-D heat flow. Assumption of a 1-D heat flow may
be insufficient for power devices and large power loads in which an inhomogeneous
temperature distribution caused by the 3-D heat flow from the semiconductor chip
to the package and cooling assemblies can cause an inhomogeneous distribution
of the electric properties of the power device along the whole chip. Building up a
3-D equivalent thermal mesh is difficult and requires structure simplification [28].
Moreover, in the case of the thermal linear network, the nonlinear behavior of
semiconductor materials is not taken into account. Neglecting the nonlinear thermal
properties of silicon leads to a significant error in the estimation of the transistor
temperature [29].

One suitable solution is based on a relaxation method for electrothermal simu-
lation [30, 31]. The relaxation method is based on coupling the separately solved
thermal and electrical equations. The FEM is used for thermal simulation and a
SPICE-like program is used for electrical simulation. The complex solution requires
proper synchronization and data transfer. This modeling methodology is applied
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in power systems and integrated circuits to study electrothermal problems using
a wide spectrum of electrical and thermal software tools (such as VHDL-AMS,
FLOTHERM [32], Spectre, CircuitFire [33], HeatWave [34], GRADIENT [35],
ANSYS [36], Sentaurus Device, and HSPICE [37]). The electrothermal simulation
based on the relaxation method is generally used for comprehensive analysis,
development, and optimization of various complex semiconductors devices. The
advantages of the method are in the high speed of simulation and relative simplicity
of implementation for full structure analysis.

This chapter presents electrothermal simulations of the power devices by several
simulation methods: device FEM simulation, direct method with equivalent thermal
3-D RC network, relaxation method, and mixed-mode setup. Their features and
limitations are analyzed. Due to highly time-consuming device FEM simulation,
only the 2-D model has been used for the analysis. However, the neglected third
dimension can cause incorrect results. The direct method with a designed equivalent
thermal 3-D RC network provides very fast results. Nevertheless, to simplify the
creation of the thermal mesh, not all parts of the package are taken into account. For
fast 3-D electrothermal simulation based on the relaxation method, automated inter-
action is designed of Sentaurus Device and HSPICE. The complex system of the
device consisting of a silicon chip, lead frame, bonding wires, package, and external
cooling assemblies is used for the 3-D thermal simulation in Synopsys TCAD
Sentaurus Device tool [38] using only thermal equations. The electrical properties
are simulated at the circuit level in HSPICE. The automated interaction is provided
by a designed Linux shell script directly supported in Synopsys TCAD Sentaurus.
Another proposed electrothermal simulation is based on direct coupling between
FEM thermal and circuit electrical simulation using mixed-mode setup [39–41]
supported in TCAD Sentaurus environment [42]. The mixed-mode setup allows
direct interconnection of FEM thermal model and electrical temperature-dependent
circuit model. No synchronization and data transfers between two different tools
are required as it is in relaxation method. The whole electrothermal simulation runs
simultaneously. The advantages of the proposed methods are in the high speed of
simulation and simplicity of implementation for complete high complexity structure
analysis.

Power superjunction MOSFET under robust multipulse unclamped inductive
switching (UIS) test [43] is used for verification of the used models and electrother-
mal simulation methods. The proposed methodology for fast 3-D electrothermal
simulation is also applied to simulate a DC–DC converter under various operating
conditions. Analysis of the temperature distribution of all components and their
electrical properties at different operating conditions and PCB layer topology can
improve the design and optimization of the device in a relative short time.
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5.3.1 Electrothermal Simulation of Power MOSFET

5.3.1.1 Superjunction MOSFET Structure Description

The structure under investigation is the power superjunction vertical MOSFET
[44, 45] in DPAK2 package. The 2-D cross section of the structure is shown in
Fig. 5.29a. The trench gate MOSFET is created on top of an nCC-type-doped
substrate and n-type-doped epitaxial layer. The superjunction trench, created by p-
type and n-layers around an air gap, provides charge balance and a high breakdown
voltage for low ON-resistance. The models for different methods of electrothermal
simulation are designed and described in the following sections.

5.3.1.2 2-D FEM Electrothermal Device Simulation

A thermodynamic physical model in Sentaurus Device tool is used for transient
electrothermal simulations of the MOSFET. The standard Poisson equation, conti-
nuity equations for electrons and holes, and thermoelectric power are solved in FEM
model. The 2-D FEM structure is created in Sentaurus device editor (SDE) [38].
The whole silicon chip consists of several hundred equal pillar cells. Simulation of
such a large number of elements would be very time consuming. Therefore, only
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Fig. 5.29 (a) 2-D cross section of the superjunction MOSFET. (b) DPAK2 package
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Fig. 5.30 (a) Total heat, (b) electric field, and (c) current density distribution inside the structure
during UIS breakdown condition

one pillar is used for 2-D device simulation. These simulation results are used for
extraction of the electrical properties for the electrical analytical model and analysis
of the internal behavior of the device.

Localization of the spot where heat generation occurs is important for determin-
ing the placement of the heat sources in the thermal models. Heat generated during
the UIS breakdown conditions is located at the bottom of the airgap epitaxial layer,
where the maximum intensity of the electric field and current density distribution
are present (Fig. 5.30).

5.3.1.3 Direct Method for Electrothermal Simulation

The direct method approach uses only one simulator, e.g., HSPICE as an electrical
simulator. During a search for an electrical analog model for heat conduction
inside structure we assume that a thermal system can be in general modeled by
a discrete element electrical circuit composed of resistances and capacitances,
where the temperatures and thermal powers are considered as voltages and currents,
respectively (Fig. 5.31b) [26, 27]. Power dissipation of the electrical circuit is
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determined at all times and a current proportional to the dissipated power I(t) is fed
into the thermal equivalent network. The VTj node voltage represents the junction
temperature inside the structure. All nonlinear electrical temperature-dependent
parameters of the power structure are driven by the actual temperature distribution
inside the structure [46]. Due to a close relationship with physical reality of the
1-D heat flow, the parameters for the RC equivalent circuit diagram can be derived
directly from Eqs. (5.11) and (5.12) [47]. The physical variables are specified in their
thermal equivalents by using the geometries, thermal conductivities, and thermal
capacities of materials, where A is the surface, di is the thickness, k and c are the
thermal conductivity and heat capacity of the elements. Then we can define:

Ri � Rthi D di

	 � A
(5.11)

Ci � Cthi D c � di � A (5.12)

The modification of 1-D Cauer-type equivalent thermal network to 3-D network is
shown in Fig. 5.31c [48].

The 3-D thermal equivalent model of the MOSFET package is created by the
RC network allowing 3-D heat flow. The 3-D mesh is generated automatically
by Verilog-A program cycle. The thermal material properties, geometry, and
dimensions are used as the input parameters for mesh creation. Only the lead frame,
substrate, epitaxial layer, and package are taken into account for the simplicity of
the model. Due to a strong temperature dependence of the thermal conductivity
of the used materials, the thermal equivalent networks with constant elements can
provide unreliable results [49, 50]. Therefore, the designed thermal network consists
of temperature-dependent resistors. The resistors are driven by temperatures at
relevant nodes according to a function characterizing the temperature-dependent
thermal conductivity of the selected material. The schematic view of the electrical

Fig. 5.31 (a) Thermal structure, (b) Cauer electrical equivalent of the thermal system, (c)
equivalent thermal network for 3-D heat flow
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circuit diagram of 3-D equivalent thermal mesh is shown in Fig. 5.32. Referring
to [51] and device simulation (Fig. 5.30), most of the heat generated during the
avalanche operation of the UIS conditions is located at the bottom of the air gap
epitaxial layer. Therefore, the current sources, which represent thermal heating, are
placed between the epitaxial layer and the substrate.

The power MOSFET is electrically modeled with a SPICE Level 3 built
in Verilog-A [52]. The electrical model is defined considering the temperature
dependences of the most relevant parameters extracted from 2-D FEM device
simulations of the structure at different operating temperatures. The temperature
dependence of the threshold voltage VT0, drain resistance RD, body diode DB,
leakage current through leakage resistance RL, avalanche breakdown voltage VBR,
and over current/temperature destruction SBURN are implemented in the model
(Fig. 5.32) [53]. The 9 � 9 MOSFET segments are electrically connected taking
into account parasitic resistances of the polysilicon gate electrode and metal source
electrode. Figure 5.33 shows 2-D FEM simulations compared with analytical
circuit simulation results of the transfer characteristics, breakdown characteristics
at different temperatures, and C–V characteristics of the analyzed MOSFET.

5.3.1.4 Relaxation Method for Electrothermal Simulation

The relaxation method for electrothermal simulation is based on the interaction
of Sentaurus Device, FEM thermal engine, and HSPICE as the electrical circuit
simulation program [37]. Simulation uses the relaxation method with separate but
synchronized thermal and electrical simulations. Synchronization and data transfer
between Sentaurus Device and HSPICE are provided by a Linux shell script.
A great advantage is that the script is directly supported in Synopsys TCAD
Sentaurus environment and the simulation can be easily parameterized in Sentaurus
Workbench. The flowchart of the method for electrothermal simulation is shown
in Fig. 5.34. After setting the initial conditions, HSPICE calculates the structure
power dissipation during the first time step from the current and voltage distribution

Fig. 5.32 The electrical circuit diagram of one transistor cell (left) and view of the three-
dimensional equivalent thermal mesh (right)
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Fig. 5.33 2-D FEM and analytical circuit model simulation of (a) transfer characteristics and
(b) breakdown characteristics at different temperatures. (c) C–V characteristics of the analyzed
MOSFET

Fig. 5.34 Flowchart of the
electrothermal simulation.
Linux shell script
interconnects the Sentaurus
Device, the thermal simulator
of the structure, and HSPICE
as the electrical simulation
program
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Fig. 5.35 Thermal model of
the MOSFET in DPAK 2
package with 9 � 9 thermal
contacts along the silicon die

for each MOSFET region. The transient simulation is split into several time steps.
The time steps are user defined and they are set to provide undistorted results for
the least time-consuming computation. The average values of the powers generated
during the time period between subsequent time steps are applied to the thermal
contacts and Sentaurus Device calculates heat generation and heat transfer inside the
structure. The temperatures in the corresponding positions of the structure are taken
to drive the temperature-dependent electrical parameters of the MOSFET regions.
Finally, HSPICE calculates the current and voltage distributions at relevant time
step for corresponding structure temperature. The whole cycle is repeated with an
increment of time until the end of simulation.

The 3-D model of the structure for thermal simulation is created in the SDE
based on the physical and geometrical description of the device on chip assembled
in a package with all related components (Fig. 5.35). The thermal contacts are
placed uniformly on the epitaxial layer and substrate interface by a 9 � 9 square
mesh. There occurs heat generation during avalanche conditions. The thermal
contacts are generated automatically by a directly supported program cycle in
the input command file, which allows simple definition of their location by the
user. Each contact corresponds to one MOSFET segment and they are together
interconnected by data transfer of local temperature and power dissipation. The
structure boundary conditions are set to represent the heatsink to the surrounding
environment. The electrical part of the MOSFET is the same as in the direct method.
Sixty-four MOSFET segments are electrically connected taking into account the
parasitic resistances of the polysilicon gate electrode and metal source electrode.
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5.3.1.5 2-D ElectrothermalC 3-D Thermal Mixed-Mode Simulation

Another solution for electrothermal simulation is based on direct coupling of 2-D
FEM electrothermal model of the device and 3-D thermal model of the package
using a mixed-mode setup supported in Synopsys TCAD Sentaurus environment
[54]. The TCAD Sentaurus mixed-mode setup can combine a multiple-device with
different physical models in a circuit. The circuit netlists can contain an electrical
and a thermal section. Each electrical node is associated with a voltage variable, and
each thermal node is associated with a temperature variable.

The proposed solution for electrothermal simulation consists of splitting the
full simulation model into a 3-D TCAD thermal model of the package (including
simplified die) and a 2-D TCAD electrothermal description of one elementary cell.
The two parts are connected to each other in a circuit (the so-called mixed-mode in
Sentaurus Device [38]). The mixed-mode setup is built to allow heat flux exchange
between the package and device via thermal node (Fig. 5.36). Drift-diffusion
equations coupled to the heat equation are solved in the 2-D device model, and
only the heat equation is solved in the package.

Fig. 5.36 2-D electrothermal MOSFET model connected to 3-D package thermal model by the
thermal node in the mixed-mode simulation
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5.3.1.6 Electrical CircuitC 3-D Thermal Mixed-Mode Simulation

Faster simulation results can be obtained by using the equivalent temperature-
dependent circuit model of the analyzed device instead of 2-D TCAD simulation
[41, 54]. Sentaurus Device provides a compact model interface (CMI) for user-
defined compact models. The models are implemented in CCC and are linked
to Sentaurus Device at run-time. No access to the source code of Sentaurus
Device is necessary. The electrical circuit model is defined considering the tem-
perature dependences of the most relevant parameters extracted from device sim-
ulations of the structure at different operating temperatures. The temperature
dependence of the threshold voltage, drain resistance, body diode, leakage current,
and avalanche breakdown voltage are implemented in the model [53]. The circuit
model consists of an additional power source electrode which represents heat
generation inside the structure. The heat flux from this node is directly propor-
tional to the total power dissipated in the MOSFET. This electrode is directly
connected to the thermal contact of the 3-D package model through thermal
node (Fig. 5.37). The temperature of the thermal node is used to drive all device
temperature-dependent MOSFET properties. The fast solving of the equivalent
circuit model allows splitting the silicon die into several parts and takes into
account inhomogeneous distribution of temperature and electrical properties along
the whole chip. The 9 � 9 thermal contacts are placed uniformly along the chip
in the 3-D thermal model and each contact is connected with electrical circuit
MOSFET model.

Fig. 5.37 Equivalent MOSFET circuit model connected to 3-D package thermal model by the
thermal nodes in the mixed-mode simulation
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5.3.1.7 Simulation Results of MOSFET Under UIS Test

The electrothermal simulation methodologies are powerful tools for analysis, opti-
mization, and interpretation of the electrophysical behavior of power devices. The
designed electrothermal models of the analyzed power MOSFET have been used to
simulate the multipulse UIS test. The UIS condition represents a robust test of circuit
switching operation for evaluating the ruggedness, which characterizes the device
capability to handle high avalanche currents during the applied stress. The simplified
UIS test circuit and corresponding current and voltage waveforms of the tested
device under UIS conditions are shown in Fig. 5.38. In the case when the current
flowing through the inductance is quickly turned off, the magnetic field induces a
counter electromagnetic force that can build up surprisingly high potentials across
the device and the whole built-in energy of the inductor is dissipated directly into
the device under test [55, 56].

Figure 5.39 shows the simulation results of the multipulse UIS test using
direct method with 3-D RC thermal network and 2-D FEM electrothermal device
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simulation. There are comparisons of the drain currents and temperatures of the
transistor segments MOS11 and MOS55, which represent the corner and center
of the structure, respectively. The temperature is almost evenly distributed and the
currents through MOS11 and MOS55 transistors are equal during the first pulse.
After some period of the power load, the temperature and the breakdown voltage
of the central MOS55 transistor cell increase more significantly in comparison with
the corner MOS11 transistor cell because the corner cell is cooled more effectively.
Therefore, the MOS11 current becomes higher. The 2-D device simulation considers
homogeneous distributions of all parameters at third dimensions and 3-D heat flow
from the semiconductor chip to the package. The inhomogeneous behavior along the
whole structure is neglected. Therefore, the differences of the structure temperature
and drain breakdown voltage between 3-D and 2-D simulations become more
significant for the longer time simulation (e.g., the 10th UIS pulse) when the cooling
of the chip by lead frame and package plays important role. The inhomogeneous
distributions of the temperature and current during the 10th UIS pulse are clearly
shown in Fig. 5.40.

The 3-D RC thermal network for the direct method is simplified and does not take
into account package leads and bounding wires. The influence of bounding wires is
clearly seen for the thermal model used in the relaxation and mixed-mode simulation
method. Figure 5.41a shows a comparison of the drain currents ID and temperatures
T of the transistor segments MOS11, MOS45, and MOS55, which represent the
corner, close to center, and center under bounding wire regions of the structure,
respectively. The temperature and current density distributions inside the power
MOSFET during the UIS test are shown in Fig. 5.41b–d. The inhomogeneities
are caused by the 3-D heat flow into lead frame, package, and bounding wires.
The cooling of the MOS55 segment by the bounding wire is clearly seen shortly
after each pulse beginning (t1, t10). The lower temperature and breakdown voltage
lead to an increase of the current density in the segment under the bounding wires.

Fig. 5.40 Temperature (a) and current density (b) distributions at the beginning of the tenth UIS
pulse inside the structure
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Fig. 5.41 (a) Comparison of the drain current and temperature of the corner MOS11, close to
center MOS45, and center under bounding wire MOS55 regions during the multipulse UIS test.
(b) Temperature at time t10 inside the structure. Current density distributions at time t1 (c) and t10

(d) during the UIS test inside the power MOSFET

The cooling by the lead frame and package is significant after some period of the
power load (e.g., the 10th pulse). The temperature and the breakdown voltage of the
close to center MOS45 segment increase more significantly in comparison with the
corner MOS11 segment method. Therefore, the corner MOSFET segments current
density becomes higher, as shown also using the direct method.
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5.3.1.8 Comparison of Simulation Methods

The 2-D FEM multipulse UIS electrothermal simulation of one pillar cell with
about 17,000 elements takes � 2 h. Moreover, the 2-D simulation does not take
into account the thermal flow and distributed parameters of the structure in the
third dimension. The full structure FEM simulation with several hundred pillar cells
would be very difficult and the simulation time would be dramatically increased.
The direct method simulation of 5600 thermal network elements takes � 10 min.
The short time of simulation is provided by structure simplification and reduction of
the thermal network elements. The whole multipulse UIS electrothermal simulation
based on the interaction of Sentaurus Device and HSPICE takes about half an
hour for the designed full structure model with 17,000 mesh elements. The mixed-
mode simulation setup of 2-D electrothermal model (17,000 mesh elements)
interconnected with 3-D package thermal model (1000 mesh elements) takes 3 h.
This approach allows full structure electrothermal simulation with thermal flow
to the package. However, the distributed parameters along the whole chip are not
taken into account. The whole multipulse UIS electrothermal simulation based
on the mixed-mode setup of the thermal model with 17,000 mesh elements and
9 � 9 MOSFET electrical circuit segments takes about half an hour. The relatively
lower time consumption using relaxation and mixed-mode methods represents great
advantage for the full structure analysis.

5.3.2 Electrothermal Simulation of DC–DC Converter

The designed fast 3-D electrothermal simulation based on automated interaction
of Sentaurus Device and HSPICE is applied to simulate the DC–DC converter
module in a multi-die integrated circuit (IC). Various DC–DC converter conditions
are used to verify the model and electrothermal simulation method. Analysis of
the temperature distribution of all components and their electrical properties at
different operating conditions and PCB layer topology can improve the design and
optimization of the device in a relative short time.

5.3.2.1 DC–DC Converter Structure Description

The DC–DC converter is created by a high-frequency voltage regulator (HFVR)
for high-current applications. The device integrates a driver IC and two power
MOSFETs into an ultra-compact 6 � 6 mm PQFN package (Fig. 5.42). The high-
side (HS) transistor is responsible for switching the inductor and the load to VIN
node for a specified amount of time. The low-side (LS) transistor replaces the fly-
back diode [57]. These transistors are rather large in order to ensure the lowest
RDSon possible and therefore the lowest possible power dissipation in the system.
High speed switching about 1.3 MHz with minimal power loss provides the ability
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Fig. 5.42 (a) Application circuit of DC–DC converter. (b) 3-D model of the HFVR device with
included two thermal contacts for HS and LS transistor

to drive 30 A at high efficiency. The driver IC is the controlling logic along with the
anti-cross protection circuitry.

The HS and LS transistors inside the multi-die HFVR IC are power vertical
DMOSFET structures. The 3-D structure of the D-MOSFET is shown in Fig. 5.43a.
The whole silicon chip consists of several hundred equal pillar cells. Simulation
of such a large number of elements would be very time consuming. Therefore,
only one pillar is used for device simulation. These simulation results have been
used for the extraction of the electrical properties for an electrical analytical model
and analysis of the internal behavior of the device. The power MOSFETs are
electrically modeled with a SPICE Level 49 built in Verilog-A. The electrical
analytical circuit model is defined considering the temperature dependences of
the most relevant parameters extracted from device simulations of the structure
at different operating temperatures. The temperature dependence of the threshold
voltage, drain resistance, body diode, leakage current, and avalanche breakdown
voltage are implemented in the model [53].

The power losses of the system are not caused only by the passive parasitic
components. Considerable power losses occur during high-frequency switching.
Accurate dynamic behavior of the transistor model is also important. The LS
transistor needs to be turned off before the HS transistor is turned on to protect
shoot-through. During the dead time, when both of the transistors are turned off, the
current from inductance Lout is discharged through a forward biased body diode
of the LS MOSFET. When the HS MOSFET turns on, the LS transistor body
diode becomes reverse biased. Due to the reverse recovery time the diode is highly
conductive until the depletion region is fully depleted. High current flow from VIN

node through HS and LS transistors causes an increase of power losses during this
short time. The models of the MOSFETs have been calibrated according to the C–V
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Fig. 5.43 (a) 3-D structure of the D-MOSFET used for HFVR device. (b) 3-D device and
analytical circuit model transient simulation of the MOSFETs switching

and transient characteristics to ensure correct dynamic behavior. Figure 5.43b shows
device simulations of the analyzed MOSFETs compared with analytical circuit
simulation results of the transient characteristics of the MOSFETs switching.

The 3-D model of the DC–DC converter for thermal FEM simulation (Fig. 5.42b)
is created in the SDE. The model consists of the multi-die HFVR IC and passive
components (inductor, capacitors, and resistors) placed in PCB. The multi-die IC
includes two thermal contacts, which correspond to the HS and LS MOSFETs. They
are interconnected by data transfer of local temperature and power dissipation with
electrical circuit model. The structure boundary conditions are set to represent the
heatsink to the surrounding environment.

5.3.2.2 Methodology for Electrothermal Simulation of DC–DC Converter

The 3-D FEM electrothermal simulation of the DC–DC converter would be very
complicated and time consuming due to the large number of pillar cells of the
MOSFET, complicated thermal coupling of the silicon chips, and thermal flow
into the complex system of multi-die IC and PCB. The electrothermal circuit
simulation should contain an equivalent thermal RC network. The designed 3-D
equivalent thermal mesh of the whole system from silicon chips up to PCB would be
complicated or would require structure simplifications. Moreover, the temperature
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of the system is stabilized after a few hundred seconds. Simulation of a huge number
of pulses for 1.3 MHz clock switching takes long time.

The designed electrothermal simulation methodology is based on automated
interaction of Sentaurus Device, FEM thermal engine, and HSPICE as the electrical
circuit simulation program. Simulation uses separate but synchronized thermal and
electrical simulations. The simulation flow of the method is shown in Fig. 5.44.
The transient simulation is split into several time steps. The time steps are user
defined and they are set to provide undistorted results for the least time-consuming
computation. Short time periods are selected for electrical simulation and extraction
of power dissipations during each simulation step. The calculated powers of the
MOSFETs are applied to the thermal contacts and Sentaurus Device calculates
heat generation and heat transfer inside the structure. Corresponding temperatures
of individual components are taken to drive the temperature-dependent electrical
parameters during next time step [58]. Every other simulation step starts from the
last saved point in the previous step. Sentaurus Device directly supports save and
load commands. HSPICE allows save and load by initial conditions. The whole
cycle is repeated with an increment of time step until the end of simulation. The
reduced number of simulated pulses in HSPICE and optimized mesh for FEM
thermal simulation significantly accelerates the whole electrothermal simulation.

Fig. 5.44 Electrothermal simulation flow. Short time periods are selected for electrical simulation
(1) and extraction of power dissipations (2). Sentaurus Device calculates heat generation (3) and
corresponding temperatures are taken to drive the temperature-dependent electrical parameters (4)
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5.3.2.3 Simulation Results of DC–DC Converter

The designed methodology of electrothermal simulation is used to analyze DC–
DC converter under different operation conditions and PCB layer topology. The
evaluations of the device component temperatures, losses, and DC–DC conversion
efficiency for two different input voltages (12 V and 3 V) are shown in Fig. 5.45.
According to the different operating conditions and the losses of the MOSFETs,
different temperature distributions of the MOSFETs and driver chips are clearly
seen in Fig. 5.46. Decreasing Vin changes on–off ratio of both MOSFETs and
increases power losses of HS MOSFET which leads to increase in its temperature.
Visualization of the inhomogeneous temperature distribution can help to identify
critical regions of the analyzed structure.

The differences of electrical and thermal properties for various PCB layer
topologies are shown in Fig. 5.47. The designed double side PCB improves cooling
of the system compared to single side PCB. The lower temperature of the device
provides a higher efficiency and higher load of the DC–DC converter. The designed
electrothermal simulation methodology allows easily to analyze the temperature
distribution of all components placed on the PCB and their electrical properties at

Fig. 5.45 Evaluations of the device component temperatures (top), losses, and DC–DC conversion
efficiency (bottom) for two different input voltages
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Fig. 5.46 Temperature distributions of the MOSFETs and driver chips for two different input
voltages

different conditions. Results of potential optimization of the device are provided in
a relatively short time.

The use of only single 3-D FEM electrothermal simulation of one switching cycle
takes about 10 min. Moreover, the thermal flow between the components is not
taken into account. Circuit simulation of 1.3 MHz clock switching takes � 10 h till
the system temperature stabilizes (600 s). The designed electrothermal simulation
based on synchronized interaction of Sentaurus Device and HSPICE takes � 1 h.
The significantly lower time consumption using the designed methodology is of
great advantage for the full structure analysis and design.

5.3.3 Conclusion

Fast 3-D electrothermal simulations based on the relaxation method and mixed-
mode setup were presented and compared with the device FEM simulation and
direct method with an equivalent thermal 3-D RC network. The designed method-
ologies are developed for reducing the simulation time for complicated 3-D
structures. To verify the electrothermal models and proposed methods in a harsh
environment, the superjunction vertical MOSFET and DC–DC converter module
were used. The simulation approaches help to assess the device robustness by means
of evaluating both temperature and current distributions in the power MOSFET
structures operating under critical conditions. The implemented 3-D thermal flow
and distributed parameters of the structures provide more realistic simulation
results. The advantages of the proposed methods are the relative simplicity of
implementation, the increased speed of simulation, and the capability of full analysis
of complex structures. With reference to the Section 5.3, the authors are grateful to
ON Semiconductor Belgium for successful collaboration and providing information
about progressive technologies and devices.
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Fig. 5.47 (a) Evaluations of the device component temperatures and DC–DC conversion effi-
ciency, and (b) temperature distribution of the components for different PCB layer topology
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Chapter 6
MEMS System-Level Modeling and Simulation
in Smart Systems

Gerold Schröpfer, Gunar Lorenz, Arnaud Krust, Benoît Vernay,
Stephen Breit, Alexandre Mehdaoui, and Alessandro Sanginario

6.1 Introduction to MEMS System-Level Modeling

6.1.1 The Need for System-Level Models for Microsystems

Most micro-electro-mechanical systems (MEMS) are comprised of a MEMS
sensing or actuation element (the “MEMS device”), which is distinct from the
accompanying electronics that process the output signal from the device and/or
control the device. It’s inherent to MEMS that their small scale leads to extremely
tight coupling of multi-physics aspects arising from the heterogeneous technologies
composing the microsystem. This intimate coupling presents unique challenges
for the modeling and design community. The MEMS device itself poses complex
design problems that are at best difficult and time consuming to solve with standard
field solver analysis. Especially, in the case of transient analysis, many problems
are intractable using the currently available finite element or boundary element
software.

An additional challenge poses the key to successful system design: the ability to
simulate and analyze the dependencies and interaction of its individual components.
MEMS product development within any organization divides the development
similarly: the MEMS engineers who design the MEMS device, and IC engineers
who design the surrounding sensing or control electronics. MEMS engineers and
integrated circuit (IC) designers are faced with the need to co-simulate their MEMS
and IC designs in a common simulation environment. Co-simulation is required to
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verify the IC design and to predict yield sensitivity to manufacturing variations.
The most obvious path is to do the co-simulation in the environment used by
the IC designers, which requires that the MEMS designers deliver a behavioral
model of the MEMS device expressed in a hardware description language (HDL)
such as Verilog-A or VHDL-AMS. MEMS/IC co-simulations are expected to run
with simulation speed comparable to lumped-parameter behavioral models while
preserving the accuracy associated with detailed finite-element or boundary-element
models. Today, MEMS engineers have only a few choices to deliver behavioral
models in these formats. In practice, the employed methods are to handcraft a
model, usually in the form of a lookup table, to generate a reduced-order model
from finite element analysis (FEA) or to use an existing library of predefined MEMS
component models.

6.1.2 Compact Model Creation from FEM
Using Model-Order Reduction

A common technique for creating fast dynamic models that can be easily inserted
into an analog/mixed-signal circuit design environment such as Cadence Virtuoso

®

or MATLAB Simulink
®

is called model-order reduction (MOR). An often used
MOR technique relies on the principle of modal superposition. In this conventional
approach, a first, purely mechanical reduced-order-model (ROM) is directly derived
from a detailed mechanical FEM representation. While some research has been
published to include mechanical nonlinearities [1, 2], purely linear mechanical
ROMs remain common practice. After the mechanical extraction, electrostatic
effects are added to the ROM to account for electromechanical coupling. The
required electrostatic and fluidic forces and capacitive outputs are commonly rep-
resented as polynomial functions. They are extracted from a series of electrostatic
FEM analyses on individual comb fingers and electrode segments [3]. While the
initial mechanical MOR can be automated to a large extent, tying time-dependent
electrostatic loads to modal displacements requires design-dependent engineering
judgment and is difficult to generalize or automate. Furthermore, while MOR from
mechanical FEM guarantees accurate preservation of the sensor’s mechanical Eigen
frequencies, the ad hoc approach to including electromechanical coupling relies on
various simplifying and error prone assumptions such as multidimensional curve
fitting of rational functions and the neglect of nonlinear electromechanical coupling
effects such as electrostatic spring softening.

6.1.3 Schematic-Driven MEMS Modeling

The alternative approach to MOR from FEM can be summarized as schematic-
driven or library-based MEMS modeling. The development of MEMS component
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Fig. 6.1 Schematic of a gyroscope assembled from MEMS components from a behavior model
library [7]

libraries for circuit simulators started in the 1990s [4–6] and some of these libraries
are now available in commercial tools.

Early on, lumped-element libraries for MEMS closely resembled their electronic
counterparts. Like IC designers, MEMS designers needed to work in a schematic-
driven environment using symbols that represent individual parametric building
blocks or components. These symbols were connected in the schematic to represent
a three-dimensional MEMS device, as shown in Fig. 6.1.

The schematic symbols and the mathematical models that they represent enable
the exploration of the parametric design space in seconds or minutes with accuracy
that rivals conventional FEA [8, 9]. Schematic-driven MEMS design environments,
while extremely fast, parametric, and capable of incorporating nonlinear effects, still
face obstacles to widespread adoption.

First, creating three-dimensional geometry using symbols and wires is laborious
and non-intuitive. MEMS designers, who are responsible for device model creation,
traditionally prefer to use either 2-D layout or 3-D mechanical CAD tools for
design entry. Therefore, using schematic-driven design entry instead requires a
fundamental change in their preferred way of working.

Second, IC designers and system architects, the principal clients for MEMS
behavioral models, rely on either signal-flow simulators, such as MATLAB
Simulink, or custom IC design and simulation environments from Cadence

®
,

MentorGraphics
®
, or Synopsys

®
. None of the standard electronic design automation

(EDA) environments provide a particularly attractive environment for MEMS
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design and, more importantly, there is no standard way to exchange behavioral
models between signal-flow and circuit simulators.

Ideally, the MEMS designer should be able to create and modify the MEMS
design in a 3-D physical design environment that suits his needs, and then
automatically generate required simulation models and layout views for either
signal-flow or circuit simulators (hence the appeal of MOR from FEM). On the other
hand, simulation models should be parametric (as in the schematic-driven approach)
and of course accurately capture the complex behavior of the MEMS device while
being sufficiently computationally efficient to allow simulation of the MEMS and
IC together with reasonable CPU time.

6.1.4 A 3-D Parametric Library for MEMS Design

Coventor’s MEMSC®
design platform was developed to address the previously

described challenges. The MEMSC platform [10] is a unique blend of various
existing technologies including FEA, state-of-the-art behavioral modeling, and
model-order reduction. With MEMSC, MEMS designers can work in a 3-D
environment that suits their needs and yet easily deliver parameterized behavioral
models that are compatible with IC design and system simulation environments.
The IC or system designer, meanwhile, will see no difference between including a
MEMS device and any other analog or digital component.

The MEMSC design methodology is based on a library of parametric building
blocks that the MEMS designer uses to assemble the desired geometry. Assembled
components are automatically connected based on their geometric locations. As an
example, Fig. 6.2 shows a three-axis angular rate sensor assembled out of more than
600 individual MEMSC components [11].

Instead of creating an abstract schematic diagram, the user selects a component
from the library, enters values for its parameters, and a corresponding 3-D view is
immediately presented on the canvas. This direct creation of a MEMS device in
a 3-D view has proven to be much more natural to MEMS engineers compared
to the schematic-based approach shown in Fig. 6.1. Furthermore, providing a
graphical design entry interface that is separated from the actual system simulation
environment allows for alternative design creation methods, including assisted 3-
D geometry creation from 2-D layout import, free-hand drawing capabilities and
schematic assembly based on Python or MATLAB scripting which can be employed
in parallel to a pure library-driven design approach.

The resulting 3-D view differs from traditional 3-D CAD modeling tools in that
there are underlying high-order finite elements or sophisticated behavioral models
associated with each MEMS building block. The underlying physical representation
of each library component can be configured and optimized for a given application.
The gyroscope of Fig. 6.2, for example, is internally represented by fully coupled
nonlinear system matrices with about 4000 mechanical and 10 electrical degrees-
of-freedom (DoF) as well as 3 angular velocity inputs and 9 capacitance outputs.
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Fig. 6.2 3-D schematic of a gyroscope (original design is courtesy of Murata Electronics Oy)
assembled with MEMSC®

library components including straight beams, rectangular and triangular
plates, combs and electrodes [11]

6.1.5 MEMS Model Library

The MEMSC component library is the product of many years of effort and can
be thought of as the MEMS equivalent of the BSIM (Berkeley Short-channel
IGFET Model) library in the IC design world. The MEMSC component library is
strictly hierarchical and consists of two distinct groups: basic structural components
and component add-ons. Structural components are shapes that can be drawn in
two dimensions, with the third dimension being the thickness of one or multiple
material layers from which the component is formed. The structural components
are basic shapes like rectangles, quadrilaterals, arcs, and pies that can be combined
to compose complex flexible structures, as shown in Fig. 6.3.

Flexible mechanical components offer the user one or more underlying model
choices. Depending on the given geometry, the user may choose a brick, a shell, a
Timoshenko, or a Bernoulli beam element to represent the corresponding structure.
Each model choice involves a particular trade-off between simulation accuracy and
speed. All mechanical models include support for process-relevant effects, such as
sidewall angles and residual stress, multi-layer construction, perforations as well as
nonlinear behavior, such as buckling. If technology permits, the user can also assign
optional physics models to capture piezo-electric or magnetic effects.

The second group of MEMSC library components is add-on components which
are used to “decorate” the mechanical components with gaps or electrostatic comb
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Fig. 6.3 Complex geometries composed from basic shapes in the MEMSC®
component library

Fig. 6.4 MEMSC®
custom library as part of a MEMS PDK

drives. Similar to the mechanical components, gap components feature optional
model choices used to include electrostatic actuation, detection, contact, or squeeze
film damping. The corresponding underlying models are based on various different
modeling techniques, including analytic formulae, numerical integration, conformal
mapping, and finite elements.

6.1.6 Process Design Kits for MEMS

Similar to Process Design Kits (PDKs) known in the IC design world, the MEMSC
component library can be customized for a given MEMS fabrication technology.
Library customization is used to eliminate components or modeling choices unfit for
a given technology, associate components with certain material layers and impose
design rules such as suspension width limits, minimal comb finger spacing, or
enforce a certain perforation pattern, see Fig. 6.4.
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A customized MEMSC library might be supplied by an independent MEMS
foundry as part of a MEMS PDK [12] or created in-house to impose design rules,
eliminate design errors, and encapsulate IP blocks or simply to facilitate component-
based design entry.

6.1.7 Integration with System Simulators

All MEMS designs created with MEMSC can be directly analyzed within the
MEMSC user interface. Similar to standard FEM-based simulation tools, MEMSC
provides simulation and analysis as well as 3-D result visualization capabilities
including coupled multi-physics DC (equilibrium), AC (harmonic), modal, and
electrostatic pull-in analysis.

The real advantage of using MEMSC, however, is its ability to interface with
external system simulation tools. MEMSC provides two native interfaces which
allow the simulation of the full MEMSC model inside MATLAB Simulink or
Cadence Virtuoso see Fig. 6.5. Furthermore, its ability to export geometry in
standard 2-D (GDS II) and 3-D (ACIS) formats allows for a seamless link to layout
tools or detailed stress and damping analysis with existing FEM/BEM tools.

MATLAB and Simulink from The MathWorks are well known across all engi-
neering disciplines as powerful tools for engineering innovation. These tools allow

Fig. 6.5 MEMSC 3-D design entry and interface options
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Fig. 6.6 MEMSC integration with MATLAB Simulink

engineers to define system models specific to their domain and then simulate their
behavior. With MEMSC, designers can import the parameterized model created
in the MEMSC design platform directly into MATLAB or Simulink. MEMSC
requires neither programming of device physics (such as mechanical equations or
capacitance extraction) nor FEA; it only requires the creation of the 3-D design in
MEMSC using the tool’s intuitive 3-D graphical interface. The MEMSC MATLAB
interface supports both the MATLAB scripting interface and device model import
into the Simulink schematic editor, as shown in Fig. 6.6.

MEMSC automatically generates a symbol, and the user imports it into the
Simulink model editor window. The number of symbol ports and parameters is
automatically taken from the original MEMSC design. The symbol representing the
MEMSC model can be inserted into larger systems and simulated with the native
MATLAB solvers. During simulations, the simulator will connect, via Simulink’s
S-function interface, with the MEMSC component library to evaluate the MEMS
behavioral model at each time step. In addition to standard transient simulations,
MEMSC provides additional analyses such as DC, DC transfer, modal, and AC
analysis. On completion of a simulation, the simulation results can be loaded into
the MEMSC user interface and visualized via X–Y graphs and as fully contoured
three-dimensional animations.

IC engineers commonly use Cadence Virtuoso to design the analog/mixed-signal
electronics that accompany a MEMS device. In order to succeed, IC engineers
require fast and accurate models of the MEMS device in the Cadence model library.
MEMSC facilitates the required model exchange by providing an easy way to
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Fig. 6.7 MEMSC 3-D design entry and interface options

import MEMSC models to the Cadence model library; see Fig. 6.7. Every device
created in MEMSC can be imported into the IC design environment in the form
of a netlist and a schematic symbol. Similar to the MEMSC MATLAB Simulink
interface, the number and names of the pins on the schematic symbol are controlled
by the MEMS engineer and represent electrical connections to the MEMS device.
The MEMS symbol can be placed in a schematic in the IC schematic editor and
surrounded by the complete IC design.

Simulations can be run in any of the Cadence circuit simulators that are
compatible with Virtuoso, including Spectre, SpectreRF, and APS. The simulator
will connect with the MEMS component library to evaluate the MEMS model
at each simulation point, i.e., time step or frequency. It is important to highlight
that all external solvers supported by MEMSC (including MATLAB) use the same
component library during the actual simulation. All MEMSC supported simulations
are therefore expected to be of comparable accuracy.

On completion of a simulation, the designer can view the simulation results in the
MEMSC 3-D viewer, which can animate the motion of the MEMS device. At any
time, but especially when the MEMS and IC designers are satisfied with the MEMS
design, they can export a parameterized layout cell (PCell) that can generate a layout
of the MEMS device.
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6.2 MEMS-Package Co-Design

6.2.1 Package Effects on MEMS Motion Sensors

Most MEMS motion sensors (both accelerometers and gyroscopes) on the market
today are capacitive devices. They detect changes in capacitance between a sus-
pended proof mass and stationary electrodes caused by motions of the proof mass
in response to acceleration or rotation of the mounted sensor. In-plane motions
are sensed by electrostatic comb drives while out-of-plane motions are sensed by
planar electrodes attached to the substrate. The proof mass and electrostatic comb
stators are connected to the substrate via attachment points known as anchors. Any
displacement of the anchor locations causes a change in the relative position of
the proof mass to the stationary electrodes and therefore a change in the output
capacitance of the sensor.

The output of capacitive MEMS motion sensors is influenced by the surrounding
package. Firstly, thermal cycling during the packaging process can induce a stress
field throughout the package that causes the MEMS die to deform. Secondly,
differences in the thermal coefficient of expansion (CTE) of the materials that
comprise the package and die can cause the package and die to deform as the
ambient temperature changes. We refer to the underlying silicon die, on which
the MEMS device is fabricated, as the substrate. Substrate deformation can change
the position and orientation of the anchors enough to affect the shape and relative
distance between the MEMS parts. For instance, substrate deformation can alter
the separation between a moving layer and an electrode attached to a substrate,
thus changing the capacitance between them. Critical MEMS performance specifi-
cations, such as zero offset in accelerometers and drift bias in gyros, may therefore
vary with substrate deformation and, in turn, ambient temperature.

6.2.2 Methodology for MEMS-Package Co-Simulation

The methodology involves three steps. The first step is to simulate the static
deformation of the package and MEMS substrate for a range of temperature values.
This simulation is usually performed by package designers using a general-purpose
FEA tool. Note that the package analysis includes the MEMS substrate and may
even include the PC board to which the package is attached, but not the MEMS
device itself. The MEMS device is very small compared to the substrate and the
package and therefore assumed to have negligible effects on the deformation of
the latter. This is an important simplifying assumption because the MEMS device
has a lot of structural details that would greatly increase the computing resources
required for the FEA. Second, the package simulation results are imported into
Coventor’s MEMSC design environment where they are mated with the MEMS
device. MEMSC moves the anchor and electrode locations in accordance with
the package results, using linear interpolation between temperature values in the
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Fig. 6.8 MEMSC 3-D
schematic models of the two
sensing elements composing
a 3-axis accelerometer, one
element (a) sensitive to
in-plane motion (X, Y) and
another (b) to detect
out-of-plane motion (Z).
Original design is courtesy of
STMicroelectronics Srl

FEA results. Third, the MEMSC model of the device with displaced locations is
simulated in MATLAB, Simulink, or Cadence Virtuoso to predict the temperature
stability of the sensor output.

6.2.3 3-Axis MEMS Accelerometer Example

We apply the methodology to a 3-axis capacitive accelerometer [13] consisting of
two sensing elements: one sensitive to in-plane motion (X, Y directions) and the
other sensitive to out-of-plane motion (Z direction). Figure 6.8 shows a 3-D model
of the accelerometer in MEMSC, created by assembling individual MEMSC library
components including beams, perforated plates, comb fingers, and electrodes.

The principle of operation for the X–Y sensing part is as follows: the accelerom-
eter can be divided into four quadrants. Each section has a sensing element
composed of comb electrodes attached to the movable perforated mass and their
respective stator electrodes that are fixed. When the structure supporting the device
is subjected to acceleration in the X- or Y-directions, the movable mass electrodes
on one side move closer to their stators while those on the other side move further
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away. The differential capacitance between the two sides is linearly proportional
to the acceleration of the supporting structure. Similarly, the Z acceleration of the
supporting structure is translated into a change of capacitance. When a positive Z
acceleration is applied the proof mass will move toward the underlying electrodes
increasing the capacitance. In the case of negative Z acceleration the mass will move
away from the electrodes thus decreasing the capacitance.

6.2.4 Results of MEMS-Package Co-Simulation

Following the first step of the methodology, the package model is created and
deformed through a parametric thermo-mechanical analysis using FEA, in this case
with CoventorWare

®
. The temperature values for the parametric analysis range

from �100 ıC to 100 ıC in multiple steps. The meshed model of the package
prepared for thermo-mechanical simulation is shown in Fig. 6.9a. In the second
step, the simulation results of the deformed package are imported into MEMSC to
be linked with the accelerometer model. Figure 6.9b represents the accelerometer
(blue colored) placed in its package (green colored). Third, we apply acceleration
under different temperature values to evaluate the package influence not only in
the static case but also in the dynamic one. Figure 6.9c shows the perforated mass
displacement for temperatures ranging from �100 ıC to 100 ıC with a 10 ıC
step. We can see the influence of the package on the displacement of the XY
accelerometer.

The methodology allows the prediction of package effects on critical sensor
outputs such as sensitivity or zero-offset. Figure 6.10 shows the zero g offset with
temperature for the Z-axis accelerometer. Furthermore, the methodology is fully
compatible with the reduced-order modeling approach described in the next section.
This means the MEMS model with package effects can be run in it is native format
using the full MEMSC system matrix or with the reduced number of DoF of a
reduced-order model which, consequently, significantly reduces the simulation time,
especially for transient simulations.

6.3 Reduced-Order-Modeling and Verilog-A Extraction
for MEMS

6.3.1 Introduction

While MEMS/IC co-simulation is possible with the native MEMSC®
third-party

solver interfaces, transient simulations of large models as shown in Fig. 6.2 are
likely to be too slow for routine MEMS/IC co-design. Although the MEMSC
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Fig. 6.9 Methodology for simulating package effects on temperature stability of capacitive
MEMS accelerometers: (a) Use FEA to simulate package and die deformation vs. temperature;
(b) Attach MEMS device model to deformed die in Coventor MEMSC; and (c) Simulate sensor
thermal stability in MATLAB or Cadence
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models are tiny compared to a conventional FEM, they may still be large enough
to present a big challenge for the supported MathWorks and Cadence solvers.

To address the system designer’s needs for simulation speed while preserving
the critical nonlinear characteristics of a device, MEMSC offers additional model
extraction capabilities which allow the original (full) MEMSC model to be reduced
to a lower number of degrees-of-freedom (DoF).

6.3.2 Reference Model Creation

As described above, the MEMSC approach yields a compact, nonlinear, multi-
physics model consisting of interconnected rigid plates, beam elements, and shell
elements as well as electromechanical transducers representing electrodes and comb
fingers [10]. MEMSC automatically assembles the individual component models
into a single multi-physics system of equations [14]:

F
�
X; PX; U

� D 0; (6.1)

where X 2 R
n is the state vector with all mechanical and electrical DoF. The

input vector U 2 R
m includes all input voltages, external accelerations, and angular

velocities; F W Rn � R
n � R

m ! R
n represents the sum of forces.
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6.3.3 Model-Order Reduction

The linearized version of the reference system (6.1) around a specific operating
point X0, Ẋ0, U0 is commonly written as

E PX D AX C BU C R; (6.2)

with A D @XF 2 R
n�n, E D @ PXF 2 R

n�n; B D @UF 2 R
n�m and R D

F
�
X0; PX0; U0

� � AX0 � BU0 C E PX0. The point X0, Ẋ0 is computed by solving the
reference system with user-specified inputs U0 (e.g., bias voltages or displacement
offsets).

Let V 2 R
n�q be the reduction matrix, which supposes that q < n and let QX 2 R

q

be the vector of reduced states. For an example gyroscope [11, 15], the original n �
4000 DoF can be reduced to q � 20 DoF by building an appropriate matrix V. Note,
the reduced model is only accurate for a given simulation if QX satisfies X � V QX.

After replacing X by V QX in (6.2), Galerkin projection (left-multiplication by W 2
R

q�n) is used to recover a solvable system. For stability reasons, we define W D VT .
The resulting linear reduced system is

VTEV PQX D VTAV QX C VTBU C VTR;

which can be rewritten as

QE PQX D QA QX C QBU C QR;

with QE D VTEV; QA D VTAV; QB D VTB and QR D VTR.

6.3.4 Reduction Matrix

The accuracy and stability of the reduced system greatly depends on the choice of
the matrix V. The modal superposition method [1] ensures that certain eigenvalues
of the system are preserved and stability of the reduced linear model is ensured, as
long as the full model is stable. A vector X can be decomposed into

X D
nX

i

ˆixi;

where the ˆi 2 C
n are the eigenvectors of the system. Suppose, for simplic-

ity, that we are interested only in the first two modes. Each mode has a real
part (<) and an imaginary part (=). The columns of the matrix V are then
<(ˆ1), =(ˆ1), <(ˆ2), =(ˆ2). For accuracy reasons, we also want to make sure
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that the linearization point X0 belongs to the space spanned by the columns of V by
simply including X0 as a new column of V. Doing so, we can no longer guarantee
stability of the system. It is however possible to preserve the block structure of the
mechanical part of the system with a simple modification of V. The full matrices A
and E have the structure

A D
0

@
K D 	
0 I 	
	 	 	

1

A and E D
0

@
0 M 	
I 0 	
	 	 	

1

A ;

with K, M, and D the stiffness, mass, and damping matrices. The stars (*) represent
the electrical part of the system.

The corresponding state vector can be written as

X D
0

@
Xp

Xv

Xe

1

A ;

where Xp contains the displacement DoFs, Xv the velocity DoFs, and Xe the
electrical DoFs. As the dimension of Xe is very small (only a few DoFs), we only
need to reduce Xp and Xv. In the same fashion, we define Vp as the first rows of the
original matrix V. We ensure that VpTVp D I with a singular value decomposition
(SVD) on Vp. Choosing our reduction matrix as

V D
0

@
Vp 0 0

0 Vp 0

0 0 I

1

A ;

preserves the original block structure of A and E:

QA D
0

@
QK QD 	
0 I 	
	 	 	

1

A and QE D
0

@
0 QM 	
I 0 	
	 	 	

1

A ;

with QK D VpTKVp, QD D VpTDVp and QM D VpTMVp. The stars (*) are reduced as
well.

Compared to other methods, the chosen reduction matrix is expensive as it has
twice as many columns, leading to twice as many unknowns in the ROM. However,
the gain in stability proved to justify the extra computational cost.
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6.3.5 Higher Order Terms

A wide range of methods can be applied to reduce a full model to a linear model and
this field of research is now quite mature. However, a certain number of physical
behaviors are nonlinear and cannot be recovered by such a simple model. For
example, the electrostatic force is known to be quadratic with respect to voltage.
Other examples are the rotating inertial forces (e.g., the Coriolis force), which a
linear model cannot represent. Accurately modeling these nonlinearities in a ROM
is a challenging task.

Interpolation between different linear models can be used to recover nonlinear-
ities that are added to the ROM, especially the electrostatic softening effect. This
approach, although very accurate, tends to create very large models especially if
multiple electrodes are involved [15]. A well-known application of interpolation is
the trajectory piece-wise linear method [16], which is quite successful at recovering
mechanical nonlinearities of the MEMS structure.

Another approach is to add polynomial terms in an analytical or a semi-analytical
manner.

Both approaches can successfully be mixed into a single ROM [11].

6.3.6 Electrostatic Force

The input vector U can be decomposed into the voltage inputs Ue and all other inputs
U*. For a gyroscope, U� 2 R

3 notably contains the angular rates. Decomposing the
matrix QB accordingly yields QBU D QBeUe C QB�U�.

Electrostatic forces are known to be quadratic terms with respect to voltage and
can be written as

Fe .X; Ue/ D

0

B@
UT

e C1.X/Ue
:::

UT
e Cn.X/Ue

1

CA ;

where C1, : : : , Cn are the corresponding capacitance matrices. The dependence of
these matrices with respect to displacement is nontrivial and needs to be approxi-
mated in a ROM. In a first approximation, these matrices can be considered to be
constant. This assumption removes cross terms between displacement and voltage
which are known to cause the electrostatic softening effect. In order to accurately
recover electrostatic softening terms at a lower cost (i.e., without interpolation), we
consider the matrices Ci to depend linearly on displacement. They are computed by
finite differentiation of A and B. With QCi

� QX� D Ci
�
V QX�

, the electrostatic force term
is reduced to
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QFe
� QX; Ue

� D VT

0

B@
UT

e
QC1

� QX�
Ue

:::

UT
e

QCn
� QX�

Ue

1

CA :

The model should no longer contain terms linear with respect to voltage. We
also need to remove these terms from the matrix QB, which corresponds to removing
QBeUe.

The resulting system of the reduced model is now

QE PQX D QA QX C QB�U� C QFe
� QX; Ue

� C QR: (6.3)

This is enough to ensure that the first derivative with respect to displacement is
exact at the point of extraction, yielding a correct softening.

6.3.7 Inertial Forces

There are three inertial rotating fictitious forces to consider:

• Centrifugal force FCentrifugal D �m
 � .
 � r/,
• Coriolis force FCoriolis D �2m
 � Pr,
• Euler force FEuler D �m d


dt � r,

where r 2 R
3 is the distance to the center of rotation and 
 2 R

3 the angular
velocity of the reference frame. Let Finertial D FCentrifugal C FCoriolis C FEuler and note
that r and ṙ can be expressed in terms of X. This inertial term can be analytically
preserved and reduced to

QFinertial
� QX� D VTFinertial

�
V QX�

:

6.3.8 Verilog-A Specific Implementation

The ROM that we have developed in the previous paragraphs is a system of
equations that must be converted to satisfy Kirchoff’s law.

Each reduced DoF ri in QX is associated with an electrical signal r_i declared by
electrical r_i;. Its voltage V(r_i) being the unknown value of ri, while
its current I(r_i) represents the force applied.

It is sometimes useful to be able to probe a non-reduced DoF, for example,
to know how a specific point of the device has moved during the simulation.
Conversely, it is sometimes necessary to apply a force or set the position of a point.
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Suppose we are interested in the non-reduced DoF xi in X. Let Vi be the ith
row of V. An approximation of xi can be reconstructed out of the reduced DoFs by
xi � Vi QX.

This is represented in Verilog-A code:

I .x_i/ < CV .x_i/ – .V_i_0 	 V .r_0/ C V_i_1 	 V .r_1/ : : : / I

Applying a force fi to the point xi creates a column bi in the matrix B* that
is multiplied by fi. For the ROM, this column is reduced to Qbi D VTbi. The
corresponding term is added to each equation:

I .r_j/ < Cb_j_i 	 I .x_i/ I

Thanks to these operations, a pin representing xi can be created on the Verilog-
A module. It allows probing the value (voltage) of the reconstructed DoF when
applying a force (current), or vice-versa. In particular, these additional pins can be
used to connect external models to the ROM.

6.4 Toward Higher Level MEMS System Design

The tight integration of MEMS devices with surrounding electronic and control
systems introduces new needs and opportunities in complex system simulation.
Co-development of software and hardware subparts may considerably improve the
hardware and highly impacts the design of embedded systems [17]. To obtain these
improvements, the virtual prototyping methodology must be able to simulate the
overall assembly in order to quickly identify technical issues and incompatibilities
in early design phases. The following example is based on the SystemC standard and
its Analog Mixed-Signal (AMS) extensions. It demonstrates the ability to simulate
the behavioral model of MEMS devices, for instance an accelerometer, connected to
digital components responsible for the signal processing and the digital conversion
to a CPU.

6.4.1 HDL-Based Simulation Environment

HDLs address the design and the modeling of digital integrated circuits (ICs)
and aim at defining logic synthesis systems. VHDL and Verilog are the de facto
standards in industry, targeting the low-level simulation of ICs at the register
transfer level (RTL) or even at the gate level. Due to the increasing number of
analog components in ICs, these traditional HDLs were extended to permit both
digital and AMS simulations, for instance with VHDL-AMS and Verilog-AMS [18].
Nevertheless, these solutions remain decoupled from the development of software
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Fig. 6.11 SystemC-AMS architecture and models of computation definition [21]

running on the targeted architectures. To better address the concurrent development
of application-specific software and hardware, higher-level simulation languages,
mostly based on C/CCC, emerged over the last decade [19].

SystemC [20] is a CCC library for system-level simulation of digital hardware
and software. This standard describes a system as an interconnected set of pro-
cessing entities scheduled by an event-driven simulation kernel. This environment
also enables early functional and architectural verification through a dedicated
framework such as the Universal Verification Methodology (UVM). Furthermore,
AMS extensions have been developed and standardized in SystemC-AMS [21]. This
standard defines the synchronization between the discrete event and continuous-time
solvers that are responsible, respectively, for digital and analog component simula-
tion. This mechanism enables the definition of additional models of computation
(MoCs) [22], each dedicated to a specific physical domain (Fig. 6.11). Never-
theless, SystemC-AMS still has limited efficiency for capturing continuous-time
behavior, especially nonlinear behavior [23]. Despite these drawbacks, SystemC-
AMS is worthwhile for simultaneously simulating software and hardware with
additional analog peripherals, such as MEMS devices. Another potential advantage
of SystemC-AMS is its coupling with a verification process like UVM [24].

6.4.2 System-Level Integration

Integration of a MEMS behavioral model in SystemC-AMS has been achieved
with a linearized reduced-order model generated from MEMSC®

. This model is
represented by a state-space system in descriptor form as described in the previous
section. Behavioral nonlinearity is reconstructed during simulation, since it depends
on the current values of the states and inputs of the system.

The SystemC-AMS standard defines specific modules for the state-space repre-
sentation (sca_ss) in two different MoCs (sca_tdf, sca_lsf ), but they lack sufficient
support for matrix operations and nonlinear solving methods. On the one hand, the
TDF MoC is used for procedural behavior, i.e., processing samples tagged over
the time. The activation schedule of a set of interconnected TDF modules can be
statically determined since the number of read and write operations is fixed and
known in advance. This MoC is thus well suited for multi-rate signals. On the other
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Fig. 6.12 Integration of a MEMS reduced-order model in a SystemC-based test bench

hand, the LSF MoC is focused on the description of linear, time-invariant, non-
conservative systems using block diagram primitives. Switching and modulation of
module parameters through external signals are allowed. This makes the LSF MoC
more suitable for simple continuous-time controllers and filters. In this study the
TDF MoC is preferred since it directly handles the synchronization with SystemC
and should benefit from recent improvements [25].

The following example shows the integration of a MEMS behavioral model in a
SystemC-AMS test bench. The approach takes advantage of the hardware/software
co-simulation implemented in SystemC and the coupling with analog behaviors
allowed in SystemC-AMS. The method thus integrates the reduced-order model
introduced in the preceding sections and the associated solving methods directly
in a SystemC-AMS simulation environment. The reduced-order model is fully
accessible through a CCC Application Programmable Interface (API) which allows
configuring the model and accessing it during simulation. The inter-connection of
the model in the test bench satisfies the SystemC-AMS standard.

6.4.3 Test Bench Implementation

In this example, a MEMS model encapsulated in a TDF module is connected to
analog and digital components that implement a traditional digital signal processing
(DSP) workflow (Fig. 6.12). The inputs of the microsystem are both mechanical
and electrical stimuli, set to analyze the system response to an acceleration step.
The MEMS output capacitance is amplified, converted, and filtered through DSP
modules finally sent to a CPU through specific bus protocols (I2C, SPI : : : ).

This example demonstrates a valuable simulation environment since the MEMS
model can be shared between designers and engineers responsible for its integration.
While preserving the integrity and accuracy of the model, this framework allows
system engineers to test and verify that the hardware/software application is
consistent with regards to external devices, such as sensors.

The test bench has been simulated with an accelerometer similar to the one
introduced in the section above. This latter is connected to the corresponding
stimuli sources (voltage, acceleration) in order to verify its mechanical response
to an acceleration step of amplitude 1g. The same accelerometer behavioral model
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has also been simulated with MATLAB Simulink to verify the accuracy and the
performance of SystemC-AMS simulation.

The study first compares the reduced-order model against the full one initially
created in MEMSC®

in order to verify the accuracy of the method. The relative
error of the simulation is fairly low (<1 %) and mainly induced by the ROM process
itself, as verified on different simulators.

The integration scheme produces white noise on the output signal, i.e., the
capacitance variation. This signal, once amplified and filtered, is converted into
an 8-bit signal better suited to further digital processing (Fig. 6.13). This example
demonstrates the ability of SystemC-AMS to handle signal processing and bit con-
version. Moreover the simulation runs quite fast compared to alternate approaches.

6.4.4 Conclusion and Perspectives

The system-level simulation of MEMS devices through an extended version of
HDL, such as SystemC-AMS, introduces new capabilities to better address the
virtual prototyping of complex systems.

First, the evolution of HDLs tends to handle at early stage the co-development of
specific hardware/software applications. This is especially enabled by combining
system programming languages, like C/CCC, with traditional HDL synthesis
methodologies. Furthermore APIs augment the capabilities of simulation software
tools by connecting them with other domain-specific environments. Finally model-
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ing methods, like MOR, define lightweight solutions while preserving the accuracy
of behavioral models and thus speed up the simulation.

Nevertheless, despite their performance and coherency, monolithic architectures
like SystemC-AMS remain extremely limited in terms of extensibility, i.e., the
definition of new MoCs, and scalability, since the simulation relies on a single-
thread kernel. These drawbacks also highlight the challenges of handling, in a
common simulation environment, models describing different physical domains.

Alternatively, co-simulation frameworks combine multiple domain-specific tools
and orchestrate the overhaul simulation. Accuracy is preserved, but the performance
of such solutions is unacceptable at early design phases. Moreover the interfaces
defined by the FMI [26] or HLA [27] standards suffer from a lack of adoption,
especially due to their intrusive definition of synchronization and orchestration
mechanisms directly inside the simulators.

Focused either on combining models (monolithic architectures) or simulators
(co-simulation frameworks), the current solutions introduce novel design and
simulation methodologies for integrating complex assemblies at the system level.
They mostly rely on the collaboration between expert teams, as shown here for
MEMS devices. These methods also call for greater convergence of virtual and
physical prototypes through dedicated software solutions that will be even more
flexible and connected to better address the complexity of such systems.
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Chapter 7
Modeling and Simulation of the Power Flow
in Smart Systems

Sara Vinco, Alessandro Sassone, Massimo Poncino, Enrico Macii,
Giuliana Gangemi, and Roberto Canegallo

7.1 Introduction

Besides their heterogeneity in the type of devices, the other distinctive feature of
smart systems is their being energy-autonomous; they are normally equipped with
one or more devices able to harvest power from the environment, and, in many cases,
also with elements that can smooth fluctuations in the harvested energy and deliver
it to the various loads with a predictable “quality of service.”

From the modeling and simulation point of view, the presence of these types of
devices (generating or storing power) poses significant challenges. As a matter of
fact, these components do not have a true functionality that can be described in the
same way as a typical “functional” device like a processor core or an accelerator.

Let us consider for instance a scenario in which we are executing the RTL
simulation of a processor core; functional simulation will track the cycle-accurate
evolution of the core. If we want to monitor the power consumed by the core, we
will leverage a properly characterized power model that will depend on the core
state, frequency, and voltage so that we can track power cycle-by-cycle.

Now consider the case of a battery. It is evident that we cannot incorporate
a battery to the RTL simulation scenario because the battery does not have any
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equivalent of a logic-level functionality. The “functionality” of the battery has
a completely different semantics and will involve how it delivers power (i.e., a
requested current at a given supply voltage) over time based on the dynamics of the
request. Therefore, the integration of energy storage devices (ESDs) into simulation
implies speaking a “different language”: it is not digital signals bringing information
about functionality to be simulated, but rather power signals, i.e., voltage and
current. The same clearly applies to devices generating power.

We could call this strategy a “native” power simulation, because it is power which
is explicitly simulated as a (non digital) signal. Clearly, the link to functionality
should not be lost. What components do in terms of computation is reflected by the
power consumption.

Solving this issue is in principle relatively straightforward: one could for instance
build an electrical circuit equivalent of the various components and simulate the
whole thing using an electrical simulator like Spice. There are however two main
difficulties with this strategy. Firstly, it could be tricky to abstract the behavior of
some components as an electrical network; for instance, it is not obvious how a
processor could be represented as a circuit element. Secondly, if the objective of
simulation becomes to evaluate the power flow in a system over the typical duration
of a battery discharge (several hours), it becomes unfeasible to use circuit-level
simulators for that purpose.

A desirable solution should (1) provide a sufficiently high-level of abstraction in
the simulation so to enable long simulation times, (2) abstract behavior of functional
blocks to enable focusing on power as the quantity explicitly tracked in simulation,
and (3) keep the link with functional simulation. As an additional desirable property,
the simulation framework should be open and help re-using already existing models
for the functional components.

This chapter describes a methodology for addressing the above issues based on
this “native” power modeling and simulation approach, which relies on the use of
a standard hardware description language (HDL), namely SystemC, and exploits
its extension to model and simulate analog and mixed-signal components, thus
enabling the concurrent simulation of functionality and the tracking of power. The
approach relies on the definition of a unified interface for the various components of
a smart system from the power perspective (ESDs, power sources, power converters,
interconnects, and functional components—regarded as “loads”) and a “meta-
modeling” approach in which models of actual devices are fitted to the model
templates defined by those interfaces.

The effectiveness of the proposed approach is demonstrated on an industry-
strength smart system prototype, where significant performance speedups against
model-based tools were achieved.
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7.2 Power View of a Smart System

Figure 7.1a depicts the classical architecture of a smart system, consisting of a bunch
of sensors generating signals that are first amplified and converted in the digital
domain. Here, the digitized signal is variously processed (e.g., filtered) by custom
and/or programmable components (generically labeled “digital processing” in the
figure). The results are reconverted into the analog domain and returned to the user
in the form of some physical signals through appropriate actuators. Superimposed
to this “functional flow” (i.e., involving how the data are processed), the dotted
arrows denote another flow of signals, this time involving the distribution of power.
Similarly to the functional flow, but involving different components, the power
is extracted from the environment by a set of scavengers exploiting a multitude
of transduction mechanisms from various domains (mechanical, electromagnetic,
chemical, acoustic, and thermal) into the electrical one. This harvested power is
delivered either to the various functional components, which will consume it, or to
devices that are able to store it.

From the power perspective the view of the smart system can be refined to that of
Fig. 7.1b, in which the behavior of the functional components is now immaterial—

a

b

Fig. 7.1 Functional and power “Flows” in smart system. A smart system from the functional
perspective (a) and from the power perspective (b)



172 S. Vinco et al.

what matters is that this behavior translates into a consumption of power over time.
For this reason all these components have the same “behavior” from the power
perspective and are seen as loads.

Figure 7.1b emphasizes another characteristic that translates into a technical
difficulty while modeling and simulating the flow of power. Power represents the
current drawn or generated by a component at some voltage level; it is evident
that it is not possible to directly interface components that are at different voltage
levels. Appropriate voltage conversion is therefore needed (green blocks labeled
Conv in the figure) between any two blocks. Notice that the various functional
components often have disparate supply voltage levels (e.g., digital, analog, I/Os).
This is typically implemented by converters (mostly DC/DC, but also AC/DC for
alternate current power sources).

In order to allow scalability, similarly to what is done to “functionally” connect
components of an architecture, it is preferable to avoid point-to-point connections
and rather use a “power bus,” which represents a common connector at a given
voltage. We will call this the DC-bus, since the majority of components involved
in a smart system uses direct current. While in some application domains (e.g.,
automotive, microgrids) such buses are often standardized, this is not the case for
electronic systems.

In the case of the power sources (the scavengers) there is an additional complica-
tion. These elements typically generate variable amounts of power (for a given value
of the harvested quantity) that depend on the electrical connection with the load(s).
As an example, if we take a thermo-electric harvester, for a given temperature
difference, the actual power (voltage/current pair) that can be extracted depends
on the matching with the load. This is the well-known issue of the maximum power
transfer, which has a very simple electrical solution in the maximum power theorem,
stating that the extracted power is maximum when the internal impedance of the
source matches that of the load. Since the load is not always constant (and so is
the internal impedance of the source because it is affected by the environmental
conditions), the power “adaption” of a power source requires appropriate circuits to
dynamically extract the maximum power; these are called maximum power point
transfer (MPPT) circuits, and are variants of basic converters that can match input
(source) to output (load) power dynamically.

The following sections describe the approach we adopted to model the
power/energy flow in a smart system, encompassing all the challenges described
above.

7.3 Vision and Approach

The goal of the simulation of the power perspective of smart systems is to trace
power flows, with the goal of achieving an early assessment of system behavior
and of validating the dimensioning of the energy providers. In the proposed
framework, power flows are represented in terms of voltage levels and current
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demand/production over time of the various components. For this reason, voltage
(V) and current (I) are the main dimensions of each component, and will be the
focus of overall simulation.

Components naturally have different roles w.r.t. the power flow, i.e., each system
includes component that either consume, generate, distribute, or store energy. This
difference is reflected upon simulation: components with different roles will have
different interfaces and models. It is thus necessary to provide a classification of
system components and to construct a template to be used as reference for the overall
framework, as presented in Sect. 7.3.1. Section 7.3.2 completes the template with the
interface of each class of components. Finally, Sect. 7.3.3 outlines the main models
available in the literature, together with some implementation guidelines for the
construction of the overall framework.

7.3.1 System Architectural Template

Figure 7.2 outlines the proposed template of a smart system from the power
perspective. Each system features a certain number of loads, i.e., components that
require a given amount of power to implement a certain functionality (e.g., digital
cores, MEMS, analog, and RF components). Power can be provided by either

Fig. 7.2 Template of the reference architecture of a smart system from the power perspective,
including the power bus and the connected components
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ESDs or power sources. ESDs can be of different natures, ranging from batteries to
supercapacitors and fuel cells. Power sources are almost infinite sources of power,
such as photovoltaic cells or thermo-electric energy generators, used for either
satisfying the loads power demand or for charging ESDs. ESDs and power sources
are managed by an arbiter. The arbiter monitors the state of charge (SOC) of the
ESDs, to determine whether they can provide energy or they have to be charged.
Furthermore, the arbiter determines what ESD or power source to use, based on the
loads request for power. All components are connected through a power bus, that
allows for the energy to combine and propagate within the system (either as an ideal
conductor or with some power loss). Each component is connected to the power
bus through a converter module, necessary to maintain compatibility of voltage
levels. Connections between different subsystems are finally managed by bridges,
that behave as converters between two power buses.

It is important to note that any system may contain a number of each type of
components. The fundamental requirement is that any system contains at least one
ESD or one power source, to provide energy to load components.

7.3.2 Power Interfaces

The different role of components impacts on their simulation characteristics. Energy
providers may be enabled or disabled, depending on the operating conditions (e.g.,
to prefer a power source to an ESD, whenever possible). Furthermore, ESDs require
an intrinsic status information, to trace the available charge over time. As a result,
the interface of a component strictly depends on its role inside of the system, thus
reflecting the information and energy flow w.r.t. the other components.

Table 7.1 lists the main components, together with their typical number of
occurrences and the ports and connections modeled in the system. (For the sake
of clarity, it is assumed that the system contains only one component per type, i.e.,
l D s D p D 1.) In this version of the system, the power bus and the arbiter have
been merged in a single component, as the goal is to provide a simple simulatable

Table 7.1 Interface of each class of components

Component Instances (#) Power interface

Load l (V , I)

ESD s (V , I, SOC, E, En)

Power source p (V , I, En)

Converter c D s C p C l (V , I, V , I)

Arbiter 1 ((SOC, E, En)s, (En)p, (V , I)c)

Power bus 1 ((SOC, E, En)s, (En)p, (V , I)c)

Bridge b (V , I, V , I)
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interface, rather than to reflect the physical components of the power system. This
enhanced power bus constitutes an abstraction of the power behaviors of the overall
heterogeneous system.

The interface of each component describes what power information is shared
with the remainder of the system. V and I are voltage and current, respectively.
SOC and E are the SOC and the energy (i.e., capacity) of the ESD components. En
is an enabling signal, used by the arbiter to activate an ESD or a power source.
Environmental parameters that may influence the behavior of components (e.g.,
temperature and solar radiation) are not modeled on the component interface, as
they affect the component behavior rather than the overall system.

The system energy flow moves energy from ESDs and power sources to loads.
As a result, the interface of each class of components is as follows:

• loads share information about required current (I) and operating voltage (V);
• ESDs share their voltage (V), whereas they are provided with the current demand

(I) of the system. Furthermore, they must communicate their SOC and their
nominal capacity (E), so that they can be activated by the arbiter through an
enable signal (En) depending on the actual energy capability;

• the interface of power sources includes the supplied current (I) and voltage (V),
and an activation signal (En);

• the key role of the arbiter is to determine what ESD or power source to use,
based on the loads request for power. Therefore, its interface includes a couple
of (SOC, E) ports for each ESD and an activation signal (En) for each ESD and
power source;

• the power bus connects all components, thus its interface consists of a number of
I and V ports;

• converters feature a couple of ports (I, V) for the input and output values of
current and voltages of each connected component;

• bridges act as converters between different power buses, and thus feature a couple
of ports (I, V) for each connected bus.

7.3.3 Power Models and Implementation

The definition of the system template and the formalization of simulation interfaces
constitute a skeleton of the simulation framework, as they formalize energy and
information flows. Each component must then be implemented by adopting state-of-
the-art models. An extensive presentation of the available models is out of the scope
of this section, as they will be presented in Sect. 7.4. Nonetheless, it is necessary
to discuss some of their characteristics to determine the desired features of the
simulatable framework.

Available models strictly depend on the modeled class of components, but they
can be classified in terms of abstraction level, i.e., in terms of accuracy w.r.t. the
simulated physical phenomena. Functional models implement component evolution
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with a function (e.g., modeling an equation, a finite state machine, or even a simple
waveform). A well-known example of functional model is the Peukert’s model
for batteries [19]. On the other hand, circuit models emulate the evolution of a
component by building an equivalent electrical circuit [18], reproducing the internal
dynamics of the component.

The proposed framework for simulating the power aspects can be implemented
in a number of languages, ranging from MATLAB/Simulink up to HDLs, depending
on the desired characteristics and tradeoff in terms of speed and accuracy. However,
the coexistence of heterogeneous levels of detail imposes some requirements on
the language adopted for its implementation. It must indeed support different
levels of abstraction, to model both discrete-time functional models and circuit
elements. Furthermore, the language must be modular, i.e., separate the modeling
of component interface and connections from the implementation of its behavior. It
must thus be possible to adopt different implementations for the same component,
depending on the target (i.e., accuracy or performance), without affecting its
interface and the remainder of the system. Finally, the adopted language should
enhance reuse, to allow the construction of a library of configurable models that
may be reused at later stages of design or in future systems.

7.4 Power Components

Models available in the literature strictly depend on the target class of components.
This section sketches how each class can be modeled, by adopting effective state-of-
the-art models suitable for the proposed system-level approach. Note that the current
work is restricted to direct current (DC) systems, as smart system components
rarely support alternate current (AC). As an example, the only AC power sources
are scavengers based on piezo-electric mechanisms; in this case we assume the
generated AC power is rectified directly inside the power source device, which
therefore outputs DC voltage and current.

7.4.1 Loads

The term “load” comprises any component requiring a given amount of power to
implement a certain functionality, e.g., digital cores, MEMS, analog, and RF com-
ponents. This chapter treats such components with a very different perspective w.r.t.
the remainder of the book. Their functional evolution is indeed disregarded, and
components are seen as black boxes that require a certain amount of current (I) at a
given voltage level (V), as shown in Fig. 7.3. An additional enabling signal (En) may
be used to make the load controllable, i.e., to activate or deactivate its functionality
depending on the power flows in the system. As an example, in case that the energy
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Fig. 7.3 Generic interface of
a load
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Fig. 7.4 Examples of power models for loads: execution traces for current and voltage (a),
synthetic statistic traces (b), and a power state machine (c)

production is extremely limited w.r.t. the demand, it may be necessary to disable
non-critical loads, to guarantee correct operation of critical components.

The interface adopted for loads highlights that the focus of the overall chapter
is solely on tracing the smart system energy flows, represented in terms of voltage
levels and current demand/production over time of the various components. The
main consequence of this view is that models for functional components are
simplistic, to the point that they may fall back to synthetic V and I traces over time.
Figure 7.4 shows some of the mostly adopted models for loads, divided depending
on the different levels of adherence to the component evolution.

The most accurate models are execution traces, obtained with experimental
measurements applied to the component during a typical excerpt of its execution.
These models are made up of a couple of waveforms reproducing how current
demand and voltage actually evolved over time during the sampled execution
excerpt. The traces may be repeated periodically, to simulate longer executions.
Figure 7.4a exemplifies this by showing a trace for current demand (left) and one
for voltage level of the component (right).

In case experimental measurements are not possible or they are considered
too accurate for simulation purposes, they can be replaced with synthetic traces
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(Fig. 7.4b). The accuracy of such models strictly depends on their construction
process. Typical consumption and voltage values can be extracted from component
datasheet, and the trace may be built by relying on statistical information, by
reflecting some “typical” consumption profile of the component, e.g., power values
that are more frequent than others. Figure 7.4b shows an example trace modeled as a
bimodal distribution (left), where the most frequent values correspond to the typical
active and idle current demands (right).

Finally, loads may be modeled as state machines listing the internal states of
the component (Fig. 7.4c) [5]. Transition from one state to another may depend on
overall system information or on timers, reproducing a typical execution flow of the
component and its dynamic power management policy.

The presented kinds of models stress even more that, when focusing on power,
the dependency w.r.t. functional execution is broken. The focus is indeed on the
dynamics of the energy providers (e.g., batteries and scavengers), rather than on the
actual load behavior. In case the adopted language for framework implementation
supports functional modeling, it is still possible to make the power models depen-
dent on the functional execution, e.g., by predicating the edges of the finite state
machines with conditions on functional evolution. However, this is out of the scope
of this chapter.

7.4.2 Power Sources

Among the various components, the most diverse of all are power sources, i.e.,
elements that generate power by transforming some environmental quantity in
electrical energy. The variety of their characteristics tends in fact to follow the scale
of the relative system: they range from the �W/mW scale of MEMS-based energy
micro-scavengers to the MW scale of large wind turbines, and the very scavenging
mechanism can be quite different.

This variety in the typologies of power sources makes their modeling poorly
scalable and marginally re-usable, thus complicating the objective of using an
as much as possible unified modeling approach. The large variety of types of
power sources is reflected thus by the many available options for their modeling,
ranging from multiphysics-based mechanical models [8, 9] and equation-based
mathematical models [11], up to electrical circuit equivalent models [4, 22], and
functional (continuous or discrete-time) macro-models suitable for system-level
simulation [10, 31].

Any power source can be considered as a component that generates voltage and
current waveforms over time, as shown in Fig. 7.5 (signals V and I). The power
produced by the power source strictly depends on the harvested quantity, modeled
as an input waveform over time (signal H). The power source may be further affected
by other environment characteristics, such as temperature (signal E). The proposed
model is clearly agnostic both of the type of power source and of the scale of
managed energy.
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Fig. 7.5 Generic interface
for power sources
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Fig. 7.6 Examples of datasheets graphs: (a) a Class 1 graph for the photovoltaic cell in [20] (each
curve is associated to a value for irradiance); (b) a Class 2 graph for the piezo-electric harvester in
[3] (parameterized w.r.t. the corresponding acceleration value); (c) a Class 3 graph for the piezo-
electric harvester in [15]

The analysis of more than 50 datasheets for different types of power sources,
including photovoltaic cells and piezo-electric harvesters, leads to the definition of
three main templates for describing power source behavior:

• Class 1 graphs are Current vs. Voltage or Power vs. Voltage graphs (Fig. 7.6a),
that reproduce the dependency w.r.t. the harvested quantity through a number of
current/voltage (power/voltage) curves, each one associated with a specific value
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for the harvested quantity [6, 15, 23]. Power/voltage plots are similar, since they
are straightforwardly derived from current/voltage ones by multiplying voltage
and current values.

• Class 2 graphs are Power vs. Resistance graphs. This type of specifications, often
used for piezo-electric power sources [3], models the power source as a family
of power/resistance curves, each associated with a specific value of the harvested
quantity (Fig. 7.6b).

• Class 3 graphs are Power vs. Harvested Quantity graphs, popular as specifica-
tions of piezo-electric harvesters [15] (Fig. 7.6c). Here voltage is defined in the
datasheet as one or more pre-defined voltage levels, while current must be derived
from the voltage and the power behavior.

As a reference form, we adopt Class 3, i.e., power vs. harvested quantity graphs,
as these curves conceptually represent the actual “behavior” of a power source, i.e.,
a device that generates power according to some environmental quantity. It is thus
necessary to re-cast the other two classes of graphs to the canonical form, by making
the dependency on the harvested quantity explicit.

Both the classes associate a curve to each value of the harvested quantity, thus
not univocally identifying an output quantity (i.e., either power or voltage). The
necessary transformations reduce the graph to the canonical form by extracting the
maximum power point (MPP) of the device w.r.t. the harvested quantity [12], i.e., by
determining voltage and current values that yield the maximum power for a given
environmental condition. In case of power vs. voltage graphs (Class 1) or power vs.
resistance graphs, the MPP for each value of the harvested quantity is the maximum
of the corresponding curve. Current vs. voltage graphs are instead reduced to power
vs. voltage graphs. The power source general model can then be easily constructed
by plotting the MPPs for the known values of the harvested quantity, which can be
interpolated to define a continuous curve. Figure 7.7a highlights the MPP for each
irradiance value on the current vs. voltage Class 1 graph in Fig. 7.6a (left) and the
resulting canonical form (right-hand side). Figure 7.7b shows the result of applying
the same approach to the Class 2 graph in Fig. 7.6b.

The behavior of the power source is then described as a pair of curves extracted
from the canonical form, modeling voltage and power vs. the harvested quantity.
Note that the extraction of such information is agnostic both of the type of power
source and of the scale of managed energy, and it allows to include the power source
models in a wide range of simulation infrastructures.

7.4.3 Energy Storage Devices

Although the approach described hereafter conceptually applies to any device
capable of storing energy, in this chapter we restrict ourselves to ESDs that are
typical of smart systems, namely, batteries and supercapacitors.
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Fig. 7.8 Generic interface of
an energy storage device
(ESD)

As introduced in Sect. 7.3.2, one key feature of our methodology is to assume a
unique interface for a given type of component. Similarly to power sources, ESDs
require a general interface that can fit the large variety of available devices. As
described in Sect. 7.3.2, such interface is as depicted in Fig. 7.8.

The interface contains the two “native” quantities, i.e., voltage (V) and current
(I); notice that unlike loads and power sources, for ESDs these signals are
bidirectional, since it is expected that an ESDs can both accumulate and deliver
energy.
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Moreover, an ESD features two state signals, denoting respectively its SOC
and its residual nominal capacity (E). Although the two are related, their relation
depends on the type of ESD and therefore two separate signals are maintained.
Finally, a control signal Enable allows one to selectively disconnect the ESD from
a load or source to implement specific management policy.

7.4.3.1 Modeling of Batteries

We consider two popular models with different tradeoffs between accuracy and
complexity, namely a functional model based on Peukert’s law and a behavioral
model based on a circuit equivalent of a battery. These two models are general
enough to be applied to any type of battery (chemistry or form factor) and they
can easily be identified based on a limited set of information typically available in
battery datasheets [18].

The functional model based on Peukert’s equation expresses the non-linear
relation between the battery current I and the equivalent capacity (represented in
our model by signal E) through the Peukert’s coefficient n > 1 [19]:

E D In � t

here t denotes time. The SOC of the battery in this model is obtained as

SOC D 1 � I � t

E

This model is able to track the load-dependent capacity property of a battery,
but not its sensitivity to the current dynamics; current I is assumed to be constant.
Identification of this model, i.e., determining its only parameter (n), can be easily
done by tabulating (current, discharge times) pairs from the typical battery discharge
curves contained in datasheets (Fig. 7.9a) and by fitting these values against a 1

In

curve equation (Fig. 7.9b) [18].

a b

Fig. 7.9 Identifying Peukert’s equation from battery discharge curves. Battery discharge curves
(a) and corresponding Peukert’s equation built from the extracted (current, discharge time) pairs (b)
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The second and more accurate model is an electrical circuit equivalent that
mimics the battery behavior [21]. Although many circuit equivalent have been
proposed in the literature, we adopt a relatively simple model (Fig. 7.10) that
simplifies its identification process by requiring only a few, publicly available
information.

The model consists of a left part that models the battery lifetime, and consists
of a capacitor C (representing the storage capacity of the battery in Amp-hours),
and a current generator representing the current requested by the load Ibatt. The
rightmost part models the transient behavior (dynamics) and is mainly characterized
by the resistor R that denotes the battery internal resistance; the voltage drop R � Ibatt

that affects the actual battery output Vbatt mimicks the fact that the battery voltage
is adversely affected by larger currents. The connection between the two parts is
modeled by the voltage generator VOC.VSOC/: it represents the fact that the open-
circuit (OC) voltage of the battery depends on its state-of-charge (SOC), represented
by the potential VSOC of the capacitance. Notice also that in the most general case,
the internal resistance is also depending on the SOC.

This baseline model is quite modular and can be augmented by incorporating
additional elements such as [18]:

• Accounting for the frequency dependence of the internal resistance, i.e., making
it an internal impedance; this corresponds to adding one or more RC blocks with
different time constants to model short- or long-term components of the transient
behavior.

• Accounting for the self-discharge of the battery; this is done by adding a resistor
in parallel to the capacitance C.

Other “non-behavioral” effects such as temperature dependence or aging can also
be included by adding electrical components in the circuit equivalent; since these
variants represent long-term effects that are noticeable only across several charge–
discharge cycles (days or months) they are not considered in this chapter, and we
refer the reader to [7] for a comprehensive overview.

The basic model of Fig. 7.10 can be easily identified by using the (voltage,
capacity) or (voltage, SOC) curves provided in most datasheets. At least two curves
(for different discharge currents) are needed to determine the internal resistance R
(Fig. 7.11) as described in [18]. At a given voltage, the two curves provide two
reference points of the battery voltage Vbatt.SOC1/ (corresponding to a current I1)

Fig. 7.10 Circuit-equivalent
model template used for
batteries
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Fig. 7.11 Model parameter
identification for the model of
Fig. 7.10

Fig. 7.12 Equivalent circuit
model of a supercapacitor

and Vbatt.SOC2/ (current I2). By writing the voltage equations in the right-side mesh
of the circuit we can write two equations (corresponding to the two currents I1 and
I2) that allows determining the two unknowns, i.e., R.VSOC/ and VOC.SOC/.

7.4.3.2 Modeling of Supercapacitors

Being an electrical device, a well-accepted model for supercapacitors is an equiv-
alent electrical circuits; as for batteries, the circuit can have different levels of
complexity, depending on the phenomena considered in the model [13].

The circuit considered in this chapter is depicted in Fig. 7.12. This first-order
model consists of three main components. The capacitor obviously represents the
nominal capacitance of the supercapacitor. The series resistance Rs, usually referred
to as the equivalent series resistance (ESR), is the main contributor to power loss
during charging and discharging of the capacitor; its values are generally quite small
(in the order of m
s). The model includes also a parallel resistance Rp which affects
s the self-discharge of the capacitor. Rp is always much larger than the ESR (order
of k
s).

More sophisticated supercapacitors models have been devised in the literature;
they might include a series inductance, a voltage-dependent capacitor in parallel
with C [33], or replace the (C; Rs) pair with a series of cascaded RC elements to
model the frequency dependence of the capacitance. Although the model Fig. 7.12
abstracts away these second-order effects, it is accurate enough for a system-level
exploration of the power flow for our context.
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Identification of the three main model parameters (C, Rs, and Rp) in Fig. 7.12 is
immediate for the former two, but less obvious for Rp. Supercapacitor datasheets
systematically provide data for C and Rs, but very seldom information about Rp. For
this reason, in this chapter we disregard Rp in the model (i.e., assume Rp D 1) and
stick to a simple R-C series model of the supercapacitor. In this way, the two values
of C and Rs need simply to be transcribed from the corresponding datasheet.

With this choice, we neglect the self-discharge behavior of the supercap; as
a matter of fact, the battery models considered in the previous section do not
include the modeling of self-discharge either (although this effect is less evident
in batteries). In that respect, therefore, the battery and supercapacitor models used
in our analysis are consistent in terms of modeled effects.

7.4.4 Power Conversion and Steering

This section encapsulates two classes of components, both in charge of steering the
flow of power inside of a system. The power bus provides a reference voltage level
to all system components. Converters allow to maintain compatibility of voltage
levels whenever components operating at different voltages are connected. Note that
bridges are viewed as converters between special components, i.e., power buses.
Thus, they are not presented separately.

7.4.4.1 Power Bus

The power bus, also called DC bus or CTI (charge transfer interconnect), is essential
to carry around a given voltage level similarly to what happens to “functional” buses
in a computing system.

Generally speaking, the power bus is nothing but a wire that holds a given voltage
level. Therefore, any model suitable for electrical interconnects can work to model
the power bus—options range from ideal wires to distributed RLC interconnects.

Accurate models of the power bus are particularly relevant in larger-scale energy
systems such as micro-grids or hybrid electric vehicles, where interconnections
connect components over large areas and support high voltages and can thus incur
in significant losses. In smart systems, where the lengths of this interconnect is
relatively small and voltages in the order of a few volts are supported, we do not
need an extremely accurate model for the power bus. In our work, we envision two
simple options with increasing accuracy:

1. an ideal dc bus consisting of an ideal wire and a voltage generator at the desired
bus voltage;

2. a purely capacitive bus, whose capacitance is determined based on the overall
bus length and size.
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Fig. 7.13 Generic interface
of a DC/DC converter

7.4.4.2 Power Converters

As mentioned in Sect. 7.2, interfacing two different voltage domains requires some
adaptation. Since in our context all signals are DC, only DC/DC conversion
is relevant. The generic interface of a DC/DC converter (Fig. 7.13) consists of
two pairs of voltage and current signals. For generality, in the figure signals are
bi-directional to denote the possibility of a bi-directional flow of the power.

Functionally speaking, the DC/DC converter simply adapts input power to match
output power by mean of appropriate circuitry. This process can be characterized by
the efficiency of the conversion �:

� D Pout

Pin
D VoutIout

VinIin

The conversion is in general non-ideal and not all input power is transferred to the
output, hence � < 1. The difference between Pout � Pin represents the losses of
the converter. A detailed description of architectural and circuit variants of DC/DC
converters, as well as a characterization of the losses is out of the scope of this
chapter; for a detailed overview the reader can refer to [32].

Since the DC–DC converter is an electronic device, in principle a circuit-level
model consisting of the interconnection of the discrete components would guarantee
the highest accuracy. However, this would require a specific model for any specific
type of converter (e.g., switching vs. linear) and would slowdown the overall
simulation. Conversely, a system-level, functional model of the DC–DC converter
describes its efficiency does capture all the non-idealities and is also independent of
its implementation.

Key for such a model is the determination of the model parameters, i.e., which
quantities affect efficiency. In general, conversion efficiency is affected, in order
of relevance, by (1) output current Iout, (2) difference between input and output
voltage �V D jVin � Voutj, and (3) absolute values of Vin and Vout. This applies
to the most complex converter architectures containing diodes, inductors, and
capacitors (switching converters). For simpler architectures like those based on
resistive elements (linear converters), efficiency is essentially determined by �V .

Figure 7.14 shows an example efficiency curve from a step-down switching
converter by Maxim [14] in which we can notice how efficiency is quite far from
the ideal value, especially when Iout gets smaller.
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Fig. 7.14 Converter efficiency curves for the maxim 1626 step-down converter (when assuming
Vout equal to +3.3 V)

Based on these considerations, we model the power flow of a DC–DC converter
through its efficiency, as a quadratic function of the two most relevant parameters
(Iout and �V), as follows:

�.Iout; �V/ D k1I2
out C k2�V2 C k3Iout C k4�V C k5:

In case the dependency of efficiency on one of the two parameters is irrelevant (e.g.,
Iout for linear converters), that parameter will simply not appear in the equation.
Coefficients ki; i D 1; : : : ; 5 are calculated by least-square fitting of the model
template, using data obtained by digitizing the efficiency curves provided in the
datasheet of the specific device.

7.5 Implementation

The system-level vision of the power dimension of a smart system proposed in
Sect. 7.3 may be implemented in a number of languages and frameworks, depending
on the desired speed/accuracy tradeoff and on the need for integration with other
simulation tools. In this work the choice fell on SystemC and on its Analog Mixed
Signal (AMS) extension [1, 2] for two main motivations. First of all, SystemC is
a standard language, thus extensible and free from compatibility and reuse issues,
typical of proprietary tool. Furthermore, both SystemC and SystemC-AMS cover a
number of abstraction levels, thus allowing to cover a wide range of models and to
find appropriate simulation speed/accuracy tradeoffs. The following of this section
details the implementation process.
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7.5.1 SystemC and Its AMS Extension

SystemC is a widely deployed extension to C/C++ for describing HW constructs,
ranging from register-transfer level up to transactional level [1]. Its recent AMS
extension was designed for modeling and simulating interacting analog/mixed-
signal functional subsystems [2]. This allows to extend the adoption of a SystemC-
based environment also to extra-functional, continuous time domains [30].

SystemC-AMS provides different abstraction levels to cover a wide variety
of domains. Timed Data-Flow (TDF) models discrete-time processes, that are
scheduled statically by considering their producer–consumer dependencies. Linear
Signal Flow (LSF) supports the modeling of continuous time behaviors through a
library of pre-defined primitive modules (e.g., integration, or delay), each associated
with a linear equation. Electrical Linear Network (ELN) models electrical networks
through the instantiation of pre-defined primitives, e.g., resistors or capacitors,
where each primitive is associated with an electrical equation. In case of ELN
or LSF descriptions, a SystemC-AMS AD solver analyzes the ELN and LSF
components to derive the equations modeling system behavior, that are solved to
determine system state at any simulation time.

7.5.2 Power Simulation with SystemC-AMS

The implementation of the power perspective of a smart system requires the simul-
taneous simulation of models at different levels of abstraction, e.g., waveforms and
circuit-equivalent models. This may impact on synchronization: low level models
may introduce too many synchronization points, and it would thus be difficult to
determine a correct synchronization mechanism with higher level models. To this
extent, we adopted the TDF level of abstraction for all interfaces and connections.
This implies that synchronization between components happens at pre-defined
fixed time steps, e.g., once every millisecond (of simulated time). On the contrary,
component models can be implemented with the most suitable level of abstraction,
ranging from SystemC TLM up to SystemC-AMS TDF, or ELN itself. This allows
to determine a good tradeoff between accuracy of the model and effectiveness of the
synchronization mechanism.

To this extent, components are implemented as SystemC modules (i.e., instances
of SC_MODULE), to leave freedom to adopt any level of abstraction. The interface
adopts TDF ports (sca_tdf::sca_in and sca_tdf::sca_out), usually of
type double, to make overall simulation more efficient, and to enforce an efficient
interaction with components at any level of abstraction. An example of component
implementation is provided in Fig. 7.15, that shows an excerpt of code for the
implementation of a battery.
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Fig. 7.15 Example of SystemC-AMS implementation a battery by adopting two different models:
Peukert’s law [19] (left) and a circuit-equivalent model [18] (right)

Component evolution is handled differently, depending on the kind of adopted
model. Figure 7.15 outlines this idea by comparing two different implementations
of a battery. In case of functional models (e.g., waveforms, state machines, or
equations), the evolution is handled as a SystemC process, executed at fixed time
steps. As an example, the left-hand side of Fig. 7.15 models battery dynamics
with Peukert’s model [19]. If else the adopted models is at circuit-level [18], it
is implemented by describing the circuit as a network of SystemC-AMS ELN
components, instantiated and connected in a way that reproduces the circuit
specification (right-hand side of Fig. 7.15). Wrapping the ELN subsystem through
ELN–TDF converters allows to preserve synchronization with the rest of the system.

Figure 7.15 allows to highlight some of the advantages produced by the adoption
of SystemC-AMS as a target language. First of all, a single language allows to cover
two very different levels of abstraction, i.e., functional and circuit level. Different
types of models can thus be simulated simultaneously, leaving the interaction to the
underlying simulation kernel. This is advantageous w.r.t. co-simulation frameworks.
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Furthermore, SystemC-AMS separates the implementation of each component’s
interface and behavior. This modularity allows to preserve the interface when
varying the adopted model. In the figure, both implementations of the battery have
the same interface (lines 1–5), even if the implemented models are at very different
levels of details. This allows to adopt different implementations for the same
component, depending on the target (i.e., accuracy or performance), or with the goal
of comparing their behavior and characteristics, without affecting the connection to
other system components.

Finally, SystemC-AMS modules can be easily configured and reused for mod-
eling components with different characteristics. As an example, the SystemC-AMS
module can be adopted for modeling two different batteries by setting the different
capacity level and all the circuit parameters according to the methodology in
Sect. 7.4.3. Thus, the proposed methodology can be enhanced with the definition of
a library of models for the components, that can be easily instantiated and configured
at later times.

7.6 Case Study

This section demonstrates the effectiveness of the proposed framework in the
system-level exploration of the power flow of a smart system case study. The
framework is indeed compared in terms of simulation accuracy/performance against
one of the leading commercial model-based tools, i.e., MATLAB/Simulink [29].

The case study is an industry-strength smart system prototype that consists of
integrated devices incorporating sensing, power, computation, and communication
into one system. The devices are assumed to be autonomous; this means they have
been developed to minimize the power consumption and extend the energy storage
lifetimes or to be powered using energy scavenging sources. Figure 7.16 shows the
board prototype of the system case study. The building blocks of the system are:

Fig. 7.16 Board prototype of the smart system case study
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• Three load devices including: (1) a set of MEMS sensors such as a 3-axis
accelerometer, a MEMS pressure sensor and temperature sensors [25]; (2) a
32-bit ARM-based ST microcontroller used as computing unit to perform data
acquisition and control over all the operation of the system [27]; (3) an ST low-
power wireless radio for performing wireless data transmission [26]. All these
devices are modeled with their execution traces for current and voltage obtained
with experimental measurements, as showed in Fig. 7.3.

• A solid state lithium thin film battery by ST, with nominal capacity of 700 �A h
and nominal voltage 3.9 V [24]. The battery model is the equivalent circuit
depicted in Fig. 7.10.

• A Panasonic stacked coin type supercapacitor with 0.33 F capacitance modeled
with the equivalent circuit model showed in Fig. 7.12 [16].

• A DC–DC converter connecting the thin film battery to the power bus, where
the conversion efficiency is function of input voltage, output voltage, and
current [17].

• Four Texas Instruments TPS63060 DC–DC converters [28] connecting the
supercapacitor and the three load devices to the power bus. Their conversion
efficiency is function of input and output voltage.

• A PowerFilm Solar MP3-37 flexible PV thin film module made of amorphous
silicon cells optimized for indoor applications [20]. The behavior of the PV
module was modeled as described in Sect. 7.4.1, using the data from its current
vs. voltage graphs and a daily solar irradiation profile. The model includes also
an MPP tracking system in order to generate the maximum power quantity for
any irradiance value.

• The power bus modeled as an ideal DC bus consisting of an ideal wire and a volt-
age generator at the constant reference voltage of 3.0 V. Moreover, the power bus
is enhanced with an arbiter that abstracts the power behaviors of the overall sys-
tem. As long as the power drawn from the PV panel satisfies the power demand
of the loads, these are supplied by the power source. Otherwise, the loads are
supplied by the supercapacitor during high load power demand intervals, while,
during low load power demand intervals, the arbiter activates the thin film battery.

The model architecture of the system case study is shown in Fig. 7.17.
The system model was implemented in SystemC-AMS, by following the imple-

mentation process described in Sect. 7.5. Another instance of the system model was
implemented in MATLAB/Simulink, using the same models for each device. Sim-
ulations have been run by using MATLAB/Simulink R2013a, SystemC 2.3.1, and
SystemC-AMS 2.0beta. Both SystemC-AMS and MATLAB/Simulink simulations
used a 1 ms timestep, in order to preserve accuracy with respect to the smart system
application scenario. Simulations reproduce 10 h of operation of the smart system.

Table 7.2 shows, for both versions of the smart system model, the number
of samples (Samples (#)) and simulation time (Time (s)). Simulation times are
calculated as an average over a number of executions. The table shows also the
maximum and the average error in the estimation of battery voltage (Error Max.
(%) and Avg. (%)) with respect to MATLAB/Simulink.



192 S. Vinco et al.

Fig. 7.17 Model architecture of the smart system case study

Table 7.2 Accuracy and effectiveness of the proposed methodology w.r.t. MATLAB/Simulink

Samples Time Error

(#) (s) Max. (%) Avg. (%)

MATLAB
SIMULINK

42;600;002 2517:26 – –

SYSTEMC-AMS 42;600;020 86:80 0.04 0.0003

The SystemC version of the smart system model exhibits very high accuracy
with respect to the corresponding Matlab implementation (average error 0.0003 %,
maximum error 0.04 %). Concerning speed, SystemC-AMS proved to be 29� faster
on average than MATLAB/Simulink (as shown in Table 7.2). Such a slow execution
is due to the MATLAB/Simulink internal solver, whose computation is far heavier
than the efficient TDF and ELN SystemC abstraction levels.

Figure 7.18 focuses on an excerpt of the overall simulation (50 s) to show the
charge allocation policy implemented by the arbiter. In detail, Fig. 7.18b shows the
power extracted from the solar panel which is higher on average than the power
demanded by the loads, such that part of this power is used to recharge the battery
and supercapacitor, as shown by the SOC trends in Fig. 7.18a. In both the scenarios,
the waveforms generated by MATLAB/Simulink and by SystemC-AMS coincide,
thus highlighting the correctness of SystemC-AMS implementation.

7.7 Conclusions

The importance of simulating the flow of power in an autonomous smart device is
essential to assess the lifetime of the device or the appropriateness of the sizing of
its energy supply sub-system.
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Fig. 7.18 Excerpt of the simulation of the smart system case study: SOC vs. time for the battery
and the supercapacitor (a), power vs. time curves for the load devices and the PV panel (b)

In this chapter we have proposed an unified approach to the power simulation
that, thanks to the use of SystemC extensions to model the non-digital nature of
the power flow, allows a designer to concurrently simulate functionality (through
traditional SystemC TLM models) of the digital components and the power flow
by building and connecting appropriate power models for the “power” components.
The advantage of such homogeneous, SystemC-based approach is demonstrated on
a real industry-strength device, when a speedup of approximately 30� with respect
to Matlab simulations have been observed.
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Smart System Case Studies
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8.1 Introduction

The design of today’s smart systems requires integration-aware, component-level
design, modeling, and optimization methodologies applicable to different domains,
i.e., analog and digital electronics, MEMS, discrete and power devices and software.
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As a matter of fact, in each design domain there exist industrial design and
implementation flows leading from the specifications to a product; however, in the
innovative and increasingly feature-filled devices required by the market, largely
different components have to be assembled and squeezed into extremely small
volumes, and work together to attain the desired system behavior.

Miniaturized heterogeneous systems require the evaluation of functional and
non-functional, multiphysical interactions between the components and with the
environment: therefore, the integration of component and sub-system models in
a comprehensive simulation environment enabling fast performance evaluation
and design space exploration is more and more desirable. The effectiveness and
efficiency of the component-level design and modeling techniques have been
demonstrated and validated in the various test cases reported in the other chapters
of this book. This chapter aims at illustrating the system-level integration issues
introducing two case studies that integrate heterogeneous components: a laser beam
steering (LBS) pico-projector actuator and a wearable sensor node for reliable drift-
free limb tracking. In both cases, performance optimization is dependent on the
accurate and manageable representation of the different interactions between hard-
ware and software parts in mission-like conditions, enabled by model abstraction
and co-simulation methodologies, and that in this case is provided by the SMAC
Platform [1–3]. In addition, this chapter presents the description of an archetypal
smart system, an open-source test case (OSTC), on which model creation and
abstraction are demonstrated, and low- and high-level simulation methodologies
are largely employed. The OSTC has also a tutorial value, as its models are freely
downloadable and distributable to demonstrate the abstraction and simulation tools
abilities.

The chosen case studies potentially cover several key aspects relevant for the
co-simulation of multi-layer/multi-scale and multi-domain physical interactions:

• Vibrations/movement. The horizontal and vertical deflecting mirrors within the
pico-projector actuator are driven at different frequencies (up to resonance)
and their movement depends on physical features and control algorithms. The
wearable sensor node has to acquire physical parameters and track limb position
from static to relatively low-frequency dynamic conditions.

• Fluid dynamics. In the pico-projector actuator, the air molecules around the
mirrors have to be considered as a fluid.

• Acoustics. At a lower scale, the effect of air drag (the torsion of the fingers of
the micromirror in the pico-projector actuator) due to the air heating has to be
studied as an acoustic phenomenon.

• Temperature. The high-frequency movement and the employed laser source
cause heating in the pico-projector actuator, so the movement in the hot air
surrounding the actuating devices has to be studied as a thermo-mechanical issue.
In addition, in specific implementations, the sensors are integrated into a large
assembly, which can self-heat. Therefore, the nanodevices, as well as the full
system, have to self-tune with temperature to keep the measurement accuracy
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well controlled. Alternatively, temperature can be measured in the same package
to monitor the sensor operating conditions.

• Magnetic interactions. In the development of the wearable sensor node it is
needed to account for “hard iron” and “soft iron” effects.

For each case study, this chapter presents a general system description and related
requirements, the chosen model implementation strategy, and the achieved results.
In addition, the OSTC section provides a tutorial on the use of model abstraction
tools for smart system design and simulation.

8.2 Virtual Prototyping Platform
for a Pico-Projector Actuator

8.2.1 General System Description and Requirements

Pico-projectors are miniature video projectors that can be used in many applications
where there is a need for sharing information over large displays [4]. They provide
a convenient way to project quickly any kind of optical information onto any
surface such as walls, notebooks, or airplane food trays, as well as a new array
of portable projection screens sized and designed for pico-projectors and presenter
mobility. Such a technology is based on systemic miniaturization and integration
of heterogeneous technologies, functions, and materials. This characteristic makes
pico-projectors a suitable target for the implementation of smaller, smarter (predic-
tive, reactive, and cognitive), and energy-autonomous smart systems.

In this case study, developed by STMicroelectronics, laser is used as a light
source, instead of currently more frequent Digital Light Processing (DLP) or Liquid
Crystal on Silicon (LCoS) technologies for optical systems. In fact, laser-based
projectors have several advantages compared to the other technologies, such as a
smaller device size, brighter colors, higher efficiency, and the possibility of having
a continuously focused picture and to project at variable distances and onto curved
surfaces, without the need to keep turning a focus dial.

Such pico-projectors are based on laser sources of the three primary colors (red,
green, and blue) that are modulated and their light converges into a single beam.
This beam is then deflected by a mirror system thus producing a light spot that is
scanned and projected across the image plane, similarly as the electron beam in a
cathode ray tube. A laser pico-projector is an extremely complex system, whose
main components are micromirrors, high voltage mirror drivers, laser drivers, and a
video digital processor and mirror controller.

The case study exploits state-of-the-art technologies, for both the mechanical
micromachining and the ASIC control circuitry. Some of the key technological
issues involved in the pico-projector development include:



198 I. Blanco et al.

• Micromirrors suitable for pico-projection applications, which are fabricated
exploiting the emerging technology of MOEMS (Micro-Opto-Electro-
Mechanical Systems) for accurate angular deflection of light beams at millimeter
and submillimeter scale.

• Mirror drivers design, requiring high voltage and implemented by means of the
BCD8s SOI 190V technology (channel: 0.35 �m; Logic supply: 3.3 V; Max high
voltage supply: 190 V).

• High performance laser drivers, employing BCD8st technology.

In addition to this, the pico-projector project requires different kinds of expertise
to support modeling, investigation and validation using a variety of languages and
simulation instruments: from mechanical description tools, to analog and digital
design software, to top-level integration languages.

The design activities involved the development of the single components, to
obtain the expected behavior from the resulting devices, and then the construction
of a comprehensive system-level model, fundamental to assess the system-level
performance and, more specifically, to evaluate and compensate the ripple effect.
Ripple is a real-world problem affecting laser pico-projectors, due to the beam
steering mechanisms: When electromechanical mirrors are used, the horizontal
deflection is performed by horizontally rotating the reflecting surface at its natural
frequency. Conversely, vertical scanning is obtained by vertically rotating the mirror
with a linear voltage at a lower speed. Each time a complete frame is scanned,
the retrace of the mirror to the initial position induces vertical vibrating modes
leading to non-linear effects in the trace time. The visible effect is an uneven
distribution of the distance between the traced horizontal lines, causing a number of
lighter and darker horizontal stripes on the projected image. A carefully developed
compensation algorithm can be used on the controller to eliminate or, at least, to
mitigate this effect. Such algorithm was developed on the complete system virtual
model.

8.2.2 Model Implementation

MEMS micromirrors have been designed and carefully characterized by means
of mechanical simulations, using a variety of software tools such as ANSYS,
COMSOL Multiphysics, and Coventor MEMSC. These tools have been widely
exploited in order to optimize technological process flow and mirror design, so as
to obtain the required actuation force and resonance frequencies.

VHDL-AMS/Verilog-AMS and MATLAB Simulink models for the MEMS
components, the power electronics, the analog and conversion circuitry (tran-
simpedance amplifier—TIA, analog-to-digital ADC, and digital-to-analog DAC
converters), and the digital control logic (Digiboard) were developed starting from
different simulator and data sources. Then, these descriptions were translated to
SystemC/SystemC-AMS to obtain a homogeneous system-level model, using the
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Fig. 8.1 Vertical scanning mirror and related driving and control circuitry

SMAC Platform abstraction tools. Figure 8.1 presents a comprehensive view of the
system targeted by the model.

System-level simulation, based on a single simulation engine, can be efficiently
performed on this description. In order to evaluate and minimize the ripple
effect with the use of a prototype, the evaluation of the ripple magnitude would
require either a local luminance measuring system or the tracking of the mirror
rotation angle, however, the latter cannot be monitored unless a complex video
sensing-based processing is implemented. The developed model, instead, allows
implementing and evaluating the control algorithm executed by the digital control
logic (using either open-loop or closed-loop approaches), which can be modified and
evaluated considering the deflection angle � and its velocity variations (Fig. 8.2). In
order to measure and compensate the ripple effect, the current flowing through the
mirror rotor is used as indicator. The current is amplified by means of the TIA and
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Fig. 8.2 Schematic
representation of the Vertical
Mirror deflection and its
effect on projection: ripple is
minimized with constant
ıd/ıt, in turn related to the
speed of the deflection
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digitalized and then processed by the digital control logic that updates the dynamics
of the mirror stators driving signals.

The pico-projector is a highly heterogeneous system, from both point of views
of the design domains and the physical laws involved. Referring to Fig. 8.1, the
yellow boxes (i.e., Digiboard, clkgen, DACs, and ADCs) are digital hardware
components, synchronous to a digital clock signal. Moreover, the ADC and DAC
are also presenting electrical-linear statements for digital to analog and analog-
to-digital conversion. The blue boxes (i.e., OPAMP and TIA) represent purely
analog components, while the Vmirror component is the electro-optical sub-system.
Signals s1, s2, and r0 are digital quantities characterized by a discretized value.
Meanwhile, all the other signals depicted in the figure are electrical interconnections
characterized by their values of voltage and current flow.

Furthermore, the type of equations implemented by the single component
gives another source of heterogeneity among different sub-parts of the system.
Figure 8.3 classifies the different types of equations that can be used to describe
a time-invariant physical system. Then, it suggests a possible mapping of such
equations into the SystemC-AMS models of computation (MoCs). The red arrows
of Fig. 8.3 represent the most direct theoretical mapping. It consists in mapping
electrical-linear equations in the Electrical Linear Network (ELN) MoC, anything
non-linear into the Timed Data Flow (TDF) MoC, and using linear signal flow (LSF)
to represent equations that are linear but not electrical. The green arrows represent
a performance oriented mapping. The TDF MoC is more performant with respect
to the others since it exploits a static scheduler, faster than the dynamic one used
by ELN and LSF. Thus, the performance-oriented mapping depicted by the green
arrows is trying to maximize the use of this MoC instead of LSF and ELN.

The sub-components of the system have been characterized according to the
taxonomy in Fig. 8.3, and their classification is depicted in Fig. 8.4. Then, according
to the taxonomy, every single component has been mapped into the most suitable
MoC. Furthermore, since one of the targets of the SystemC-AMS model is to
speed-up the simulation with respect to the variety of tools used to create the initial
model, the performance-oriented mapping has been applied whenever possible.
Then the translation to SystemC-AMS has been done starting from the available
Verilog-AMS and MATLAB Simulink models of each single component of the pico-
projector, and each model was thoroughly validated.
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Fig. 8.3 Systems classification and mapping in SystemC-AMS models of computation

Fig. 8.4 Classification of the components of the pico-projector, according to the implemented
equations

The translation of the digital components (i.e., Digital Board and Clock Genera-
tor) relies on HIFSuite front-end and back-end tools and it has been automatically
performed. In particular, the components are translated in HIF format using
verilog2hif and converted in SystemC by hif2sc.

Converters (i.e., ADC and DAC) present only linear-electrical equations and
digital RTL statements. The digital sub-parts have been translated into SystemC
as for the purely digital components described above. Concerning the electrical
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statements, the SystemC-AMS description is based on the instantiation of basic
components. Every instantiated component contributes with a set of equations to
the system. The methodology aims at reproducing the original set of equations
expressed in the Verilog-AMS model connecting the instantiated components. The
methodology is implemented on top of HIFSuite.

The set of components presenting electrical-piecewise linear equations that are
the operational amplifier (i.e., OPAMP) and the transimpedance amplifier (i.e., TIA)
have been initially translated using the automatic tool used for electrical-linear
components. However, their composition was not equivalent to the original Verilog-
AMS model. The main problem is due to the implicit relations between Voltages and
Currents that are often present on the interface terminal nodes of the components.
These relations are not considered by the methodology previously presented. Thus,
some manual modifications have been performed.

The implicit relations between Voltages and Currents problem described
above has been solved using a manual analog synthesis technique to define the
electrical components composing the module interfaces. This results in the insertion
of capacitors, inductors, and resistances nearby the terminal nodes forming the
component interfaces. This allows creating relations among voltage and current flow
values on the terminal nodes of these sub-parts.

Finally, the Vertical Mirror presents non-linear behavior. Thus, the only available
MoC to describe its behavior is TDF. For this reason, the SystemC-AMS model of
the mirror has been manually performed starting from its Simulink model. That is,
every Simulink component of the model has been manually translated in SystemC-
AMS TDF.

However, its behavior is influenced by and influences electrical relations on its
input/output ports and on the input/output terminal of the surrounding components
(i.e., OPAMP and TIA), thus introducing bi-directional relations. On the other hand,
since TDF belongs to the dataflow family of computational models, it allows only
specifying unidirectional information flows. Thus, modeling the system in terms of
TDF primitives leads to a loss of interface information about the relations among the
physical quantities involved in the system, i.e., the incapability to express an energy-
conservative behavior hence to keep a relation between effort and flow quantities
(voltage and current in the electrical domain).

The loss of interface information problem has been solved by wrapping the
TDF model within an interface described in terms of ELN MoC. Furthermore, the
sub-part of the TDF model corresponding to the capacitors used in the interface
has been replaced with the instantiation of controlled capacitors of the ELN MoC,
within the ELN wrapper. Then, the model has been connected to the other parts
of the system. In such way, it was possible preserve the relations lost during the
conversion from the electrical Simulink description to the TDF one.

In order to improve the performance of the system simulation, also for linear and
piecewise linear components a set of manual manipulations have been performed in
order to maximize the use of TDF.
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Fig. 8.5 Closed-loop top-level waveforms with ripple compensation on the vertical axis

In particular, for both the OPAMP and the TIA, a sub-set of the internal
equations has been manually resolved and re-written using SystemC-AMS TDF.
This rewriting is based on the identification of chains of assignments reproducing
the relations between sub-sets of nodes of the single component. Of course, for the
reasons introduced before, these sub-sets of nodes cannot comprehend any terminal
node used in the interface of the components.

In conclusion, using the set of tools provided within HIFSuite it was possi-
ble to automatically translate the digital RTL descriptions, the electrical-linear
descriptions and the internal parts of the electrical-piecewise linear components.
While, manual support was necessary for the non-electrical. Figure 8.4 gives also
an overview of the state of the translation automation. Parts filled in purple and
yellow have been automatically translated. The Vertical Mirror (green box) has
been translated in a completely manual way. Components depicted by orange boxes
have been partially automatically translated. The interfaces of the components
represented by black margin boxes have been automatically generated without any
manual intervention, while red margins represent components whose interfaces have
been manually fixed after the automatic or manual conversion. Finally, black arrows
represent automatically generated interconnections between components, while red
arrows represent interconnections that required manual interventions to be fixed.

8.2.3 Experimental Results

Figure 8.5 shows the output of a top-level simulation of the overall platform and the
compensation of the ripple using the developed algorithms, following the approach
outlined in [5]: from top to bottom, the driving voltages (S1 and S2), the deflection
angle and the ripple magnitude (in arbitrary units) are shown. The last value is
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Table 8.1 Overall simulation time

Modeling style
Pico-projector virtual
platform (open loop)

Pico-projector virtual
platform (closed loop)

Verilog/VerilogA/Verilog-AMS
(Questa-AMDS)

5 s (tuning D STD or
FAST)/30 ms (166)
(no tracing)

NA

SystemC/SystemC-AMS 4 s (tracing all signals)/30 ms
(133)
1.5 s (no signal
traced)/30 ms (50)

177 s (top-level tracing)/1.5 s
(118)
74 s (no signal traced)/1.5 s
(49)

computed as a function of the current measured by the TIA, by evaluating the
characteristics of the signal on a number of consecutive samples. The simulation
lasts 1.5 s and it shows that the ripple is reduced considerably during the simulation
time thanks to the iterative optimization applied by the developed algorithm.

The overall simulation times are given in Table 8.1, with the following conven-
tion: <simulation time>/<simulated time> (simulation/simulated time ratio).

The Verilog-based model is slightly slower than SystemC-based implementation
since it is constrained by the analog solver time step (eldo for Questa-ADMS, a
tuning can be done) but the Verilog-based approach does not allow to simulate the
C/CCC embedded SW in the loop. The developed Simulink model does not allow
the modeling/simulation of the entire system.

The SystemC-AMS approach does not require license-fees since the simulator is
distributed under Apache 2 license by the Fraunhofer Institute.

In conclusion, the virtual prototyping platform for the pico-projector actuator
proved to be useful for the performance evaluation of the system and for the
optimization of the control algorithms driving it. Due to the complexity and the
heterogeneity of the device, no suitable models were previously available to perform
a complete simulation, including the electromechanical, analog/power, and digital
control parts, and taking into account the effects of the non-ideality of each part.
Traditional approaches for evaluating projection quality metrics and for optimizing
the system performance required the use of expensive prototypes and laboratory
setups, exploiting time-consuming and sub-optimal trial-and-error methodologies.
The virtual prototype developed using the model abstraction approach provided a
solution for mitigating the ripple problem and a viable approach for the development
of heterogeneous integrated systems involving multiphysical aspects. It has to be
underlined that the adopted methodology is based on the abstraction of lower-level,
detailed models of the system components and on a top-level simulation involving
a single engine and thus optimizing computation-communication cost.
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8.3 Wearable Sensing Equipment for Reliable Drift-Free
Limb Tracking

8.3.1 General System Description and Requirements

The monitoring of real limbs trajectories in daily life experiences is attractive for
many application fields: fitness, sport, rehabilitation, and healthcare and wellness
in general. Market available solutions for motion capture are mostly divided into
optical trackers and inertial measurement units (IMUs). The recent advances in
inertial sensors allow a high level of integration of an IMU solution with very
low cost and quite good measure reliability. In addition, compared to optical
methodologies, they do not require setting up a specific infrastructure in the
measurement environment and do not lose motion tracking when a body part is
hidden from the camera.

The proposed system is composed of a set of inertial sensor nodes fixed to
different body parts (e.g., arm and forearm), whose angular positions are determined
and transmitted to a central unit able to reconstruct the positioning and relative
movement of limbs. An important part of the data elaboration (the so-called sensor
fusion, providing attitude and orientation angles) is performed on each node, thus
constituting a distributed system architecture.

The system requirements are the following:

• Use of sensor nodes, each one equipped with tri-axial gyroscope, tri-axial
accelerometer, and tri-axial magnetometer.

• Each sensor node has to perform a preliminary sensor fusion based on extended
Kalman filtering (EKF).

• Each sensor node has to compensate temperature effects (between 0 and 50 ıC)
and magnetic disturbance caused by vicinity to ferromagnetic elements.

• The sensors shall transmit real-time data to a central unit able to display their
relative positions in space.

• The maximum current consumption of each sensor node shall be less than
100 mA at 3.3 V (powered by battery).

• The tracking accuracy (computed limb angle in static condition) shall be < 2ı.

The developed system (Fig. 8.6a) is made of sensor nodes based on the iNEMO
M1 system-on-board (SoB), shown in Fig. 8.6b, which includes three types of
inertial sensors:

• A tri-axial MEMS gyroscopic sensor, providing real-time angular velocity
readings (ST L3GD20);

• A tri-axial MEMS accelerometer, able to measure the physical acceleration
associated with the phenomenon of weight experienced by any test mass at rest
in the frame of reference of the accelerometer device, and therefore summing up
gravity and motion effects;

• A tri-axial MEMS magnetic field sensor.
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Fig. 8.6 Block diagram of a sensor node (a) and the iNEMOM1 system-on-board (b)

The latter two devices are encapsulated in a single package (ST LSM303DLHC).
Additionally, the SoB includes a 32-bit microcontroller (STM32F103) able to
preliminary filter and elaborate data coming from sensors to perform a first-level
sensor fusion. In static condition, the accelerometer is useful for determining the
vertical direction associated to the gravitational acceleration, while the magne-
tometer provides an indication of orientation with respect to the magnetic North.
Gyroscope readings are integrated to compute angular displacements, which are
typically affected by drift that is periodically corrected thanks to the output of the
other sensors.

For the development of a reliable and drift-free system, a large number of details
and the device non-ideality need to be taken into account in the fine-tuning of the
involved algorithms. This includes, for instance, “hard” and “soft iron” calibration
for the magnetometer, which should be insensitive of local perturbations of the
Earth’s magnetic field, and the compensation of the effects of temperature on the
sensor transfer functions.

A precise yet agile high-level system model capturing the behavior of the selected
components is of paramount importance to optimize the system functionalities
before prototyping, in mission-like conditions. As a matter of fact, the usual labora-
tory setup for performance characterization of such a system includes costly vision-
based equipment employing a number of cameras, markers on the body of a person,
and complex motion tracking algorithms (e.g., [6]). With respect to the state-of-the-
art, the new abstraction-based methods and tools enable significant cost reduction
in application development and the study and evaluation of new product ideas.

To this purpose, the current approach is based on the creation of a functional
model of a sensor node in the Keysight SystemVue framework, composed of the
sensor models in SystemC/SystemC AMS and the sensor fusion algorithm code
that will be run by the microcontroller. The proposed approach includes also the use
of a limb movement simulator environment for synthesizing suitable inputs for the
sensor models while injecting possible environmental perturbations. The high-level
sensor models can be developed resorting to automated abstraction techniques, or
directly written in one of the standard formats supported by the platform.
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8.3.2 Model Implementation

The objective is the development of a functional model of the iNEMO M1
SoB, including the MEMS sensors and the algorithms running on the embedded
microcontroller [7]. This model is needed to evaluate the performance of sensor
fusion algorithms and to investigate the improvements that can be applied. For
this reason, digital communications at the system level are handled as transactions,
and instead of modeling the complete microcontroller, the same C language sensor
fusion library that will run on the real system is instantiated as a code block in the
simulation framework.

The model was assembled in the SystemVue environment and includes the
following blocks:

1. SystemC/SystemC AMS model of the LSM303DLHC tri-axial accelerometer
and tri-axial magnetometer.

2. SystemC/SystemC AMS model of the L3GD20 tri-axial gyroscope.
3. Sensor fusion algorithms and system management functions.

All the MEMS sensor devices are characterized by the integration of the
micromechanical sensing part, an analog front-end taking care of power supply, self-
regulation, amplification, filtering and analog-to-digital conversion, and a digital
front-end (DFE). Thus, they can be considered sub-systems including MEMS,
analog and digital parts. Figure 8.7 shows the block diagram of the employed
accelerometer model for one axis. Its main composing elements are the mechanical
second order Laplace transfer function, expressing the relationship between applied
acceleration (and consequently force F) and the displacement d of the oscillating
mass, a non-linear module expressing the capacitance of the plates C as a function
of their displacement, the analog front-end (AFE, comprising amplifiers, and filters),
the analog-to-digital converter (ADC), and the DFE. As a matter of fact, mechanical,
analog, and digital electronic domains are represented [8].

The model parameters derive from lower-level representations employed by the
device designers: they represent the behavior of a “nominal” device, but they can
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Fig. 8.7 Accelerometer model (for one axis)
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be easily customized in order to consider the effect of manufacturing variability
and corner cases or to mimic specific devices. Beyond the functional multi-physics
relations that allow sensing acceleration and expressing it as a digital reading, noise
is also simulated. The temperature value is taken into account in a limited range
(0–50 ıC) and its changes dynamically affect the sensor model behavior. As it
appears from the figure, the mechanical and analog parts, up to the ADC module,
are described in SystemC-AMS language using the TDF model of computation.
SystemC TLM is used to describe the behavior of the DFE including the state
machines that manage the device read-out configuration and the programmable
registers (full scale selection, output data rate, and digital filters). The magnetometer
(sharing its digital interface with the accelerometer within the LSM303DLHC
module) and the gyroscope are to be modeled in similar ways.

Regarding the sensor fusion algorithm, the iNEMO Engine Lite library developed
and distributed by STMicroelectronics [9] has been used to define an initial setup. It
applies an EKF algorithm. In general, the EKF algorithm addresses the problem of
estimating the state of a discrete-time process described by the equations below [10]:

xkC1 D Akxk C Bkuk C wk

zk D Hkxk C vk

where k is the step time, x is the state vector, u is the input vector, A, B, and H
are the state, input, and output matrixes, respectively, and w and v are state and
measurement noise. The latter are represented by Gaussian white noise sources
with covariance matrixes Q and R, respectively. The flow diagram for the recursive
algorithm is shown in Fig. 8.8.

At each time step, the algorithm propagates both a state estimation xk and
estimation for the error covariance matrix Pk. The latter provides an indication of the
uncertainty associated with the current state estimation. These are evaluated in the
predictor equations. The Kalman gain K is derived by minimizing the a posteriori
error covariance and could be considered a measurement of the confidence level of
the predicted state.

Figure 8.9 presents the block diagram of the system-level simulation model for a
sensor node. As it appears from the diagram, multi-physics effects are taken into
account in the system behavior simulation in terms of sensor functional inputs
(acceleration, magnetic field, and angular velocity) and temperature.

As anticipated, SystemVue is the tool used to manage the whole co-simulation.
Its block-based modeling interface allows instantiating modules from the internal
software library or including different kinds of code blocks for co-simulation. The
SystemC co-simulation block is a convenient method for integrating native SystemC
modules but also for interfacing other kinds of descriptions, e.g., SystemC TLM,
SystemC AMS, or untimed C code blocks. In the latter cases, a suitable wrapper
has to be developed for providing the needed signal conversions and defining block
timing. The sensor fusion algorithms are implemented as a multiplatform C library
that can run on PC as well as on the ARM core of the STM32 microcontroller
family. The functions are to be instantiated within a SystemC co-simulation block
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Fig. 8.8 Flow diagram of the
time-discrete EKF
algorithm [11]
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Fig. 8.9 System-level simulation model for a sensor node
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that implements the required state update (quaternions and therefore Euler angles) at
each sensor reading cycle. The algorithm can be modified directly in the simulation
framework, in order to verify the effects of changes on the complete system.
Additional functions can be added to work either on the raw data coming from the
sensors for filtering noise and compensating environmental disturbs, or on already
elaborated results.

Figure 8.10 shows the system-level simulation and analysis setup for a sensor
node. OpenSim, an open-source platform for modeling, simulating, and analyzing
the neuromusculoskeletal system [12], was used for generating input stimuli for
the model. The tool allows extracting kinematic data about the location in which
each virtual sensor is placed, either with real medical data (available, e.g., in
the SimTK databases from Stanford University) or with simulated motions. The
BodyKinematics and PointKinematics analysis tools are used to get the orientation,
the angular speed, and the position of each body part hosting a sensor (e.g., tibia,
femur, pelvis) while the simulated body is moving. The orientation of the body part
(i.e., of the node, in the node’s reference system) is used to suitably decompose on
the node rotated axes the values of gravity, linear acceleration, and magnetic field
in order to properly feed the accelerometer and magnetometer models. This is done
using SystemVue’s Math Language blocks.

The output of the sensor models are then elaborated by the microcontroller,
executing the EKF algorithm. It produces an estimated orientation that can be
compared with the original data provided by OpenSim, to evaluate the tracking error.

iNemo M1 model
(SystemC-AMS)

Angular speed

Orientation

Linear position Linear acceleration

Earth’s
Magnetic field

Body Kinematics
analysis

Numeric
derivative

3-axis Gyroscope

3-axis 
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Magnetometer
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Orientation

Comparison &
Error Evaluation
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Fig. 8.10 System-level simulation and analysis setup
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8.3.3 Experimental Results

8.3.3.1 Sensor Model Validation and Calibration

The sensor SystemC-AMS models derive from the abstraction of lower-level,
detailed models of the MEMS, analog and digital parts, as described in the other
chapters of this book. In order to further validate the modeling methodology,
characterization experiments were made to evaluate the accuracy of the model with
respect to iNemo M1 prototype boards in static conditions. For all the experiments,
the accelerometer is configured with ˙2g full scale (g is 9.81 m/s2, while 1 mg
is 9.81 � 10�3 m/s2) and 50 Hz output data rate, the magnetometer has a ˙1.3 G
full scale and 75 Hz output data rate, and the gyroscope is configured with 250 dps
(degrees per second) full scale and 95 Hz output data rate.

For comparing the performance of two sensors, or a sensor and its model, as
in this case, calibration is required. In the case of a sensor characterized by a
linear transfer function, two parameters have to be determined, i.e., offset and gain.
One possible way is to apply known reference stimuli and then error minimization
techniques (such as least square) to find the best line fit. However, when inertial
sensors are concerned, it may be complicated and expensive to supply precise
stimuli in a laboratory setup. As an example, the accelerometer may be calibrated
using the Earth’s magnetic field, and then the sensor may be aligned in at least two
positions (e.g., horizontal and vertical) to measure 9.81 m/s2 and then 0: the precise
alignment can be hard to verify. In addition, when multi-axial sensor are used, the
non-ideal alignment of sensing devices also has an impact on the resulting measure.
Different calibration approaches for magnetometers and accelerometers have been
developed when no precise stimuli can be applied [13]. Such methods are based
on the fact that the measure of the magnetic field (or gravity) vector taken with a
rotating tri-axial sensor should lie on a sphere centered at the origin; however, due to
the sensor non-ideality, a translated ellipsoid is usually obtained. Geometric fitting
algorithms such as the one in [14] can then be applied to find calibration parameters.
Gyroscope calibration is more demanding, since the application of dynamic stimuli
with known angular velocity can be an issue. For this reason, only the offset in static
condition is evaluated.

Table 8.2 reports the sensor reading (average data on 60 s at 25 ıC) before and
after calibration for an available prototype, aligned on the horizontal plane and with
the magnetic North, in comparison with the simulated standard models. It appears
that the noise range is in the same order of magnitude, while the sensor reading is
sometimes different due to different non-ideal transfer functions or to uncertainty in
the applied stimulus. Calibration brings the readings of prototypes and models close
to each other, within the variability implementation ranges that can also be found in
the sensor datasheets.
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Table 8.2 Sensor calibration and model validation

Accelerometer Prototype Calibrated prototype Simulation
Axis Avg. [mg] Var. [mg2] Avg. [mg] Var. [mg2] Avg. [mg] Var. [mg2]

X �7.20 7.41 �5.41 7.31 2.27 5.71
Y 7.70 6.66 �5.48 6.55 �5.78 4.14
Z 1175.90 19.19 995.08 18.42 994.39 4.82
Norm 1175.90 19.20 995.11 18.42 994.41 4.85

Magnetometer Prototype Calibrated prototype Simulation

Axis Avg. [mG] Var. [mG2] Avg. [mG] Var. [mG2] Avg. [mG] Var. [mG2]
X 258.03 3.53 249.84 4.15 225.48 7.41
Y �169.75 3.86 2.61 3.74 �0.08 5.10
Z �298.69 4.44 �359.38 4.70 �410.57 7.61
Norm 394.72 4.85 469.49 4.42 468.42 7.35

Gyroscope Prototype Calibrated prototype Simulation

Axis Avg. [mdps] Var. [mdps2] Avg. [mdps] Var. [mdps2] Avg. [mdps] Var. [mdps2]
X �2104.51 10578.27 0.0 10578.27 5.76 11968.58
Y �5092.85 16049.69 0.0 16049.69 �22.74 11978.18
Z �1895.66 16881.37 0.0 16881.37 5.18 10560.46
Norm �5829.76 16861.32 0.0 16861.32 24.02 5865.78

8.3.3.2 Drift Analysis and Mitigation

One of the main problems affecting the performance of an IMU is drift. It causes
a slow change of the estimated orientation that occurs also when the sensor node is
in a fixed position. Its causes are due to the system non-ideality. As an example, if
only a gyroscope is used for an orientation estimation system, one may propose to
integrate the angular velocity given by the sensor to compute the angular displace-
ment from an initial condition. However, the non-ideal sensor (e.g., whose reading is
affected by a non-zero mean random noise), would generate a drift over time, whose
magnitude is proportional to the noise mean value. The use of more than one sensor,
in the so-called sensor fusion approach, can greatly help in the minimization of drift.
As aforementioned, the EKF is an optimal estimator that allows minimizing the
error components when multiple complementary data sources are available. The use
of an accelerometer and a magnetometer in combination with a gyroscope provides
data relative to a fixed reference system and helps reducing the drift effect in static
condition (i.e., when the accelerometer only senses the effect of gravity) and with
predictable magnetic field values. However, many parameters contribute to the final
effect, also considering the specific application and mission environment, and the
drift problem, even if with a reduced extent, may still exist. The specific conditions
into which a sensor node is used and the environmental and positional constraints
can be used to further improve the tracking performance. As an example, a sensor
node constrained to a body limb has fewer degrees of freedom of movement and
thus drifts on certain axes can be suitably filtered.
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Fig. 8.11 Estimation of Euler angles in static conditions, with an uncalibrated magnetometer: drift
on the yaw axis is evident

The iNEMO M1 model enables studying the causes and then mitigating the
effect of drift for a sensor node, where no geometrical constraints are considered. A
large number of simulations were made to determine the most important causes
of drift, taking into account sensor noise, imperfect calibration, environmental
modeling (the Earth’s magnetic field), and the internal parameters of the Kalman
filter (noise covariance matrices). Figure 8.11 shows the estimation of Euler angles
(roll, pitch, and yaw computed from the quaternions) generated by the virtual model
running a 2-min simulation in static condition, where the magnetometer model is not
calibrated and characterized by an offset comparable to the one of the real devices
(about ˙50 mG per axis). The combined effect of sensor noise and uncalibrated
data feeding the Kalman filter has two main consequences: a particularly evident
drift on the yaw axis, whose position estimation converges very slowly to a steady-
state value (about 60 s are required), and a final yaw position estimation affected
by a large error (�3ı). As an example, in a limb tracking system, the absolute error
may be less relevant for the estimation of the relative position of each part of the
body; the drift due to the slow convergence, instead, is an unwanted effect severely
affecting the performance of body motion reconstruction.

Noise and uncalibrated sensors are among the main sources of drift, but
the final system performance is affected by other causes as well, such as poor
magnetic environment modeling, magnetic field disturbs and temperature changes.
Taking into account such affects (as described and demonstrated in the following
paragraphs) allows reducing drift to a negligible value for the targeted applications,
i.e., reducing the convergence time of angular position estimation while maintaining
a low absolute tracking position error.
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8.3.3.3 Performance Evaluation in Static and Dynamic Conditions

First, sensor calibration has been taken into account to minimize the effect of MEMS
and electronic component manufacturing variability, as previously described. Then,
the model of the Earth’s magnetic field used by the Kalman update step has been
customized by considering local declination and inclination: the local value can be
measured with a calibrated sensor in the experiment location, or it can be computed,
e.g., by relying on the tools made available by the US National Geophysical Data
Center [15].

Figure 8.12 shows the results of a simulation of a sensor in static condition
at a nominal temperature of 25 ıC: after an initial transient, in about 3 s a
steady condition is reached for the three angles (roll, pitch, and yaw). Figure 8.13
(logarithmic vertical axis) shows the error between the reference angular position
and the values estimated by the emulated system, which, at the end of the simulation,
is less than 0.5ı.

Temperature has an impact on the estimated quantities as well. In the range
between 0 and 50 ıC, simulation shows that the Euler angle estimation error in static
condition doubles with respect to the nominal temperature of 25 ıC. Temperature
compensation has been then introduced, by studying the simulated behavior of the
sensors: for each of them, a linear correction function is defined, using the best
fitting parameters derived from simulation. This keeps the error magnitude constant
in the whole addressed temperature range, but requires an additional sensor in the
system.

The developed simulation framework also enables evaluating the effects of
the environmental magnetic field. Two effects are taken into account: the local
field value, due to the position on Earth where the experiment is set, and the
distortions introduced by local sources such as permanent magnets or electric
currents in specific positions in space. In the first case, the local inclination and
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Fig. 8.12 Euler angle estimation in static condition (input angles �2.37ı, 7.5ı, �24.13ı)
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declination are defined in the SystemVue Math Language block computing the
magnetometer stimuli; the difference between the local field and the model within
the EKF can enlarge the absolute Euler angle estimation error and increase the filter
convergence time. In the second case, local perturbations can be introduced by using
a specifically defined SystemVue Math Language block, modeling the presence of a
magnetic dipole characterized by its magnetic moment and position. To reduce the
effects of local magnetic sources, it is possible to weight the magnetometer input
by dynamically changing the observation covariance matrix, e.g., by increasing the
parameters proportionally with the difference between norm of the magnetometer
value and the expected one.

Finally, the parameters of the Kalman noise covariance matrices have been
fine-tuned to further reduce the estimation errors. An optimal result is shown in
Figs. 8.14 and 8.15, where a virtual sensor node is placed on the femur of the
OpenSim human body model during a walking simulation. It appears that the
model estimation of the angular values closely follows the reference values, with
an average error that, after a short initial transitory phase, reaches under 1ı on the
three axes with no significant drift.

In conclusion, new high-level modeling and simulation approach, supported in
this case by the SMAC Platform, is useful to evaluate the system performance.
Differently from traditional approaches requiring complex and expensive labora-
tory setup, with the proposed approach, the software development and algorithm
optimization can be handled in a simulated virtual environment, supporting the
optimization of performance metrics (errors and drift) and the design and evaluation
of new applications, in a previously unavailable manner.
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Fig. 8.14 Euler angle estimation in dynamic condition
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Fig. 8.15 Error on Euler angle estimation (absolute value) in dynamic condition

8.3.3.4 Model Performance

The data files including linear and angular position, velocity and acceleration of
each selected “virtual” sensor position are generated with OpenSim at a frequency
of 1 kHz. The final simulation model in SystemVue elaborates data at the frequency
1 kHz, which is much higher than the average human movement band (but required
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to correctly stimulate the sensor models), and feeds inputs to the sensors at this
frequency. The SystemC-AMS internal engine of each sensor model runs at its
specific frequency (up to 945 kHz for the gyroscope). Finally, the sensor fusion
elaboration can operate at user-selectable frequency, here set at 50 Hz.

Each second of simulation of a single sensor node takes about 30 s of real time,
on a quad-core Intel Core i7 – 2670QM running at 2.20 GHz with 4 GB of RAM. It
has to be noted that each SystemC module instantiated within SystemVue runs on a
separate thread, thus making the system scalable when more than one sensor node
needs to be simulated, directly exploiting multi-core parallelism.

8.4 The Open-Source Test Case

8.4.1 Overview

The OSTC aims at representing an example of smart system, providing sensing,
computation, and communication. Thus, it is composed by a set of components
belonging to different design domains. Figure 8.16 depicts its structure, while
the different colors highlight the many design domains involved: digital HW
(blue), analog HW (red), network peripherals (gray), system-level interconnections
(orange), and embedded SW (yellow).

The components composing the platform are the following:

Fig. 8.16 Overview of the OSTC, highlighting the different languages used
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• MLite CPU: Digital HW component implementing a microprocessor compat-
ible with the MIPS Instruction Set. This IP is originally provided as VHDL
description.

• Memory: Digital HW component implementing a memory, it is used to store the
SW application as well as the data sensed and computed by the platform. It also
handles the communication with the peripherals using Memory Mapped Input
Output techniques. It is implemented in Verilog.

• UART: Digital HW peripheral performing Parallel to Serial conversion. The IP
is implemented in VHDL.

• Accelerometer: Analog HW peripheral. It is used to sense the environment, in
particular the accelerations the platform is subjected to. The original description
of the IP is provided in Verilog-A.

• RF-Transceiver and Network: Network peripheral used to transmit data over a
packet-based network. It aims at modeling a wireless component, and it hence
belongs to both the Network and RF design domain. The original model is
developed using the SystemC Network Simulation Library (SCNSL) [16].

• APB Bus: Main bus used to connect the CPU-memory sub-system to the
peripherals of the system. The bus used is respecting the ARM APB specification.
The model is given both in Verilog and as IP-Xact specification.

• Communication, Interfaces, and Interconnections: The internal connections
and the communication among the components of the platform are described
using IP-XACT. This specification belongs to the electrical system-level design
domain.

• A Software Application is running on the platform. The software is performing
a reset phase taking care of configuring the UART module. Then, in its main
loop it samples and gathers data sensed by the accelerometer. The data are then
transmitted: the least significant byte of the sampled values are written on the
UART, while the entire value is sent through a packet switching network using the
RF-transceiver. The software is given as assembly code and as the list of opcodes
obtained after compiling the assembly code for the MIPS microprocessor.

Initially, most of the components are modeled using the most suitable language
for the specific component domain: digital HW components by using VHDL, the RF
model as a SCNSL description. The rest of analog HW is instead described in Ver-
ilogA at the physical-simulation level. Thus, heterogeneous simulation technologies
are necessary to simulate the entire system.

The next sections are meant to lead the reader through the steps necessary
to obtain a homogeneous description of the platform, highly optimized for fast
simulation, starting from the heterogeneous description of the test case. All the
material necessary to complete the tutorial hereby described, is available at the web
page in Fig. 8.17, as tutorial for the current release of HIFSuite.
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Fig. 8.17 Web page containing all the material for the OSTC tutorial. Available at http://www.
hifsuite.com/index.php/download

8.4.2 Simulation of the Heterogeneous Description

In order to simulate the heterogeneous description of the entire system, a discrete-
event simulator is needed for the Digital HW, a SPICE-like solver for electrical
equations is necessary to simulate the Analog HW, and finally a network simulator
is needed for packet-based network simulation. Mentor Graphics’ Questa Advanced
Simulator [17] allows event-based simulation for classic HDLs (i.e., VHDL and
Verilog) and SystemC using the ModelSim simulation technology. Mixed-signal
simulation for the Analog HW is carried out by using the ADMS simulator that
exploits a SPICE-based solver called ELDO. Network simulation is performed by
SCNSL, an extension to SystemC to allow modeling packet-based networks.

However, some limitations arise in the simulation of the heterogeneous descrip-
tion of the whole platform by Questa Advanced Simulator:

• The system-level descriptions provided as IP-XACT models provide all the
information needed to specify the system interconnections. However, the tool
does not provide the capability of integrating the system using them. Thus, it is
necessary to translate these interconnections into an accepted language.

• Network simulation is not supported. Even if the SCNSL library is based on
CCC/SystemC, some limitations imposed on the language by the tool do not
allow to import SCNSL models. Some methodologies to co-simulate network
and HW descriptions have been proposed in the literature, such as inter-
faces for connecting NS2 and ModelSim [18]. However, such techniques will
require computationally expensive and complex SW interfaces based on TCP/IP
sockets.

http://www.hifsuite.com/index.php/download
http://www.hifsuite.com/index.php/download
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• Questa Advanced Simulator allows to mix classic HDLs (i.e., VHDL and
Verilog) with SystemC within a unique model using ModelSim, as well as to
mix the classic HDLs with their Analog-Mixed Signal extensions (i.e., VHDL-
AMS and Verilog-AMS) using the SPICE-based solver. However, it does not
allow to mix digital sub-systems described (even partially) using SystemC and
mixed-signal systems.

In order to specify system interconnections, a set of tools based on HIFSuite
have been used. In particular, ipxact2hif is employed to parse the IP-XACT models.
Then, the entire platform structure is built using the HIFSuite APIs. After this step,
the platform structure is specified by using the HIF language as a set of components
interfaces and interconnections. The functionalities are not specified within the
model, where every component instance can be seen as a “stub” for the actual IP
implementation.

Starting from this representation, it is possible to synthesize the missing inter-
faces between components in SystemC, as well as the interconnection among them,
by using the HIFSuite back-end tool hif2sc. The generated SystemC description is
then the top-level of the entire OSTC. Since SystemC is an accepted language from
Mentor’s simulator, it can be compiled and linked together with the other digital
components specified using VHDL and Verilog.

After this step, the digital part of the OSTC is ready to be simulated. The IP-
XACT system-level descriptions can be imported into the simulation environment
by exploiting HIFSuite capability of generating SystemC models. However, due
to the limitations introduced before, a sub-system (even partially) specified using
SystemC cannot be directly simulated with analog descriptions implemented using
Verilog-A(MS). This is due to the fact that SystemC is supported only by the
ModelSim simulation engine, while the mixed-signal descriptions require ADMS.

To overcome this problem it is necessary to instantiate both simulation engines
and make them communicate. This can be done by splitting the entire system into
two sub-systems. The first one is composed by the digital components, while the
other is made of the analog parts of the system.

Once the system has been split into two parts it is possible to simulate both
and make them communicate through a SPICE specification. In particular, a SPICE
script is required to instantiate the top-levels of the two sub-systems and bind them
by using electrical signals. Moreover, the SPICE specification must indicate the
parameters required by the numerical solver for the analog part, such as the precision
and the algorithm to employ.

Finally, it is possible to execute Questa Advanced Simulator without specifying
any system, but using the SPICE description as command file. In such way, the
simulator will take care of instantiating both available simulation technologies (i.e.,
ModelSim and ADMS), executing and synchronizing them by using a common
notion of time.

Figure 8.18 depicts the execution of the system within Questa Advanced
Simulator. In the left-hand side column of the main window it is possible to see
the two different instantiated sub-systems: yenvironment and ytop. The former is
implementing the mixed-signal part of the system and is simulated using ADMS.
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Fig. 8.18 Execution of the heterogeneous system within Questa Advanced Simulator

The latter is the top-level module of the digital part of the system, simulated using
classic event-based simulation. It is worth noticing that both are instantiated within
the OSTC SPICE module.

A minor problem arises also from the use of SystemC as top-level of the digital
sub-system. In fact, the simulation environment does not allow to specify a SystemC
top-level in the SPICE specification. However, this problem can be easily overcome
by wrapping the entire digital sub-system within a Verilog or VHDL component.

8.4.3 Automatic Integration of the Heterogeneous Description
Through IP-XACT

The first step in order to obtain a homogeneous SystemC description of the OSTC
is to integrate the heterogeneous descriptions of its components. This is achieved
by generating a top-level description from the automatically generated IP-XACT
interfaces of the heterogeneous components, as shown in Fig. 8.19.

The descriptions of the components are translated to HIF descriptions by
HIFSuite front-end tools. Then, the IP-XACT interfaces of the components are
generated by the IP-XACT back-end tool. These interfaces are combined together
in Kactus2 [19], an IP-XACT visual editor which allows to specify how the
components are interconnected between them, thus creating the IP-XACT model
of the whole platform. Figure 8.20 shows the IP-Xact model of the OSTC within
the Kactus2 editor.

This IP-XACT description is then given as input to the IP-XACT front-end tool
to produce the HIF description of the top level, which is then translated into a
SystemC-RTL description featuring the instantiation of the components and their
corresponding port bindings.
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Fig. 8.19 Automatic integration of heterogeneous descriptions through IP-XACT

8.4.4 Generation of a Homogeneous Description

The next step consists of converting the heterogeneous descriptions of the com-
ponents into a homogeneous SystemC RTL/AMS description. This is achieved by
using HIFSuite front-end and back-end tools, as illustrated in Fig. 8.19.

The heterogeneous descriptions of the components are converted into HIF
descriptions by HIFSuite front-end tools, and then converted into corresponding
SystemC descriptions by HIFSuite back-end tools. Digital components are trans-
lated to SystemC RTL descriptions, while analog components are converted to
SystemC-AMS descriptions. The final result of this step is a homogeneous SystemC
RTL/AMS platform. Simulation of such a platform is performed by SystemC
simulation kernels.

8.4.5 Automatic Abstraction and Data Type Optimization

The homogeneous SystemC description of the OSTC can be optimized in order
to improve simulation performance. Slow and inefficient SystemC data types are
automatically replaced with native CCC data types by the HIFSuite tool ddt. ddt
operates on the functionality code in the descriptions of the digital components of
the platform. SystemC data types are replaced with corresponding native CCC data
types. Data operations typical of HDLs are replaced with corresponding bitwise
operations on the native CCC data types. This transformation improves simulation
performance, at the expense of multi-value logic accuracy. This means that the
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Fig. 8.20 Automatic integration of heterogeneous descriptions through IP-XACT

4-value logic offered by logic SystemC data types is lost, since native CCC data
types provide only 2-value logic. However, this turns out to be an acceptable loss of
accuracy, since multi-value logic mostly affects only the initial state of the platform.
Nevertheless, the presence of a reset phase in the software executed by the MIPS
CPU ensures that simulation starts from a given known state, thus removing the
need of modeling unknown states at the beginning.
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Fig. 8.21 Conversion of heterogeneous descriptions into a homogeneous SystemC RTL/AMS
description

Fig. 8.22 Automatic abstraction and data type optimization

Additionally, the homogeneous descriptions of the digital components can be
automatically abstracted to corresponding transactional-level CCC descriptions by
the HIFSuite tool A2T. In this case, the SystemC simulation kernel is replaced by
the lightweight CCC process scheduler automatically generated by A2T.

Figures 8.21 and 8.22 illustrate the conversion, automatic abstraction, and data
type optimization flows.
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Table 8.3 Simulation time using different simulation environments

Version Simulation time (s) Speed-up

Heterogeneous Simulation (no network) 215.47 NA
Homogeneous RTL Simulation (no network) 97.59 2.21�
Abstracted Model (no network) 20.60 10.46�
Abstracted Model (with network) 21.26 10.13�

8.4.6 Simulation Results

The simulation of the system using Mentor’s simulation environment has been
compared with the SystemC and CCC models of the OSTC obtained by employing
the methodologies developed. The heterogeneous simulation has been performed
with different SPICE configurations, while the SystemC and CCC homogeneous
descriptions have been executed by using a sample rate fine enough to provide a
high level of accuracy for the analog part.

Table 8.3 shows the execution times needed to perform a simulation of 100 ms on
the OSTC using the different available simulation technologies. The Heterogeneous
Simulation has been performed by using Mentor’s Questa Advanced Simulator.
Homogeneous RTL Simulation and Abstracted Model simulation have been per-
formed by applying the steps previously described in this document. From the
point of view of the abstraction level, the Homogeneous RTL Simulation is a
completely equivalent simulation with respect to the Heterogeneous Simulation (i.e.,
no abstraction is involved).

Since the effort required prevents to simulate the network together with the
system using Questa Advanced Simulator, also the Homogeneous and Abstracted
simulations have been performed without considering the network. However, the
abstracted model has been simulated also plugging the network model. It is worth
noticing that the overhead due to the SCNSL-based network simulation is negligible.

8.5 Conclusion

The presented case studies show that smart system design can take advantage from
a common workflow for the design and simulation, where different component-
level design and implementation methodologies converge towards system-level
homogeneous modeling and simulation. This approach, implemented in the SMAC
Platform, enables finding solutions for real system-level problems that require the
analysis of complex interactions between heterogeneous hardware and software.
The use of the platform largely accelerates design space exploration, design
validation, and performance evaluation with respect to what is achieved with
traditional techniques. Smart system integrators have now the possibility of working
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with realistic yet relatively fast models of components and system deriving from
detailed representations, thus avoiding (or reducing) possibly expensive iterations
of prototyping and experimental characterization.

The developed methodologies and tools support the analysis of multiphysical,
functional behavior of components and systems in most of the fields on which
today’s smart systems are based. The ground-breaking innovations pave the way for
future development and have started the task of changing the way smart embedded
systems are conceived and developed by design teams in an industrial ecosystem.
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