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Abstract. Automotive companies tend to apply modular approaches
in their product development processes in order to save costs and meet
increasingly diversified customer demands. In largely decentralized envi-
ronments with cross-branded development projects over multiple depart-
ments in different sites this modular approach leads to very complex and
large data structures. Maintaining consistency and transparency, as well
as coordinating information flows in such an environment is a major task
which is often accomplished manually. Based on a real world case study,
this paper analyzes a key development process: the connection of geomet-
ric (geometries) and logistical data (parts). During this time consuming
process information carriers (geometries and parts) with independent
lifecycles that are maintained by different stakeholders (designer and
purchaser) of different departments (and in this scenario even within
multiple brands) are linked as these carriers themselves are mutually
dependent. This paper then proceeds to model five agent-based architec-
ture variants to support this process. In addition, an algorithm to map
geometric and logistical data which aims to relieve the actors involved
(regarding the organizational overhead) is outlined.The paper concludes
with a comparison of the different agent architecture variants and empha-
sizes the most promising variants to partly automate the connection of
geometric and logistical data.

1 Introduction

Rising competitive pressure in the automotive industry forces manufacturers into
extensive cost saving measures. International markets constantly demand more
variety in shorter time periods. While in the 1990 s the product portfolio of most
car manufactures covered about eight different models, today’s industry offers a
steadily increasing amount of different products (e.g. the portfolio of the Audi
Group covers about 50 different products) in various configurations in order to
meet as many customer demands as possible [13,14]. This way of manufacturing
cars specifically suited to customer needs in mass production is known as mass
customization [11]. In order to achieve customized products at a cost level near
mass production some manufacturers pursue approaches to increase the degree of
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commonality. One approach to achieve this goal is the modularization of products
so that components are combined into interchangeable modules [2,5]. Ideally, a
complete product can be configured using the modular design principle. However,
this approach is not entirely applicable for complex products (such as vehicles),
because of the large amount of connections between those modules which have
to be considered [10]. Changes of such components may have a major impact on
other components [3]. Furthermore, a modularization beyond an optimum range
would lead to higher product costs [1].

In addition to the need for mass customization, international corporations often
operate in a decentralized fashion, with several brands, different business units,
and multiple departments and teams, all in geographically dispersed locations.
Thus, efficient communication and coordination between sites is mandatory [12].

This work is based on three real world use cases derived from case studies at
a major automotive OEM. Based on these use cases, Sect. 2 highlights certain
problems in the current development process of connecting geometric and logis-
tical data sets from different entities in a decentralized environment. Following
the Virtual Product Model (VPM) proposed by Kehl et al. in [6] five architecture
variants for an agent-based approach to automate this key development process
are modeled in Sect. 3. Section 4 discusses the pros and cons of these architec-
ture variants as well as their applicability to fulfill the requirements defined in
Sect. 3. Section 5 compares the architecture variants; Sect. 6 concludes this paper
and gives an outlook on future work.

2 Background

In previous work [6], we performed an analysis of challenges in managing devel-
opment processes of complex products in the automotive industry. We proposed
the concept of a Virtual Product Model (VPM) to manage such complex and
cross-branded development processes. In practice a product data is organized
in different hierarchical and static structures [4]. Each of these manually main-
tained structures represents a domain specific view on the product (e.g. a Bill of
Material (BOM) for purchasers or an Engineering BOM for designers) which are
linked to or transformed into one another [16]. In contrast, the VPM described
in [6] offers a more flexible and component-based view on a product, because
each domain specific structure is considered as a view on the overall product
which is built dynamically, based on the information it carries and the connec-
tions between them (VPM-C). The concept of a VPM aims to fulfill three crucial
requirements in a product development process:

Reusability. One VPM-C can be assigned to multiple products, yet there is an
element that holds context-specific information.

Patency. From the early stages to the end of a product’s development the
information flow should not be interrupted. Data has to be kept consistent
between all involved entities.

Transparency. It is mandatory to establish traceability of changes on com-
ponents and connections between them throughout the entire development
process.
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Each Virtual Component (VPM-C). can be divided into four elements:

Part. A part represents a logistical data set describing a real world vehicle
part. It contains information such as the supplier, color, count or material.
In practice parts are organized in a BOM.

Geometry. A geometry is a 3D-CAD file which holds data such as the size, shape,
or position of a part. Furthermore, a part may be realized by a geometry.

Feature. A feature may be a technical description or a certain functionality of
the component.

Process. The production process(es) the component is assigned to. This element
might contain information about different production sites.

This paper builds on the VPM concept, yet some of its elements are rendered
out of scope for the problem at hand. The elements considered in this paper are
parts and geometries. Also, contrary to the original VPM proposal this work
limits itself (for the sake of clarity) to only two different roles involved in the
mentioned use cases:

Engineer. The engineer constructs and combines vehicle parts by using CAD
software. His work is based on geometries (3D-CAD files), containing infor-
mation like size, shape, or position of a component.

Purchaser. The counterpart in logistics is the purchaser whose main respon-
sibilities are the procurement of parts and materials and managing supply
chains. He views product models from a logistic perspective and works based
on parts (logistical data sets) containing information such as the supplier,
color, count, material, among others.

2.1 Use Cases

As part of this work, three use cases, totaling six distinct workflows, have been
derived from case studies from the automotive industry. These use cases show
the underlying problem this paper aims to tackle and are used to conceptualize
possible solutions. An overview about the three major use cases is given below.

Use Case 1: New Construction of a VPM-C. A new component is devel-
oped based on a given specification. First, the engineer designs the new
geometry with his CAD software. He will then proceed to position the newly
constructed geometry within a 3D environment, relative to other previously
constructed geometries. Lastly, the engineer assigns the geometry to one or
multiple vehicle contexts.

Use Case 2: Reuse of a VPM-C. An existing geometry is assigned to a new
context. It may have to be re-positioned within the 3D environment in order
to fit the new context.

Use Case 3: Further Development of a VPM-C. Contrary to use case 1,
an existing geometry is developed further within its context and may have
to be re-positioned within the 3D environment.

In each of the above use cases, geometric data must be connected with logistical
data. Steps to achieve this connection might vary depending on the use case.
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2.2 An Exemplary Workflow of a New Construction

To illustrate the problem and the solution statement a small example shall be
given at this point. Assuming that a new vehicle generation should receive a
door hinge constructed from scratch, the engineer would first have to design a
3D geometry using a CAD software. He would then position the new geometry
in relation to close-by components, like the door frame, wiring, or the window
lift, making sure the new geometry does not cut other geometries within the 3D
space. The engineer would thereafter proceed to assign the new geometry to the
respective vehicle context of the new vehicle generation. After the engineering
is completed the data is sent to the purchaser who requests a new distinct part
number. Using the part number, the purchaser will create a new branch within
the Bill of Material (BOM) data structure. Finally, the geometric data and the
logistical data are connected within the data structure. In the following, the
establishment of this connection is referred to as Part-Geometry-Mapping.

The first problem in the previously described process is the decentralized
generation and administration of data in multiple brands and departments. This
data must be kept consistent throughout all entities involved in the vehicle con-
struction process. Furthermore, there is little transparency on which parts belong
to which geometries and vice versa. The same geometry might realize multiple
parts in different vehicles and different markets. Especially when a certain part
in one vehicle has shown so far unforseen problems after the product launch, it
becomes crucial to quickly identify all other vehicles using this very part. Right
now, it is only possible to achieve the needed transparency by devoting a lot of
manual efforts to the cause. Also, by connecting and maintaining logistical and
geometric data within the same data structure the used BOMs exceed a healthy
size and develop redundancies at some point. Both engineers and purchasers
find themselves confronted with data irrelevant to their own tasks. For instance,
engineers need geometries to do their work while purchasers rely on logistical
data, yet it is stored in the very same structure.

3 An Agent-Based Approach to Part-Geometry-Mapping

The problems shown in the example above arise from largely decentralized
processes. Information is created and maintained in different brands with mul-
tiple departments and teams at geographically dispersed locations. Managing
changes on VPM-Cs and maintaining consistency throughout all involved parties
is a major task. However, there is no single entity overseeing the whole devel-
opment and all its changes. Furthermore (as described in Sect. 2.2), in practice,
the Part-Geometry-Mapping is a manual process. Due to the decentralized prob-
lem and the distributed stakeholders (purchasers and designers from different
brands), an agent-based solution is proposed in this paper, as mentioned in our
previous work [6]. The basic idea builds on so called active components represent-
ing certain entities in the process. An active component is controlled by an agent
which is considered “a software system that is situated in some environment, and
that is capable of autonomous action in this environment in order to meet its
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delegated objectives” [8]. Furthermore, Wagner [15] has already deployed an
agent-based approach into a similar environment with success. In order to inves-
tigate whether an agent-based approach is feasible and offers real advantages
over the manual mapping of parts and geometries, five possible agent architec-
ture variants have been developed. These architecture variants model structural
and behavioral aspects of active components and may be realized through real
software agents in future research. This section is structured as follows: Sect. 3.1
describes the underlying problem in detail and in the Sects. 3.2 to 3.6 the five
architecture variants are illustrated.

3.1 Part-Geometry-Mapping

Before discussing the different agent architecture variants in detail, the under-
standing of the elements and their relations should be clarified. Figure 1 gives
an overview.
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Fig. 1. Elements of the mapping process

As already mentioned parts are realized by geometries. A part or geometry
can be used in several contexts (platforms or vehicles). The usage of a part
or geometry comes with certain context-specific information, for example the
position of a geometry in a specific context.

Thus the main requirements are:

• Contribute to establishing transparency and traceability of changes in order
to be able to quickly answer the two questions:

1. Which revisions of a given component are used in which platforms, or
vehicles?

2. Which components in which revisions are used in a given context?
• By (partially) automating the part-geometry-mapping in order to get a hold of

the complex and decentralized information generation and maintenance. Make
key information available where it is needed and keep it consistent throughout
all involved entities.
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To simplify the modeling of possible solutions both geometries and parts are
abstracted into the generic term component. The necessary properties of the
component are described below:

• Parts and geometries are elements of a VPM-C as they are both offering
different views on the same real world counterpart.

• Over the iterative course of development a component forms multiple revi-
sions. Each change on the component causes a new revision which can be
assigned to a context (vehicle or platform). As an example, revision #1 might
be a development build only used as placeholder or prototype during the devel-
opment. Revision #2, a fully developed version of the component, goes into
production and is thereby part of the manufactured vehicle. Now the vehicle
series receives a facelift and the component needs to be adapted leading to
revision #3.

• Since multiple revisions of a component may be assigned to the same context
(in the above case revisions #1 and #2), each revision has a validity property
and is only used within a specified start and end date.

• A component can offer a certain function. For instance, a rim allows someone
to attach tires to a car which then are part of the feature “driving”.

• Based on an idea by Wagner in [15], the participating roles can define rules for
components. These are either configuration rules describing certain restrictions
of the component itself or connection rules which regulate the relations to
other components.

• A component belongs to a pre-defined category.
• A component is from a specified side. The side property allows for the division

of components and identification of possible counterparts of a component from
another side. In extension, the category property allows someone to draw con-
nections between two components from different sides. Thus, both properties
are mandatory and play a vital role in the mapping process.

For example, a new rim is developed from scratch. The component of the geom-
etry is on side 0 and the matching component of the part information on side 1.
However, both belong to the same category “Wheels”. There is no mapping
between these two thus far, but this information alone is sufficient to specify
that these two components are possible counterparts for each other. Figure 2
illustrates the component term.

In the following, the five proposed architecture variants for an agent-based
approach are discussed.

3.2 Architecture Variant I - Dedicated Element Agents

This architecture variant covers the most basic and intuitive approach in model-
ing a MAS capable of autonomously conducting part-geometry-mappings within
given contexts, or even more abstract: component-mappings. Figure 3 shows
an overview of proposed agent classes, marked by boxes. “Dedicated Element
Agents” refers to the fact that each element involved in the process (namely
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Fig. 3. Architecture Variant I - Dedicated Element Agents

geometries, parts, their respective usages / revisions, and contexts) is repre-
sented by a single agent with specified tasks and goals.

Three basic agent classes are explained below. It should be noted that both
geometries and parts are considered components and thus be represented by a
Component Agent.

Component Agent. The Component Agent represents a component within the
system. It initializes once a component is first created and destroys when the
underlying component is disabled. Its main purpose is to maintain static informa-
tion about the component such as category or ID. Furthermore the Component
Agent knows all revisions of a component and retains data about its different
usages. A Component Agent will remain passive most of the time, monitoring
the engineers’ actions within the CAD-Program and tracking changes on the
component.

Figure 4 shows a behavioral view of the Component Agent. Upon initial-
ization a new Component Agent receives parameterized information regarding
category, component, function, rules, and side. It will then idle in its main loop
until either the underlying component is disabled, which results in the destruc-
tion of the Component Agent, or it receives new information. The latter happens
if another agent sends new information to the Component Agent or the engineer
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performs changes on the underlying component. If a current revision is assigned
to a new context, the Component Agent will trigger the creation of a Usage Agent
with the parameters category, context, function, revision, rules, side, and valid-
ity. Once the Component Agent registers a changed position of the underlying
component, it will send the new position to the respective Usage Agent.
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Fig. 4. Component agent behavioral view

Usage Agent. The Usage Agent represents the revision of a component in a
specific context. It initializes once a revision of a component has been assigned
to a new context. The initialization is triggered by a Component Agent. Passed
parameters are category, context, function, revision, rules, side, and validity.
A Usage Agent’s main task is to map his own component on another component
within the context. It therefore actively looks for mappable components of the
same category but different side and contacts them in order to find one or more
matches. A Usage Agent’s component can have multiple mappings and the Usage
Agent is only active as long as its component has zero mappings. After a Usage
Agent has been successfully mapped it will still react to mapping requests of
other agents but discontinue to actively look for mappings. If the component of
the respective Component Agent is being disabled or the given validity of the
revision runs out, the Usage Agent will be destroyed.

Figure 5 shows a behavioral view of the Usage Agent. The mapping process
itself is described in detail in Sect. 4. Upon initialization the Usage Agent receives
the parameters category, context, function, revision, rules, side, and validity. As
part of the initialization the Usage Agent will contact the Context Agent to reg-
ister itself. The Usage Agent remains in its main idle loop until it receives new
information from another agent or becomes active by looking for mappable com-
ponents or responding to incoming mapping requests from other Usage Agents.
If a Usage Agent does not have any mappings yet, its top priority is to find
a matching component from the same category but another side. Therefore, it
contacts the respective Context Agent in order to request a list of mappable com-
ponents based on category and side. It will then iterate through the returned list
and contact each component’s Usage Agent to take on mapping negotiations. If a
negotiation ends with a negative result the respective component is removed from
the list and the Usage Agent will approach the next in line. If the list has been



A Comparison of Agent-Based Coordination Architecture Variants 257

emptied and a successful mapping has not been found, the Usage Agent returns
to idle state and will request a new list in the next cycle. A positive negotiation
ending results in a successful preliminary mapping which is then communicated
to both the respective Context and Component Agents. The Usage Agent will
then return to the idle state and become reactive to incoming mapping requests
and new information.

Fig. 5. Usage agent behavioral view

Context Agent. The Context Agent overlooks a specific context. It holds
data concerning active Usage Agents within the context, assists in the mapping
process and knows all of the successful mappings. Once a new context is being
created the Context Agent initializes with the context parameter. It then remains
in the idle state until it receives new information or requests from other agents.
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Fig. 6. Context agent behavioral view
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The Context Agent’s main tasks are to register new Usage Agents and successful
mappings and to compile and return lists of mappable components to Usage
Agents. With the termination of the context, the Context Agent is destroyed.

Figure 6 shows a behavioral view of the Context Agent. After initialization, it
will remain idle until it receives new information or requests from other agents.
If a Usage Agent requests a list of mappable components, the Context Agent
may run a simple query on its own database.

3.3 Architecture Variant II: Extended Component Agent

This second proposed architecture variant features one agent class less. Instead of
heaving dedicated agents for each element like in Architecture Variant I the Com-
ponent and Usage Agents are merged into one: an Extended Component Agent.
It takes over the duties of both original agents, rendering them obsolete (Fig. 7).
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Fig. 7. Architecture Variant II - Extended Component Agent

Extended Component Agent. The Extended Component Agent represents a
component and all its usages. It initializes once a component is first created and
destroys when the component is disabled. Its main purpose is to maintain static
information about the component such as category or ID and to conduct the
mappings on other components. Furthermore, the Extended Component Agent
knows all revisions of a component and retains about its different usages. The
Component Agent monitors the Engineers’ actions within the CAD-Program
and tracking changes on the component. It becomes reactive upon incoming
information requests from other agents or when the Engineer assigns a current
revision to a new context. In the latter case, the Component Agent will contact
the respective Context Agent in order to negotiate a component mapping.

Figure 8 shows a behavioral view of the Extended Component Agent. On
initialization, a new Extended Component Agent receives parameterized infor-
mation such as category, component, function, rules, and side. It idles in its main
loop until either the underlying component is disabled which results in destruc-
tion of the Extended Component Agent, another Extended Component Agent
sends a mapping request or it receives new information. The latter happens if
another agent sends new information to the Extended Component Agent or the
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Fig. 8. Extended component agent behavioral view

Engineer performs changes on the underlying component. If a current revision
is assigned to a new context, the Extended Component Agent will contact the
Context Agent with the parameters context, revision, validation, and category.
It opens a new thread in its behavior, dedicated to handle all context specific
matters, i.e. the matters that in Architecture Variant I have been covered by the
Usage Agent.

Context Agent. The Context Agent in Architecture Variant II has not changed
compared to Architecture Variant I. Both its tasks and behavior can be modeled
exactly the same way.

3.4 Architecture Variant III: Vertically Extended Usage Agent

Architecture Variant III models the idea of having a vertical approach at the
Usage Agent. Matching components from two different sides may be represented
by a single agent within a specific context. Figure 9 shows an overview of pro-
posed agent classes, marked by boxes.

Component Agents
Vertical Extended
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Fig. 9. Architecture variant III - vertically extended usage agent

Component Agent. This agent’s tasks and behavior stay the same, aside
from a small detail as shown in Fig. 10. Instead of triggering the initialization of
a Vertically Extended Usage Agent, the Component Agent notifies the respective
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Fig. 10. Component agent behavioral view

Context Agent which will then proceed to ensure the mapping is processed. As
soon as a component within a context has a Vertically Extended Usage Agent
assigned, the respective Component Agents can update the information base of
that Usage Agent.

Vertically Extended Usage Agent. The Vertically Extended Usage Agent
functions similar to the regular Usage Agent known from Architecture Variant I.
However, it will not try to achieve a mapping on its own. Instead, it remains
passive until contacted by the Context Agent. Figure 11 shows the behavior in
detail.

Fig. 11. Vertically extended usage agent behavioral view

Context Agent. The Context Agent in Architecture Variant III assumes a
more active role than in Architecture Variant I and II. Once it receives a notifi-
cation from a Component Agent about a new Component within its context, it
tries to convey it to all existing Vertically Extended Usage Agents. If that fails,
the new component is considered not mappable in this cycle and a new Usage
Agent is deployed, representing the component. In the next cycle another new
component may join the context and is shown to all existing Vertically Extended
Usage Agents in order to find a match. Figure 12 shows the behavior in detail.
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3.5 Architecture Variant IV: Extended Context Agent

This architecture variant is based on the idea of having Component Agents
directly communicating with an Extended Context Agent, which is processing
all context related matters, including the mapping. Figure 13 shows an overview
of proposed agent classes, marked by boxes.

Component Agent. This agent’s tasks and behavior remain unchanged, aside
from a small detail as already shown in Fig. 10. Instead of triggering the initial-
ization of a Usage Agent, the Component Agent notifies the respective Context
Agent which will then proceed to ensure the mapping is processed.

Fig. 13. Architecture Variant IV - Extended Context Agent

Extended Context Agent. As already stated, the Extended Context Agent
takes over all tasks of both the regular Context Agent as well as the Usage Agent.
The Extended Context Agent holds context-specific data, especially about the
mappings. When a new component enters the context, the Extended Context
Agent will try to map this component on an already existing component within
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the context. If there are no mappable components in the context or no mapping
was found, the component is moved on a stack for later. As soon as new context-
specific information comes up or another new component joins the context, the
Extended Context Agent again tries to map the components. Figure 14 shows
the behavior in detail.

3.6 Architecture Variant V: Vertically Extended Component Agent

Lastly, an agent architecture could be modeled with a Vertically Extended Com-
ponent Agent which vertically connects components from two different sides.

However, we consider this architectural variant not applicable to our case for
several reasons. Firstly, actual mappings can only exist between two revisions
of a component and are thus not directly applicable on underlying components.
Secondly, because of the decentralized nature of the problem and the genera-
tion of data throughout different brands and departments, Vertically Extended
Component Agents would have to act across sites, i.e. they would have to exist
in multiple spaces at the same time. Unlike in the prior architecture variants
where context-related agents used to exist within a context only.

4 Sketch of the Algorithm for Part-Geometry Mapping

To apply the model introduced so far, finding an efficient and automatable way of
mapping components is mandatory. At this point, an outline of such an algorithm
is given. An actual implementation is planned for future work. To recapture, the
agent architecture variants from Sect. 3 introduced the component term which,
when set into a context, comes with properties relevant for the mapping process.
Namely these properties are category, function1, rules, side, and validity. Where
1 It should be noted that the function property is optional as not every component

fulfills a specific function. For example, a simple screw that is used a few hundred
times across different locations within a vehicle. It does to some extend contribute
to several functions but cannot be connected to one specific function.
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rules are divided into configuration rules and connection rules, as proposed by
Wagner in [15]. Configuration rules can be considered as internal, meaning they
specify certain regulations when creating or changing the component. For exam-
ple, a part needs to have a material specified. Connection rules on the other hand
can be considered external, as they regulate connections between components.
These rules may force or forbid a certain matter. For example, a geometry of a
rim has a connection rule in place that dictates a mapped part must be made of
aluminum.

In preparation of this paper, known consensus algorithms have been reviewed.
Primary subjects of investigation were the Paxos protocol [7] and Raft [9]. How-
ever, these algorithms have not been found suitable for the task at hand as their
main purpose is to coordinate client-server systems with a (fail safe) redundant
server architecture. An alternative approach which we studied is based on match-
ing algorithms known from the field of Operations Research / Graph Theory.
These methods were also rendered not suitable as reviewed matching algorithms
implicitely assume that matching compatibilities are a known fact. Thus, a new,
special algorithm to solve the mapping problem is needed. The idea of which is
outlined below.

In a first step the respective agent2 tries to find a proper subset of other com-
ponents that could fit his own. That means it compiles a subset of components
in which every has exactly not the same side as the own component but exactly
the same category. In extension, the respective agent rules out components with
validity data that does not exactly fit or include its own validity.

That leaves the respective agent with a proper subset of all components
within the context. It proceeds to contact these components’ respective agents
in order to attempt a mapping, i.e. enter mapping negotiations.3 Therefore, both
agents send each other information sets with data about the underlying compo-
nent, positional information, and its function. Both agents proceed to check each
others’ information set against their own data and connection rules. If no force
or forbid connection rules fail, and function and position parameters approxi-
mately map, an agent sends an accept to the other agent. If the other agent
returns an accept a preliminary mapping is established. Both agents proceed
to save the preliminary mapping and contact their respective users4 for confir-
mation. An accept by the user results in a confirmed mapping while a decline
revokes the preliminary mapping. More so, the respective agents will blacklist
declined mappings and refrain from attempting a mapping with these compo-
nents in the future again to prevent infite looping. Algorithm 1 summarizes this
behaviour in pseudo code.
2 Depending on the architecture variant this could be the Extended Component,

Extended Context or (Extended) Usage Agent.
3 It should be noted that the whole communication part does not apply to Architecture

Variant IV because there is only one agent (the Extended Context Agent) which
handles the mapping negotiations internally.

4 Engineers and Purchasers.
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Algorithm 1. Part-Geometry-Mapping
procedure mapComponents(List<Components> mappableComps)

for all Components c: mappableComps do
Agent a = c.getAgent() � Identify the comp’s agent
Set inInfo = a.attemptMapping(outInfo) � Contact the comp’s agent
bool positionMapped = tryPosMapping(inInfo) � Check incoming data
bool ruleCheck = checkRules(inInfo) � Check connection rules
bool outResp = positionMapped & ruleCheck
bool inResp = a.sendResponse(outResp) � Send and retreive responses
if outResp & inResp then � If both agents agree on mapping

savePreliminaryMapping()
requestConfirmation() � Contact user for confirmation

return mappedComponents

As shown, an agent-based approach might not be able to completely auto-
mate the mapping process. However, intelligent agents are able to cut down the
number of possible mappings at least, saving the users time, and assisting the
goal of establishing transparency.

5 Comparison

This section discusses the five agent architecture variants shown in Sect. 3 and
their stance on the mapping algorithm outlined in Sect. 4.

Architecture Variant I - Dedicated Element Agents. Covers the most
intuitive approach in which every element within the development process is rep-
resentend by a single, autonomous agent. It could be argued that this approach
is a variant of a peer-to-peer architecture as there are no real leading agents or
agents overseeing the bigger picture. It certainly fits the idea of a decentralized,
intelligent multi-agent system quite well and offers a lot of of room for exten-
sions. The downside is the massive amount of communication needed between
agents and possibly redundant data storage which needs to be kept consistent
and made easily accessible to the users. The only agent class where intelligence
is really needed is the Usage Agent as it is responsible for the negotiation of pre-
liminary mappings. All other agents could be modeled as reactive sub-systems
which follow a strict behavioural pattern and mainly serve as data storages or
communication arrays between Usage Agents and users.

Architecture Variant II - Extended Component Agent. Merges the Com-
ponent Agent and its Usage Agents into one. This reduces the communication
needed but adds to the complexity of the Extended Component Agent which
now has to manage all its contexts. As a revision is basically just an extension
of its component, it might be more logical to represent both elements in one
agent. Queries about what revisions are assigned to which contexts could be
answered faster than in Architecture Variant I as it is not necessary anymore
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to contact the Usage Agents in order to acquire this context-specific informa-
tion. The intelligence is moved into the Extended Component Agent rendering
the Context Agent as sole data storage and administration system. Fewer agent
classes might make future extensions more difficult and change the system to be
less flexible.

Architecture Variant III - Vertically Extended Usage Agent. Tries to
realize a comprehensive approach where revisions from different sides are repre-
sented by a single agent. This approach causes less communication efforts during
the mapping process as it is all handeled internally by the Vertically Extended
Usage Agent, which in extend plays the only intelligent role again. If no match
is found on the first try, the component’s revision exists within the context but
lacks an agent to represent it until a mapping has been found. Furthermore, once
two revisions from different sides have been succesfully mapped, the Vertically
Extended Usage Agent needs to act across dispersed locations and departments.
Thus, Architecture Variant III might be feasible but probably not optimal.

Architecture Variant IV - Extended Context Agent. Leads the system’s
intelligence away from the components and towards the context. It is by that
more centralized but less communication efforts are needed. Contrary to the peer-
to-peer approach from Architecture Variant I, this architecture variant estab-
lishes a hirarchy, in which the Extended Context Agent is overseeing the whole
context and all its matters. Component Agents merely act as registers and entry
points for users who wish to find out where the revisions of a component are
used in. All context-specific information is stored within the Extended Context
Agent and by that leaves most likely the fewest redundancies of all architecture
variants. However, implementing future extensions might be harder.

Solely based on the requirements established in Sect. 3 Architecture Vari-
ants I-IV deliver satisfying concepts. Architecture Variants II and IV seem to
be the ones with the fewest drawbacks while Architecture Variant I offers the
most flexibility and should be easy to extend with more functionality. Future
implementations or more desired functionalities might lead to a clearer result or
alter the architecture in ways which could not be covered in this paper.

Table 1 summarizes the prior comparison:

Table 1. Comparison of Feasible Agent Architecture Variants

Architecture Variant I AV II AV III AV IV

Communication high medium medium low

Complexity low medium medium high

Redundancy high low medium low

Flexibility high medium medium low

Location of Possible Intelligence Usage Extended Vertically Extended

Agent Component Extended Context

Agent Agent Agent
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6 Conclusion

In this concept paper, an agent-based approach on automating a key devel-
opment process in the automotive industry, the connection of geometric data
(geometries) and logistical data (parts), within a decentralized environment has
been modeled. Based on the concept of a Virtual Product Model (Component)
by Kehl et al. in [6], which was applied on three use cases derived from case
studies in the automotive industry, five agent architecture variants have been
developed. Four of these five architecture variants have been rendered feasible
in order to support both the given requirement to (partly) automate the part-
geometry-mapping as well as contributing to a more transparent system with
changes made traceable. The four feasible agent architecture variants have been
discussed in detail, especially regarding their expected incurring communica-
tion, data redundancy, and extendability. In addition, an algorithm functioning
in each of the agent architecture variants for the mapping process itself has been
outlined which, based on given data, is not able to determine mappings fully on
its own but is at least capable of significantly curtailing the amount of possible
mappings.

Future work will include a prototyped implementation of the agent archi-
tecture variants. On a more conceptual level, additional requirements could be
determined and the architecture variants could be extended and enriched with
more functionality.
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