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Abstract. A growing network of technical systems, embedded and auto-
nomous, influence our daily work. Among them, cyber-physical systems
establish a close connection between the virtual and the real world. In
this paper we show how an existing multiagent system that controls the
physical production of goods on a monorail is virtualized by extracting
the agents as black boxes and by integrating them into a multiagent
simulation system. As a result, the exact same agents run in physical
and cyber world. Towards this end, the physical environment has been
mapped and visualized. Experiments show that the modeling and simu-
lation error is small, such that scenarios can be varied, tested, debugged,
and scaled, saving huge amounts of labor.

1 Introduction

Production logistics has undergone a significant transformation in recent years.
While in the past, mechanization and automation were clearly marked, nowadays
there is a rising interest in autonomous and interconnected software solutions.
The political and economic significance of this development has been associated
with the name Industry 4.0 [14].

Cyber physical systems (CPS) have been identified as transformative tech-
nologies for managing interconnected systems between its physical assets and
computational capabilities [3]. In our setting, the CPS maps the digital into a
real factory. Therefore, we aim at integrated planning, evaluation and contin-
uous improvement of the essential structures, processes and resources in a real
factory. We observe an increasing complexity of such systems and an increasing
number of time-consuming tasks in their practical evaluation. Analytical meth-
ods are only partly sufficient for the study of such systems. Instead, simulations
are preferred, because they often show a better mapping of the real behavior of
the systems.

Even though no unified definition of agents exists in the literature, most
authors agree that agents are autonomous software programs with certain social
abilities [7]: agents can use sensors to perceive the world around them, control
actuators to manipulate their environment and are able to communicate with
other agents or even human users if necessary [28]. Agents use the perceived
information to make decisions on their own and change the world around them
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to their advantage. The degree of autonomy an agent has is only restrained by
its software program. The biggest advantage of agent technology in comparison
to equation-based modeling is the capability of multiagent systems (MAS) to
solve problems locally and react dynamically to occurring events [19].

Despite the growing body of research in Industry 4.0 applications, accessible
MAS that run on real hardware for in-door production are rare. One of the few
successful real-world implementations of a MAS is the so called Z2 production
floor unit that has been developed at BIBA1. As individual production steps are
performed at different stations, the stations are interconnected by a monorail
transport system. The structure of the transport system is shown in Fig. 2. The
transported goods are autonomous, which means that each product decides on its
own which variant it aims at and which station to visit. This way, a decentralized
control of the production system is possible [25].

At the University of Bremen, the Platform for Simulation with Multiple
Agents (PlaSMA) has been developed [24]. It has mainly been applied to the
simulation of macro-logistical processes. PlaSMA expands the functionality of
the Java Agent Development toolkit (JADE) to a discrete-event simulation. Due
to the need for simulation for CPS in production logistics, in this work we investi-
gate, whether PlaSMA is able is accurately simulate existing production logistics
scenarios by providing a model of the physical environment and by extracting
existing agents without any change.

In this paper we provide a mapping of the Z2 monorail production unit to
PlaSMA, leading to a cyber-physical system scenario of already existing agents
and new ones; and an experimental study that shows how much executing the
simulated and the real-world systems differ. The main contribution is the suc-
cessful mix of existing agents as black boxes that operate seamlessly together
with additional ones, substituting the hardware units by agents in the simulated
world. Aspects of the agent models are detailed.

The text is structured as follows. First, we give insights to the architecture
of the system and analyze the components of the real, the virtual system, as
well as the agent model. We analyze the properties of the available agents from
the existing physical system and introduce agents which represent the products,
the stations, as well as the readers and the plant management. For the technical
transformation we first explain how PlaSMA and JADE had to be adapted, and
the communication unit had to be integrated. Then, we adapt the model into
simulation and implement and visualize the according agents. For the validation
of our approach we test the implementation in terms of concept adequateness
and operational consistency. Both the physical and the simulated systems are
ran and the according results are compared. Finally, we conclude and provide a
brief outlook to possible future research avenues.
1 Bremer Institut für Produktion und Logistik GmbH.
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2 Multiagent System

The JADE-based agent model of the Z2 monorail production unit was designed
and implemented within Collaborative Research Center 637 [11,17]. Unlike most
MAS representations of in-house logistics, the Z2 software was developed to
control a real-world hardware implementation as a decentralized, heterarchical
approach to achieve positive emergence and adaptability to changes in the envi-
ronment and the goals of various stakeholders. During the development of Z2,
the authors identified similarities between the Internet of Things[6], Intelligent
Products[16] and MAS.

Z2 is a monorail-based assembly network for automotive tail-lights. The mod-
ular system consists of six different workstations, each is operated manually by
a human worker and dedicated to one specific production step. At production
steps III and V, different parts can be used to assemble different variants of the
tail-lights as illustrated in Fig. 1.

At the first station, the basic metal cast parts enter the monorail on a dedi-
cated shuttle. The monorail connects all stations, each station is assigned to one
specific task, such as adding bulbs or diffusers. Each tail-light is transported from
station to station until it is assembled completely. The scenario is illustrated in
Fig. 2.

Low frequency RFID tags are embedded into the metal cast parts in order
to identify and locate every tail light automatically. Morales-Kluge et al. [17]
emphasize the dedicated Hardware Abstraction Layer of their implementation,
which provides interfaces to various hardware machines of the scenario, including
the transport shuttles.

Fig. 1. Assembly states of tail lights [11].
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Fig. 2. Assembly scenario for tail-lights [17].

To add autonomy to this scenario, agents are applied to represent the indi-
vidual stakeholders of the assembly line. A number of simple reflex agents [22]
represent entities such as RFID readers which keep track of the traffic and each
product’s current location, information providers and even a Graphic User Inter-
face (GUI) to supervise the agents’ activities and to manually manipulate the
current order status of each tail-light type variant. However, two particular agent
types stick out, as they are the most relevant for the system’s overall perfor-
mance. The Station Agent, which provides an interface between the MAS and
the individual worker at the respective station and the Product Agent which
represents each individual product on the assembly line.

Each Station Agent represents one of the six workstations. The agent pro-
vides information regarding estimated waiting time for the service provided at
its station and handles reservation requests by product agents. Furthermore,
each Station Agent autonomously negotiates entrance and departure of product
agents into the processing area where the manufacturing step takes place.

2.1 The Product Agent

The most interesting agent, however, is the Product Agent. The Product Agent
is directly linked to the RFID chip embedded in the metal cast part of a tail
light. When the cast is placed on an autonomous shuttle, both entities establish
a connection, so that the Product Agent can order the shuttle which station to
approach next.

Based on the current utilization of assembly stations and the overall order
status, the Product Agent chooses the next production step and targets a type
variant. After every production step, the plan is reconsidered to ensure that the
current plan is still the optimal choice.

The Product Agent is a Finite State Machine (FSM) as illustrated in Fig. 3.
Its behavior strongly depends on its current state. While transferring between
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Fig. 3. Architecture of the product agent.

stations, the agent is in the state IDLE WAIT OF REGISTER, listening for messages
from RFID readers until the destination is arrived. The navigation is executed
by the shuttle itself, the Product Agent only registers at RFID readers to keep
track of its own location.

In the state IDLE, the Product Agent acquires all necessary information to
decide which production step to take next. First, the agent decides which tail-
light variant its product should become. The decision is based on the current
order status for each type variant and on the previously applied production steps
which may limit the amount of possible choices.
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Once a decision is made, the agent decides which production step to take next
and which station to approach. Therefore, the agent requests the current waiting
time and queue length at each considered station and waits for replies in the
state STATION WAIT TIME REQUEST. Once the response messages were received,
a MATLAB server is invoked by a direct socket connection to determine the
next production step for this individual agent. If no satisfying solution could be
determined, the decision-making process will be repeated.

Once a destination is chosen, the Product Agent attempts to make a reserva-
tion at the respective station and waits in the state STATION REQUEST until the
reservation is either confirmed or denied. In the latter case, the agent returns to
the state IDLE.

In the state STATION RESERVED, the agent constantly keeps track of the wait-
ing time at the destination and estimates the remaining spatial distance. Fur-
thermore, the agent handles incoming messages by the station, which provide
information whether the agent is allowed to enter the processing area upon
arrival or is supposed to wait in line. In the latter case, the agent continues to
wait for the message in STATION CAN ENTER REQUEST after the product arrived at
the station. Furthermore, while being in the state STATION RESERVED, the agent
handles reservation cancellations messages, which may be sent by the station if
the service cannot longer be provided.

Once the agent is allowed to enter the area where the production step is
applied, the state STATION PROCESSING is reached and the shuttle takes the
product into the production area. The worker now applies the production step
to the product while its agent waits for a message which allows the product to
leave the area.

In the state STATION CAN EXIT, the Product Agent is informed by the Station
Agent, whether the production step was applied or not. The Station Agent gains
that information from the worker. In both cases, the Station Agent returns to
the state IDLE and, therefore, decides again how to proceed.

After all parts are assembled, only storage stations can be chosen for reserva-
tion. In this special case, the agent registers its final tail-light type variant at the
respective storage in the state STORED. Afterwards, the agent waits in the state
SENDSTORE for a message which confirms that the product was removed from the
assembly line by a worker. The agent then switches to the state FINISHED and
terminates permanently.

2.2 Decision Making

The research presented in this paper was partly motivated by our interest in the
application of alternative decision-making and optimization methods for this
particular setup, since we consider it an interesting testbed for real-world appli-
cation of AI methods. However, because of time and personnel required to run
the hardware, the need for a simulation model compatible to the hardware was
indispensable.

Currently, the decision-making process in this agent model is based on hier-
archical aggregation as presented in [20]. During the process, the agent splits
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his overall goal into sub-goals and evaluates the effect of every possible action
on each sub-goal. Depending on the current context, different sub-goals may
have a different weight for the overall utility function. The overall utility value
is calculated by solving a multi-criteria evaluation problem, where each criterion
corresponds to the effect the action will have on one specific sub-goal.

In this model, knowledge is represented by a set of rules. As decision support
systems like analytic hierarchy process and weighted average lack the ability to
handle linguistic variables, fuzzy logic is used to express information.

Fuzzy sets and fuzzy logic are a solid research branch of computational intelli-
gence, allowing to draw reliable inferences about vague concepts that are inherent
in linguistic terms. The main idea is to have a partial membership of elements
in the set, or propositions that are only partially true. In difference to probabil-
ities, where truth is only uncertain, in such a possibilistic world, truth itself is a
fractional term.

There are many applications of fuzzy decision-making. E.g., in Robotics, such
reasoning can be used to trade conflicting behaviors like wall-following and obsta-
cle avoidance. Fuzzy decision-making goes back to work of Bellmann and Zadeh
[1]. As surveyed by Carlsson and Fuller [5], after some first doubts on the impact
of fuzzy decision-making by French [8], it has shown considerable impact in the
improved working of rational agents, as predicted by Gaines et al. [10].

Interestingly, in the Z2 MAS, the decision-making process based on fuzzy
reasoning is completely separated from all other agents’ programs and made
available via a dedicated MATLAB server through a TCP/IP socket connection.
The Product Agents communicate their individual perception of the environment
and their respective product’s states to this MATLAB server. Furthermore, the
agents provide a set of available decision options to the server and receive an
answer on what to do next.

3 From Reality to Simulation

The original implementation of the Z2 monorail system consists of three layers,
as illustrated in Fig. 4. On top of the architecture lies the agent model layer
which contains the MAS including all its agents. The agent layer is set upon a
virtual model of the hardware system. The lowest level consists of the hardware
itself. Since the MAS and the hardware have already been described in detail in
the previous sections, we now focus on the virtual model layer.

The virtual model is a simplified model of the real-world hardware system.
From the agent’s perspective, the virtual model is its environment, since the
agent only percepts and manipulates the virtual model and does not directly
interact with the hardware layer. The virtual model encapsulates all dynamic
and static features of the system in data structures accessible by the MAS.

The static features, which cannot be modified at runtime, describe the infra-
structure of the system as well as its purpose. The infrastructure of the system
consists of Radio Frequency Identification (RFID) reader entities, Intelligent
Routing Module (IRM) sensor entities, and RFID/IRM sensor types, the vari-
ous assembly stations and areas of the monorail system, the shuttles and their
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Fig. 4. The different abstraction layers.

respective IDs. Some of the IRM sensors, which are referred to as stop mod-
ules, require the shuttles to stop on arrival. Stop modules are interconnected by
railways, which are referred to as edges. Furthermore, fixed routes are defined
between all stop modules, given that the shuttles are not capable of executing
any shortest-path search algorithms.

Since the purpose of the system is the manufacturing of tail-lights, the virtual
model additionally contains information about the different parts and production
steps, the interdependencies between production steps, possible part combina-
tions (type variants) and variant groups. Furthermore, the virtual model stores
information regarding the initial order status of each type variant and the inter-
face towards the MATLAB decision-making server. The static features of the
system are stored in an Extensible Markup Language (XML) file, which is made
available to each agent at the beginning of its lifecycle.

Far more interesting, however, are the dynamic features of the system, which
encourage application of agents and decentralized control. The dynamic features
are the current order status of the different variants, the varying product states,
waiting times at the various stations, and the position of products and shuttles.

While shuttles are located by the IRM system, products are located by the
RFID system. Both systems update the virtual model but do not depend on
each other. Hence, if a worker decides to manually remove one product from its
shuttle and attach it to another one, the product will determine its new location
and continue its work from the new position. Respectively, shuttles adapt to
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Fig. 5. Architecture of the move agent.

Fig. 6. Architecture of the simulation scheduling agent.

a change of carriage and establish a connection with the new product. It is
worth mentioning, that the positions of products and shuttles are not constantly
tracked. Instead, the discrete model is updated whenever a shuttle or a product
registers or deregisters at a reader.

Since dynamic reactions on changing order situations are considered one of
the major advantages of digital factories [2], the order situation within the system
can be manipulated by a human operator at runtime. A dedicated agent provides
a GUI for the operator and updates the virtual model when the situation changes.
The GUI allows to increase or decrease the amount of orders for each tail-light
variant separately. The information is used by the Product Agents during their
decision-making processes.

3.1 Supporting Simulation Agents

To run this MAS in a simulation environment, the underlying hardware layer
has to be replaced by a software system, which adapts the interfaces between
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hardware layer and virtual model. The data exchange between both layers covers
discrete time updates of RFID and IRM data. Therefore, a simulation model of
the monorail infrastructure is of particular interest.

We adapted the hardware infrastructure into a PlaSMA-compatible graph,
where nodes represent IRM sensors and RFID readers and edges represent direct
railway connections between the nodes. More precisely, we derive the required
information from the XML data scheme used in the original system to generate
our own graph infrastructure. Each edge is weighted by the physical length of
the corresponding hardware railway. Nodes representing RFID readers or rail-
way switches are tagged with additional information regarding the waiting time
per shuttle. The original hardware routing treats every connection between two
nodes as a one-way railway. We adapted this behavior by defining the infrastruc-
ture graph to be directed. Furthermore, we model shuttles as virtual physical
objects to be placed on nodes or edges.

Since shuttles are autonomous entities in the hardware layer, we implemented
a new Move Agent type to represent one unique shuttle. The agent controls move-
ment and speed of the virtual physical object. While pathfinding is only mocked
in the original hardware system by a number of fixed paths to choose from, the
simulation Move Agent applies shortest path search as presented in [13].

Like the Product Agent, the Move Agent can be seen as a FSM as illustrated
in Fig. 5: After initialization, the agent receives a product to carry and moves it
around to various stations depending on the Product Agent’s requirements until
a storage was reached and the product unloaded. Then, the agent waits for a new
product to receive. The agent architecture does not allow manual displacement
of the product. However, since the simulation obviously does not contain any
human workers, manual displacement is obsolete.

The Simulation Scheduling Agent instantiates virtual shuttles and the cor-
responding Move Agents as well as Product Agents according to the simula-
tion configuration. While shuttles are created immediately when the simulation
starts, batches of new products can be created at regular intervals. The Simula-
tion Scheduling Agent is illustrated in Fig. 6.

In order to simulate the behavior of the various RFID/IRM units, a third agent
is applied, which keeps track of all sensors within the system. The agent main-
tains the order of waiting shuttles (first-in-first-out (FIFO)) and simulates waiting
times at railway switches if the switch needs to change its routing direction.

4 Multiagent Simulation Model

As in other types of concurrent systems, issues like dead- and livelocks are often
met while analyzing MAS. Concurrent process models enable reasoning the sup-
port for dynamic change and parallel execution.

There have been different formalizations of an MAS that are available in
the literature. Burkhard [4] uses a formal language approach to represent a
MAS M as a quadruple (A, T, τ, L), where A is a set of agents, T is a set of
actions, and τ is a mapping from A to 2T , so that for all a in A we have that
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Ta = {t ∈ T | t ∈ τ(a)} is the set of actions executable in a. The set of actions
sequences (solutions, plans) is denoted as L ⊆ T ∗.

Recall that by definition for a homomorphism h we have h(x◦y) = h(x)◦h(y).
For strings x, y ∈ Σ∗ a homomorphism ◦ is the concatenation x ◦ y = xy. The
identity for this homomorphism is ε ∈ Σ∗, the empty string.

In the formalization, homomorphisms are used as selection operators. In the
overall plan each agents applies a homomorphism to select its own actions. Addi-
tionally, another string denotes which turn it is.

The behavior of each agent a ∈ A is described by a homomorphism ha(L)
with ha(l) = t, if t ∈ Ta, and ε otherwise. hA(L) ⊆ A∗ and the behavior of a
MAS is characterized by a homomorphism hA acting on the set L.

We exemplify the formalization for the Z2 demonstrator. Let P = {P1, . . . , Pk}
be the set of RFID locations for the shuttles, and move(Pi, Pj) the action for mov-
ing the vehicle via the shortest path from 〈Pi = Pπ(1), Pπ(2), . . . , Pπ(n) = Pj〉
from Pi to Pj . Action move(Pi, Pj) decomposes into step(Pl, Pk), with Pl and
Pk being adjacent.

Assume that we have two shuttle agents a1 and a1 and a global plan that
consists of steps Sl,k = step(Pl, Pk) from Pl to Pk. The empty string ε corre-
spond to an action wait. We may assume, that each agent is asked in turn to
resume, and answers ε if there is nothing to do.

Let L = S1,2, S1,2, S2,3, S3,4, S2,5, . . . be the observed overall plan. The MAS
behavior hA(L) = a1a2a1a1a2 . . . is sequence of agents defining the order to
execute the actions. Hence ha1(L) = S1,2, S2,3, S3,4, . . . is the behavior of agent
a1, and ha2(L) = S1,2, S2,5, . . . is the behavior of agent a2.

It is also possible to add communication to the model. A (rendezvous) com-
munication activity is a pair of actions (often a reading and a writing event),
so that the entire communication is a string of the communication activities,
modeled as a homomorphism hk(L) into A × A. Communication activities can
also be thought of mandatory synchronization points. While so far the order of
actions is inherited by L it may be that there are several interleavings of agent
executions in form of MAS behaviors that lead to the same result. For exam-
ple, L′ = S1,2, S1,2, S2,3, S2,5, S3,4, . . . together with hA(L′) = a2a1a1a2a1 yields
the same outcome as L = S1,2, S1,2, S2,3, S3,4, S2,5, . . . together with hA(L) =
a1a2a1a1a2 . . ..

Usually, the interpretation is unit time, so that each action takes one time
step. However, this is not necessary, since we may associate a time stamp with
each plan step, such that time extend and concurrency of actions can be modeled.

The LORA MAS formalization provided by Wooldridge [26,27] origins in
model checking, with labeled transition and Kripke systems characterizing the
behavior of the agents (their belief, their desire and their intention), and tem-
poral logics expressing their required interplay, as well as the progression of
knowledge. Alternatives consider an MAS as a game, in which agents –either in
separation or cooperatively– optimize their individual outcome [23]. Communica-
tion between the agents is available via writing to and reading from channels, or
via common access to shared variables. Other formalization approaches include
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work in the context of the MCMAS tool by Lomuscio2. Recently, there has
been some approaches by Nissim and Brafman to formulize MAS as planning
problems [18].

In the present paper, we define a multiagent system as an arbitrary complex
concurrent computer program (that can be best thought of an ensemble of C
or Java program threads). By the virtue of the Theorem of Rice [21], every
non-trivial condition in such MAS (even while considering only one agent) is,
therefore, already undecidable, so that essentially, we are bound to simulate MAS
to get definite insights to their working. Such simulation leads to the concept of
simulation time, which is measured in ticks or cycles, sometimes mapped to a
more realistic time scale.

As in our case, quite often birth-giver agents create other agents according
to some random process. We have one initial agent running: the environment
agent (which can be thought as the main thread in the execution of a computer
program), but as agents can be created or deleted in the course of the simulation,
the number k of currently acting agents is not known in advance and has to be
adapted dynamically.

Every agent (program) is further partitioned into finite state machines (FSM)
of subprograms, whose states are called behaviors. Edges taken depend on the
outcome of evaluating these behaviors. To ease the implementation, we assume
that agents are parameterized, such that one FSM can be instantiated to many
different individual agents. In object-oriented terms, each agent schema is a class,
and each agent is a class object.

Together with a discrete event queue Q an MAS may now be exploited to
simulate the evolution of time. The data structure Q offers the traditional set of
priority queue operation of inserting, finding, and (minimum) deletion of events.
Ordered wrt. timestamps it can be implemented in form of a heap. An element
in Q is a triple of (key, agent, state) where the key is the current timestamp of
the simulation, and (agent, state) is the information about where a particular
agent’s execution has to be resumed.

After extracting the event with minimum timestamp, we know the agent’s
behavior to be resumed. There might be several agents that have to execute code
at the same point in time. Physically, all those agents run in different threads.

Each resumed agent knows its FSM state, where it was suspended and first
looks into his inbox for messages that have arrived. After committing to all
incoming messages, by calling the action method of the behavior, the agent tries
progressing his individual task unless he reaches a point where it suspends (with
each suspension a time interval is fixed, where no resuming is foreseen). While
each action execution takes physical time, its simulation time is zero, so that each
individual progression from a resume to a point in time for suspension requires
no tick. Under certain assumptions the event-based simulation will progress, and
with an upper bound on the maximum number of ticks eventually terminate.

In multiagent simulation, we distinguish the following three notions of time [9]:
physical time (alias real time) refers to the time in the real world, i.e., at which

2 http://vas.doc.ic.ac.uk/software/mcmas/

http://vas.doc.ic.ac.uk/software/mcmas/
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simulated events would happen in reality; simulation time models physical time
in the simulation; and wallclock time that is consumed by the simulation sys-
tem in order to execute the simulation. While physical time is continuous in
multiagent-based simulation [15] simulation time is discrete, so that simulated
events are mapped to timestamps. In multiagent communication, for the flow
of information between agents, effective message handling is essential [12]. To
ensure quality criteria for message handling we require

Time Model Adequacy. It is important to choose an appropriate granularity
of time progression.

Causality. Due to the autonomy in accessing the message inbox, agents may
process messages early. To ensure causality, message visibility has to be
controlled: processing earlier messages is deferred, until local time has pro-
gressed.

Reproducibility. The ordering of messages may still depend on the system
scheduling of the respective senders. For the sake of traceability, additional
orderings (besides message arrival time) like the agent’s ID are imposed.

Fig. 7. Time distance between start position departure and arrival at nodes without
waiting times.

5 Evaluation

The original hardware implementation runs on the Z2 demonstrator, for which
the timing results are measured manually. All simulations are executed with the
latest release of the PlaSMA software on a laptop computer, equipped with an
Intel Pentium i7 processor and 16 GB RAM. Each agent is a Java thread, and
can be profiled individually using appropriate tools. Performance indicators of
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Fig. 8. Time distance between start position departure and arrival at nodes with wait-
ing times.

the simulation have been selected and stored in a database. A virtual machine3

contains the MATLAB server. The PlaSMA software includes a graphical user
interface, where the progress of the simulation can be visualized.

5.1 Simulation Accuracy

We evaluated the simulation layer by comparing the performance of the simu-
lation and the original hardware implementation. In both cases, we traced one
of the shuttles in various target variant setups and measured physical time and
simulation time distance at every stop module. In the real world implementation
as well as the simulation, the shuttles move at a speed of 3 km/h.

In the first series of experiments, we neglect the time consumed by waiting at
readers and switches and concentrate solely on the traveling times of the agent.
The average deviation between real world physical time and simulation time is
0.216 s with a peak of 0.4 s. However, since some routes have positive and others
have negative deviation, the difference between the physical and simulation time
of arrival at the final station is 0.8 s. Figure 7 illustrates the results.

To validate the correct waiting behavior at sensors and switches, we conduct a
second series of experiments. When waiting times are included, the total duration
increases to 2.3 times the duration of the first experiment series on average.
However, the deviation between simulation and the real hardware system is
exactly the same as in the first series. The results lead us to believe that the
deviation emerges during the acceleration of the shuttle, which is not considered
in the simulation model. Figure 8 illustrates the deviation in one example setup.

In a third series of experiments, we evaluated planning and routing behavior
of the Product Agents, which lead to the same results in hardware and simulation
environments, given the same requirements and the same target variant. We
set up check points at every hardware station and measured the physical time
distance between the start of a shuttle and the arrival time at the respective check
3 http://www.virtualbox.org

http://www.virtualbox.org
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point. We repeated this experiment for every type variant and compared the
results with results from simulation runs. Since we could not install a hardware
measurement system in the simulation software, we recorded entering and exiting
times of the product at the given station’s first and last sensor. Table 1 shows
an excerpt from our experiment results, indicating minor deviations, which are
caused by the hardware itself. In simulation, results are deterministic, as shown
in Table 2. Results show, that in any case, the check point within a station in the
real world is reached at a physical time instant which lies between the simulation
time instants of arrival at the entrance node and arrival at the exit node of the
corresponding station in simulation. Consequently, we conclude that even though
we have minor modeling errors in our simulation, they are insignificant to the
simulation outcome.

Table 1. Real-world results for one single product agent per target variant.

Target variant Electronics L1 (Colored Lamps) L2 (Clear Lamps) Seal Cover

Exp. 1 Colored Lamps 0:32 1:00 - 1:31 2:09

Exp. 2 Colored Lamps 0:33 1:01 - 1:33 2:15

Exp. 3 Colored Lamps 0:32 1:01 - 1:33 2:12

Exp. 4 Colored Lamps 0:33 1:00 - 1:31 2:11

.

.

.

Exp. 1 Clear Lamps 0:33 - 1:47 1:15 2:19

Exp. 2 Clear Lamps 0:32 - 1:44 1:13 2:17

Exp. 3 Clear Lamps 0:32 - 1:46 1:13 2:18

Exp. 4 Clear Lamps 0:33 - 1:45 1:14 2:19

.

.

.

Table 2. Simulation results for one single product agent per target variant.

Target variant Electronics L1 (Col. Lamps) L2 (Cl. Lamps) Seal Cover

Enter Exit Enter Exit Enter Exit Enter Exit Enter Exit

Colored Lamps 00:31 00:45 00:57 01:11 - - 01:29 01:41 02:03 02:23

Clear Lamps 00:31 00:45 - - 01:33 01:48 01:10 01:22 02:03 02:23

.

.

.

5.2 System Performance

As mentioned before, this research was partly motivated by our interest in evalu-
ation of other planning, decision making and optimization methods in the given
manufacturing scenario. Additionally, hardware resources in the real-world setup
are limited to a certain amount of shuttles and product parts. In simulation, how-
ever, the number of physical entities is only limited by the computer’s physical



134 C. Greulich et al.

limitations regarding RAM and CPU. Therefore, the whole manufacturing sys-
tem can be simulated, tested and improved on one single machine with each
component still being an individual agent program.

We conducted a series of experiments over a limited simulation time of 30 min
to explore the performance of the simulation system. With each experiment, we
increased the number of shuttles and/or available products to investigate the
wallclock time of the simulation as well as the changes in capacity utilization of
station agents and the production duration of each tail light.

Table 3. Simulation performance with increasing agent numbers (Rail and Idle refer
to time spent on the rail and in idle mode, respectively, Lifecycle is averaged over the
products, WC is wallclock time and TP is throughput).

Agents MAT Sim Time spent processing Lifecycle Performance

Shuttles Prod. LAB Time Electr. L1 Seal L2 Cover Avg. Rail Idle WC TP

1 1 2 30:00 0:12 0:12 0:10 0:00 0:18 0:13 2:42 0:19 0:40 1

1 30 2.7 30:00 1:39 1:14 1:22 0:25 2:09 1:22 3:52 0:21 3:05 7

2 30 3.5 30:00 3:18 1:14 2:43 2:16 4:54 2:53 3:30 0:21 3:45 15

4 30 3.3 30:00 4:58 1:52 4:25 3:18 6:08 4:08 3:55 0:21 5:59 28

6 30 3.1 30:00 4:45 3:06 4:25 1:54 6:29 4:08 4:10 0:21 6:01 30

8 40 3 30:00 6:17 4:20 5:30 2:16 6:00 4:53 4:44 0:21 10:18 34

10 50 3 30:00 7:40 5:10 6:13 3:09 8:48 6:12 4:53 0:21 12:58 43

15 70 3.1 30:00 7:58 5:10 7:13 4:20 8:45 6:41 5:28 0:21 24:32 54

20 100 3 30:00 8:52 7:14 7:55 4:50 9:11 7:36 6:03 0:22 43:32 61

30 110 3 30:00 9:17 5:36 7:20 6:12 9:57 7:40 6:38 0:22 57:22 64

Table 3 presents an excerpt of our simulation results. The numbers show,
that with an increasing number of shuttles, the various stations spend more
time processing and, therefore, less time in idle mode. Furthermore, the average
production time of each product increases as the products have to wait in front
of the stations. Interestingly, the average number of MATLAB invocations per
agent hardly increases and the maximum never exceeded 5.

With an increasing number of agents, the wallclock time of our experiments
also increases. Consequently, with a certain amount of agents acting in paral-
lel, the wallclock time actually exceeds the simulation time and, therefore, the
physical time. However, since the number of available shuttles in the real world
environment is limited to 12, physical time is only exceeded in experiments
which could not be conducted on the hardware system. Furthermore, the time
required to set up the system (30 min. approx.) and the number of human oper-
ators required to conduct experiments on the hardware system indicate that a
slightly exceeding simulation time is insignificant to the overall advantage of the
simulation.
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6 Conclusion

In this paper we have presented a multiagent simulation of a production unit
that integrates already existing agents as black boxes with a few additional
virtual agents that drive the simulation. We showed that the implementation of
intelligent products as agents in such cyber-physical system design is a viable
option for controlling and simulating smart factories.

The decision-making process is done by frequently calling an external soft-
ware server that applies advanced fuzzy reasoning methods. The obtained close
match between the real and the simulated system is remarkable, given that, e.g.,
shortest paths are computed differently.

During the implementation process, we fixed a number of bugs both in the
real and the simulated system, showing that running a simulation is also a means
to improve multiagent software quality. We provided experiments showing that
the implementation scales (to a rising number of shuttles and products).

In future work, we are interested in exploring distributed decision making
and optimization strategies suitable for similar production units. We consider
the given system as a testbed for further research in simulation and real world
application and the performance of the original Z2 system as an interesting
benchmarking baseline.
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