
Modeling and Simulation of Web-of-Things
Systems as Multi-Agent Systems

Ion Mircea Diaconescu1(B) and Gerd Wagner1,2

1 Brandenburg University of Technology, Cottbus, Germany
{M.Diaconescu,G.Wagner}@b-tu.de

2 Old Dominion University, Norfolk, USA

Abstract. In the Web of Things (WoT), special communication net-
works composed of sensor nodes, actuator nodes and service nodes form
the basis for new types of web application systems, which are directly
connected to the real world via sensors and actuators. We propose a con-
ceptual framework for simulating WoT systems as multi-agent systems
where both sensor nodes, actuator nodes and service nodes, as well as
other systems in their environment interacting with them (such as other
web applications, web services and human users), are modeled and simu-
lated as agents. Our conceptual framework includes an ontology of WoT
systems as sensor/actuator systems, and a meta-model for defining an
agent-based WoT system simulation language.

Keywords: Web of things · Sensor-actuator systems · Agent-based
modeling · Simulation

1 Introduction

In the Web of Things (WoT), special communication networks composed of
sensor nodes, actuator nodes and service nodes form the basis for new types
of web applications, which are directly connected to the real world via sensors
and actuators, and can be private, such as smart home apps, personal robotics
apps and factory control applications, or public, such as air pollution monitoring
systems and city parking management apps. We propose a conceptual framework
for simulating WoT systems as multi-agent systems where both sensor nodes,
actuator nodes and service nodes, as well as other systems in their environment
interacting with them (such as other web applications, web services and human
users), are modeled and simulated as agents.

We consider systems of purposeful interacting systems (with some degree of
autonomy) as multi-agent systems. Our conceptual framework includes an ontol-
ogy of WoT systems (WoTS) as sensor/actuator systems, and a meta-model for
defining an agent-based WoT system simulation language. Our approach supports
“hardware in the loop”, “software in the loop” and “humans in the loop”,
where “hardware” refers to sensor or actuator nodes, “software” refers to web
applications and web services, and “humans” refers to human users, which can
c© Springer International Publishing Switzerland 2015
J.P. Müller et al. (Eds.): MATES 2015, LNAI 9433, pp. 137–153, 2015.
DOI: 10.1007/978-3-319-27343-3 8

138 I.M. Diaconescu and G. Wagner

interact with a WoTS simulation via the user interface of a web application or via
a user interface of a sensor or actuator node.

Our proposed simulation framework is not concerned with low-level network-
ing issues in WoTS, e.g., resulting from specific network topologies. Rather, the
goal is to develop a WoTS simulation approach including and above the appli-
cation layer, with a focus on simulating the sensor, actuator and service nodes
as parts of a WoTS, and the WoTS as a whole.

2 Related Work

In [4], an approach to agent-based simulation of a network of web-service-enabled
devices is proposed. The authors argue that the Service-Oriented Architecture
(SOA) paradigm can be used for achieving interoperability between the nodes
of a WoT system and between such a system and modern enterprise networks.
When devices expose their data and operations as web services, this provides an
integration of devices with enterprise applications, allowing new innovative solu-
tions to enterprise automation problems. The authors choose the open standard
protocol Devices Profile for Web Services (DPWS) as the interaction protocol
for web-service-enabled devices [5]. However, this protocol is based on a protocol
stack that is too complex for constrained resource devices as needed, for instance,
in battery-operated WoT networks, while it may work well in non-constrained
office or factory environments. A Java-based multi-agent platform is used to cre-
ate the agents that simulate DPWS devices. These agents are connected to the
enterprise network in the same way as real DPWS devices. The resulting system
can be used for evaluating the impact of a large number of networked devices
on the running enterprise applications, without the need to set up a real device
network, which would be quite expensive and more difficult.

In [6] is proposed a decentralized architecture where agents providing atomic
system services run inside IoT devices. The authors argue that it is possible,
by using their approach, to dynamically distribute system load and move the
data processing tasks into the IoT devices in the edges of the network. HTTP
and CoAP (for low resource devices) are used as communication protocols, and
a proxy translates messages between these protocols. The assumption is that
IoT devices exist in a physical form (they are not software simulated), and the
discussion is rather generic, not making clear how such a system, composed
of various IoT devices (software and hardware platforms) can be practically
implemented.

A language and platform independent composition for mobile agents-based
smart objects is proposed in [7]. Using this approach, communication and data
sharing between agents is possible over disparate networks. The information
infrastructure is realized with the IETF CoRE framework [8]. The REST prin-
ciples are utilized in agent creation, migration, control, smart object commu-
nication and resources exposal to the internet. The authors discuss a system
reference architecture as well as an application programming interface which
allows basic HTTP and CoAP communication, content negotiation and autho-
rization methods. Some of the principles presented in this work are also used in

Modeling and Simulation of Web-of-Things Systems 139

the implementation of our JavaScript simulation framework, allowing agents to
share information among heterogeneous networks and provide access to resources
with the help of web interfaces.

3 IoT and WoT Systems

An Internet-of-Things (IoT) system is a communication network consisting of
sensor nodes, actuator nodes and service nodes, such that at least one node
is connected to the Internet. A sensor node consists of a controller to which
one or more sensors and a communication unit are attached. An actuator node
consists of a controller to which one or more actuators, zero or more sensors and
a communication unit are attached.

A WoT system (WoTS) is an IoT system that is built with Web technologies.
These technologies do not only include the classical Web technologies HTTP(S),
HTML, CSS and JavaScript, but also the more recent Web technologies Server-
Sent Events, Web Sockets, and the Constrained Application Protocol (CoAP)
proposed in [9]. We distinguish between the following three cases:

1. WoT systems that do not have the limitations implied by constrained resource
devices. These systems can use ordinary networking and web technologies such
as IEEE 802.11 for wireless networking, HTTPS and SOAP for application-
level messaging, and SOAP-based co-ordination and security techniques, as
proposed in [4].

2. WoT systems based on constrained resource devices having unlimited power
supply (not using batteries), such that power consumption is not a concern.
These systems need an alternative software/technology stack that is adapted
to the limited main memory, storage and processor speed of the constrained
resource devices. Ethernet (or IEEE 802.11) can still be used for (wireless)
networking, but only CoAP or an HTTP subset, and no HTTPS, can be used
for application-level messaging.

3. WoT systems based on constrained resource devices that are battery-powered,
requiring low-energy wireless networking technologies, such as IEEE 802.15.4,
and small footprint software technologies, such as CoAP for application-level
messaging. These systems often have higher packet error rates and a lower
throughput (say, of only tens of kbit/s).

Unlike many other authors, such as [2,4], we consider the issue of using the
new Internet Protocol (IP) version 6 (IPv6) instead of the established version
4 (IPv4) as orthogonal to the WoT. The main issue solved by IPv6, allowing a
greater address space than IPv4, is not necessarily an issue for WoT systems,
which can, in many cases, be built with either of them. Of course, the increasing
use of IoT apps will contribute to the increasing demand for IP addresses. But
since most IoT/WoT devices will not have to be reachable via an IP address, the
expected explosive growth of the IoT/WoT will not imply a similar explosion of
the IP address space.

140 I.M. Diaconescu and G. Wagner

The following are considered to be desirable features of a WoTS:

– self-configuration: the dynamic composition of WoTS by nodes joining and
leaving the network at any time

– self-diagnosis: automatic discovery of failures and faults
– self-optimization of constrained energy (battery-based) WoTS: automatic

monitoring and on/off-time control of resources

Fig. 1. A fragment of the AOES ontology.

Further, we discuss an approach for modeling sensor and actuator nodes as
agents. The AOES ontology fragment shown in Fig. 1 is the basis of our proposal.
PhysicalAgent represents the core of a WoTS model, and it consists of a set
of built-in properties representing the physical characteristics of the agent (e.g.,
spatial position) and zero or more (built-in or custom defined) reaction rules
defining its behavior. When needed, additional custom properties can be defined
for specific agent types derived from PhysicalAgent.

3.1 Sensor Nodes

As described in the UML class diagram shown in Fig. 2, a sensor node represents
a PhysicalAgent. It consists of a controller, a communication unit and one or
more sensors. A sensor consists of one or more detectors, which represents simple
(non-composite) sensors. A sensor is a measurement device that is attached to
a controller within a sensor node. As shown in Fig. 3, we distinguish between
three types of detectors:

Modeling and Simulation of Web-of-Things Systems 141

1. quality detectors with an analog interface,
2. quality detectors with a digital interface,
3. event detectors.

Fig. 2. An overview of the sensor and actuator nodes model.

Quality detectors and event detectors are simple (non-composite) sensors.
A quality detector is a device that allows measuring a physical quality of its
environment (or reach). An event detector allows detecting events occurring
in its reach. Notice that the concept of physical qualities has been defined in
the philosophical discipline of ontology (or metaphysics). A quality is an entity,
and not a data value, but it can be approximately represented by a data value
(namely the value of an attribute that captures the type of quality). For instance,
the voltage level of a wire of a particular detector at some moment in time is
a quality, which can be approximately represented by the value of an attribute
outputVoltage used for expressing statements about, and measurements of, the
detector.

Figure 3 shows how the sensing operation of an analog quality detector can
be conceptualized as a transformation, which converts a quality to be measured

142 I.M. Diaconescu and G. Wagner

in the detector’s reach to an internal quality of the detector device (typically, to
a voltage level) that can be read and transformed to a measurement quantity
by the controller. In our WoTS sensor ontology, we call the first transformation
function quality-to-voltage, and the second one voltage-to-quantity.

The sensing operation of a digital quality detector can be conceptualized as a
transformation, which converts a quality to be measured in the detector’s reach
to a sequence of bytes that can be read and transformed to a measurement quan-
tity by the controller (see Fig. 3). In our WoTS sensor ontology, we call the first
transformation function quality-to-bytes, and the second one bytes-to-quantity.

Fig. 3. An overview of the sensor model.

The sensing operation of an event sensor can be conceptualized as a trans-
formation, which turns the occurrence of an event of a certain type in its reach
to an internal event of the sensor device itself (typically corresponding to dig-
ital voltage signals) that can be detected and transformed to a control event
by the controller. In our WoTS sensor ontology, we call the first transformation
externalEvent-to-sensorEvent, and the second one sensorEvent-to-internalEvent.

Modeling and Simulation of Web-of-Things Systems 143

3.2 Actuator Nodes

As shown in the UML class diagram in Fig. 2, an actuator node represents a
PhysicalAgent. It consists of a controller, a communication unit, one or more
actuators and zero or more sensors.

As a component of an actuator node, an actuator is an enactment device that
is attached to a controller within an actuator node. Common types of actuators
are electro-mechanical devices that are controlled with the help of a (voltage or
digital interface) signal. Examples are motors, water pumps and relays.

Based on the interaction with the environment, we distinguish between two
types of actuators: event actuators and activity actuators.

As shown in Fig. 4, the effect of an event actuator is an event which directly or
indirectly affects qualities of its reach. A direct effect is when the resulting event
produces immediate state changes in the environment (reach) quality. For exam-
ple, a relay actuator which turns on a light, produces an immediate change in the
light intensity value of the actuator reach. An indirect effect is when the resulting
event produces a set of actions which later can result in reach state changes.

Fig. 4. An overview of the actuator model.

An activity actuator produces environment (reach) state changes over a time
period. It has a start and an end triggering event. For example, a watering
activity is started when the soil moisture is below a threshold and is ended when
the soil moisture reaches the required level. During the watering activity time,
the soil moisture increases as a result of the water flow, and a soil moisture
sensor reads the changes of this quality.

144 I.M. Diaconescu and G. Wagner

We distinguish between two main types of actuators (see Fig. 4), with respect
to their communication interface: digital and analog. Digital actuators are either
controlled with a simple high/low signal or by using a specific digital communi-
cation protocol, such as I2C, SPI or UART.

Analog actuators are controlled by voltage levels, and their effect is repre-
sented by one or more functions, sometimes provided in the actuator datasheet.
While for a vaste majority of actuators this information is not available, a lin-
ear, exponential or logarithmic function can be used to simulate the output of
an actuator. Controlling an analog actuator requires to use a DAC (digital to
analog convertor) capable controller, such as Arduino DUE [1].

Some digital actuators are controlled with a simple high/low signal. They
can be in one of the two states: open or closed. Examples of such actuators
are relays and electro-valves. Other digital actuators accept as input a set of
bits which describes the command to be executed. For example, some PWM
actuators expect a 64 bits encoded duty cycle and frequency values. In general,
standard digital communication protocols (e.g. I2C, SPI or UART) are used
to communicate with digital actuators, but for some, the datasheet may also
describe a custom protocol.

3.3 The Environment

The environment (reach) of the sensors and actuators of a WoTS consists of
amounts of matter (such as soil and air) and of discrete material objects (such as
cars and animals). Amounts of matter and material objects bear certain phys-
ical qualities (such as color or temperature) that can be measured by quality
detectors, and may participate in certain events that can be detected by event
detectors. Physical qualities of the objects or amounts of matter in the environ-
ment can be affected by actuators. For example, turning on a heater affects the
temperature of that specific heater actuator reach.

3.4 Examples of Sensors and Actuators

In the above sections we discuss about sensors and actuators as components
of a node. A large variety of sensor and actuators, such as the ones shown in
Fig. 5, exists for being used in WoT projects. For instance, an actuator node
may consist of a Grove soil moisture analog quality detector and a Pump digital
actuator attached to an Arduino UNO [1] micro-controller, plus an ESP8266 1

WiFi communication module. Notice that a Pump represents an actuator type,
the instances of which are individual Pump actuators. In the same way, a sensor
node may consist of a DHT22 2 (itself consisting of a temperature and humidity
detectors) sensor, an Arduino UNO micro-controller, and an ESP8266 WiFi
communication module.
1 ESP8266 WiFi module - http://www.esp8266.com/.
2 DHT22 Sensor - https://www.adafruit.com/datasheets/Digitalhumidityandtemp
eraturesensorAM2302.pdf.

http://www.esp8266.com/
https://www.adafruit.com/datasheets/DigitalhumidityandtemperaturesensorAM2302.pdf
https://www.adafruit.com/datasheets/DigitalhumidityandtemperaturesensorAM2302.pdf

Modeling and Simulation of Web-of-Things Systems 145

Fig. 5. Examples of sensor and actuator types.

4 The AOE Simulation Framework

Our AOES framework includes a simulation language and a simulator imple-
mentation, with support for various built-in sensor (e.g., LM35) and actuator
types (e.g., PullDownRelay).

The simulation language is based on AORML [10] (Agent-Object-Relationship
Modeling Language), and provides the language elements used to define WoTS
simulations. In AORML, an entity is either an agent, an event, an action, a claim,
a commitment, or an ordinary object. Agent and object form, respectively, the
active and passive entities, while actions and events are the dynamic entities of
the system model. Commitments and claims establish a special type of relation-
ship between agents. These concepts are fundamental components of social inter-
action processes and can explicitly help to achieve coherent behavior when these
processes are semi or fully automated. Only agents can communicate, perceive,
act, make commitments and satisfy claims. Ordinary objects are passive entities
with no such capabilities.

We extend the AOE Simulation Language with support for the new types
required in a WoT simulation. The basic elements used to define a sensor node
are shown in Fig. 6. Interfaces are used to describe operations (functionality),

146 I.M. Diaconescu and G. Wagner

such as the attribute-to-voltage mapping function needed for the analog qual-
ity detectors. Concrete WoT component types, such as ArduinoUNO (a micro-
controller type) and LM35 (an analog quality detector type) are instances of
MaterialObject, from which physical properties are inherited (e.g., spatial posi-
tion and sizes). A set of parameters are used when a new component type is
created, one of the most important being supertype which allows to classify
the new component (e.g., as a DigitalActuator or AnalogQualityDetector).
This simulation language is used by our JavaScript simulator implementation
prototype. For instance, a new analog detector type, such as LM35, is defined as
follows:

var LM35 = new MaterialObject({
typename: "LM35",
supertype: "AnalogQualityDetector",
mappingFunction: {

method: "linear",
initialData: { q0: 0, v0: 0, q1: 100, v1: 1},

},
measurementRange: { min: 0, max: 100},
accuracy: 0.5,
precision: 1,
resolution: 0.1,
supplyVoltage: 5,
properties: {

"outputVoltage": { range: "Decimal"}
}

});

Notice that in the class diagram of Fig. 6, the ArduinoUNO class represents,
like a product type, a controller type, the instances of which are individual
ArduinoUNO micro-controllers. Likewise, the LM35 class represents a detector
type, the instances of which are individual LM35 detectors.

5 Modeling and Simulation of WoT Systems

A WoTS simulation consists of one or more simulated WoTS nodes, an environ-
ment simulator, and zero or more real WoTS nodes, satisfying certain conditions
as defined below. The environment simulator is in charge of managing the state
of the simulated environment, including the reaches of all simulated sensor and
actuator nodes, and of simulating environment events, which may change the
state of the simulated environment, e.g., by changing certain property values in
certain simulated sensor reaches, and may affect event detectors if a simulated
environment event of the right type occurs in the reach of a simulated event
detector.

Modeling and Simulation of Web-of-Things Systems 147

Fig. 6. AOES sensor node example.

5.1 Simulation of Sensor Nodes

A simulated sensor node consists of a controller to which one or more simulated
sensors are attached. Since our simulation framework is not concerned with low-
level communication issues, we do not include the communication unit as an
explicit component of a simulated sensor node. A detailed discussion about how
a simulated sensor reads a quality of the environment and produces a result
representing the measured quantity was presented in [3]. We provide a summary
of the mapping functions used to simulate the sensor output.

The Attribute-Value-to-Voltage-Value Function. In a measurement sim-
ulation, the value of a reach attribute is read by the simulated analog quality
detector and transformed to a voltage value. The sensor resolution is used to
compute the “detected” input value, then, using a mapping function, a voltage
output value is obtained. The mapping function is either provided in the sen-
sor datasheet, or approximated by a linear, logarithmic or exponential function,
as shown in [3]. Considering the sensor characteristics, such as accuracy and
precision, the final voltage output of the sensor is computed.

The Voltage-Value-to-Quantity Mapping Function. This function is used
to provide a quantity for the measured quality when analog detectors are used.
Using ADC (analog to digital converted) enabled controllers (such as Arduino
UNO), the sensor analog output is mapped to a value representing the measured
quantity of the environment quality. The ADC unit has accuracy and precision,
like a sensor, since it is a voltage sensor with a digital output, which are reflected
in the ADC output.

148 I.M. Diaconescu and G. Wagner

Attribute-Value-to-Quantity Mapping Function. This applies to sensors
with digital output, no matter which communication protocol they use, since the
final result is a decimal number. When the sensor datasheet specifies a particular
mapping function, then it can be used in the sensor simulation. However, in
many cases, this information is not available, the strategy being to use the same
mapping functions as in the case of the attribute-value-to-voltage-value function,
with the difference that the output is not a voltage value but a value which is
the quantity of the measured quality. The sensors with digital output have also
accuracy, precision and resolution factors, which are handled as detailed in [3].

5.2 Simulation of Actuator Nodes

A simulated actuator node consists of a controller to which one or more simulated
actuators and zero or more simulated sensors are attached. As for the case of
simulated sensor nodes, we do not include the communication unit as an explicit
component of a simulated actuator node.

As shown in Fig. 4, an actuator affects the reach either by triggering events
with direct or indirect effect, as discussed earlier in this paper, or by producing
an activity. For the simulation of the environment state changes produced by
actuators, uniform and radial mapping functions are used. Whenever needed,
custom mapping functions may also be implemented, e.g., when a simulation
scenario has custom requirements.

The Unform Mapping Function. This mapping function is used whenever
a quality of the reach is affected in a uniform manner in the environment (or
reach), no matter the physical coordinates. For example, a relay which turns
on a set of lights may produce uniform light (considering an ideal environment)
over the reach.

The Radial Mapping Function. Using this mapping type, the effects of the
actuator are reduced (or amplified) with the increase of the distance between
the actuator spatial position and the coordinates within the affected reach. For
example, a water pump actuator produces a radial effect with respect to the soil
moisture environment quality. In other words, the soil moisture level decreases
along with the increase of the distance between the water pump, considered the
origin of the water flow, and the spatial coordinates in the reach where the soil
moisture quality measurement is performed. Concrete formulas used to compute
the radial effects depends on the affected physical properties. One example is
provided at the end of this paper, when a “Green House” simulation scenario is
discussed.

5.3 Simulation of the Environment

The simulated environment (simulation world) consists of simulated actuator
and sensor reaches, which overlap partially or totally. The physical space of

Modeling and Simulation of Web-of-Things Systems 149

the simulated environment is divided in cells, which represent the atomic space
units. A simulated reach is composed of a set of such neighbor cells. In a real
world WoTS, a sensor or actuator can have a irregular physically shaped reach,
i.e., a mesh shape. For simplicity reasons, in the case of simulated sensors and
actuators, the corresponding reach spaces are described by using regular shapes,
such as cuboids or approximated spheres. A simulated actuator actions have
effects only on that specific actuator reach, while a simulated sensor is able to
read (sense) only from its reach.

Actuator actions create environment events which activates environment
reaction rules. As result, state changes of the physical qualities of the objects or
matter within the simulated actuator reach may occur or activities are started or
ended, as shown in Fig. 4. Simulated quality detectors (or sensors) detect quality
state changes, while simulated event detectors (or sensors) receive perception
events. For example, a simulated LM35 analog quality temperature detector
senses changes of the temperature quality within its reach, and a PIR (passive
infrared sensor) detects the presence of an infrared emitting object within its
reach.

For simulations with sensor hardware in the loop, it is important to notice
that while simulated sensors have a simulated reach, real sensors are situated in a
real-world environment. A simulated environment does not affect any real sensor
node and a real-world environment does not affect any simulated sensor node,
but the two can be part of the same sensor network, share the same gateway
and provide data to the same services.

5.4 Modeling and Simulation of a WoT System as a Whole

A WoTS simulation consists of one or more simulated WoTS nodes, an environ-
ment simulator, and zero or more real WoTS nodes, such that

1. All simulated quality detectors (on simulated sensor and actuator nodes) can
sense/read as their input the value of an attribute of their simulated reach
corresponding to the quality to be measured. A simulated analog quality
detector first maps the attribute value to a voltage value with the help of
an attribute-value-to-voltage-value function, such that the simulated sensor
node can then map it to the simulated measurement result with the help
of a voltage-value-to-quantity function. A simulated digital quality detector
directly maps the property value to the simulated measurement result with
the help of a attribute-value -to-quantity function.

2. All simulated event detectors can detect simulated external perception events
as inputs from the environment simulator

3. All simulated actuators on simulated actuator nodes create simulated action
events as outputs to the environment simulator, which maps them to sim-
ulated physical signals as inputs to simulated sensors in the reach of the
simulated actuator.

4. Simulated sensor nodes are not “coupled” with real actuator nodes: the reach
of any real actuator node does not overlap with the reach of any simulated

150 I.M. Diaconescu and G. Wagner

sensor node. The reach of an actuator node is its local environment, in which
real state changes can be caused by it. The reach of a simulated sensor node
is the spatial region corresponding to its sensing radius in the simulated local
environment of the simulated sensor node.

This definition of a WoTS simulation includes the special case where all nodes
are simulated.

Notice that while there is a crisp boundary between real and simulated sensor
and actuator nodes, the boundary between real and simulated service nodes is
more fuzzy, since service nodes are not connected to the “real world”, but only
to digital network signals, which may represent real or simulated signals.

6 A Green House Test Case

Our Green House scenario considers a closed environment with three important
parameters: soil moisture, air temperature and relative humidity. It has an area
of 1250 m2 (50 × 25m) and a volume of 3750m3 (50 × 25 × 3m).

We consider a plant type, for which the optimal values corresponding to
the three qualities and the quantity of water consumption per unit of time are
known. The temperature variable (producing water vaporization) but also the
water consumed by the plant affects both, the soil moisture and the relative air
humidity.

6.1 Simulated Hardware Configuration

Two sensor types (three quality detectors) are used in our simulation, measuring
the important environment qualities:

– DHT22/AM2302 digital temperature and humidity sensor with a custom
1-Wire digital interface (two quality detectors on the same physical pack-
age, with a common data interface). It allows measurements of air humidity
in the range from [0, 99]% with a typical accuracy of 2 % and precision of
1 %, as well as temperature measurements in the range from [-40, 80]◦C with
a typical accuracy of 0.5◦C and precision of 0.2◦C.

– GROVE analog soil moisture detector, with a range of [0, 100]% and a typical
accuracy of 10 %. The datasheet does not provide information about the sen-
sor’s precision, but our research on the web has shown that typically a value
of 5 % is to be expected for this sensor type. This sensor has an analog quality
detector.

Two actuator types are used to control the three monitored environment
qualities, i.e., soil moisture, air temperature and relative humidity:

– Heaters, activated or deactivated by PullDownRelay digital actuators, are
used to increase the temperature when needed. Each heater is able to increase
the temperature with 5◦C per hour, for 750m3 volume of air. Cooling is not
considered in this scenario. The pull down relays are directly connected to
heaters, and the composition of the two components represents the actuator.

Modeling and Simulation of Web-of-Things Systems 151

– Ventilators, activated or deactivated by PullDownRelay digital actuators, are
used to provide air flow to and from outside the green house space, thus
providing some degree of control for this quality. The ventilators can rotate
either forward or backward and can be on or off, without speed control. Each
ventilator is able to provide a volume of 1250m3 air per hour. The pull down
relays are directly connected to ventilators, and the composition of the two
represents the actuator.

– A Pump digital actuator is used to increase the soil moisture when required.
It can be on (provides water flow) or off (no water flows). The pump is able
to provide 9 dm3 water per minute.

A simulated sensor node consists of an Arduino Mini [1] controller (a cheap
variation of Arduino UNO, much lower in size and with half the power con-
sumption), an WiFi communication module and a DHT22 or a Grove sensor (or
both). Because the temperature and humidity are considered uniform over the
entire green house space, only one node contains a DHT22 sensor.

A simulated actuator node consist of an Arduino Mini controller, an WiFi
communication module and a pull down relay or a water pump actuator (or
both). Some of the actuator nodes contains also Grove sensors, depending on
their spatial position.

In general, the goal is to allow using real devices in combination with sim-
ulated devices. Technically, this is possible by using a virtual router, a piece
of software, which allows the simulated sensor and actuator nodes to behave
in the network same as real hardware: connects to a Wi-Fi or Wired network,
acquire IP from DHCP and use standard communication protocols, e.g., CoAP
over UDP, for data transmission.

6.2 Environment Simulation

In this scenarion, the simulated sensor and actuator nodes exist in a simulated
environment. The variation of the environment qualities, such as air temperature
and humidity, is sensed by the simulated sensors and transformed to quantities
by the controller, e.g., soil moisture level (in percent), for soil moisture quality.
The environment physical space is discrete and it is composed of cubic cells with
a size of 1×1×1m. A cell represents the atomic space unit. A sensor or actuator
reach (a region in the environment space) consists of a neighborhood set of such
cells. Sensor reaches and actuator reaches share environment space (one or more
cells), but a complete overlap is not required. The environment simulator takes
into consideration the following qualities:

– Temperature: the variation from day to night is considered linear. The varia-
tion interval is set for 24 hours. The temperature starts to increase after sun-
rise until a specified daytime, e.g., 5:00 PM for summer time, then decreases
until the next sunrise. Close to reality events, such as clouds, are simulated by
introducing small random variations. In this scenario, we consider a uniform
temperature distribution over the simulated environment (the temperature

152 I.M. Diaconescu and G. Wagner

value is the same on each space cell). The heaters are activated if the temper-
ature goes below 22◦C, and deactivated when the temperature reaches 25◦C
or more.

– Air humidity : the variation depends on the environment temperature and
water dew point. Water dew point is the temperature at which the air can
no longer hold all of the water vapor which is mixed with it, and some of the
water vapor must condense into liquid water. In this scenario, air flow to and
from outside allows to increase or decrease the air humidity. The minimum
and maximum values for this quality are dependent on the values from the
space outside the green house. The formula used to compute the relative air

humidity is: RH = 10m
(

Td
Td+Tn

− Ta
Ta+Tn

)
∗100%, where Td is the water dew point

temperature, Ta is the temperature in the environment, while m and Tn are
constants which depend on temperature ranges and are provided in constant
tables. In this scenario, we consider a uniform air humidity distribution over
the simulated green house environment (the value of this quality is the same
on each space cell).

– Soil moisture: the variation depends on both, the temperature which affects
the water vaporization, and the quantity of water known to be consumed by
the plant. When watering is required, because the soil moisture is below a
threshold, the water pump is started. The water distribution in soil is com-
puted by using the following formula: dθ

dt = d
dr

(
D dθ

dr

) − S, where θ is the
volumetric water content, t is the time, D is the soil water diffusivity, r is the
radius, and S is the water uptake by the plant(s) root. In this scenario, for
simplicty reasons, we do not consider the gravitational force when computing
the water distribution in the soil, therefore the soil moisture is the same no
matter the depth in the soil at which it is measured.

During the simulation runtime, various activities are possible. For example,
when the measured soil moisture goes under a specified level, a watering activity
is started. A water pump is then activated in the specific reach. A known quantity
of water per unit of time starts to flow and the soil moisture in the actuator
reach starts to increase (according with the above presented formula). The soil
moisture sensor reads the value of this quality, and when it reaches an optimum
level, the water pump is deactivated.

7 Conclusions

We have presented a proposal for modeling and simulating certain types of
sensor-actuator systems and WoT systems consisting of simple sensors based
on quality detectors and event detectors, such as LM35 analog temperature sen-
sors and Proximity Infra-Red (PIR) sensors. Although our approach is more
general than the approaches discussed in the section on related work, it does not
provide a completely general model of sensors and actuators, since it does, for
instance, not account for more advanced types of sensors such as LIDAR devices
and video cameras. We work on a JavaScript implementation of the proposed
simulation framework and expect to be able to present evaluation results, of the
simulator and the presented test case, in a follow-up paper.

Modeling and Simulation of Web-of-Things Systems 153

References

1. Arduino Foundation: Arduino Platform (2005). http://arduino.cc
2. Brambilla, G., Picone, M., Cirani, S., Amoretti, M., Zanichelli, F.: A simulation

platform for large-scale internet of things scenarios in urban environments. In:
Proceeding of the of the First International Conference on IoT in Urban Space
(Urb-IoT 2014), Rome, Italy, pp. 50–55 (2014). Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering (ICST)

3. Diaconescu, M., Wagner, G.: Modeling and simulation of web-of-things systems
Part 1: sensor nodes. In: Winter Simulation Conference (WSC 2015), Huntington
Beach, CA (To appear)

4. Karnouskos S., Tariq, M.M.J.: An agent-based simulation of SOA-ready devices.
In: Proceedings of the Tenth International Conference on Computer Modeling and
Simulation, pp. 330–335 (2008). IEEE Computer Society

5. Microsoft Corporation: Devices profile for web services. http://specs.xmlsoap.org/
ws/2006/02/devprof/devicesprofile.pdf (2006). Accessed 23 May 2015

6. Leppnen, T., Riekki, J.: A lightweight agent-based architecture for the Internet of
Things. IEICE Technical Report

7. Leppnen, T., Riekki, J., Liu, M., Harjula, E., Ojala, T.: Mobile agents-based smart
objects for the internet of things. In: Fortino, G., Trunfio, P. (eds.) Internet of
Things Based on Smart Objects, pp. 29–48. Springer, Heidelberg (2014)

8. Shelby, Z.: Embedded web services. IEEE Wirel. Commun. 17(6), 52–57 (2010)
9. Shelby, Z., Hartke, K., Bormann, C.: Constrained Application Protocol (CoAP)

RFC 7252, June 2014. Internet Engineering Task Force (IETF)
10. Wagner, G.: The agent-object-relationship meta-model: towards a unified view of

state and behavior. Inf. Syst. 28(5), 475–504 (2003)

http://arduino.cc
http://specs.xmlsoap.org/ws/2006/02/devprof/devicesprofile.pdf
http://specs.xmlsoap.org/ws/2006/02/devprof/devicesprofile.pdf

	Modeling and Simulation of Web-of-Things Systems as Multi-Agent Systems
	1 Introduction
	2 Related Work
	3 IoT and WoT Systems
	3.1 Sensor Nodes
	3.2 Actuator Nodes
	3.3 The Environment
	3.4 Examples of Sensors and Actuators

	4 The AOE Simulation Framework
	5 Modeling and Simulation of WoT Systems
	5.1 Simulation of Sensor Nodes
	5.2 Simulation of Actuator Nodes
	5.3 Simulation of the Environment
	5.4 Modeling and Simulation of a WoT System as a Whole

	6 A Green House Test Case
	6.1 Simulated Hardware Configuration
	6.2 Environment Simulation

	7 Conclusions
	References

