
Jörg P. Müller · Wolf Ketter
Gal Kaminka · Gerd Wagner
Nils Bulling (Eds.)

 123

LN
AI

 9
43

3

13th German Conference, MATES 2015
Cottbus, Germany, September 28–30, 2015
Revised Selected Papers

Multiagent System
Technologies

Lecture Notes in Artificial Intelligence 9433

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Jörg P. Müller • Wolf Ketter • Gal Kaminka •

Gerd Wagner • Nils Bulling (Eds.)

Multiagent System
Technologies
13th German Conference, MATES 2015
Cottbus, Germany, September 28–30, 2015
Revised Selected Papers

123

Editors
Jörg P. Müller
Technische Universität Clausthal
Clausthal-Zellerfeld
Germany

Wolf Ketter
Erasmus University Rotterdam
Rotterdam
The Netherlands

Gal Kaminka
Bar Ilan University
Ramat Gan
Israel

Gerd Wagner
Brandenburg University of Technology
Cottbus
Germany

Nils Bulling
Delft University of Technology
Delft
The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-27342-6 ISBN 978-3-319-27343-3 (eBook)
DOI 10.1007/978-3-319-27343-3

Library of Congress Control Number: 2015955909

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

Preface

This book contains the proceedings of the 13th German conference on Multiagent
System Technologies (MATES 2015), which was held September 28–30, 2015, in
Cottbus, Germany. The MATES conference series aims at the promotion of and
cross-fertilization between the theory and application of intelligent agents and multia-
gent systems (MAS). It provides an interdisciplinary forum for researchers and members
of business and industry to present and discuss the latest advances in agent-based
computing with prototyped or fielded systems in various application domains.

The MATES 2015 conference was organized in cooperation with the Distributed
Artificial Intelligence chapter of the German Society for Informatics (GI), and spon-
sored by the GI. Moreover, it was co-located with the 45th Symposium of the German
Society for Informatics (INFORMATIK 2015). It also contained a joint session on
“Multiagent Systems for Smart Energy” in cooperation with the GI Special Interest
Group on energy information systems.

The set of regular MATES 2015 conference talks covered a broad area of topics of
interest including MAS platforms and engineering, benchmarking and scalability,
innovative and emerging applications, Smart Things working together (which was also
the main motto of this year’s MATES conference), as well as quality aspects of MAS.
In keeping with its tradition, MATES 2015 also offered two excellent invited keynotes
by well-known, reputed scientists in the domain, covering relevant topics of the broad
area of intelligent agent technology: Tom Holvoet from Katholieke Universiteit Leu-
ven, Belgium, addressed the support of decentralized, cooperative, anticipatory traffic
management using a novel, multiagent-based concept called “Delegate MAS”; Wolf
Ketter from Erasmus University, Rotterdam, gave a vivid presentation of issues of
sustainability in the context of his work on the PowerTAC initiative.

Furthermore, the MATES doctoral consortium (DC) program, chaired by Nils
Bulling, offered PhD students a platform to present and to discuss their work in an
academic professional environment. Students presented their PhD projects in joint
sessions receiving feedback and suggestions from their peers and experienced
researchers. Moreover, each PhD student was assigned a mentor offering the student
the opportunity to interact with an expert in the field on an individual basis. The
mentors gave personalized feedback on the students’ work and provided advice for
their (academic) career development.

Overall, we received 27 submissions. Each paper was peer-reviewed by at least
three members of an international Program Committee (PC). Eleven papers were
accepted for long presentation, and two papers were accepted for short presentation.
This volume includes selected and thoroughly revised contributions from the MATES
2015 conference, an invited paper, and extended abstracts of the best contributions to
the DC. Each revised paper was reviewed again by two additional members of the
MATES PC to yield the camera-ready versions contained in this book. It is our hope

that the balanced set of theoretical and application-oriented contributions contained in
this volume will stimulate further research in multiagent systems and technologies.

As co-chairs and on behalf of the MATES Steering Committee, we are very thankful
to the authors and invited speakers for contributing to this conference, Nils Bulling for
chairing the DC and editing the DC contributions for this volume, the PC members and
additional reviewers for their timely and helpful reviews of the submissions, as well as
the local organization team of Gerd Wagner at BTU Cottbus, who also maintained the
MATES 2015 conference homepage. They all contributed in making MATES 2015 a
success. We are also indebted to Alfred Hofmann and the Springer LNAI team for their
very kind and excellent assistance in publishing these proceedings and for their con-
tinuing support of the MATES conference over the past 13 years.

Finally, we hope you enjoy the proceedings of MATES 2015 and draw some useful
inspiration and insights from the contributions.

October 2015 Jörg P. Müller
Wolf Ketter

Gal Kaminka
Gerd Wagner
Nils Bulling

VI Preface

Organization

The MATES 2015 conference was organized in colocation with the 45th Symposium
of the German Society for Informatics (INFORMATIK 2015), and in cooperation with
KI 2015 and with the GI Special Interest Group on Energy Information Systems.

MATES 2015 Chairs

Jörg P. Müller TU Clausthal, Germany
Wolf Ketter Erasmus University Rotterdam, The Netherlands
Gal Kaminka Bar-Ilan University, Israel

Local Organizing Chair

Gerd Wagner BTU Cottbus, Germany

Doctoral Consortium Chair

Nils Bulling TU Delft, The Netherlands

Program Committee

Vicent Botti Universidad Politecnica de Valencia, Spain
Lars Braubach University of Hamburg, Germany
Nils Bulling Delft University of Technology, The Netherlands
Arthur Carvalho Erasmus University, The Netherlands
John Collins University of Minnesota, USA
Massimo Cossentino National Research Council of Italy
Célia Da Costa Pereira Université Nice Sophia Anipolis, France
Mehdi Dastani Utrecht University, The Netherlands
Paul Davidsson Malmö University, Sweden
Yves Demazeau CNRS - LIG, France
Joerg Denzinger University of Calgary, Canada
Frank Dignum Utrecht University, The Netherlands
Juergen Dix Clausthal University of Technology, Germany
Barbara Dunin-Keplicz University of Warsaw, Poland
Ulle Endriss ILLC, University of Amsterdam, The Netherlands
Torsten Eymann University of Bayreuth, Germany
Maksims Fiosins TU Clausthal, Germany
Maria Ganzha University of Gdańsk, Poland
Katie Genter University of Texas at Austin, USA
Maria Gini University of Minnesota, USA
Paolo Giorgini University of Trento, Italy
Vladimir Gorodetsky Russian Academy of Science, Russia

Daniel Hennes European Space Agency, France
Axel Hessler DAI-Labor, TU Berlin, Germany
Koen Hindriks Delft University of Technology, The Netheralands
Benjamin Hirsch EBTIC/Khalifa University, UAE
Max Hoffmann RWTH Aachen University, Germany
Sabina Jeschke RWTH Aachen University, Germany
Micha Kahlen Erasmus University, The Netherlands
Stamatis Karnouskos SAP, Germany
Matthias Klusch DFKI GmbH, Germany
Franziska Klügl Örebro University, Sweden
Andrew Koster Samsung Research Institute, Republic of Korea
Winfried Lamersdorf University of Hamburg, Germany
Paulo Leitao Polythechnic Institute of Braganca, Portugal
Matteo Leonetti The University of Texas at Austin, USA
Yixin Lu VU Amsterdam, The Netherlands
Arndt Lüder Otto-von-Guericke-Universität Magdeburg, Germany
Felipe Meneguzzi Pontifical Catholic University of Rio Grande do Sul,

Brazil
Ingrid Nunes UFRGS, Brazil
Eugénio Oliveira Universidade do Porto - LIACC, Portugal
Andrea Omicini Alma Mater Studiorum–Università di Bologna, Italy
Sascha Ossowski Rey Juan Carlos University, Spain
Marcin Paprzycki Polish Academy of Sciences, Poland
Mathias Petsch TU Ilmenau, Germany
Paolo Petta Austrian Research Institute for AI, Austria
Alexander Pokahr University of Hamburg, Germany
Alessandro Ricci University of Bologna, Italy
Jörg Rothe Universität Düsseldorf, Germany
Jordi Sabater Mir IIIA-CSIC, Spain
René Schumann HES-SO Western Switzerland
Onn Shehory IBM Research, Israel
David Sislak Czech Technical University in Prague, Czech Republic
Michael Sonnenschein University of Oldenburg, Germany
Andreas Symeonidis Aristotle University of Thessaloniki, Greece
Matthias Thimm Universität Koblenz-Landau, Germany
Ingo J. Timm University of Trier, Germany
Adelinde Uhrmacher Universität Rostock, Germany
Rainer Unland University of Duisburg-Essen, Germany
Leon van der Torre University of Luxembourg, Luxembourg
Birgit Vogel-Heuser Technical University of Munich, Germany
Gerhard Weiss University of Maastricht, The Netherlands
Michael Weyrich Universität Siegen, Germany
Franco Zambonelli Università Degli Studi di Modena e Reggio Emilia,

Italy
Thomas Ågotnes University of Bergen, Norway

VIII Organization

Additional Reviewers

Alexia Fenollar Solvay
Katie Genter
Max Hoffmann
Micha Kahlen
Julian Kalinowski

Gaurang Phadke
Thiago Rúbio
Luca Sabatucci
Daniel Castro Silva
Daniel Urieli

Doctoral Consortium PC Members

Lars Braubach
Jürgen Dix
Christian Guttmann
Wolfgang Ketter
Franziska Klügl
Brian Logan
Felipe Meneguzzi
John-Jules Meyer
Jörg P. Müller

Sascha Ossowski
Jordi Sabater Mir
Michael Thielscher
Matthias Thimm
Ingo J. Timm
Rainer Unland
Leon van der Torre
Cees Witteveen

Doctoral Consortium Mentors

Wolfgang Ketter
Jörg P. Müller
Alexander Pokahr

Ingo J. Timm
Rainer Unland

MATES Steering Committee

Matthias Klusch DFKI GmbH, Germany
Winfried Lamersdorf Universität Hamburg, Germany
Jörg P. Müller TU Clausthal, Germany
Sascha Ossowski Universidad Rey Juan Carlos, Madrid, Spain
Paolo Petta University of Vienna, Austria
Ingo Timm Universität Trier, Germany
Rainer Unland Universität Duisburg-Essen, Germany

Organization IX

Contents

MAS Engineering, Modeling, and Simulation

Tailoring Agent Platforms with Software Product Lines 3
Lars Braubach, Alexander Pokahr, Julian Kalinowski, and Kai Jander

A Metrics Framework for Quantifying Autonomy in Complex Systems 22
Christopher-Eyk Hrabia, Nils Masuch, and Sahin Albayrak

Measuring and Comparing Scalability of Agent-Based
Simulation Frameworks . 42

Fabian Lorig, Nils Dammenhayn, David-Johannes Müller,
and Ingo J. Timm

Integrating Agent Actions and Workflow Operations 61
Thomas Wagner and Daniel Moldt

A Spatio-Temporal Multiagent Simulation Framework for Reusing
Agents in Different Kinds of Scenarios . 79

Daan Apeldoorn

Smart Things Working Together

A Multiagent Systems Perspective on Industry 4.0 Supply Networks 101
Marc Premm and Stefan Kirn

Cyber-Physical Multiagent-Simulation in Production Logistics 119
Christoph Greulich, Stefan Edelkamp, and Niels Eicke

Modeling and Simulation of Web-of-Things Systems
as Multi-Agent Systems . 137

Ion Mircea Diaconescu and Gerd Wagner

A Conceptual Approach to Place Security in Systems of Mobile Agents 154
Héla Hachicha, Donies Samet, and Khaled Ghedira

Innovative and Emerging Applications of MAS

Dynamic Agent-Based Scheduling of Treatments: Evidence
from the Dutch Youth Health Care Sector . 173

Erik Giesen, Wolfgang Ketter, and Rob Zuidwijk

http://dx.doi.org/10.1007/978-3-319-27343-3_1
http://dx.doi.org/10.1007/978-3-319-27343-3_2
http://dx.doi.org/10.1007/978-3-319-27343-3_3
http://dx.doi.org/10.1007/978-3-319-27343-3_3
http://dx.doi.org/10.1007/978-3-319-27343-3_4
http://dx.doi.org/10.1007/978-3-319-27343-3_5
http://dx.doi.org/10.1007/978-3-319-27343-3_5
http://dx.doi.org/10.1007/978-3-319-27343-3_6
http://dx.doi.org/10.1007/978-3-319-27343-3_7
http://dx.doi.org/10.1007/978-3-319-27343-3_8
http://dx.doi.org/10.1007/978-3-319-27343-3_8
http://dx.doi.org/10.1007/978-3-319-27343-3_9
http://dx.doi.org/10.1007/978-3-319-27343-3_10
http://dx.doi.org/10.1007/978-3-319-27343-3_10

Agent-Based Voting Architecture for Traffic Applications 200
Sophie L. Dennisen and Jörg P. Müller

Trading Strategies of a Champion Agent in a Multiagent Smart Grid
Simulation Platform. 218

Serkan Özdemir and Rainer Unland

Agent-Based Decision Support for Allocating Caregiving Resources
in a Dementia Scenario . 233

Tobias Widmer and Marc Premm

A Comparison of Agent-Based Coordination Architecture Variants
for Automotive Product Change Management . 249

Janek Bender, Stefan Kehl, and Jörg P. Müller

Selected Extended Abstracts of Doctoral Papers

Electric Vehicles: An Agent-Based Approach to Sustainability 271
Micha Kahlen and Wolfgang Ketter

Towards A Formal Model of Opportunism Based on Situation Calculus 275
Jieting Luo, Frank Dignum, and John-Jules Meyer

Adaptive Services Reconfiguration in Manufacturing Environments
Using a Multi-agent System Approach. 280

Nelson Rodrigues, Paulo Leitão, and Eugénio Oliveira

Hydrogen: A Fuel Option to Future Transportation as a Part of Smart Grid . . . 285
Serkan Özdemir and Rainer Unland

Author Index . 291

XII Contents

http://dx.doi.org/10.1007/978-3-319-27343-3_11
http://dx.doi.org/10.1007/978-3-319-27343-3_12
http://dx.doi.org/10.1007/978-3-319-27343-3_12
http://dx.doi.org/10.1007/978-3-319-27343-3_13
http://dx.doi.org/10.1007/978-3-319-27343-3_13
http://dx.doi.org/10.1007/978-3-319-27343-3_14
http://dx.doi.org/10.1007/978-3-319-27343-3_14
http://dx.doi.org/10.1007/978-3-319-27343-3_15
http://dx.doi.org/10.1007/978-3-319-27343-3_16
http://dx.doi.org/10.1007/978-3-319-27343-3_17
http://dx.doi.org/10.1007/978-3-319-27343-3_17
http://dx.doi.org/10.1007/978-3-319-27343-3_18

MAS Engineering, Modeling,
and Simulation

Tailoring Agent Platforms with Software
Product Lines

Lars Braubach, Alexander Pokahr(B), Julian Kalinowski, and Kai Jander

Distributed Systems Group, University of Hamburg, Hamburg, Germany
{braubach,pokahr,kalinowski,jander}@informatik.uni-hamburg.de

Abstract. Agent platforms have been conceived traditionally as mid-
dleware, helping to deal with various application challenges like agent
programming models, remote messaging, and coordination protocols.
A middleware is typically a bundle of functionalities necessary to execute
multi-agent applications. In contrast to this traditional view, nowadays
different use cases also for selected agent concepts have emerged requir-
ing also different kinds of functionalities. Examples include a platform
for conducting multi-agent simulations, intelligent agent behavior models
for controlling non-player characters (NPCs) in games and a lightweight
version suited for mobile devices. A one-size-fits-all software bundle often
does not sufficiently match these requirements, because customers and
developers want solutions specifically tailored to their needs, i.e. a small
but focused solution is frequently preferred over bloated software with
extraneous functionality. Software product lines are an approach suitable
for creating a series of similar products from a common code base. In
this paper we will show how software product line modeling and technol-
ogy can help creating tailor-made products from multi-agent platforms.
Concretely, the Jadex platform will be analyzed and a feature model as
well as an implementation path will be presented.

1 Introduction

Agent platforms have traditionally been considered technical key assets for real-
izing agent-oriented software, because they offer technical solutions for many
agent related implementation aspects like messaging, service discovery, behavior
control and more. This view has been originally laid out by FIPA proposing the
abstract platform architecture with its corresponding core functionalities [8,9]. In
practice, agent platforms have to compete with alternative concepts and imple-
mentation technologies including, service-oriented architecture and microservices
[19], components [33] as well as many focused frameworks. Based on past expe-
riences with building research as well as commercial systems based on agent
technology we noticed that many different usage scenarios for agent technol-
ogy with quite diverse requirements exist. In many cases it would have been
beneficial if only a subset of the agent platform could have been used foster-
ing reduced complexity and a faster understandability of the provided software.
Software product lines (SPL) [6] offer a path towards tailor-made products that
c© Springer International Publishing Switzerland 2015
J.P. Müller et al. (Eds.): MATES 2015, LNAI 9433, pp. 3–21, 2015.
DOI: 10.1007/978-3-319-27343-3 1

4 L. Braubach et al.

can provide customized feature sets addressing the customer requirements bet-
ter than one-size-fits-all solutions. Hence, in this paper an analysis is presented,
describing steps for a transition of the Jadex agent platform to an SPL. The core
contribution of the paper is a derived feature model and a systematical analysis
of implementation choices leading to an adoption of three existing implementa-
tion techniques as well as the introduction of micro-features.

The remainder of the paper is structured as follows. In the next Sect. 2 moti-
vating scenarios for the application of agent platforms are presented. Thereafter,
in Sect. 3 background information on software product lines will be introduced.
Section 4 tackles the domain analysis for the given scenarios as well as an asset
analysis of the Jadex agent platform and presents the resulting feature models.
Afterwards, in Sect. 5 implementation choices for agent platform features are
discussed. Related work concerning software product lines and agent technology
is presented in Sect. 6 and finally some concluding remarks and an outlook on
future work is given in Sect. 7.

2 Usage Scenarios for Agent Platforms

The following sections will present different scenarios for the use of agent plat-
forms and will explain, which features are fundamental for their realization.

2.1 Android

Android is a mobile operating system, designed to run on devices with lim-
ited resources. Most Android applications are distributed applications. Internet
access is required by 68.5 % of market apps, as a study of the Android permis-
sion system indicates [31]. Common application types such as mobile commerce
or social networking apps make extensive use of communication features. Those
are the application types assumed in the following considerations. Whenever
distribution must be handled, some common problems arise. Data serialization,
communication protocols and service discovery are some of the problems that
are not handled by the Android framework, but required by these applications.

Middleware agent platforms like JADE [2] or Jadex [26] provide useful abstrac-
tions for communication. E.g., Jadex, as an agent platform for distributed
software development, treats distribution as first-class citizen. Remote service
invocations, service discovery and an asynchronous programming model are
available as platform services or in the platform API, respectively. Using Jadex
for Android application development supplements the missing distribution fea-
tures, but comes with two main drawbacks:

First, Jadex and Android both provide their own decomposition principles:
developers divide their Android apps into Activities and Services. Jadex appli-
cations are composed of active components. Integrating or merging these design
principles is not straight-forward and increases complexity of application design.

Second, to cope with the hardware limitations and performance requirements
of a mobile device, a stripped-down platform variant is needed. As application

Tailoring Agent Platforms with Software Product Lines 5

Fig. 1. Android scenario

usage times are often less than a minute, app switching time is crucial [3]. A small
platform with minimal runtime components is required, because it enables faster
startup times and reduces the chance of the Android system terminating the
application during multi-tasking due to low memory.

This platform variant has to include communication and service discovery
parts, but not decomposition or behavior logic features, as they are not required
for the described application type. Assuming an existing stationary Jadex appli-
cation, using the Jadex communication principles for linking-up mobile applica-
tions parts is a logical consequence, as service interfaces are most likely already
defined. An ideal platform variant for this use case would not require a mobile
app developer to learn about specification and implementation of active com-
ponents. Instead, he would be able to use remote services transparently from
within Android components, e.g., activities and services.

Using Jadex for handling distribution has further advantages when designing
more sophisticated distributed systems, too. For example, it handles transport
and service security and allows the specification and measuring of non-functional
properties, such as service call execution times or current CPU load of service
providers. This provides a basis for mobile cloud computing apps that have
to decide between offloading a task to the infrastructure or executing it locally,
using the optimal alternative at any time. Furthermore, purely distributed appli-
cations can be built that communicate in a peer-to-peer manner. Implementing
such scenarios using only Android would require a lot of work.

Figure 1 shows the interaction between Android and infrastructure applica-
tion parts. A basic scenario might use only one server and thus requires service
discovery (1) and remote service invocation (2). A more advanced scenario might
use two servers and models a mobile cloud application in which the Android part
performs load balancing (3) by choosing the best available infrastructure service.
One of the servers uses transport security (4) to securely transfer data. An inter-
action with another mobile device is also shown, using service providing features
on the mobile device end (5).

6 L. Braubach et al.

2.2 Game

Modern computer games exhibit a number of properties that make them an inter-
esting application area for agents [18]. Games are often real-time and dynamic
and thus require fast response times for behavior control. Furthermore, games
often aim at highly realistic 3D graphics. For a consistent game experience it
is thus also important that the behavior of non-player characters (NPCs) is
highly realistic, too. This includes that a game character should act according
to incomplete knowledge of the world and should follow some consistent long-
term objectives instead of simple rules that are easy to figure out for human
players. Cognitive agent architectures like SOAR [16] and rational agent archi-
tectures like belief-desire-intention (BDI) [28] provide programming abstractions
for these aspects. Specifically, BDI seems well suited for programming realistic
NPCs, because of its reactive planning approach that fits well with dynamic
environments. Despite the good conceptual match, the integration of agent tech-
nology in computer games is difficult [7]. One reason for this difficulty is the need
for synchronization between the agent platform, executing the agents, and the
game engine, executing the game play. For game developers it would be easier,
if they could reuse just the reasoning part of an agent platform for controlling
NPCs and rely on a sophisticated game engine for a better game experience.

Fig. 2. Game scenario

In Fig. 2, relevant game and agent features are illustrated. The basic case
requires at least a virtual environment (1) with a graphics (2) representation (2D
or 3D), provided by a game engine. Furthermore, NPCs with intelligent behavior
(3) that follows some sophisticated agent architecture would be implemented in
an agent programming framework. Regarding possible extensions, e.g., a round-
based strategy game might include simulation time control (4), which could be
implemented either in the game engine or the agent platform. Some game engines
also include a physics (5) engine that allows realistic behavior of physical objects
in the virtual world. Finally, for a networked multi-player game, the remote
communication (6) features of the agent platform could be employed.

Tailoring Agent Platforms with Software Product Lines 7

One example of agent/game integration is Jadex-AgentKeeper1, developed
by a student of the University of Hamburg, with some help from an open devel-
oper community. In this game, a player exerts indirect control over creatures, by
building an environment, e.g. a lair or a training room, to attract and support
these creatures (cf. Fig. 3). The game is built using Jadex as an agent platform
and the JMonkey game engine2. In the current integration approach, the exe-
cution is driven by the Jadex platform and JMonkey is merely used for the 3D
representation. The advantage of the approach is that all Jadex features can
easily be used, such as BDI reasoning for the creatures, simulation time control
and remote communication. The disadvantage is a poor integration with game
engine features, e.g., the JMonkey physics engine is currently not used.

Fig. 3. Jadex-AgentKeeper screenshot

2.3 Workflow

Workflows represent the automated part of a business process within an
organization [34]. They coordinate labor and resources of organizations in order
to achieve certain business goals such as fabrication of products, processing cus-
tomer requests but also internal objectives like accounting. Workflows are gener-
ally employed within a certain environment called workflow management system
which is used to communicate with internal and external service providers. Such
service providers can be invoked through the issuance of work items for human
participants or use of service calls in order to interact with external systems.
1 https://code.google.com/p/jadex-agentkeeper/
2 http://jmonkeyengine.org/

https://code.google.com/p/jadex-agentkeeper/
http://jmonkeyengine.org/

8 L. Braubach et al.

The reference model for workflow management systems released by the work-
flow management coalition provides a good summary of the functionalities that
are often included in such systems [12].

Today, agility has become an increasingly important requirement for many
application domains of workflows, i.e. modelling and execution of workflows
should be able to adequately react to changing environments. Software agents
have been perceived as promising conceptual baseline for making workflows more
agile and have e.g. been used to create more stable goal-oriented workflow mod-
eling techniques and corresponding runtimes (based on BDI) [13] as well as parts
of workflow management systems [5,14,29].

Fig. 4. Use cases and requirements for systems that employ workflows

However, while there are a number of common features that are necessary
to support workflows, the exact requirements and support depend on both the
business environment as well as the properties of the business processes (see
Fig. 4). In order to support a minimal workflow enactment, a certain baseline
feature set should be available. First, workflow models have to be produced based
on previously identified business processes. This is called process definition in
the reference model and requires modeling tools for targeted workflow languages
(1). Following the definition of workflow models, the system must be capable of
executing workflow instances and therefore requires at least one type of workflow
engine such as a BPMN interpreter (2). In some scenarios, business processes
have particular sets of requirements [13] which benefit from support of additional
workflow engines which can process different types of workflow languages such
as more agile ones like GPMN [13] (5) (6).

The third requirements for workflows are support of services, both providing
them with a workflow as well as using them as part of a workflow (4). This
implicitly requires the means to discover available services in order to bind them
to workflow instances (3). Basic workflow management does not necessarily need
support for remote communication since in some business environment a tradi-
tional centralized approach is sufficient. However, most business scenarios are

Tailoring Agent Platforms with Software Product Lines 9

more complex. This results either from the organizations themselves being phys-
ically distributed as well as technical separation of systems such as automated
production systems and specific server system for, e.g., accounting and e-mail.

This leads to workflow systems quickly requiring the need for calling remote
services (8). While the reference model defines workflow service interfaces in
technologically neutral terms, in many cases the support of remote service calls
must also specifically include web service technology like Rest or WSDL (11).
This is particularly the case if workflows cross organizational lines where web
services are often used as a standardized common ground between organizations.

It is often worthwhile to assess the progress of workflow instances while they
are executing to derive information about the current business situation. Work-
flow execution data can also later be used to analyze workflow models for reengi-
neering. Thus, it is useful to include monitoring facilities in the system (7).

Finally, some workflow scenarios require additional technical support. For
example, if a workflow is cross-organizational and communicates using public
networks, support for secure service calls may be necessary to protect business
secrets and private data (10). Other workflows like those based on ETL (extrac-
tion, transformation, loading) processes need to transfer large amounts of data
in which case support for data streams are helpful (9) [4].

In conclusion, workflow systems have a small set of baseline requirements
which can quickly expand based on the particular business settings in which they
are used. As a result, closely tailoring such systems to the specific requirements
is a promising prospect.

2.4 Summary of the Scenarios

The scenarios presented in this section have been used to introduce interest-
ing features of agent platforms. They show exemplarily, how different subsets of
these features are relevant in different scenarios. Notable differences exist with
regard to the execution environment (Android device, desktop computer, enter-
prise network) and regarding the distinction between local, intranet and internet
scale. The small overlap regarding the sets of minimally required features in the
different scenarios motivate the need for lean agent platforms specifically tailored
for an intended purpose. Yet, as can be seen by the extended scenarios, useful
applications for advanced features can always easily be found, thus motivating
platforms that include as many features as possible. The next section introduces
software product lines as an approach for achieving both goals simultaneously,
i.e. having lean agent platforms that include as many features as required for a
specific usage scenario.

3 Background on Software Product Lines

Historically, software engineering has always been concerned with reuse of soft-
ware entities to be able to rely on sound existing solutions and avoid reinventing
the wheel in each development project. Different software concepts have been

10 L. Braubach et al.

put forward fostering reuse including e.g. libraries, components or plugins and
visions about markets have been formulated, in which predefined software arti-
facts/services can be offered and obtained for assembling custom solutions.

In practice, even today reuse remains fairly limited and also markets for
reusable software artifacts have not emerged to the envisioned degree. One key
reason for low reuse is that artifact producers and consumers are decoupled
and the first do not know much about the contexts in which the latter want
to use the software. In this respect, software product lines can help and offer a
way of enabling strategic reuse of software artifacts [6]. The main idea is that a
set of similar software products is analyzed according to the requirements and
offered features. From a comparison among the products it can be deduced which
features are specific for a certain product and which ones occur in many or all
of the products. From this analysis, the variability points of a set of software
products can be determined and it becomes clear what the common core assets
are. Software product line approaches can then help to automate the production
of tailor-made products from a common code base by generating and assembling
assets according to specific configurations.

Fig. 5. Software product line overview (from [1])

The overall development activities using a product line approach are illus-
trated in Fig. 5. In this respect, two subprocesses are distinguished: development
for reuse and development with reuse [17]. The first process is called domain engi-
neering while the latter is termed application engineering. Domain engineering
analyzes the customer requirements and intends to produce a feature model,
in which the important features are listed and their domain dependencies are
made explicit. A key aspect of a feature model is to identify variability points, i.e.

Tailoring Agent Platforms with Software Product Lines 11

understanding which features are mandatory and which ones are optional and
which choices between features exist. Based on the feature model, the implemen-
tation of features is performed leading to the core assets of the software product
line. During application engineering individual products will be considered and
finally produced. The idea is that customer needs for individual products can be
described as configurations of the feature model. In such configurations, typically
the features for a desired product are selected respecting identified domain con-
straints. Based on a configuration the concrete product implementation can then
be generated by assembling and tying together previously created core assets.
An important aim of software product lines consists in the complete automation
of the product generation based on configurations.

4 Feature Modeling

The result of a domain analysis is a model of the desired features and their
interrelations. Feature modeling is usually performed by identifying notable fea-
tures and building up a feature tree using refinement and generalization of the
identified features. Although there is currently no formal standard for feature
modeling, the basic concepts are more or less agreed upon: Refinement can come
in four forms - mandatory sub features (all of n sub features), optional sub fea-
tures (0..n of the sub features), or -refinement (1..n of the sub features), and
alternative sub features (exactly one of n sub features). The generalization can
be distinguished into concrete features that can directly appear in a product and
abstract features that are used to group a related set of sub features. Feature
modeling is usually performed as part of the domain analysis, i.e., coming from
requirements for potential products and identifying commonalities and variabil-
ities. Another approach with a similar result is asset analysis of an existing
software product. Here the focus is on identifying the variabilities with regard to
the available assets. The following sub sections will show both approaches, first
a domain analysis coming from requirements and second an asset analysis of an
existing agent platform.

4.1 Domain Analysis

Figure 6 shows intermediary results of the domain analysis process with regard
to the scenarios presented in Sect. 2.3 The first step (Fig. 6a) is to include all
the features mentioned in the different scenarios. Afterwards these features can
be refined and generalized. e.g., in (Fig. 6b) the Intelligent Behavior and the
two Workflow Engine features have been grouped below an abstract Behavior
feature. An OR-decomposition is used to indicate that the abstract Behavior
feature required at least one concrete sub feature, but it is also allowed to have
multiple ways of behavior in the same scenario (e.g. BPMN and GPMN work-
flows in the same application). Additionally, all the features related to services,
3 The feature model has been edited with the FeatureIDE eclipse plugin: http://

wwwiti.cs.uni-magdeburg.de/iti db/research/featureide/.

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/

12 L. Braubach et al.

Fig. 6. Steps of the domain analysis process

as well as the modeling tools are grouped in a similar way. A different case can
be seen for the Virtual Environment. Here, the (3D)Graphics and the Physics
feature have been identified to be part of the more general virtual environment.
Yet the virtual environment can be used without graphics or physics, there-
fore the virtual environment feature is not abstract. An exemplary refinement
is shown for the Web Services feature. Here, it is assumed that the underly-
ing technology is part of the requirements and thus WSDL and Rest have been
modeled as separate features. Not all relationships between features can be mod-
eled as trees. For more complex cases, constraints can be specified that further
restrict, which subsets of features may form a valid selection. E.g. in Fig. 6b a
constraint is included to express that when both Remote Communication and
Services are used than the Remote Service Invocation feature should also be
present (RemoteCommunication ∧ Services ⇒ RemoteServiceInvocation).

4.2 Asset Analysis

The general process of a bottom-up asset analysis has some similarities to the
more top-down domain analysis. In both approaches, features are identified and
later generalized or refined to identify their relationships. The main difference
is that the domain analysis derives features by analyzing customer needs, while
the asset analysis derives features from existing software modules. So the first
defines a model of systems-to-be, while the latter provides a model of the current
software base.

Figure 7 shows a bottom-up analysis of the features available in the Jadex
agent platform (see, e.g., [26]). The diagram allows identifying the main variation
points regarding System, Behavior, Platform, and Tools. Jadex currently runs

Tailoring Agent Platforms with Software Product Lines 13

Fig. 7. Jadex features

on Android and JavaSE systems. Agents in Jadex can be implemented accord-
ing to one of many Behavior models, including BDI [28] agents and BPMN
[23] processes. The Platform feature is a container for many different features
regarding the execution of agents in distributed environments, e.g., Messaging,
Security, etc. Finally, to aid the developer during the implementation and test-
ing of agent applications, Tools are provided, each of which is related to one or
more platform or behavior features.

While many of the features in the diagram can be easily mapped to soft-
ware modules (e.g., SSLTransport), it is obvious that the some features are
crosscutting in that they influence the implementation of other features. E.g.,
the Android and JavaSE features define the possibility of the platform to be

14 L. Braubach et al.

executed on the respective system, which means that all other features used in
that settings need to be compatible to the system, too. As a result, some features
like the XMLEncoding need to provide partially different implementations for
Android and JavaSE. In Sect. 5, approaches for simplifying the implementation
of features in the presence of such interdependencies will be discussed.

4.3 Usage of the Feature Models

Two processes have to follow after the domain and asset analysis have been per-
formed. For one, the remaining differences need to be analyzed and the imple-
mentation of the assets needs to be adapted to finally fit the feature model
derived from the requirements. One important difference to the model from
Fig. 6b is the platform feature in Fig. 7. This means that currently the platform
is a mandatory part of any Jadex-based application. This currently contradicts
the requirement, e.g., from the game scenario, that other features like the intelli-
gent behavior should be available independently from the platform. The second
process is about the generation of products from a selection of features. Even
when the asset analysis and the domain analysis ultimately produce the same
feature model, the steps of deriving the finished product from a feature selection
needs to be defined in a way that supports automation and repeatability. Both
processes are supported by feature implementation techniques as described next.

5 Feature Implementation

Having modeled the features of a product line the question arises how these fea-
tures are going to be implemented. This is far from trivial due to many choices
that have to be made regarding the mapping between features and implementa-
tion. These include especially the feature binding times and the techniques for
feature realization.

The binding time determines at which point a feature is materialized. It can
be distinguished between compile time, load time and runtime binding [1]. Com-
pile time binding occurs before compilation and is realized, e.g. by preprocessors.
In case of load time binding, feature selection is performed at startup of the pro-
gram, while with using runtime configuration also on demand feature activation
is possible. On first sight this sounds as if load and runtime configuration should
be preferred due to flexibility and simplicity regarding the build process which
could be kept the same for all products but the problem is that deployment arti-
facts are an important factor, too. First, the product size is important, because
also lightweight variants should be producible for resource limited devices. Sec-
ond, all-in-one products contain dead code belonging to features that cannot
be activated. This has drawbacks regarding security (dead code could contain
security breaches) as well as compliance (there are domains in which dead code
is prohibited like in avionics [22]).

Tailoring Agent Platforms with Software Product Lines 15

5.1 Analysis of Implementation Techniques

Implementation techniques can be subdivided into language-based and tool-
driven approaches [1]. The first category includes parameters, frameworks, com-
ponents as well as feature- (FOP) and aspect-oriented programming (AOP) while
especially preprocessors and build systems fall into the latter category.

Parameters are passed to the software at startup and can be used to activate
or deactivate features accordingly. Frameworks typically expose specifically built-
in extension points that can be exploited by plug-ins. In this respect, plug-
ins can be used to realize features. Components are based on a contractual
definition of what is offered to others and what is expected from the context in
terms of provided and required services. This makes components also suitable
for feature implementation. Finally, feature- and aspect-oriented programming
have been devised for building features. Feature-oriented programming assumes
a compositional approach in which feature code is combined mainly by refining
core functionalities [27] whereas in aspect-oriented programming crosscutting
behavior is defined in aspects and afterwards woven into the base code by using
pointcuts [15].

Regarding tool-driven feature realization especially preprocessors are a simple
to use technique commonly used in practice. Finally, also build systems can be
used as basis for realizing product variants by integrating highly customizable
build profiles. In [1] a general introduction and comparison of these approaches
is available. In the following the presented implementation techniques will be
discussed in light of requirements that are of specific importance to the Jadex
agent platform. The main requirements are:

– The implementation technique should provide an evolutionary transition path
instead of demanding a reimplementation of large facets of the system. This
is especially important because the Jadex code base is large (>300.000 LOC)
and the developer resources are scarce (<5 programmers).

– The code and resources structuring should not have to strictly follow the
feature structure as the structure of the existing Jadex code base reflects the
natural bottom up partitioning of functionalities.

– The code cleanness should not be destroyed by introducing features as imple-
mentation aspects, i.e. the code should be understandable by developers even
without dedicated feature tools possibly creating product-specific views [1].

– A solution for the crosscutting feature problem [11] has to be provided by
the implementation technique, i.e. it must be possible to implement features
demanding code changes in a series of other features.

– The optional feature problem [1] has to be solved by the implementation
technique. The key question of this problem is where glue code should be
located that handles interaction with another optional feature.

– The deployment should be highly customizable. Features should be compos-
able of various types of artifacts besides source code (e.g. documents as well
as test cases) and only necessary features should be included in the resulting
deployment artifacts.

16 L. Braubach et al.

Fig. 8. Technique comparison

In Fig. 8 the results of the requirements analysis for feature implementation
is depicted. It can be seen that none of the techniques is perfectly suited and
all have specific strength and weaknesses which is in line with previous findings
supporting the idea of combining multiple implementation techniques [10].

It becomes apparent that novel languages based techniques like FOP and
AOP expose many disadvantages when considering the transition of an existing
code base towards features in contrast to an implementation from scratch. This
fact is also supported by a refactoring case study that tried to create a feature
based version of Berkley DB by using FOP and AOP [30]. The study revealed
that code quality was rather reduced than improved by using aspects for cre-
ating features because many crosscutting dependencies needed to be created.
Furthermore, the optional feature problem was hard to tackle because aspects
had to change the implementations of all usage points of optional features.

From the comparison it can be also seen that the framework and components
approach exhibit rather the same strength and weaknesses which is comprehen-
sible due to their conceptual similarities. Both mainly have weaknesses with
respect to the crosscutting and the optional feature problem but are otherwise
well suited for a transition towards a feature based implementation. It has to be
noted that most frameworks impose a certain program structure (inversion of
control principle). For this reason a transition should avoid using more than one
framework at the same time to keep the programming model comprehensible
for the developers. Using preprocessors nearly all problems can be solved but at
the high price of code tangled with conditional statements (cf. #ifdef hell [32]).
Parameters are similar to preprocessors but operate at the runtime level so that
conditional code remains within an application. Finally, it can be seen that build
systems alone are not capable enough for a transition towards a product line due
to weaknesses in many of the requirements.

Tailoring Agent Platforms with Software Product Lines 17

5.2 Jadex Implementation Decisions

The aforementioned analysis led to a decision towards a combination of three
different techniques: parameters, components and build system. The main idea
is using a completely component-based design with service dependencies as key
variability element. Following this path, most features can be directly mapped
to components and each feature should be represented by a domain interface
encapsulating its functionality. This allows for realizing a black-box feature view
so that implementation dependencies between different features can be reduced
to a very high degree due to information hiding. Furthermore, this is completely
in line with the existing implementation of the Jadex platform, which has been
built following the active components approach [26] so that feature decomposi-
tion remains rather non-invasive regarding the existing code base. As the core
functionalities of the platform itself are encapsulated as components and the
platform itself is a component as well, parameter configuration could be intro-
duced to customize the platform at startup by activating or deactivating features.
Components are a runtime feature combination technique and thus incur a slight
performance penalty. For our scenarios until now this penalty was negligible. Yet,
for some mobile and gaming scenarios, when peak perfomarnce is of the essence,
build-time techniques such as code-weaving or preprocessors might be required.

To tackle the optional feature problem, in the spirit of microservice
architectures [19] all components have to be developed in a failure tolerant way,
i.e. it has to be assumed that all services may fail and that appropriate failure
mitigation code is in place to handle such occurrences. The crosscutting feature
problem remains tough but also does not occur very often in the Jadex platform
so that we try to tackle it with custom solutions.4 Two important features with
crosscutting functionalities are the system feature and the behavior features.
The system feature determines the target operating system and is crosscutting
because the APIs of Java standard edition and Android differ in several places
or implement functions with different semantics. This means the compilation
of desktop/android variants is only possible if not supported API calls/imports
are stripped out (e.g. android bluetooth api, awt/swing). Classes requiring those
must be excluded from build or have to be manually refactored to not use those
APIs. To avoid preprocessor usage we decided to hide sensible calls behind inter-
faces of abstract classes for which operating system dependent implementations
are provided during the build.

The crosscutting problem within agent behavior is even more challenging
because the programming model depends on features of the platform and should
also work completely without a platform (for game environments). To address
this issue we introduced the notion of microfeatures representing small cross-
4 It has to be noted that the crosscutting feature means that the implementation of a

feature touches multiple other features while the optional feature problem refers to
the usage of another optional feature which might not be present. The latter problem
seems to occur much more often than the former. Even typical crosscutting aspects
like monitoring and security only lead to the optional feature problem, because they
often can be implemented in one feature but need to be used from many places.

18 L. Braubach et al.

cutting behavior portions that can be activated and deactivated on a global
manner for all kernels (representing agent architectures) as well as individually
for each agent (e.g. to run agents with minimal memory footprint). The com-
plete behavior is then composed of different microfeatures from which some are
general for all kernels (such as provided and required services, message handling,
basic lifecycle feature) and others encapsulate kernel specific functionalities such
as a (BDI semantics feature). The component API reflects this by exposing a
getFeature(FeatureInterface) method, which can be used to access microfeature
specific functionalities (like sendMessage() on a message handling feature). The
realization of this kernel architecture required a dependency resolution mecha-
nism being developed that creates features in the intended order.

The overall mapping of features to the deployment artifacts is currently
handled by a profile based build system, which creates deployment artifacts
according to the predefined and not freely selectable feature set. Yet, the fully
automated composition of platform features is still ongoing work and requires
an explicit feature mapping being defined from the problem to the solution
space. We intend to follow a transformation approach similar to that proposed
in pure::variants5.

6 Related Work

Software product lines and agent-oriented software engineering have been subject
of several previous works but none has analyzed in how far agent platforms
may benefit from features and variability considerations. For this reason two
different topics are discussed separately in more detail. On the one hand, it
will be presented how reusability and tailoring has been tackled within agent
platforms and on the other hand work on combining software product lines with
agents will be investigated.

In general, it can be observed by analyzing existing agent platforms like
JADE [2] and LS/TS [35] that there is no special focus on extension and tailor-
ing. Nonetheless, most platforms allow for predefined variability that is realized
by parameterization as well as by shipping products for different target envi-
ronments. JADE offers versions for J2ME and Android while LS/TS ships a
personal, business and enterprise edition including more functionalities as well
as the capability to run in an JEE environment. In addition to that, the open
source platform JADE also offers predefined extension points within the platform
based on a service-oriented approach. This led to the development of many third-
party add-ons for JADE e.g. offering new transport mechanisms or web service
integration. In LS/TS the idea of agent kernel has been identified as important
extension point. LS/TS ships with kernels implementing different agent archi-
tectures like BDI and task based. Building different editions as well as tailoring
is done manually for both.

Regarding the connection of software product lines with agents quite diverse
proposals can be found. [24] introduces a rather general comparison of AOSE
5 http://www.pure-systems.com/pure variants.49.0.html

http://www.pure-systems.com/pure_variants.49.0.html

Tailoring Agent Platforms with Software Product Lines 19

with SPLs highlighting how they could conceptually benefit from each other
but without presenting a concrete approach. Most other contributions tackle
the problem how agent software can be used as modeling and implementation
technique for product line features and how the development process differs in
this respect. In [20] it has been considered how BDI agents can be used for feature
implementation and how variability can be defined in terms of BDI. In addition
to feature definition also MAS specific domain engineering processes have been
proposed e.g. in [21,25]. The main objective in their work consists in introducing
a systematic process for developing MAS based product line architectures that
can be used as core assets for product generation. This is more difficult than with
object-oriented technologies because it remains rather unclear what a feature
should comprise on the implementation layer in agent orientation so that it can
be automatically composed as part of the application engineering.

7 Conclusion

Today, numerous agent platforms exist, that often provide a multitude of fea-
tures, whereas in different applications scenarios for agents often only a subset
of these features is required. For developers, lean agent platforms are desirable,
not only regarding a small runtime footprint, but also regarding the distribution
(e.g. to avoid confusion due to irrelevant API and documentation). Moreover a
lean distribution is preferred in production environments, e.g., to avoid security
vulnerabilities due to dead code.

Software product lines are an approach for strategic reuse, e.g., identifying
commonalities and variabilities for a set of products and developing assets (code,
documentation, ...) to build many products from a set of assets. The main focus
of SPL is feature modeling, i.e. describing requirements as a feature tree and
mapping features to assets. Different approaches and tools exist for automatically
generating software products from feature and asset models.

This paper has discussed the use of SPL technology to aid in tailoring agent
platforms for specific use cases. Based on illustrative scenarios, the domain analy-
sis process for an agent platform product line has been presented. Moreover a
bottom-up feature analysis of the Jadex agent platform has been performed and
next steps with regard to a Jadex SPL have been proposed. In this respect, pos-
sible approaches for feature implementation have been investigated and suitable
solutions for Jadex have been identified. Furthermore, with microfeatures a novel
approach for handling the crosscutting feature problem at agent kernel level has
been introduced. It decomposes an agent kernel into its functionally minimal
parts (lifecycle, messaging, ...) and allows for configuring kernels horizontally at
a very detailed level.

The complete transition of Jadex to an SPL of agent platforms is still work
in progress. As future work, we expect to develop further tools and techniques
in the feature implementation area to achieve code-cleanness in the presence
of crosscutting and optional feature problems. The ultimate goal is to have an
easily extendable and maintainable automated build process for the current and
future configurations of the Jadex platform.

20 L. Braubach et al.

References

1. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Prod-
uct Lines: Concepts and Implementation. Springer Publishing Company Inc.,
Heidelberg (2013)

2. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE - a java agent development
framework. Multi-Agent Programming: Languages, Platforms and Applications.
Multiagent Systems, Artificial Societies, and Simulated Organizations, vol. 15,
p. 25. Springer, New York (2005)

3. Böhmer, M., Hecht, B., Schöning, J., Krüger, A., Bauer, G.: Falling asleep with
angry birds, facebook and kindle: a large scale study on mobile application usage.
In: Proceedings of the 13th International Conference on Human Computer Inter-
action with Mobile Devices and Services, pp. 47–56. ACM, New York (2011)

4. Braubach, L., Jander, K., Pokahr, A.: High-volume data streaming with agents.
In: Zavoral, F., Jung, J.J., Badica, C. (eds.) IDC 2013. SCI, vol. 511, pp. 199–209.
Springer, Heidelberg (2013)

5. Buhler, P.A.: A Software Architecture for Distributed Workflow Enactment with
Agents and Web Services. Ph.D. thesis, Columbia, SC, USA, AAI3157120 (2014)

6. Clements, P., Northrop, L.M.: Software Product Lines: Practices and Patterns.
Addison-Wesley Longman Publishing Co. Inc., Boston (2001)

7. Dignum, F., Westra, J., van Doesburg, W., Harbers, M.: Games and agents: design-
ing intelligent gameplay. Int. J. Comput. Game Tech. 2009, 18 (2009)

8. FIPA. FIPA Abstract Architecture Specification. Foundation for Intelligent Phys-
ical Agents (FIPA), Document no. FIPA00001, December 2002

9. FIPA. FIPA Agent Management Specification. Foundation for Intelligent Physical
Agents (FIPA), Document no. FIPA00023, December 2002

10. Gacek, C., Anastasopoules, M.: Implementing product line variabilities. In: Pro-
ceedings of the 2001 Symposium on Software Reusability: Putting Software Reuse
in Context, SSR 2001, pp. 109–117. ACM, New York (2001)

11. Groher, I., Krueger, C., Schwanninger, C.: A tool-based approach to managing
crosscutting feature implementations. In: 7th International Conference on Aspect-
Oriented Software Development (AOSD). Springer (2008)

12. Hollingsworth, D.: Workflow management system reference model. In: Workflow
Management Coalition (1995)

13. Jander, K., Braubach, L., Pokahr, A., Lamersdorf, W., Wack, K.-J.: Goal-oriented
processes with GPMN. Int. J. Artif. Intell. Tools (IJAIT) 20(6), 1021–1041 (2011)

14. Jander, K., Lamersdorf, W.: Jadex WfMS: Distributed workflow management for
private clouds. In: Networked Systems 2013 (2013)

15. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-M.,
Irwin, J.: Aspect-oriented programming. In: Proceedings of the European Confer-
ence on Object-Oriented Programming (ECOOP 1997), pp. 220–242 (1997)

16. Lehman, J.F., Laird, J., Rosenbloom, P.: A gentle introduction to Soar, an archi-
tecture for human cognition. Invit. Cogn. Sci. 4, 212–249 (1996)

17. van der Linden, F., Schmid, K., Rommes, E.: Software Product Lines in
Action: The Best Industrial Practice in Product Line Engineering. Springer-Verlag
New York Inc., Secaucus (2007)

18. Nareyek, A.: Review: intelligent agents for computer games. In: Marsland, T.,
Frank, I. (eds.) CG 2001. LNCS, vol. 2063, p. 414. Springer, Heidelberg (2002)

19. Newman, S.: Building Microservices Designing Fine-Grained Systems. O’Reilly
Media, Secaucus (2015)

Tailoring Agent Platforms with Software Product Lines 21

20. Nunes, I., de Lucena, C.J.P., Cowan, D., Alencar, P.: Building service-oriented user
agents using a software product line approach. In: Edwards, S.H., Kulczycki, G.
(eds.) ICSR 2009. LNCS, vol. 5791, pp. 236–245. Springer, Heidelberg (2009)

21. Nunes, I., Lucena, C.J.P., Kulesza, U., Nunes, C.: On the development of multi-
agent systems product lines: a domain engineering process. In: Gomez-Sanz, J.J.
(ed.) AOSE 2009. LNCS, vol. 6038, pp. 125–139. Springer, Heidelberg (2011)

22. Special C. of RTCA. DO-178C, software considerations in airborne systems and
equipment certification (2011)

23. OMG. Business Process Model and Notation (BPMN) Specification. Object Man-
agement Group (OMG), version 2.0 edition, February 2011

24. Peña, J., Hinchey, M., Ruiz-Cortés, A.: Multi-agent system product lines: chal-
lenges and benefits. Commun. ACM 49(12), 82–84 (2006)

25. Peña, J., Hinchey, M.G., Ruiz-Cortés, A., Trinidad, P.: Building the core architec-
ture of a NASA multiagent system product line. In: Padgham, L., Zambonelli, F.
(eds.) AOSE VII / AOSE 2006. LNCS, vol. 4405, pp. 208–224. Springer, Heidelberg
(2007)

26. Pokahr, A., Braubach, L.: The active components approach for distributed systems
development. Int. J. Parallel, Emerg. Distrib. Syst. 28(4), 321–369 (2013)

27. Prehofer, C.: Feature-oriented programming: a fresh look at objects. In: Akşit, M.,
Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241. Springer, Heidelberg (1997)

28. Rao, A., Georgeff, M.: BDI Agents: From theory to practice. In: 1st International
Conference on Multi-Agent Systems (ICMAS 1995), pp. 312–319. MIT Press (1995)

29. Reese, C., Ortmann, J., Moldt, D., Offermann, S., Lehmann, K., Carl, T.: Architec-
ture for distributed agent-based workflows. In: Proceedings of the 7th International
Workshop on Agent-Oriented Information Systems (AOIS-2005), pp. 42–49 (2005)

30. Rosenmüller, M., Apel, S., Leich, T., Saake, G.: Tailor-made data management
for embedded systems: a case study on berkeley db. Data Knowl. Eng. 68(12),
1493–1512 (2009)

31. Sarma, B., Li, N., Gates, C., Potharaju, R., Nita-Rotaru, C., Molloy, I.: Android
permissions: a perspective combining risks and benefits. In: Proceedings of the 17th
ACM Symposium on Access Control Models and Technologies, pp. 13–22. ACM
(2012)

32. Spencer, H., Collyer, G.: #ifdef considered harmful, or portability experience with
C News. In: USENIX Summer Technical Conference, pp. 185–197 (1992)

33. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-
Oriented Programming, 2nd edn. ACM Press and Addison-Wesley, New York
(2002)

34. Weske, M.: Business Process Management Concepts, Languages, Architectures.
Springer Verlag, New York (2007)

35. Whitestein Technologies. Developer Guide, LS/TS Release 2.0.0 edition (2006)

A Metrics Framework for Quantifying
Autonomy in Complex Systems

Christopher-Eyk Hrabia(B), Nils Masuch, and Sahin Albayrak

Faculty of Electrical Engineering and Computer Science, DAI-Labor,
Technische Universität Berlin, Ernst-Reuter-Platz 7, 10587 Berlin, Germany
{christopher-eyk.hrabia,nils.masuch,sahin.albayrak}@dai-labor.de

Abstract. Autonomous systems, often realized as multi-agent systems,
are envisioned to deal with uncertain and dynamic environments. They
are applied in dangerous situations, e.g. as rescue robots or to relieve
humans from complex and tedious tasks like driving a car or infrastruc-
ture maintenance. But in order to further improve the technology a
generic measurement and benchmarking of autonomy is required. Within
this paper we present an improved understanding of autonomous
systems. Based on this foundation we introduce our concept of a multi-
dimensional autonomy metric framework that especially takes into
account multi-system environments. Finally, our approach is illustrated
by means of an example.

Keywords: Artificial intelligence · Autonomous systems · Autonomous
robots · Metrics · Intelligent systems · Adaptive systems · Multi-agent
systems

1 Introduction

Modern computer and robotic systems assist humans in almost every situation
in workaday life. It is always the goal to simplify human life by delegating either
unpleasant or dangerous tasks to artificial systems. These tasks are becoming more
and more complex, facing uncertainty in their execution environment and require
robust and flexible solutions. Examples range from robotic vacuum cleaners [29] to
artificial personal assistants for task and time management [18] to military drones
in combat.

Designing systems for uncertain environments is a challenging task. Espe-
cially because engineers are unable to foresee all conditions, interactions and
influences a system will have to deal with in advance during specification and
development. Sometimes there is even a general lack of information.

The term autonomous systems is widely used for systems that are able to
deal with such situations. Many researchers are trying to improve concepts and
technologies behind. As objectives of autonomous systems perfectly match to the
ones of multi-agent systems the latter’s paradigm is often used for realization.

In order to properly design and develop such systems we need to identify
the important aspects and means to create measurable goals we can improve
c© Springer International Publishing Switzerland 2015
J.P. Müller et al. (Eds.): MATES 2015, LNAI 9433, pp. 22–41, 2015.
DOI: 10.1007/978-3-319-27343-3 2

A Metrics Framework for Quantifying Autonomy in Complex Systems 23

in future. For an iterative advancement it is required to benchmark and mea-
sure these systems during the development process in their application context.
Furthermore, selecting an appropriate system for a required autonomy level in
a particular scenario requires a quantification of autonomy, too. In our opinion
there is still a lack of a widely accepted concept of autonomous systems or robots
that contains a detailed definition according to different aspects and a clear dis-
tinction to other system concepts. Moreover, the consequences of bringing several
different systems together are unclear.

The remainder of the paper is structured as follows. In Sect. 2, we give
an overview about the variety of definitions and understandings of the term
autonomous system and take a deeper look on metrics that are being proposed
to measure such systems. Subsequently, in Sect. 3, we classify autonomous sys-
tems in relation to other system types and present our own definition of an
autonomous systems. A context-specific multi-dimensional metric to control and
benchmark autonomous systems is proposed in Sect. 4. In order to apply our
multi-dimensional metric framework Sect. 5 highlights necessary considerations,
whereas Sect. 6 illustrates the application with an artificial example. Finally, in
Sect. 7, we summarize our work and outline open issues and future steps we want
to work on.

2 Related Work

In order to come up with a definition of autonomous systems we will give an
overview about state-of-the-art definitions and further focus on the particular
metrics on which they rely.

2.1 Autonomous Systems Definitions

A review over existing literature about autonomous systems and agents reveals
that there still does not exist one major agreement on definition or understanding
of a concept of autonomy in computer and software systems. The developed
definitions are usually depending on a specific problem or application domain
and therefore are only looking on the concept from a limited perspective.

A simple and common understanding of autonomous systems derives directly
from the literal translation of the word autonomy, which has ancient Greek
origin and means self-government. This interpretation is used by Castelfranchi
[8], often extended with a general independence from other entities [12]. In [10]
the authors mention unpredictability and goal-directedness as the main aspects
of autonomous systems. Moreover, they define self-directedness as the general
substance of autonomy. Luck et al. [16] are also considering self-directedness or
self-government, but propose the ability of goal generation based on an inner
motivation or drive as the key component of an autonomous system. Further,
motivation is seen as a higher-level non-derivative component that characterizes
the nature of agents. The definition of autonomous systems as entities generating
own goals suits also the concept of self-government.

24 C.-E. Hrabia et al.

Close to the motivation of autonomous systems that are supposed to deal
with unforeseen environmental conditions is the concept of adaption. In [1] it is
stated that autonomy and adaptability are interconnected and decision making
requires adaption to the environment. These ideas are in accordance with the
visions of the promoters of autonomic computing [15] and organic computing [25]
as well. They understand self-adaptability as major property for the realization
of software that can manage itself at runtime. Furthermore, self-adaptability is
considered as the foundation of other envisioned self-* properties.

A different approach is presented by Barber et al. [3]. They have identified
three distinct types of intervention in an autonomous agent: modification of envi-
ronment, influence over beliefs and intervention in the decision-making process.
In their opinion only the two last types have to be considered for autonomy-
altering. Hence, they focus on independence on decision-making to pursue an
agent’s goal as well as independence of control over its own belief state [3,4].

One major concern of autonomy concepts is the requirement for an adjust-
ment of the granted independence in general or a specification of a context
defined by other systems or humans. As a consequence, some work is focused
on the so called “adjustable autonomy” [11]. This adjustment is always seen as
an outer influence on autonomous systems, though reducing the independence
of systems from other entities. A common idea is the usage of policies and rules
for different autonomy related properties. Scerri et al. [23] and Tambe et al.
[28] focus on the aforementioned decision making capabilities. Further exten-
sions aggregate all restrictions in role models [31]. Bradshaw et al. [5] present
a formal framework for the description of action policies. They differentiate in
possible, available and obligated actions that are arranged on a prescriptive
and descriptive layer, representing self-directedness and self-sufficiency. Another
perspective on policies is given by Myers et al. [19] as a specification for the
autonomy context. This also includes possibilities of human consultation from
the system’s perspective. Additionally, the importance of such kind of behaviour
is considered in [17], too.

Some research focusing on independence has created concepts of different
areas of autonomy. An explicit external perspective of autonomous systems in
a complete relational structure with classifications for user, social-dependence,
norm, environment and self-autonomy is presented by Carabelea et al. [6]. More-
over, the authors mention the existence of an inner layer of autonomy focusing
on the decision making process. Another work also focuses on the relational
structure of independence in a hierarchical holonic agent organisation and hence
classifies it into different kinds of autonomy [24]. The existing classes are skill and
resource, goal, representational, deontic, planning, income, exit and processing
autonomy. Verhaegen et al. [30] distinguish between natural and artificial agents,
but focus as well on the aspect of independence in different areas like norms,
external stimuli and motivations.

The presence of different layers of autonomy in an autonomous system is
discussed by Castelfranchi et al. [9] and Maheswaran et al. [17] and was as well
mentioned by Carabelea et al. [6]. In the context of adjustable autonomy there

A Metrics Framework for Quantifying Autonomy in Complex Systems 25

exists control from outside over a system itself and control from the perspective
of the system on how or if it decides to transfer decision-making control to
other entities [6]. Then again, Castelfranchi et al. [9] understand autonomy as a
matter of power, with internal and external aspects. External aspects describe
conditions for actions or resources, internal aspects define system abilities, skills
and resources.

Further, most of the shown literature has a strong focus on single systems for
their consideration of autonomy. Exceptions are made by Carabelea et al. [6],
who show the concept of delegation of decision-making capabilities, as well as
in the work of Scerri et al. [23] and Tambe et al. [28]. Moreover, the impor-
tance of dependence from other entities for the creation of a belief model is
demonstrated [4], too.

At least, it seems there is an existing agreement, that autonomy needs to be
evaluated and compared in a specific context or with respect to some goal, because
a system could behave autonomously in one situation and non-autonomous in a
different context [3,5,6,27].

In summary, the presented literature shows that both self-government as well
as self-directedness based on an inner motivation are important aspects of an
autonomy concept. Further, a general independence of the system, especially
for decision making, belief management, actions and resources accessibility has
to be considered. In addition, the capability of adapting to the environment is
strongly interconnected with autonomy. Moreover, we see that an autonomous
system seems to have different layers, usually seen as inner and outer parts. Also,
an autonomous system is always related to other systems; therefore the influence
from other systems, as well as the delegation of the system itself needs to be
examined. However, we see that all these aspects have not yet been combined
into a single concept.

2.2 Autonomous Systems Metrics

Existing publications on autonomous systems come up with a variety of proper-
ties that can affect the degree of autonomy. In the following we subsume these
aspects under different metrical categories of autonomy.

Interaction: most of the publications describe the degree of necessary interaction
with or observation by external entities in order to fulfil the implicit task of a
system as an important category for autonomy. The authors in [7] discuss the
term of autonomy for spacecrafts and deduce that it depends on the tracking
intensity and the amount of communication between vehicle and ground. [32]
also states that autonomy mostly represents the ability to assign the system’s
goals without any or with only minimal external intervention. The authors in [3]
are more precise and state that they do not see the principal interaction with
the environment as autonomy-altering. In their opinion it is more important
to look whether there are instances that can change the environment in a way
that the system changes its behaviour, which would be an indirect influence and
autonomy-limiting factor.

26 C.-E. Hrabia et al.

Permissions, Norms, Obligations: these aspects are a refinement of the inter-
action category. In [5] the authors state that autonomy largely depends on the
attribute of self-directedness, which means that the system can decide with-
out external influences. In general, the freedom of an autonomous system can
either be limited by explicit restrictions (norms or obligations) or extended by
permissions which extend a principal behavioural restriction.

Quality: the degree of quality represents a level-based scheme for defining auton-
omy. In [4] the authors do so by setting different levels on the system’s belief
autonomy, which can either be manipulated by external entities or by the quality
of the system’s perception.

Uncertainty: an autonomous system implicitly sets the expectation of being able
to at least fulfil its intended goals. Since in most cases the environment is dynamic
and sometimes also unpredictable, uncertainty is a category that autonomous
systems have to deal with. As a consequence, it can be stated that the higher
the level of uncertainty of the environment is the more autonomous the system
(always under the assumption of fulfilling its goals) [32].

Technical Aspects: some of the publications come up with pragmatic measure-
ments like the time of ignorance [7,20], which represents the time a system
can be ignored by an external observer while still acting productively. Techni-
cal software measures are used by Alonso et al. [2]. The authors measure their
determined key attributes of autonomy, which are self-control, functional inde-
pendence and evolution capability, based on static and dynamic code analysis
with properties like complexity of pointers and references, number of variables
describing the internal state and state update frequency. For example, the func-
tional independence of a system is being measured by using an executive message
ratio EMR = 1 − ME

MR . MR defines the total number of messages the software
agent receives, whereas ME represents all messages the software agent is obliged
to respond or react to (e.g. because they were sent by the user the agent rep-
resents). According to this definition the system is more autonomous the less
instructions the agent becomes via messages.

In conclusion, a lot of aspects have been proposed so far which play a signif-
icant role in defining the system’s autonomy. However, most of the publications
try to focus on very few attributes to define a metric in a particular domain,
whereas a comprehensive view that is considering all different aspects together
cannot be found so far.

3 Definition and Classification

As the motivation of this paper implies, autonomous systems can be quite dif-
ferent according to the degree of autonomy. None of the systems that exist so
far are fully autonomous, so many systems fulfil only parts of existing auton-
omy definitions and can still be interpreted as autonomous systems. In turn, this
makes it quite difficult to define exact bounds that characterize an autonomous

A Metrics Framework for Quantifying Autonomy in Complex Systems 27

system. For this reason, we will define different characteristics that are relevant
for deciding whether we are dealing with a system that is autonomous or not.

There is not only the criteria of autonomy when talking of modern system
structures. Many other aspects exist and often they overlap each other. In order
to clarify our understanding of autonomous systems we will first try to set them
in relation to other concepts. Afterwards, we will come up with a comprehensive
discussion about autonomous systems themselves.

3.1 Classification

When talking about practical realization of Artificial Intelligence (AI) the term
intelligent system is often being mentioned. Rudas et al. [21] define an intelli-
gent system as a system that “emulates some aspects of intelligence exhibited by
nature. These include learning, adaptability, robustness across problem domains,
improving efficiency (over time and/or space), information compression, extrap-
olated reasoning”. So we can deduce that an intelligent system is an application
of AI that is specialized to some sort of challenge and does not have to offer
general intelligence. A subclass of intelligent systems are adaptive systems [22],
which are able to react to changes of the environment that the developer cannot
foresee completely at design time or are even able to find solutions to modified
goals.

Autonomous systems in fact can also be intelligent and adaptive systems but
do not necessarily have to be so. Automation systems are often classified as a
subcategory of an autonomous system. An automation system realizes processes
from start to end without human intervention with a clear focus on indepen-
dence. However, usually the environment may not make changes, which the sys-
tem developer could not foresee. An example for this would be a thermostat that
fully automatically adapts the cooling or heating in order to reach a desired tem-
perature. The state space in the system is clearly defined and it is only able to
react on this range. Furthermore, the same input will lead to the same output.
So we state that an automation system is autonomous but is usually not an
intelligent system. Another important subcategory of autonomous systems are
autonomic systems [13,15], whose focus is self-management, with the goal of
configuring, healing, optimizing, and protecting itself in order to recover from
failures or optimize for changed conditions.

In our opinion the real benefit and also challenge lies within autonomous
systems that are simultaneously adaptive systems. In turn, adaptivity infers
the necessity to learn from new experiences. These can be external motivations
either to change the goals of the system or to find new or better processes to
fulfil existing goals. Even more, an autonomous system, which is not considering
adaptivity as a key feature of itself, is not able to solve real world problems in
dynamic environments. For this reason we will focus on autonomous systems
that are as well adaptive systems in the following sections.

28 C.-E. Hrabia et al.

3.2 Autonomous System

In the former sections we have argued that adaptability within dynamic environ-
ments is the main justification for autonomous systems. Further, we were able to
distinguish between adaptive and autonomous systems, with the result that actu-
ally all purposeful autonomous systems are adaptive systems, too. Beyond that,
an autonomous system from the engineer’s point of view does only make sense, if
there still exists the possibility of having some kind of influence on the system. In
addition, we think that complete autonomy cannot exist at all, because at least
the innermost motivation of a system needs to be defined or controlled by some-
thing else. On the other hand an autonomous system in the real world is always
interacting with other systems and entities, so it is necessary to consider relational
aspects in a sufficient definition of autonomous systems. Thus, our definition of
autonomous systems includes two layers, an adaptive layer, including all capa-
bilities required to adapt to changing environment and a relational layer, which
specifies delegation and dependence on other systems. This corresponds with the
existing concepts of self-sufficiency as the adaptive layer and self-directedness as
the relational layer [16]. As a consequence we propose a definition of autonomous
systems as adaptive systems extended with relational aspects. Within the rela-
tional layer there exist two different aspects, the influence from outside and the
delegation of duties to other systems (see Fig. 1).

Fig. 1. Layers and capabilities of an autonomous system

The influence from outside corresponds to the popular concept of adjustable
autonomy [5,17,19,23,28,31], describing influences on the system independence
from another system by restricting available resources and capabilities with the
usage of policies, norms or obligations. In this sense a system’s autonomy is rep-
resented as a percentage of independence in the use of its available capabilities.
The other relation direction is more complex, because it is not only a matter
if a system delegates duties or not. It has to be considered if the system has
just chosen to or if it was necessary to delegate, because it is not having the

A Metrics Framework for Quantifying Autonomy in Complex Systems 29

required capabilities on its own. Another question is, whether the delegation
to another system is reliable or not. For example, a system would lose auton-
omy if it delegates to another system, which it does not fully control, saying it
has a reduced reliability. If it delegates to another system which is just a sim-
ple automata having 100 % reliability in execution of the delegated task (not
included in the reliability are external factors, which the other system cannot
control), it would obtain its autonomy. The influence of other entities restricts
the autonomy related capabilities of the system.

The inner layer of an autonomous system contains all capabilities that are
required to adapt to the environment. Based on the literature, we came up with
the following required capabilities: decision making, goal generation or motiva-
tion, belief generation and skills for perception and acting. In our opinion not all
these capabilities sre required to achieve sufficient adaption. The very important
aspect of decision making has to be extended by a more long-term consideration
of planning. Belief generation depends on reasoning capabilities, thus it has to
be considered as well. Finally, the capability of learning, which is mentioned in
some of the discussions about autonomous systems, needs to be added, because
in our opinion it is crucial for the whole system adaptability. In the following
each of the capabilities is described in further detail.

The available perception and acting skills or actions to interact with the
environment are important in terms of diversity. For example, a system with a
less diverse set of moving capabilities (e.g., only walking besides crawling, driving
or swimming) is probably less able to adapt to different ground surfaces, even
if it does have a huge number of different leg moving styles. Thus, it is not just
the quantity of available skills, in fact the diversity of skills is important.

Like already clarified from the literature, decision making is a core aspect of
autonomy, but it is not only the resulting independence which makes it neces-
sary. Rather it is the purpose of making the decision to adapt to the changing
environment. The capability of planning is closely related, it allows the system
to reach its goals factoring in environmental conditions. A system with more
advanced planning and decision making features is able to consider changing
conditions and as a consequence is able to adapt more quickly and appropriate.

Each system is following some goals. These goals are based on a motiva-
tion and are somehow entered initially from outside. The difference in the sense
of autonomy and adaptability results from the level of abstraction in the goal
description. The ability of creating new own goals, or to adapt existing goals is
another consideration for improved adaptability.

The belief state of a system and its reasoning capabilities belong to each other.
The system needs to reason from raw input information to create its beliefs. In
its simplest form the system consists of reflexive mechanisms in which a rule
set is triggered based on the perception. The resulting actions which modify the
environment lead to a new perception and therefore a new belief state of the
system. However, more complex reasoning capabilities allow for better view of
the environment, which is the fundament of each adaption mechanism.

30 C.-E. Hrabia et al.

Learning was already highlighted as a crucial capability for an autonomous
and therefore adaptive system. The reason for this is the superior character of
this capability, enabling the system to improve all other capabilities over time.
The other presented capabilities perception and acting skills, decision making,
interpretation and creation of goals and reasoning and belief creation make adap-
tion in a changing environment possible, even without learning, but learning will
generate enhanced adaptability.

Combining everything our definition of an autonomous system is as follows
and as well visualized in Fig. 1:

An autonomous system follows an innermost motivation in an uncertain and
dynamic environment by adapting its capabilities in order to fulfil the inferred
goals. It has capabilities of perception and acting, decision making and planning,
interpretation and creation of goals, reasoning and belief creation for being able
to adapt. Learning is superior to the other capabilities, but non mandatory. It
can have relational dependence on other systems. If it is delegating its duties
to them, its autonomy is depending on their reliability. Further, the relational
dependence can lead to restrictions in the use of its capabilities and therefore on
its autonomy.

4 Metric

In the last section an improved understanding of autonomous systems was cre-
ated, which is useful to distinguish from other system concepts. Further, it clar-
ifies the justification and the core motivation and it points out the core charac-
teristics. These core characteristics give a direction for further improvements in
making autonomous systems more autonomous in future. On the other hand, it
was already shown, that it is not the actual goal to strive for an absolute 100 %
autonomous system, rather it is required to create autonomous systems with
a clearly defined scope of autonomy and options for external control. For this
reason we have developed a multi-dimensional metric for autonomous systems
that considers the core capabilities of our understanding of autonomous systems.
In order to direct development efforts this metric allows for an relative estima-
tion of the system’s development progress by comparing the different states or
differences to other existing systems. Further, the metric indicates which capa-
bilities have to be considered and ultimately controlled for external adjustment
of the system’s autonomy. For example, it points out which characteristics of
an autonomous system can be controlled in which range by a human operator
in order to enable system operation in the required borders. Similar to the con-
sensus in literature this metric and resulting ratings do only make sense in a
specified context.

Our metric introduces several scales based directly on the elaborated core
capabilities, namely decision making and planning, goal generation and moti-
vation, belief and reasoning, available skills and learning. Further, it takes into
account the two layer concept with external influence and delegation from inside.

As shown in Fig. 1 other systems can have influence on the autonomy of a
system. If a system contains one or more subsystems it is dependent on the

A Metrics Framework for Quantifying Autonomy in Complex Systems 31

current scope. Other systems can restrict capabilities to some percentage based
on permissions, obligations and norms. Likewise, a system can lose autonomy
depending on the reliability of other systems if the system decides to delegate
some of its capabilities. For example, another system could restrict the decision
making capability in a way that it needs to consult another system on every deci-
sion related to its task execution order, resulting in a decreased autonomy of the
system. Additionally, the system could delegate its reasoning to another system
with perfect communication and 100 % reliability, resulting in no degradation
of autonomy (provided that the delegating instance always remains the control
to withdraw the delegation). Further, similar to Johnson et al. [14], a measure
of autonomy can never describe a system’s performance, it only describes the
capability of independent adaption to volatile environments, while striving for
its goals. Moreover, it is important to point out that it is necessary to deter-
mine the weighting between the scales of the multi-dimensional metric in the
observed context of the evaluated systems based on the presented concept. This
would usually be done by a domain expert.

Besides the general influence by other systems affecting specific capabilities,
metrics for particular capabilities and combinations of them are presented below.

4.1 Perception and Acting Skills

The system’s skill set including different perception and acting capabilities influ-
ences the autonomy by defining the outer bounds of adaptability. If a system
does not have the capabilities to retain operation in a given environment or if
these capabilities are restricted, it has no chance to adapt. Comparing different
system adaption opportunities, the most important aspect is diversity. The qual-
ity of the capability is not important, as long as it provides a sufficient quality
to achieve the system’s goals in general, because we do not want to measure the
performance of the system. An ideal system needs a broad range of very dif-
ferent capabilities. For example, a robot with ultrasonic range finders and laser
range scanners is able to adapt to environments with transparent surfaces or
high frequency sound noise. Having only one of these capabilities would lead to
problems in one of these environmental conditions.

As a consequence of this, a dimension for diversity is required. A suffi-
cient option is the Shannon-Index, a well known approach from information
theory [26]. It is a quantitative measurement of the number of different avail-
able types in relation to the evenness of distribution. A higher number of types
together with an even distribution among the skills has the highest diversity.
A type refers to a group of sensors or actors providing the same kind of infor-
mation or realising similar actions. The calculation is shown in Eq. 1, where pi
represents the proportion of capability belonging to the ith type of N possible
capabilities in the particular context, with ni belonging to a particular type of
capabilities. H ′ is the diversity index, a higher number corresponds to a higher
diversity.

32 C.-E. Hrabia et al.

H ′ = −
n∑

i=1

pi · ln(pi) where pi =
ni

N
(1)

The classification of types has to be adjusted in consideration of the context.
The Shannon-Index can be applied for both the perception and the acting skills
leading to the functions H ′(PNorm) and H ′(ANorm), which are normalized values
based on Eq. 9. The total autonomy degree for these capabilities can then be
defined as:

PASCORE = w1 · H ′
PNorm

+ w2 · H ′
ANorm

(2)

Both values are weighted according to the context by using w1 and w2 with
w1 + w2 = 1.0.

4.2 Belief and Reasoning

The belief describes the state of the environment from the system’s point of
view which might be imperfect. For that reason it is critical to evaluate the
environmental conditions to adapt sufficiently. In order to compare the quality
of the belief and reasoning capabilities, different attributes have to be measured:
the amount of information the system is able to reason from and the update rate
of its belief generation.

The applied measurement methods and units have to be specified for the
evaluation context, e.g. number of reasoning input sources multiplied with band-
width, maximum storage complexity of the belief state and update rate per
second.

We propose the following metric as a generic measurement to evaluate the
system’s belief autonomy which in turn affects the overall autonomy:

BRSCORE = w1 · BIANorm + w2 · BURNorm (3)

The belief and reasoning autonomy BRSCORE depends on the amount of
belief information BIA (amount of processed perception data) and the belief
update rate BUR (frequency of refreshing the belief state) on these information.
As it is necessary to normalize these values in order to combine both parameters
we propose to utilize BIANorm and BURNorm, which are computed using Eq. 9.
Both parameters are aggregated using weights w1 and w2 with w1 + w2 = 1.0.

4.3 Learning

In this context the focus of learning is the ability of long-term improvement of
single capabilities with the goal of improving the system’s adaptability. This is
very difficult to measure, because the advantage of learning could only be deter-
mined in a direct comparison. Because learning is strongly related to reasoning
the proposed measurements can be applied in a similar manner. Especially the
amount of information to reason from is relevant for learning in the context of

A Metrics Framework for Quantifying Autonomy in Complex Systems 33

adaptability. By storing historical data the system is able to learn e.g. typical
behaviour patterns of the environment. This consideration needs to be distin-
guished from machine learning performance metrics like precision, recall and
accuracy.

LSCORE = w1 · LIANorm + w2 · LURNorm (4)

The LSCORE for measuring the learning capability is similar to the BRSCORE

in Sect. 4.2. Thus, the single measurement values need to be normalized for
the combination as well, see Sect. 4.5. The weights w1 and w2 are limited to
w1+w2 = 1.0, too. In distinction the LSCORE considers the stored historic infor-
mation used for learning LIA (Learning Information Amount) and the update
rate of the possible temporal repeating of the learning method LUR (Learning
Update Rate). A temporal repeated learning update on the updated LIA is cru-
cial for an autonomous system for keeping track with the volatile environment.

4.4 Motivation, Goals, Planning and Decision Making

Goals, planning and decision making are fundamental attributes of intelligent
systems. Without them a system would be completely static and could therefore
not adapt to changing situations.

A system has more possibilities to adapt and is less influenced if it can cope
with high level goal descriptions, because in this case it has more degrees of
freedom on how to achieve its goals and adapt to changing environments. This
is also valid for motivation, which we understand as a very general description of
a goal. The ability of decomposing goals into sub-goals and atomic tasks is part
of planning. Decision making is the selection of computed plans or alternatives
during planning. This in turn leads to the statement that the quality of goal
generation, planning and decision making affects the degree of autonomy.

Hence, from the inner perspective of the system these attributes depend
heavily on each other. It is not possible to determine if a particular decision
fosters adaptability on its own, as long as the system is being able to decide
in general. This means, that decision making is only an on/off attribute for
the adaption layer and can hardly be quantified more precisely. Thus, decision
making is more important for the relational layer of our metric concept, which
defines the relation to other systems in terms of independence and reliability.
Due to that the adaption layer has to focus on the planning ability of creating a
wide range of behaviour possibilities by using task decomposition. Therefore, the
aim is to measure the ability of decomposing tasks or goals in as many atomic
actions as possible or measuring the level of abstraction in goal descriptions the
system is able to understand.

A sufficient measure could determine the mean number of atomic system
actions resulting from a given goal. For example, a less adaptable system like a
100 % remote controlled robot has already atomic actions, like “move forward”
and “turn right”, in its goal description. On the contrary a robot that receives
the destination position as a goal can decompose the goal in different ways,
enabling the choice of e.g. way points, velocity and locomotion style.

34 C.-E. Hrabia et al.

Formally, a goal G can be decomposed into a set of predicates Pred and
Tasks T as shown in Eq. 5. A predicate, which is in fact a subgoal, again consists
of a set of elements that are either predicates or tasks (Eq. 6).

G = {Pred ∪ T} (5)

Pred = {x1...xn | xi ∈ Pred ∪ T} (6)

Because of its recursive structure, each goal G can finally be decomposed
into a set of atomic tasks. Therefore, t ∈ T is defined as a task which is atomic
and consequently not decomposable. TG is defined as the amount of all atomic
tasks that – in some combination – help fulfilling G.

TG = |{t | t ∈ T, t →
partiallyFulfills

G}| (7)

Equation 8 shows our suggestion of defining the goal and planning autonomy
GPSCORE .

The term describes the average fraction between the tasks the system was
able to decompose out of the goal (DTG) and all possible tasks related to a goal
for each potential step i. If DTG contains the same tasks as TG, then the system
has a complete view on the possible task sets for reaching G. In consequence this
part reflects the decomposing and planning ability of the system.

GPSCORE =
DTGi

TGi

(8)

In some cases the goal of a system might change over time. The GPSCORE

will then be dynamic, which would have to be considered in the evaluation of
the system. For instance this can be achieved by aggregating measurements at
each state where the system’s goal changed at runtime.

4.5 Scaling and Aggregation of the Capabilities

The capability scores together with relational characteristics result in a set of
measurements. Ci represents one of the capability scores. In order to interpret
and evaluate the results the capability scores have to be scaled and aggregated.
Therefore it is required that for particular measurements a greater value cor-
responds to extended autonomy support and all values are greater than 0. If
necessary the measurements have to be quantified and rescaled.

Further, all measurements need to be normalized for being able to compare
them with each other, as well as with other systems. We applied unity nor-
malization, shown in Eq. 9. The same normalization approach is used for the
normalization of the multiple measurements as part of the capability scores of
perception and acting, belief and reasoning and learning. All normalizations are
applied before the weighting.

CNormi
=

Ci − min(Ci)
max(Ci) − min(Ci)

(9)

A Metrics Framework for Quantifying Autonomy in Complex Systems 35

with Ci as a single capability measurement, Ci > 0 and a higher value corre-
sponding to extended autonomy support.

One important aspect is the definition of the maximum and minimum values
for these measurements. If several systems or system states are compared in a
given context, maximum and minimum are at least defined by the measurement
result range of the evaluated systems. If only a single system is evaluated the
bounds have to be defined based on domain and system knowledge, planned
development roadmaps or envisioned future upgrades. These definitions can also
be used to extend the range given by different system measurements in case of
a system comparison in order to extend the considered context.

In a next step each capability score Ci is combined with its delegation reli-
ability Ri and restriction influence Ii, as well as a general weighting factor wi,
see Eq. 10. Ri and Ii express the dependence on a percentage basis. If there is
no information about restricting influences, we define Ri = 1.0 and Ii = 0.0
corresponding to neutral values. If the situation is unknown or too complex
to estimate an approximation should be used. The weighting factor wi can be
adjusted according to the context and problem domain, but needs to be the same
for a comparison amongst several systems. The default configuration weights all
capabilities equally within a score, as well as between the scores.

CScorei = CNormi
· wi · Ri · (1 − Ii) (10)

with 0 < Ci, wi, Ri, Ii < 1 and
n∑

i=1

wi = 1.0

At the end all capability scores CScorei can be aggregated into a single auton-
omy score AScore, shown in Eq. 11. This autonomy score with a range from 0..1
allows for an absolute context specific comparison of the considered systems or
system configurations. Nevertheless, a detailed comparison considering all capa-
bility scores should be preferred most of the time.

AScore =
n∑

i=1

CScorei (11)

5 Metric Application

In the following we discuss required decisions to be made and points to consider
when utilizing our metric framework approach.

Context Selection. First, the context of the evaluation has to be defined. This
includes the application of the systems, the corresponding environment and the
bounds of the studied systems, if they are taken out of a larger context.

Even though the metric framework would support context independent com-
parisons amongst several systems because of applied normalizations, we do not
recommend it. The reason is that some measurements of single capabilities are

36 C.-E. Hrabia et al.

strongly dependent on the context, like the set of possible tasks belonging to the
mission goal or the set of available sensors and actors.

Weight and Capability Selection. Next, the domain expert has to define
weights for the relation between capabilities as well as amongst the measure-
ment of single capabilities. This can be used to express priority or importance of
a capability in a given context. Induced by the normalization an equal weight-
ing provides a reasonable starting point. Here it would also be possible to omit
or extend capabilities and their corresponding measures in correspondence to
special requirements, as long as the general concepts of the metric, like normal-
ization, weighting and focusing on adaption, are not violated. It should always be
revised, that this metric framework does not try to evaluate the performance of
systems, but rather possibilities and capabilities valuable for adaption to uncer-
tain environments.

Adaption Layer: In case of the adaption layer the following important aspects
of each capability have to be considered.

Perception and Acting: Available sensors and actors need to be grouped
to types. An actor or sensor belongs to one type if it is addressing similar
means.

Planning and Goals: TG and DTG are abstracted values for a given context,
if an abstraction is not possible they can be determined by measuring and
averaging during execution in reality or simulation.

Belief and Reasoning: Defining suitable units for information amount and
update rate. For instance using the size of the state space or the amount
of processed bytes for the BIA and frequency in relation to global time or
relative to the refresh frequency of the sensory input for the BUR.

Learning: The learning measures are based on the belief and reasoning, for
this reason the same considerations are required. The difference is just the
consideration of historic data and the capability of repeated learning on it.

Decision Making: Since decision making can not be evaluated in connection
with adaptability, it is only necessary to determine if it is available or not.

All measurements have in common that a greater value corresponds to an
extended autonomy support. If necessary the measurements have to be quantified
and rescaled for all systems in the same manner. If it is only the intention to
evaluate the progress of a single system it is necessary to envision possible future
extensions defining the range of single measurements.

Relational Layer. For the relational layer it is necessary to examine if the
system’s capabilities are influenced by others or if it is known to delegate its
duties to other systems. Furthermore, the amount of this relations has to be
estimated and discretised to a percentage value. These estimations can be based
on averaged frequencies of influence or length of time periods for Ii and error

A Metrics Framework for Quantifying Autonomy in Complex Systems 37

rates or confidence measures for Ri. If there are no restrictions known or can
not be determined from historical data external influence is 0 % (Ii = 0.0) and
reliability is 100 % (Ri = 1.0).

6 Example

In this section we illustrate the application of our multi-dimensional metric with
an artificial example. It was the intention to keep it simple and comprehensible.

The example scenario is represented by different robots that are crawling
through a garbage dump in an autonomous multi-robot recycling system. They
pursue the goal of recycling as much material as possible. Therefore the robots
need to detect valuable and recyclable materials and need to plan collection and
transport to the disassembly unit.

In this simple example we have two different types of robotic systems. System
A is a wheeled robot with one arm and one gripper. It has a standard 2D-
vision, a thermal camera vision and a medium sized multi-purpose computing
architecture. Further, it delegates object recognition to a remote web-service with
80 % accuracy. Moreover, it supports to learn object recognition from the 100
last recognized items. Learning is performed every 60 s. System B is a wheeled
robot with two arms and two grippers. It has a standard 2D-vision and small size
multi-purpose competing architecture. Furthermore, it is obligated to validate
its self-made recognitions by a human 20 % of the time.

Table 1 shows the domain and scenario specific application of our metric with
quantified, adjusted scales and units. For clarification, we have assumed that a
less powerful computing architecture results in degraded belief, reasoning and
planning capabilities. Hence, a small computing architecture can process smaller
information amounts with a lower update rate, as well as less average decomposed
subtasks for a given goal. This also illustrates the application of a capability
score if not enough information for a full evaluation is available. Here, medium
and small are directly taken from the computing architecture description and
quantified in the range of 0–4 (extra small, small, medium, large). This exposes
further the definition of a custom measurement range. Perception and acting are
calculated with the Shannon-Index, see Eq. 1. Because both systems are capable
of decision making (1 = capable, 0 = not capable) the capability is set for both
to CDecision Making = 1. This ensures also a valid calculation for the relational
component of the capability score CScorei . For the relational layer we have only
the two mentioned statements, highlighted in red, all other cases are either 100 %
= 1.0 reliable or have 0 % = 0.0 influence by restriction.

The normalized measurements, the applied default weights for the main capa-
bilities and the measurements as part of their scores and the calculated results
for the capability and autonomy score are presented in Table 2. The measure-
ments “Learning Update Rate” and “Belief Update Rate” were rescaled with
Update Rate = 1/Update Rate. It has to be highlighted that Cnormi

of percep-
tion and acting are 0 for one of each configurations because of unity normalisation
and the used minimal value range.

38 C.-E. Hrabia et al.

Table 1. Autonomy metric values of the presented example for both systems

Based on such an evaluation result a system designer can compare two sys-
tems in a specific scenario or evaluate which capabilities can be improved in order
to increase its autonomy. In the presented example with overall equal weights
system A achieves a higher autonomy score as system B, because it has higher
or equal capability scores for all capabilities except “perception”. This result is
even more obvious in the visual representation of the multi-dimensional met-
ric in Fig. 2, where the larger covered area corresponds with a higher autonomy
score. In consequence it is possible to select a system with appropriate autonomy
based on the score for a scenario or to determine if a planned or implemented
extension gives the intended enhancement on capability level or in aggregation.

The presented example has illustrated the process of applying our generic
multi-dimensional autonomy metric framework. This, as well as the proposed
capability measurements, can be used as a guideline to evaluate and compare
autonomous systems in a particular context. Indeed it can be sufficient to adjust

Table 2. Normalized autonomy metric values with default weights, calculated results
and aggregation

A Metrics Framework for Quantifying Autonomy in Complex Systems 39

Fig. 2. Multi-dimensional autonomy system comparison with a spider chart

certain capability measurements to the context and the available information,
while still respecting all main capabilities and the developed relational concept.
Moreover, it has to be incorporated that autonomy values for just one system
are not meaningful. They have always to be considered in comparison to other
systems or with itself during the development process.

7 Conclusion

In this work we presented an extended understanding of autonomous systems.
Moreover, we have differentiated our concept from other system concepts like
adaptive systems and automation systems. The core of our autonomy concept
is that an autonomous system is always striving for its innermost goal or moti-
vation while it is adapting to the uncertain and dynamic environment. Further,
important capabilities were exposed and specified, namely perception and acting,
decision making and planning, interpretation and creation of goals, reasoning and
believe creation and learning in general. Furthermore, we have introduced a layer
concept that contains an adaptation and relational layer. The adaption layer
consists of mentioned capabilities and the relational layer models the interaction
with other systems. The explicit integration of reliability and independence for
modelling the multi-system interaction is an important contribution and clarifies
the role of autonomous systems in the context of multi-agent systems.

Based on the definition a generic multi-dimensional metric framework for
classification and benchmarking of autonomous systems in a specified evaluation
context or domain was developed. This metric allows for a quantified inter-system
comparison, controlling and goal specification during the development process.

In the future we are looking for options of defining valid presets of scale
combination weightings that can be used as a base for domain experts. Further,
we are planning a comprehensive evaluation of the whole concept in several
robotic research and development projects within different application domains.

40 C.-E. Hrabia et al.

References

1. Alonso, E., Mondragón, E.: Agency, learning and animal-based reinforcement learn-
ing. In: Nickles, M., Rovatsos, M., Weiss, G. (eds.) AUTONOMY 2003. LNCS
(LNAI), vol. 2969, pp. 1–6. Springer, Heidelberg (2004)

2. Alonso, F., Fuertes, J.L., Mart́ınez, L., Soza, H.: Towards a set of measures for
evaluating software agent autonomy. In:Eighth Mexican International Conference
on Artificial Intelligence, MICAI 2009, pp. 73–78. IEEE (2009)

3. Barber, K.S., Martin, C.E.: Agent autonomy: specification, measurement, and
dynamic adjustment. In: Proceedings of the Autonomy Control Software Work-
shop at Autonomous Agents, vol. 1999, pp. 8–15. Citeseer (1999)

4. Barber, K.S., Park, J.: Agent belief autonomy in open multi-agent systems. In:
Nickles, M., Rovatsos, M., Weiss, G. (eds.) AUTONOMY 2003. LNCS (LNAI),
vol. 2969, pp. 7–16. Springer, Heidelberg (2004)

5. Bradshaw, J.M., Feltovich, P.J., Jung, H., Kulkarni, S., Taysom, W., Uszok, A.:
Dimensions of adjustable autonomy and mixed-initiative interaction. In: Nickles,
M., Rovatsos, M., Weiss, G. (eds.) AUTONOMY 2003. LNCS (LNAI), vol. 2969,
pp. 17–39. Springer, Heidelberg (2004)

6. Carabelea, C., Boissier, O., Florea, A.: Autonomy in multi-agent systems: a clas-
sification attempt. In: Nickles, M., Rovatsos, M., Weiss, G. (eds.) AUTONOMY
2003. LNCS (LNAI), vol. 2969, pp. 103–113. Springer, Heidelberg (2004)

7. Carraway, G.F., Squibb, J.B.: Autonomy metrics. In: Proceedings of 4th Interna-
tional Symposium on Space Mission Operations and Ground Data Systems, vol. 2,
Munich (1996)

8. Castelfranchi, C.: Guarantees for autonomy in cognitive agent architecture. In:
Wooldridge, M.J., Jennings, N.R. (eds.) Intelligent Agents. Lecture Notes in Com-
puter Science, vol. 890, pp. 56–70. Springer, Heidelberg (1995)

9. Castelfranchi, C., Falcone, R.: From automaticity to autonomy: the frontier of arti-
ficial agents. In: Hexmoor, H., Castelfranchi, C., Falcone, R. (eds.) Agent Auton-
omy. Multiagent Systems, Artificial Societies, and Simulated Organizations, vol. 7,
pp. 103–136. Springer, US (2003)

10. Delaroche, L., Fogel, D.F.L., Freeman, W., Grossbcrg, S., Lee, S., Lima, P.,
Pouchard, L., Schultz, A.: Measuring performance of systems with autonomy: met-
rics for intelligence of constructed systems. In: Measuring the Performance and
Intelligence of Systems: Proceedings of the 2000 PerMIS Workshop, 14–16 August
2000, vol. 970, p. 4. The Institute (2001)

11. Dorais, G., Bonasso, R.P., Kortenkamp, D., Pell, B., Schreckenghost, D.:
Adjustable autonomy for human-centered autonomous systems. In: Working notes
ofthe Sixteenth International Joint Conference on Artificial Intelligence Worksho-
pon Adjustable Autonomy Systems, pp. 16–35 (1999)

12. Gouaich, A.: Requirements for achieving software agents autonomy and definingth-
eir responsibility. In: Proceedings of Autonomy Workshop at AAMAS 2003, vol.
236 (2003)

13. Hinchey, M.G., Sterritt, R.: Self-managing software. Computer 39(2), 107–109
(2006)

14. Johnson, M., Bradshaw, J., Feltovich, P., Jonker, C., van Riemsdijk, B., Sierhuis,
M.: Autonomy and interdependence in human-agent-robot teams. IEEE Intell.
Syst. 27(2), 43–51 (2012)

15. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

A Metrics Framework for Quantifying Autonomy in Complex Systems 41

16. Luck, M., D’Inverno, M., Munroe, S.: Autonomy: variable and generative. In:
Hexmoor, H., Castelfranchi, C., Falcone, R. (eds.) AUTONOMY 2003. Multia-
gent Systems, Artificial Societies, and Simulated Organizations, vol. 7, pp. 11–28.
Springer, Heidelberg (2003)

17. Maheswaran, R.T., Tambe, M., Varakantham, P., Myers, K.: Adjustable autonomy
challenges in personal assistant agents: a position paper. In: Nickles, M., Rovatsos,
M., Weiss, G. (eds.) AUTONOMY 2003. LNCS (LNAI), vol. 2969, pp. 187–194.
Springer, Heidelberg (2004)

18. Myers, K., Berry, P., Blythe, J., Conley, K., Gervasio, M., McGuinness, D., Morley,
D., Pfeffer, A., Pollack, M., Tambe, M.: An intelligent personal assistant for task
and time management. AI Mag. 28(2), 47–61 (2007)

19. Myers, K.L., Morley, D.N.: Policy-based agent directability. In: Hexmoor, H.,
Castelfranchi, C., Falcone, R. (eds.) Agent Autonomy. Multiagent Systems, Arti-
ficial Societies, and Simulated Organizations, vol. 7, pp. 185–209. Springer,
Heidelberg (2003)

20. Olsen, D.R., Goodrich, M.A.: Metrics for evaluating human-robot interactions. In:
Proceedings of PERMIS, vol. 2003, p. 4 (2003)

21. Rudas, I.J., Fodor, J.: Intelligent systems. Int. J. Comput. Commun. Control 3(3),
132–138 (2008)

22. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4(2), 1–42 (2009)

23. Scerri, P., Pynadath, D., Tambe, M.: Adjustable autonomy in real-world multi-
agent environments. In: Proceedings of the Fifth International Conference on
Autonomous Agents, AGENTS 2001, pp. 300–307. ACM, New York (2001)

24. Schillo, M., Fischer, K.: A taxonomy of autonomy in multiagent organisation. In:
Nickles, M., Rovatsos, M., Weiss, G. (eds.) AUTONOMY 2003. LNCS (LNAI),
vol. 2969, pp. 68–82. Springer, Heidelberg (2004)

25. Schmeck, H.: Organic computing - a new vision for distributed embedded systems.
In: 8th IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC), pp. 201–203, May 2005

26. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J., 27,
379–423, 623–656, July, October 1948

27. Sierhuis, M., Bradshaw, J.M., Acquisti, A., Van Hoof, R., Jeffers, R., Uszok, A.:
Human-agent teamwork and adjustable autonomy in practice. In: Proceedings
of the Seventh International Symposium on Artificial Intelligence, Robotics and
Automation in Space (I-SAIRAS) (2003)

28. Tambe, M., Scerri, P., Pynadath, D.V.: Adjustable autonomy for the real world.
J. Artif. Intell. Res. 17(1), 171–228 (2002)

29. Ulrich, I.R., Mondada, F., Nicoud, J.D.: Autonomous vacuum cleaner. Robot.
Auton. Syst. 19, 4–233 (1997)

30. Verhagen, H.: Autonomy and reasoning for natural and artificial agents. In: Nickles,
M., Rovatsos, M., Weiss, G. (eds.) AUTONOMY 2003. LNCS (LNAI), vol. 2969,
pp. 83–94. Springer, Heidelberg (2004)

31. Weiß, G., Rovatsos, M., Nickles, M.: Capturing agent autonomy in roles and xml.
In: Proceedings of the Second International Joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2003, pp. 105–112. ACM, New York
(2003)

32. Yavnai, A.: Entropy-based criteria for intelligent autonomous systems. In: Pro-
ceedings of the 1991 IEEE International Symposium on Intelligent Control, pp.
55–60, August 1991

Measuring and Comparing Scalability
of Agent-Based Simulation Frameworks

Fabian Lorig(B), Nils Dammenhayn,
David-Johannes Müller, and Ingo J. Timm

Business Informatics I, University of Trier, 54296 Trier, Germany
{fabian.lorig,s4nidamm,s4dsmuel,ingo.timm}@uni-trier.de

http://wi1.uni-trier.de

Abstract. While computer simulation gained importance as a tech-
nique for generating knowledge in various research disciplines, the size
of simulation models representing real world scenarios is growing, too.
In Social Simulation, e.g., there is a need to simulate a large number of
humans using individual software agents for generating and analyzing
human-like behavior in artificial societies. Nowadays, a variety of toolk-
its and frameworks exists providing functionalities for supporting imple-
mentation and execution of simulation experiments. Yet, the choice of a
suitable framework is difficult as unforeseen scalability issues may arise
when extending agent models. Therefore, this paper aims at providing a
method for analyzing and comparing agent-based simulation frameworks
regarding their ability to scale simulation models and experiments. Based
on performance metrics, standardized experiments are conducted while
altering internal and external scaling parameters. As part of the study,
four Java-based agent frameworks are analyzed and compared: Aimpulse
Spectrum, JADE, MASON, and Repast.

1 Introduction

Computer simulation has been established as a standard means for analyzing,
understanding, and developing systems as part of the research process in infor-
mation systems research. By transferring real world scenarios into executable
models, artificial systems representing real processes can be created and ana-
lyzed. Doing so provides various advantages regarding further examination and
consideration of the system. For one thing there are physical advantages as the
real world system is not exposed to any risk during the study, e.g., instability or
damage due to experiments, and access restrictions, e.g., in companies, do not
apply in simulations. For another thing creating artificial systems using computer
simulation provides practical advantages, too. In terms of time and expense, the
costs of conducting computer simulation experiments are lower compared to real
world experiments. Changes of the experiment setup can be implemented easily
and experiments can be repeated any number of times, with the artificial envi-
ronment staying the same. Furthermore, simulation experiments can be delayed
or accelerated, depending on whether detailed observations or fast results are
required [1].
c© Springer International Publishing Switzerland 2015
J.P. Müller et al. (Eds.): MATES 2015, LNAI 9433, pp. 42–60, 2015.
DOI: 10.1007/978-3-319-27343-3 3

Measuring and Comparing Scalability of Agent-Based Simulation 43

Nowadays, various non-technical research disciplines have added computer
simulation to their spectrum of methods, too. Especially in the liberal arts, e.g.,
economics and the social sciences, the simulation of social phenomena gains in
importance for exploring human behavior. Due to the high availability of infor-
mation and communication technology and the resulting interconnectedness of
people, the identification of small and isolated groups to be observed during
field studies became more difficult. Hence, larger groups of humans became the
focus of empirical observations and studies, e.g., when considering the spread of
information in social online networks [8]. Social simulation provides methods for
dealing with difficulties resulting from these conditions. By integrating theories
and approaches from psychology, sociology or economics, “human-like” behav-
ior can be imitated and simulated. Artificial societies resulting from simulating
human behavior can then be used for analyzing group and decision dynamics
without observing or surveying humans in the real world [7].

Emergent effects, caused by local interactions between actors within a society
which result in a superior meta-behavior of the group, are of special interests for
researchers. Thus, when simulating human behavior and group dynamics, these
effects need to be generated as well. Instead of using stochastic approaches or
sets of differential equations for modeling and simulation resulting in “average
behavior”, actor-oriented simulation approaches can to be used for modeling of
individual human behavior and resulting complex interaction dynamics [9].

When implementing autonomous behavior and decision-making in computer
systems, intelligent software agents have been established as suitable technique.
By defining actions for achieving individual objectives, software agents autono-
mously reason which goal to pursue and which actions to perform, considering
the current and expected future states of their environment [35]. Agent-based
social simulation (ABSS), as a special type of social simulation, employs agent-
based modeling for performing social simulation experiments [2,4]. Each person
involved in scenarios being analyzed using ABSS is modeled as an individual
software agent, including behaviors and attitudes as well as opportunities for
actions and overarching goals. However, the growing range of humans to be
considered during empirical studies is causing the number of software agents
required for ABSS to increase, too.

1.1 Challenges in Agent-Based Social Simulation

Nowadays, some ABSS scenarios consist of several hundred thousand up to sev-
eral million software agents [8,28]. Hence, when executing simulation experi-
ments, the optimal use of available hardware for providing results within an
appropriate period of time is a key challenge for simulation engineers. In order
to facilitate handling of simulation experiments, numerous toolkits and frame-
works providing assistance functionalities for modeling, performing, and evaluat-
ing computer simulation have been developed [16]. But this results in a challenge
for simulation engineers: Which toolkit or framework is best suited for a certain
simulation experiment?

44 F. Lorig et al.

When considering small and unsophisticated simulation models, the choice of
a suitable simulation toolkit mostly depends on technical and structural aspects
of the underlying model. Functions provided by the toolkit for simplifying imple-
mentation (e.g., preimplemented FIPA performatives or consoles for controlling
experiments) and evaluation (e.g., visualization of results) of simulation experi-
ments are crucial for the decision. In this regard, surveys have compared agent-
based simulation platforms highlighting advantages and disadvantages. These
comparisons have been mostly done on a descriptive level, gathering features
of different frameworks or by rating selected aspects of the frameworks using
differing sets of criteria [25,30].

But as ABSS has to deal with highly sophisticated and extensive models,
performance-based features of simulation toolkits are in focus, too. Therefore,
scalability, describing an increasing performance of a system as a result of increas-
ing hardware, is a major requirement when choosing a framework [34]. For the
last 20 years, researchers have been facing scalability issues when simulating real
world scenarios, e.g., when simulating communication networks [10] or electric
power management [31], especially when using distributed systems [26]. At the
same time, a need for developing scalable simulation frameworks has been identi-
fied and existing frameworks have been analyzed regarding their ability to scale
simulation experiments [6]. Furthermore, in terms of agent-based simulation,
scalability has been of particular interest [17,24,32] and scalable architectures
and frameworks have been developed [11,14]. But also the decision of whether
to execute a simulation experiment distributed over multiple CPU cores or to
execute multiple instances of the same simulation experiment using less cores
has gained in importance [22,29].

1.2 Scalable Simulation Frameworks

Even tough the execution and extension of simulation experiments has been
considered by some of the framework surveys, the results are mostly limited with
regard to the author’s perception and experience when implementing certain
models using different frameworks. Railsback et al. [23], e.g., have implemented
a simple scenario with 100 agents randomly moving on a small grid (100x100
cells) for measuring the performance of simulation frameworks. During their
studies, the models has been extended by implementing more sophisticated agent
behavior and by adding real-time statistical evaluations, yet, the number of
agents has not been greater than 1.700 and the execution time of most of the
simulation experiments has not exceeded 5 min.

Comparing popular agent-based simulation frameworks and toolkits reveals
that crucial information regarding scalability parameters, e.g., maximum amount
of software agents supported or the maximum number of CPU cores supported
by the framework, are rarely provided. Yet, such information is most relevant
for an informed selection of a framework for a certain task and for determining
how simulation experiments need to be designed. Therefore, this work aims at
proposing a method for dynamically comparing simulation frameworks regarding

Measuring and Comparing Scalability of Agent-Based Simulation 45

their ability to scale simulation experiments. As a first step, parameters influ-
encing a framework’s ability to scale experiments are determined. Additionally,
performance metrics for measuring these parameters are defined and a five-step-
method for comparing frameworks based on these metrics is proposed. Finally,
this method is applied to four agent-based simulation frameworks: Aimpulse
Spectrum, JADE, MASON, and Repast.

2 Measuring Scalability

The approach for comparing simulation frameworks proposed in this paper is
based on different parameters being measured using performance metrics. In
this chapter, relevant scalability parameters are introduced and a brief technical
overview on the simulation frameworks considered in this paper is given.

2.1 Dimensions of Scalability

Scalability is considered to be “the ability [of a system] to handle increased
workload” [34]. In the context of distributed systems, providing and improv-
ing scalability has been an important factor challenging developers for years
[21]. While performance is defined as how quickly and efficiently a software can
accomplish a certain task, scalability describes the change of performance when
increasing a system’s load.

In case of a dramatical performance decrease resulting from increased load,
a system is considered “not scalable” [18]. Song and Korba identified load and
complexity as two main factors influencing the scalability of agent-based systems.
The load is derived from the amount of memory and CPU threads used by the
multiagent system. Complexity, in contrast, describes the computational effort
of an agent-based system [27].

Scalability can be considered from two different perspectives: vertically and
horizontally, also referred to as scale-up and scale-out. Vertical scalability describes
the deployment of one large server providing many CPU cores and sufficient RAM.
Horizontal scalability, in contrast, integrates a number of smaller servers into one
unit to distribute a system’s load [19].

This work focuses on vertical scalability because of the fact that vertical
scalability can be examined in every framework whereas the distribution of sim-
ulation experiments across multiple servers has to be provided by the frameworks
as an additional functionality.

2.2 Parameters

Many contributions present parameters for scaling simulation [3,5,24,32]. With
respect to the dimensions of scalability, a differentiation by external and internal
parameters needs to be made. External scaling parameters refer to the context,
respectively the environment, of the simulation: The processor, its clock rate in
MHz and the number of processor cores, the available RAM or the operating
system.

46 F. Lorig et al.

Internal parameters refer to the simulation model itself and have to be
adjusted on the software side: The number of simultaneously active agents, the
volume of messages send between the agents or the complexity of the problem
to be solved by the agents.

Summarizing, a variety of different experiment scenarios can be derived from
the parameters listed above. But in the context of ABSS, the number of agents
being active simultaneously seems to be most relevant.

2.3 Performance Metrics

For measuring a system’s degree of scalability, performance metrics have to be
defined. The central measurement unit of the method proposed in this paper is
the execution time of simulation experiments. It takes all scalability parameters
into account and changes of the performance can be detected immediately [17].

Based on the execution time, the speedup can be calculated when distributing
a simulation experiment across multiple CPU cores. This value describes the
ratio between serial and parallel execution time and expresses the increase in
speed by the use of parallelization [13]. The ideal case would be a full linear
speedup. However, in practice this ideal case is unrealizable due to additional
effort caused by distributing and coordinating simulation runs. The efficiency, as
second metric, results from the ratio between speedup and the number of CPU
cores used. It describes the utilization of available CPU cores. As the execution
of simulation experiments can even be slowed down due to parallelization, values
may be negative.

Our focus on the ratio between resources used by the simulation experiment
and the time required for executing the experiment enables a straightforward
assessment of the simulation frameworks [5].

2.4 Frameworks

In this section, the considered frameworks are introduced and discussed briefly.
As numerous toolkits, libraries, and frameworks to support agent-based model-
ing exist, a selection needs to be made. In order to provide comparability, only
frameworks using the same programming language have been chosen. Even though
several well-known frameworks use C++, C, Objective-C, or Python, e.g., Repast
HPC1, this paper focuses Java-based frameworks, as Java is a widespread, simple,
and architecture-neutral programming language. Hence, even though using GPUs
as execution platform for high performance computing when simulating complex
problems has gained popularity, GPU-based frameworks, e.g., FLAME GPU2,
were not considered. These frameworks mostly rely on efficient and machine-
oriented programming languages like C [15]. Furthermore, mainly educational
modeling environments such as NetLogo as well as platform-dependent toolkits

1 http://repast.sourceforge.net/repast hpc.php (last visited Oct. 3, 2015).
2 http://www.flamegpu.com (last visited Oct. 3, 2015).

http://repast.sourceforge.net/repast_hpc.php
http://www.flamegpu.com

Measuring and Comparing Scalability of Agent-Based Simulation 47

like AnyLogic3 were not considered in this paper. In Table 1, an overview of the
characteristics of the selected frameworks can be found.

Table 1. Comparison of selected multiagent frameworks

Aimpulse Sp. JADE MASON Repast

Version 1.3.1 4.3.3 18 3.1

Description Runtime
environment
for simulation
of many
agents

Software
framework for
developing
multiagent
systems

Library for large
discrete-event
multiagent
simulations

Toolkit for
modeling
agents,
organizations,
and
institutions

Focus Highly scalable
parallel
execution of
large
scenarios

Integrated
components
for
distribution
across
multiple
systems

High execution
speed of
lightweight
simulation
experiments

Flexible
modeling of
social agents

Scheduling Execution
within a
thread-pool

One thread per
agent

Step-based Event-based

FIPA FIPA compliant FIPA compliant Not FIPA
compliant

Not FIPA
compliant

License Proprietary
software

Open source,
under “GNU
Lesser
General
Public
License”
(LGPL)

Open source,
under
“Academic
Free License”

Free software,
under “new
BSD License”

Aimpulse Spectrum4 is a commercial runtime environment for large mul-
tiagent systems. Based on experiences collected when developing PlaSMA [33],
an event-driven simulation system originally developed for evaluating logistical
scenarios, Aimpulse Spectrum has been developed as a general purpose platform
with regard to simulating large systems and providing scalability. The frame-
work focuses on the parallel execution of agents, even in very large simula-
tion scenarios with more than one million agents. For this purpose, a thread
pool is used and a custom scheduling method has been developed. Aimpulse
Spectrum supports the development of agents by providing agent behaviors and
interaction templates. Furthermore, communication between agents follows the
FIPA messaging standards.
3 http://www.anylogic.com (last visited Oct. 3, 2015).
4 http://www.aimpulse.com (last visited Oct. 3, 2015).

http://www.anylogic.com
http://www.aimpulse.com

48 F. Lorig et al.

JADE5 is a software framework for the development of multiagent systems.
Even though JADE primarily aims at supporting the implementation of multi-
agent systems, it can be used for executing simulation experiments, too. Due to
the high relevance of JADE in practice, e.g., when modeling workflows as large
networks of agents in organizations, and as scalability issues are not only related
to simulating but also to modeling of multiagent systems, JADE is included in
the comparison [20]. As the only one of the considered frameworks, JADE pro-
vides integrated components for distributing a simulation. It can run on differ-
ent, even mobile, platforms, and is FIPA-compliant. JADE works thread-based,
each agent of a simulation is implemented as a separate CPU thread. In addi-
tion, graphical tools for administration and debugging of software agents are
included.

MASON6 is a multiagent simulation toolkit which has been developed at
George Mason University, Virginia, USA. It is distributed under the Academic
Free License, making it open source. The toolkit mainly focuses on the execu-
tion speed as well as configurable large simulations with many agents. MASON
implements discrete stepwise simulation and distribution of simulation exper-
iments across multiple machines is not provided. But, simulation runs can be
paused, transferred to other computers and continued there. Another feature
are extensive libraries for the visualization of simulations in 2D and 3D.

Repast7 is part of the Repast Suite, a collection of free and open source
platforms for agent-based modeling and simulation. Currently, Repast Simphony
and Repast HPC are the main toolkits provided by the Repast Suite. However,
Repast Simphony is firmly integrated into a powerful graphical user interface
and was designed for the use on workstations. Therefore, it is unsuitable to be
compared to other frameworks being executed without GUI, as the results may
be unrepresentative due to additional computational effort. Repast HPC does
not provide a GUI for configuring and visualizing the simulation experiments,
since it is a high performance system for supercomputers, developed in C++.
As we focus on Java-based frameworks, we used Repast 3, a more lightweight,
Java-based implementation.

3 Comparing Agent-Based Simulation Frameworks

For comparing the agent-based simulation frameworks introduced in the pre-
vious section, a coherent and sound method needs to be applied. Only if the
results are replicable, but still individually represent the simulation framework
being analyzed, comparability can be achieved. Therefore, the framework-specific
implementation and execution of a reference scenario, as well as the configura-
tion of the parameters used for evaluating the frameworks need to be defined
properly.

5 http://jade.tilab.com (last visited Oct. 3, 2015).
6 http://cs.gmu.edu/∼eclab/projects/mason (last visited Oct. 3, 2015).
7 http://repast.sourceforge.net/repast 3 (last visited Oct. 3, 2015).

http://jade.tilab.com
http://cs.gmu.edu/~eclab/projects/mason
http://repast.sourceforge.net/repast_3

Measuring and Comparing Scalability of Agent-Based Simulation 49

We propose a five-step approach for analyzing agent-based simulation frame-
works starting from the specification of an reference experiment up to the eval-
uation of the results being generated.

1. Specification of Experiment: First, a reference experiment needs to be
specified for all frameworks to be investigated. When doing so, the case-
specific requirements of the frameworks need to be considered carefully (e.g.,
agent count, communication bandwidth, etc.) and monitoring points for mea-
suring the metrics have to be determined.

2. Implementation of a Simulation Model: Following this, the reference
experiment must be implemented individually for each single framework using
the standards defined by the developers of the framework. Only necessary
and suitable functions for the implementation of the problem should be used
to benefit from the opportunities provided by the framework. Additionally,
a straightforward adjustment of the internal scaling parameters should be
provided, e.g., by using configuration files, and a consistent output of the
simulation results for further comparison is needed.

3. Configuration of Parameters: The parameters need to be defined in detail.
External scaling parameters can be adjusted by the use and configuration of
a virtual machine8 serving as a basis for the experiments. By choosing a light-
weight operating system for running simulation experiments, a distortion of
the results caused by irrelevant processes can be minimized. Internal parame-
ters, in contrast, need to be defined according to the implementation specified
in step 2. This results in the relations shown in Fig. 1.

4. Execution of Experiments: After the experiments have been successfully
implemented, validated, and verified, and after the parameters have been
configured, the simulation experiments need to be conducted. For generating
reliable results, multiple runs should be performed for each scenario. While
doing so, statistical dispersion of the results needs to be measured in order
to verify a sufficient number of samples have been taken.

5. Evaluation of Results: The execution times measured in the previous step
can be used to determine speedup and efficiency of a particular simulation
framework. Finally, the interpretation of the obtained results and a compar-
ison of the examined frameworks can be accomplished. As a result of this,
simulation engineers are provided with information for choosing a well-suited
simulation framework for simulating a particular scenario.

In the following sections, the five-step approach presented above will be applied
to the frameworks. In order to do so, a comparison of the four Java-based agent
frameworks introduced in Sect. 2.4 will be performed and described step by step.

3.1 Experiment Specification

In order to measure the execution time of simulation frameworks, consistent
experiments are required. Besides the quantity of generated software agents,
8 A virtual machine (VM) emulates a real computer system. Doing so, hardware con-

figurations can be adjusted easily and without physically modifying the system.

50 F. Lorig et al.

Fig. 1. Relations between scaling parameters and the experiment using a particular
simulation framework.

the actions performed by the agents are part of the scalability challenges, too.
Here, we have chosen the calculation of prime numbers as a simple and repro-
ducible, yet CPU-intensive task. At this point, other agent actions causing a high
processor load can be chosen as well, e.g., sophisticated reasoning processes.
Furthermore, communication between the agents for information exchange or
coordination purposes is an inherent part of multiagent systems, too. Yet, as
the scalability of the frameworks regarding the increasing number of agents is a
mandatory precondition for communication and as the communications behav-
ior very much depends on the specific scenario being modeled and simulated,
communication will not be considered at first.

The reference experiment consists of a master agent and a variable amount of
calculation agents. The master agent is in charge of coordinating the calculation
agents and the time measurement of a single simulation run. Here, a simulation
run consists of the one-time calculation of a certain amount of prime numbers
per agent up to a limit given by the master agent. When this limit is reached
by an agent, the number of primes found is sent back to the master agent.
The model is completely static, without any dynamic adding or removing of
agents. Furthermore, the initialization and calculation phase of the simulation
are strictly separated. The master agent will not start the calculation phase until
all calculation agents have been initiated.

For altering the simulation conditions (external scaling parameters), virtual
machines equipped with three different CPU configurations are used, only dif-
fering in the number of processors and amount of RAM. The internal scaling
parameter, the number of agents, is increased stepwise after each simulation
run. The execution time is considered as a performance metric. For each run the
total execution time, including the initialization effort, is measured as well as
the execution time for the calculation of each individual agent.

3.2 Implementation of Simulation Model

Next, the simulation model is implemented in each framework, focusing on the
composition to ensure comparability. The model implementation needs to focus
on the indispensable components of the model and be limited to the use of
appropriate functions provided by the framework. Optional components, e.g.,
visualization or extended logging of the simulation runs, are not applied, in order

Measuring and Comparing Scalability of Agent-Based Simulation 51

to limit the processor load caused by the simulation experiment to the execution
of the agents. Figure 2 displays the sequence flow of a simulation experiment.

Fig. 2. Sequence flow of a simulation experiment

For entering and adjusting different internal scaling parameters, including the
amount of calculation agents, and for managing further settings of the simulation
model, a configuration file can be imported at the beginning of each simulation
run. The master agent’s output containing the execution times of the calculation
agents is saved for further processing. It is essential that management overhead
is not included in the time measurement.

The result is a parameterizable testkit that runs without any further user
intervention after being started.

3.3 Configuration of Parameters

The external scaling parameters are adjusted via the virtual machines. The con-
figurations we have selected for the experiments are shown in Table 2. Further-
more, the following internal scaling parameters and settings need to be altered
for the experiments:

– Parameter framework: Specifies the framework being used for the simulations
experiments, i.e., Aimpulse Spectrum, JADE, MASON or Repast.

– Parameter agentCount: Defines the number of calculation agents to be
instanced. It is increasing stepwise from run to run, starting with 1.000 agents.

– Parameter limit: Sets the upper limit to which the prime numbers shall be
calculated. For this experiment it is set to limit = 50. In ABSS the high
number of agents causes performance issues, rather than the complexity of

52 F. Lorig et al.

individual actions or resulting computations. Therefore, the limit for calcu-
lating prime numbers can be set low.

Table 2. Configurations of the virtual machines

Besides the execution time the system utilization is examined during the
simulation runs as well to observe trends in hardware utilization. Furthermore, it
provides information about possible characteristics or features of the simulation
frameworks.

4 Results

For each of the four simulation frameworks mentioned, Aimpulse Spectrum,
JADE, MASON, and Repast, the process presented in Sect. 3 has been con-
ducted. In this section, the results obtained from the experiments are presented
and discussed. Furthermore, a distinction is made between the computation time
each agent needed and the overall time for executing the entire simulation exper-
iment. Finally, a concluding comparison of the presented frameworks is given.

Aimpulse Spectrum: As a first important observation we can remark that
Aimpulse Spectrum can handle a very high number of agents. Experiments com-
prising of more than 10 million agents can be performed within less than 15 min
using current standard hardware. Due to limitations of the other frameworks
and for achieving comparability between the frameworks, experiments exceeding
1 million agents were not conducted. Therefore, the suitability of these frame-
works for simulating a higher number of agents cannot be evaluated using the
method presented in this paper. Figure 3 presents the durations of the experi-
ment runs depending on the number of agents.

For both, the overall time as well as the calculation time per agent, a linear
increase relative to the number of agents can be observed for all three VMs.

Measuring and Comparing Scalability of Agent-Based Simulation 53

Fig. 3. Results of analyzing aimpulse spectrum, 20 simulation runs

This leads us to the conclusion that Aimpulse Spectrum scales in the considered
scenarios, even when handling a high number of software agents.

Considering the use of one CPU core (VM1) compared to the use two CPU
cores (VM2), the simulation’s speed decreases even though the number of pro-
vided CPU cores increases. Most likely this is caused by an increased scheduling
overhead. The extra effort needed for managing the distribution of the simula-
tion is higher than the benefit of parallelizing the simulation experiment. When
looking at the results of VM3 (16 CPU cores), the benefit of using multiple CPU
cores is apparent, as the distribution overhead is more than compensated by the
increase of utilized processing power. 16 CPU cores lead to a speedup of a factor
of 1.6, meaning the simulation experiment was executed 60 % faster compared to
the use of a single core. However, the efficiency of VM3 is very low (0.103). The
16 processor cores can only be utilized at about 10 % while on VM2, even tough
the simulation experiment did not run faster, available hardware resources were
used with an efficiency of 40 %.

The observation of the system load during the experiments shows that Aim-
pulse Spectrum utilizes all of the RAM allocated by the Java Virtual Machine
as well as all available processors. The framework’s execution speed benefits
from its own scheduling mechanism and the use of a thread pool instead of dedi-
cated threads. By implementing sequential agents following the actor model [12],
CPU as well as RAM of the executing computer can be used more efficiently by
enabling asynchronous communication. Furthermore, the Java construct Future
is used for representing the results of the agents’ executions, increasing the per-
formance of Aimpulse Spectrum.

JADE: JADE was only analyzed up to an agent count of 100.000. When imple-
menting more agents framework-specific exceptions occurred and the system
crashed.

It is conspicuous that JADE’s initialization causes up 50 % of the total run-
time on all of the three VMs. JADE’s approach is to create dedicated CPU

54 F. Lorig et al.

Fig. 4. Results of analyzing JADE, 20 simulation runs

thread for each agent at startup, and after generating all threads, the simula-
tion is started. Observations of the system load during the simulation suggest
that JADE, although every core is heavily loaded during the creation of threads,
mostly uses only one core during simulation experiments (Fig. 4).

Even though the calculation time decreased when using two CPUs and more
RAM, a desirable linear increase of the execution time when adding further
agents could not be observed on any of the VMs. Instead, the duration times
rise exponentially implying that JADE gets less performant with increasing the
amount of agents. This can especially be noticed at about 75,000 agents: an addi-
tion of one-third of the agents results in approximately a doubling of execution
and total time.

VM2 shows a speedup of about 1.8, almost halving the overall time, the
efficiency (approximately 90 %) is satisfying, too. Interestingly, with increasing
number of cores (VM3), JADE shows a strong decline in efficiency (about 10 %).
It is also remarkable, that at 16 cores the calculation time indeed decreases
compared to only 2 CPU cores, but the total time is higher. This could be
explained by the increased amount of communication when using more CPU
cores or by the non-optimal utilization of the hardware in this respect. However,
when interpreting these results it should be considered that JADE focuses on
implementing multiagent system, rather than running simulations.

MASON: The results of analyzing MASON are shown in Fig. 5. Similar to
Aimpulse Spectrum and Repast, experiments with up to 1 million individual
agents could be executed.

Regarding the execution times of each VM it can be observed that MASON
slows down with increasing the number of CPU cores. This phenomenon occurs
due to the design of MASON, causing each simulation step to be executed
individually and therefore not in parallel. MASON, in contrast to Aimpulse
Spectrum, JADE, and Repast, focuses on the stepwise execution of simulation
experiments executing agents one after another. This results in the use of just

Measuring and Comparing Scalability of Agent-Based Simulation 55

Fig. 5. Results of analyzing MASON, 20 simulation runs

a single CPU core even if more cores are available for the framework. In case
of multiple processors being available, the core used for executing MASON is
altered from time to time by scheduling mechanisms of the operating system.
These time-consuming context switches do not occur on a single core architec-
ture. The speedup on both VMs with multiple processor cores is smaller com-
pared to the reference VM with only one core and the efficiency of utilizing the
cores is rather low.

When considering the execution time and the number of agents it can be
noted that no linear correlation exists. An experiment with 1 million agents
takes 1.5 h, even on the single core machine. It is an asset that MASON hardly
needs any initialization time, the simulation starts nearly immediately and thus
MASON is fast when simulating less than 10.000 agents. It also does not allocate
much RAM, the limit of two gigabytes has not been exceeded in any of the
experiments.

Repast: Figure 6 shows the results of the simulation experiments conducted
using Repast. The simulation of up to 1 million agents is possible, yet, when
exceeding 100.000 agents the duration of the simulation experiments increases
exponentially.

While the differences between the times measured on VM1 (one core) and
VM2 (two cores) can be neglected when simulating a low number of agents,
adding further CPU cores results in an increased computation time for simulating
the same amount of agents. Analogous to MASON, Repast only utilizes a single
CPU core for its computations. Compared to Aimpulse Spectrum, simulation
runs conducted with Repast are considerably slower. Still, Repast outperforms
MASON when comparing the results (speedup) achieved on virtual machines
with an increased number of CPU cores.

56 F. Lorig et al.

Fig. 6. Results of analyzing Repast, 20 simulation runs

4.1 Advantages and Disadvantages of the Frameworks

Summarizing, as shown in Fig. 7, it can be said that Aimpulse Spectrum is the
most performant framework regarding the different VM settings considered in
this research. When instantiating 100.000 agents using 16 CPU cores, Aimpulse
Spectrum is 100 times faster than JADE and about 15 times faster than MASON
or Repast. While the execution time of Aimpulse Spectrum has not even doubled
when increasing the amount of agents from 50.000 to 100.000, it has quadrupled
for the other frameworks.

In all of the experiments, JADE takes the third place, which is mainly
due to the high initialization overhead. Although it can be argued that JADE

Fig. 7. Comparison of the simulation frameworks

Measuring and Comparing Scalability of Agent-Based Simulation 57

simulations can be distributed across several computers, which would reduce
these times in total, the results shown in Fig. 6 indicate that even MASON
is much faster than JADE in each run. In addition, a distribution would cre-
ate further organization overhead and network communication is rather slow.
Hence, distributing JADE simulation experiments over five machines would still
result in the last place. Despite everything, on the dual-core machine (VM2)
JADE obtained the highest results for speedup and efficiency.

MASON and Repast prove to be the fastest frameworks when considering
the pure computation time of each agent, but the strict limitation to only one
CPU core leads to a slowdown in case more resources are available. In addition,
the performance on very large simulations decreases considerably. Compared to
JADE, they are faster up to 100.000 agents, but the execution times rose expo-
nentially in other test runs with up to 1 million agents, in contrast to Aimpulse
Spectrum showing a linear growth.

In summary it can be said that Aimpulse Spectrum, as the only one of the four
framework tested, scales better when increasing the number of agents and shows
a linear growth of the execution time on both, single- and multicore machines.
It is the best performing framework, too, but still has only a low efficiency when
running on a larger number of CPU cores.

5 Conclusions

Due to simulation models continuously growing in size, e.g., in social sciences
(ABSS), and the increasing number of simulation frameworks for implement-
ing and executing simulation experiments, the choice of the framework which
is best suited for a certain task is challenging. For one thing, the number of
software agents to be simulated can overwhelm simulation frameworks. ABSS
models easily consist of more than one million individual software agents. For
another thing, modern computer systems provide a high number of CPU cores
for distributing computations and thus increase the performance of the compu-
tations. Hence, the decision of using many cores for distributing the simulation
in contrast to using single CPU cores running a larger number of experiments
parallel is a forced one.

In this paper we proposed a five-step approach for analyzing and compar-
ing agent-based simulation frameworks regarding these scalability questions. By
designing standardized experiments being implemented individually for each
simulation framework, comparable experiments can be executed while altering
scalability parameters. Here, we modified the virtual machine used for executing
the simulation experiments and added CPU cores. Thus, advantages and disad-
vantages of four exemplary, popular simulation frameworks, Aimpulse Spectrum,
JADE, MASON, and Repast, could be identified.

Considering the results presented in this paper, only one of the frameworks,
Aimpulse Spectrum, was scalable when simulating a large amount of agents.
Furthermore, it was the only framework to fully utilize the hardware being pro-
vided by the virtual machines even if with a lack of efficiency. JADE, in contrast,

58 F. Lorig et al.

only was able to handle a small fraction of the agents Aimpulse Spectrum or
Repast could handle. The number of agents MASON and Repast can simulate
was satisfying with regard to current ABSS scenarios, yet, only a single CPU
core was used for computations.

It could be shown that there are considerable differences in how modern
agent-based modeling and simulation frameworks handle scalability of simulation
models. Therefore, an objective method for comparing simulation frameworks is
needed in this regard. However, this is only a first step towards a holistic com-
parison of agent-based simulation frameworks. As a next step, the exchange of
messages between agents needs to be addressed as well to extend the complexity
of the simulation. Additionally, further simulation frameworks need to be iden-
tified and analyzed for gaining more insights. Finally, it needs to be noted that
scalability of software systems remains a current topic of interest, as resources
provided by computer hardware are still not used optimally.

References

1. Banks, J.: Handbook of Simulation. Wiley Online Library (1998). http://
onlinelibrary.wiley.com/doi/10.1002/9780470172445.fmatter/summary

2. Conte, R., Gilbert, N., Sichman, J.S.: MAS and social simulation: a suitable com-
mitment. In: Gilbert, N., Sichman, J.S., Conte, R. (eds.) MABS 1998. LNCS
(LNAI), vol. 1534, pp. 1–9. Springer, Heidelberg (1998)

3. Cortese, E., Quarta, F., Vitaglione, G., Vrba, P.: Scalability and performance of
jade message transport system. In: AAMAS Workshop on AgentCities, Bologna,
vol. 16 (2002)

4. Davidsson, P.: Agent based social simulation: a computer science view. J. Artif.
Soc. Soc. Simul. 5(1), 7 (2002)

5. Deters, R.: Scalability & multi-agent systems. In: 2nd International Workshop
Infrastructure for Agents, MAS and Scalable MAS, 5th International Conference
on Autonomous Agents (2001)

6. Di Caro, G.A.: Analysis of simulation environments for mobile ad hoc networks.
Technical Report, Dalle Molle Institute for Artificial Intelligence (2003)

7. Doran, J., Gilbert, N.: Simulating societies: an introduction. In: Simulating Soci-
eties: The Computer Simulation of Social Phenomena, pp. 1–18 (1994)

8. Gatti, M., Cavalin, P., Neto, S.B., Pinhanez, C., dos Santos, C., Gribel, D., Appel,
A.P.: Large-scale multi-agent-based modeling and simulation of microblogging-
based online social network. In: Alam, S.J., Van Dyke Parunak, H. (eds.) MABS
2013. LNCS, vol. 8235, pp. 17–33. Springer, Heidelberg (2014)

9. Goldstein, J.: Emergence as a construct: History and issues. Emergence 1(1), 49–72
(1999)

10. Hamida, E.B., Chelius, G., Gorce, J.M.: Impact of the physical layer modeling on
the accuracy and scalability of wireless network simulation. Simulation 85, 574–588
(2009)

11. Helsinger, A., Thome, M., Wright, T.: Cougaar: a scalable, distributed multi-agent
architecture. In: 2004 IEEE International Conference on Systems, Man and Cyber-
netics, vol. 2, pp. 1910–1917. IEEE (2004)

12. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for arti-
ficial intelligence. In: Proceedings of the 3rd International Joint Conference on
Artificial Intelligence, pp. 235–245. Morgan Kaufmann Publishers Inc. (1973)

http://onlinelibrary.wiley.com/doi/10.1002/9780470172445.fmatter/summary
http://onlinelibrary.wiley.com/doi/10.1002/9780470172445.fmatter/summary

Measuring and Comparing Scalability of Agent-Based Simulation 59

13. Hill, M.D.: What is scalability? ACM SIGARCH Comput. Archit. News 18(4),
18–21 (1990)

14. Horling, B., Mailler, R., Lesser, V.: Farm: a scalable environment for multi-agent
development and evaluation. In: Lucena, C., Garcia, A., Romanovsky, A., Castro,
J., Alencar, P.S.C. (eds.) SELMAS 2003. LNCS, vol. 2940, pp. 225–242. Springer,
Heidelberg (2004)

15. Kiran, M., Richmond, P., Holcombe, M., Chin, L.S., Worth, D., Greenough,
C.: Flame: simulating large populations of agents on parallel hardware archi-
tectures. In: Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems, vol. 1, pp. 1633–1636, International Foundation
for Autonomous Agents and Multiagent Systems (2010)

16. Kravari, K., Bassiliades, N.: A survey of agent platforms. J. Artif. Soc. Soc. Simul.
18(1), 11 (2015)

17. Lee, L.C., Nwana, H.S., Ndumu, D.T., De Wilde, P.: The stability, scalability and
performance of multi-agent systems. BT Tech. J. 16(3), 94–103 (1998)

18. Liu, H.H.: Software Performance and Scalability: A Quantitative Approach, vol. 7.
Wiley, New York (2011)

19. Michael, M., Moreira, J.E., Shiloach, D., Wisniewski, R.W.: Scale-up x scale-out: a
case study using nutch/lucene. In: Parallel and Distributed Processing Symposium,
IPDPS 2007. IEEE International, pp. 1–8. IEEE (2007)

20. Müller, J.P., Fischer, K.: Application impact of multi-agent systems and technolo-
gies: a survey. In: Shehory, O., Sturm, A. (eds.) Agent-Oriented Software Engi-
neering, pp. 27–53. Springer, Heidelberg (2014)

21. Neuman, B.C.: Scale in distributed systems. ISI/USC (1994)
22. Pawlaszczyk, D., Strassburger, S.: Scalability in distributed simulations of agent-

based models. In: Proceedings of the 2009 Winter Simulation Conference,
pp. 1189–1200. IEEE (2009)

23. Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based simulation platforms:
review and development recommendations. Simulation 82(9), 609–623 (2006)

24. Rana, O.F., Stout, K.: What is scalability in multi-agent systems? In: Proceedings
of the Fourth International Conference on Autonomous Agents, pp. 56–63. ACM
(2000)

25. Allan, R.: Survey of agent based modelling and simulation tools (v1.1) (2011).
http://www.grids.ac.uk/Complex/ABMS/

26. Singhal, S.K., Cheriton, D.R.: Using projection aggregations to support scalability
in distributed simulation. In: Proceedings of the 16th International Conference on
Distributed Computing Systems, pp. 196–206. IEEE (1996)

27. Song, R., Korba, L.: Modeling and simulating the scalability of a multi-agent appli-
cation system. NRC/ERB-1097 (2002)

28. Squazzoni, F., Jager, W., Edmonds, B.: Social simulation in the social sciences a
brief overview. Soc. Sci. Comput. Rev. 32(3), 279–294 (2014)

29. Timm, I.J., Pawlaszczyk, D.: Large scale multiagent simulation on the grid. In:
IEEE International Symposium on Cluster Computing and the Grid, CCGrid 2005,
vol. 1, pp. 334–341. IEEE (2005)

30. Tobias, R., Hofmann, C.: Evaluation of free java-libraries for social-scientific agent
based simulation. J. Artif. Soc. Soc. Simul. 7(1), 6 (2004)

31. Tolbert, L.M., Qi, H., Peng, F.Z.: Scalable multi-agent system for real-time electric
power management. In: Power Engineering Society Summer Meeting, vol. 3, pp.
1676–1679. IEEE (2001)

http://www.grids.ac.uk/Complex/ABMS/

60 F. Lorig et al.

32. Turner, P.J., Jennings, N.R.: Improving the scalability of multi-agent systems.
In: Wagner, T.A., Rana, O.F. (eds.) AA-WS 2000. LNCS (LNAI), vol. 1887,
pp. 246–262. Springer, Heidelberg (2001)

33. Warden, T., Porzel, R., Gehrke, J.D., Herzog, O., Langer, H., Malaka, R.: Towards
ontology-based multiagent simulations: the plasma approach. In: ECMS, pp. 50–56
(2010)

34. Weinstock, C.B., Goodenough, J.B.: On system scalability. Technical report, DTIC
Document Technical Note CMU/SEI-2006-TN-012 (2006)

35. Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl.
Eng. Rev. 10(02), 115–152 (1995)

Integrating Agent Actions
and Workflow Operations

Thomas Wagner(B) and Daniel Moldt

Informatics and Natural Sciences, Department of Informatics,
Faculty of Mathematics, University of Hamburg, Hamburg, Germany

wagner@informatik.uni-hamburg.de

http://www.informatik.uni-hamburg.de/TGI/

Abstract. This paper presents the Agent Activity, a Petri net con-
struct combining workflow tasks with the abilities of software agents.
Agent Activities are at the core of our new approach, in which they are
used by novel modelling entities. These entities provide integrated work-
flow and agent functionality. This supports a modelling perspective incor-
porating the strengths of both multi-agent systems and workflow
management systems to allow for e.g. better support of inter-organisational
modelling. The paper focuses on the role, function and construction of the
Agent Activity in the approach.

Keywords: Workflows · Agents · Modelling · Integration · High-level
Petri nets

1 Introduction

Modelling a system requires choosing adequate primary concepts and associated
techniques for the task at hand. These concepts imply a certain perspective on
the system. Usually, each perspective has some distinct strengths associated with
it, which are reflected in a superior capability to represent, express and model
aspects related to that perspective.

For our research we are particularly interested in multi-agent systems and
workflow systems. Multi-agent systems (MAS) associate as the main, but of
course not only, perspective a structural perspective on a system, while workflow
systems associate a behaviour-centric one. Consequently, multi-agent systems are
especially good at representing and modelling the structure within the system.
Workflow systems excel at representing and modelling behaviour.

Our research goal is to combine the strengths of both of these perspectives by
creating one unified, integrated modelling technique, which features the struc-
tural strengths of agents and the behavioural strengths of workflows. Using the
two technologies to improve one another has been done before, e.g. [5,9,19].
However, we aim for a more comprehensive integration of the two. Basing both
agent and workflow concepts on Petri net technology we are able to integrate
them quite naturally.
c© Springer International Publishing Switzerland 2015
J.P. Müller et al. (Eds.): MATES 2015, LNAI 9433, pp. 61–78, 2015.
DOI: 10.1007/978-3-319-27343-3 4

62 T. Wagner and D. Moldt

In this paper we introduce the central foundation for the proposed integra-
tion, the Agent Activity (AgAc). An AgAc is a Petri net structure, which
combines the most basic facilities of agents (internal actions, sending and receiv-
ing messages) and workflows (requesting, completing and aborting tasks). It is
used as the main building block in process-protocols, a combination of agent
behaviour and workflows, which are executed by novel modelling entities. The
paper also introduces the overall system architecture for the integrated tech-
nique, which provides the context of the AgAc.

This paper is structured as follows. Following this introduction the back-
ground is presented in Sect. 2. The main contribution is presented in Sects. 3–5,
which describe the modelling context, the Agent Activity-system and the
core net structure respectively. This is followed by a practical example showcas-
ing the prototype in Sect. 6. Section 7 highlights and compares related work to
our approach. The paper is concluded with a discussion in Sect. 8 and a summary
and outlook in Sect. 9.

2 Background

The technological and formal basis for our work is the reference net formalism
[17]. It allows tokens in nets to be references to other net instances or arbitrary
Java objects. Our development and runtime environment is Renew1 [18].

The utilised agent and workflow implementations are realised as reference
net systems in Renew. Agents follow the Mulan (Multi Agent Nets) ref-
erence architecture [22]. Mulan describes multi-agent systems in four layers:
system; platform; agent; agent protocols. Capa (Concurrent Agent Platform
Architecture) [10] is an implementation of Mulan. The majority of the exe-
cutable code in Capa is implemented in reference nets annotated with Java
inscriptions. The Mulan architecture serves as the conceptual basis for the
agent aspects utilised within the context of this paper. Capa serves as the basis
for practical agent aspects.

Workflows follow the workflow net principles [23], with a specialised imple-
mentation of tasks for Renew [13]. A task is represented as a single task transi-
tion, which hides a powerful, complex, standardised net structure for improved
readability of the nets.

The idea of integrating agents and workflows is based on [21,25]. These pub-
lications are discussed as related work in Sect. 7. The approach to realise the idea
through a construct like the Agent Activity is based on general observations
and discussions described in [24].

3 Modelling Context

3.1 Agents and Workflows in General

In agent-orientation, the main abstraction for modelling is the agent. Agents
are entities, which are logically located (and usually also physically executed)
1 Reference net workshop. Available at www.renew.de

www.renew.de

Integrating Agent Actions and Workflow Operations 63

on agent platforms, communicate through asynchronous messages and have a
set of proactive and reactive behaviours, called protocols (in Mulan/Capa).
An agent protocol describes the agent’s part in an interaction between multiple
agents, i.e. which messages to expect, send and which internal actions to execute.
This means that the agent is always the centre of consideration.

The corresponding modelling perspective is, consequently, very structure-
centric. The structure of the system, which includes its infrastructure, architec-
ture, distribution, etc., is easy to model and easy to inspect at runtime since it is
directly mapped onto the agents. The behaviour on the other hand is described
directly only in the protocols, which take just one agent into account. Indirectly
the behaviour is also described in the interactions, which take a limited set of
agents into consideration and are not directly executed (as opposed to the proto-
cols). This can lead to some difficulties when modelling the behaviour. In small
scales the approach works without problems. But, with an increasing number of
agents, interactions, branching protocols, etc., to take into consideration a view
on the system’s global behaviour quickly becomes challenging.

Fig. 1. Perspectives on a software system

When modelling a system with workflows, the main abstraction is the titular
workflow. Workflows describe a set of processes, including the order of tasks,
the eligible resources for task execution and the data flow between tasks. This
is a behaviour-centric modelling perspective. The behaviour of a large number
of resources, as well as the dependencies between individual tasks and consid-
erations to data flow, are easy to model and represent. However, the structure

64 T. Wagner and D. Moldt

of the system is mostly hidden within the executing resources. This means that
global behaviour of a system can be expressed easily, while the structure is con-
strained to inspecting individual resources. Similar to agent orientation, this
leads to difficulties when modelling very large systems. For workflows, however,
this affects the structure of the system, which becomes increasingly challenging
to manipulate and administrate.

For both technologies this does not mean that they are not capable or suited
to model large and complex systems. It simply means that both technologies have
strengths in some areas. The strengths of agents and workflows complement each
other quite naturally. One excels at structure, the other at behaviour. Integrating
them combines the structural strengths of agents with the behavioural strengths
of workflows. Our integrated system features entities, which can either act as
agents, workflows or both, depending on the current needs at runtime.

Figure 1 illustrates our motivation w.r.t. perspectives. The agent view is
centred on agents in different multi-agent systems (MAS) communicating via
asynchronous messages. The workflow view is centred on different workflows
in workflow management systems (WFMS), being executed by resources (i.e.
human users or automated actors). Our proposed entity view combines the con-
cepts of agent and workflow into an integrated entity, which can serve as agent,
workflow or something in between by providing both interfaces to resources/users.
Entities can communicate through messages or through task-like interactions, in
which entities take on the role of resources for other entities. Consequently, this
perspective exhibits the desired features of both individual concepts and offers
the related strengths to modellers and users.

3.2 Proposed Advantages

As motivated before, large and complex systems of agents or workflows individ-
ually can have difficulties representing and modelling behaviour and structure
respectively. Our approach generally addresses this, since the perspectives of
both agents and workflows (and their respective strengths) become available.
Improved modelling for larger systems and consequently also improved scalabil-
ity, at least from the modeller’s perspective, are the result. Furthermore, inte-
grating agents and workflows creates more powerful and expressive first-class
constructs for modelling. These entities are more flexible than either workflows
or agents individually. They also remove the need for complicated, inefficient
helper-constructs, such as facilities for agents requesting user interaction.

Each individual concept also benefits from the integration. While it is possi-
ble to realise process management, related user interaction, task atomicity and
rollback in agent systems it is not an easy task and can be quite cumbersome.
The same is true for enabling intelligent decision making mechanisms, simple
communicative facilities or distribution in workflow systems. For a detailed look
at the advantages workflows can gain from the integration with agents see [25].
By opening up the structural perspective to workflows and the behavioural one
for agents we can realise these advantages and more in a natural way.

Integrating Agent Actions and Workflow Operations 65

There are a few settings, in which the proposed integration and its features
are very useful. One such setting is the inter-organisational context. From a
technical perspective, inter-organisational workflows are workflows executed by
multiple organisations. The proposed approach offers functionality desirable in
this context. Processes communicating like agents, encapsulation and protec-
tion of critical data, and an agent-like distributed system architecture are just
some of the possibilities. Furthermore, modelling inter-organisational systems in
our integrated approach is closer to reality and more natural then modelling in
classical agents or workflows. Exclusively considering an organisation as either
structural actor or behavioural process does not completely capture reality. An
organisation needs to be able to behave as an actor at some times and as a
process at others. It shares aspects of classical agents and workflows alike and
is thus a good example for our proposed integrated entities.

From a more abstract perspective inter-organisational processes are social
processes as they involve multiple actors working together. Social software and
infrastructures that directly support such processes and activities are very desir-
able. While workflows can be seen as a support from the more technical side,
agents are also well suited for an (applied) social perspective. They can incor-
porate social aspects of systems with a focus on the structural perspective. For
models of social systems, like multi-organisations, both perspectives are essential
in order to cover all requirements completely.

4 The Agent Activity-System

4.1 An Informal View on the Agent Activity

Our stated goal is to provide an integrated perspective of structure and behav-
iour for modelling software systems. We want to combine the concepts of agents
and workflows into a novel entity, which features the strengths of both classical
concepts. On a technical level, the integration is realised by the Agent Activ-
ity. An AgAc combines agent actions with workflow tasks. This is the most
basic technical level and was consequently chosen as the starting point for the
integration. It enables building the integration from the ground up, instead of
having to deal with technical encumbrances and overhead from lower levels. For
a more detailed description and discussion of this topic see [24].

An AgAc consists of the fundamental actions of agents and the different
operations within a workflow task. The fundamental agent actions (for Mulan
and Capa agents) are sending a message, receiving a message and performing
an internal action (e.g. accessing the knowledge base, operating on data). The
operations within a workflow task are accepting a workitem and subsequently
completing the activity or aborting it. This is illustrated in Fig. 2. The AgAc
combines these agent actions and workflow operations into a new complex con-
struct. The basic granularity of actions and operations allows us to model any
behaviour of agents or workflow tasks with AgAcs.

66 T. Wagner and D. Moldt

Fig. 2. An informal view of the Agent Activity

Within the context of this paper we examine reference Petri net-based agents
and workflows. Hence, the AgAc is also realised and presented here as a com-
plex reference net structure. This structure, like the workflow task transition
in Renew, is represented as one specialised transition in models. The concep-
tual idea behind the AgAc can, however, easily be applied to other agent and
workflow implementations. This is outside of the scope of this paper.

AgAcs are the basic building blocks for the behaviour of entities. Each AgAc
represents one abstract task for its executing entity. This abstract task can con-
tain multiple sub-actions and -operations. It is up to the modeller to define the
granularity of the AgAcs. Conceptually they can represent tasks ranging from
individual actions/operations (e.g. sending a message to another entity) to com-
plex processes (e.g. a full workflow with document control and database access).
Of course, modellers need to take care to define the scope and granularity of
their AgAcs clearly, without sacrificing readability and manageability.

Note that AgAcs only define the behaviour of entities. The actions and
operations are actually executed directly by the entity. In order to read, manage
and execute the different AgAcs entities possess an internal technical backend.

4.2 The Agent Activity-System Architecture

This section describes the overall system architecture, in which the AgAc is
deployed. The architecture is inspired by and based on the Mulan reference
architecture but enhances and combines it in many areas with workflow com-
ponents. We especially retained the four layers of the Mulan architecture. The
resulting system provides the integrated modelling possibilities we seek.

The resulting architecture is outlined in Fig. 3. The boxes within the lay-
ers represent important responsibilities and functionality between the different
layers. Each layer is nested within the layer directly above it.

Integrating Agent Actions and Workflow Operations 67

Fig. 3. System overview

Process-Protocols. Process-protocols describe the behaviour of an entity. They
connect and combine a set of AgAcs and thus share similarities to agent pro-
tocols and workflow processes (hence their name). A process-protocol is imple-
mented as a workflow-like net consisting of AgAcs connected through arcs and
places. They can also feature regular Petri net structures with possible Java-
calls for data-handling and manipulations that do not require an AgAc. The
process-protocol nets are created, initiated and executed directly in their enti-
ties. During execution the process-protocol is available to and managed by the
technical backend of the entity. When the process-protocol has been completed
it is also terminated within the entity.

Entities. Entities are the executing constructs of the approach, which define
the structure of a system, similar to agents. Generally, entities share many sim-
ilarities to agents and feature their properties such as encapsulation, mobility,
etc. In contrast to process-protocols the entity net is standardised. Each entity
uses the same net structure but possesses different knowledge and behaviour.
Entities manage and execute their process-protocols and provide the technical
backend for the execution of AgAcs. The backend manages the execution of the
AgAc, updates the AgAc’s state throughout its execution and, most impor-
tantly, actually executes the actions which the AgAc defines. Consequently the
backend has the capabilities to execute the fundamental agent actions and work-
flow operations (see Sect. 4.1). It can (make the entity) send messages, execute

68 T. Wagner and D. Moldt

internal actions and process received messages. Entities also feature workflow
engine functionality to handle and execute tasks. They connect to further WFMS
functionality (i.e. workflow enactment service) in the platform layer.

Platform/Management Layer. Platforms are the runtime environment for enti-
ties. They control the life-cycle of entities and serve as the communication
infrastructure. As with the entity net, the platform net is standardised and
provides the same functionality for all platforms. It also provides the remaining
WFMS functionality. W.r.t. workflow functionality the entities can be seen as
both workflow engines and workflow resources in a platform’s WFMS. The plat-
form is responsible for user management, role and rights checks, and workitem/
activity dispatches. As the topmost explicitly implemented layer (see below), it is
used to provide the global perspectives on the system’s behaviour and structure.

System-Layer. The system layer represents the entirety of the architecture of
an entity system. This layer is not explicitly modelled. Rather, it is implicitly
created through the interconnection of all active platforms within a system. It
contains an agent view on the structure of the system as well as a workflow
view on the behaviour of the system. As such, it represents the global integrated
perspective we motivated for our approach. It can be used to monitor, assess
and administrate the system at both runtime and modelling time. The practical
generation of this perspective is outside of the scope of this paper. See Sect. 8
for a short discussion and outlook.

Modelling is mostly restricted to process-protocols and the knowledge of
entities. Modelling the knowledge includes defining the roles an entity inhabits
in the system, the process-protocols it is to execute, as well as any necessary
internal data (e.g. identifiers of other entities). Modelling the process-protocols
is similar to workflow modelling and twofold. On the one hand, the process-
protocol net structure needs to be defined as the overall workflow-like process.
Then the individual AgAcs need to be defined, similarly to workflow tasks.

Platforms serve as the execution environments of the entities. These envi-
ronments must be established and defined, but since the nets for them are stan-
dardised modelling is relatively simple here. The same is true for entities. Except
for small, application-specific details modellers can focus their attention on the
above-mentioned knowledge and process-protocols.

5 The Agent Activity Net Structure

The core of the Agent Activity is the net structure shown in Fig. 4. This net
structure implements the main functionality required to provide an integrated
agent and workflow action. It communicates at various points of its life-cycle
with the technical backend of its entity (see Sect. 4.2). The communication is
handled through synchronous channels.

When used in a process-protocol, every AgAc is represented by just one
transition with thick horizontal bars (see Fig. 2). This transition is an abstract

Integrating Agent Actions and Workflow Operations 69

Fig. 4. Agent Activity net structure

representation of the net structure of Fig. 4. The complete net structure is hid-
den in the technical layer of Renew. As indicated by the figure, incoming and
outgoing arcs of the (entire) net structure correspond to pre- and postconditions
of the single transition Firing atomicity is retained for these transitions through
an additional, internal rollback option.

As the net structure of the AgAc is standardised, it requires the instance
data to be handled by a data object. This is called the Agent Activity Object
(AAO). The AAO is created by the technical backend of the entity when an
AgAc is started. It contains all data relevant to executing the particular instance
of the AgAc. Each entity stores the information about its AgAcs and the related
AAOs in its knowledge base.

The AAO contains the information about the sub-actions and -operations
within the AgAc. This information is represented as a reference net as well.
The net is similar to a workflow net featuring Capa actions and workflow tasks.
Since it is possible for different instances of an AgAc to require slightly different
implementation or handling, different AAOs might be required. Which AAO is
used for a specific AgAc is defined in its inscription. The AAO also stores and
processes runtime data like input, output and result for its instance of the AgAc.

Each AgAc requires specific data for execution, which is inscribed to the
abstract transition (see Figs. 4 and 5). This inscription is a Renew tuple con-
taining four elements. Except for the AgAc name, all of these elements are
optional. If an element is not set for a specific AgAc an empty tuple ([] in
Renew) is set in its place. The elements are the (unique) AgAc name used to
determine which AgAc to instantiate, the name of the AAO used for this par-
ticular instance of the AgAc2, the optional input data objects to be processed
by the AgAc and the optional result objects.
2 If this element is left empty, a predefined standard AAO for the AgAc is loaded.

70 T. Wagner and D. Moldt

An example of how AgAcs are used and inscribed in a process-protocol can
be seen in Fig. 5. The different AgAcs in this example are described in Sect. 6.
The net structure in Fig. 4 contains the following parts:
0: Preconditions. The (arbitrary number of) preconditions of an AgAc are all

the places connected to it via incoming arcs to the abstract AgAc transition.
Input data for the AgAc is also contained in the incoming arcs.

1: Triggering the Agent Activity. When the preconditions are satisfied the
AgAc can be triggered. In the abstract view considered as one transition the
firing begins at this point. There are three different possibilities to trigger:
direct, reactive and proactive. Direct triggering does not require any further
control from the backend. Reactive triggering waits for an incoming mes-
sage or signal from outside the entity. Proactive triggering is controlled by
the entity and is used to e.g. delay the execution of AgAcs. Triggering is
managed by the technical backend in each entity, which only allows trigger-
ing when both the preconditions of the AgAc and the preconditions of the
trigger are fulfilled. When the triggering begins the definition of the AgAc
is read from the knowledge base. From that definition and the input data
the initial AAO is created, transmitted to the AgAc and put on the central
place 2. The input data is set as one of the parameters of the AAO.

2: Executing an Action. The central place holds the AAO during the main
part of the execution of the AgAc. From this place the AAO can trigger the
individual sub-actions and operations. Depending on the state of the AAO
it can trigger all currently enabled actions/operations. Agent actions fire the
transition 2a, workflow tasks fire the transition 2b. The individual actions
are then executed by the backend. This firing process is fire-and-forget, since
the sub-tasks might take a while to be completed.

3: Updating the AAO. At some points during the execution of the AgAc
it may become necessary to update the AAO to adapt to changed circum-
stances. This is handled by the transition connected to the :update
(AAO1,AAO2) channel. It removes the old AAO (AAO1) from the central
place 2 and puts an updated AAO (AAO2) back. Reasons for a required
update of the AAO are changed pre- or postconditions (for the sub-actions),
relevant state-changes, etc. The backend listens for these changes and triggers
the updates to the AAO. This mechanism enables the support of adaptive
processes that can change at runtime to adjust to changes during execution.
It is possible to extend this mechanism to involve completely replacing the
AAO with a new definition. This would enhance modelling possibilities w.r.t.
on-the-fly adaptability but is considered future work.

4: Aborting the Agent Activity. If at any point of the execution of the AgAc
a problem occurs or the entity decides to cancel the execution, this part of
the net is fired and a local rollback initiated. The transition connected to
the :reject(AAO) channel is fired by the technical backend. It removes the
AAO from the central place 2 and cancels the execution of the AgAc in
the backend by removing and resetting the administrative data. The original
input data is read from the AAO and the different tokens put back onto their
respective precondition places. The AgAc can then fire again.

Integrating Agent Actions and Workflow Operations 71

5: Finishing the Agent Activity. Once the AAO has successfully completed
its main functions by executing all sub-actions and -operations, the backend
can trigger the finalisation of the AgAc. The transition connected to the
channel: finish(AAO,Result), removes the AAO from the net-structure and
generates the result token(s) from it. The output tokens carried through the
AgAc from the input unchanged are also read from the AAO at this point.
The backend finishes the AgAc administratively and the execution of the
process-protocol can continue.

Parts 4 and 5 realise the only ways to end the execution of an AgAc. This
leads to a type of atomicity, as an AgAc can only be successfully completed
in part 5 or cancelled with a local rollback in part 4. This atomicity is
not affected by the (possibly large amount of) actions and firings performed
during the course of the AgAc.

6: Postconditions. The postconditions are the places connected to the AgAc
transition by outgoing arcs. As with the preconditions there can be an arbi-
trary number of them.

6 Practical Example

This section presents a small system example to exhibit the modelling properties
of the Agent Activity-system. The example runs on an early prototype of the
overall system. The core of the example is the process-protocol shown in Fig. 5.

The system is an information gathering game played by a number of users.
Each user is represented in the system by one entity. That entity proactively

Fig. 5. Example process-protocol

72 T. Wagner and D. Moldt

executes the process-protocol of Fig. 5. The process-protocol net is identical in
each entity. Each entity knows the addresses of all other entities and the prede-
fined questions but only has a subset of the answers. The single requirement on
the platform and system layers is that the entities are able to communicate.

While the game is active, each entity must ask another entity questions (lower
branch) and answer incoming questions from other entities (upper branch). The
game ends, when an entity gets 20 questions correct. The game initialises by
putting empty tokens3 on the places in the game active part of the net. The two
middle places correspond to virtual places in the other branches and are used to
initialise these branches.

Each entity can only ask one question at a time. The AgAc send question
randomly chooses another known entity and sends a question to it. Then it waits
for an answer from that entity. When it receives an answer through the AgAc
receive answer, it proceeds to inspect it in the AgAc inspect answer. It first
checks its own knowledge for the answer. If it already knows the answer it can
proceed to the next AgAc. If it does not know the answer it asks its user to
determine, whether the answer was correct or wrong. Finally, the AgAc send
score sends the result back to the questioned entity, which increments its score
if the answer was correct.

While the game is active an entity can receive an arbitrary amount of ques-
tions at any time through the AgAc receive question. First, the entity determines
its strategy (AgAc determine strategy) by asking its user. It can either look up
the answer in its own knowledge base, ask another entity or ask its own user.
The AgAc gather information executes the chosen strategy. This is the only
AgAc in the example, which makes use of different AAOs for the three different
possibilities. The result of the previous AgAc, the strat object, is the identifier
of that AAO. Next, the AgAc send answer sends the gathered information (or
a failure) back to the questioning entity, which inspects the answer and replies
with the score. The AgAc receive and update score updates the knowledge base
of the entity and allows for the next pending question to be answered. This
AgAc can only fire, while the game is active (to ensure, no points are added,
while the winner is determined).

An entity can neither delay asking a question, nor answering one. This ensures
that the game progresses and that an entity cannot wait for questions to answer
without asking them itself. Once an entity reaches a score of 20 correct answers
the AgAc end of game is triggered proactively by the entity. This AgAc sends
messages to all other entities to terminate the game. Receiving these messages
reactively triggers this AgAc in the other process-protocols. It removes the
tokens from the game active part of the net to ensure no further questions can
be asked or answered and the score remains the same. The AgAc end of game
completes firing, once all entities have confirmed the end of the game. Finally,
the AgAc determine and announce winner gathers the scores of all entities and
displays them to each user.
3 Tokens generally realise the control flow within the process-protocol. Optional, non-

empty content encapsulates data that is required for future AgAcs.

Integrating Agent Actions and Workflow Operations 73

The AgAcs in the example feature some pure agent actions (e.g. the receive
question and send score AgAcs), a pure workflow task (the determine strategy
AgAc) and a number of hybrid AgAcs, which can exhibit agent or workflow
behaviour depending on the current state. For example, the gather information
AgAc combines functionality in one transition, which would otherwise require
a series of agent and workflow actions with multiple branches. Depending on the
AgAc it executes at any moment an entity can be (at that moment) regarded
as either an agent, a workflow or both. The example also makes use of different
AAOs as already discussed. Through the use of AgAcs modelling is simplified,
since the series of actions is defined within the construct of the AgAc and the
AAO. In this way, using AgAcs simplifies complex actions by breaking them
down into smaller, more manageable and also re-usable constructs.

The example also features different possibilities of triggering an AgAc. Most
of the AgAcs trigger directly, e.g. send question, gather information. These are
only dependant on their preconditions and can be executed as soon as those are
fulfilled. The reactive AgAcs in this example all react to incoming messages,
e.g. receive question, receive and update score. The end of game AgAc is the
only proactive AgAc in the example. It can fire as soon as the entity determines
it has reached the score limit. However, it also triggers reactively, if it receives a
message from another entity that has reached the score limit. The example shows,
how easy it is to model, use and combine the different triggering mechanisms
in a process-protocol. Since they are incorporated into the AgAcs they do not
clutter the net but still retain their expressiveness.

The example showcases one of the scenarios the AgAc-system is aimed for:
interconnected, communicating processes. The core process-protocol of the game
features two classical workflow-like processes: asking questions and gathering
information. These processes include user interactions in some parts and more-
or-less automated agent actions in others. The overall process-protocol also needs
its entity to behave like an agent, when communicating with other entities and
deciding upon strategies. The principles here can be easily translated to inter-
organisational systems. With AgAcs each organisation can act as a structural
entity or as the process it represents. Both options are necessary at times. Organ-
isations need to act as entities, e.g. when they want to communicate with other
organisations or negotiate with them. They also need to act as processes, e.g.
when work is to be allocated to and executed by their resources. While it is pos-
sible to realise this kind of behaviour in classical agent or workflow systems, it
is at the very least cumbersome and requires complex constructs. Our approach
can model both options in a unified and natural way, which is demonstrated by
this section’s example.

7 Related Work

As mentioned in Sect. 2 our work is directly related to [21,25]. These works
realised a partial integration of agents into a workflow management system.
This partial integration allows for workflows to exhibit agent properties

74 T. Wagner and D. Moldt

(e.g. mobility, intelligence), though modelling was restricted to workflows. The
resulting outlook was the idea of a full integration, which we now adopted.
However, the Agent Activity-system is a completely new approach, which
bypasses the technical and conceptual obstacles introduced by the partial inte-
gration. A related approach is featured in e.g. [16], though it focuses on self-
organisation of organisations and not on modelling.

Agents have been used to improve workflow management in numerous contri-
butions e.g. [8,26]. An area heavily focused on is the improvement of adaptability
and flexibility using an agent’s reasoning mechanisms and intelligence e.g. [5,9].
In [1,4] web service composition, instead of “classic” workflow management, is
integrated with agents. This changes the technology behind the behavioural view
but does not affect our conceptual view on structure and behaviour. To a lesser
degree workflows have been used to improve agents e.g. [19]. The work in [11,20]
aims to improve agent behaviour representation and modelling but largely avoids
workflow management aspects.

These works do not offer the degree of integration our approach adopts. They
still offer only agents or workflows as modelling constructs and do not combine
the concepts on the modeller’s level. They do, however, use the respective other
concept in the background, which allows some properties to be translated. These
kinds of partial integrations are also possible and encouraged in our approach.

There is some research that shows a larger degree of integration. The WADE
platform [3] follows a similar approach to ours. WADE agents are capable of
executing workflow tasks, however, the focus of WADE still lies on providing
workflow management functionality. Other approaches with a larger degree of
integration can be found in e.g. [12,27]. These approaches rely heavily on agents
and their capabilities but still focus on workflows. Our approach does not have
such a focus as workflows and agents are conceptually merged into the entities.

[6,14,15] examine combinations of BDI agents with workflow management.
The research presented in these papers focuses on the workflow management side
and follows a goal-oriented description of the agent behaviour, while we follow a
more procedural approach to allow for possible formal verification via Petri nets
in our future work.

8 General Discussion

We set out to provide system modellers an integrated agent and workflow per-
spective. Agent Activities provide a basis for this perspective on a local level.
W.r.t. the explicit layers of the system architecture this affects the process-
protocol layer. On this layer there is a strong dynamic in the modelling per-
spective, as switching between viewing (parts of) the system as agent, workflow
or something in between is easy and quite natural. Each AgAc provides its
own categorisation as agent, workflow or hybrid to this dynamic of the perspec-
tive. This eliminates the rigid perspective of either structure or behaviour. The
effect of the AgAcs pervades to a lesser degree through the higher layers of
architecture. There it is supported by the incorporation of agent and workflow

Integrating Agent Actions and Workflow Operations 75

management aspects. The dynamic of the modelling perspective becomes more
abstract in these layers.

Providing this integrated perspective to the implicit top system layer of the
architecture is the next step. This will consolidate the local views from process-
protocols, entities and platforms into one complete global view of the system.
The generation of this perspective involves the aggregation of the individual
process-protocols into a behavioural view, as well as the aggregation of all enti-
ties into a structural view. The connections between these views are defined
in the lower level, local views, which are already available. This will help to
improve the difficulties w.r.t. the representation of global aspects motivated for
classical agent and workflow perspectives. At this point, tool support becomes
crucial, since the individual views and their connections need to be provided to
a modeller in a reasonable, intelligent and useful way. The incorporation of the
approach and the related perspectives into a full software development process
like Paose (Petri net-based, Agent- and Organization-oriented Soft-
ware Engineering [7]) is also quite interesting.

In general, the integration provided by the Agent Activity-system allows
an intelligent combination of behavioural and structural modelling. This sim-
plifies several implementation issues of systems, as the AgAc construct incor-
porates a wide range of predefined mechanisms, e.g. triggering, data handling
and flexibility. Furthermore, it provides a powerful abstraction mechanism which
incorporates changes of individual perspectives during the abstraction processes
of the modellers (see above). Due to the agent concepts, intelligent and flexible
decisions can be smoothly integrated into the design of processes. Similarly, task
concepts can be integrated into the design of agent interactions due to the incor-
poration of workflows. The problem of just having (more abstract) processes,
being derived from underlying processes, is overcome and active and dynamic
model parts within the abstraction hierarchy can be supported.

By integrating agents and workflows the resulting entities are, in themselves,
more expressive. Modelling with entities allows for shortcuts in functionality that
are unavailable in classical agents or workflows. Dealing with this expressiveness,
though, can be difficult. Effectively utilising all the possibilities provided by the
approach can be difficult for modellers. Due to the fact that two larger, well-
engineered areas have been integrated, a considerable effort must be put into
tool development. Some constraints on the modelling options may also be useful,
although the right balance has to be found. Our current prototypes are highly
promising in this regard.

An issue relates to the increased management overhead introduced by the
integration. Management functionality needs to handle and differentiate both
agent and workflow aspects of execution. This requires a clear separation of the
concepts on all development levels. Our conceptual model provides the basis for
this. Another issue is also the introduction of some centralised WFMS aspects
(i.e. workflow management in the platform level). These are implementation
issues for which the prototypes need to provide adequate, practical solutions,

76 T. Wagner and D. Moldt

which can be found in established distributed technology. Currently our group
addresses this topic via cloud computing [2].

Limitations of the AgAc are also a concern. In general, we assume that
any agent-internal action can be incorporated into the AgAc. Even complex
behaviour like inference or deliberation can be captured. It is an open ques-
tion though, how AgAcs and process-protocols should incorporate these mostly
internal behaviours. Mulan and Capa feature so-called decision components
for such internal behaviour. Introducing a comparable mechanism for entities is
currently being examined.

Looking back at the proposed advantages of the overall integration, one
important point is the flexibility in modelling. Using the AgAc we can model
both agent and workflow actions in one unified construct. We can use this con-
struct to create combined functionality, which benefits the individual concepts
greatly. As proposed, the entities and process-protocols can serve as workflows
with agent properties. They can also provide agent functionality with user inter-
actions through tasks. The AgAc supports these kinds of hybrid results with
inherent and natural mechanisms.

9 Summary and Conclusion

This paper introduced the Agent Activity. It provides the mechanisms to
design agent actions and workflow tasks in one unified modelling construct. It
is nested within a novel entity system architecture, which makes full use of its
capabilities and complements the remaining management aspects of agents and
workflows. The AgAc is realised through a Petri net structure, which is managed
in its execution by communicating with a technical backend within the entity.
AgAcs allow modelling the behaviour of our entities in a consistent way and
thus provide the very core for the integration of agents and workflows we seek.

As immediate future work we will continue working on improved prototypes
to support the current modelling functionality with better and easy-to-use tools.
Furthermore, we will address the points we discussed throughout this paper and
improve the overall integration. Especially the global, integrated perspective on
the system-layer is a major research focus. Larger and more complex case-studies
will also be examined to better understand the advantages and disadvantages
of the new approach. Scalability and usability of the approach, as well as the
comparison to other modelling approaches, will be an important focus.

In conclusion, the Agent Activity is the core of our Petri net-based inte-
gration of agents and workflows. It combines the two concepts on the lowest
level, which pervades throughout the entire system. Agents, workflows and their
respective managements are consolidated into one architecture with a shared
infrastructure. This infrastructure exhibits the combined strengths of their indi-
vidual parts, which allows designing systems with a novel consideration of behav-
iour and structure on the same level of abstraction. This, in turn, provides a
distinct, natural and improved way of modelling each aspect of the system.

Integrating Agent Actions and Workflow Operations 77

References

1. Bansal, A., Kona, S., Blake, M.B., Gupta, G.: An agent-based approach for compo-
sition of semantic web services. In: Workshop on Enabling Technologies: Infrastruc-
ture for Collaborative Enterprises. WETICE 2008. IEEE 17th, June 2008

2. Bendoukha, S., Wagner, T.: Improving performance of complex workflows: Inves-
tigating moving net execution to the cloud. In: Moldt, D., Rölke, H., Störrle, H.
(eds.) Petri Nets and Software Engineering. International Workshop, PNSE 2015,
Brussels, Belgium, June 22–23, 2015 Proceedings, vol. 1372 of CEUR Workshop
Proceedings. CEUR-WS.org (2015)

3. Bergenti, F., Caire, G., Gotta, D.: Interactive workflows with wade. In: IEEE 21st
International Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE 2012). IEEE (2012)

4. Blake, M.B., Gomaa, H.: Agent-oriented compositional approaches to services-
based cross-organizational workflow. Decis. Support Syst. - Special issue: Web ser-
vices and process management, 40(1), 31–50 (2005)

5. Both, F., Hoogendoorn, M., van der Mee, A., Treur, J., de Vos, M.: An intelli-
gent agent model with awareness of workflow progress. Appl. Intel. 36(2), 498–510
(2012)

6. Burmeister, B., Arnold, M., Copaciu, F., Rimassa, G.: BDI-agents for agile goal-
oriented business processes. In: Proceedings of the 7th International Joint Confer-
ence on Autonomous Agents and Multiagent Systems: Industrial Track, AAMAS
2008, Richland, SC (2008). International Foundation for Autonomous Agents and
Multiagent Systems

7. Cabac, L.: Multi-agent system: a guiding metaphor for the organization of software
development projects. In: Petta, P., Müller, J.P., Klusch, M., Georgeff, M. (eds.)
MATES 2007. LNCS (LNAI), vol. 4687, pp. 1–12. Springer, Heidelberg (2007)

8. Czarnul, P., Matuszek, M., Wójcik, M., Zalewski, K.: BeesyBees - efficient and
reliable execution of service-based workflow applications for BeesyCluster using
distributed agents. In: Proceedings of IMCSIT 2010 (2010)

9. Delias, P., Tsafarakis, S., Doulamis, A.: Manual intervention and statefulness in
agent-involved workflow management systems. In: Casillas, J., Mart́ınez-López,
F.J., Corchado, J.M. (eds.) Management of Intelligent Systems. AISC, vol. 171,
pp. 239–249. Springer, Heidelberg (2012)

10. Duvigneau, M., Moldt, D., Rölke, H.: Concurrent architecture for a multi-agent
platform. In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE 2002. LNCS, vol.
2585, pp. 59–72. Springer, Heidelberg (2003)

11. Ebadi, T., Purvis, M., Purvis, M.K.: A colored petri net model to repre-
sent the interactions between a set of cooperative agents. In: Beneventano, D.,
Despotovic, Z., Guerra, F., Joseph, S., Moro, G., de Pinninck, A.P. (eds.) AP2PC
2008/2009. LNCS, vol. 6573, pp. 141–152. Springer, Heidelberg (2012)

12. Hsieh, F.-S.: Collaborative workflow management in holonic multi-agent systems.
In: O’Shea, J., Nguyen, N.T., Crockett, K., Howlett, R.J., Jain, L.C. (eds.) KES-
AMSTA 2011. LNCS, vol. 6682, pp. 383–393. Springer, Heidelberg (2011)

13. Jacob, T.: Implementierung einer sicheren und rollenbasierten
Workflowmanagement-Komponente für ein Petrinetzwerkzeug. Diploma the-
sis, University of Hamburg, Department of Computer Science (2002)

14. Jander, K., Braubach, L., Pokahr, A., Lamersdorf, W., Wack, K.: Goal-oriented
processes with GPMN. Int. J. Artif. Intel. Tools 20(06), 1021–1041 (2011)

78 T. Wagner and D. Moldt

15. Jander, K., Lamersdorf, W.: Jadex WfMS: Distributed workflow management for
private clouds. In: Conference on Networked Systems, NetSys 2013, Stuttgart,
Germany, March 11–15, 2013 (2013)

16. Köhler-Bußmeier, M., Wester-Ebbinghaus, M., Moldt, D.: A formal model
for organisational structures behind process-aware information systems. In:
Jensen, K., Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models
of Concurrency II. LNCS, vol. 5460, pp. 98–114. Springer, Heidelberg (2009)

17. Kummer, O.: Referenznetze. Logos Verlag, Berlin (2002)
18. Kummer, O., Wienberg, F., Duvigneau, M., Köhler, M., Moldt, D., Rölke, H.:

Renew - the reference net workshop. In: Veerbeek, E. (ed.) Tool Demonstrations.
24th International Conference on Application and Theory of Petri Nets (ATPN
2003). International Conference on Business Process Management (BPM 2003),
June 2003

19. Mislevics, A., Grundspenkis, J.: Workflow based approach for designing and exe-
cuting mobile agents. In: Second International Conference on Digital Information
Processing and Communications (ICDIPC), July 2012

20. Purvis, M., Savarimuthu, S., de Oliveira, M.: Mechanisms for cooperative behaviour
in agent institutions. In: IEEE/WIC/ACM International Conference on Intelligent
Agent Technology. IAT 2006, December 2006

21. Reese, C.: Prozess-Infrastruktur für Agentenanwendungen. Agent Technology -
Theory and Applications, vol. 3. Logos Verlag, Berlin (2010)

22. Rölke, H.: Modellierung von Agenten und Multiagentensystemen - Grundlagen und
Anwendungen. Agent Technology - Theory and Applications, vol. 2. Logos Verlag,
Berlin (2004)

23. van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G.
(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

24. Wagner, T., Moldt, D.: Approaching the integration of agents and workflows. In:
Bergenthum, R., Desel, J. (eds.) 18. Workshop AWPN, Tagungsband, Hagen, Sep-
tember 2011

25. Wagner, T., Quenum, J., Moldt, D., Reese, C.: Providing an agent flavored inte-
gration for workflow management. In: Jensen, K., Donatelli, S., Kleijn, J. (eds.)
Transactions on Petri Nets and Other Models of Concurrency V. LNCS, vol. 6900,
pp. 243–264. Springer, Heidelberg (2012)

26. Liu, Y.-H., Li, C.-L.: A workflow engine model based on multi-agent. In Interna-
tional Conference on Computer Application and System Modeling (ICCASM), vol.
14, October 2010

27. Zhaohui, L., Jia, C., Rui, G., Bin, X.: A reconfigurable platform of manufactur-
ing execution system based on workflow and agent. In: WRI World Congress on
Software Engineering. WCSE 2009, vol. 1, May 2009

A Spatio-Temporal Multiagent Simulation
Framework for Reusing Agents in Different

Kinds of Scenarios

Daan Apeldoorn(B)

Information Engineering Group, Technische Universität Dortmund,
Dortmund, Germany

daan.apeldoorn@tu-dortmund.de

Abstract. In this paper a spatio-temporal simulation framework for
multiagent systems is introduced. Its fundamental idea consists in the
possibility to develop agents that can be easily deployed in different kinds
of scenarios without adapting the agents’ percepts, actions or commu-
nication model to a specific scenario. This can be useful to observe and
evaluate agents in the context of various scenarios, e. g. to measure their
generality and adaptivity against different kinds of problems. To demon-
strate the framework, two different example scenarios are considered that
are both simulated with the same simple agent implementation.

Keywords: Multiagent simulation · Reusable agents · Graphical
modeling

1 Introduction

This paper considers the possibility to easily use and evaluate cooperative
problem-solving agents in the context of different scenarios. For this purpose,
a simulation framework for spatio-temporal multiagent scenarios is presented,
which is based on the AbstractSwarm modeling language [1]. Unlike other
approaches, the presented framework strictly separates the description of a sce-
nario (the environment and the agents’ tasks) from the modeling of the agents
(their percepts, actions and communication model). This results in two major
benefits: (i) Modelers can quickly create and run multiagent simulations by only
considering the description of the scenario (without modeling the agent behavior)
and (ii) agents can be implemented in a generic way, such that they can be reused
in any modeled scenario (i. e. agents that are implemented using the framework’s
programming interface can be deployed in any scenario created with the model-
ing language). The presented framework can also be used as a multiagent plan-
ning tool for practical problems similar to the problem of spatio-temporally con-
strained motion planning for cooperative vehicles (STCMP), which was proposed
as a challenging problem to the planning community by Scheuren et al. [17].

c© Springer International Publishing Switzerland 2015
J.P. Müller et al. (Eds.): MATES 2015, LNAI 9433, pp. 79–97, 2015.
DOI: 10.1007/978-3-319-27343-3 5

80 D. Apeldoorn

Considering related work of the last decades, a wide range of systems have
been developed for creating and running multiagent simulations, which can be
roughly divided into two groups:1

– Domain specific systems, e. g. for transport chain scenarios (TAPAS [6]) or
public transport networks [5], trading simulations (DMarks II [9]), crowd
simulations (SimTread [7]), biological simulations (BioMASS [16]), etc.

– General platforms, languages, libraries or architechtures which can be used to
develop agents and multiagent scenarios in multiple domains (e. g. SeSAm [8],
NetLogo [18],Repast [12],Jason [2],Mulan [3],MASON [10],Swarm [11]).

Systems of the first group can be configured (e. g. by modifying parameters)
to quickly create and run different simulation scenarios. Agents of these systems
can usually perform in any of the created scenarios (e. g. agents of a traffic
simulation are still able to drive, if the overall speed limit is changed). But being
related to a specific domain, these systems are not very flexible and can only be
used for a small family of similar problems. In contrast, systems of the second
group are very flexible. But creating and running a simulation scenario requires
both the environment and the agents (e. g. their percepts and actions within
the environment) to be modeled. As a consequence, agents are reliant on the
environment and cannot be used in any other scenario (e. g. to evaluate their
behavior in the context of different applications).

The framework presented in this paper tries to combine the advantages of
both groups: On the one hand, scenarios can be quickly created using the pro-
vided graphical modeling language. On the other hand it is very flexible and can
be used to model scenarios of various domains (e. g. in the broad field of Logis-
tics). In addition, agents can be deployed directly in different scenarios without
changing their implementation.

The remainder of the paper is organized as follows: First, the underlying
graphical modeling language will be briefly introduced, which serves as an inter-
face between the scenario descriptions and the implementation of agents (Sect. 2).
After that, the simulation system and the agent programming interface will be
explained, which both operate on the abstract concepts provided by the model-
ing language (Sect. 3). To demonstrate the idea of using agents in different kinds
of problems, two scenarios will be considered as examples (Sect. 4) and finally a
conclusion will be given (Sect. 5).

2 Graphical Modeling Language

The graphical modeling language serves as a meta-model for multiagent scenarios
and allows to quickly set up scenarios in a spatio-temporal context. Furthermore,
it helps the modeler to decompose more complex scenarios using a special concept
called perspectives, which will be defined later in Sect. 2.4. Since the language

1 Only a small selection will be mentioned here as a brief overview over recent and
earlier related approaches.

A Multiagent Framework for Reusing Agents in Different Kinds of Scenarios 81

itself is a preliminary work to the simulation framework, this section only focuses
on the basic ideas of the language and the modeling elements needed for the use
case examples shown in Sect. 4 (for a more detailed introduction see [1]).

The fundamental idea of the modeling approach is to describe multiagent
scenarios using the two basic components agents and stations. Agents are used
to model the mobile or active components of a scenario (like vehicles, humans,
products, etc.), whereas stations represent the immobile or passive components
(like rooms, buildings, machines, etc.). Agents can visit stations and thereby
trigger so-called visit events: Every time an agent visits a station, a visit event
is triggered on both components.

A scenario is modeled as a graph, which is defined as the triple2:

G := (V,E,Ψ) (1)

The set V := STC
= STA

∪ STS
consists of two different kinds of nodes, repre-

senting the two basic component types: STA
is a set of agent types and STS

is
a set of station types. The set E := EV ∪ ET ∪ EP consists if three different
kinds of edges to model visiting, temporal and spatial relations among the com-
ponent types. Ψ is a set of perspectives, which divide the graph into subgraphs.
Every perspective ψ ∈ Ψ consists of a name and a subset of the nodes Vψ ⊆ V .
Every component type (and therefore every node) must belong to exactly one
perspective, such that for each ψi, ψj ∈ Ψ with i �= j it holds that Vψi

∩Vψj
= ∅

and
⋃

ψ∈Ψ Vψ = V . Every agent type TA ∈ STA
contains a set A of agents and

every station type TS ∈ STS
contains a set S of stations. In the following, for

any a ∈ A, we say that a is of type TA and, for any s ∈ S, we say that s is of
type TS .

To illustrate the different language concepts, Fig. 1 will be used as a running
example, where a simple school timetabling scenario is considered (an extended
version of this example will be given in Sect. 4.1).

2.1 Agents and Stations

As described in Sect. 2, component types are the nodes of a scenario graph and
are used to model agents and stations. In this section, both agent and station
types are explained.

Agent Types. An agent type TA ∈ STA
is defined as a triple:

TA := (tA, A, PA) (2)

where tA is the type name, A �= ∅ is the set of agents that belong to the type and
PA is a set of attributes that are applied to every agent a ∈ A (see Sect. 2.3).

Agent types are represented as circles, which are annotated with the type
name tA and the cardinality cA := |A| (see Fig. 1, e. g. “Class”).
2 Note that this definition slightly differs from [1] to outline the concept of perspectives

more clearly.

82 D. Apeldoorn

Station Types. A station type TS ∈ STS
is defined as a triple:

TS := (tS , S, PS) (3)

where tS is the type name, S �= ∅ is the set of stations that belong to the type and
PS is a set of attributes that are applied to every station s ∈ S (see Sect. 2.3).

Station types are represented by squares, which are annotated with the type
name tS and the cardinality cS := |S| (see Fig. 1, e. g. “Mathematics”).

2.2 Relations

The graphical modeling language provides three different kinds of edges to model
visiting, spatial and temporal dependencies among the component types.

�visit� Edges. A �visit� edge eV ∈ EV is an undirected unweighted edge
between an agent type TA and a station type TS . It is defined as:

eV := ({TA, TS}, b) (4)

where b ∈ B := {True,False} is a boolean value.
A � visit� edge states that agents of type TA have to visit stations of type

TS . In case b = True, it also determines that the agents have to be located at
one of the connected stations at the beginning of a simulation (see Fig. 1, e. g.
between “Class” and “Mathematics”).

�place� Edges. A �place� edge eP ∈ EP is an undirected or directed weighted
edge between two station type TS1 , TS2 ∈ STS

. It is defined as:

eP := ({TS1 , TS2},DP , wP) (5)

where DP ∈ {{TS1}, {TS2}, ∅} is a set containing the station type to which the
edge is directed (with DP = ∅ in case eP is undirected) and wP ∈ N∪ {0} is the
weight.3

A �place� edge models a route of length wP between every station of type TS1

and every station of type TS2 . Thus, agents can reach a station of type TS2 from
a station of type TS1 in wP time units (and vice-versa). In case eP is directed,
it additionally states that the stations of the connected types must be visited in
the order given by the edge’s direction (see Fig. 1, between “Mathematics” and
“Literature”, as an example of an undirected �place� edge).

�time� Edges. A �time� edge eT ∈ ET is an undirected or directed weighted
edge between any two component types TC1 , TC2 ∈ STC

. It is defined as:

eT := ({TC1 , TC2},DT , L, wT) (6)

where DT ∈ {{TC1}, {TC2}, ∅} is a set containing the component type to which
the edge is directed (with DT = ∅ in case eT is undirected). The set L ∈
{{TC1}, {TC2}, {TC1 , TC2}, ∅} contains the component type(s) to which eT is con-
nected with a logical conjunction (in case more than one temporal dependencies

A Multiagent Framework for Reusing Agents in Different Kinds of Scenarios 83

are declared to a component type). If L �= ∅ then either eT must be undirected
or DT = L. The weight of the edge is defined as wT ∈ N ∪ {0}.3

A �time� edge defines a temporal synchronization between the components of
type TC1 and the components of type TC2 : The weight wT determines how many
time units have to elapse between a visit event triggered on a component of type
TC1 and a visit event triggered on a component of type TC2 . In case the edge is
directed, it additionally states that the visit events must be triggered in the order
given by the edge’s direction. Graphically, a double line is used to distinguish
�time� edges from �place� edges (see Fig. 1, e. g. between “Mathematics” and
“Course”, as an example of an undirected �time� edge).

2.3 Attributes

To refine a model, attributes can be annotated to agent types and station types,
which are then applied to every agent/station of the respective type. Some
attributes can be assigned to any kind of component type, others can be assigned
to agent types or station types only.

An attribute is defined as a tuple:

p := (n, v) (7)

where n is the attribute’s name and v ∈ N \ {0} is the attribute’s value.4

The current implementation of the modeling language comprises ten dif-
ferent attributes, e. g. Necessity (Nec.) to determine how often agents must
visit connected stations or Time to determine the duration of a visit event.
These attributes cover common use cases for spatio-temporal scenarios (further
attributes could be part of future extensions). The example in Fig. 1 demon-
strates how attributes can be used to create more detailed models (e. g. the Nec.
attributes with a value of 1 determine for every station to be visited exactly one
time).

2.4 Perspectives

Perspectives are structural modeling elements, that do not contribute any seman-
tics to a simulation. Perspectives support the decomposition of complex scenarios
by enforcing the modeler to consider a scenario from different point of views. The
resulting perspectives each represent a simplified aspect of the modeled scenario.

A perspective ψ ∈ Ψ is defined as a tuple:

ψ := (f, Vψ) (8)

3 The edge’s weight is restricted to N, since the current implementation of the frame-
work is based on both discrete time and space units. For alternative implementations
the weight could also be extended to R.

4 Some attributes are semantically restricted to N by nature (e. g. attributes for lim-
iting the number of visit events). Other attributes could also be extended to R in
alternative implementations of the framework.

84 D. Apeldoorn

Fig. 1. A small timetabling scenario where classes have to be assigned to courses and
courses have to be assigned to rooms. The scenario can be easily decomposed by sep-
arately considering the problem from the classes and the rooms points of view.

where f is a name, that describes the aspect on which the perspective is focused
and Vψ ⊆ V is a set of component types belonging to the perspective.

Perspectives can be easily connected using �time� edges between their com-
ponent types. Figure 1 shows an example on how perspectives can be used to
decompose a problem (here, a small timetabling problem is first considered from
two different perspectives, which are then synchronized using �time� edges).

3 Simulation Framework

This section introduces the simulation framework.5 First, Sect. 3.1 provides
detailed semantics of the graphical modeling language by describing the basic
state transition mechanism of the framework according to the relations among
the component types. In Sect. 3.2, the basic idea of the simulation algorithm is
outlined. Section 3.3 explains the generic visualization scheme and in Sect. 3.4
the agent programming interface is introduced.

3.1 Formal Semantics

The transition mechanism of the framework is based on the sets AG and SG,
where AG is the set of all agents and SG is the set of all stations in a scenario
graph G.

The semantics are formalized using rules with a premises
conclusion notation based

on operational semantics [14] (where premises represent a state and the conclu-
sion represents the resulting subsequent state), with a special focus on temporal

5 The project can be downloaded from GitHub: https://github.com/dapel/Abstract
Swarm.

https://github.com/dapel/AbstractSwarm
https://github.com/dapel/AbstractSwarm

A Multiagent Framework for Reusing Agents in Different Kinds of Scenarios 85

aspects:6 Premises are described using one or more conjunctive expressions of
the form 〈expr, σa

t 〉, yielding the value of expr in state σ of agent a at time t
(where t = 0 is the time of the initial state of the simulation before the simulation
starts). A conclusion is given by the expression σa

t �σ′a
t , describing the transition

of agent a from state σ to the subsequent state σ′ at time t > 0. A state σa
t

is defined as a tuple σa
t := (a.target, a.distance, a.visiting) containing the state

variables of agent a at time t, which will be described in the following:

– a.target ∈ SG ∪ {Null}: the current target station selected by a (Null if a
currently has no target)

– a.distance ∈ N ∪ {0}: the current distance of a to its target station a.target
– a.visiting ∈ B := {True,False}: a Boolean value that specifies whether a is

currently visiting a station

To be able to create compact representations of the semantics, the following
shorthands are defined for agent a ∈ AG and station s ∈ SG:

– a @ s := (a.distance = 0) ∧ ¬a.visiting
(a is located at s but not visiting s)

– a � s := (a.target = s)
(a has selected s as next target)

– a → s := (a.target = s) ∧ ¬a.visiting ∧ (a.distance > 0)
(a is on the way to s)

– a � s := (a.target = s) ∧ (a.distance = 0) ∧ a.visiting
(a is visiting s)

Using these preliminaries, the semantics can be formalized as follows.7

Semantics of �visit� Edges. Given a �visit� edge eV = ({TA, TS}, b) ∈ EV ,
an agent a being of type TA and a station s being of type TS , the semantics of
eV is defined by the following rule:

semeV :
〈a � s, σa

t 〉 〈a @ s, σa
t 〉

σa
t � σ′a

t

(9)

with σ′a
t = (s, 0,True).

The rule states that eV allows a to visit s, given that a is located at s and
a decided to enter s. Note that there is no temporal change from σa

t to σ′a
t ,

since the simulation time progresses not until all agents have been handled (see
“Global State Transition” at the end of Sect. 3.1).

6 Note that only the simulation semantics of the graphical modeling language are
formalized here, and not the action selection or the communication mechanism of
the agents, which will be explained separately in Sects. 3.2 and 3.4.

7 Note that the semantic formalism may appear complicated to the reader, in contrast
to the claims made in the beginning about the framework being easy to use. But
users usually use the graphical modeling interface and therefore don’t have to deal
with the formalism, which serves as a foundation of the simulation algorithm here.

86 D. Apeldoorn

Semantics of �place� Edges. Given a �place� edge eP = ({TS1 , TS2},DP ,
wP) ∈ EP , a station s1 being of type TS1 , a station s2 being of type TS2 and an
agent a of type TA being connected to TS1 , TS2 by �visit� edges, the semantics
of eP is defined by the following rules:

semeP
1 :

〈a @ s1, σ
a
t 〉 〈a � s2, σ

a
t 〉

σa
t � σ′a

t

(10)

with σ′a
t = (s2, wP ,False) and

semeP
2 :

〈a → s, σa
t 〉

σa
t � σ′a

t

(11)

with σ′a
t = (s, 〈a.distance, σa

t 〉 − 1,False).
The first rule states that eP allows a to go from s1 to s2, given that a is

located at s1 and a wants to visit s2. The second rule states that a can continue
going from s1 to s2 (until s2 is reached), given that a is already on its way to s2.

In case eP is directed such that DP = {s2}, the following additional rule is
provided:

semeP

DP �=∅:
〈a @ s2, σ

a
t 〉 〈a � s2, σ

a
t 〉 〈a � s1, σ

a
t0<t−wP

〉
σa

t � σ′a
t

(12)

with σ′a
t = (s2, 0,True).

This rule states that a is allowed to visit s2 given that s1 was visited by a at
least wP time units before.

Semantics of �time� Edges. Since �time� edges can be defined between any
two component types TC1 and TC2 , we consider two agent types TA1 , TA2 and two
station types TS1 , TS2 , with TA1 being connected to TS1 and TA2 being connected
to TS2 by �visit� edges. A �time� edge eT = ({TC1 , TC2},DT , L, wT) ∈ ET can
then be defined between either TA1 and TA2 , TA1 and TS2 , TS1 and TS2 or TS1 and
TA2 , resulting in the same semantics. Given two agents a1, a2 being of type TA1 ,
TA2 and two stations s1, s2 being of type TS1 , TS2 respectively, the semantics of
eT , is defined by the following rules:

semeT :
〈a1 @ s1, σ

a1
t 〉 〈a1 � s1, σ

a1
t 〉 ∧t

t̂=t−wT
〈¬(a2 � s2), σa2

t̂
〉

σa1
t � σ′a1

t

(13)

with σ′a1
t = (s1, 0,True).

The rule states that eT allows a1 to enter s1 if there are at least wT time
units elapsed after a2 visited s2.

In case eT is directed such that either DT = {TA2} or DT = {TS2} (depending
on which component types are connected by the edge), instead the following
(simpler) rule is provided:

semeT

DT �=∅:
〈a1 @ s1, σ

a1
t 〉 〈a1 � s1, σ

a1
t 〉 〈a2 � s2, σ

a2
t0<t−wT

〉
σa1

t � σ′a1
t

(14)

with σ′a1
t = (s1, 0,True).

A Multiagent Framework for Reusing Agents in Different Kinds of Scenarios 87

This rule states that a1 is allowed to visit s1 given that a2 visited s2 at least
wT time units before. Note that this automatically fulfills the premises of rule
semeT as well.

The special case that eT is both undirected and having a weight of 0 (thus
DT = ∅ and wT = 0), leads to the additional rule:

semeT

DT=∅,wT=0:
〈a1 @ s1, σ

a1
t 〉 〈a1 � s1, σ

a1
t 〉 〈a2 � s2, σ

a2
t 〉

σa1
t � σ′a1

t

(15)

with σ′a1
t = (s1, 0,True), which states that a1 and a2 must visit s1 and s2

simultaneously.

Global State Transition. Having the semantics of the relations to describe the
state changes of agents during a single time unit, in this section, the transition
of a global simulation state Σt = ({σa1

t , ..., σan
t }, t) at time t to its consecutive

state Σt+1 will be defined.
Since it is not always possible to apply one of the transition rules to an agent

(e. g. some rules depend on the decision of other agents or attributes may prevent
a station from being visited, etc.), a default rule is introduced, which is applied
to every agent a to which no other rule can be applied at time t:

default :
σa

t � σ′a
t

(16)

with σ′a
t = σa

t .
This rule simply allows the transition of agent a from state σa

t to state σ′a
t

without changing any state variables.
Given all transition rules, a global simulation step can be defined as follows:

simstep:

∧
a∈AG

〈σa
t � σ′a

t , Σt〉
Σt � Σt+1

(17)

with Σt+1 = ({σ′a1
t , ..., σ′an

t }, 〈t, Σt〉 + 1).
According to this rule, the simulation progresses to the next time unit by

applying the transition rules to every single agent.

3.2 Simulation Algorithm

The discrete simulation algorithm operates on the two sets AG and SG (where
AG is the set of all agents and SG is the set of all stations of a graph G as intro-
duced in Sect. 3.1). In every time step t all (active) components are processed
sequentially in random order (as proposed e. g. in [11]).

A single step for an agent a ∈ AG is calculated according to Algorithm 1,
which makes use of the following variables/function: a.visiting ∈ B := {True,
False} determines whether a is currently visiting a station, a.target ∈ SG ∪
{Null} is the current target station of a (Null in case a currently has no target),
a.distance ∈ N∪{0} is the current distance of a to its target station a.target, and

88 D. Apeldoorn

Algorithm 1. Single Agent Step

01 if ¬a.visiting:
02 Ask a for next target station s
03 a.target := s
04 if ¬a.visiting ∧ a.target �= Null ∧ a.distance > 0:
05 Move a towards its target station a.target
06 else:

07 if a.distance = 0 ∧ visitingOk(a, a.target):
08 Trigger visit event on a and s
09 a.visiting := True
10 if a.visiting:
11 Progress visit time of a
12 Allow a to communicate to other agents

visitingOk : AG × SG → B is a function, which returns whether a is currently
allowed to visit its target station (according to the constraints of the modeled
scenario).

A special problem of this approach arises when dealing with �time� edges
having a weight of 0: These �time� edges require visit events to be triggered
simultaneously on the connected agents/stations (see Sect. 2.2). But since the
single steps of all agents are computed consecutively, this cannot be checked
within the calculation of an agent’s single step (in function visitingOk).

Since �time� edges are essential modeling elements and are usually used
extensively (e. g. for synchronizing perspectives), solving this problem is crucial.
To achieve this, the simulation system makes use of a “relax and repair” approach
(as more generally described e. g. in [4]): An entire simulation step (including
the single steps of all agents) is first calculated without considering any �time�

edges (relaxation). If this results in an inconsistent simulation state containing
violated �time� edges, the inconsistency is repaired by successively removing all
illegally visiting agents.

3.3 Simulation Visualization

The simulation visualization follows a generic approach: It allows to observe a
running simulation without the need to define a specific visualization scheme for
a modeled scenario.

This is achieved by making use of a concept known from Petri nets (e. g.
[15]): Since a scenario is represented as a graph, the graph itself can be used to
visualize the simulation process, by varying the size of the nodes over time.

The size of an agent type decreases the more agents of that type are currently
vising a station and the size of a station types increases, the more agents are
having one of its stations as target.

The visualization of the simulation results also follows a generic approach: By
simply logging whenever an agent visits a station, the outcome of a simulation
can be intuitively visualized as a Gantt chart (e. g. [13]).

A Multiagent Framework for Reusing Agents in Different Kinds of Scenarios 89

3.4 Agent Programming Interface

The agent programming interface is designed to be light-weight with a focus
on the simple implementation of agent behavior. By making use of the abstract
concepts of the graphical modeling language (according to Sect. 2), it allows to
implement agents independently from a specific scenario (i. e. agents basically
have to deal with stations and with other agents in any case). Thus, the resulting
agents can be deployed in any modeled scenario.

The agent interface consists of three functions, which can be implemented
using the Python programming language. The functions serve to determine the
action selection, the communication behavior and the treatment of the reward
gained by the agents. All of them will be explained in the following.

Evaluation Function. An action of an agent a ∈ AG consists of (i) moving
to a target station and (ii) visiting that station. An agent initiates such an
action by selecting its next target station snext. The selection is determined by
the evaluation of every potential target station through the evaluation function.
Potential stations are all stations Sa ⊆ SG to which a is connected with �visit�

edges (and which are still relevant for the running simulation according to their
attributes).

The evaluation function is called by the simulation system at time tact, when
the agent a has to choose its next action (see line 2 in Algorithm 1) and it is
called subsequently for every potential station s ∈ Sa.

The evaluation function has the following signature:

evaluation(a,A, S, tact, s) (18)

where a is the agent itself, A is an associative data structure containing all other
agents of a scenario with their recently communicated data, S is the set of all
stations of the scenario, tact > 0 is the current simulation time and s is the
station to be evaluated by a as potential next target.

The return value of the function determines which station will be selected:
The station for which the highest value is returned will be selected as the next
target station of a. Note that implementing the agent’s decision making through
the evaluation function can also comprise complex behavior like planning, learn-
ing, etc. since further data structures can be created and attached to a, and
external processes can be called here (e. g. for integrating external inference or
other modules).

Communication Function. The communication function can be used to imple-
ment the communication behavior of agents by determining the information that
are sent from one agent to the others for coordinating their actions.

It is called in every time unit tcom for every agent a ∈ AG at the end of its
single step (see line 12 in Algorithm 1).

The communication function has the following signature:

communication(a,A, S, tcom, C) (19)

90 D. Apeldoorn

where a,A, S are defined analogously to the evaluation function, tcom > 0 is the
current simulation time and C is a tuple with predefined basic communication
information (consisting of a’s target station, the time unit when the station will
be reached and the corresponding evaluation value).

The return value of the function consists of the information sent by a to
all other agents. The most basic form of communication can be implemented
by simply returning the basic communication tuple C: In this case, agents are
only able to coordinate their immediate next action. In general, it is possible to
return any kind of information (e. g. a list of actions representing a plan), which
then must be considered accordingly by other agents in the evaluation function.

The communicated information can be received by other agents by accessing
the parameter A. Agents can then consider these information in their decision
making process (e. g. when evaluating a station as potential next target).

Reward Function. The reward function allows to implement how agents treat
the rewards they gain for their actions during the simulation.

The function is called for every agent a ∈ AG at the end of time unit
trwd ≥ tact, where tact is the time unit in which a selected a target station
(see Evaluation Function) and trwd is the time unit in which a finished visiting
the previously selected target station.

The reward function has the following signature:

reward(a,A, S, trwd, r) (20)

where a,A, S are defined analogously to the evaluation function, trwd is the
current simulation time and r ∈ [0, 1] is the reward of a for its most recently
selected target station.

Since the framework serves as a meta-model for spatio-temporal scenarios,
the reward value r is defined independently from a specific scenario. To achieve
this, the current implementation of the framework acts on the assumption, that
good decisions are those leading to advantages for all agents a ∈ AG (and not
only for the one making the decision). Following this idea, r is defined as follows:

r :=
1

trwd − tact + 1

trwd∑

t=tact

(
1

|AG|
∑

a∈AG

w(σa
t)

)
(21)

with function

w(σa
t) :=

{
1, if 〈a.visiting, σa

t 〉 = True
0, otherwise.

Note that usually not all agents AG have to be considered in the inner sum, e. g.
some agents could not be relevant anymore for the simulation due to attributes
limiting the number of visit events (like Freq. or Nec.).

According to this, a decision of an agent is higher rewarded the more agents
are able to visit stations simultaneously and lower rewarded the more agents are
constrained in visiting stations.

A Multiagent Framework for Reusing Agents in Different Kinds of Scenarios 91

4 Use Case Examples

To evaluate the framework’s fundamental idea of reusing and evaluating agents
in different kinds of scenarios, this section introduces a use case study with
two example scenarios represented by the graphs Gschool and Gprod and a sim-
ple agent model that will be deployed in both cases. The scenarios stem from
two different domains (school vs. industry) and although the scenarios are both
related to scheduling, the underlying problems cover different aspects (as will be
shown in Sect. 4.3).

The two scenarios are introduced in Sects. 4.1 and 4.2. Section 4.3 outlines
the dissimilarity of the underlying problems. Section 4.4 introduces an example
of a simple agent model and Sect. 4.5 presents the simulation results with the
simple agent model being used to simulate both scenarios.

4.1 School Timetabling

This scenario extends the example given in Fig. 1 to a more realistic scenario:
A small fictive school is considered, where timetables have to be created for
teachers, pupils and rooms. The school comprises:

– 2 math teachers, 2 English teachers and 1 music teacher
– 5 classes (every class has to get 2 math lessons, 2 English lessons, 1 music

lesson)
– 4 rooms (3 normal class rooms, 1 special music room)

Perspectives are implied by considering the scenario separately from the teachers,
the classes and the rooms points of view. The perspectives (each containing a
simplified view on the scenario) then are synchronized using �time� edges.

Figure 2 shows the corresponding scenario graph Gschool.

4.2 Production Simulation

In this scenario, a small factory is considered, where workers are producing
different products. As part of the quality assurance process, the products have
to be analyzed using different machines. The factory comprises:

– 8 workers
– 2 kinds of products (5 of each kind, one kind having the need to be analyzed

at higher priority)
– 3 machines (2 of which being able to analyze on their own, 1 needing a worker

to monitor the analysis)

The scenario is modeled by separately considering it from the workers and
the products perspective. Figure 3 show the corresponding scenario graph Gprod.

92 D. Apeldoorn

F
ig
.
2
.
T

h
e

sc
en

a
ri

o
g
ra

p
h
G

s
c
h
o
o
l
o
f
th

e
sc

h
o
o
l
ti

m
et

a
b
li
n
g

ex
a
m

p
le

.

A Multiagent Framework for Reusing Agents in Different Kinds of Scenarios 93

4.3 Dissimilarity of the Scenarios

Although the two scenarios represented by the graphs Gschool and Gprod are both
related to scheduling, the underlying problems are different in several aspects:

– Gschool only comprises synchronizing time dependencies, whereas most of the
�time� edges used in Gprod are directed with a weight > 0 and therefore
contain sequential time relations.

– No Priority attributes are used in Gschool, whereas priorities play an essential
role in the scenario described by Gprod.

– All visit events of the scenario described by Gschool take exactly one time unit,
whereas in case of Gprod visit events are of different durations.

– Space is not important in the scenario described by Gschool (since all station
types have the same space attributes), whereas in case of Gprod, some stations
can be distinguished by their maximum available space (see “Analysis2” in
Fig. 3).

Fig. 3. The scenario graph Gprod of the production simulation example.

94 D. Apeldoorn

These differences lead to different percepts and actions on the agent level (e. g.
agents have to deal with different kinds of spatio-temporal constraints). In addi-
tion, the state-action spaces of agents are of different dimensions and shapes.
However, due to the abstract representation of the scenarios as graphs and due
to the generic agent interface, percepts are generalized by the graphical model-
ing elements and the agent behavior can be implemented independently from a
specific scenario by only determining the selection of stations as a function of
time. This will be demonstrated by the agent model in the following.

4.4 A Simple Agent Model

To simulate the two use case scenarios, a simple reactive agent model will be
implemented as an example in this section.8

Fig. 4. The black curves represent the minimal waiting time of all agents after r runs
(averaged over 20 repetitions). The gray bars show the waiting time of one selected
representative repetition. The reactive agents’ simple policy is more effective than the
random behavior in both scenarios, but much better in case of the first scenario.

8 Note that the agent model only serves as a simple example and does not necessarily
lead to good solutions in the general case. More complex behaviors (e. g. adaptive,
learning, knowledge-based or BDI-like agents) could be also implemented using the
agent programming interface.

A Multiagent Framework for Reusing Agents in Different Kinds of Scenarios 95

The agent behaves according to the following simple rule:

“If station s is the one with the most free space, then select s as next target.”

The rule can be implemented easily using the agent programming interface
(see Sect. 3.4) by simply returning the current free space of station s in the
evaluation function (also considering the next decision of the other agents by
making use of the communication function).

This rule seems to be intuitive to produce a reasonable behavior in several
situations, since it prevents agents from queuing at the same station (however,
it is obvious that this may not lead to optimal behavior in the general case).

4.5 Simulation Results

To demonstrate how agents can be evaluated in the context of different prob-
lems, this section provides the simulation results of the scenarios introduced in
Sects. 4.1 and 4.2 by using the agent model from Sect. 4.4 in both cases.

The total waiting time of all agents during a simulation run is considered and
compared against a random base line (i. e. agents selecting their target stations
randomly). Figure 4 shows the simulation results for both scenarios.

5 Conclusion and Future Work

This paper presented a framework for the modeling and simulation of spatio-
temporal multiagent scenarios, where agents can be easily deployed and observed
in the context of different scenarios.

The first part introduced the graphical modeling language AbstractSwarm
according to [1], which allows to quickly setup multiagent scenarios by only
considering the scenario description (without modeling the agent behavior). In
addition, it was explained how the concept of perspectives can contribute to the
decomposition of more complex problems.

Based on the modeling language, a simulation system was developed com-
prising a generic visualization scheme and a light-weight agent programming
interface, which allows to implement agents in a generic way, such that they can
be immediately reused in any other scenario without adapting their percepts,
actions or communication.

To demonstrate the idea of deploying and monitoring agents in the context
of different scenarios, two use case scenarios were considered and it was shown
that agents can be implemented in a generic way to be studied across scenarios
with different underlying problems.

Besides continuing the developement of the framework itself, future work
should comprise further evaluation of the framework by applying it to existing
real world problems, like the STCMP [17] mentioned in Sect. 1.

96 D. Apeldoorn

Acknowledgements. The author would like to thank Matthias Thimm for constant
feedback on this paper. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme (FP7/2007-2013),
REVEAL (Grant agree number 610928).

References

1. Apeldoorn, D.: AbstractSwarm – a generic graphical modeling language for multi-
agent systems. In: Klusch, M., Thimm, M., Paprzycki, M. (eds.) MATES 2013.
LNCS, vol. 8076, pp. 180–192. Springer, Heidelberg (2013)

2. Bordini, R.H., Hübner, J.F.: BDI agent programming in agentspeak using jason
(Tutorial Paper). In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol.
3900, pp. 143–164. Springer, Heidelberg (2006)

3. Cabac, L., Dörges, T., Duvigneau, M., Reese, C., Wester-Ebbinghaus, M.: Mod-
els and tools for mulan applications. In: Burkhard, H.-D., Lindemann, G., Ver-
brugge, R., Varga, L.Z. (eds.) CEEMAS 2007. LNCS (LNAI), vol. 4696, pp. 328–
330. Springer, Heidelberg (2007)

4. Domschke, W., Scholl, A.: Logistik: Rundreisen und Touren. Oldenbourg Wis-
senschaftsverlag, München (2010)

5. Greulich, C., Edelkamp, S., Gath, M.: Agent-based multimodal transport planning
in dynamic environments. In: Timm, I.J., Thimm, M. (eds.) KI 2013. LNCS, vol.
8077, pp. 74–85. Springer, Heidelberg (2013)

6. Holmgren, J., Davidsson, P., Persson, J.A., Ramstedt, L.: Tapas: a multi-agent-
based model for simulation of transport chains. Simul. Model. Pract. Theory 23,
1–18 (2012)

7. Kimura, T., Sano, T., Hayashida, K., Takeichi, N., Minegishi, Y., Yoshida, Y.,
Watanabe, H.: Representing crowds with a mulit-agent model. Architectural Plann.
Res. 74(636), 371–377 (2009)

8. Klügl, F.: Sesam: visual programming and participatory simulation for agent-based
models. In: Weyns, H., Uhrmacher, A. (eds.) Multi-Agent Systems: Simulation and
Applications, pp. 477–508. CRC Press, Boca Raton (2009)

9. Kutschinski, E., Polani, D., Uthmann, T.: Dmarks ii: An agent-based platform
for automated trade and its simulation. In: 14. ASIM Workshop Simulation and
Artificial Intelligence on Multi-Agent Systems and Individual-Based Simulation.
Würzburg, Germany (2000)

10. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: a multi-
agent simulation environment. Simul. Trans. Soc. Model. Simul. Int. 81(7), 517–
527 (2005)

11. Minar, N., Burkhart, R., Langton, C., Askenazi, M.: The swarm simulation system:
a toolkit for building multi-agent simulations. Working paper 96–06-042, Santa Fe
Institute (1996)

12. North, M., Collier, N., Ozik, J., Tatara, E., Altaweel, M., Macal, C., Bragen, M.,
Sydelko, P.: Complex adaptive systems modeling with repast simphony. Complex
Adapt. Syst. 1, 3 (2013)

13. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Springer, New York
(2012)

14. Plotkin, G.D.: A structural approach to operational semantics. J. Logic Algebraic
Program. 60–61, 17–139 (2004)

15. Reisig, W.: Petrinetze: Modellierungstechnik, Analysemethoden. Fallstudien.
Vieweg+Teubner, Wiesbaden (2010)

A Multiagent Framework for Reusing Agents in Different Kinds of Scenarios 97

16. Sansores, C.E., Reyes, F., Gómez, H.F., Pavón, J., Calderón-Aguilera, L.E.: Bio-
mass: a biological multi-agent simulation system. In: 2011 Federated Conference on
Computer Science and Information Systems (FedCSIS 2011), pp. 675–682. IEEE,
Szczecin (2012)

17. Scheuren, S., Stiene, S., Hertzberg, J., Hartanto, R., Reinecke, M.: The problem of
spatio-temporally constrained motion planning for cooperative vehicles. In: Pro-
ceedings of the 26th Workshop “Planen, Scheduling und Konfigurieren, Entwerfen”
(PuK 2011) (2011)

18. Tisue, S., Wilensky, U.: Netlogo: A simple environment for modeling complexity.
In: Proceedings of the Fifth International Conference on Complex Systems (ICCS
2004). Boston (2004)

Smart Things Working Together

A Multiagent Systems Perspective on Industry
4.0 Supply Networks

Marc Premm(&) and Stefan Kirn

Information Systems 2, University of Hohenheim, Stuttgart, Germany
{marc.premm,stefan.kirn}@uni-hohenheim.de

Abstract. Industry 4.0 scenarios involve Cyber-Physical-Systems to achieve a
higher degree of individualization. Multiagent systems show the main charac-
teristics to reach the goal of increased individualization possibilities by flexible
interactions of agents. However, the organizational complexity of individualized
manufacturing processes and thus the complexity of current supply networks
require the extension of current multiagent system models. Enabling interaction
between various multiagent systems representing autonomous actors of a supply
network is necessary to cope with the increased complexity. This paper presents
ongoing research and adds to the literature by modelling multiagent systems as
fractals of a supply network using logistics modelling approaches. We present
three examples for applying the multiagent perspective to such Industry 4.0
supply networks.

Keywords: Multiagent systems � Supply networks � Organizations

1 Introduction

The Industry 4.0 paradigm describes the forth industrial revolution with the vision of
“everything connected with everything else”. In particular, the focus is set on com-
panies that build up cooperative networks of unique specialists [1]. These networks
facilitate the step from single plants to supply networks, but require substantial
information exchange between the actors for a seamless inter-organizational process
flow. The demand for highly customized products and services is continuously
increasing. Hence, processes in supply networks have to be constantly adapted to
changing conditions that, due to the high and further increasing complexity, cannot be
handled with current planning and control methods [2]. An important new element of
these networks are Cyber-Physical-Systems (CPS). Due to their IP-based communi-
cation capabilities, they offer new options to bridge the gap between physical manu-
facturing processes, human employees, and information technology supporting
monitoring, coordination, and controlling of the operations, and the local processes
themselves [3].

New organizational forms are required to manage Industry 4.0 operations in
emerging hybrid organizational settings, where humans and CPS cooperate in
well-organized, small teams to produce and deliver their local output to the overall
supply network. In such supply networks, the competitiveness of each of its parts is
directly related to the competitiveness of the overall supply network. The key factor for

© Springer International Publishing Switzerland 2015
J.P. Müller et al. (Eds.): MATES 2015, LNAI 9433, pp. 101–118, 2015.
DOI: 10.1007/978-3-319-27343-3_6

competitive success of these networks is their ability to react appropriately to changing
market demands. These factors include (i) a faster reaction with less costs and of higher
quality to individual customer demands, and (ii) the creation of new products and
services for customers.

The concept of intelligent, cooperative software agents and multiagent systems
(MAS) offers a well-suited approach to model, analyze and design such systems.
Research in Distributed Artificial Intelligence (DAI) has identified appropriate orga-
nizational concepts for problem solving systems. However, they mainly focus on the
flexibility of distributed and cooperative search algorithms, neglecting the stability of
the organizational structure such as stable resource and task allocation within
enterprises.

Existing approaches in multiagent technology often neglect the fact that autono-
mous software agents generally cooperate in a loosely coupled MAS, which dissolve
after the objectives have been achieved. For industrial applications, however, it is
mandatory for MAS to guarantee a certain degree of economically required stability
concerning their existence and structure, while preserving their problem solving flex-
ibility. Further, supply networks are built on a set of flexibly cooperating organizational
units. They are capable to immediately adapt their network structure to the changing
demands of suppliers, customers and their environments.

A number of Industry 4.0 scenarios exhibit the complexity of MAS. For instance,
the application of autonomous agents in the automotive manufacturing industry has
gained significant attention. However, these manufacturing companies are generally
situated in a supply network and thus depend on multiple suppliers. This further
increases the complexity of the system and raises the question, whether and how the
concept of MAS can be extended to meet these network-related requirements.

The aim of this paper is twofold: First, we survey extant literature from DAI and
management science with respect to organization theory. Second, we develop a model
for cooperation between different MAS, which is suitable for Industry 4.0 scenarios.
The proposed artifact is based on (i) logistics (the right material in the right quantity, at
the right time and the right place) and on the (ii) paradigm of fractal companies
introduced by Warnecke [4].

The remainder is structured as follows. Section 2 discusses related work on mul-
tiagent organizations. Section 3 introduces models used in logistics. Section 4 presents
the extension to multi-multiagent systems with corresponding examples in Sect. 5.
Section 6 concludes.

2 State of the Art

This section surveys the state of the art on DAI, management science and their
interrelations. First, literature on multiagent organization from the perspective of DAI is
presented. Then, we compare the findings to approaches in management science, fol-
lowed by reviewing the paradigm of fractal enterprises.

102 M. Premm and S. Kirn

2.1 Multiagent-Organization Models Revisited

Organization as a Social Metaphor. Researchers in the field of MAS/DAI with
backgrounds in management science have noted that “organization” is a metaphor that
can be useful to describe, study, and design distributed software systems [5, 6]. As
compared to organizational theories in management, however, MAS/DAI still lacks
similar fine-grained concepts and instruments for describing, analyzing, understanding
and designing organizational phenomena within agent-based systems [7]. It is very
difficult to find out how an organization made up of people will change if software
agents are joining this organization. This is a significant barrier for collaborative DAI
innovations. However, first approaches consider the formation of teams within orga-
nizations, which may involve both software and human agents [8].

Organization has often been thought of as a top-down concept: starting from a given
task, and, through iterative processes of task/sub-task decomposition, fine-grained task
trees (top-down) and sub-solution synthesizing procedures (bottom-up) are designed.
This approach leads to a top-down design of distributed problem solving systems.
However, there exist many problems, in which large parts of the problem space are
unknown. In such cases agent systems need to be configured bottom-up such that the
relevant method is self-organization [9–12].

Organization as a Pool of Resources. The concept of cooperative problem solving
(CDPS) approaches the integration of existing single problem solving experts (intel-
ligent agents) into an overall framework [13]. The aim is to make synergetic use of
their individual abilities. Otherwise, these abilities can only be used locally. This
bottom-up perspective of building up a CDP system is accompanied by a top-down
perspective on coordinating global processes of problem solving.

This approach can be compared to the perspective of management science, in which
organizations are systems that pool individual resources in order to gain additional
benefits for all of their members. However, so far in contrast to organizational theory,
MAS/DAI research does not adequately address the question why an agent may join
and contribute to a system.

Organization as Partitioning of Problem Spaces. From an organizational perspec-
tive, distributed problem solving implements the concept of dividing labor among a set
of individuals, each possessing a particular capabilities profile. The idea is to assign to
each agent the competence to solve a particular task type. For instance, Gasser states that
“Organization is a precise way of dividing the problem space without specifying par-
ticular problem subtrees. Instead, agents are associated with problem types, and problem
instances circulate to the agents which are responsible for instances of that type” [14].

As an immediate consequence, distributed problem solving leads to role concepts
such as the role concept of the C-Net system [15]. However, the definition of roles in
DAI is quite different to organization theories in management science. The latter refers
to a role as to a precise definition of the expected behavior a particular organization
member will exhibit. Role definitions are created by formal organizational procedures.
Whenever a new individual joins an enterprise it has to formally commit itself to a
particular set of organizational roles.

A Multiagent Systems Perspective on Industry 4.0 Supply Networks 103

Computational and Mathematical Organization Theory. Besides models for solely
human organizations this field of research does also comprise organizational models
that involve software agents and consider distributed artificial intelligence. For
instance, Kaufer and Carley model IT components as artificial agents that have different
levels of information processing capacities. One major part of the model is the com-
munication capabilities of agents: (i) how agents find communication partners, (ii) how
information is communicated to the selected communication partner, and (iii) the
consequences for the organization resulting from the communication [16]. This
approach analyzes the effects of adding or removing agents from the organization by
observing additional communication channels between the organizations’ participants
[17]. Literature on computational and mathematical organization theory mainly focuses
on two ways of conceptualizing the design of an organization: (i) as a set of attributes
or (ii) as a set of matrices [18]. Both ways can be used to structure parts of the overall
design including resource access, authority/communication, or requirements.

OperA. Organizations per Agents (OperA) is a framework that enables the repre-
sentation of organizational structures [19]. It incorporates an organization modelling
language to define organizations and strictly distinguishes between the organizational
structure and the instantiated agents populating the organization [20]. The modelling
language uses three interrelated models: (i) The Organization Model describes the
organizational structure including objectives, norms, roles, interactions, and ontologies,
(ii) the Social Model mapping previously defined organizational roles to specific agents
including contracts about role enactment, and (iii) the Interaction Model specifies the
interaction among agents enacting organizational roles at run-time [20]. The OperettA
toolset can be used for graphically supported modelling in OperA [21]. In the context
of OperA the term organization describes a “specific solution created by more or less
autonomous actors to achieve common objectives” [19]. The restriction to common
goals is widespread in literature. However, in social organizations it is not necessary for
all participant to share a common goal but they have to be motivated to contribute to
the goal of the organization. Of course an incentive system might lead to the adaption
of organizational goals for single agents but this cannot be generalized.

2.2 Comparison with Organizational Theory in Management Science

The concept of cooperating intelligent agents incorporates several important advan-
tages with respect to the challenges of more and more human-like robots, of
self-contained autonomic systems, of (so-called) autonomous cars and drones, and of
Industrial 4.0 systems. However, in all these cases two conceptually different types of
actors are involved. Thus, two completely different bodies of organizational theories
have emerged.

On one hand, management science mainly considers organizations from a social
science perspective. They build on the basic assumption that humans form an enterprise
in order to fulfill a concrete market demand (e.g., production of autonomous cars).
Organizational rules and definitions (e.g., definition of positions) are required to
coordinate the division of labor, the behavior of employees, and all operational

104 M. Premm and S. Kirn

processes to produce, sell, and maintain goods and services. It is well understood, that
enterprises need stability with respect to their suppliers and customers, to their
employees, and to their infrastructural, technical and financial production factors.
Indeed, the increased dynamics of their environments (e.g., changing consumer
behaviors, changing market demand, changing market structures, changing market
coordination, etc.) does also require an increase of organizational flexibility.

On the other hand, DAI has developed organizational theories that build on the
assumption that artificial intelligent software agents form a “well-organized” problem
solving system. DAI distinguishes so-called distributed problem solvers from cooper-
ative distributed problem solvers and MAS. In any of these cases aims and success
factors are given by technical criteria, based on methods and definitions of artificial
intelligence. The main tasks include to conceptualize, implement and run an AI system,
which is capable to efficiently deal with distributed knowledge and with knowledge
requests. “Organization” thus refers to the “organization of symbolic knowledge within
one knowledge base”, to the division of overall knowledge into a well-“organized” set
of sub knowledge bases, or to the “organization of search processes”. “Organization” is
understood as a tool to facilitate the search for symbolically represented formal
knowledge within a set of knowledge bases. It enables agents to achieve their aims even
in previously unknown environments and to pursue their goals even in hostile envi-
ronments or, if necessary, also in collaboration with antagonistic agents. These include
either antagonistic technical systems (e.g., several autonomous cars approaching a
crossing, where each car has been implemented as a selfish agent with the overall aim to
drive as fast as possible) – or humans aiming to stop their robots1, which exhibit a
behavior that is unacceptable for their owners (or human organizations).

2.3 Fractal Enterprises and Fractal Enterprise Processes

In order to meet the challenges of the increasing complexity and the dynamics of
world-wide competition, it has been argued that the enterprise of the future will be
radically decentralized. Decentralization involves the allocation of autonomy, resour-
ces, and responsibilities to deeper levels of the organizational hierarchy (for instance,
see work of Tapscott and Caston [23] or Warnecke [4]). This requires enterprises to
replace hierarchical planning by more decentralized concepts of coordination. In turn,
autonomous organizational subunits need to exhibit a much greater degree of intelli-
gence and self-referencing skills than they do today. This has given rise to the notion of
organizational fractals [4]. Organizational fractals are characterized by the following
major criteria [4]:

• Self-similarity. The criterion of self-similarity describes the structural characteris-
tics of the organization and the modalities of generating added value. The
self-similarity between different fractals enables resource sharing especially for
informational resources.

1 In this paper robots are cyber-physical systems controlled by agent-based software (see the concept
of mouth-head-body architectures suggested by Steiner, Mahling & Haugeneder [22]).

A Multiagent Systems Perspective on Industry 4.0 Supply Networks 105

• Self-organization and Self-optimization. Self-organization and self-optimization
require autonomy to apply individual solutions to the corresponding tasks, and thus
addresses the strategic, the tactical as well as the operational level. This decen-
tralized approach aims at processes that require highly dynamic adaptation.

• Goal-orientation. This paradigm assumes that the overall goal system results from
the individual goal systems of the fractals and is designed in a way that prevents
conflicts between different goal systems. Thus, the performance of each fractal can
be measured continuously.

• Dynamic. In contrast to traditional manufacturing islands, fractals show a higher
degree of autonomy and thus of dynamic behavior. Different fractals are connected
by an information and communication system and enable flexible adaptations to
dynamic environmental requirements.

Organizational fractals involve a maximum degree of local autonomy, self-control,
and self-organization skills. Organizational fractals aim to maximize their local utility
(for instance, in terms of profit). They make decisions on their own whether they are
willing to cooperate or collaborate with other organizational units. There is no direct
means by which fractals can be compelled to behave in a certain manner. The only
acceptable way to control the behavior of an organizational fractal or a group of
cooperating fractals is the design of a globally consistent system of aims and objectives
[4]. However, due to bounded rationality, organizations are generally not able to
establish consistent goal hierarchies. Instead, the different goals that exist within an
organization are more or less inconsistent, the knowledge about goals and relationships
between them remains necessarily incomplete, uncertain, fuzzy, and sometimes even
false. Additional goal conflicts may arise between the goals of an organization and the
preferences of its customers, between different organizations that wish to cooperate,
and between the customers of distinct organizations that wish to pursue their aims in
close cooperation.

Organizational fractals form organizationally stable parts of an enterprise. They
have well-defined interfaces to their environments. They execute locally well-defined
production functions (transformations) and they are supposed to guarantee a maximum

Fig. 1. Integration of business processes

106 M. Premm and S. Kirn

of internal stability in terms of their operations and processes, their requests for
resources, their availability, and their responsiveness. Their flexibility results from their
capability to cooperate and even merge with other fractals in order to create a more
complex fractal. This is depicted in Fig. 1, where four different fractals described by
their individual process landscapes (left hand side of the picture) decide to establish a
close cooperation (right hand side of the picture) in order to jointly fulfill an external
demand.

3 Models for Logistics

The flow of goods and its optimization have always been a major concern in logistics
research. The term “organization of logistics” in literature is mainly used in the context
of structural enterprise organization. However, a strict focus on structural organization
does not sufficiently consider the increasing influence of process organization espe-
cially in a logistics context [24]. The following sections introduce some of the existing
models for logistics and highlight necessary extensions for the use of multiagent
technology.

3.1 Systematic of Logistics Tasks

The task of logistics is that some requesting entity is supplied with the right good
(quantity and quality), at the right time and the right place at minimal costs. A general
model of logistics processes uses a graph to visualize temporal storage points of objects
as vertices and the possibilities of the objects travelling through the logistics network as
edges [25]. Figure 2 shows the three different basic structures of logistics systems:
(i) single-tier systems with direct flow from source to sink, (ii) multi-tier systems with
break-bulk and consolidation points in between, and (iii) combined systems that have
direct and indirect flow of goods.

As stated above, the basic functionality of logistics systems is the spatiotemporal
transformation goods. The optimization of these transformations are fulfilled by the
following processes [25]: (i) Core processes of goods flow (transport, transshipment
and storage processes), (ii) supporting processes, e.g. packaging processes and
(iii) order transmission and processing processes.

The core processes of logistics together with the production processes can be
modularly assembled to form a supply chain and are independent of a certain domain.
A generic example from the manufacturing industry would be the storage of a resource
(temporal transformation) that has to be prepared for pickup (transshipment), trans-
ported to the targeted destination (spatial transformation), prepared for further pro-
cessing (transshipment), physically adapted (production), again prepared for pickup
(transshipment) and so on. This short example shows that the core logistics processes
occur continually. Even for information goods that are not physically transformed, the
schema can be applied: An information is stored in a database (temporal transforma-
tion), made available by some database accessing protocol (transshipment), transported
via a network connection to another destination (spatial transformation), handled by the

A Multiagent Systems Perspective on Industry 4.0 Supply Networks 107

local network layer (transshipment) and processed by the IT system. The single pro-
cesses are characterized as independent and modular fractals that individually optimize
their processes to obtain an overall process flow.

These processes are independent of a certain domain and also independent whether
the processed object is a physical good or an information. The widespread visualization
as a graph is also domain-independent and enables also logistics networks as an
extension of a logistics supply chain [26].

3.2 Approaches for Formalizing Logistics Tasks

Dependent on the specific modelling goal, there are numerous approaches for for-
malizing logistics tasks. This section will provide a short excerpt of available methods
that are used to model intra- and inter-organizational problems. Besides business driven
approaches like the Architecture of Integrated Information Systems (ARIS) that pro-
vides general means for business process modelling [27] and the Supply Chain
Operation Reference (SCOR) Model that is an industry-independent framework for
evaluation and improvement of supply-chains [28] a huge range of quantitative deci-
sion models exist in literature.

For models that go beyond sole descriptive analysis and that are used for planning
and decision making, at least particular aspects have to be represented in quantitatively
parameterized mathematical models [29]. The problem is often modelled as a deter-
ministic single or multi criterial optimization model, either as a linear (mixed integer)
or non-linear optimization model. In that way, numerous variants of supply chain
optimization problems can be addressed. In general, these models assume some central
designer that is able to enforce an optimized production plan to all instances of the
supply chain. However, in real-world scenarios this is usually not the case as even in
supply chains with one dominant company the other companies remain autonomous
and follow their own interests.

Fig. 2. Basic structures of logistics systems [25]

108 M. Premm and S. Kirn

Hence, these models are used to describe and optimize single fractals by aiming for
an increased stability of the subsystem. The following classes of quantitative decision
models are representative for this kind of logistics task formalization [29]:

• Deterministic single-criteria optimization models show only one single objective
function that has to be maximized or minimized. The correlations between different
parameters are known and, thus, the solution is not uniquely defined. Dependent on
the structure of the objective or restrictive functions linear and non-linear as well as
integer or mixed-integer optimization may be distinguished.

• Multi-criteria optimization models have multiple objective functions or criteria that
have to be considered simultaneously. This allows even for competitive objective
functions, which however hinders unambiguous optima. In this case, optima can
only be determined per objective and overall solutions may only be distinguished
by the dominance of other solutions.

• Stochastic optimization models assume that the available data is not complete and,
thus, multiple environmental states are possibly occurring with a certain probability.
Like for multi-critera models, there is no unambiguous solution as even the feasi-
bility of the solution cannot be clearly determined, in case of stochastic elements
appearing in side conditions.

3.3 Logistics in the Perspective of a Fractal Supply Network

Logistics is about the transportation of goods and the systematics mentioned in
Sect. 3.1 are independent of a certain domain and the types of processes presented
show similar characteristics: Goods have to be transported, handled and stored. In
general, this is even independent of the fact, whether the good in question is physical or
informational. For information goods the border between these core processes and the
order transmission or processing might diminish as no physical good is present. In this
case, the core process is an information flow just like the order processes.

Independent of the physical presence of a good, it can be observed that supply
chains are in many cases divided into different fractals. These fractals are autonomous
and cannot be fully controlled from a macro perspective. Depending on the context,
these fractals might be whole enterprises (e.g. in a manufacturing supply chain) or
different departments (e.g. in a hospital) that show a certain amount of autonomy.
Hence, the overall process cannot be planned in detail against the motivation of the
single fractals.

4 Multi-multiagent Systems

Logistics fractals in a supply network are autonomous and are organized to maximize
internal stability as well as efficacy and, thus, show high potential for the representation
by MAS. However, the formation of supply network requires the different MAS to
communicate and cooperate with each other to fulfil their goals. This section addresses

A Multiagent Systems Perspective on Industry 4.0 Supply Networks 109

problems arising when different MAS are involved in the formation process including
the dynamic reconfiguration as presented by Hannebauer [30].

4.1 Basic Approach

Since the emergence of the multiagent paradigm numerous MAS have been developed
for various domains, e.g. manufacturing and logistics, and in most cases the design is
focused on specific issues [31]. Although developed independently, the different MAS
cannot be viewed as separated autarkic systems as they interrelate with each other in
many ways. The coupling of these MAS imply new questions: (i) How should inter-
faces be designed between different MAS? (ii) How should the information exchange
and service delivery between these separated systems be organized? The first question
may be addressed by standardization of communication protocols, like the
FIPA-standards (Foundation for Intelligent Physical Agents). The standard is wide-
spread, but still not all MAS under development pursue the specification with the
corresponding overhead, so communication between different systems is still an issue.
The second question, however, cannot be solely solved on a technical level: The
organizational structure between two or more independently developed MAS usually
involves the relations between the represented real world organizations. The technical
as well as the organizational question has been addressed by the platform Agent.
Enterprise in a logistic scenario [32]. Agent.Enterprise is not restricted to
intra-organizational value chains already represented by MAS, but integrates multiple
instances of these into inter-organizational supply chains. This combination of multiple
MAS is called a multi-multiagent system (MMAS) and works cross-organizational.
Each MAS remains locally controlled, but obtains features of inter-organizational
communication and cooperation to further increase flexibility and decrease costs. In
Agent.Enterprise each MAS plans and optimizes its logistic and production processes
individually, but informs other systems of unforeseen and potentially disturbing events.
On the basis of this information exchange, plans of other MAS may be adapted or
inter-organizational contracts may be renegotiated [32]. Figure 3 shows the
Gateway-Agent concept used to structure the communication between two
FIPA-compliant MAS [31].

Fig. 3. The gateway-agent concept [31]

110 M. Premm and S. Kirn

4.2 Abstractions

Already in 1966, Grochla raised the question in organizational theory, whether
machines are getting intelligent enough that the task they are carrying out can be placed
on the same level like those of humans [33]. One main argument is the increasing
autonomy of technical systems and this thesis has been controversially discussed in
organizational theory literature. Since then, the technical development has made sub-
stantial progress and also multiagent literature states autonomy as the key feature of
actors in MAS enabling the consideration of unpredictable environmental effects. The
agents gain autonomy by learning from experience and thus are able to compensate
incorrect or incomplete built-in knowledge making the agents themselves independent
from the developer [34].

Hence, different MAS show differing characteristics. Each MAS exhibits its own
identity by defining interfaces to its environment and by developing an individual
internal organization. This organization might be structured top-down or bottom-up
depending on the learning capabilities and includes appropriate coordination mecha-
nisms and responsibility rules. In logistics supply chains, one can find different levels
of organizational structure, e.g. in a manufacturing supply chain, there are usually
different companies that work together for one final good. Thus, we can distinguish
between intra- and inter-organizational structures, e.g. the intra-organization structure
of a company is embedded into the inter-organizational structure of the supply chain
that involves various other companies whose behavior is not controllable, but has to be
motivated. However, this structure is also present in other domains: Processes in
hospitals are characterized by highly autonomous departments that can only be limit-
edly controlled by the central hospital process management. This leads to fractal
processes within the hospital where each department again can be represented by a
single MAS.

Table 1. Meta-model of fractal modelling

Label Symbol Description

Process Fractal
A self-contained and self-organized series of activities with a
permanent nature that involves a certain number of actors and is
available via interfaces

Actor
Smallest organizational entity in a process fractal that has the
competency to make decisions with a given scope

Interface
Coupling point of a process fractal that allows for incoming or
outgoing products, services or humans from or to another pro-
cess fractal

Interaction Path
Bidirectional communication link between two actors of a pro-
cess fractal

Transshipment
Transition of a product, service or human from one process
fractal to another one

A Multiagent Systems Perspective on Industry 4.0 Supply Networks 111

Independent of a certain domain, network-wide processes consist of flexibly
coordinated process fractals being under local control of complex agents, e.g. a single
MAS. Table 1 presents the meta-model for modelling fractal supply chains that is used
in Fig. 4 to show an abstract example of a supply chain consisting of multiple MAS that
represent autonomous fractals. The figure shows that two dependent organizational
problems evolve: (i) the intra-organizational structure of each MAS that may differ
significantly and (ii) the overall inter-organizational structure that aims at a final pro-
duct and that is not able to fully control the single process fractals.

Each fractal has a logistics task based on domain independent types: (i) spatial
transformation in form of a transportation process, (ii) temporal transformation in form
of storage as well as (iii) physical transformation in form of a production process. The
single fractals are each represented by a MAS that has input and output interface to
form a supply chain and to follow the objective of the MMAS. The interfaces are
connected by a transshipment function that allows the output of one MAS to be used as
an input for another one.

5 Examples

This section presents three examples of research projects that used the flexibility of
MAS for the supply chain networks. The examples are further analyzed in Sect. 5.4
with respect to principle of fractal enterprises.

5.1 Example 1: Agent.Hospital

Agent.Hospital is a virtual clinic that consists of various sections representing the
different parts of the healthcare domain in Germany [35]. With unpredictable courses of

Fig. 4. Multiagent systems in a fractal supply chain

112 M. Premm and S. Kirn

treatment, highly situational dynamic and the consideration of emergency cases,
planning in the healthcare domain requires high flexibility considering numerous pri-
orities, preferences and goals. The variety of available resources and significant time
consumption of each case further contribute to the complexity of the decision problem.
The research project ADAPT as part of Agent.Hospital addressed this problem with an
agent-based approach in which the goal system of each participant has been imple-
mented as a BDI-agent [37]. Figure 5 shows the organizational structure of Agent.
Hospital with the supply chain of a selected scenario.

5.2 Example 2: BREIN

The research project BREIN funded by the European Commission had the goal to open
grid technologies for the appliance in companies. BREIN considered the supply chain
optimization with the involvement of multiple companies at an airport. The considered
ground handling scenario of airline service providers shown in Fig. 6 is highly dynamic
and short-term orientated: Local disturbances at the airport apron and the aircraft
ground handling require rapid adaption to increase the number of slots and therewith
revenue. Here, only the customer of the supply chain, the airline, is fixed and resources,
e.g. busses, baggage, staff, have to be assigned to the ground handling. An agent-based
approach ensures that the individual interests of all participants are considered and that

Fig. 5. Organizational structure of agent.hospital with selected supply chains [36]

A Multiagent Systems Perspective on Industry 4.0 Supply Networks 113

the service network can be adapted in a flexible manner. This intra-organizational n:m
market is characterized by n resources and m ground handling companies. The resource
allocation is performed by a reverse auction and is specified in an allocation protocol,
which prevents overcommitments and guarantees socially optimal allocations [38].

5.3 Example 3: EwoMacs

The research project EwoMacs addressed the coordination complexity and the ability to
supply in customizable supply chains. The supply chain is viewed as a problem solving
network that has been analyzed in a shoe manufacturing scenario. Shoes are produced
according to individual requirements and, thus, the customer has been modelled as the
first software agent. The contributions of each participant of the supply chain are
coordinated using the principal agent theory. The organizational roles of customer and
supplier have been specified according to the individual situation. The coordination
was optimized by identifying, analyzing and designing transaction costs of the whole
supply chain (see Fig. 7).

5.4 Lessons Learned

The examples presented in the previous sections show only a short excerpt of the
variety for domain specific instantiations of MAS for supply networks. The overall
MMAS, however, reveal significant correlation concerning their structure. Table 2
gives an overview on the presented research projects and their individual challenges by
showing the organizational structure on the macro level as well as the appearance of

Fig. 6. Service networks for airport ground handling in BREIN [39]

114 M. Premm and S. Kirn

fractals that are represented by single MAS. The examples exhibit that the presented
formalization of MAS as fractals of a supply network has potential to provide a
structure that addresses the balance between organizational stability for reliability
issues and flexibility to achieve an efficient inter-MAS process on the macro level.

Fig. 7. Supply chain of shoe production in EwoMacs [40]

Table 2. Overview on research projects

Agent.Hospital BREIN EwoMacs
Problem/
Challenge

Unpredictability of
demand and resource
capacities

Coordination of
adaptive business
grids

Complexity of co-
ordination and abil-
ity to supply

Organizational
Structure

Hierarchical Structure
of an hospital with
autonomous depart-
ments

Supply chain with different autonomous
companies that have individual organiza-
tional structures

Fractals/MAS Different departments
of a hospital

Ground handling
companies at air-
ports

Supplying compa-
nies for individual
shoe producer

A Multiagent Systems Perspective on Industry 4.0 Supply Networks 115

6 Summary

Logistics is an abstraction of processes across departments and corporate boundaries.
Current development of information technology and its implementation in industry 4.0
scenarios shifts the customer order decoupling point, where individualized instead of
standardized parts are required, further towards the customer. The customer receives a
product with a higher individualization, but the delivering supply network has to cope
with the resulting complex requirements.

MAS have a high potential to meet the demands as the paradigm is conceived for
flexible interactions under conditions with distributed knowledge and interests. How-
ever, the autonomous actors in a supply network using MAS for the coordination of
their internal processes, require interaction of multiple MAS on the supply network
level. As a first step towards this goal, we presented a formalization of MAS as fractals
of supply networks that allows MAS to communicate and cooperate by providing basic
functionalities independent of the participating agents like identity or organizational
knowledge. The paper presents ongoing research. For applicability in real-world sce-
narios, the model presented needs further formalization of the meta-model and a
comprehensive evaluation in industry context.

Acknowledgements. This work has been supported by the project InnOPlan, funded by the
German Federal Ministry for Economic Affairs and Energy (BMWi, FKZ 01MD15002).

References

1. Brettel, M., Friederichsen, N., Keller, M., Rosenberg, M.: How virtualization,
decentralization and network building change the manufacturing landscape: an industry
4.0 perspective. Int. J. Mech. Aerosp. Indus. Mechatron. Eng. 8(1), 37–44 (2014)

2. Scholz-Reiter, B., Görges, M., Keller, M., Philipp, T.: Autonomously controlled production
systems – Influence of autonomous control level on logistic performance. CIRP Ann. –
Manufact. Technol. 58, 395–398 (2009)

3. Rajkumar, R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: the next computing
revolution. In: Proceeding of the Design Automation Conference, Anaheim, USA (2010)

4. Warnecke, H.J.: Revolution der Unternehmenskultur – Das Fraktale Unternehmen. Springer,
Heidelberg (1993)

5. Malone, T.: Modeling coordination in organizations and markets. Manage. Sci. 33(10),
1317–1332 (1987)

6. Fox, M.: An organizational view of distributed systems. IEEE Trans. Syst. Man Cybern. 11
(1), 70–80 (1981)

7. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organisations with
organisational artifacts and agents. Auton. Agents Multi-Agent Syst. 20, 369–400 (2010)

8. Dunin-Keplicz, B., Verbrugge, R.: Teamwork in Multi-Agent Systems – A Formal
Approach. John Wiley & Sons, Chichester (2010)

9. Conte, R., Castelfranchi, C.: Cognitive and Social Action. UCL Press, London (1995)
10. Ishida, T., Gasser, L., Yokoo, M.: Organization self-design of distributed production

systems. IEEE Trans. Knowl. Data Eng. 4(2), 123–134 (1992)

116 M. Premm and S. Kirn

11. Jennings, N.R.: Joint Intentions as a Model of Multi-Agent Co-operation. Ph.D. thesis,
University of London, United Kingdom (1992)

12. Bond, A., Gasser, L.: An analysis of problems and research in DAI. In: Bond, A., Gasser, L.
(eds.) Readings in Distributed Artificial Intelligence, pp. 3–35. Morgan Kaufman Publishers,
San Mateo (1988)

13. Durfee, E., Lesser, V., Corkill, D.: Trends in co-operative distributed problem solving. IEEE
Trans. Knowl. Data Eng. 1(1), 63–83 (1989)

14. Gasser, L.: DAI approaches to coordination. In: Avouris, N.M., Gasser, L. (eds.) Distributed
artificial intelligence: theory and practice. Comput. Inf. Sci., vol. 5, pp. 31–51. Kluwer
Academic Publishers, Boston (1992)

15. Davis, R., Smith, R.G.: Negotiation as a metaphor for distributed problem solving. Artif.
Intell. 20, 63–109 (1983)

16. Kaufer, D., Carley, K.M.: Communication at a Distance: The Effect of Print on
Socio-Cultural Organization and Change. Lawrence Erlbaum, Hillsdale (1993)

17. Carley, K.M.: Computational and mathematical organization theory: perspective and
directions. Comput. Math. Organ. Theor. 1(1), 39–56 (1995)

18. Carley, K.M., Gasser, L.: Computational organization theory. In: Weiss, G. (ed.) Multiagent
Systems – A Modern Approach to Distributed Artificial Intelligence, 1st edn. MIT Press,
Cambridge (2001)

19. Dignum, V.: A Model for Organizational Interaction: Based on Agents, Founded in Logic.
Dissertation, Utrecht University (2004)

20. Dignum, V., Padget, J.: Multiagent Organizations. In: Weiss, G. (ed.) Multiagent Systems,
2nd edn. MIT Press, Cambridge (2013)

21. Aldewereld, H., Dignum, V.: OperettA: organization-oriented development environment. In:
Dastani, M., El Fallah Seghrouchni, A., Hübner, J., Leite, J. (eds.) LADS 2010. LNCS, vol.
6822, pp. 1–19. Springer, Heidelberg (2011)

22. Steiner, D.D., Mahling, D.E., Haugeneder, H.: Human computer cooperative work. In:
Proceedings of the 10th DAI Workshop, Bandera, Texas (1990)

23. Tapscott, D., Caston, A.: Paradigm Shift: The New Promise of Information Technology.
McGraw-Hill, New York (1993)

24. Klaas-Wissing, T.: Logistikorganisation. In: Arnold, D., Isermann, H., Kuhn, A.,
Tempelmeier, H., Furmans, K. (eds.) Handbuch Logistik, 3rd edn. Springer, Heidelberg
(2008)

25. Pfohl, H.-C.: Logistiksysteme – Betriebswirtschaftliche Grundlagen, 7th edn. Springer,
Heidelberg (2004)

26. Domschke, W., Scholl, A.: Grundlagen der Betriebswirtschaftslehre – Eine Einführung aus
entscheidungsorientierter Sicht, 4th edn. Springer, Heidelberg (2008)

27. Scheer, A.-W., Nüttgens, M.: ARIS architecture and reference models for business process
management. In: van der Aalst, W.M., Desel, J., Oberweis, A. (eds.) Business Process
Management. Models, Techniques, and Empirical Studies. LNCS, vol. 1806, pp. 376–389.
Springer, Heidelberg (2000)

28. Stewart, G.: Supply-chain operations reference model (SCOR): the first cross-industry
framework for integrated supply-chain management. Logist. Inf. Manage. 10(2), 62–67
(1997)

29. Scholl, A.: Grundlagen der modellgestützten Planung. In: Arnold, D., Isermann, H., Kuhn,
A., Tempelmeier, H., Furmans, K. (eds.) Handbuch Logistik, 3rd edn. Springer, Heidelberg
(2008)

30. Hannebauer, M.: Autonomous Dynamic Reconfiguration in Collaborative Problem Solving.
Ph.D. thesis, Technische Universität Berlin (2001)

A Multiagent Systems Perspective on Industry 4.0 Supply Networks 117

31. Stockheim, T., Nimis, J., Scholz, T., Stehli, M.: How to build a multi-multi-agent system –

The Agent.Enterprise Approach. In: Proceedings of the 6th International Conference on
Enterprise Information Systems, Porto, Portugal (2004)

32. Woelk, P.-O., Rudzio, H., Zimmermann, R., Nimis, J.: Agent. enterprise in a nutshell. In:
Kirn, S., Herzog, O., Lockemann, P., Spaniol, O. (eds.) Multiagent Engineering – Theory
and Applications in Enterprises. Springer, Heidelberg (2006)

33. Grochla, E.: Automation und Organisation – Die technische Entwicklung und ihre
betriebswirtschaftlich-organisatorischen Konsequenzen. Gabler, Wiesbaden (1966)

34. Russel, S., Norvig, P.: Artificial Intelligence – A Modern Approach, 3rd edn. Pearson,
London (2009)

35. Kirn, S., Anhalt, C., Krcmar, H., Schweiger, A.: Agent. hospital – health care applications of
intelligent agents. In: Kirn, S., Herzog, O., Lockemann, P., Spaniol, O. (eds.) Multiagent
Engineering – Theory and Applications in Enterprises. Springer, Heidelberg (2006)

36. Heine, C., Herrler, R., Petsch, M., Anhalt, C.: ADAPT – adaptive multi agent process
planning & coordination of clinical trials. In: Proceedings of 9th Americas Conference on
Information Systems, Tampa, USA (2003)

37. Heine, C., Herrler, R., Kirn, S.: ADAPT@ agent.hospital: agent-based optimization &
management of clinical processes. Int. J. Intell. Inf. Technol. (IJIIT) 1(1), 30–48 (2005)

38. Karaenke, P.: Multiagent resource allocation in service networks. Ph.D. thesis, University of
Hohenheim (2014)

39. Karaenke, P., Schuele, M., Micsik, A., Kipp, A.: Inter-organizational interoperability
through integration of multiagent, web service, and semantic web technologies. In: Fischer,
K., Müller, J.P., Levy, R. (eds.) ATOP 2009 and ATOP 2010. LNBIP, vol. 98, pp. 55–75.
Springer, Heidelberg (2012)

40. Dietrich, A.J., Kirn, S., Sugumaran, V.: A service-oriented architecture for mass
customization – a shoe industry case study. IEEE Trans. Eng. Manage. 54(1), 190–204
(2007)

118 M. Premm and S. Kirn

Cyber-Physical Multiagent-Simulation
in Production Logistics

Christoph Greulich(B), Stefan Edelkamp, and Niels Eicke

Institute for Artificial Intelligence, University of Bremen, Bremen, Germany
{greulich,edelkamp,neicke}@tzi.de

Abstract. A growing network of technical systems, embedded and auto-
nomous, influence our daily work. Among them, cyber-physical systems
establish a close connection between the virtual and the real world. In
this paper we show how an existing multiagent system that controls the
physical production of goods on a monorail is virtualized by extracting
the agents as black boxes and by integrating them into a multiagent
simulation system. As a result, the exact same agents run in physical
and cyber world. Towards this end, the physical environment has been
mapped and visualized. Experiments show that the modeling and simu-
lation error is small, such that scenarios can be varied, tested, debugged,
and scaled, saving huge amounts of labor.

1 Introduction

Production logistics has undergone a significant transformation in recent years.
While in the past, mechanization and automation were clearly marked, nowadays
there is a rising interest in autonomous and interconnected software solutions.
The political and economic significance of this development has been associated
with the name Industry 4.0 [14].

Cyber physical systems (CPS) have been identified as transformative tech-
nologies for managing interconnected systems between its physical assets and
computational capabilities [3]. In our setting, the CPS maps the digital into a
real factory. Therefore, we aim at integrated planning, evaluation and contin-
uous improvement of the essential structures, processes and resources in a real
factory. We observe an increasing complexity of such systems and an increasing
number of time-consuming tasks in their practical evaluation. Analytical meth-
ods are only partly sufficient for the study of such systems. Instead, simulations
are preferred, because they often show a better mapping of the real behavior of
the systems.

Even though no unified definition of agents exists in the literature, most
authors agree that agents are autonomous software programs with certain social
abilities [7]: agents can use sensors to perceive the world around them, control
actuators to manipulate their environment and are able to communicate with
other agents or even human users if necessary [28]. Agents use the perceived
information to make decisions on their own and change the world around them

c© Springer International Publishing Switzerland 2015
J.P. Müller et al. (Eds.): MATES 2015, LNAI 9433, pp. 119–136, 2015.
DOI: 10.1007/978-3-319-27343-3 7

120 C. Greulich et al.

to their advantage. The degree of autonomy an agent has is only restrained by
its software program. The biggest advantage of agent technology in comparison
to equation-based modeling is the capability of multiagent systems (MAS) to
solve problems locally and react dynamically to occurring events [19].

Despite the growing body of research in Industry 4.0 applications, accessible
MAS that run on real hardware for in-door production are rare. One of the few
successful real-world implementations of a MAS is the so called Z2 production
floor unit that has been developed at BIBA1. As individual production steps are
performed at different stations, the stations are interconnected by a monorail
transport system. The structure of the transport system is shown in Fig. 2. The
transported goods are autonomous, which means that each product decides on its
own which variant it aims at and which station to visit. This way, a decentralized
control of the production system is possible [25].

At the University of Bremen, the Platform for Simulation with Multiple
Agents (PlaSMA) has been developed [24]. It has mainly been applied to the
simulation of macro-logistical processes. PlaSMA expands the functionality of
the Java Agent Development toolkit (JADE) to a discrete-event simulation. Due
to the need for simulation for CPS in production logistics, in this work we investi-
gate, whether PlaSMA is able is accurately simulate existing production logistics
scenarios by providing a model of the physical environment and by extracting
existing agents without any change.

In this paper we provide a mapping of the Z2 monorail production unit to
PlaSMA, leading to a cyber-physical system scenario of already existing agents
and new ones; and an experimental study that shows how much executing the
simulated and the real-world systems differ. The main contribution is the suc-
cessful mix of existing agents as black boxes that operate seamlessly together
with additional ones, substituting the hardware units by agents in the simulated
world. Aspects of the agent models are detailed.

The text is structured as follows. First, we give insights to the architecture
of the system and analyze the components of the real, the virtual system, as
well as the agent model. We analyze the properties of the available agents from
the existing physical system and introduce agents which represent the products,
the stations, as well as the readers and the plant management. For the technical
transformation we first explain how PlaSMA and JADE had to be adapted, and
the communication unit had to be integrated. Then, we adapt the model into
simulation and implement and visualize the according agents. For the validation
of our approach we test the implementation in terms of concept adequateness
and operational consistency. Both the physical and the simulated systems are
ran and the according results are compared. Finally, we conclude and provide a
brief outlook to possible future research avenues.
1 Bremer Institut für Produktion und Logistik GmbH.

Cyber-Physical Multiagent-Simulation in Production Logistics 121

2 Multiagent System

The JADE-based agent model of the Z2 monorail production unit was designed
and implemented within Collaborative Research Center 637 [11,17]. Unlike most
MAS representations of in-house logistics, the Z2 software was developed to
control a real-world hardware implementation as a decentralized, heterarchical
approach to achieve positive emergence and adaptability to changes in the envi-
ronment and the goals of various stakeholders. During the development of Z2,
the authors identified similarities between the Internet of Things[6], Intelligent
Products[16] and MAS.

Z2 is a monorail-based assembly network for automotive tail-lights. The mod-
ular system consists of six different workstations, each is operated manually by
a human worker and dedicated to one specific production step. At production
steps III and V, different parts can be used to assemble different variants of the
tail-lights as illustrated in Fig. 1.

At the first station, the basic metal cast parts enter the monorail on a dedi-
cated shuttle. The monorail connects all stations, each station is assigned to one
specific task, such as adding bulbs or diffusers. Each tail-light is transported from
station to station until it is assembled completely. The scenario is illustrated in
Fig. 2.

Low frequency RFID tags are embedded into the metal cast parts in order
to identify and locate every tail light automatically. Morales-Kluge et al. [17]
emphasize the dedicated Hardware Abstraction Layer of their implementation,
which provides interfaces to various hardware machines of the scenario, including
the transport shuttles.

Fig. 1. Assembly states of tail lights [11].

122 C. Greulich et al.

Fig. 2. Assembly scenario for tail-lights [17].

To add autonomy to this scenario, agents are applied to represent the indi-
vidual stakeholders of the assembly line. A number of simple reflex agents [22]
represent entities such as RFID readers which keep track of the traffic and each
product’s current location, information providers and even a Graphic User Inter-
face (GUI) to supervise the agents’ activities and to manually manipulate the
current order status of each tail-light type variant. However, two particular agent
types stick out, as they are the most relevant for the system’s overall perfor-
mance. The Station Agent, which provides an interface between the MAS and
the individual worker at the respective station and the Product Agent which
represents each individual product on the assembly line.

Each Station Agent represents one of the six workstations. The agent pro-
vides information regarding estimated waiting time for the service provided at
its station and handles reservation requests by product agents. Furthermore,
each Station Agent autonomously negotiates entrance and departure of product
agents into the processing area where the manufacturing step takes place.

2.1 The Product Agent

The most interesting agent, however, is the Product Agent. The Product Agent
is directly linked to the RFID chip embedded in the metal cast part of a tail
light. When the cast is placed on an autonomous shuttle, both entities establish
a connection, so that the Product Agent can order the shuttle which station to
approach next.

Based on the current utilization of assembly stations and the overall order
status, the Product Agent chooses the next production step and targets a type
variant. After every production step, the plan is reconsidered to ensure that the
current plan is still the optimal choice.

The Product Agent is a Finite State Machine (FSM) as illustrated in Fig. 3.
Its behavior strongly depends on its current state. While transferring between

Cyber-Physical Multiagent-Simulation in Production Logistics 123

Fig. 3. Architecture of the product agent.

stations, the agent is in the state IDLE WAIT OF REGISTER, listening for messages
from RFID readers until the destination is arrived. The navigation is executed
by the shuttle itself, the Product Agent only registers at RFID readers to keep
track of its own location.

In the state IDLE, the Product Agent acquires all necessary information to
decide which production step to take next. First, the agent decides which tail-
light variant its product should become. The decision is based on the current
order status for each type variant and on the previously applied production steps
which may limit the amount of possible choices.

124 C. Greulich et al.

Once a decision is made, the agent decides which production step to take next
and which station to approach. Therefore, the agent requests the current waiting
time and queue length at each considered station and waits for replies in the
state STATION WAIT TIME REQUEST. Once the response messages were received,
a MATLAB server is invoked by a direct socket connection to determine the
next production step for this individual agent. If no satisfying solution could be
determined, the decision-making process will be repeated.

Once a destination is chosen, the Product Agent attempts to make a reserva-
tion at the respective station and waits in the state STATION REQUEST until the
reservation is either confirmed or denied. In the latter case, the agent returns to
the state IDLE.

In the state STATION RESERVED, the agent constantly keeps track of the wait-
ing time at the destination and estimates the remaining spatial distance. Fur-
thermore, the agent handles incoming messages by the station, which provide
information whether the agent is allowed to enter the processing area upon
arrival or is supposed to wait in line. In the latter case, the agent continues to
wait for the message in STATION CAN ENTER REQUEST after the product arrived at
the station. Furthermore, while being in the state STATION RESERVED, the agent
handles reservation cancellations messages, which may be sent by the station if
the service cannot longer be provided.

Once the agent is allowed to enter the area where the production step is
applied, the state STATION PROCESSING is reached and the shuttle takes the
product into the production area. The worker now applies the production step
to the product while its agent waits for a message which allows the product to
leave the area.

In the state STATION CAN EXIT, the Product Agent is informed by the Station
Agent, whether the production step was applied or not. The Station Agent gains
that information from the worker. In both cases, the Station Agent returns to
the state IDLE and, therefore, decides again how to proceed.

After all parts are assembled, only storage stations can be chosen for reserva-
tion. In this special case, the agent registers its final tail-light type variant at the
respective storage in the state STORED. Afterwards, the agent waits in the state
SENDSTORE for a message which confirms that the product was removed from the
assembly line by a worker. The agent then switches to the state FINISHED and
terminates permanently.

2.2 Decision Making

The research presented in this paper was partly motivated by our interest in the
application of alternative decision-making and optimization methods for this
particular setup, since we consider it an interesting testbed for real-world appli-
cation of AI methods. However, because of time and personnel required to run
the hardware, the need for a simulation model compatible to the hardware was
indispensable.

Currently, the decision-making process in this agent model is based on hier-
archical aggregation as presented in [20]. During the process, the agent splits

Cyber-Physical Multiagent-Simulation in Production Logistics 125

his overall goal into sub-goals and evaluates the effect of every possible action
on each sub-goal. Depending on the current context, different sub-goals may
have a different weight for the overall utility function. The overall utility value
is calculated by solving a multi-criteria evaluation problem, where each criterion
corresponds to the effect the action will have on one specific sub-goal.

In this model, knowledge is represented by a set of rules. As decision support
systems like analytic hierarchy process and weighted average lack the ability to
handle linguistic variables, fuzzy logic is used to express information.

Fuzzy sets and fuzzy logic are a solid research branch of computational intelli-
gence, allowing to draw reliable inferences about vague concepts that are inherent
in linguistic terms. The main idea is to have a partial membership of elements
in the set, or propositions that are only partially true. In difference to probabil-
ities, where truth is only uncertain, in such a possibilistic world, truth itself is a
fractional term.

There are many applications of fuzzy decision-making. E.g., in Robotics, such
reasoning can be used to trade conflicting behaviors like wall-following and obsta-
cle avoidance. Fuzzy decision-making goes back to work of Bellmann and Zadeh
[1]. As surveyed by Carlsson and Fuller [5], after some first doubts on the impact
of fuzzy decision-making by French [8], it has shown considerable impact in the
improved working of rational agents, as predicted by Gaines et al. [10].

Interestingly, in the Z2 MAS, the decision-making process based on fuzzy
reasoning is completely separated from all other agents’ programs and made
available via a dedicated MATLAB server through a TCP/IP socket connection.
The Product Agents communicate their individual perception of the environment
and their respective product’s states to this MATLAB server. Furthermore, the
agents provide a set of available decision options to the server and receive an
answer on what to do next.

3 From Reality to Simulation

The original implementation of the Z2 monorail system consists of three layers,
as illustrated in Fig. 4. On top of the architecture lies the agent model layer
which contains the MAS including all its agents. The agent layer is set upon a
virtual model of the hardware system. The lowest level consists of the hardware
itself. Since the MAS and the hardware have already been described in detail in
the previous sections, we now focus on the virtual model layer.

The virtual model is a simplified model of the real-world hardware system.
From the agent’s perspective, the virtual model is its environment, since the
agent only percepts and manipulates the virtual model and does not directly
interact with the hardware layer. The virtual model encapsulates all dynamic
and static features of the system in data structures accessible by the MAS.

The static features, which cannot be modified at runtime, describe the infra-
structure of the system as well as its purpose. The infrastructure of the system
consists of Radio Frequency Identification (RFID) reader entities, Intelligent
Routing Module (IRM) sensor entities, and RFID/IRM sensor types, the vari-
ous assembly stations and areas of the monorail system, the shuttles and their

126 C. Greulich et al.

Fig. 4. The different abstraction layers.

respective IDs. Some of the IRM sensors, which are referred to as stop mod-
ules, require the shuttles to stop on arrival. Stop modules are interconnected by
railways, which are referred to as edges. Furthermore, fixed routes are defined
between all stop modules, given that the shuttles are not capable of executing
any shortest-path search algorithms.

Since the purpose of the system is the manufacturing of tail-lights, the virtual
model additionally contains information about the different parts and production
steps, the interdependencies between production steps, possible part combina-
tions (type variants) and variant groups. Furthermore, the virtual model stores
information regarding the initial order status of each type variant and the inter-
face towards the MATLAB decision-making server. The static features of the
system are stored in an Extensible Markup Language (XML) file, which is made
available to each agent at the beginning of its lifecycle.

Far more interesting, however, are the dynamic features of the system, which
encourage application of agents and decentralized control. The dynamic features
are the current order status of the different variants, the varying product states,
waiting times at the various stations, and the position of products and shuttles.

While shuttles are located by the IRM system, products are located by the
RFID system. Both systems update the virtual model but do not depend on
each other. Hence, if a worker decides to manually remove one product from its
shuttle and attach it to another one, the product will determine its new location
and continue its work from the new position. Respectively, shuttles adapt to

Cyber-Physical Multiagent-Simulation in Production Logistics 127

Fig. 5. Architecture of the move agent.

Fig. 6. Architecture of the simulation scheduling agent.

a change of carriage and establish a connection with the new product. It is
worth mentioning, that the positions of products and shuttles are not constantly
tracked. Instead, the discrete model is updated whenever a shuttle or a product
registers or deregisters at a reader.

Since dynamic reactions on changing order situations are considered one of
the major advantages of digital factories [2], the order situation within the system
can be manipulated by a human operator at runtime. A dedicated agent provides
a GUI for the operator and updates the virtual model when the situation changes.
The GUI allows to increase or decrease the amount of orders for each tail-light
variant separately. The information is used by the Product Agents during their
decision-making processes.

3.1 Supporting Simulation Agents

To run this MAS in a simulation environment, the underlying hardware layer
has to be replaced by a software system, which adapts the interfaces between

128 C. Greulich et al.

hardware layer and virtual model. The data exchange between both layers covers
discrete time updates of RFID and IRM data. Therefore, a simulation model of
the monorail infrastructure is of particular interest.

We adapted the hardware infrastructure into a PlaSMA-compatible graph,
where nodes represent IRM sensors and RFID readers and edges represent direct
railway connections between the nodes. More precisely, we derive the required
information from the XML data scheme used in the original system to generate
our own graph infrastructure. Each edge is weighted by the physical length of
the corresponding hardware railway. Nodes representing RFID readers or rail-
way switches are tagged with additional information regarding the waiting time
per shuttle. The original hardware routing treats every connection between two
nodes as a one-way railway. We adapted this behavior by defining the infrastruc-
ture graph to be directed. Furthermore, we model shuttles as virtual physical
objects to be placed on nodes or edges.

Since shuttles are autonomous entities in the hardware layer, we implemented
a new Move Agent type to represent one unique shuttle. The agent controls move-
ment and speed of the virtual physical object. While pathfinding is only mocked
in the original hardware system by a number of fixed paths to choose from, the
simulation Move Agent applies shortest path search as presented in [13].

Like the Product Agent, the Move Agent can be seen as a FSM as illustrated
in Fig. 5: After initialization, the agent receives a product to carry and moves it
around to various stations depending on the Product Agent’s requirements until
a storage was reached and the product unloaded. Then, the agent waits for a new
product to receive. The agent architecture does not allow manual displacement
of the product. However, since the simulation obviously does not contain any
human workers, manual displacement is obsolete.

The Simulation Scheduling Agent instantiates virtual shuttles and the cor-
responding Move Agents as well as Product Agents according to the simula-
tion configuration. While shuttles are created immediately when the simulation
starts, batches of new products can be created at regular intervals. The Simula-
tion Scheduling Agent is illustrated in Fig. 6.

In order to simulate the behavior of the various RFID/IRM units, a third agent
is applied, which keeps track of all sensors within the system. The agent main-
tains the order of waiting shuttles (first-in-first-out (FIFO)) and simulates waiting
times at railway switches if the switch needs to change its routing direction.

4 Multiagent Simulation Model

As in other types of concurrent systems, issues like dead- and livelocks are often
met while analyzing MAS. Concurrent process models enable reasoning the sup-
port for dynamic change and parallel execution.

There have been different formalizations of an MAS that are available in
the literature. Burkhard [4] uses a formal language approach to represent a
MAS M as a quadruple (A, T, τ, L), where A is a set of agents, T is a set of
actions, and τ is a mapping from A to 2T , so that for all a in A we have that

Cyber-Physical Multiagent-Simulation in Production Logistics 129

Ta = {t ∈ T | t ∈ τ(a)} is the set of actions executable in a. The set of actions
sequences (solutions, plans) is denoted as L ⊆ T ∗.

Recall that by definition for a homomorphism h we have h(x◦y) = h(x)◦h(y).
For strings x, y ∈ Σ∗ a homomorphism ◦ is the concatenation x ◦ y = xy. The
identity for this homomorphism is ε ∈ Σ∗, the empty string.

In the formalization, homomorphisms are used as selection operators. In the
overall plan each agents applies a homomorphism to select its own actions. Addi-
tionally, another string denotes which turn it is.

The behavior of each agent a ∈ A is described by a homomorphism ha(L)
with ha(l) = t, if t ∈ Ta, and ε otherwise. hA(L) ⊆ A∗ and the behavior of a
MAS is characterized by a homomorphism hA acting on the set L.

We exemplify the formalization for the Z2 demonstrator. Let P = {P1, . . . , Pk}
be the set of RFID locations for the shuttles, and move(Pi, Pj) the action for mov-
ing the vehicle via the shortest path from 〈Pi = Pπ(1), Pπ(2), . . . , Pπ(n) = Pj〉
from Pi to Pj . Action move(Pi, Pj) decomposes into step(Pl, Pk), with Pl and
Pk being adjacent.

Assume that we have two shuttle agents a1 and a1 and a global plan that
consists of steps Sl,k = step(Pl, Pk) from Pl to Pk. The empty string ε corre-
spond to an action wait. We may assume, that each agent is asked in turn to
resume, and answers ε if there is nothing to do.

Let L = S1,2, S1,2, S2,3, S3,4, S2,5, . . . be the observed overall plan. The MAS
behavior hA(L) = a1a2a1a1a2 . . . is sequence of agents defining the order to
execute the actions. Hence ha1(L) = S1,2, S2,3, S3,4, . . . is the behavior of agent
a1, and ha2(L) = S1,2, S2,5, . . . is the behavior of agent a2.

It is also possible to add communication to the model. A (rendezvous) com-
munication activity is a pair of actions (often a reading and a writing event),
so that the entire communication is a string of the communication activities,
modeled as a homomorphism hk(L) into A × A. Communication activities can
also be thought of mandatory synchronization points. While so far the order of
actions is inherited by L it may be that there are several interleavings of agent
executions in form of MAS behaviors that lead to the same result. For exam-
ple, L′ = S1,2, S1,2, S2,3, S2,5, S3,4, . . . together with hA(L′) = a2a1a1a2a1 yields
the same outcome as L = S1,2, S1,2, S2,3, S3,4, S2,5, . . . together with hA(L) =
a1a2a1a1a2

Usually, the interpretation is unit time, so that each action takes one time
step. However, this is not necessary, since we may associate a time stamp with
each plan step, such that time extend and concurrency of actions can be modeled.

The LORA MAS formalization provided by Wooldridge [26,27] origins in
model checking, with labeled transition and Kripke systems characterizing the
behavior of the agents (their belief, their desire and their intention), and tem-
poral logics expressing their required interplay, as well as the progression of
knowledge. Alternatives consider an MAS as a game, in which agents –either in
separation or cooperatively– optimize their individual outcome [23]. Communica-
tion between the agents is available via writing to and reading from channels, or
via common access to shared variables. Other formalization approaches include

130 C. Greulich et al.

work in the context of the MCMAS tool by Lomuscio2. Recently, there has
been some approaches by Nissim and Brafman to formulize MAS as planning
problems [18].

In the present paper, we define a multiagent system as an arbitrary complex
concurrent computer program (that can be best thought of an ensemble of C
or Java program threads). By the virtue of the Theorem of Rice [21], every
non-trivial condition in such MAS (even while considering only one agent) is,
therefore, already undecidable, so that essentially, we are bound to simulate MAS
to get definite insights to their working. Such simulation leads to the concept of
simulation time, which is measured in ticks or cycles, sometimes mapped to a
more realistic time scale.

As in our case, quite often birth-giver agents create other agents according
to some random process. We have one initial agent running: the environment
agent (which can be thought as the main thread in the execution of a computer
program), but as agents can be created or deleted in the course of the simulation,
the number k of currently acting agents is not known in advance and has to be
adapted dynamically.

Every agent (program) is further partitioned into finite state machines (FSM)
of subprograms, whose states are called behaviors. Edges taken depend on the
outcome of evaluating these behaviors. To ease the implementation, we assume
that agents are parameterized, such that one FSM can be instantiated to many
different individual agents. In object-oriented terms, each agent schema is a class,
and each agent is a class object.

Together with a discrete event queue Q an MAS may now be exploited to
simulate the evolution of time. The data structure Q offers the traditional set of
priority queue operation of inserting, finding, and (minimum) deletion of events.
Ordered wrt. timestamps it can be implemented in form of a heap. An element
in Q is a triple of (key, agent, state) where the key is the current timestamp of
the simulation, and (agent, state) is the information about where a particular
agent’s execution has to be resumed.

After extracting the event with minimum timestamp, we know the agent’s
behavior to be resumed. There might be several agents that have to execute code
at the same point in time. Physically, all those agents run in different threads.

Each resumed agent knows its FSM state, where it was suspended and first
looks into his inbox for messages that have arrived. After committing to all
incoming messages, by calling the action method of the behavior, the agent tries
progressing his individual task unless he reaches a point where it suspends (with
each suspension a time interval is fixed, where no resuming is foreseen). While
each action execution takes physical time, its simulation time is zero, so that each
individual progression from a resume to a point in time for suspension requires
no tick. Under certain assumptions the event-based simulation will progress, and
with an upper bound on the maximum number of ticks eventually terminate.

In multiagent simulation, we distinguish the following three notions of time [9]:
physical time (alias real time) refers to the time in the real world, i.e., at which

2 http://vas.doc.ic.ac.uk/software/mcmas/

http://vas.doc.ic.ac.uk/software/mcmas/

Cyber-Physical Multiagent-Simulation in Production Logistics 131

simulated events would happen in reality; simulation time models physical time
in the simulation; and wallclock time that is consumed by the simulation sys-
tem in order to execute the simulation. While physical time is continuous in
multiagent-based simulation [15] simulation time is discrete, so that simulated
events are mapped to timestamps. In multiagent communication, for the flow
of information between agents, effective message handling is essential [12]. To
ensure quality criteria for message handling we require

Time Model Adequacy. It is important to choose an appropriate granularity
of time progression.

Causality. Due to the autonomy in accessing the message inbox, agents may
process messages early. To ensure causality, message visibility has to be
controlled: processing earlier messages is deferred, until local time has pro-
gressed.

Reproducibility. The ordering of messages may still depend on the system
scheduling of the respective senders. For the sake of traceability, additional
orderings (besides message arrival time) like the agent’s ID are imposed.

Fig. 7. Time distance between start position departure and arrival at nodes without
waiting times.

5 Evaluation

The original hardware implementation runs on the Z2 demonstrator, for which
the timing results are measured manually. All simulations are executed with the
latest release of the PlaSMA software on a laptop computer, equipped with an
Intel Pentium i7 processor and 16 GB RAM. Each agent is a Java thread, and
can be profiled individually using appropriate tools. Performance indicators of

132 C. Greulich et al.

Fig. 8. Time distance between start position departure and arrival at nodes with wait-
ing times.

the simulation have been selected and stored in a database. A virtual machine3

contains the MATLAB server. The PlaSMA software includes a graphical user
interface, where the progress of the simulation can be visualized.

5.1 Simulation Accuracy

We evaluated the simulation layer by comparing the performance of the simu-
lation and the original hardware implementation. In both cases, we traced one
of the shuttles in various target variant setups and measured physical time and
simulation time distance at every stop module. In the real world implementation
as well as the simulation, the shuttles move at a speed of 3 km/h.

In the first series of experiments, we neglect the time consumed by waiting at
readers and switches and concentrate solely on the traveling times of the agent.
The average deviation between real world physical time and simulation time is
0.216 s with a peak of 0.4 s. However, since some routes have positive and others
have negative deviation, the difference between the physical and simulation time
of arrival at the final station is 0.8 s. Figure 7 illustrates the results.

To validate the correct waiting behavior at sensors and switches, we conduct a
second series of experiments. When waiting times are included, the total duration
increases to 2.3 times the duration of the first experiment series on average.
However, the deviation between simulation and the real hardware system is
exactly the same as in the first series. The results lead us to believe that the
deviation emerges during the acceleration of the shuttle, which is not considered
in the simulation model. Figure 8 illustrates the deviation in one example setup.

In a third series of experiments, we evaluated planning and routing behavior
of the Product Agents, which lead to the same results in hardware and simulation
environments, given the same requirements and the same target variant. We
set up check points at every hardware station and measured the physical time
distance between the start of a shuttle and the arrival time at the respective check
3 http://www.virtualbox.org

http://www.virtualbox.org

Cyber-Physical Multiagent-Simulation in Production Logistics 133

point. We repeated this experiment for every type variant and compared the
results with results from simulation runs. Since we could not install a hardware
measurement system in the simulation software, we recorded entering and exiting
times of the product at the given station’s first and last sensor. Table 1 shows
an excerpt from our experiment results, indicating minor deviations, which are
caused by the hardware itself. In simulation, results are deterministic, as shown
in Table 2. Results show, that in any case, the check point within a station in the
real world is reached at a physical time instant which lies between the simulation
time instants of arrival at the entrance node and arrival at the exit node of the
corresponding station in simulation. Consequently, we conclude that even though
we have minor modeling errors in our simulation, they are insignificant to the
simulation outcome.

Table 1. Real-world results for one single product agent per target variant.

Target variant Electronics L1 (Colored Lamps) L2 (Clear Lamps) Seal Cover

Exp. 1 Colored Lamps 0:32 1:00 - 1:31 2:09

Exp. 2 Colored Lamps 0:33 1:01 - 1:33 2:15

Exp. 3 Colored Lamps 0:32 1:01 - 1:33 2:12

Exp. 4 Colored Lamps 0:33 1:00 - 1:31 2:11

.

.

.

Exp. 1 Clear Lamps 0:33 - 1:47 1:15 2:19

Exp. 2 Clear Lamps 0:32 - 1:44 1:13 2:17

Exp. 3 Clear Lamps 0:32 - 1:46 1:13 2:18

Exp. 4 Clear Lamps 0:33 - 1:45 1:14 2:19

.

.

.

Table 2. Simulation results for one single product agent per target variant.

Target variant Electronics L1 (Col. Lamps) L2 (Cl. Lamps) Seal Cover

Enter Exit Enter Exit Enter Exit Enter Exit Enter Exit

Colored Lamps 00:31 00:45 00:57 01:11 - - 01:29 01:41 02:03 02:23

Clear Lamps 00:31 00:45 - - 01:33 01:48 01:10 01:22 02:03 02:23

.

.

.

5.2 System Performance

As mentioned before, this research was partly motivated by our interest in evalu-
ation of other planning, decision making and optimization methods in the given
manufacturing scenario. Additionally, hardware resources in the real-world setup
are limited to a certain amount of shuttles and product parts. In simulation, how-
ever, the number of physical entities is only limited by the computer’s physical

134 C. Greulich et al.

limitations regarding RAM and CPU. Therefore, the whole manufacturing sys-
tem can be simulated, tested and improved on one single machine with each
component still being an individual agent program.

We conducted a series of experiments over a limited simulation time of 30 min
to explore the performance of the simulation system. With each experiment, we
increased the number of shuttles and/or available products to investigate the
wallclock time of the simulation as well as the changes in capacity utilization of
station agents and the production duration of each tail light.

Table 3. Simulation performance with increasing agent numbers (Rail and Idle refer
to time spent on the rail and in idle mode, respectively, Lifecycle is averaged over the
products, WC is wallclock time and TP is throughput).

Agents MAT Sim Time spent processing Lifecycle Performance

Shuttles Prod. LAB Time Electr. L1 Seal L2 Cover Avg. Rail Idle WC TP

1 1 2 30:00 0:12 0:12 0:10 0:00 0:18 0:13 2:42 0:19 0:40 1

1 30 2.7 30:00 1:39 1:14 1:22 0:25 2:09 1:22 3:52 0:21 3:05 7

2 30 3.5 30:00 3:18 1:14 2:43 2:16 4:54 2:53 3:30 0:21 3:45 15

4 30 3.3 30:00 4:58 1:52 4:25 3:18 6:08 4:08 3:55 0:21 5:59 28

6 30 3.1 30:00 4:45 3:06 4:25 1:54 6:29 4:08 4:10 0:21 6:01 30

8 40 3 30:00 6:17 4:20 5:30 2:16 6:00 4:53 4:44 0:21 10:18 34

10 50 3 30:00 7:40 5:10 6:13 3:09 8:48 6:12 4:53 0:21 12:58 43

15 70 3.1 30:00 7:58 5:10 7:13 4:20 8:45 6:41 5:28 0:21 24:32 54

20 100 3 30:00 8:52 7:14 7:55 4:50 9:11 7:36 6:03 0:22 43:32 61

30 110 3 30:00 9:17 5:36 7:20 6:12 9:57 7:40 6:38 0:22 57:22 64

Table 3 presents an excerpt of our simulation results. The numbers show,
that with an increasing number of shuttles, the various stations spend more
time processing and, therefore, less time in idle mode. Furthermore, the average
production time of each product increases as the products have to wait in front
of the stations. Interestingly, the average number of MATLAB invocations per
agent hardly increases and the maximum never exceeded 5.

With an increasing number of agents, the wallclock time of our experiments
also increases. Consequently, with a certain amount of agents acting in paral-
lel, the wallclock time actually exceeds the simulation time and, therefore, the
physical time. However, since the number of available shuttles in the real world
environment is limited to 12, physical time is only exceeded in experiments
which could not be conducted on the hardware system. Furthermore, the time
required to set up the system (30 min. approx.) and the number of human oper-
ators required to conduct experiments on the hardware system indicate that a
slightly exceeding simulation time is insignificant to the overall advantage of the
simulation.

Cyber-Physical Multiagent-Simulation in Production Logistics 135

6 Conclusion

In this paper we have presented a multiagent simulation of a production unit
that integrates already existing agents as black boxes with a few additional
virtual agents that drive the simulation. We showed that the implementation of
intelligent products as agents in such cyber-physical system design is a viable
option for controlling and simulating smart factories.

The decision-making process is done by frequently calling an external soft-
ware server that applies advanced fuzzy reasoning methods. The obtained close
match between the real and the simulated system is remarkable, given that, e.g.,
shortest paths are computed differently.

During the implementation process, we fixed a number of bugs both in the
real and the simulated system, showing that running a simulation is also a means
to improve multiagent software quality. We provided experiments showing that
the implementation scales (to a rising number of shuttles and products).

In future work, we are interested in exploring distributed decision making
and optimization strategies suitable for similar production units. We consider
the given system as a testbed for further research in simulation and real world
application and the performance of the original Z2 system as an interesting
benchmarking baseline.

Acknowledgement. This research was partly funded by the International Graduate
School for Dynamics in Logistics, University of Bremen, Germany.

References

1. Bellmann, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manage.
Sci. 17(4), 141–164 (1970)

2. Bracht, U., Geckler, D., Wenzel, S.: Digitale Fabrik: Methoden und Praxisbeispiele.
Springer, Heidelberg (2011)

3. Broy, M.: Cyber-physical systems. In: Broy, M. (ed.) acatech DISKUTIERT.
Springer, Heidelberg (2010)

4. Burkhard, H.D.: Liveness and fairness properties in multi-agent systems, pp. 325–
330, August 1993

5. Carlsson, C., Fullér, R.: Fuzzy multiple criteria decision making: Recent develop-
ments. Fuzzy Sets Syst. 78, 139–153 (1996)

6. Fleisch, E., Mattern, F. (eds.): Das Internet der Dinge - Ubiquitous Computing
und RFID in der Praxis. Springer, Heidelberg (2005)

7. Franklin, S., Graesser, A.: Is it an agent, or just a program?: a taxonomy for
autonomous agents. In: Müller, J.P., Wooldridge, M.J., Jennings, N.R. (eds.) Intel-
ligent Agents III Agent Theories, Architectures, and Languages. Lecture Notes in
Computer Science, vol. 1193, pp. 21–35. Springer, Heidelberg (1997)

8. French, S.: Fuzzy decision analysis: some criticisms. In: Zimmermann, H.J. (ed.)
TIMS/Studies in the Management Sciences, vol. 20, pp. 29–44. Elsevier Science
Publishers, Amsterdam (1984)

9. Fujimoto, R.: Parallel and Distributed Simulation Systems. Wiley, New York (2000)

136 C. Greulich et al.

10. Gaines, B., Zadeh, L.A., Zimmermann, H.J.: Fuzzy sets and decison analysis -
a perspective. In: Zimmermann, H.-J. (ed.) TIMS/Studies in the Management
Sciences, vol. 20, pp. 3–8. Elsevier Sciences Publishers, Amsterdam (1984)

11. Ganji, F., Morales-Kluge, E., Scholz-Reiter, B.: Bringing agents into applica-
tion: intelligent products in autonomous logistics. In: Schill, K., Scholz-Reiter, B.,
Frommberger, L. (eds.) Artificial Intelligence and Logistics (AiLog) - Workshop at
ECAI 2010, pp. 37–42 (2010)

12. Gehrke, J., Schuldt, A.: Incorporating knowledge about interacting for uniform
agent design for simulation and operation. In: AAMAS, pp. 1175–1176 (2009)

13. Greulich, C., Edelkamp, S., Gath, M., Warden, T., Humann, M., Herzog, O.,
Sitharam, T.G.: Enhanced shortest path computation for multiagent-based inter-
modal transport planning in dynamic environments. In: Filipe, J., Fred, A. (eds.)
ICAART 2013, vol. 2, pp. 324–329. SciTePress, Barcelona (2013)

14. Kagermann, H., Wahlster, W., Helbig, J.: Umsetzungsempfehlungen für das Zukun-
ftsprojekt Industrie 4.0. Abschlussbericht des Arbeitskreises Industrie (2013)

15. Klügl, F.: Multiagentensimulation - Konzepte, Werkzeuge. Addison-Wesley,
Munich (2001). Anwendung

16. McFarlane, D., Sarma, S., Chirn, J.L., Wong, C., Ashton, K.: Auto ID systems and
intelligent manufacturing control. Eng. Appl. Artif. Intell. 16(4), 365–376 (2003)

17. Morales Kluge, E., Ganji, F., Scholz-Reiter, B.: Intelligent products - towards
autonomous logistic processes - a work in progress paper. In: 7th International
Product Lifecycle Management Conference PLM 2010, Bremen (2010)

18. Nissim, R., Brafman, R.I.: Cost-optimal planning by self-interested agents. In:
Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence,
July 14–18, 2013, Bellevue, Washington, USA (2013)

19. Van Dyke Parunak, H., Savit, R., Riolo, R.L.: Agent-based modeling vs. equation-
based modeling: a case study and users’ guide. In: Sichman, J.S., Conte, R., Gilbert,
N. (eds.) MABS 1998. LNCS (LNAI), vol. 1534, pp. 10–25. Springer, Heidelberg
(1998)

20. Rekersbrink, H., Ludwig, B., Scholz-Reiter, B.: Entscheidungen selbststeuernder
logistischer objekte. Industrie Manage. 23(4), 25–30 (2007)

21. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-
Hill, New York (1967)

22. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach, 3rd edn.
Pearson Education, New Jersey (2010)

23. Saffidine, A.: Solving Games and All That. Ph.D. thesis, University Paris-Dauphine
(2014)

24. Warden, T., Porzel, R., Gehrke, J.D., Herzog, O., Langer, H., Malaka, R.: Towards
ontology-based multiagent simulations: the plasma approach. In: Bargiela, A.,
Azam Ali, S., Crowley, D., Kerckhoffs, E.J.H. (eds.) European Council for Mod-
elling and Simulation ECMS 2010, pp. 50–56 (2010)

25. Windt, K., Böse, F., Philipp, T.: Autonomy in production logistics: Identification,
characterisation and application. Robot. Comput. Integr. Manuf. 24(4), 572–578
(2008)

26. Wooldridge, M.: Reasoning about Rational Agents. The MIT Press, Cambridge
(2000)

27. Wooldridge, M.: An Introduction to Multi-Agent Systems. Wiley, Chichester (2002)
28. Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl.

Eng. Rev. 10(02), 115–152 (1995)

Modeling and Simulation of Web-of-Things
Systems as Multi-Agent Systems

Ion Mircea Diaconescu1(B) and Gerd Wagner1,2

1 Brandenburg University of Technology, Cottbus, Germany
{M.Diaconescu,G.Wagner}@b-tu.de

2 Old Dominion University, Norfolk, USA

Abstract. In the Web of Things (WoT), special communication net-
works composed of sensor nodes, actuator nodes and service nodes form
the basis for new types of web application systems, which are directly
connected to the real world via sensors and actuators. We propose a con-
ceptual framework for simulating WoT systems as multi-agent systems
where both sensor nodes, actuator nodes and service nodes, as well as
other systems in their environment interacting with them (such as other
web applications, web services and human users), are modeled and simu-
lated as agents. Our conceptual framework includes an ontology of WoT
systems as sensor/actuator systems, and a meta-model for defining an
agent-based WoT system simulation language.

Keywords: Web of things · Sensor-actuator systems · Agent-based
modeling · Simulation

1 Introduction

In the Web of Things (WoT), special communication networks composed of
sensor nodes, actuator nodes and service nodes form the basis for new types
of web applications, which are directly connected to the real world via sensors
and actuators, and can be private, such as smart home apps, personal robotics
apps and factory control applications, or public, such as air pollution monitoring
systems and city parking management apps. We propose a conceptual framework
for simulating WoT systems as multi-agent systems where both sensor nodes,
actuator nodes and service nodes, as well as other systems in their environment
interacting with them (such as other web applications, web services and human
users), are modeled and simulated as agents.

We consider systems of purposeful interacting systems (with some degree of
autonomy) as multi-agent systems. Our conceptual framework includes an ontol-
ogy of WoT systems (WoTS) as sensor/actuator systems, and a meta-model for
defining an agent-based WoT system simulation language. Our approach supports
“hardware in the loop”, “software in the loop” and “humans in the loop”,
where “hardware” refers to sensor or actuator nodes, “software” refers to web
applications and web services, and “humans” refers to human users, which can
c© Springer International Publishing Switzerland 2015
J.P. Müller et al. (Eds.): MATES 2015, LNAI 9433, pp. 137–153, 2015.
DOI: 10.1007/978-3-319-27343-3 8

138 I.M. Diaconescu and G. Wagner

interact with a WoTS simulation via the user interface of a web application or via
a user interface of a sensor or actuator node.

Our proposed simulation framework is not concerned with low-level network-
ing issues in WoTS, e.g., resulting from specific network topologies. Rather, the
goal is to develop a WoTS simulation approach including and above the appli-
cation layer, with a focus on simulating the sensor, actuator and service nodes
as parts of a WoTS, and the WoTS as a whole.

2 Related Work

In [4], an approach to agent-based simulation of a network of web-service-enabled
devices is proposed. The authors argue that the Service-Oriented Architecture
(SOA) paradigm can be used for achieving interoperability between the nodes
of a WoT system and between such a system and modern enterprise networks.
When devices expose their data and operations as web services, this provides an
integration of devices with enterprise applications, allowing new innovative solu-
tions to enterprise automation problems. The authors choose the open standard
protocol Devices Profile for Web Services (DPWS) as the interaction protocol
for web-service-enabled devices [5]. However, this protocol is based on a protocol
stack that is too complex for constrained resource devices as needed, for instance,
in battery-operated WoT networks, while it may work well in non-constrained
office or factory environments. A Java-based multi-agent platform is used to cre-
ate the agents that simulate DPWS devices. These agents are connected to the
enterprise network in the same way as real DPWS devices. The resulting system
can be used for evaluating the impact of a large number of networked devices
on the running enterprise applications, without the need to set up a real device
network, which would be quite expensive and more difficult.

In [6] is proposed a decentralized architecture where agents providing atomic
system services run inside IoT devices. The authors argue that it is possible,
by using their approach, to dynamically distribute system load and move the
data processing tasks into the IoT devices in the edges of the network. HTTP
and CoAP (for low resource devices) are used as communication protocols, and
a proxy translates messages between these protocols. The assumption is that
IoT devices exist in a physical form (they are not software simulated), and the
discussion is rather generic, not making clear how such a system, composed
of various IoT devices (software and hardware platforms) can be practically
implemented.

A language and platform independent composition for mobile agents-based
smart objects is proposed in [7]. Using this approach, communication and data
sharing between agents is possible over disparate networks. The information
infrastructure is realized with the IETF CoRE framework [8]. The REST prin-
ciples are utilized in agent creation, migration, control, smart object commu-
nication and resources exposal to the internet. The authors discuss a system
reference architecture as well as an application programming interface which
allows basic HTTP and CoAP communication, content negotiation and autho-
rization methods. Some of the principles presented in this work are also used in

Modeling and Simulation of Web-of-Things Systems 139

the implementation of our JavaScript simulation framework, allowing agents to
share information among heterogeneous networks and provide access to resources
with the help of web interfaces.

3 IoT and WoT Systems

An Internet-of-Things (IoT) system is a communication network consisting of
sensor nodes, actuator nodes and service nodes, such that at least one node
is connected to the Internet. A sensor node consists of a controller to which
one or more sensors and a communication unit are attached. An actuator node
consists of a controller to which one or more actuators, zero or more sensors and
a communication unit are attached.

A WoT system (WoTS) is an IoT system that is built with Web technologies.
These technologies do not only include the classical Web technologies HTTP(S),
HTML, CSS and JavaScript, but also the more recent Web technologies Server-
Sent Events, Web Sockets, and the Constrained Application Protocol (CoAP)
proposed in [9]. We distinguish between the following three cases:

1. WoT systems that do not have the limitations implied by constrained resource
devices. These systems can use ordinary networking and web technologies such
as IEEE 802.11 for wireless networking, HTTPS and SOAP for application-
level messaging, and SOAP-based co-ordination and security techniques, as
proposed in [4].

2. WoT systems based on constrained resource devices having unlimited power
supply (not using batteries), such that power consumption is not a concern.
These systems need an alternative software/technology stack that is adapted
to the limited main memory, storage and processor speed of the constrained
resource devices. Ethernet (or IEEE 802.11) can still be used for (wireless)
networking, but only CoAP or an HTTP subset, and no HTTPS, can be used
for application-level messaging.

3. WoT systems based on constrained resource devices that are battery-powered,
requiring low-energy wireless networking technologies, such as IEEE 802.15.4,
and small footprint software technologies, such as CoAP for application-level
messaging. These systems often have higher packet error rates and a lower
throughput (say, of only tens of kbit/s).

Unlike many other authors, such as [2,4], we consider the issue of using the
new Internet Protocol (IP) version 6 (IPv6) instead of the established version
4 (IPv4) as orthogonal to the WoT. The main issue solved by IPv6, allowing a
greater address space than IPv4, is not necessarily an issue for WoT systems,
which can, in many cases, be built with either of them. Of course, the increasing
use of IoT apps will contribute to the increasing demand for IP addresses. But
since most IoT/WoT devices will not have to be reachable via an IP address, the
expected explosive growth of the IoT/WoT will not imply a similar explosion of
the IP address space.

140 I.M. Diaconescu and G. Wagner

The following are considered to be desirable features of a WoTS:

– self-configuration: the dynamic composition of WoTS by nodes joining and
leaving the network at any time

– self-diagnosis: automatic discovery of failures and faults
– self-optimization of constrained energy (battery-based) WoTS: automatic

monitoring and on/off-time control of resources

Fig. 1. A fragment of the AOES ontology.

Further, we discuss an approach for modeling sensor and actuator nodes as
agents. The AOES ontology fragment shown in Fig. 1 is the basis of our proposal.
PhysicalAgent represents the core of a WoTS model, and it consists of a set
of built-in properties representing the physical characteristics of the agent (e.g.,
spatial position) and zero or more (built-in or custom defined) reaction rules
defining its behavior. When needed, additional custom properties can be defined
for specific agent types derived from PhysicalAgent.

3.1 Sensor Nodes

As described in the UML class diagram shown in Fig. 2, a sensor node represents
a PhysicalAgent. It consists of a controller, a communication unit and one or
more sensors. A sensor consists of one or more detectors, which represents simple
(non-composite) sensors. A sensor is a measurement device that is attached to
a controller within a sensor node. As shown in Fig. 3, we distinguish between
three types of detectors:

Modeling and Simulation of Web-of-Things Systems 141

1. quality detectors with an analog interface,
2. quality detectors with a digital interface,
3. event detectors.

Fig. 2. An overview of the sensor and actuator nodes model.

Quality detectors and event detectors are simple (non-composite) sensors.
A quality detector is a device that allows measuring a physical quality of its
environment (or reach). An event detector allows detecting events occurring
in its reach. Notice that the concept of physical qualities has been defined in
the philosophical discipline of ontology (or metaphysics). A quality is an entity,
and not a data value, but it can be approximately represented by a data value
(namely the value of an attribute that captures the type of quality). For instance,
the voltage level of a wire of a particular detector at some moment in time is
a quality, which can be approximately represented by the value of an attribute
outputVoltage used for expressing statements about, and measurements of, the
detector.

Figure 3 shows how the sensing operation of an analog quality detector can
be conceptualized as a transformation, which converts a quality to be measured

142 I.M. Diaconescu and G. Wagner

in the detector’s reach to an internal quality of the detector device (typically, to
a voltage level) that can be read and transformed to a measurement quantity
by the controller. In our WoTS sensor ontology, we call the first transformation
function quality-to-voltage, and the second one voltage-to-quantity.

The sensing operation of a digital quality detector can be conceptualized as a
transformation, which converts a quality to be measured in the detector’s reach
to a sequence of bytes that can be read and transformed to a measurement quan-
tity by the controller (see Fig. 3). In our WoTS sensor ontology, we call the first
transformation function quality-to-bytes, and the second one bytes-to-quantity.

Fig. 3. An overview of the sensor model.

The sensing operation of an event sensor can be conceptualized as a trans-
formation, which turns the occurrence of an event of a certain type in its reach
to an internal event of the sensor device itself (typically corresponding to dig-
ital voltage signals) that can be detected and transformed to a control event
by the controller. In our WoTS sensor ontology, we call the first transformation
externalEvent-to-sensorEvent, and the second one sensorEvent-to-internalEvent.

Modeling and Simulation of Web-of-Things Systems 143

3.2 Actuator Nodes

As shown in the UML class diagram in Fig. 2, an actuator node represents a
PhysicalAgent. It consists of a controller, a communication unit, one or more
actuators and zero or more sensors.

As a component of an actuator node, an actuator is an enactment device that
is attached to a controller within an actuator node. Common types of actuators
are electro-mechanical devices that are controlled with the help of a (voltage or
digital interface) signal. Examples are motors, water pumps and relays.

Based on the interaction with the environment, we distinguish between two
types of actuators: event actuators and activity actuators.

As shown in Fig. 4, the effect of an event actuator is an event which directly or
indirectly affects qualities of its reach. A direct effect is when the resulting event
produces immediate state changes in the environment (reach) quality. For exam-
ple, a relay actuator which turns on a light, produces an immediate change in the
light intensity value of the actuator reach. An indirect effect is when the resulting
event produces a set of actions which later can result in reach state changes.

Fig. 4. An overview of the actuator model.

An activity actuator produces environment (reach) state changes over a time
period. It has a start and an end triggering event. For example, a watering
activity is started when the soil moisture is below a threshold and is ended when
the soil moisture reaches the required level. During the watering activity time,
the soil moisture increases as a result of the water flow, and a soil moisture
sensor reads the changes of this quality.

144 I.M. Diaconescu and G. Wagner

We distinguish between two main types of actuators (see Fig. 4), with respect
to their communication interface: digital and analog. Digital actuators are either
controlled with a simple high/low signal or by using a specific digital communi-
cation protocol, such as I2C, SPI or UART.

Analog actuators are controlled by voltage levels, and their effect is repre-
sented by one or more functions, sometimes provided in the actuator datasheet.
While for a vaste majority of actuators this information is not available, a lin-
ear, exponential or logarithmic function can be used to simulate the output of
an actuator. Controlling an analog actuator requires to use a DAC (digital to
analog convertor) capable controller, such as Arduino DUE [1].

Some digital actuators are controlled with a simple high/low signal. They
can be in one of the two states: open or closed. Examples of such actuators
are relays and electro-valves. Other digital actuators accept as input a set of
bits which describes the command to be executed. For example, some PWM
actuators expect a 64 bits encoded duty cycle and frequency values. In general,
standard digital communication protocols (e.g. I2C, SPI or UART) are used
to communicate with digital actuators, but for some, the datasheet may also
describe a custom protocol.

3.3 The Environment

The environment (reach) of the sensors and actuators of a WoTS consists of
amounts of matter (such as soil and air) and of discrete material objects (such as
cars and animals). Amounts of matter and material objects bear certain phys-
ical qualities (such as color or temperature) that can be measured by quality
detectors, and may participate in certain events that can be detected by event
detectors. Physical qualities of the objects or amounts of matter in the environ-
ment can be affected by actuators. For example, turning on a heater affects the
temperature of that specific heater actuator reach.

3.4 Examples of Sensors and Actuators

In the above sections we discuss about sensors and actuators as components
of a node. A large variety of sensor and actuators, such as the ones shown in
Fig. 5, exists for being used in WoT projects. For instance, an actuator node
may consist of a Grove soil moisture analog quality detector and a Pump digital
actuator attached to an Arduino UNO [1] micro-controller, plus an ESP8266 1

WiFi communication module. Notice that a Pump represents an actuator type,
the instances of which are individual Pump actuators. In the same way, a sensor
node may consist of a DHT22 2 (itself consisting of a temperature and humidity
detectors) sensor, an Arduino UNO micro-controller, and an ESP8266 WiFi
communication module.
1 ESP8266 WiFi module - http://www.esp8266.com/.
2 DHT22 Sensor - https://www.adafruit.com/datasheets/Digitalhumidityandtemp
eraturesensorAM2302.pdf.

http://www.esp8266.com/
https://www.adafruit.com/datasheets/DigitalhumidityandtemperaturesensorAM2302.pdf
https://www.adafruit.com/datasheets/DigitalhumidityandtemperaturesensorAM2302.pdf

Modeling and Simulation of Web-of-Things Systems 145

Fig. 5. Examples of sensor and actuator types.

4 The AOE Simulation Framework

Our AOES framework includes a simulation language and a simulator imple-
mentation, with support for various built-in sensor (e.g., LM35) and actuator
types (e.g., PullDownRelay).

The simulation language is based on AORML [10] (Agent-Object-Relationship
Modeling Language), and provides the language elements used to define WoTS
simulations. In AORML, an entity is either an agent, an event, an action, a claim,
a commitment, or an ordinary object. Agent and object form, respectively, the
active and passive entities, while actions and events are the dynamic entities of
the system model. Commitments and claims establish a special type of relation-
ship between agents. These concepts are fundamental components of social inter-
action processes and can explicitly help to achieve coherent behavior when these
processes are semi or fully automated. Only agents can communicate, perceive,
act, make commitments and satisfy claims. Ordinary objects are passive entities
with no such capabilities.

We extend the AOE Simulation Language with support for the new types
required in a WoT simulation. The basic elements used to define a sensor node
are shown in Fig. 6. Interfaces are used to describe operations (functionality),

146 I.M. Diaconescu and G. Wagner

such as the attribute-to-voltage mapping function needed for the analog qual-
ity detectors. Concrete WoT component types, such as ArduinoUNO (a micro-
controller type) and LM35 (an analog quality detector type) are instances of
MaterialObject, from which physical properties are inherited (e.g., spatial posi-
tion and sizes). A set of parameters are used when a new component type is
created, one of the most important being supertype which allows to classify
the new component (e.g., as a DigitalActuator or AnalogQualityDetector).
This simulation language is used by our JavaScript simulator implementation
prototype. For instance, a new analog detector type, such as LM35, is defined as
follows:

var LM35 = new MaterialObject({
typename: "LM35",
supertype: "AnalogQualityDetector",
mappingFunction: {

method: "linear",
initialData: { q0: 0, v0: 0, q1: 100, v1: 1},

},
measurementRange: { min: 0, max: 100},
accuracy: 0.5,
precision: 1,
resolution: 0.1,
supplyVoltage: 5,
properties: {

"outputVoltage": { range: "Decimal"}
}

});

Notice that in the class diagram of Fig. 6, the ArduinoUNO class represents,
like a product type, a controller type, the instances of which are individual
ArduinoUNO micro-controllers. Likewise, the LM35 class represents a detector
type, the instances of which are individual LM35 detectors.

5 Modeling and Simulation of WoT Systems

A WoTS simulation consists of one or more simulated WoTS nodes, an environ-
ment simulator, and zero or more real WoTS nodes, satisfying certain conditions
as defined below. The environment simulator is in charge of managing the state
of the simulated environment, including the reaches of all simulated sensor and
actuator nodes, and of simulating environment events, which may change the
state of the simulated environment, e.g., by changing certain property values in
certain simulated sensor reaches, and may affect event detectors if a simulated
environment event of the right type occurs in the reach of a simulated event
detector.

Modeling and Simulation of Web-of-Things Systems 147

Fig. 6. AOES sensor node example.

5.1 Simulation of Sensor Nodes

A simulated sensor node consists of a controller to which one or more simulated
sensors are attached. Since our simulation framework is not concerned with low-
level communication issues, we do not include the communication unit as an
explicit component of a simulated sensor node. A detailed discussion about how
a simulated sensor reads a quality of the environment and produces a result
representing the measured quantity was presented in [3]. We provide a summary
of the mapping functions used to simulate the sensor output.

The Attribute-Value-to-Voltage-Value Function. In a measurement sim-
ulation, the value of a reach attribute is read by the simulated analog quality
detector and transformed to a voltage value. The sensor resolution is used to
compute the “detected” input value, then, using a mapping function, a voltage
output value is obtained. The mapping function is either provided in the sen-
sor datasheet, or approximated by a linear, logarithmic or exponential function,
as shown in [3]. Considering the sensor characteristics, such as accuracy and
precision, the final voltage output of the sensor is computed.

The Voltage-Value-to-Quantity Mapping Function. This function is used
to provide a quantity for the measured quality when analog detectors are used.
Using ADC (analog to digital converted) enabled controllers (such as Arduino
UNO), the sensor analog output is mapped to a value representing the measured
quantity of the environment quality. The ADC unit has accuracy and precision,
like a sensor, since it is a voltage sensor with a digital output, which are reflected
in the ADC output.

148 I.M. Diaconescu and G. Wagner

Attribute-Value-to-Quantity Mapping Function. This applies to sensors
with digital output, no matter which communication protocol they use, since the
final result is a decimal number. When the sensor datasheet specifies a particular
mapping function, then it can be used in the sensor simulation. However, in
many cases, this information is not available, the strategy being to use the same
mapping functions as in the case of the attribute-value-to-voltage-value function,
with the difference that the output is not a voltage value but a value which is
the quantity of the measured quality. The sensors with digital output have also
accuracy, precision and resolution factors, which are handled as detailed in [3].

5.2 Simulation of Actuator Nodes

A simulated actuator node consists of a controller to which one or more simulated
actuators and zero or more simulated sensors are attached. As for the case of
simulated sensor nodes, we do not include the communication unit as an explicit
component of a simulated actuator node.

As shown in Fig. 4, an actuator affects the reach either by triggering events
with direct or indirect effect, as discussed earlier in this paper, or by producing
an activity. For the simulation of the environment state changes produced by
actuators, uniform and radial mapping functions are used. Whenever needed,
custom mapping functions may also be implemented, e.g., when a simulation
scenario has custom requirements.

The Unform Mapping Function. This mapping function is used whenever
a quality of the reach is affected in a uniform manner in the environment (or
reach), no matter the physical coordinates. For example, a relay which turns
on a set of lights may produce uniform light (considering an ideal environment)
over the reach.

The Radial Mapping Function. Using this mapping type, the effects of the
actuator are reduced (or amplified) with the increase of the distance between
the actuator spatial position and the coordinates within the affected reach. For
example, a water pump actuator produces a radial effect with respect to the soil
moisture environment quality. In other words, the soil moisture level decreases
along with the increase of the distance between the water pump, considered the
origin of the water flow, and the spatial coordinates in the reach where the soil
moisture quality measurement is performed. Concrete formulas used to compute
the radial effects depends on the affected physical properties. One example is
provided at the end of this paper, when a “Green House” simulation scenario is
discussed.

5.3 Simulation of the Environment

The simulated environment (simulation world) consists of simulated actuator
and sensor reaches, which overlap partially or totally. The physical space of

Modeling and Simulation of Web-of-Things Systems 149

the simulated environment is divided in cells, which represent the atomic space
units. A simulated reach is composed of a set of such neighbor cells. In a real
world WoTS, a sensor or actuator can have a irregular physically shaped reach,
i.e., a mesh shape. For simplicity reasons, in the case of simulated sensors and
actuators, the corresponding reach spaces are described by using regular shapes,
such as cuboids or approximated spheres. A simulated actuator actions have
effects only on that specific actuator reach, while a simulated sensor is able to
read (sense) only from its reach.

Actuator actions create environment events which activates environment
reaction rules. As result, state changes of the physical qualities of the objects or
matter within the simulated actuator reach may occur or activities are started or
ended, as shown in Fig. 4. Simulated quality detectors (or sensors) detect quality
state changes, while simulated event detectors (or sensors) receive perception
events. For example, a simulated LM35 analog quality temperature detector
senses changes of the temperature quality within its reach, and a PIR (passive
infrared sensor) detects the presence of an infrared emitting object within its
reach.

For simulations with sensor hardware in the loop, it is important to notice
that while simulated sensors have a simulated reach, real sensors are situated in a
real-world environment. A simulated environment does not affect any real sensor
node and a real-world environment does not affect any simulated sensor node,
but the two can be part of the same sensor network, share the same gateway
and provide data to the same services.

5.4 Modeling and Simulation of a WoT System as a Whole

A WoTS simulation consists of one or more simulated WoTS nodes, an environ-
ment simulator, and zero or more real WoTS nodes, such that

1. All simulated quality detectors (on simulated sensor and actuator nodes) can
sense/read as their input the value of an attribute of their simulated reach
corresponding to the quality to be measured. A simulated analog quality
detector first maps the attribute value to a voltage value with the help of
an attribute-value-to-voltage-value function, such that the simulated sensor
node can then map it to the simulated measurement result with the help
of a voltage-value-to-quantity function. A simulated digital quality detector
directly maps the property value to the simulated measurement result with
the help of a attribute-value -to-quantity function.

2. All simulated event detectors can detect simulated external perception events
as inputs from the environment simulator

3. All simulated actuators on simulated actuator nodes create simulated action
events as outputs to the environment simulator, which maps them to sim-
ulated physical signals as inputs to simulated sensors in the reach of the
simulated actuator.

4. Simulated sensor nodes are not “coupled” with real actuator nodes: the reach
of any real actuator node does not overlap with the reach of any simulated

150 I.M. Diaconescu and G. Wagner

sensor node. The reach of an actuator node is its local environment, in which
real state changes can be caused by it. The reach of a simulated sensor node
is the spatial region corresponding to its sensing radius in the simulated local
environment of the simulated sensor node.

This definition of a WoTS simulation includes the special case where all nodes
are simulated.

Notice that while there is a crisp boundary between real and simulated sensor
and actuator nodes, the boundary between real and simulated service nodes is
more fuzzy, since service nodes are not connected to the “real world”, but only
to digital network signals, which may represent real or simulated signals.

6 A Green House Test Case

Our Green House scenario considers a closed environment with three important
parameters: soil moisture, air temperature and relative humidity. It has an area
of 1250 m2 (50 × 25m) and a volume of 3750m3 (50 × 25 × 3m).

We consider a plant type, for which the optimal values corresponding to
the three qualities and the quantity of water consumption per unit of time are
known. The temperature variable (producing water vaporization) but also the
water consumed by the plant affects both, the soil moisture and the relative air
humidity.

6.1 Simulated Hardware Configuration

Two sensor types (three quality detectors) are used in our simulation, measuring
the important environment qualities:

– DHT22/AM2302 digital temperature and humidity sensor with a custom
1-Wire digital interface (two quality detectors on the same physical pack-
age, with a common data interface). It allows measurements of air humidity
in the range from [0, 99]% with a typical accuracy of 2 % and precision of
1 %, as well as temperature measurements in the range from [-40, 80]◦C with
a typical accuracy of 0.5◦C and precision of 0.2◦C.

– GROVE analog soil moisture detector, with a range of [0, 100]% and a typical
accuracy of 10 %. The datasheet does not provide information about the sen-
sor’s precision, but our research on the web has shown that typically a value
of 5 % is to be expected for this sensor type. This sensor has an analog quality
detector.

Two actuator types are used to control the three monitored environment
qualities, i.e., soil moisture, air temperature and relative humidity:

– Heaters, activated or deactivated by PullDownRelay digital actuators, are
used to increase the temperature when needed. Each heater is able to increase
the temperature with 5◦C per hour, for 750m3 volume of air. Cooling is not
considered in this scenario. The pull down relays are directly connected to
heaters, and the composition of the two components represents the actuator.

Modeling and Simulation of Web-of-Things Systems 151

– Ventilators, activated or deactivated by PullDownRelay digital actuators, are
used to provide air flow to and from outside the green house space, thus
providing some degree of control for this quality. The ventilators can rotate
either forward or backward and can be on or off, without speed control. Each
ventilator is able to provide a volume of 1250m3 air per hour. The pull down
relays are directly connected to ventilators, and the composition of the two
represents the actuator.

– A Pump digital actuator is used to increase the soil moisture when required.
It can be on (provides water flow) or off (no water flows). The pump is able
to provide 9 dm3 water per minute.

A simulated sensor node consists of an Arduino Mini [1] controller (a cheap
variation of Arduino UNO, much lower in size and with half the power con-
sumption), an WiFi communication module and a DHT22 or a Grove sensor (or
both). Because the temperature and humidity are considered uniform over the
entire green house space, only one node contains a DHT22 sensor.

A simulated actuator node consist of an Arduino Mini controller, an WiFi
communication module and a pull down relay or a water pump actuator (or
both). Some of the actuator nodes contains also Grove sensors, depending on
their spatial position.

In general, the goal is to allow using real devices in combination with sim-
ulated devices. Technically, this is possible by using a virtual router, a piece
of software, which allows the simulated sensor and actuator nodes to behave
in the network same as real hardware: connects to a Wi-Fi or Wired network,
acquire IP from DHCP and use standard communication protocols, e.g., CoAP
over UDP, for data transmission.

6.2 Environment Simulation

In this scenarion, the simulated sensor and actuator nodes exist in a simulated
environment. The variation of the environment qualities, such as air temperature
and humidity, is sensed by the simulated sensors and transformed to quantities
by the controller, e.g., soil moisture level (in percent), for soil moisture quality.
The environment physical space is discrete and it is composed of cubic cells with
a size of 1×1×1m. A cell represents the atomic space unit. A sensor or actuator
reach (a region in the environment space) consists of a neighborhood set of such
cells. Sensor reaches and actuator reaches share environment space (one or more
cells), but a complete overlap is not required. The environment simulator takes
into consideration the following qualities:

– Temperature: the variation from day to night is considered linear. The varia-
tion interval is set for 24 hours. The temperature starts to increase after sun-
rise until a specified daytime, e.g., 5:00 PM for summer time, then decreases
until the next sunrise. Close to reality events, such as clouds, are simulated by
introducing small random variations. In this scenario, we consider a uniform
temperature distribution over the simulated environment (the temperature

152 I.M. Diaconescu and G. Wagner

value is the same on each space cell). The heaters are activated if the temper-
ature goes below 22◦C, and deactivated when the temperature reaches 25◦C
or more.

– Air humidity : the variation depends on the environment temperature and
water dew point. Water dew point is the temperature at which the air can
no longer hold all of the water vapor which is mixed with it, and some of the
water vapor must condense into liquid water. In this scenario, air flow to and
from outside allows to increase or decrease the air humidity. The minimum
and maximum values for this quality are dependent on the values from the
space outside the green house. The formula used to compute the relative air

humidity is: RH = 10m
(

Td
Td+Tn

− Ta
Ta+Tn

)
∗100%, where Td is the water dew point

temperature, Ta is the temperature in the environment, while m and Tn are
constants which depend on temperature ranges and are provided in constant
tables. In this scenario, we consider a uniform air humidity distribution over
the simulated green house environment (the value of this quality is the same
on each space cell).

– Soil moisture: the variation depends on both, the temperature which affects
the water vaporization, and the quantity of water known to be consumed by
the plant. When watering is required, because the soil moisture is below a
threshold, the water pump is started. The water distribution in soil is com-
puted by using the following formula: dθ

dt = d
dr

(
D dθ

dr

) − S, where θ is the
volumetric water content, t is the time, D is the soil water diffusivity, r is the
radius, and S is the water uptake by the plant(s) root. In this scenario, for
simplicty reasons, we do not consider the gravitational force when computing
the water distribution in the soil, therefore the soil moisture is the same no
matter the depth in the soil at which it is measured.

During the simulation runtime, various activities are possible. For example,
when the measured soil moisture goes under a specified level, a watering activity
is started. A water pump is then activated in the specific reach. A known quantity
of water per unit of time starts to flow and the soil moisture in the actuator
reach starts to increase (according with the above presented formula). The soil
moisture sensor reads the value of this quality, and when it reaches an optimum
level, the water pump is deactivated.

7 Conclusions

We have presented a proposal for modeling and simulating certain types of
sensor-actuator systems and WoT systems consisting of simple sensors based
on quality detectors and event detectors, such as LM35 analog temperature sen-
sors and Proximity Infra-Red (PIR) sensors. Although our approach is more
general than the approaches discussed in the section on related work, it does not
provide a completely general model of sensors and actuators, since it does, for
instance, not account for more advanced types of sensors such as LIDAR devices
and video cameras. We work on a JavaScript implementation of the proposed
simulation framework and expect to be able to present evaluation results, of the
simulator and the presented test case, in a follow-up paper.

Modeling and Simulation of Web-of-Things Systems 153

References

1. Arduino Foundation: Arduino Platform (2005). http://arduino.cc
2. Brambilla, G., Picone, M., Cirani, S., Amoretti, M., Zanichelli, F.: A simulation

platform for large-scale internet of things scenarios in urban environments. In:
Proceeding of the of the First International Conference on IoT in Urban Space
(Urb-IoT 2014), Rome, Italy, pp. 50–55 (2014). Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering (ICST)

3. Diaconescu, M., Wagner, G.: Modeling and simulation of web-of-things systems
Part 1: sensor nodes. In: Winter Simulation Conference (WSC 2015), Huntington
Beach, CA (To appear)

4. Karnouskos S., Tariq, M.M.J.: An agent-based simulation of SOA-ready devices.
In: Proceedings of the Tenth International Conference on Computer Modeling and
Simulation, pp. 330–335 (2008). IEEE Computer Society

5. Microsoft Corporation: Devices profile for web services. http://specs.xmlsoap.org/
ws/2006/02/devprof/devicesprofile.pdf (2006). Accessed 23 May 2015

6. Leppnen, T., Riekki, J.: A lightweight agent-based architecture for the Internet of
Things. IEICE Technical Report

7. Leppnen, T., Riekki, J., Liu, M., Harjula, E., Ojala, T.: Mobile agents-based smart
objects for the internet of things. In: Fortino, G., Trunfio, P. (eds.) Internet of
Things Based on Smart Objects, pp. 29–48. Springer, Heidelberg (2014)

8. Shelby, Z.: Embedded web services. IEEE Wirel. Commun. 17(6), 52–57 (2010)
9. Shelby, Z., Hartke, K., Bormann, C.: Constrained Application Protocol (CoAP)

RFC 7252, June 2014. Internet Engineering Task Force (IETF)
10. Wagner, G.: The agent-object-relationship meta-model: towards a unified view of

state and behavior. Inf. Syst. 28(5), 475–504 (2003)

http://arduino.cc
http://specs.xmlsoap.org/ws/2006/02/devprof/devicesprofile.pdf
http://specs.xmlsoap.org/ws/2006/02/devprof/devicesprofile.pdf

A Conceptual Approach to Place Security
in Systems of Mobile Agents

Héla Hachicha1(&), Donies Samet2, and Khaled Ghedira3

1 Institut Supérieur d’Informarique, Université El Manar, Tunis, Tunisia
hachichahela@yahoo.fr

2 Faculté des Sciences Economiques et de Gestion,
Université de Sfax, Sfax, Tunisia
donies.samet@yahoo.com

3 Institut Supérieur de Gestion, Université de Tunis, Tunis, Tunisia
khaled.ghedira@isg.rnu.tn

Abstract. Mobile agents’ security is a major challenge for the expansion of
their use. Actually, most research works have been interested in integrating
mobile agents’ security requirements in the implementation stage. However, the
integration of security requirements in the design stage could help towards the
development of more secure systems based on mobile agents. In this paper, we
are interested to model the security requirements of mobile agents in the design
stage in order to protect places from malicious visitor agents. An example from a
teleexpertise system is used to illustrate the proposed approach.

Keywords: Mobile agents � Security requirements � MA-UML profile �
Agent-Oriented software engineering

1 Introduction

Mobile agent technology is gaining wide acceptance for their ability to deal with
complex systems. Mobile agents are a particular type of software agents whose pre-
dominant feature is their ability to move throughout networks from an execution
environment to another. This environment is called “place”. A place represents a
“context” where mobile agents run, meet and communicate with other agents, and
handle some local resources [1]. Among the advantages of using mobile agents we
quote: reducing network traffic, reducing bandwidth usage, improving network latency,
robustness and fault tolerance [2]. However, the mobile agents’ security issue is an
obstacle to the effective use of this technology and it is not yet fully resolved.

Generally the definition of mobile agents’ security requirements is considered in the
implementation stage of the development process. However, the integration of security
requirements during the design stage could help towards the development of more
secure systems based on mobile agents [3].

In this context and in order to contribute to solve this problem, the aim of our
research is to integrate mobile agents’ security requirements into a mobile agent-
oriented methodology. In this work, we are interested essentially in ensuring the security
of places in systems of mobile agents by introducing new security properties in the

© Springer International Publishing Switzerland 2015
J.P. Müller et al. (Eds.): MATES 2015, LNAI 9433, pp. 154–170, 2015.
DOI: 10.1007/978-3-319-27343-3_9

design stage. These new security properties represent new extensions of the MA-UML
profile (Mobile Agent UML) [4] in order to define the “Secure MA-UML profile”.

This paper is structured as follows. In Sect. 2, first we briefly describe the security
requirements and we discuss the security issues of mobile agents based systems.
Section 3 describes the main approaches towards designing security requirements. In
Sect. 4, we present our proposed extensions in order to secure places in systems of
mobile agents. Section 5 describes two scenarios implementations to show the useful of
the introduced extensions. Finally, Sect. 6 summarizes the paper and offers directions
for future work.

2 Mobile Agent and Security

2.1 Security Requirements

In the following points, we provide a brief overview of the security requirements [5]:

• Confidentiality: guaranteeing that information is only accessible to authorized
entities and inaccessible to others.

• Authentication: proving the identity of an entity.
• Integrity: assuring that the information remains unmodified from source entity to

destination entity.
• Access Control: identifying the access rights an entity has over system resources.
• Non-repudiation: confirming the involvement of an entity in certain

communication.
• Availability: guaranteeing the accessibility and usability of information and

resources to authorized entities.

2.2 Security Issues in Systems of Mobile Agents

According to the literature [5, 6], four classes of attacks can be identified in systems of
mobile agents, which are:

• An Agent to Another Agent: this class spread the attacks that an agent may suffer
from another agent. There are basically four types of risks: attacks against
authentication, attacks against confidentiality, attacks against availability and
attacks against non-repudiation.

• A Place to a Mobile Agent: an agent that runs on a place is exposed to security
threats which are: attacks against authentication, attacks against confidentiality,
attacks against availability and attacks against integrity.

• A Mobile Agent to a Place: in this class the problems include masquerading, denial
of service, unauthorized access and repudiation.

• External Entities to Mobile Agent: to migrate to another place, an agent must pass
through a communications network on which the agent may suffer different types of
attacks such as listening, alteration of its content or even its destruction.

A Conceptual Approach to Place Security in Systems of Mobile Agents 155

In this paper, we are interested only in the attacks caused by a mobile agent to a
place. These attacks are discussed in detail in the following subsection. The others
classes of attacks will be treated in our future research.

2.3 Attacks Caused by a Mobile Agent to a Place

In this class, the mobile agent exploits the vulnerabilities of a place or launches attacks
against a place. The set of attacks are described in the following points [5, 6]:

Attack Against the Authentication. Masquerade: A mobile agent masks its identity to
present itself as an authorized agent to access the services and resources that it does not
have the right.

Attack Against the Availability. Denial of service: Mobile agent can launch denial of
service attacks by consuming the resources of the visited place excessively, by cloning
or migrating indefinitely without end. Denial of service can be launched to exploit
system vulnerabilities, to disrupt the services offered by the place or to degrade its
performance. As a consequence, this attack has an effect on other agents because it can
disrupt their access to the place or their use of resources.

Attack Against Access Control. Unauthorized access: Each agent visiting a place must
be subject to the security policy of this platform. To implement appropriate mecha-
nisms for access control, a mobile agent must authenticate itself before it is instantiated
on the place. A mobile agent who has access to a place and its services without proper
authorization can affect the place. Depending on the access level, the agent may be able
to switch off or reside the place. A platform that accepts agents, representing the
various users and organizations, must ensure that agents do not have access to data for
which they have no authorization.

Attack Against Non-repudiation. Repudiation: The repudiation occurs when an agent
can deny having performed an action. For example, a mobile agent belies the fact that it
visited a platform and used its resources. If a platform cannot prevent malicious agents
to repudiate a transaction, it must be able to resolve disagreements arising.

3 Related Work

Security plays an important role in the development of mobile agent technology. As a
result, some works on security for systems of mobile agents have been interested to
include the security requirements when the system is being deployed or is already in use,
or in the best case they are considered only during the final stage of software devel-
opment (i.e. implementation). Among these approaches, we mention: an efficient
approach for mobile agent security [9], the formal modeling and analysis of a secure
mobile-agent system [8], and d’Agents: Security in a multiple-language, mobile-agent
system [17] and others approaches [19, 20, 21, 22].

These kinds of approaches have been considered by the field of security engineering
which focuses essentially on providing advances in security models, techniques,
mechanisms and protocols. However, they so far have not considered the design stage of

156 H. Hachicha et al.

the development process and they so far have not integrated security concerns into
software engineering techniques; models and processes, in order to build up more secure
mobile agents based systems.

In our work, we are interested essentially in the secure software engineering
(conceptual approaches) which consists of integrating the security requirements at the
design stage of software development process. This research discipline has emerged
relatively recently and only little works have been proposed. Among the approaches
which have been interested to mobile agents, we mention: the conceptual model for
systems based on secure mobile agents [7], Modeling Secure Mobile Agent Systems
[18]. These approaches are useful and interesting contributions. However, several
limitations have been identified: First, the specification of the security requirements is
limited only to the implementation stage and the security properties have not specified
in the design stage of software development process. Second, not all the security
requirements of mobile agent have covered by these works.

Other approaches have been interested to offer their own agent-oriented method-
ologies to specify the security concepts related to multi-agent systems, such as
SecureTROPOS [23] and NEMO [24]. Some other works have been proposed to
extend the UML language to deal with the security requirements of objects and agents,
such as: UMLSec [10] and SecureUML [11] (object-oriented approaches) and Adap-
tive security model for MAS [12] and the extension of FAML [14] (agent-oriented
approaches).

In our work, we are interested only to the conceptual approaches which integrate
the security requirements in UML language at the design stage. In the following
subsections, we present an overview of those works, highlighting their strengths and
limitations.

3.1 The UMLSec Profile

The UMLSec profile [10] is an extension of UML for the specification of object’s
security requirements. This profile extends UML diagrams (class, object, sequence,
etc.) in order to describe aspects of security, either by simple annotations in graphs (a
data confidentiality, non-repudiation action) or by dedicated functions (e.g. for hashing,
encrypting, or decrypting, used in security protocols). Moreover, UMLsec includes
tools for verifying the security constraints placed on diagrams. The information
security is guaranteed by:

• the hypotheses of security in the physical level (e.g. the stereotype “Internet”);
• the security requirements in the logical structure of the system (e.g. the stereotype

“secrecy”) or on data values (e.g. the stereotype “critical”);
• the security policies which subsystems are supposed to obey (e.g. stereotypes “fair

exchange”, “secure links”, “data security” or “no down-flow.”

Some stereotypes on subsystems refer to stereotypes on elements of the model
contained in the subsystems. For example, the constraint of the stereotype “data
security” refers to objects in the subsystem stereotyped “critical” (which have the tags
{secrecy}). The UMLsec follows the standard security modeling method.

A Conceptual Approach to Place Security in Systems of Mobile Agents 157

The UMLSec profile is a modeling language that allows the specification of
security requirements, which are: confidentiality, integrity, access control,
non-repudiation, and secret stream. However, it does not address the other security
requirements such as: authentication, availability and confinement.

3.2 The SecureUML Profile

The SecureUML profile [11] is a modeling language that defines a vocabulary for
annotating UML-based models with relevant information for access control. It is based
on the RBAC model (Role based Access Control) [13] and specifying authorization
constraints. The SecureUML defines a vocabulary to express different aspects of
object’s access control such as roles, permissions and role assignments user-role.

The SecureUML meta-model is defined as an extension of the UML metamodel.
RBAC concepts are represented directly as elements of the meta-model.

The SecureUML profile is an object-oriented language which deals only with the
security requirement access control but it does not address the other security properties
such as: authentication, availability and confinement, confidentiality, integrity,
non-repudiation, and secret stream.

3.3 The Adaptive Security Model for MAS

The adaptive security model [12] is an extension of the RBACmodel [13]. This research
proposed a meta-model of security in which the traditional role concept has been
extended. The new concept incorporates the need of both security management as used
by the access control based on roles (RBAC) and agent behavior in agent-oriented
software engineering. In this model, the basic policy of access authorization has the
following form:

Subject {(id, role, organization), Access Operation (op), Access Context (co),
Resource (id, type)}

The meta-model was motivated by the requirements of the project “Health Agents”
but it is generic and other application domains can use it. In this work, the RBAC is
extended with permissions to assign to individuals and organizations. These permis-
sions can be assigned to a set (or type) of resource or type of subjects with few
exceptions. This is configured by a positive authorization policy for the entire col-
lection and negative authorizations for individual exceptions.

Access Context is another extension proposed to give greater flexibility. The
context of access includes a descriptive explanation of the access operation,
where/when the requested data are provided, the duration of use of the data, the
pre-condition and post-condition of the operation of access. In the interaction model, a
role makes its behavior if and only if its authorization constraints are checked.

The adaptive security model is an agent-oriented language that focuses on access
control and not considers other security properties (confidentiality, integrity, authen-
tication, etc.).

158 H. Hachicha et al.

3.4 The FAML Extensions

The FAML [14] (FAME Agent-oriented Modeling Language) is a generic meta-model
to describe the characteristics of multi-agent systems. Two extensions of the meta-
model are created to include security concepts. These concepts are modeled in two sets:
the concepts of execution time “run-time” and the concepts of design time
“design-time”. Each set has two levels: system level and agent level.

This work defines the security requirements “SecurityRequirement” classifying
them into specific security requirements to the system “SystemSecurityRequirement”
and specific security requirements for agents’ Agent-SpecificSecurityRequirement”.

The proposed extension FAML also specifies security actions “Security
ActionSpecification” which may be relocation actions “RelocateActionSpecification”,
recovery actions “RecoverActionSpecification”, prevention actions «PreventAction
Specification» or detection actions «DetectActionSpecification».

The authors proposed to control the access to resources by classifying them into
private resources “PrivateResource” and public resources “PublicResource”.

They also proposed to define elements for modeling security objectives “Secu-
rityGoal”, security constraints “SecurityConstraint”, security tasks “SecurityTask” and
knowledge of security “SecurityKnowledgeBase”.

This work differentiates between security requirements that are modeled by soft-
ware developers during the design phase and the security actions that are performed by
the multi-agent system during run-time to satisfy the security properties.

The FAML is an agent-oriented language that not allows to model all the security
requirements and there are other security concepts that are more complex and can be
derived.

3.5 Discussion

All approaches previously described are useful for modeling security requirements in
the design stage. However, some limits can be identified. In fact, the UMLSec and the
Secure UML profiles allow only the design of security requirements of object
(object-oriented approaches) and not address the design of security requirements of
mobile agent. Also, the adaptive security model incorporate the security management
based on role (role based access control) and the agent functional behavior but it does
not deal directly with the security requirements of mobile agents. In the FAML
extensions, the agent’s modeling units added by these extensions are general and not
sufficient to model all the security requirements of agents and mobile agents.

Thus, these presented works focus to integrate the security requirements in the
design stage. However, they are essentially object-oriented languages and agent-
oriented languages and not mobile agent-oriented language. Then, they not considered
specific security requirements of mobile agents based systems, essentially the security
of: place, resource, agents’ communication acts, agent’s migration, agent’s cloning, and
agent’s running.

In the last years, some mobile agent-oriented languages have been developed to
assist system designers in creating systems of mobile agents, such as MAM-UML
profile [25, 26, 27], and [4]. These languages allow to model mobile agent based

A Conceptual Approach to Place Security in Systems of Mobile Agents 159

systems (entities, relationships, properties, methods). However, they so far have not
considered the security requirements at the design stage, in order to build secure
systems.

Indeed, we can say that in the current state of research, no mobile agent-oriented
language yet exists to allow an adequate design of security requirements of mobile
agent and then to prevent attacks described in Sect. 2.2.

To overcome this limitation, the aim of our research is to model the security
requirement of mobile agent in order to implement more secure mobile agents based
systems. I our previous work, we have proposed the MA-UML language [4], which
offer a set of elements to model entities involved in systems of mobile agents (places,
resources, mobile agent, stationary agent, region). However, this language hasn’t
considered the security of these entities.

Then, our proposal is to define new security properties into MA-UML language in
order to allow it to design secure entities of mobile agents based systems. In this paper,
we propose to define new security properties to secure places from malicious mobile
agents. The proposed extensions are presented in the next section.

4 The Proposed Extensions

In our research work, we aim to provide a set of elements to model security require-
ments of mobile agent in the design stage of the development process. It is to be
noticed that, in this paper, our work focuses on the modeling of security aspects of
places, knowing that we are interested in the mobile agents system when there are only
two kinds of entities: agents and static locations (places); and they are not well suited
for mobile computing modeling (laptops, mobile phones, PDAs).

To contribute to secure places from malicious mobile agents, we propose to
introduce new extensions to the MA-UML environment diagram.

In this section, we first present an overview of the MA-UML profile, and essentially
the MA-UML environment diagram. Then we describe the new extensions to this
diagram in order to allow it to design secure places.

4.1 MA-UML Environment Diagram

The MA-UML Profile [4] extends UML and AUML class diagrams and defines three
new diagrams to model mobile agent static aspects, which are environment diagram,
mobile agent diagram and itinerary diagram. Also the MA-UML proposed four dia-
grams to model mobile agent dynamic aspects, which are: lifecycle diagram, mobile
agent activity diagram, mobile agent sequence diagram and navigation diagram.

The environment diagram is used to specify the environment’s entities of the mobile
agent (entities involved in an application based on mobile agents), their properties and
structural relationships. This diagram contains stereotyped UML classes («place», «re-
source»), stereotyped AUML classes («mobile agent», «stationary agent»), stereotyped
packages («region» , «m-agentsystem»), stereotyped associations («communi-
cate» , «reside» , «manipulate» , «visitor» , «offer»), and new graphical notations (Fig. 1).

160 H. Hachicha et al.

MA-UML environment diagram is suitable to model entities involved in a mobile
agents system, but it is not considered the security of these entities. Thus, we judge that
certain entities’ security properties should be introduced into the MA-UML environ-
ment diagram to prevent attacks and which are necessary for each type of application.

In order to allow the MA-UML environment diagram to design a secure place
entity in systems of mobile agents, we propose to extend it with new security prop-
erties. This extended diagram is presented in the next sub-section.

4.2 Extensions of MA-UML Environment Diagram

During their visit to different places, mobile agent can launch attacks to destination
place. These attacks are: attack against the authentication, attack against the avail-
ability, attack against access control and attack against non-repudiation (these attacks
are described in details in Sect. 2.3).

In order to protect places from malicious mobile agents, we propose to define four
new extensions to prevent against these attacks (presented in the following sub-sections).

4.2.1 Extension to Prevent Availability Attack
During their visits to different places, mobile agents can launch denial of service attacks
(availability attack) against a place by cloning indefinitely or migrating endlessly, in
order to exploit system vulnerabilities, to disrupt the services offered by the place or to
degrade its performance.

In order to specify a secure place and prevent the denial of service attacks, we
propose to define new extension to the MA-UML environment diagram. We define a
new stereotyped association-class, called «PlacePermission» between the stereotyped
class «Place» and the stereotyped class «MobileAgent» . This association-class must
contain a set of properties that sets the privileges assigned for each coming mobile agent
in the destination place. As properties that must contain «PlacePermission» , we define:

• MaxNbClone: This property sets the maximum number of clones allowed to the
coming mobile agent in the place. This property ensures that an agent does not
attack a place by cloning indefinitely.

Fig. 1. Extract of MA-UML environment diagram

A Conceptual Approach to Place Security in Systems of Mobile Agents 161

• CtrlCloneDuration: This property sets the duration for which the maximum number
of clone (MaxNbClone) is defined.

• MaxNbVisit: This property sets the maximum number of visits allowed to the
coming mobile agent to a place. This property ensures that an agent does not attack
a place by migrating endlessly.

• CtrlVisitDuration: This property sets the duration for which the maximum number
of visits (MaxNbVisit) is defined.

These new properties help prevent denial of service attack and then ensure the
availability of the place. Figure 2 shows the extension made to the environment dia-
gram to contribute to specify a secure place and to prevent against the availability
attack of place.

In the «PlacePermission» association-class, the designers of mobile agents based
systems can define additional security properties in order to set other constraints
imposed to mobile agents when it reaches a place.

4.2.2 Extension to Prevent Access Control Attack
Mobile agents need to migrate to places in order to access resources offered and to
execute assigned tasks. However, a mobile agent can become a malicious agent and
access the resource of a place without having the authorization and the right of access;
this can affect the place. Also, mobile agents can consume resource more than
authorized. Then we believe that it is necessary to protect a place’s resource against
malicious coming agents.

In order to specify a secure resource and prevent the unauthorized access attacks, we
propose to define a new stereotyped association-class between the two stereotyped
classes «MobileAgent» and «Resource» , called «ResourcePermission» . This association-
classmust contain a set of properties that sets the constraints imposed tomobile agent when
it should to manipulate resource. Examples of these properties are:

• Right of access of mobile agent to the resource (read, write, update)
• Max time access: This property fixed the maximum time allowed to mobile agent to

access to data of resource.

Fig. 2. Extension of environment diagram to prevent availability attack of a place

162 H. Hachicha et al.

These new properties help prevent access control attack and then ensure the
security of the resource. Figure 3 shows the extensions made to the environment
diagram to specify a secure resource and to contribute to prevent against the access
control attack of a resource.

In the «ResourcePermission» association-class, the designers of mobile agents
based systems can define additional security properties in order to set the constraints
imposed to mobile agents when it should to manipulate a resource offered by a place.

4.2.3 Extension to Prevent Non-repudiation Attack
The repudiation occurs when a mobile agent can deny having performed an action in
visited place, or migrate to destination place. For example, a mobile agent can deny
visited a place and used its resources or execute actions. Then we believe it is necessary
to keep traces of all actions made and established visits.

Then we propose to define new stereotyped classes to MA-UML environment
diagram, which are: the «ActionHistory» class which keeps traces of the various
actions made by mobile agents. Also we define the stereotyped class «VisitedPlace
History» which keep traces of the different visits established. These two classes allow
controlling actions and migrations of mobile agent and then preventing the
non-repudiation attacks (Fig. 4).

Fig. 3. Extension of environment diagram to prevent access control attack of a resource

Fig. 4. Extension of environment diagram to prevent non-repudiation attack in visited place

A Conceptual Approach to Place Security in Systems of Mobile Agents 163

The designers of mobile agents based systems can define additional classes inherit
from the “History” class when it need to keep traces of mobile agent behavior. For
example, we can define le «CommunicationHistory» class to keep traces of the different
communication acts performed by a mobile agent.

4.2.4 Extension to Prevent Authentication Attacks
Amobile agent can masks its identity and present itself as an authorized agent in order to
access the services and resources without having the right to do so (Masquerade attack).

In order to prevent against masquerade attacks, we propose that the mobile agent
class must have some security information, which helps the visited place identify the
mobile agent and make sure that the agent is allowed to run on it. Then, we propose to
define new security properties in the stereotyped class «MobileAgent» with new
security properties. For examples, we define:

• User Authentication Property: who is responsible for this mobile agent? Who is
accountable for any of the charges it runs up?

• User Authorization Property: can this user execute this mobile agent? Which
operations on which objects is this user allowed to invoke? What resources can this
mobile agent consume?

• Mobile Agent Authentication Key Property (MA-authentication Key): is essentially
for the authentication of mobile agent in the destination places.

Figure 5 shows the added mobile agent security properties in order to contribute to
prevent against the authentication attack in the visited place.

In the «MobileAgent» class, the designers of mobile agents based systems can add
additional security properties in order to set the security information needed to identify
an incoming mobile agent.

5 Scenarios Modeling and Implementation

In order to show the usefulness and to validate the new defined security properties to
secure place and resource, we propose to model and to implement two scenarios of
Healthcare Teleexpertise system based on mobile agent [15]. In the following
sub-sections, we describe two scenarios, their modeling through some diagrams, and
the description of the implementation.

Fig. 5. Extension of environment diagram to prevent authentication attack in visited place

164 H. Hachicha et al.

5.1 System Description and Modeling

The Healthcare Teleexpertise system based on mobile agents [15] is composed of:

Requestor Center: represents the place of a user that confronts a difficult case and needs
to take an advice of an expert.

Expert Center: represents the place of an expert that capable to provide answers to
requests of expertise.

Patient Agent: is a mobile agent, which migrates from a place of requestor center to a
place of expert center over the network in order to execute its request.

Security Agent: is a stationary agent that responsible to authenticate the visitor patient
agent.

Database: represent a resource which provided by the expert center. The patient agent
aims to manipulate this database in order to execute its mission.

Our objective in this system is to secure expert center (a place) and database
(a resource) offered by expert center from malicious patient agents. For the modeling,
we have used the MA-UML environment diagram and the new proposed security
properties (Sects. 4.2.1 and 4.2.2). Figure 6 shows the extended environment diagram
to model a secure mobile agent based Teleexpertise system.

Fig. 6. The extended environment diagram for a secure Teleexpertise system

A Conceptual Approach to Place Security in Systems of Mobile Agents 165

Figure 7 shows a secure specification of patient agent structure. For the modeling,
we have used the MA-UML environment diagram and the too extensions proposed
(Sects. 4.2.3 and 4.2.4).

5.2 System Scenarios Implementation

For the implementation, we have used the Java programming language and the IBM
Aglet development environment [16]. We have used Tahiti as the servers for creation
and execution of the agents.

5.2.1 Scenario Implementation to Control the Resource Access
The aim of this Scenario 1 is to show the usefulness of the new defined properties
“MaxNbVisit” and “CtrlVisitDuration” to secure place. These properties set to the
patient agent the number of visits allowed “MaxNbVisit” to the place of expert center 2
(which is equal to one visit in Scenario 1) for the period “CtrlVisitDuration” (which is
equal to all the life of the agent in Scenario 1). The Supervision of expert center 2 to the
number of visits helps ensure the security objective availability.

This scenario helps preventing a denial of service attack by avoiding consuming the
resources of the visited place excessively. In this scenario (Fig. 8), the patient agent
(PA) which has already visited once the expert center 2 is forbidden to revisit. In our
teleexpertise system, the maximum number of visits to an expert center allowed
(MaxNbVisit) to the patient agent is set to one visit during its life cycle (CtrlVisit
Duration).

Figure 9 shows the arrival of the patient agent a second time at the expert center 2,
in this case the access of the agent to the expert center 2 is refused and a security
notification is displayed.

Fig. 7. A secure Patient Agent structure

166 H. Hachicha et al.

5.2.2 Scenario Implementation to Control Cloning
The goal of this Scenario 2 is to show the usefulness of the new defined properties as
“MaxNbClone” and “CtrlCloneDuration” to secure place. These properties set to the
patient agent the number of clone allowed “MaxNbClone” (which is equal to 0 in
Scenario 2) to the expert center 2 for the period “CtrlCloneDuration” (which is equal to
all the life of the agent in Scenario 2). The supervision of the expert center 2 to the
number of clone contributes to ensure the place security objective availability.

This Scenario 2 helps preventing a denial of service attack by avoiding cloning
indefinitely. Clones indefinitely can have an effect on other agents because it can
disrupt their access to the place or their use of resources.

In this scenario (Fig. 10), the expert center 2 prohibits the patient agent to clone
itself because in our system the patient agent does not need to be cloned in the visited
places (MaxNbClone equal to zero) during its life cycle (CtrlCloneDuration).

Fig. 8. Scenario 1 description

Fig. 9. Security notification indicating the prohibition of a second visit to place of expert center 2

A Conceptual Approach to Place Security in Systems of Mobile Agents 167

Figure 11 shows a case in which the patient agent performs a cloning action, then
the expert center 2 kills the clone agent, and a security notification is displayed.

6 Conclusion

Security is perhaps the most critical problem in systems of mobile agents and its res-
olution is a real challenge. This challenge is explained by the importance of using
mobile agents in distributed applications. Thus, in this paper, we have focused on issues
related to security in systems of mobile agents. For that, we have proposed new security
elements and properties to the MA-UML environment diagram to specify security of
places. These new elements and properties contribute to the verification of security
requirement relevant to mobile agents, which are: availability, authentication, access
control, and non-repudiation. Finally, we have presented the modeling and the imple-
mentation of teleexpertise system scenarios in order to show usefulness of the new
defined security properties to prevent availability attacks. This work opens several
perspectives and future work can be considered. First, we propose to implement other
teleexpertise system scenarios in order to show the usefulness of the rest of new defined

Fig. 10. Scenario 2 description

Fig. 11. Security notification indicating the prohibition of cloning

168 H. Hachicha et al.

security elements and properties to prevent the other attacks (authentication, access
control, and non repudiation). Second, other extensions can be defined to MA-UML
diagrams in order to taking into account other attacks: attack of the place to mobile
agents, attack of an agent by another, and security between agents and external entities.

References

1. Weyns, D., Parunak, H.V.D., Michel, F., Holvoet, T., Ferber, J.: Environments for
multiagent systems, state-of-the-art and research challenges. In: Proceedings of the first
International Conference on Environments for Multi-Agent Systems, New York (2004)

2. Pham, V.A., Karmouch, A.: Mobile software agents: an overview. IEEE Commun. Mag. 36
(7), 26–37 (1998)

3. Mouratidis, H.: Modelling secure multiagent systems, pp. 859–866. University of Sheffield,
New York, USA (2003)

4. Hachicha, H., Loukil, A., Ghedira, K.: MA-UML: a conceptual approach for mobile agents
modelling. Int. J. Agent-Oriented Softw. Eng. (IJAOSE 2009) 3(2/3), 277–305 (2009)

5. Alfalayleh, M., Brankovic, L.: An overview of security issues and techniques in mobile
agents. In: Conference on Communications and Multimedia Security. University of
Newcastle, Australia (2004)

6. Jansen, W.A.: Countermeasures for mobile agent security. In: Computer Communications
Special Issue on Advances in Research and Application of Network Security, pp. 1667–1676.
Elsevier (2000)

7. Loulou, M., Hadj-Kacem, A., Jmaiel, M., Mosbah, M.: A conceptual model for secure mobile
agent systems. IEEE (CIS 06), Guangzhou, China, pp. 524–527, 2006. In: Proceedings of the
IEEE International Conference on Computational Intelligence and Security (CIS 06),
Guangzhou, China, pp. 524–527 (2006)

8. Ma, L., Tsai, J.P.: Formal modelling and analysis of a secure mobile-agent system.
Piscataway, NJ, USA, pp. 180–196, 2008. IEEE Transactions on Systems, Man and
Cybernetics, Piscataway, NJ, USA (2008)

9. Pankaj, M., Divya, B., Nripesh, K.: An efficient approach for mobile agent security (0975 –

8887). Int. J. Comput. Appl. 107(6), 21–25 (2014)
10. Jurjens, J.: UMLsec: extending UML for secure systems developmen. In: UML 2002 - The

UnifiedModeling Language. Proceedings of 5th International ConferenceModel Engineering,
Languages, Concepts, and Tools, Dresden, Germany, September/October (2002)

11. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-based modelling language for
model-driven security. In: The Proceedings of the 5th International Conference on the
Unified Modeling Language (2002)

12. Xiao, L., Peet, A., Lewis, P., Dasmahapatra, S., Saez, C., Croitoru, M., Vicente, J.,
Gonzalez-Valez, H., Liuch i Ariet, M.: An adaptive security model for multi-agent systems
and application to a clinical trials environment. In: Proceedings of the 31st IEEE Annual
International Computer Software and Applications Conference (COMPSAC 2007)
Volume II, IEEE Computer Society, pp. 261–268 (2007)

13. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access control
models. IEEE J. Mag. 29(2), 38–47 (1996)

14. Beydoun, G., Gonzales-Perez, C., Low, G.C., Henderson-Sellers, B.: Towards method
engineering for MAS: A preleminary validation of a generic MAS Metamodel. In: 17th
Software Engineering and Knowledge Engineering Conference (2005b)

A Conceptual Approach to Place Security in Systems of Mobile Agents 169

15. Loukil, A., Hachicha, H., Ghédira, K.: Using mobile agent technology for distributed
health-care teleexpertise systems. In: The IFMBE Proceedings of the 3rd European Medical
and Biological conference (EMBEC 2005), Prague, Czech Republic; November 20–25, vol.
11 (2005)

16. Lange, D.B., Mitsuru, O.: Programming and Deploying Java Mobile Agents Aglets.
Addison-Wesley, Boston, MA, USA (1998)

17. Robert, S., Gray, L., David, K., George, C., Daniela, R.: D’Agents: Security in a
multiple-language, mobile-agent system. In: A chapter in the book Mobile Agents and
Security, pp. 154–187, edited by Giovanni Vigna

18. Rekik, M., Kallel, S., Loulou, M., Kacem, A.H.: Modeling secure mobile agent systems. In:
Jezic, G., Kusek, M., Nguyen, N.-T., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2012.
LNCS, vol. 7327, pp. 330–339. Springer, Heidelberg (2012)

19. Loulou, M., Jmaiel, M., Mosbah, M.: Dynamic Security framework for mobile agent
systems: specification, verification and enforcement. IJICS 3, 321–336 (2009)

20. Jean, E., Jiao, Y., Hurson, A.R., Potok, T.E: SAS: a secure aglet server. In: Proceedings of
Computer Security Conference (2007)

21. Todd McDonald, J., Yasinsac, A.: Security Models for Mobile Agent System. www.elsevier.
com/locate/entcs

22. Nusrat, E., Ahmed, A.S., Rahman, G.M., Jamal, L.: SAGLET- secure agent communication
model. In: Proceedings of 11th ICCIT 2008, pp. 371–375. IEEE (2008)

23. Mouratidis, H., Giorgini, P.: Secure Tropos: a security-oriented extension of the Tropos
methodology”. Int. J. Softw. Eng. 17, 285 (2007). doi:10.1142/S0218194007003240

24. Huget, M.P.: Nemo: An agent-oriented software engineering methodology. In: OOPSLA
Workshop on Agent Oriented Methodologies Seattle (2002)

25. Belloni, E., Marcos, C.: Modeling of mobile-agent applications with UML. In: Proceedings
of the Fourth Argentine Symposium on Software Engineering (ASSE 2003), 32 JAIIO
(Jornadas Argentinas de Informática e Investigación Operativa), Buenos Aires, Argentina,
September, ISSN: 1666–1141, vol. 32 (2003)

26. Kusek, M., Jezic, G.: Extending UML sequence diagrams to model agent mobility. In:
Padgham, L., Zambonelli, F. (eds.) AOSE VII / AOSE 2006. LNCS, vol. 4405, pp. 51–63.
Springer, Heidelberg (2007)

27. Kang, M., Taguchi, K.: Modeling mobile agent applications by extended UML activity
diagram. In: Proceedings of the 6th International Conference on Enterprise Information
Systems (ICEIS 2004), Porto, Portugal, April, pp. 519–522 (2004)

170 H. Hachicha et al.

http://www.elsevier.com/locate/entcs
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1142/S0218194007003240

Innovative and Emerging
Applications of MAS

Dynamic Agent-based Scheduling
of Treatments: Evidence from the Dutch

Youth Health Care Sector

Erik Giesen1(B), Wolfgang Ketter2, and Rob Zuidwijk2

1 INITI8, Rotterdam, The Netherlands
giesen@initi8.nl

2 Rotterdam School of Management, Rotterdam, The Netherlands
{wketter,rzuidwijk}@rsm.nl

Abstract. We use agent-based simulation to compare the performance
of four scheduling policies in youth health care. The policies deploy
push/pull and centralized/decentralized concepts. The simulation model
represents an authentic business case and is parameterized with actual
market data. The model incorporates, among other things, non-stationary
Poisson arrival processes, reneging and return mechanisms, and care
provider’s client preferences. We have identified that performance mea-
surement in youth health care should not be focused on queue lengths
alone, which is presently the case, but should include a case difficulty
parameter as well. The simulation results, together with contextual data
obtained from stakeholder interviews, indicate that a push strategy with
a centralized queue suits the sector best, which is different from the cur-
rent real-world situation. This policy ensures a higher level of fairness
in treatment provision because the care providers are compelled to take
their share in treating the difficult and economically less attractive cases.
The complexity of the case cannot be captured by current queuing the-
ory methods. Our simulation approach incorporates these complexities,
which turn out to be relevant for the scheduling policy decision. We val-
idate the model and strategies using real market data and field expert
discussions.

Keywords: Agent-based simulation · Resource allocation ·Youth health
care · Preference behavior · Policy scheduling

1 Introduction

The Dutch youth health care sector is providing care to youths under 19 and
their families on a voluntary basis. The scheduling of care includes the allocation
of clients to care providers and it features long waiting lists and long waiting
times. As in many other countries, the issue is considered an urgent societal
problem and has received a lot of media attention [21]. Earlier approaches that
solely address the symptom of long waiting lists have proven to be ineffective.
The government is funding the sector and it has instituted central bureaus in
c© Springer International Publishing Switzerland 2015
J.P. Müller et al. (Eds.): MATES 2015, LNAI 9433, pp. 173–199, 2015.
DOI: 10.1007/978-3-319-27343-3 10

174 E. Giesen et al.

provinces and larger urban areas to manage youth care on a regional level.1 Each
of these institutions operate without regional overlap and act as the gateway to
youth care for clients from the region that it serves. Clients in need of care enter
the system by visiting the institution for youth health care that diagnoses the
situation and provides the client with a diagnosis. This diagnosis can be seen as
a entitlement to health care. Typically the institution for youth health care also
selects the care provider expected to fit best to the problem and preferences of
the client, although it is at the clients’ discretion to adhere to this allocation or
not. The care providers are compensated by the government for the care that is
provided corresponding with the diagnoses from the institution for youth health
care; see Fig. 1.

Fig. 1. Overview of the allocation mechanism in the Dutch youth health care system.

Parents, teachers, and other people involved with children have become
increasingly aware of potential problems and have also started to signal prob-
lems more often. While the question remains whether this can be seen as over-
signalling or not, it certainly results in an increase of the amount of clients
requesting help [2]. The institution of youth health care acts as a gateway more
than as a gatekeeper, as it is not equipped with the legal authority to dismiss a
case. As a result, there is not enough capacity at the care providers to deal with
the growing number of requests for care. In addition, the provision of care is on
a voluntary basis, so clients may renege, i.e. withdraw from the system at any
time while waiting for care. This further complicates the management of care
1 This was the case until 1/1/2015 and reflects the data we used. Today however

municipalities are responsible for managing youth care among other types of care.

Dynamic Agent-based Scheduling of Treatments 175

provision. Reneging may be caused by the fact that clients found other ways to
be assisted with their problem, or that the issue at hand resolved itself without
professional care. However, reneging may also occur in cases where youth health
care should have been provided. This may leave youth health problems to remain
unresolved or re-entering of the client in the system while the situation has per-
sisted or even worsened. On the other hand, it has been argued that clients in
genuine need of care are willing to wait longer for the requested care [12,13]. In
such a manner, reneging would become a sort of natural way of balancing the
system and filtering out cases not in genuine need for care.

As care providers are working with under-capacity, they effectively are able to
select clients from the queues. In particular, more difficult cases are less attractive
from a financial point of view. The selection process depends in an intricate way
on a lot of factors such as the age or gender of the child, the type of problem,
and the region in which the child lives. As a result, the selection process is not
transparent and it allows the care providers to base their selections on financial
incentives as well. In order to manage the youth health care system also in this
respect, the performance of the system should be expressed both in terms of
efficiency and social welfare, where the latter is based on indicators reflecting
the actual treatment of difficult cases and waiting times. Such indicators may
prevent difficult cases to be disadvantaged and help create a fair scheduling
process. We elaborate on such indicators in Sect. 3.

To address the waiting line issues, this paper considers alternative solution
directions that not only focus on the handling of contemporary waiting lists,
but that may require structural changes in the scheduling of youth health care
to clients. We elaborate on such structural changes by presenting an overview
of multiple scheduling policies, based on a combination of push/pull and cen-
tralized/decentralized scheduling policies. The push and pull scheduling policies
define the party which ultimately makes the actual allocation decision. Central-
ized and decentralized scheduling policies define the moment at which the actual
allocation will take place.

Scheduling decision problems, as presented by the youth health care case,
suit very well a multi-agent simulation approach for the following reasons. The
behavior of stakeholders in the system has a decisive impact on scheduling deci-
sions and therefore needs to be captured well in the decision model. The impact
of how communication is organized between the different parties in the system
needs to be incorporated as well. Furthermore, institutions and persons have
their own objectives, are heterogeneous entities by nature, and the coordina-
tion thereof needs to be addressed explicitly. As a result, the actual client flow
through the system is the result of a negotiation process between several parties
in the supply chain. Indeed, a client scheduling procedure requires input from
other parties in the sector on which the final decision can be based. A multi-
agent simulation built of individual agents that pursue a specific personal goal
can be used in this complex, dynamic setting to evaluate alternative scheduling
policies.

To arrive at potentially structural changes that address the problems described
above, a systematic approach is required. An analysis of what the various

176 E. Giesen et al.

stakeholders expect from the system, what has presently been achieved, and what
can be achieved, needs to encapsulate the rich problem context. The strategic
objectives of the system and their target values need to be elicited, and they need
to be expressed in terms of Key Performance Indicators (KPIs), which may vary
among stakeholders. The actual performance of the system needs to be formal-
ized as a baseline so that the performance gaps can be analyzed and so that per-
formance improvements by alternative scheduling policies can be assessed. In this
setting, one should anticipate that one size may not fit all, and that solution direc-
tions need to be specified for different contexts, e.g. for different geographical
regions and for different care types in the youth care sector. To perform such an
analysis in a complex, dynamic environment such as youth care, there is a need
for a responsive design paradigm.

We contribute to the research in health care operations management, in par-
ticular resource scheduling, by providing a currently unused approach to counter
queuing related issues. Simulation of the resource scheduling process helps to
understand and test long term effects of a number of alternative scheduling poli-
cies and coordination decisions. Although operations research queuing models
go a long way in incorporating behavior in queuing systems, such as customer
impatience [3], we argue that these models fall short in capturing the behavior
required to explain the system behavior in the youth health care sector. Indeed,
our simulation approach addresses the complexities of the patient scheduling
that were found in the real world case and incorporates, among others, a non-
stationary Poisson arrival process, a reneging and return mechanism, and an
algorithm to include the preference behavior of the care providers.

We further contribute to research in agent-based simulation, since our research
proves the usability of an agent-based approach in a real world environment by not
only matching the current decision making process but also by studying a number
of alternatives. The model is loaded with an extensive amount of stochastic dis-
tributions based on actual market data and successfully matches the performance
of the real world system.

Finally, we contribute to research in information systems by improving the
human decision-making process. Our study on the different policies on the youth
health care system decreases the information overload which increases the rate
of fair child allocations. This will improve socially responsible welfare decision-
making.

The paper is organized as follows. In Sect. 2 we review relevant literature.
Section 3 describes the foundations and structure of our simulation model which
is based on real world data. We present four scheduling policies, the first one
serves as a benchmark and represents the current situation, and the other three
are potential alternatives for future use. This section also describes the four care
types, a balanced score card analysis which serves as a basis for our benchmark,
and the four Key Performance Indicators (KPI’s) we develop and use to evaluate
the different policies. In Sect. 4 we present experimental results using our test-
bed. Finally, we conclude with directions for future research.

Dynamic Agent-based Scheduling of Treatments 177

2 Related Literature

A common approach taken by governments to tackle waiting line problems is an
ad-hoc supply of monetary resources. This provides only a short term solution
to the youth health care sector, as available capacity and queue lengths reach a
new equilibrium after a short while [22]. [26] identified five popular approaches
to decrease waiting times: monitoring of procedures, using priority scoring tools,
setting waiting time targets, using an external advisory body, and registering
online. However, [23] argues that such methods do not work by themselves;
better coordination and flow control are proposed to increase performance at the
public sector. The approach in our paper adheres to this argument by comparing
a number of scheduling policies.

Regarding the scope of our research, we emphasize that our discussion on client
waiting time in an health care environment distinguishes itself from appointment
systems as discussed in for example [20,25]. In such settings, one distinguishes
indirect waiting time, i.e. the time between request for treatment and appoint-
ment, and the direct waiting time beyond the appointed time at the health care
facility, which usually is a result of the emphasis on the utilization of health care
resources [15]. In our setting, the waiting time is equal to the time between diagno-
sis, which includes the identification of the appropriate health care package, and
the moment an appointment can be made with a provider of the health care pack-
age. Therefore, both the direct and indirect waiting times related to an appoint-
ment system will be in effect only after the client has been allocated to the care
provider.

Our empirical analysis has revealed that the Dutch youth health care sys-
tem in which clients are waiting to be allocated to resources is subject to two
behavioral patterns. First of all, the scheduling of clients may be subject to pri-
oritization, based on certain client characteristics. Second, reneging is observed,
i.e. some clients leave the system spontaneously without treatment after waiting
for a certain amount of time. Both behavioral patterns have received some atten-
tion in the operations management literature. In the literature on priority classes
and queueing models, the optimality of the so-called (generalized) “cμ” priority
rule has been established under various circumstances. This rule gives priority
to customers with high marginal delay cost (c) and low expected treatment time
(1/μ) [27].

[3] explore the optimal capacity and cost of a queueing system in which
arriving customers cannot observe their position in the queue and where they
show a reneging rate linear in the queue length. However, reneging may be a
more complex behavior. For example, several studies showed that the amount
of time that a client is willing to wait for care is related to the urgency of the
problem [12]. More urgent problems are difficult to treat elsewhere, while they
genuinely require attention. These clients will accept longer waiting times. The
converse holds for less urgent problems.

Most literature on waiting line management in health care is based on queuing
theory and focuses mainly on resource utilization and determination of the min-
imum required amount of resources while maintaining a high service level [14].

178 E. Giesen et al.

[7] have emphasized the need for detailed data while analyzing queueing systems
and have stated that traditional queuing theory does not capture, among other
things, more complex customer reneging behavior, time-dependent parameters,
and customer heterogeneity. [6] address the incongruence of behavior as modeled
in the service operations management literature with the empirical findings from
the behavioral literature. We have incorporated the aforementioned character-
istics in our agent-based simulation model and we have calibrated the model
with detailed, real-life data. Waiting line problems have also been studied using
discrete event-based simulation, see for example [4,11,24]. While these studies
do include more complex arrival and reneging processes, they still solely focus on
utilization issues and capacity planning. For example, [11] use a generic discrete-
event simulation model to investigate the feasibility of a particular national ser-
vice waiting time target and present barriers, some of which related to capacity
issues, to meet this target faced by the UK health care system.

Information systems in health care organizations become increasingly instru-
mental as they drive down the costs of services and support decision-making in
complex environments. This is also high-lighted by the current debate of the dig-
ital transformation of health care [1]. As the authors point out, it is of paramount
importance to learn all the significant institutional knowledge of the health care
sector and therefore to collaborate with health care professionals. One of the
authors of our team is a health care professional and we completely second their
opinion. This has allowed us to gain deep insights into the health care sector,
which would have been impossible otherwise. Furthermore, [10] show that invest-
ing in IT in the health care industry does lead to organizational profitability.
Our research follows a design-oriented approach, as laid out by [16]. With the
design and implementation of an agent-based [30] resource allocation decision
support system we have created a valid artifact, which is relevant and neces-
sary to solve existing problems in the health care IS domain, because it has the
potential to address each of the desired features identified in this section. Agent-
based approaches have successfully been applied to manufacturing supply-chain
management scenarios, such as [8,9], but have not yet been used in health care
systems.

Agent-based simulations, such as ours, TAC SCM [9], or Power TAC [19]
along with many related computational tools are driving research into a range
of interesting and complex domains that are both socially and economically
important [5]. Since such experimental platforms allow market structures to
be evaluated under a variety of real-world conditions and competitive pressures,
they can also be used to effectively uncover potential hazards of proposed market
designs in the face of strategic behaviors on the part of the participating agents.
This can help policy makers in policy and regulation design.

3 The Simulation Model

In this section we describe our research framework, the different simulation
model parameters and the overall model structure. Furthermore, we describe

Dynamic Agent-based Scheduling of Treatments 179

our scheduling policies, the care types, and list the different key performance
indicators that we developed to evaluate our model.

3.1 Research Framework

The research framework aims at eliciting given characteristics of the decision
context and the system design requirements at various decision levels (Fig. 2).
The given characteristics are retrieved and validated based on real world data
from the Dutch health care sector. The model is initiated with seven youth care
institutions and eight care providers in particular regions. The design require-
ments at the various levels are elicited from interviews and workshops. Our
approach comes down to the establishment of an active modeling paradigm for
system redesign that evaluates alternative strategies in a risk-free test environ-
ment, while incorporating real-world data and expert interviews (“docking”).

Fig. 2. Research framework.

The model is initiated as a non-terminating system since decisions and per-
formance measures depend on long lasting developments. The model is pre-filled
at start in a fully utilized state at the care providers while there are no wait-
ing lists. This procedure will decrease the required warm-up time of the model.
Warm-up time has been determined by the method of [28,29] to be 4 years sim-
ulation time. The replication length has been set to 20 years simulation time
in total being 5 times the warm-up time.

The verification of the model is split in two types: First, the introduction of
state-transition control and the implementation of numerous checks during the
simulation which ensure a correct flow of cases through the system. Second, in-
depth source review by others who didn’t participate in the design of the model
verified the correct coding of the model.

180 E. Giesen et al.

The validation process is split into three phases: First, the input analysis in
which the input parameters of the model are calibrated with real world data.
Second, two of the most important but less understood parameters of the model
are analyzed for sensitivity. Third, a user validation by field experts is done. For
the input analysis a comparison of stochastic variables with real world data is
performed by analyzing the resulting distribution of values from the model. The
theoretical and empirical distributions are visually compared. Analysis has been
performed on direct parameters of the model like the arrival, age and difficulty
distribution and indirect behavior of the model like reneging and return mecha-
nisms which are partly set by parameters but are also a result of the operational
behavior of the system as a whole. Table 1 lists the measures used for validation
of the simulation model. At the core of the model lies the political influenced
decision algorithm which makes the selection for the next to be treated case at
the care provider. The algorithm chooses the case based on a trade-off between
efficiency being a shorter estimated duration of care and an acceptable waiting
time for the remaining cases. Since the political influenced decision algorithm
is essential to the model and it cannot be directly validated against the data,
we performed sensitivity analysis by adjusting the threshold values of the algo-
rithm. The results showed moderate sensitivity on these values (further explained
in Sect. 3.7). For the user validation phase we included consultation with several
experts from the field of youth health care over different fields of expertise: one
youth health care consultant with a high level of experience in the sector, one
case manager at the institution of youth health care with operational experience,
one financial director at a care provider with operational experience and some
strategic experience, one director at a care provider with strategic experience and
some operational experience. The results show that the model mimics expected
behavior accurately. The field experts recognized much of the real world system
in the model’s output. For example, the arrival distribution including seasonal
effects and the construction of treatment trajectories, in which a client can have
simultaneous cases and return cases with crisis attribute, were found realistic
representations of reality.

3.2 Model Parameters

The model takes as an input the given characteristics of the decision context,
i.e. of the health care domain. These characteristics include client population
characteristics such as demography and population density, the pattern of client
arrivals into the system, which may include seasonal effects, the distribution of
diagnostics and required medical care of the client population, and the char-
acteristics of resources such as geographical location of the care providers and
the medical expertise offered. The client arrival processes are generated during
the time of the simulation by a non-stationary Poisson distribution to include a
seasonal influenced arrival effect. Additional client attributes are specified such
as age, home location, and case difficulty.

The non-uniform age distribution of the arriving clients is included in the sim-
ulation, as it is taken into account while allocating a client to a care provider.

Dynamic Agent-based Scheduling of Treatments 181

Further, some cases are marked as a’crisis’ and are allocated at once. These
cases bypass the allocation strategy but do influence the usage of capacity in the
model. A crisis denotes a case of extreme urgency and its level of difficulty can
be of any kind. Each arriving child will be diagnosed with a varying amount of
care needs. These needs can be indicated simultaneously at the first indication
or re-indicated after reneging or a successful treatment. This also involves the
analysis for reneging probabilities during the waiting phase and return proba-
bilities after reneging or ending care. A return probability on reneging tends to
be significantly higher than the probability for return after treatment. A return
further involves a return interval since the child will not return immediately but
after a varying amount of time. A case is provided with an identifier indicating
the difficulty of the case, which is assumed to be uniformly distributed. The
(expected) treatment time distributions depend on the difficulty identifier and
the care provider. Table 1 lists the parameters and types of distributions as they
are used in the model.

Validation of the parameters and model has been split up in three stages:

1. Direct Validation: Direct input parameters (like probabilities of multiple
simultaneous care tracks, crisis distributions and geographical distributions)
have been validated by extracting them back from the result set of the sim-
ulation. This stage ensures a correct working of the innermost basics of the
model which in turn validates a correct outcome for the upcoming indirect
measurements. The parameters were found to be behaving as expected.

2. Indirect Validation: Indirect output measures (like waiting times and lines,
return rates and actual duration after being pitched on a cases’ difficulty) have
been validated by comparing these system measures against real world data.
Specific waiting times and care durations were behaving significantly off in
comparison to the real world data. The model is not capable of reflecting the
same treatment and waiting trends as present in the real world. This is most
likely a result of simplification of the system whereby the model smoothes
results. While these measurements were off, the system as a whole functions
as expected and generates comparable behavior as the real world system. The
system was found to behave sufficient enough as expected.

3. User Validation: The model design and output measures have been val-
idated by field experts who recognized and confirmed the behavior of the
model, although the values in detail did not exactly match.

3.3 Structure of the Model

The structure of the model can be further explained while reflecting on design
requirements at the strategic, tactical, and operational level. The design require-
ments at the operational level are supported by performance outcomes of an
agent simulation model, in which behaviors have been specified that are estab-
lished at the tactical level. The strategic decisions and requirements have been
taken into account in the overall design and scenario analyses of the agent system,
including sensitivity analyses. The scenario and sensitivity analyses ultimately
serve as a tool to evaluate and compare the tactical and strategic decisions.

182 E. Giesen et al.

Table 1. Model parameters with type of distribution and short description

Parameter Type of
distribution

Description

Capacities Absolute value Maximum number of treatment positions available

Arrival distribution Non-stationary
Poisson
distribution

Client arrivals including seasonal effects like the
impact of summer holidays

Age distribution Empirical
distribution

The age of the child at arrival on which the
birthdate is selected

Crises distribution Probability (%) The probability that a case is marked as crisis and
will be allocated for immediate care

Parallel tracks Probability (%) The probability that there are multiple
simultaneous types of care allocated at first
arrival and the type of care they are

Difficulty Uniform
distribution

Classification of urgency, this is the base for all
further comparisons between cases

Geographical
distribution

Uniform
distribution

The studied region is mapped to include distances
between client and care provider, the clients are
uniformly distributed over the map

Geographical range
limitations

Probability (%) The chance that a client is willing to travel mediate
of high distances for his care

Care duration Empirical
distribution

Care duration per care type per care provider, the
implementation in the model includes the
difficulty factor (described above) to pitch the
simulated durations towards the easiness or
difficulty of a specific case

Reneging ratios Calculated
probability (%)

The chance that a case reneges during the waiting
phase, the implementation in the model chooses
the reneging date beforehand. If a case is still
waiting at that date the case will be withdrawn
from waiting

Return rate Calculated
probability (%)

The chance that a case will return for additional
care (or care at all in case of withdrawal). In
case of withdrawal the difficulty of the
withdrawn case is considered relevant, the
higher the difficulty the higher the chance on
return. For an end of treatment the difficulty
isn’t considered relevant

Return interval Uniform
distribution

The interval between reneging or end of care and
the return if applicable, the interval is chosen to
be within the 0-180 days range

The strategic level decisions under consideration are push, pull and central-
ized, decentralized scheduling policies. The push, pull decision defines whether
the care providers perform the allocation or that the decision is left to the dis-
cretion of the central youth health care bureau. The centralized, decentralized
decision concerns the timing of the allocation which results in a queue only at

Dynamic Agent-based Scheduling of Treatments 183

the central youth health care bureau or at the care providers as well. The design
requirements that constrain decisions at the strategic level concern the support
of basic roles and responsibilities of the stakeholders involved and how they are
related, and include requirements of the methods of communication and the
scope of information sharing between actors in the system.

At the tactical level, the design of the health care system involves the estab-
lishment of policies of several stakeholders, given the queuing structure. The
decisions of the client allocation system, i.e. the output of the decision process,
need to be made considering the given domain characteristics mentioned above,
and design requirements at the strategic, tactical and at the operational level.
The design requirements at the tactical level constrain the behavior of the stake-
holders (or agents). For example, the client preferences set allocation constraints
based on geographical position or other relevant data. Client urgency is based
on client diagnostics and other relevant data. The way that medical experts
specify acceptance factors based on urgency and other relevant factors may be
constrained as well.

At the operational level, a control mechanism is being specified that provides
a work flow in which activities and decision moments are embedded, based on
decision rules established at the tactical level. The work flow establishes paths
through the system consisting of activities such as application, allocation, wait-
ing, reneging, start of care and end of care. Table 2 summarizes the structure of
the model as discussed above.

We now discuss some technical aspects of the model structure. The agent-
based model is written on DSOL [17]. The model features three basic agent roles:
a case manager agent, a care provider agent, and a child agent. The description
of the agents involves the role they represent, and the types of data that they
use. We first explain these types of data and then we describe the agent roles.

There are several types of data identified in the model. First, some data define
fixed values like agent names, the theoretical distributions, and the geographical
home location of an agent. These parameters are mined from real world health
care data and health care expert interviews. Second, there are dynamic data
stores which hold process information upon which an agent can make decisions.
This type of data can be divided in two groups; the transactional data store
and the decision data store. The transactional data store holds records of the
overall process of an agent. For example, the agents that represent the insti-
tution for youth health maintain an internal care database holding all relevant
client information. The data store holds factual information emulating historical
record keeping. On the other hand, the decision data stores hold time specific
data relevant to the execution of the allocation strategy. The value of this data
in the decision process decays over time. For example, the decision on the most
appropriate care location for a particular client, as determined by the institu-
tion for youth health, is based on available information at a particular point
in time. Moreover, the agent-based model provides a communication platform
enforcing straightforward message based communication between the agents. All
inter-agent communication passes this platform such that only those pieces of
information that are passed through becomes available to other agents.

184 E. Giesen et al.

Table 2. Structure of the model.

Decision level Design requirements

(stakeholders) Decisions

(model structure)

Strategic level Policy maker preferences

(policy makers) Organizational roles and responsiveness

(model scenarios: push, pull and centralized, decentralized)

Tactical level Preference behavior of actors in the system

(care providers) Care types offered

Acceptance ratios

(decision rules, either normative or descriptive)

Operational level Control mechanisms and interactions

(all actors in the system) -

(multi-agent system structure)

We now describe the agent roles. The case manager agents act on behalf of
the institution for youth health care and they maintain a shared transactional
data store for record keeping and private data stores for allocation decisions. The
care provider agents all operate on their own on behalf of a care provider. They
use private transactional and decision data stores for record keeping and client
selection. The client agents operate on behalf of individual clients and while they
use both shared and private data stores, they merely initiate the process of care
inquiry at the institution for youth health care. A client agent may choose to
wait for care or may decide to renege after a certain amount of time.

The process of care provision is implemented on the case level rather than
the client level. A single arriving client can be signed up for multiple types
of care at the same time and for each of these types a new case is generated.
Each of these cases can independently renege or get care and each of these
cases are independently considered for returns after reneging or care provision.
There is a strict activity path that is followed by all cases in the system as
illustrated in Fig. 3. The activity path includes allocation, waiting phase, and
treatment mechanisms. It includes client reneging during the waiting phase and
client returns after treatment or reneging. An important step in the activity
path is the client allocation process for treatment at the care providers which
takes place during the waiting phase of a case. It is this specific point in the
process were the different allocation scenarios in this research are focused on
(see Sect. 3.5). When a care provider selects the next client for treatment, he
will evaluate the clients in the queue based on certain characteristics in order
to match the client with the available treatment location. While clients are to
be selected on a first come, first serve basis, this is often violated by the care
providers because they prefer clients that are easier to treat. Easier clients lead
to higher throughput which increases profit.

Dynamic Agent-based Scheduling of Treatments 185

Fig. 3. Life cycle of a case with system measure points.

3.4 Model Measures

At the operational level, the model is about the cases and the events that take
place to handle them, this is at the granularity level on which measurements
take place. The case events are the base for measuring system performance. As
Fig. 3 illustrates there is a strict path for each case implemented in the model.
The figure also shows the measuring points of the system relative to the status
of a case. There are two types of measures: (1) event counts; the amount of
occurrences of a specific event and (2) time averages; the average amount of
time spent in a specific state. We have the following system measures which are
saved:

1. Case Arrivals: The amount of cases that are created during the replication.
This includes the amount of cases created by the case generator, the amount
of cases created due to returns after care and the amount of cases created due
to returns after withdrawal without care. The case generator is identical for all
scenarios which simulates the demand for care from the region throughout
the replication and includes a correction for seasonal effects. The returns
for both after care as well as withdrawal are implemented identical for all
scenarios since the probability of return is related to the outcome of a case
not the way the system is modeled. The outcome for the measure however can
differ for both these returns since it depends on the amount of cases ending
care or withdrawing. Note that a shift in the treatment portfolio from less to
more difficult cases leads to higher average treatment times and therefore less
treatment ends and probably more withdrawals due to capacity constraints.
Simply put, one must choose to spend time on fewer difficult cases or more
easier cases, while the available capacity stays the same. Returns after care
are solely based on the probability of returning whilst the probability of
returns after withdrawal also includes the difficulty factor which ensures that
the more difficult cases tend to return more often than less difficult ones. In
the end, the implementation of a scenario will have its effect on the outcome
of case arrivals by influencing the returns as opposed to first arrivals.

2. Average Waiting Time: The average waiting time of a case until the next
event, being either a start of care or a withdrawal during the replication.
The measure has been split into two sub-measures to point out the difference

186 E. Giesen et al.

between a wait time resulting from waiting until a care position became
available and a wait time resulting from an early withdrawal. Note that the
second wait time doesn’t reflect the actual waiting time of the system at that
point in time but rather the amount of time the client was willing to wait for
care.

3. Starts of Treatment: The amount of cases that started treatment during
the replication. These are the cases that actually use the system resources.

4. Average Treatment Time: The average treatment time of a case until the
end of treatment during the replication. The generation of the treatment time
per case is implemented identical for all scenarios. The actual treatment time
however is influenced by the difficulty factor. On average, a higher difficulty
factor will yield higher treatment times and will therefore block the resource
for a longer period than a lower difficulty factor would. The composition of
cases that get treatment therefore influences the average treatment time and
throughput on the resources.

5. Ends of Treatment: The amount of cases that ended treatment during the
replication. Note that this measure will be equal to the starts of treatment
with the absence of the cases that were still in treatment at replication end.

6. Case Withdrawals: The amount of cases that withdrew from waiting before
a treatment position became available. Note that on average, a case with a
higher difficulty factor will be willing to wait longer than a case with a lower
difficulty factor. The selection behavior for who’s getting the treatment of
the model will therefore influence the composition of the withdrawals.

3.5 Scheduling Policies

The set of simulation experiments covers a number of variations of the model
structure as exhibited in Table 2, i.e. push, pull and centralized, decentralized
decision policies, the four care types, the stakeholder behavior expressed in terms
of an acceptance ratio function, and sensitivity analyses.

We first consider the decision strategies.

1. Decentralized Pushing: Pushing cases to decentralized queues. As soon as
a child has been diagnosed, the institution for youth health care pushes the
case to one of the care providers. This strategy is currently implemented in
the youth care sector. In this case, the care providers maintain and control
their own queues. Workshops with professionals from the field revealed that
the selection of children was biased by financial considerations, amongst other
things. We have performed an analysis on real life selection data and have
estimated a functional relationship between expected treatment time and
selection likelihood (details are provided in Sect. 3.7). The institution for
youth health care pushes a case to the applicable care provider with the
shortest queue. This decision is based on incomplete information since the
actual queue lengths at the care providers at runtime are unknown as updates
are provided only periodically or upon a limited amount of requests during
the allocation process.

Dynamic Agent-based Scheduling of Treatments 187

2. Centralized Pushing: Pushing cases from a centralized queue. When a case
has been diagnosed at the institution for youth health care, it is held in a
centralized queue until capacity for the required treatment becomes available.
The institution for youth health care maintains and controls the central queue
while the care providers have no queue at all. The care provider announces its
available capacity, and the institution of youth health care pushes the cases
for treatment. Observe that any preference bias at the care providers has no
impact on the allocation of cases, which is solely done by the institution for
youth health care.

3. Decentralized Pulling: Pulling cases to decentralized queues. When a case
is diagnosed at the institution for youth health care, it is published on a
bulletin board in the model until it is selected by a care provider who commits
future capacity to the case. The bulletin board is a passive intermediary whose
sole function is to provide information to the involved agents to enable the
allocation process. Both the institution for youth health care and the care
providers hold queues in this strategy. In case a care provider wishes to select
an easy case, it must also select all comparable cases in the queue that entered
the system before the preferred case. Waiting for the preferred case to be first
in line bears the risk of losing the case to another care provider. Therefore,
the care providers need to balance the burden of accepting unfavorable cases
against the risk of not utilizing their capacity to the full extent.

4. Centralized Pulling: Pulling cases from a centralized queue. When a case
is diagnosed at the institution for youth health care, it is held in a centralized
queue until it is pulled by a care provider which has available capacity. The
institution for youth health care publishes the waiting list on a bulletin board
for evaluation by the care providers. The care providers do not have queues
themselves. The institution for youth health care monitors selection behavior
and enforces a’first come, first serve’ policy among comparable cases. Care
providers have some discretion to exercise their bias by selecting favorable
cases at the expense of cases that are, strictly speaking, not comparable.

3.6 Care Types

The model facilitates four types of care present in the youth care system being
ambulatory care (AH), day care (DH), foster care (PZ) and residential care
(RH). First we’ll discuss some of the main characteristics of these care types,
followed by an overview of the main differences as the main reason to study them
separately.

1. Ambulatory Care: A child is attended at home or at at the location of a
care provider by a professional social worker. It includes a series of sessions
between client (and parents when useful) and a professional from the care
provider. Compared to the other care types the treatment time is on the low
end. This is the most basic and cheapest type of care since it only involves
little time of the professional. Since the client or the professional has to travel
for each session it is preferred that treatment is provided locally. The capacity

188 E. Giesen et al.

is rather high compared to arrivals and clients do not have to wait very long
for treatment, since this care type is provided by all care providers.

2. Day Care: A child stays at the care provider during the day so that a
secure and stable setting can be provided to treat the client. Care is mainly
provided to a group under close professional surveillance. Due to the relative
lower costs of this type of care longer treatment times are possible. Capacity
is sufficient, although waiting times are generally higher, since the care is
provided locally and not all care provider provide this type of care.

3. Foster Care: A child is actively moved from his/her parental home into a
stable and secure setting at a foster family. The care is provided by foster
parents who are contracted by the care provider. This care is not provided
locally; in certain cases it is even preferred to get clients away from their
familiar region. Treatment times are on the high end compared to the other
care types, and treatment is focused on longer term solutions in which it is
necessary to separate clients from the home region. The care is cost friendly,
capacity is sufficient, and waiting times are at the lower end.

4. Residential Care: A child is moved from his/her parental home into a stable
and secure setting at a location of the care provider. Residential care is seen
as the most drastic intervention since it acknowledges that the child requires
additional attention from professionals above the basic need to get him/her
away from the parental home. Treatment time can range up to months or
even years. Due to the complex nature of the treatment it is the most expen-
sive type of care making it important to limit treatments to only the cases
who genuinely require it. In practice it often happens that a child receives a
combination of several care types; many children who receive residential care
are also supported with an ambulatory track, which sometimes even is used
as a partial substitution for the more intensive type of care. Multiple care
types may also be offered simultaneously in order to reduce the queue length.
It is much easier to get a child into an ambulatory track than a residential
one, and by doing so a child is already receiving basic care and is considered
less an urgent problem than a child who isn’t getting care at all. Capacity is
sufficient and waiting times are at the lower end.

3.7 Acceptance Factors

The behavior of the health care providers is partly captured by their prefer-
ences for specific types of cases. Interviews with field experts revealed that care
providers in addition show a preference behavior which is not consistent with a
first come first serve principle. In fact, some cherry picking is taking place. In
order to capture this behavior, a preference function is introduced in the simula-
tion model. Equation (1) describes the actual preference order of cases which has
been elicited by means of a balanced scorecard technique [18], based on inter-
views with field experts and the evaluation of real world data containing over
30,000 care trajectories. The parameter αbench is called the acceptance factor.
A case with a lower acceptance value factor is preferred by the care provider. The
observed behavior is parameterized into the resulting equation which consists of

Dynamic Agent-based Scheduling of Treatments 189

two terms. The first term describes the impact of the waiting time twait of the
case at the moment of evaluation and the second term describes the impact of
the expected treatment time of the case ttreat. Equation (1) contains two fixed
threshold values εwait and εtreat which are estimated in such a way that the equa-
tion resembles the selection behavior as discovered during the interviews. Fine
tuning has been done by visual inspection of the function’ output. To illustrate
the strategic behavior defined by Eq. (1), Fig. 4 shows an example of four poten-
tial cases [B,C,E,G] which is a subset of the actual waiting line [A-H] obtained
by filtering on characteristics of both the clients and the open treatment posi-
tion. The order of the clients in terms of waiting time (horizontal axis) differs
from the preference order based on the acceptance values (right vertical axis).
In Fig. 4, the order of decreasing waiting times is B-C-E-G, while the acceptance
value increases along C-E-G-B. When solely looking at waiting time, client B
would be selected, however the acceptance function describes a preference for
client C.

αbench =
εwait

twait + 1
+

E(ttreat)2

2ε2treat
(1)

The policies where studied with the same strategic decision making algo-
rithm in place, given by Eq. (1). It was recognized that the algorithm would be
ineffective in certain scenarios where the care providers are not able to exercise
their preferences. Moreover, it can be assumed that a high level of control, exer-
cised by the institution of youth health care in the “Centralized Pull” strategy,
decreases the freedom to select clients at will. Nevertheless, the care providers
will exercise this type of behavior when the design of the system permits them to
do so and this phenomenon should therefore be studied accordingly. We perform
a sensitivity analysis of this algorithm applied to the “Decentralized Push” allo-
cation strategy by measuring the direct effects on waiting time. The approach
is based on the continuum between a focus on the waiting time of clients, as
promoted by the institution of youth health care and government, and a focus
on the expected treatment time, which aligns with the economic incentives felt
by the care providers. Indeed, governmental policies require that care is provided

Fig. 4. Indifference curves of the strategic decision algorithm for specific acceptance
factors including an example subset of clients ready for allocation.

190 E. Giesen et al.

first to the clients that have been waiting the longest. These policies are based
on the recognition that clients cannot be distinguished based on urgency, so that
waiting time serves as a proxy. The rationale represents a”first come-first serve”
approach, which is in conflict with monetary incentives that favor clients that
require the least treatment time. In our model, we study balances between accep-
tance rationales following governmental policies, i.e. which are based on waiting
time, and acceptance rationales which are based on efficiency, i.e. treatment time.
We analyze convex combinations of the two extreme rationales as described in
Eq. (2). By increasing β step by step, we introduce unfairness between client
selection by the care providers.

αlinear =
β εtreat

E(ttwait) + 1
+ (1 − β) ttreat for βε[0, 1] (2)

We also added a benchmark rationale in which the allocation is fully random
as defined in Eq. (3).

αrandom = RAND (3)

where RAND follows the homogeneous distribution on [0,1].

3.8 Key Performance Indicators (KPIs)

A number of Key Performance Indicators (KPIs) have surfaced while research-
ing the interests of stakeholders in workshop discussions and desk research on
professional publications, publications from the youth care sector and field data.
First of all, the public health care system is bound by law to treat children in
need within a reasonable amount of time, so waiting times are under scrutiny.
On the other hand, it has also been recognized that reneging from queues, i.e.
clients spontaneously leaving the queue after a certain period of time, may filter
out those clients that are able to resolve issues by themselves. Children that
need extensive care are likely not to belong to this category. However, beyond
utilizing their capacity to the full extent, care providers have financial incentives
to avoid the treatment of difficult cases, so there is a tendency to prioritize less
difficult cases. To properly manage queues in YHC under these circumstances,
we will study the system measures as discussed in Sect. 3.4 and shown below per
scenario.

1. Case arrivals
2. Average waiting time
3. Starts of treatment
4. Average treatment time
5. Ends of treatment
6. Case withdrawals

KPIs 1 (less returns), 2 (less waiting time) and 6 (less withdrawals) can be
seen as social indicators, since they relate strongly to the children who need care.

Dynamic Agent-based Scheduling of Treatments 191

KPIs 3 (more starts of treatment), 4 (less treatment time) and 5 (more ends of
treatment) can be seen as efficiency indicators, since they relate strongly to the
overall efficiency and economic incentives of care providers.

Interviews with field experts indicated that a major shortcoming of the cur-
rent system is the neglecting of difficult cases. However [2] argue that there are
many cases which receive help via the institution for youth health care are not
genuine cases requiring professional help. The authors indicate that these cases
shouldn’t enter the system because either the indication of a problem is falsely
recognized or the problem is of such a low level that these are able to help them-
selves. The field experts support this conclusion. The discussions on these KPIs
therefore includes a distinction of judgment on overall performance against a
judgement based on a subdivision on the difficulty factor of cases.

4 Discussion of Results and Managerial Insights

The simulation is set to run 20 years of simulation time therefore including over
160,000 clients per replication on which a long running average waiting time is
calculated. Each setting is run for 75 different seeds therefore making it possible
to calculate reliable means with a 95 % confidence interval per setting.

4.1 Key Performance Indicators

In the Sect. 3.8, a number of KPI’s have been studied to select the best scheduling
policy. Most importantly we discussed that the difficulty of a case should be
taken into account as well. As shown in Figs. 6, 7, 8 and 9, for each of the four
scheduling policies, confidence intervals for means are presented for subsets of
cases (left side) and all cases (right side). Please note that the scales differ among
the figures to ensure comparability of values within a figure. The subsets of cases
are created with bins of 10 % difficulty ranging from 0.0-0.1 (less difficult) to
0.9-1.0 (more difficult). The number of cases ending up in the bins is not equal
since a bin is created on the difficulty factor itself rather than the resulting
set of cases. I.e. the amount of treatment starts for bin 0.0-0.1 at day care in
the push to central scenario (S1) with about 1200 treatments differs from the
about 700 treatments for bin 0.9-1.0. Note that this also means that the waiting
and treatment times are calculated on differently sized subsets. Vertically, the

Fig. 5. Example of visualization method for result analysis.

192 E. Giesen et al.

confidence intervals for means are presented using five vertical lines indicating
the 95 % confidence levels. See Fig. 5 for further guidance in reading the results.

4.2 Comparison of Scheduling Policies

Based on the KPI analyses as outlined in Figs. 6 to 9, we gain the following
insights:

Fig. 6. Comparison 1: System analysis for Ambulatory Care.

Dynamic Agent-based Scheduling of Treatments 193

Fig. 7. Comparison 2: System analysis for Day Care.

Insights Ambulatory and Residential Care. For these two care types, the pull
policies show a 10 % higher rate of arrivals due to returned withdrawals; this is
especially true for the difficult cases. The central pull policy enables enforcement
of “fairness”, which can be inferred from the number of start events of the
cases at the various difficulty levels. On the contrary, the decentralized pull
policy generally neglects the most difficult cases, and the total throughput is the
highest. Although the system is efficient, returned difficult cases create waiting
lines and are not being treated.

194 E. Giesen et al.

Fig. 8. Comparison 3: System analysis for Foster Care.

Insights Foster and Day Care. Arrivals pull and push policies are almost equal
for these two care types, while for Ambulatory and Residential care types, pull
and push policies show differences. Centralized policies maintain a certain degree
in fairness. Due to increased waiting times, more easy cases withdraw. Therefore,
we see that the difficult cases are more often treated than the easy cases. Decen-
tralized policies tend to treat an equal amount of cases on all levels of difficulty,

Dynamic Agent-based Scheduling of Treatments 195

except the most difficult ones which are treated significantly less. Most of these
effects are more pronounced for Day care.

Policy Comparison Over all Care Types. For push scenarios, withdrawal rates
positively relate to case difficulty, while for pull scenarios, both easy and difficult
cases show higher withdrawal rates.Since all systems demonstrate an increase of
withdrawals when waiting times increase, there is less difference in performance

Fig. 9. Comparison 4: System analysis for Residential Care.

196 E. Giesen et al.

among the policies under such circumstances.While the decentralized policies
have room to increase throughput by choosing easy cases over difficult cases, the
centralized policies maintain fairness in the system, which comes at the cost of
lower throughput.

Managerial Takeaways. One may argue that from a fairness viewpoint, push is
good, pull is bad, and central is good, decentral is bad. Therefore, central push
is good, and decentral pull is bad, while the mixed scenarios are in the middle.
Under moderate workload conditions, a bad policy performs (service level) just
slightly worse compared to a good policy, on average. On the contrary, under high
workload conditions, a bad policy is more efficient than a good policy, on average.
A bad policy under moderate workload neglects the difficult cases, and thereby
creates additional workload when cases return, while a good policy handles all
cases without problems. However, when the workload increases, accepting the
difficult cases is affecting general performance.

In relation to current developments in the sector in which allocation is shifting
from a central point (province level) to a more distributed point (municipality),
these observations become very relevant. Instead of a few connections between
care providers and allocators, there will be many. And instead of a few allocators
who know each other, there will be more allocators without direct working rela-
tionships. This situation increases the level of ambiguity between care providers
and allocators and decreases the level of oversight from the allocators. There-
fore, these smaller allocation units will be in a weaker position to enforce a pull
scenario and there will be more room for cherry picking at the care providers.

The central question is: should the system focus on fairness? If yes, there
should be a centralized allocation management. In such a case, however, one
needs to be willing to accept the costs of lower throughput of the easier cases. The
model shows that in a situation where these cases can leave the system without
returning (i.e., the cases resolve themselves), then it will have no noticeable effect
on the overall workload of the system. On the other hand, one could argue that
focus should be on the throughput to help as much clients as possible. In such
a case, one should create a backup option for the neglected cases that would
otherwise not be treated at all. This scenario however is not strong in itself,
since (1) the case in question will have waited already for too long before it
makes use of the backup option, and (2) the mere presence of the backup option
legitimates cherry picking. In particular, it will be difficult to decide at what
difficulty level the backup option becomes the preferred one.

5 Conclusions and Future Work

We have presented a versatile computational approach for analyzing a number
of resource scheduling policies in the youth health care sector while including an
extensive set of constraints and behaviors from the real world domain. The model
successfully simulated many of the complex and dynamic relations between the
involved parties in the healthcare sector. We demonstrated the ability of the

Dynamic Agent-based Scheduling of Treatments 197

model to incorporate different scheduling policies while maintaining an overall
structure which deals with the common tasks outside the scheduling procedure.
We discussed the differences between the scenarios and their impact on system
performance. The introduction of a case’s difficulty into performance measure-
ment leads us to the advice of the push from a centralized scheduling policy for
future resource scheduling in the youth health care sector. The postponement of
the actual allocation in this policy ensures a higher level of fairness in treatment
provision by the care providers because they cannot avoid the difficult cases
anymore which increases overall social welfare.

Our approach shows the importance of agent-based modeling in complex,
dynamic environments like the youth health care sector where much of the issues
are related to coordination and communication between different heterogeneous
parties. We contribute to research in service operations management by not
only showing its usability in such a setting, but also showing the ability to
study alternative scenarios which couldn’t be studied otherwise with this level
of complexity.

Generally, our findings show that a scheduling system which includes a reneg-
ing mechanism can handle a workload that is bigger than the available resources
to the system while the system as a whole appears to be stable by using the
reneging mechanism as a filter on arrivals. As we see in this health care case the
measurement methods for performance (which can be translated as a key para-
meter for the rewarding structure) are out of balance with the social goals of the
system and therefore the filtering effect is indirectly used to increase measured
performance while social performance is neglected. When it is not possible to
bring the measurement methods in line with the social goals, then it should be
assured that there is no room for cherry picking. In this case it can be arranged
by postponing the actual allocation towards the point that an independent party
can make the final decision and ensure that this decision is in line with the social
goals. Furthermore when the decision power is positioned at the party who has
to perform upon this decision it becomes even more important that the perfor-
mance indicators are in line with the social goals otherwise performance based
preferences have an even stronger negative effect on the social performance.

The current model incorporates basic methods to emulate interdependencies
between the available care types. In future, we plan to study the model in alter-
native configurations with varying settings for geographical distributions and
number of agents in such that we are able to assist in strategic decision making.

References

1. Agarwal, R., Guodong (Gordon), G., DesRoches, C., Jha, A.K.: The digital trans-
formation of healthcare: Current status and the road ahead. Inf. Syst. Res. 20(4),
796–809 (2010)

2. Andriessen, S., Besseling, J.: Jongeren zijn steeds vaker niet normaal. Jeugd Beleid
2(1), 87–95 (2008)

3. Armony, M., Plambeck, E., Seshadri, S.: Sensitivity of optimal capacity to customer
impatience in an unobservable m/m/s queue (why you shouldnt shout at the dmv).
Manufact. Serv. Oper. Manage. 11(1), 19–32 (2009)

198 E. Giesen et al.

4. Bagust, A., Place, M., Posnett, J.W.: Dynamics of bed use on accommodating
emergency admissions: Stochastic simulation model. Br. Med. J. X, 319 (1999)

5. Bichler, M., Gupta, A., Ketter, W.: Designing smart markets. Inf. Syst. Res. 21(4),
688–699 (2010)

6. Britan, G.R., Ferrer, J.C., e Oliveira, P.R.: Managing customer experiences: Per-
spectives on the temporal aspects of service encounters. Manuf. Servi. Oper. Man-
age. 1(1), 61–83 (2008)

7. Brown, L., Gans, N., Mandelbaum, A., Sakov, A., Shen, H., Zeltyn, S., Zhao, L.:
Statistical analysis of a telephone call center. J. Am. Stat. Assoc. 100(469), 36–50
(2005)

8. Collins, J., Ketter, W., Gini, M.: A multi-agent negotiation testbed for contracting
tasks with temporal and precedence constraints. Int. J. Electron. Commer. 7(1),
35–57 (2002)

9. Collins, J., Ketter, W., Sadeh, N.: Pushing the limits of rational agents: the trading
agent competition for supply chain management. AI Mag. 31(2), 63–80 (2010)

10. Devaraj, S., Kohli, R.: Information technology payoff in the health-care industry:
a longitudinal study. J. Manage. Inform. Syst. 16(4), 41–67 (2000)

11. Fletcher, A., Halsall, D., Huxham, S., Worthington, D.: The dh accident and emer-
gency department model: A national generic model used locally. J. Oper. Res. Soc.
58, 1554–1562 (2007)

12. Goldman, R.D., Macpherson, A., Schuh, S., Mulligan, C., Pirie, J.: Patients who
leave the pediatric emergency department without being seen: case-control study.
Can. Med. Assoc. J. 172(1), 39–43 (2005)

13. Goodacre, S., Webster, A.: Who waits longest in the emergency department and
who leaves without being seen? Emerg. Med. J. 22(2), 93 (2005)

14. Gorunescu, F., McClean, S.I., Millard, P.H.: A queueing model for bed-occupancy
management and planning of hospitals. J. Oper. Res. Soc. 53, 19–24 (2002)

15. Gupta, D., Denton, B.: Appointment scheduling in health care: Challenges and
opportunities. IIE Trans. 40(9), 800–819 (2008)

16. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. Manage. Inf. Syst. Q. 28(1), 75–106 (2004)

17. Jacobs, P.H.M., Lang, N.A., Verbraeck, A.: D-sol: A distributed java based discrete
event simulation architecture. X, ed., In: Proceedings of the 2002 Winter Simulation
Conference. San Diego, pp. 793–800. ISBN 0-7803-7614-5 (2002)

18. Kaplan, R.S., Norton, D.P.: The balanced scorecard: Measures that drive perfor-
mance. Harvard Bus. Rev. 83(7), 172–180 (2005)

19. Ketter, W., Collins, J., Reddy, P.: Power TAC: A competitive economic simulation
of the smart grid. Energy Econ. 39, 262–270 (2013)

20. Liu, N., Ziya, S., Kulkarni, V.G.: Dynamic scheduling of outpatient appoint-
ments under patient no-shows and cancellations. Manuf. Serv. Oper. Manag. 12(2),
347–364 (2010)

21. Netherlands National News Agency, NANP. 2008. Millions of additional funding
for youth care

22. Postl, B.D.: Final report of the federal advisor on wait times. Technical Report,
Health Canada (2006)

23. Rachlis, M.: Public solutions to health care wait lists. Technical Report, Canadian
Centre for Policy Alternatives (2005)

24. Ridge, J.C., Jones, S.K., Nielsen, M.S., Shahani, A.K.: Capacity planning for inten-
sive care units. Eur. J. Oper. Res. 105, 346–355 (1998)

25. Robinson, L.W., Chen, R.R.: Estimating the implied value of the customer’s wait-
ing time. Manuf. Serv. Oper. Manage. 13(1), 53–57 (2011)

Dynamic Agent-based Scheduling of Treatments 199

26. Saulnier, M., Shortt, S., Gruenwoldt, E.: The taming of the queue: Toward a cure
for health care wait times. Technical Report, Canadian Medical Association (2004)

27. Van Mieghem, J.: Dynamic scheduling with convex delay costs. Ann. Appl. Probab.
5(3), 809–833 (1995)

28. Welch, P.D.: On the problem of the initial transient in steady-state simulation.
IBM Watson Research Center (1981)

29. Welch, P.D.: The statistical analysis of simulation results. The computer perfor-
mance modeling handbook 268–328 (1983)

30. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. Knowl.
Eng. Rev. 10(2), 115–152 (1995)

Agent-Based Voting Architecture for Traffic
Applications

Sophie L. Dennisen(B) and Jörg P. Müller

Institute of Informatics, Clausthal University of Technology, Julius-Albert-Str. 4,
38678 Clausthal-Zellerfeld, Germany

{sophie.dennisen,joerg.mueller}@tu-clausthal.de

Abstract. We study voting rules as a promising option for collective
decision making in traffic applications. The aim of our work is to com-
pare the suitability of several voting rules for different traffic applications
and to tackle problems which arise when applying voting rules in traffic
management. Here, we propose a multi-agent based voting architecture
for evaluation of the suitability of voting rules. The design of the voting
architecture is informed by the requirements from two applications we
intend to study. The J-MADeM architecture is adapted for the develop-
ment of our architecture. We describe the voting theory model we intend
to incorporate in the architecture, the initial applications we plan to
investigate and the features of the voting architecture. Furthermore, we
outline the first simulation we intend to conduct using the voting archi-
tecture, focusing on the aspect of iterative winner determination for the
committee voting rules Minisum and Minimax Approval.

1 Introduction

Computational Social Choice (COMSOC) [9] investigates the design and formal
analysis of methods for aggregating the preferences of multiple agents. So far,
most research on COMSOC has focused on exploring mechanisms and their
theoretical properties. There is relatively little published work focusing on the
engineering of real-world applications using COMSOC methods and mechanisms
for collective decision making, especially voting rules. In this paper, we propose
the area of cooperative traffic management as an increasingly interesting area
for applying voting rules, and we take first steps in investigating requirements
for the architecture of a platform for engineering cooperative traffic applications
incorporating voting rules.

Today, there is no strong interconnection between the decision making of indi-
vidual traffic participants, e.g. in choice of routes and traffic modalities. Basically,
each traffic participant follows her plans, restricted by some limitations like the
given infrastructure, the traffic status and the information available. However,
new technological trends are about to heavily affect traffic management sys-
tems, and are likely to change this picture: Vehicle-to-infrastructure (V2I) and
vehicle-to-vehicle (V2V) communication (collectively referred to as V2X) enable

c© Springer International Publishing Switzerland 2015
J.P. Müller et al. (Eds.): MATES 2015, LNAI 9433, pp. 200–217, 2015.
DOI: 10.1007/978-3-319-27343-3 11

Agent-Based Voting Architecture for Traffic Applications 201

real-time data exchange and coordination among vehicles and traffic infrastruc-
ture. Vehicles themselves become more and more autonomous through advanced
assistance functions such as dynamic navigation and adaptive cruise control over
speed, distance, and intersection assistants [2] as well as autonomous driving
support [19].

As far as decision making in traffic networks is concerned, V2X communica-
tion will enable cooperation between individual traffic participants by exchang-
ing their preferences or plans with the support of assistance systems. Knowing
the others’ preferences or plans, the traffic participants can adapt their original
plans, give the other traffic participants feedback or agree on joint decisions.
There are different collective decision mechanisms, for example auctions, nego-
tiations and elections. We focus on elections as one specific kind of COMSOC
mechanisms and plan to study voting as one promising option for collective
decision making in traffic applications. To the best of our knowledge, there are
no works systematically researching the use of common voting rules in traffic
applications.
In our work, we tackle the following two research questions:

Are there voting rules which are more suitable for specific traffic applications
than others? Which general challenges arise when applying voting rules in traffic
management?

We aim to compare common voting rules in terms of their effect on quantities
such as satisfaction of traffic participants, travel time and waiting time, using
different forms of votes. We plan to study not only single winner elections but
also committee elections.

Our objective is to evaluate different voting rules in the context of multi-
agent based traffic simulations. To this end, we need an architecture which allows
implementing and comparing various voting rules. The architecture must enable
us to easily repeat a simulation for a specific scenario using several common
voting rules to compare their effect on the quantities we want to study. We
also request that it must be possible during a simulation to conduct parallel
elections for several groups of traffic participants. As far as we know, there is no
architecture which exactly meets our requirements.

Here, we propose using an adaptation of Jason Multimodal Agent Deci-
sion Making (J-MADeM), which we will call Jason Voting (J-Voting) in the
following. J-MADeM is an architecture for using Multi Agent Resource Allo-
cation (MARA) [10] as collective decision mechanism, developed by Grimaldo
et al. [15,16]. J-Voting is designed with regard to two traffic applications of vot-
ing rules we plan to investigate, namely agreement on points of interest (POIs)
to visit for share taxis and agreement on a speed value in platoons.

The article is structured as follows. In Sect. 2, we describe the J-MADeM
architecture. In Sect. 3, we give the definitions for basic concepts in voting theory.
In Sect. 4, we depict the share taxi scenario and the platooning scenario. In
Sect. 5, we describe the requirements for a flexible architecture for application of
voting rules in agent-based traffic simulations. Section 6 discusses related work.
In Sect. 7, we describe the design of J-Voting. Section 8 concludes the paper and
outlines research questions we will study using J-Voting.

202 S.L. Dennisen and J.P. Müller

2 J-MADeM

Grimaldo et al. propose an agent-based architecture implemented in Jason,
J-MADeM, for multimodal decision making in the sense of first-price sealed-
bid one-round auctions [15,16]. Grimaldo et al. [17] apply J-MADeM to develop
a model for urban mobility simulation, following a market-based approach. They
consider the social decisions made by each habitant of a city about how to get to
work, e.g. by train, sharing a car etc. They compare different outcomes produced
by societies of individualist and egalitarian agents, in terms of the average travel
time, the use of the urban transportation and the air pollution.

Grimaldo et al. [15,16] describe J-MADeM as follows. J-MADeM is based on
the Multi-Modal Agent Decision Making (MADeM) model proposed by Grimaldo
et al. [14] which provides agents with a general mechanism to make socially
acceptable decisions. In this kind of decisions, the members of an organization
are required to express their preferences with regard to the different solutions for
a specific decision problem. The model is based on the MARA theory, therefore,
it represents each one of these solutions as a set of resource allocations. Note
that they make some adaptations [14] to the original MARA definition.
Adapted MARA definition in the MADeM model
– A set of agents A = {a1, ..., an}, where each ai represents a particular agent

involved in the decision. A vector of weights w = (w1, ..., wn) is associated
to each agent representing the internal attitude of the agent towards other
individuals. This information is used to weigh the information received from
other agents.

– A set of resources to be allocated by the agents R = {r1, ..., rm}.
– Instead of having only one utility function as in classical MARA problems,

each agent in MADeM has a set of utility functions {U1, ..., Uq}. These utility
functions are used to evaluate the allocations from different points of view,
so their model hardcodes a linear MAUT (multi-attribute utility function).
Additionally, each agent has a vector of utility weights wu = (wu1 , ..., wuq

)
representing the importance given to each point of view in the multi-modal
agent decision making.

MADeM can consider both tasks and objects as plausible resources to be
allocated, which it generalizes under the term taskslots. Taskslots are considered
as slots that need to be assigned in order to execute a task. When considering
any kind of task, two main types of task slots are differentiated: agent slots,
which correspond to agents that play different roles in the task execution, and
object slots, that correspond to objects needed to perform the action. MADeM
uses first-price sealed-bid one-round auctions as the allocation procedure and a
multi-criteria winner determination problem to merge the different preferences
being collected according to the kind of agent or society simulated. Figure 1
yields an overview and a detailed view of the J-MADeM Agent Architecture. In
the following, the main components of the agent architecture are described.

Agent-Based Voting Architecture for Traffic Applications 203

Fig. 1. (a) Overview and (b) detailed view of the J-MADeM Agent Architecture

– MADeM Parameters: This data storage contains the MADeM context cur-
rently defined for the agent. Essentially, it stores the personal weights, the
utility weights, the collective utility function and the bid timeout to be used
in future MADeM decisions.

– Decision Launcher : This module starts the MADeM process for a particu-
lar decision. Firstly, it stores the MADeM context for this decision into the
Decision Data storage, thus allowing other decisions to be concurrently per-
formed with different MADeM parameters. Secondly, it auctions each of the
allocations being considered as solutions to the target agents.

– Decision Data: This data storage holds all the information related to the
MADeM decisions still in process. Therefore, it contains their MADeM con-
text, the considered allocations and the preferences received for each of them.

– MADeM Communication Module: This module extends the Jason agent com-
munication module in order to deal with MADeM messages. When it receives
a MADeM auction, it invokes the Bidder Module to get the agent’s preferences
over the considered allocations. On the other hand, when it receives a MADeM
bid, it informs the Auctioneer Module about the received preferences.

– Bidder Module: This module manages the reception of a MADeM auction. It
extracts the considered allocations and bids for them according to the agent’s
preferences. To express these preferences it relies on the utility values provided
by the Utility Functions Manager

– Utility Functions Manager : This component acts as an interface between the
built-in MADeM mechanism and the user defined Utility Functions. Thus, it
is in charge of locating and invoking them in order to calculate the agents’
utilities for the set of considered allocations.

204 S.L. Dennisen and J.P. Müller

– Auctioneer Module: This module manages the reception of MADeM bids. It
extracts the sender’s preferences and stores them into the Decision Data. As
soon as the preferences from all the target agents have been received, it calls
the Winner Determination Module to solve the decision.

– Winner Determination Module: This module solves the MADeM winner deter-
mination problem using the information stored into the Decision Data for the
decision being resolved (i.e. considered allocations, agents’ preferences, per-
sonal weights, utility weights, social welfare, ...) Once resolved, it notifies the
agent about the winner solution.

3 Voting Theory

The adaptation of J-MADeM we propose here is based on Voting theory as
defined in [23].

3.1 Voting Rules

An election or preference profile is defined as tuple (C, V) where

– C = {c1, ..., cm} is the set of candidates.
– V = {v1, ..., vn} is the list of votes over C. Each voter is represented via her

vote which specifies her preferences over the candidates in C.

How the voters’ preferences are represented depends on the voting rule used.
Established types of votes are linear orders and approval votes, i.e. {0, 1}m vec-
tors. Preferences can also be represented using trichotomous votes, i.e. {−1, 0, 1}m
vectors.

A voting rule is a rule determining the winner(s) of a given election (C, V).
Let P(C) denote the power set of C. Formally, a voting rule f defines a social
choice correspondence

f : {(C, V)|(C, V) is a preference profile} → P(C)

that assigns a set of winners to each given preference profile. Given a preference
profile P = (C, V), f(P) ⊆ C is the set of winners which may be empty or may
contain one or more than one winner. To determine a unique winner, it may be
necessary to apply a tie-breaking rule.

Examples for Voting Rules. In the following, we give some examples for
common voting rules.

– Approval: The Approval voting rule was introduced by Brams and Fishburn
in [7]. For a fixed order of the candidates in C, an approval vector is a vector
in {0, 1}m which has for 1 ≤ i ≤ m at the i-th position a “1”, if the voter
approves of candidate ci, “0” if she disapproves of ci. A candidate gets one
point for each approval and the candidate with the highest score wins.

Agent-Based Voting Architecture for Traffic Applications 205

– Borda: The Borda voting rule proposed by Borda in [5] assumes as votes
complete rankings over the candidates in C. With m candidates, each voter
gives
• m − 1 points to the candidate ranked at first position,
• m − 2 points to the candidate ranked at second position,
• ...
• 0 points to the candidate ranked at last position.
The candidate with the highest score wins.

– Condorcet: The Condorcet rule introduced in [12] assumes as votes complete
rankings over the candidates in C. A candidate c is a Condorcet winner if she
defeats every other candidate by a strict majority in pairwise elections.

3.2 Committee Elections

Similarly to the definitions in [23], one can define committee elections. If voters
need to agree on a candidate set of fixed size, they need a committee voting rule.
A committee voting rule assigns to each triple (C, V, k) with (C, V) preference
profile and k ≤ |C| nonnegative integer a set of winning committees of the form
K ⊆ C, |K| = k.

Committee Voting Rules. We consider two examples for committee voting
rules.

– Minisum Approval: Minisum Approval selects a committee with minimal
sum of Hamming distance to all votes. For a fixed committee size k, this is a
committee containing k candidates with highest Approval scores.

– Minimax Approval: Brams et al. proposed to use the minimax approach
in [8]. Minimax Approval selects a committee for which the maximal Hamming
distance to any voter is minimal.

3.3 Interaction Protocols for Voting

In the design of our architecture, we consider centralised voting as well as decen-
tralised voting.

Centralised Voting. In Fig. 2, a simple interaction protocol for centralised
elections is illustrated. The chair of the election asks the voters to submit their
votes. After receiving all votes, the chair applies the given voting rule with the
votes as input and transmits the outcome of the election to the voters.

Decentralised Voting. Figure 3 illustrates a simple interaction protocol for
decentralised voting based on the two-phase commit protocol [22]. The user,
who needs a collective decision, asks the voters to prepare their commit, i.e. to
exchange their votes and to compute the outcome of the election. The “user”
notion can for example be found in the article [18] by Hardekopf et al. who

206 S.L. Dennisen and J.P. Müller

Fig. 2. Simple interaction protocol for centralised elections

Fig. 3. Interaction protocol for decentralised elections

describe decentralised voting schemes. The voters independently apply the given
voting rule to the exchanged votes and tell the user that they are ready for
phase two. In phase two, the user chooses a voter at random for committing the
outcome of the election.

4 Scenarios

As mentioned above, J-Voting is designed in view of two traffic scenarios which
we plan to investigate.

Agent-Based Voting Architecture for Traffic Applications 207

4.1 Share-Taxi Scenario

In this scenario, we consider an intraurban area and assume that the city admin-
istration provides share taxis which collect travellers at predefined changing
points and transport the travellers through the city, taking their preferences
regarding the POIs into account. In our model, each group of travellers in a
share taxi constitutes a voter group, i.e. they use a voting rule to aggregate their
preferences to a joint decision. For our setting, we have the following assumptions
and considerations.

– The passengers of a share taxi must agree on a POI set of fixed size.
– If several POI sets are “equally rated”, the passengers need a rule to decide

on an option.
– The scenario can include several share taxis.
– For the share-taxi scenario, the straightforward approach would be to use a

centralised approach and to assign the chair role to the share-taxi agents.
– In the case of decentralised elections, one could consider the share-taxi agents

as users, i.e. as agents who need to know the result of the collective decision(s).

Fig. 4. Example for share-taxi scenario

Figure 4 provides an illustrating example with two share taxis, applying the
committee voting rule Minisum Approval with committee size k = 4. The can-
didate set is a set of POIs, {A,B,C,D,E, F,G,H}. The first share taxi con-
tains three travellers who want to visit the POIs ACFH, BDEF and CEFGH,
represented by the approval vectors (1, 0, 1, 0, 0, 1, 0, 1), (0, 1, 0, 1, 1, 1, 0, 0) and
(0, 0, 1, 0, 1, 1, 1, 1). The approval scores are illustrated in Table 1. A winning
committee in Minisum Approval contains k candidates with highest approval
scores. Here, we have the unique winning committee {C,E, F,H}.

208 S.L. Dennisen and J.P. Müller

Table 1. Approval scores for first share taxi

A B C D E F G H

1 1 2 1 2 3 1 2

The second share taxi contains three travellers who want to visit the POIs
ABDG, BDG and ADFG, represented by the approval vectors (1, 1, 0, 1, 0, 0, 1, 0),
(0, 1, 0, 1, 0, 0, 1, 0) and (1, 0, 0, 1, 0, 1, 1, 0). The approval scores are illustrated in
Table 2. Here, we have the unique winning committee {A,B,D,G}.

Table 2. Approval scores for second share taxi

A B C D E F G H

2 2 0 3 0 1 3 0

4.2 Platooning Scenario

Another possible application of voting rules in traffic applications is the use in
platoons, considering the members of a platoon as a voter group. For this setting,
we have the following assumptions and considerations.

Fig. 5. Example for platoon scenario, car illustrations by Ariane Dehghan

– The platoon members need to agree on a speed value for all platoon members.
– If two speed values are “equally rated”, the platoon members need a rule to

decide on an option.
– All considered speed values in the joint decision of a platoon are feasible for

all platoon members.

Agent-Based Voting Architecture for Traffic Applications 209

– The scenarios can include several platoons.
– There is initially no difference between the car agents which constitute a

platoon.

An example for the platoon scenario is illustrated in Fig. 5. The four platoon
members have different preferences regarding the platoon speed, the values for
the most preferred speeds being 45 mph, 50 mph, 60 mph and 75 mph. A natural
assumption would be that the preferences regarding the speed values are single
peaked. The concept of single-peaked preferences was introduced by Black in [4].
Single-peakedness means that for each voter there is an “optimal” outcome, and
the further an outcome is from this outcome, the less preferred it is by the voter.
For the example, we assume single peaked approval vectors over the outcome
space from 40 to 80 mph in steps of 5. Consider the approval vectors as illustrated
in Table 3, with voters v1, v2 and v4 approving of three and voter v3 approving
of four speed values. The unique winner of the election is the speed value 50 mph
with approval score 3.

Table 3. Approval vectors and approval scores for platoon example

Speed value 40 45 50 55 60 65 70 75 80

v1 1 1 1 0 0 0 0 0 0

v2 0 1 1 1 0 0 0 0 0

v3 0 0 1 1 1 1 1 0 0

v4 0 0 0 0 0 0 1 1 1

Approval score 1 2 3 2 1 1 2 1 1

5 Functional Requirements

In the following, a range of requirements for the architecture needed to investi-
gate the above depicted scenarios using several voting rules are described. Some
requirements directly stem from the depiction of the scenarios, others are based
on the objective to create an architecture which enables comparing several voting
rules.

Requirements Based on Scenarios

Winner Determination

– Voting rules: If members of a platoon agree on a common speed, they need a
voting rule to assign a set of possible winners to each preference profile. Thus
the architecture must implement voting rules.

210 S.L. Dennisen and J.P. Müller

– Election of committees: If the passengers of a share taxi agree on a POI set
of fixed size to visit, they need to apply a committee voting rule, thus the
architecture must enable the election of committees.

– Tie-breaking rule for voting rules: The architecture must implement some sort
of tie-breaking for voting rules. If members of a platoon want to agree on a
common speed, they must be able to determine a unique speed value. If the
voting rule yields several candidates, a tie-breaking rule is needed to determine
a unique winner.

– Tie-breaking rule for committee voting rules: Analogously, the architecture
must implement some sort of tie-breaking for committee voting rules. If the
passengers of a share taxi agree on a POI set of fixed size to visit, they must
be able to determine a unique POI set. If the committee voting rule yields
several committees, a tie-breaking rule is needed to determine a unique winner
committee.

Iteration Features

– Parallel elections: As the scenarios can include several share taxis or platoons,
the architecture must enable the concurrent execution of several elections.

(De)centralised Voting

– Centralised Voting: As mentioned above, for the share-taxi scenario, the
straightforward approach would be to assign the chair role to the share taxis.
Thus, the architecture should enable centralised voting.

– Decentralised Voting: It would be advantageous to enable decentralised voting
to avoid that a single agent gets too much influence (the chair).

Agent Roles

– Role switching: Considering the platooning scenario, there is initially no dif-
ference between the car agents, so all car agents should be able to choose
between the voter role and the chair role (in the case of centralised elec-
tions) or between the voter role and the user role (in the case of decentralised
elections).

Generic Requirements

Architecture extensibility

– Extensibility: The architecture should allow the implementation of any voting
rule, in the sense that the voting rule is given as parameter for the simulation.

Preference handling

– Vote types: All established types of votes (approval vectors, complete rankings
etc.) should be supported.

– Conversion: Since comparability of voting rules with different vote types is
desired, we define the votes based on valuation functions, i.e. the valuation
functions are converted into approval vectors, complete rankings etc.

Agent-Based Voting Architecture for Traffic Applications 211

6 Related Work

The most works in the COMSOC area researching voting rules are of rather
theoretical nature and investigate voting rules regarding their theoretical prop-
erties. There are relatively few works researching practical applications of voting
rules in specific domains, e.g. for designing recommender systems.

There are several works researching the application of collective decision
mechanisms for multiagent systems and/or for traffic applications. We focus
on such papers which research voting in multiagent systems and papers which
investigate collective decision making mechanisms for traffic applications.

Ghosh et al. [13] propose a voting-based architecture for recommender sys-
tems. They do not design the architecture for usage of different voting rules but
apply a specific voting rule, namely Black’s voting rule.

Pitt et al. [20] propose a generic voting protocol designed to increase robust-
ness in e-voting systems and describe two applications. They focus on providing
a robust algorithm with a simple voting mechanism and do not compare several
voting rules.

Aseere [1] implements a voting-based agent system for personalised e-learning
in a course selection scenario. The agents are Java classes, implemented according
to the JADE framework [3]. Aseere does not compare several voting rules but
applies a specific voting rule, a newly proposed hybrid voting rule which combines
features of the single-transferable vote rule and the cumulative voting rule.

Vasirani and Ossowski [25] propose auction-based procedures for intersection
management. They do not apply voting rules.

Sanderson et al. use institutionalised Paxos for managing consensus forma-
tion in vehicular networks [24], naming agreement on a common speed as an
example. Similarly to [20], they focus on providing a robust algorithm with a
simple voting mechanism for dynamic situations and do not compare several
voting rules.

None of these approaches fulfills the requirement that the application and
comparison of several common voting rules and committee voting rules with
different vote forms should be possible.

7 J-Voting Architecture and Design

7.1 Design

Grimaldo et al. [15,16] chose from the range of possible languages and inter-
preters the AgentSpeak language [21] and its open source interpreter Jason [6]
because the language is based on the well known BDI approach and the inter-
preter can be easily customised.

7.2 Architecture Components

Figure 6 yields an overview and a detailed view of the components of the J-Voting
Agent Architecture necessary for voting. In the following, we describe the main
components of the J-Voting Agent Architecture.

212 S.L. Dennisen and J.P. Müller

Fig. 6. (a) Overview and (b) detailed view of the J-Voting Agent Architecture

– Voting Parameters: This data storage contains the voting context currently
defined for the agent.

– Election launcher : This module starts the voting process for a particular
election. It stores the voting context for this election into the Election Data
storage, allowing other elections to be concurrently performed with different
parameters.
In the case of centralised elections, it sends an “election” message to all vot-
ers. In the case of decentralised elections, it sends a “phase1” message to all
voters. After receiving a “ready” message from all voters, it sends a “phase2”
message.

– Election Data: This data storage holds all the information related to the elec-
tions still in process. Therefore, it contains their voting context, the considered
candidates and the votes received, the respective (committee) voting rule, the
committee size k in case of committee voting rules, the tie-breaking rule and a
boolean variable which indicates if the election is decentralised or centralised.

– Voting Communication Module: This module extends the Jason agent com-
munication module in order to deal with voting messages. When it receives
an election, it invokes the Voting Module to get the agent’s votes. On the
other hand, when it receives a vote, it informs the Votes Manager about the
received vote.

– Voting Module: This module manages the reception of an election. It votes for
the considered candidates according to the agent’s preferences.

Agent-Based Voting Architecture for Traffic Applications 213

– Votes Manager : This module manages the reception of votes. It extracts the
sender’s votes and stores them into the Election Data. As soon as the votes
from all the target agents have been received, it calls the Winner Determina-
tion Module to solve the decision.

– Winner Determination Module: This module solves the winner determination
problem using the information stored into the Election Data for the election
being resolved (i.e. considered candidates, agents’ votes, weights, (committee)
voting rule and tie-breaking rule) Once resolved, it notifies the agent about
the winner solution. In the case of decentralised elections, it sends a “ready”
message to the user agent after the computation of the election result.

In our scenarios, agents can take three roles: chair role and voter role in
centralised elections or user role and voter role in decentralised elections. Which
modules are used by an agent depends on the type of election and on her role in
the election.

In centralised elections, there will be exactly one agent who uses the votes
manager module and calls the winner determination module, namely the chair
agent. A centralised election is started as soon as the voter group is known,
the chair knows about her role and as soon as she knows that an election is
necessary. The chair determines according to some rule the agents taking part
in the elections and the candidates available. That means that the chair agent
calls the election launcher module with the necessary parameters as input.

In decentralised elections there is no designed chair - all voter agents use
the votes manager module and call the winner determination module. A decen-
tralised election is started as soon as the voter group is known, the user request-
ing the collective decision knows about her role and as soon as she knows that an
election is necessary. That means that the user agent calls the election launcher.

7.3 Degree of Fulfillment

In this section, we argue how the requirements will be implemented in the
architecture.

Winner Determination. The winner determination requirements can all be ful-
filled by setting the corresponding parameters in the election launcher. The
voting rule or committee voting rule is set as parameter in the module. The
tie-breaking rule is also set in the module.

Iteration Features. As for parallel elections, the necessary parameters (candi-
dates, votes, ...) are stored for each election into the election data storage,
enabling other elections to be concurrently performed.

(De)centralised Voting. When setting the parameters for the election launcher, it
is specified whether a decentralised election or a centralised election is conducted.
The required modules are implemented in the Java class which defines the agent
architecture.

214 S.L. Dennisen and J.P. Müller

Agent Roles. Role switching is realised as follows. Either the roles are assigned
to the agents from beginning or the agents decide during runtime which role
they take. If an agent takes the chair role, she initiates the voting process by
sending an “election” message to all voters. If an agent takes the user role, she
initiates the voting process by sending a “phase1” message to all voters.

Preference Handling. Which vote types can be used depends on the implemen-
tation of the voting module. The conversion of valuation functions into votes is
conducted in the voting module.

Architecture Extensibility. The winner determination module will be imple-
mented in such a way that it can use any voting rule.

7.4 Differences Between J-MADeM and J-Voting

Grimaldo et al. [16] aim at closing the gap between theory and actual imple-
mentation regarding the theory of multimodal social decisions by yielding an
implementation of multimodal social decisions in Jason, where the multimodal
social decisions are based on the MARA theory. In a similar vein, we aim to
yield an implementation for common voting rules and committee voting rules in
Jason.

In J-MADeM, the winner solution is determined based on a set of utility func-
tions and the selected social welfare (Utilitarian, Egalitarian, Elitist or Nash).
The winner solution in J-Voting is determined based on votes – which can take
different forms – and the selected common voting rule or committee voting rule.

Note that J-MADeM considers allocations, which can be very simple but
also more complex, depending on the considered situation. When considering
elections in J-Voting, we assume that the agents simply agree on a candidate or
a candidate set of fixed size.

Furthermore, J-Voting will allow the conduction of decentralised elections.

8 Conclusion and Outlook

In this paper, we have taken the first steps to designing a platform to support
the application of voting (as a specific case of COMSOC mechanisms) in the
engineering of next-generation cooperative traffic information and management
systems. For the evaluation of different voting rules, we propose using a multi-
agent based architecture enabling the conduction of parallel elections and the
comparison of different voting rules. We propose using an adaptation of the
J-MADeM architecture, J-Voting as solution approach. We contemplate imple-
menting J-Voting as part of an extension of J-MADeM which allows modelling
MADeM situations as well as elections.

J-Voting is based on the requirements for two initial scenarios, the first sce-
nario being an example for the application of committee voting rules in traffic
control. In this scenario, we consider the agreement on POI sets of fixed size for

Agent-Based Voting Architecture for Traffic Applications 215

passengers of share taxis. The second scenario is an example for the application
of voting rules in traffic control, where we consider the agreement on a speed
value for the members of a platoon.

We will compare several voting rules and committee voting rules for the
share-taxi and platoon scenarios with regard to the effects on quantities like
travel time, waiting time and satisfaction of the traffic participants. To this
end, we will create a library of common voting rules and combine the voting
architecture with a suitable traffic simulator based on OSM data.

One aspect we plan to investigate with the help of J-Voting is the influence
of allowing voters to leave the voter group if their dissatisfaction exceeds a fixed
threshold. In the first simulation, we will consider the Minisum Approval rule and
the Minimax Approval rule under the aspect of iterative winner determination.
Both rules were investigated by Brams et al. [8] and measure the dissatisfaction
for a single voter as Hamming distance between her vote and the (0,1)-vector
representation of the resulting committee. The Minisum Approval rule selects a
committee for which the sum of the voters’ dissatisfaction values is minimal. In
contrast, the Minimax Approval rule selects a committee for which the dissat-
isfaction of the most dissatisfied voter is minimal. If using Minisum Approval,
it is possible that single voters are quite dissatisfied. If voters are allowed to
leave the group if their dissatisfaction exceeds a certain threshold, this means
that iterative winner determination is necessary. This can prolong the voting
process. If Minimax Approval is used, fewer iterations for the winner determina-
tion should be necessary, but Minimax Approval is computationally more costly
than Minisum Approval. A question which arises here is how to assign voters
who leave their groups to new groups. We will consider the interdependency
between voting and group formation for this situation and other situations. The
environment for the first simulation will be rather simple, containing randomly
created approval vectors. For the investigation of the effects on the traffic, we
will combine the voting architecture with the traffic simulator.

An important aspect in the application of voting rules in traffic management
is how to handle time effects. When you apply voting rules in dynamic situations,
you have to ensure that the result of the election is computed in a reasonable
period of time. Results in this direction could be transferred to other domains
in which voting in dynamic situations is required.

We plan to consider how to extend the robust Paxos algorithm in [24] for
enabling application and comparison of several voting rules and how to integrate
the algorithm in J-Voting.

In the context of our research, we will also look into combinatorial voting
as described in [11], i.e. voting when the set of alternatives has a combinatorial
structure. In combinatorial voting, there are multiple issues and each alternative
can be uniquely characterized by a vector of the values these issues take.

Furthermore, we aim to identify additional possible applications of voting
rules in traffic management and to investigate the corresponding scenarios using
J-Voting. A systematic analysis of the characteristics of possible scenarios and
theoretical properties of voting rules will be selection criterions for further
research. When considering voting rules, we will take the axiomatic method,

216 S.L. Dennisen and J.P. Müller

the maximum-likelihood estimation approach and the distance rationalisability
approach into account. Complexity of voting problems, i.e. winner determina-
tion, manipulation and control will also be considered.

Acknowledgement. This research has been supported by the German Research
Foundation (DFG) through the Research Training Group SocialCars (GRK 1931).
The focus of the SocialCars Research Training Group is on significantly improving the
city’s future road traffic, through cooperative approaches. This support is gratefully
acknowledged.

References

1. Aseere, A.: A voting-based agent system to support personalised e-Learning in a
course selection scenario. Ph.D. thesis, University of Southampton (2012)

2. Baskar, L., De Schutter, B., Hellendoorn, J., Papp, Z.: Traffic control and intelligent
vehicle highway systems: a survey. IET Intell. Transport Syst. 5(1), 38–52 (2011)

3. Bellifemine, F., Poggi, A., Rimassa, G.: JADE-A FIPA-compliant agent framework.
In: Proceedings of PAAM, vol. 99, p. 33. London (1999)

4. Black, D.: On the rationale of group decision-making. J. Polit. Econ. 56, 23–34
(1948)

5. Borda, J.C.: Mémoire sur les élections au scrutin. Histoire de L’Académie Royale
des Sciences (1781)

6. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems
in AgentSpeak using Jason, vol. 8. John Wiley & Sons, New York (2007)

7. Brams, S., Fishburn, P.C.: Approval Voting. Springer Science & Business Media,
New York (2007)

8. Brams, S., Kilgour, D., Sanver, R.: A minimax procedure for negotiating multi-
lateral treaties. In: M. Wiberg (ed.) Reasoned choices: Essays in Honor of Hannu
Nurmi. Finnish Political Science Association (2004)

9. Brandt, F., Conitzer, V., Endriss, U.: Computational social choice. In: Weiss, G.
(ed.) Multiagent Systems, 2nd edn, pp. 213–284. MIT Press, Cambridge (2013)

10. Chevaleyre, Y., Dunne, P.E., Endriss, U., Lang, J., Lemaitre, M., Maudet, N.,
Padget, J., Phelps, S., Rodriguez-Aguilar, J.A., Sousa, P.: Issues in multiagent
resource allocation. Informatica (Slovenia) 30(1), 3–31 (2006)

11. Chevaleyre, Y., Endriss, U., Lang, J., Maudet, N.: A short introduction to com-
putational social choice. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W.,
Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 51–69.
Springer, Heidelberg (2007)

12. Condorcet, N.: Essai sur l’application de l’analyse à la probabilité des décisions
redues à la pluralité des voix. Imprimerie Royale, Paris (1785)

13. Ghosh, S., Mundhe, M., Hernandez, K., Sen, S.: Voting for movies: the anatomy
of a recommender system. In: Proceedings of the Third Annual Conference on
Autonomous Agents, pp. 434–435. ACM (1999)

14. Grimaldo, F., Lozano, M., Barber, F.: MADeM: a multi-modal decision making
for social MAS. In: Proceedings of the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems vol. 1, pp. 183–190. International
Foundation for Autonomous Agents and Multiagent Systems (2008)

15. Grimaldo, F., Lozano, M., Barber, F.: J-MADeM, an open-source library for social
decision-making. In: CCIA, pp. 207–214 (2009)

Agent-Based Voting Architecture for Traffic Applications 217

16. Grimaldo, F., Lozano, M., Barber, F., Guerra-Hernández, A.: J-MADeM v1.1: A
full-fledge AgentSpeak(L) multimodal social decision library in Jason. In: The 8th
European Workshop on Multi-Agent Systems (EUMAS 2010) (2010)

17. Grimaldo, F., Lozano, M., Barber, F., Guerra-Hernández, A.: Towards a model for
urban mobility social simulation. Prog. Artif. Intell. 1(2), 149–156 (2012)

18. Hardekopf, B., Kwiat, K., Upadhyaya, S.: A Decentralized Voting Algorithm for
Increasing Dependability in Distributed Systems. In: 5th World Multi-Conference
on Systemic, Cybernetics and Informatics (SCI2001) (2001)

19. Kang, J., Kim, W., Lee, J., Yi, K.: Design, implementation, and test of skid
steering-based autonomous driving controller for a robotic vehicle with articulated
suspension. J. Mech. Sci. Technol. 24(3), 793–800 (2010)

20. Pitt, J., Kamara, L., Sergot, M., Artikis, A.: Voting in multi-agent systems. Com-
put. J. 49(2), 156–170 (2006)

21. Rao, A.S.: AgentSpeak (L): BDI agents speak out in a logical computable language.
In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996)

22. Reuter, G.J., Gray, J.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, San Mateo (1993)

23. Rothe, J., Baumeister, D., Lindner, C., Rothe, I.: Einführung in Computational
Social Choice. Springer-Verlag, Heidelberg (2011)

24. Sanderson, D., Pitt, J.: Institutionalised Consensus in Vehicular Networks: Exe-
cutable Specification and Empirical Validation. In: 2012 IEEE Sixth International
Conference on Self-Adaptive and Self-Organizing Systems Workshops (SASOW),
pp. 71–76. IEEE (2012)

25. Vasirani, M., Ossowski, S.: A market-inspired approach to reservation-based urban
road traffic management. In: Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems-vol. 1, pp. 617–624. International
Foundation for Autonomous Agents and Multiagent Systems (2009)

Trading Strategies of a Champion Agent
in a Multiagent Smart Grid

Simulation Platform

Serkan Özdemir(&) and Rainer Unland

DAWIS, Universität Duisburg-Essen, Schützenbahn 70, 45127 Essen, Germany
{serkan.oezdemir,rainer.unland}@icb.uni-due.de

Abstract. Local producers and storage units will play a major role in the future
electricity grid along with the challenge of sustainability. For this reason, smart
grid simulations are needed to forecast the challenges of two-way information
and energy flow. The Power Trading Agent Competition (Power TAC) provides
an open source simulation platform to enable and verify various smart grid
studies from the perspective of sustainability. Besides, an annual competition is
hosted in which autonomous agents trade in energy markets and make profits.
AgentUDE won the Power TAC 2014 Final as a broker utilizing an adaptive
agent. This paper details the trading strategies of AgentUDE and analyzes the
tournament.

Keywords: Multiagent � Agent broker � Trading Agent � Smart grid �
Simulation

1 Introduction

Smart grid has been turning into an exciting area for researchers and business entities as
new power players, such as electric vehicles and power to gas units, involve in the
electricity grid that make it possible to store electricity in a distributed way. On the
other side, some of governments started to declare their energy transition policies such
as Energiewende in Germany: Within Energiewende, 17 nuclear power plants will be
permanently shut down by the end of 2022 [9]. Meanwhile, fossil fuel based electricity
production is likely to be replaced with renewable energy production, which has a fitful
energy production volume [5]. In the light of this energy transition policies, infor-
mation and energy flow between these energy actors have to be simulated within a
realistic smart grid simulation to identify future challenges and propose solutions.
Power TAC provides an open source, smart grid simulation with the aim of addressing
a solution to this challenge through making autonomous brokers trade in a smart grid
environment. Alongside, it simulates the typical energy markets, such as wholesale,
retail and balancing markets (details are explained in Sect. 3) [1].

This paper addresses the wholesale market, retail market and balancing activities of
AgentUDE. In particular, the main focus of this paper is the aggressive tariff strategy
and contributions of tariff fees where analyses showed that AgentUDE gained the
serious portion of its cash balance through early withdrawal penalty (EWP) and bonus

© Springer International Publishing Switzerland 2015
J.P. Müller et al. (Eds.): MATES 2015, LNAI 9433, pp. 218–232, 2015.
DOI: 10.1007/978-3-319-27343-3_12

payment (BP). AgentUDE won the Power TAC 2014 Final games as the newest
participant among seven brokers by earning the most profit. Behind AgentUDE,
cwiBroker and CrocodileAgent took the second and third places, respectively [7, 8].

The structure of the paper is as follows. Specifics of Power TAC 2014 Final games
are introduced in Sect. 2. Afterwards, related work is given in Sect. 3. Section 4 is
dedicated to AgentUDE that details the retail, wholesale and balancing activities.
Future work is identified in Sect. 5. Finally, the paper is concluded in Sect. 6 with an
outlook to Power TAC 2015 Final games.

2 Power Trading Agent Competition and 2014 Final Games

The Power Trading Agent Competition (Power TAC) is an open source smart grid
simulation platform which consists of a wholesale market, a tariff market, a distribution
utility and a number of costumer and producer models. Autonomous brokers are also
allowed to trade remotely in these markets. The wholesale market is a typical
day-ahead market where the large generator companies, renewable production farms
and brokers place their bids and asks for the future time slots. The retail market allows
brokers to build their customer portfolio by means of offering multiple tariffs to local
producers and consumers. In between retail and wholesale markets, the distribution
utility keeps track of supply and demand, and charges brokers for their energy
imbalances. Customers are simulated as independent consumer and producer models
for goods including electric vehicles, households, storage units and solar panels. The
interaction between customers and brokers takes place in the retail market through tariff
subscriptions. Figure 1 illustrates the schematic landscape of the Power TAC
environment.

Fig. 1. Components of the Power TAC as well as autonomous brokers. Each component
represents a different module.

Trading Strategies of a Champion Agent in a Multiagent Smart Grid Simulation 219

Brokers represent the business entities in the simulation platform. They offer tariffs
through the tariff market, and their goal is to increase the number of their subscribed
customers. With this aim, they have to trade in the wholesale market, in order to match
their total supply and demand for a particular future hour. Enabled future time slots are
declared by the wholesale market in advance. At the beginning, each game starts under
monopoly conditions, with a built-in broker called default broker. In order to create
initial market environment, this broker trade in the markets before the login of auton-
omous brokers. This interval is called bootstrap period. Afterwards, the competing
brokers are allowed to join in the game. Note that timing in the simulation platform is
not continuous. Rather, the simulation time progresses in discrete time slots. Each time
slot is equal to five seconds in the real world, and one hour in the simulation world [1].

In the Power TAC 2014 Final games, 72 games were played, and 7 brokers
competed. Out of these, 16 games were 8-sized, 35 games were 5-sized and 21 games
were 3-sized. As stated already, Power TAC has a built-in default broker which is
always included in all game sizes. All the statistics and data that are included in the
paper are collected through the extraction of game logs which are produced after each
game by Power TAC server.

Table 1 shows the official results of Power TAC 2014 Final games [10]. In total,
7 brokers competed in the tournament. Unfortunately, TacTex is not included in the
official result since the TacTex team decided to withdraw its broker from the tourna-
ment due to some connectivity problems. At a first glance, it can be clearly seen that
AgentUDE and cwiBroker dominated the games. AgentUDE took the first place in
game size 5 and game size 8, and third place in game size 3.

Figure 2 illustrates the wholesale market trading patterns of the brokers, in which
generator companies and other wholesale actors are excluded. Here, a negative price
indicates broker payment for a certain amount of bought energy. Similarly, a positive
price refers to a received payment for a certain amount of sold energy. Colors indicate
the time proximity. Red color represents the far future in the simulation time, at which
contracted energy will be delivered (up to 24 h). Similarly, blue color indicates the near
future for a sooner delivery. Although there are minor differences between game sizes,
the main characteristics of the market can be identified easily: As seen on the graph
above, the cheapest energy is usually available at the last enabled time slot. After the
last enabled time slot, the most expensive interval starts: It means that wholesale energy
is sold immediately whenever it is available.

Table 1. Official results of Power TAC 2014 Final. Values represent the normalized total profits
of brokers. Final ranking is formulized through summing all game sizes [10].

Broker Game Size 3 Game Size 5 Game Size 8 Total

AgentUDE 0.279 1.499 1.976 3.754
cwiBroker 1.557 1.026 0.600 3.183
CrocodileAgent 0.952 -0.893 -0.560 -0.501
Maxon -0.921 0.142 -0.643 -1.423
Mertacor -0.945 -0.492 -0.865 -2.302
coldbroker -0.922 -1.281 -0.509 -2.712

220 S. Özdemir and R. Unland

The area to the right of the origin shows the selling activities of the brokers. It is not
as active as the left side, since the priority of a broker is to match demand and supply.
Very few brokers, such as Maxon, preferred to make brokerage in the market. Indi-
vidual performances are detailed in Sect. 4.

Figure 3 presents the price trends of the brokers in the retail market. Apparently,
brokers have their own individual price regimes, depending on their customer portfolio.
What can be clearly seen here is that the hard competition takes place around 0.06₵/kWh.
Further analysis can be found in the next section.

Fig. 2. Cleared wholesale market prices of brokers.

Fig. 3. Tariff minimum values of competing brokers.

Trading Strategies of a Champion Agent in a Multiagent Smart Grid Simulation 221

3 Related Work

Power TAC publications can be classified into two groups: Reviews and broker
descriptions. One of the broker papers has been published by the TacTex team to
introduce their broker which won the Power TAC 2013 Final games. As explained in
this paper [3], TacTex uses Markov Decision Processes to minimize the energy costs in
the wholesale market. Besides, it optimizes the future demands, prices and predicted
energy costs in order to pick an appropriate tariff among pre-created, fixed-rate can-
didate tariffs. Another broker publication by the AstonTAC team focuses on wholesale
market trading, using Markov Decision Processes for price optimization and
Non-Homogeneous Hidden Markov Models for future predictions [4]. The last broker
paper is by the cwiBroker team, which was very successful in 2013 and 2014 Final
games: They took the second places in both tournaments, utilizing a trading technique
that uses the equilibrium in continuous markets [8]. The most comprehensive review
paper to date has been published by Jurica Babic and Vedran Podobnik for the
Power TAC 2014 Final games. In this paper, brokers are compared based on the
pre-defined key performance indicators (KPI). Besides, retail and wholesale market
activities, including market shares and proximities of the future time slots, are dis-
cussed in detail [7].

Compared to the broker approaches above, AgentUDE implements an adaptive
method in the wholesale market. On the retailer side, it uses an empirical strategy,
which is inspired by the German electricity retail market. Within this strategy, tariff fees
are speculated along with aggressive tariff publication. These methods and strategies
are detailed in Sect. 4.

4 AgentUDE at a Glance

The broker abilities of AgentUDE can be divided into three groups: wholesale, retail
and balancing market activities. As shown in Fig. 4 below, AgentUDE evaluates and
completes its basic facilities with a time slot. In the following, we address these
activitiy groups.

Fig. 4. AgentUDE activities in a time slot.

222 S. Özdemir and R. Unland

The wholesale trading module of AgentUDE uses an adaptive method which tracks
the past market data. Thanks to this method, the broker is able to catch the market
trends regardless of weather conditions. However, statistics of the competition showed
that wholesale market costs of brokers are very close to each other (See Table 2).
Therefore retail activities are detailed more due to the diversity in tariff publication
policies of the brokers. AgentUDE uses an aggressive tariff strategy by means of
offering the cheapest tariff and speculating on tariff parameters (contract length, EWP
and BP). There are two main goals in the retail strategy: To provoke other brokers to
lower their tariffs and incentivate customers to change their tariffs. Eventually, this
liquidity triggers the tariff penalties and results in profit. The results of this strategy are
given in the next sub-sections.

Before turning to the wholesale market activities, an indicator used by AgentUDE
has to be introduced here. It indicates the profit achievement acceleration of the broker,
where a higher value means better profit performance. The idea behind it is to improve
decisions in tariff creations and wholesale market activities. The following formula (1)
evaluates the rhythm value at time slot t:

Rt ¼ Rt�1 þx �
ct �

P5
n¼0

ct�n
5

� �� �

ct

0

@

1

A ð1Þ

Where R is the rhythm at given time slot, C is cash balance and ω is weight which is set
experimentally. The formula above returns a value based on the cash positions. This
rhythm is smoothed with a weight value to avoid bounces. The main impact of this
parameter on the tariff publication cycle and profit margin given in Formula 3.

4.1 Wholesale Market Activities

Wholesale trading is a vital issue for all brokers to minimize their imbalanced energy.
Additionally, brokers are challenged to buy the cheapest possible energy in order to be
flexible against their competitors. In the end, customers would like to subscribe to the
cheapest tariff available from their profitability perspective.

Price prediction takes place in two steps: The base price is a predicted utilizing past
data. Afterwards, the final price is differentiated using the base price. Following
formula (2) returns the base price at current time slot t for a future delivery at time slot T.

Bt;T ¼ Bt�1;T þCt�1;T
� � � 1� xð Þ
þ Ft;T þmaxtCðt; TÞ � mintCðt; TÞþR t; Tð Þ� � � x ð2Þ

Where B is a base price for the given current time slot t and future time slot T.C stands
for the market equilibrium price for t and T. R is risk function that contributes to the price
depending on time slot proximity. F indicates constants such as market mean and aver-
ages. The weight, ω is updated using the rhythm value which is given in Formula 1.

Trading Strategies of a Champion Agent in a Multiagent Smart Grid Simulation 223

Figure 5 illustrates the cleared bids and asks of AgentUDE. Overall, bidding density
of AgentUDE is narrowed between 15 and 25 EUR/MWh. Consequently, the average
buying price is realized at 22.7 EUR/MWh and selling price at 28.9 EUR/MWh (See
Table 2). Surely, these cost prices make sense with imbalance activities. The cost can
be easily decreased with a stingy bidding policy. However, this would eventually lead to
poor imbalance performance.

Figure 6 illustrates the prediction performance of AgentUDE in different game sizes.
In 8-sized games, the success rate is higher than other game sizes since the market is
more stable due to the large number of participants. Before fifth future time slot, selling

Fig. 5. Cleared bids and asks of AgentUDE.

Fig. 6. Average cleared wholesale prices and trading performance of AgentUDE.

224 S. Özdemir and R. Unland

prices are always less than buying prices. Therefore, this area is regarded as a risk area
due to approaching delivery time and brokers may submit extraordinary prices in order
to avoid imbalance penalties. These panic orders can clearly be seen in Fig. 2 as blue
colored prices that are close to 100 EUR/MWh.

Table 2 lists the wholesale bidding and selling costs of brokers. Pbids and Pasks

indicate the average bidding and asking prices. AgentUDE has a market cost around
22.7 EUR/MWh and asking performance of 28.9 EUR/MWh, where the consumption
share is 22.9 % of the total energy distribution. In this landscape, AgentUDE is the
second best broker after cwiBroker in terms of the lowest market cost. However, these
values are very close to each other and do not provide a serious contribution to
the overall profits of the brokers. Instead, we take a closer look at retail activities in the
next section, which makes AgentUDE stand out against the competition among other
brokers.

4.2 Retail Market Activities

AgentUDE applied a new strategy on the retail side, which is not used by other brokers:
Publishing aggressive tariffs with the lowest tariff values and customer binding tariff
fees such as EWP and BP. Over the course of the competition, this strategy provoked
other brokers to publish cheaper tariffs, which in turn triggered the EWP’s of Agen-
tUDE tariffs. As a whole, AgentUDE forced its customers to change their tariffs. In the
end, this strategy contributed about 20 % to overall cash balance (See Fig. 7).

Table 3 shows the tariff statistics of the brokers. Ntariffs is the total published tariffs.
Frequency indicates the publication cycle in terms of time slot. Mcons is the mean price
of consumption tariffs. Similarly, Mprod is the mean of production tariffs. Scons is the
average price of energy that is sold to customers. Likewise, Sprod refers to the price for
bought energy. Finally, Econs and Eprod are energy consumption and production shares
of brokers, respectively.

As seen in Table 3, AgentUDE published most of the tariffs having a publication
cycle of 27. After AgentUDE, Mertacor and TacTex have most of the tariffs. On the
other hand, only AgentUDE, CrocodileAgent and the default broker published

Table 2. Wholesale market averages of the brokers.

Broker Pbids
(€/MWh)

Pasks
(€/MWh)

AgentUDE 22.70 28.90
cwiBroker 22.49 27.60
CrocodileAgent 43.11 13.08
Maxon 23.15 53.30
Mertacor 26.36 –

coldbroker 27.87 27.49
default broker 29.10 26.49
TacTex 22.94 19.81

Trading Strategies of a Champion Agent in a Multiagent Smart Grid Simulation 225

production tariffs. However, the production tariff policy of AgentUDE is restricted with
a simple rule. Only if the sum of minimum production tariff value and distribution fee
is less than wholesale market cost, production tariffs are published. Otherwise, local
producers are ignored.

All the games start with a number of uncertainties such as market status (production
and consumption capacities) and the number of competitors. First of all, broker agents
are not aware of their competitors’ trading strategies. Therefore, initial tariffs have to be
set carefully. Following piece of code states the initial publications of AgentUDE.

public void createInitialConsumerTariffs()

{

 tVal = MM + DF + PM + BC()

 FOR tNum = 1 to 5

 CALL publishTariff(tVal + tNum, EWP() - tNum)

 END FOR

}

Here, MM and DF are market mean price and distribution fee, respectively. These
parameters are announced at the beginning of each game. Integer value of tariff
number, tNum is included to “publishTariff” method in order to create different tariff
variations. PM is profit margin, which is set heuristically. BC represents a function
which takes the number of brokers into account: In case of high participation, tariff
value, abbreviated as tVal, is decreased. According to the Power TAC specification [1],
only the first five tariffs of each power type are visible to customers. Therefore five
tariffs are initially published for the maximum exposure. Early withdrawal penalty is
formulated as a function of EWP based on the number of brokers. Due to Inertia
parameter described as Ia = I * (1-2−n) and valued between 0 and 1, customers are
highly sensitive to the new tariffs at the beginning of the games. Therefore, EWP’s are
extremely useful fees to bind customers to the tariff. Eventually, customers’ loyalty
increases due to the Inertia parameter and they usually continue to stay within the tariff
even if the tariff is not the cheapest one. As a part of retailer strategy, AgentUDE
always set EWP if the tariff value, to be published, is the cheapest one in the market.

Table 3. Tariff activities of the brokers in Power TAC 2014 Final.

Broker Ntariffs Freq. Mcons

(₵/kWh)
Mprod

(₵/kWh)
Scons
(₵/kWh)

Sprod
(₵/kWh)

Econs

(%)
Eprod

(%)

AgentUDE 3791 27 6.0 1.52 6.3 1.52 22.9 30.9
cwiBroker 1071 97 7.8 – 7.8 – 21.5 –

Crocodile 1106 94 7.1 1.58 9.7 1.58 13.4 25.6
Maxon 1426 73 522 – 7.7 – 7.0 –

Mertacor 2732 38 7.3 – 6.7 – 4.4 –

coldbroker 607 171 5.3 – 5.4 – 8.2 –

default broker 144 725 50 1.50 50 1.50 0.2 43.5
TacTex 1670 62 7.3 – 5.6 – 22.4 –

226 S. Özdemir and R. Unland

public void improveConsumerTariffs()

{

 CALL monopolyTest()

 CALL revokeUselessTariffs()

 IF isPublicationCycle() = True

 Return

 ELSE

 IF getSubscriptionRate() < getCriticalRate()

 IF getCompetitorsMinimum() < getCost()

 CALL publishTariff(getCost(), NULL)

 ELSE

 CALL publishTariff(getCompetitorsMinimum(), EWP())

 END IF

 END IF

 END IF

}

The simplified algorithm above describes the process how AgentUDE publishes
new tariffs. Concisely, this method publishes two kind of consumer tariffs. If the
offered price is the cheapest one among other tariffs, then it is published with a EWP
fee. Otherwise, EWP is not set and tariff value is adjusted considering the market cost.

AgentUDE employs a number of controllers during the tariff publication process.
One of these controllers is the “monopolyTest” method. This method is triggered if a
price gap appears between AgentUDE and its closest competitor. Another controller is
the “revokeUselessTariffs” method, which removes harmful tariffs. It is quite possible
in a game that wholesale clearing prices increase due to high demand and weather
conditions. In this case, some of the older tariffs might be outdated and harmful in
terms of profitability. This method simply removes such tariffs.

Market cost is calculated by the “getCost” method and takes cleared wholesale
market prices and distribution fee into account. Formula (3) shows the definition of the
value computed by the method:

getCostt ¼ ðP60
n¼0

P24
m¼1 pm;nÞ

ðP60
n¼0

P24
m¼1 Em;nÞ

þDFþPM ð3Þ

Where DF and PM represent the distribution fee and profit margin, respectively.
P and E refers to total money and energy transactions and the formula above runs up to
the most recent 60 h and 24 enabled future auctions of the wholesale market. Con-
sequently, the fraction yields an average cost price by means of dividing the total
payment to the total energy. Another controller is the “getCompetitorsMinimum”
method, which scans the tariff repository and identifies the competitors’ minimum tariff
with a small margin. Other controllers are “getCriticalRate” and “getSubscriptionRate”;
they represent the goal and current situation, respectively. The critical rate is the
minimum percentage of total customers that AgentUDE has to reach; the subscription
rate refers to the percentage of currently subscribed customers.

Trading Strategies of a Champion Agent in a Multiagent Smart Grid Simulation 227

The subscription rate and critical rate shape EWP fees. The number of subscribed
customers is proportional to EWP fees, based on the Formula (4). All together, the
calculation of early withdrawal penalty fee can be formulated as follows:

EWPt ¼ ðgetCriticalRateðÞ � TÞ � u� S � x ð4Þ

Where T is the number of total customers in the competition environment, and S is
the number of subscribed customers. The weights, φ and ω differ based on the power
type.

Figure 7 shows the overall cash balance and collected money from tariff fees as a
result of the strategy. In the same figure, red area shows the cumulative sum of tariff
fees which is the approximately 25 % of the overall cash position. This rate increases in
8-sized games due to stiff competition. In other words, high number of tariffs means
higher liquidity in terms of customer subscriptions and withdrawals (see Fig. 9).

Figure 8 compares the tariff fee performances of all the brokers. Surprisingly, only
AgentUDE and TacTex benefitted from tariff fees. Here, maximum profit achieved
from 8-sized games.

In order to earn more profit from this strategy, some requirements have to be met:
Active customers and a stiff competition. First, customers have to see some profitable
tariffs on the desk before leaving their current retailer. If not, customers tend to ignore
the available tariffs and stick to their tariff. In this case, the strategy offered by

Fig. 7. Total cash position and cumulative sum of EWP and BP.

Fig. 8. Average cumulative profits that are collected from EWP and BP.

228 S. Özdemir and R. Unland

AgentUDE does not work well. Second, a broker has to offer competitive tariffs, so that
customers can see them and change their tariffs if it is really profitable for them. To
illustrate this analysis, competitive and non-competitive brokers are tested in 3-sized
games below.

Figure 9 draws the tariff fee earnings of AgentUDE as a result of 3-sized games
between AgentUDE and the respected broker. Apparently, TacTex, CrocodileAgent
and cwiBroker provided the most profit to AgentUDE while Mertacor, Maxon and
coldbroker did less. In the same fashion, this symbiotic relationship is proportional to
the official results given in previous sections. Another result is that TacTex, cwiBroker
and AgentUDE offer the most profitable tariffs to the customers and convince them to
change their tariffs.

4.3 Balancing Activities

Brokers have to meet their demand and supply. If not, they may lose the largest portion
of their profits by paying huge imbalance fees. The most challenging issue is to predict
future consumptions. AgentUDE uses the consumption data of customers to make
predictions. However, this method does not always give the best result due to changing
conditions, including weather. Balancing market sends signals to brokers regarding
their imbalance status. Accordingly, needed energy is calculated as the sum of pre-
dicted consumption and imbalance signal. The final amount of needed energy is
smoothed and submitted to the market.

Figure 10 illustrates the cumulative imbalance volumes. In this figure, negative and
positive volumes are regarded as absolute values and they are summed regardless of
their signs. Apparently, 3-sized games give the best result for AgentUDE. Since the
figure illustrates the volumes, increasing number of participants makes it difficult for
AgentUDE to adjust its imbalance due to changing demand. Besides, customers have
more tariff options in game size 8 in comparison to game size 3. Therefore, withdrawal
or sign-up activities of customers eventually result in last-minute imbalances.

Fig. 9. Cumulative tariff fee earnings of AgentUDE that are collected through 3-sized games.

Trading Strategies of a Champion Agent in a Multiagent Smart Grid Simulation 229

Figure 11 shows the average imbalances where negative and positive values are
summed. AgentUDE draws a flat line due to wave-style imbalance activity. In other
words, positive and negative values are almost same. Figure 12 illustrates the overall
imbalance payments from brokers to the distribution utility. AgentUDE is the second
best broker in terms of paying the least money to the distribution utility. However this
payment only consists of imbalance penalties since the total imbalance energy is close
to the zero line.

Fig. 10. Cumulative volume of negative and positive imbalances.

Fig. 11. Cumulative sum of positive and negative imbalances (all game sizes).

Fig. 12. Total imbalance payments from brokers to distribution utility (all game sizes).

230 S. Özdemir and R. Unland

For a typical negative imbalance, brokers have to pay the sum of penalty fee and
price of imbalanced energy. TacTex and cwiBroker paid 100 k EUR for their 1700MWh
and 1450MWh imbalanced energy, respectively. If a comparison is needed at 70 k EUR,
where the imbalanced energy of AgentUDE is almost zero, TacTex and cwiBroker paid
70 k EUR plus 17.6 EUR/MWh and 20.6 EUR/MWh, respectively for their negative
imbalance. With respect to the wholesale market costs shown in Table 2, TacTex and
cwiBroker had a good deal on the balancing market over AgentUDE.

5 Future Work

AgentUDE seems to be a promising broker. However, there are issues to be improved
upon. Following points are the most important topics that are expected to be solved for
the upcoming Power TAC 2015 games.

One of the most important issues is efficiency in wholesale trading. AgentUDE still
loses sizeable amounts of money through its relatively inefficient bids and asks.
Therefore, price predictions in the wholesale market ought to take weather forecasts
into consideration, in order to catch such future trends.

A second improvement regards the utilization of unused power figures. In the
Power TAC environment, there are many new generation power actors, such as storage
units, controllable customers. However, most of the brokers do not use them. No doubt,
utilizing these components improves the efficiency of the broker.

Another issue is capability of surviving in a longer game period: As asked for the
future competitions, AgentUDE has to be compatible for longer games.

6 Conclusion

This paper covers the basic strategies of AgentUDE and results of the competition from
the business perspective, as a winning agent in Power TAC 2014 Final. However,
success is a relative term, especially on such a dynamic and progressive platform. The
participating teams get stronger year by year, and change their strategies. As a result,
the competitiveness of the game is raised aggressively. For this reason, comparisons are
valid only for the specific releases of participating brokers.

As has been noted in the wholesale market section, the gaps between the market
performances of brokers are very close to each other. It is clearly seen that all the
brokers have a decent market performance based on their customer profiles and risk
levels. What placed AgentUDE one step ahead are its competitive and aggressive tariff
strategies. In addition, the results showed that AgentUDE earned the serious portion of
its profit through tariff fee speculation. This strategy was never used before by another
broker and turned AgentUDE into a more competitive and flexible competitor. Lastly,
the Power TAC 2014 Final showed that it has an enormous benchmark potential for
smart grid studies. Therefore, we kindly invite new teams to take part in this
competition.

Trading Strategies of a Champion Agent in a Multiagent Smart Grid Simulation 231

References

1. Ketter, W., Collins, J., Reddy, P., Weerdt, M.: The 2014 Power Trading Agent Competition.
ERIM Report Series (2014)

2. Ketter, W., Collins, J., Reddy, P.: Power TAC: A competitive economic simulation of the
smart grid. Energ. Econ. 39, 262–270 (2013)

3. Urieli, D., Stone, P.: TacTex’13: a champion adaptive power trading agent. In: Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 465–471 (2014)

4. Kuate, R.T., He, M., Chli, M., Wang, H.H.: An intelligent broker agent for energy trading:
an MDP approach. In: Proceedings of the Twenty-Third International Joint Conference on
Artificial Intelligence, pp. 234–240 (2014)

5. Federal Environmental Agency (FEA). Energieziel 2050: 100 % Strom aus erneuerbaren
Quellen. http://www.umweltbundesamt.de/publikationen/energieziel-2050. Accessed 4
November 2014

6. Somani, A., Tesfatsion, L.: An agent based test bed study of wholesale power market
performance measures. IEEE Comput. Intell. Mag. 3, 56–72 (2008)

7. Babic, J., Podobnik, V.: An analysis of power trading agent competition 2014. In: Ceppi, S.,
David, E., Podobnik, V., Robu, V., Shehory, O., Stein, S., Vetsikas, I.A. (eds.)
AMEC/TADA 2013 and 2014. LNBIP, vol. 187, pp. 1–15. Springer, Heidelberg (2014)

8. Liefers, B., Hoogland, J., Poutré, H.L.: A successful broker agent for power TAC. In: Ceppi, S.,
David, E., Podobnik, V., Robu, V., Shehory, O., Stein, S., Vetsikas, I.A. (eds.) AMEC/TADA
2013 and 2014. LNBIP, vol. 187, pp. 99–113. Springer, Heidelberg (2014)

9. Morris, C., Pehnt, M.: Energy Transition: The German Energiewende. Heinrich Böll
Stiftung (2014)

10. Power Trading Agent Competition, http://www.powertac.org. Accessed 2 December 2015

232 S. Özdemir and R. Unland

http://www.umweltbundesamt.de/publikationen/energieziel-2050
http://www.powertac.org

Agent-Based Decision Support for Allocating
Caregiving Resources in a Dementia Scenario

Tobias Widmer(&) and Marc Premm

Information Systems 2, University of Hohenheim, Stuttgart, Germany
{tobias.widmer,marc.premm}@uni-hohenheim.de

Abstract. Due to the increasing number of Dementia patients, the overall costs
for caregiving has grown by 32 % between 2002 and 2008. The efficient use of
smart decision support systems for managing ambulant care and mobile nursing
services that provide professional care for Dementia patients is an important
challenge to reduce cost and increase service quality. The optimal allocation of
caregiving resources from different mobile nursing service firms to a growing
number of Dementia patients, however, is a difficult problem in the healthcare
domain. We approach this problem from a multiagent systems perspective by
designing and implementing a distributed decision support system that utilizes
an auction-based protocol for allocating caregiving resources subject to
Dementia-specific service attributes. We demonstrate the usefulness of the
proposed protocol by an early stage prototype implementation presenting the
system’s proof-of-concept.

Keywords: Decision support � Multiagent systems � Auctions

1 Introduction

The increasing number of Dementia patients has caused the overall costs for caregiving to
grow by 32 % between 2002 and 2008. The World Alzheimer Report [1] unveils that in
year 2010, a total of US$ 239 Billion were spent for caregiving services in Dementia.
More than 80 % of all caregivers for Dementia patients state that they frequently expe-
rience high levels of stress and almost half report that they suffer from depression [2].

Agent-based software solutions offer a potential base for supporting both Dementia
patients and professional caregivers in a wide range of applications. For example, the
optimization of the visiting schedules and the provisioning of medical assistance for
Dementia patients in geriatric residences have been realized by designing decision
support systems by means of multiagent systems. These agents facilitate the caregivers’
and physicians’ work by providing updated information about patients and emergen-
cies, as well as historical data [3]. In addition, caregiving resources can be represented
by means of nursing care service models to design language extensions in high-level
decision support systems [4].

The optimal allocation of caregiving resources among a growing number of
Dementia patients is a difficult problem in the healthcare sector. Patients with differing
disease stages require caregiving services from professional caregivers at different
competency levels. More advanced stages of the Dementia disease, for example,

© Springer International Publishing Switzerland 2015
J.P. Müller et al. (Eds.): MATES 2015, LNAI 9433, pp. 233–248, 2015.
DOI: 10.1007/978-3-319-27343-3_13

demands family members to bear the full caregiving burden– often at the cost of their
own health condition. On the other hand, caregiving professionals employed by dif-
ferent mobile nursing service firms are subject to highly varying working environments
and scheduling conflicts. In addition, changing personnel of professional caregiving
network institutions require access to sensitive patient health data which often leads to
nonprofessional handling of health-related information subject to strict privacy. Hence,
multiple caregivers from different mobile nursing services offer their services to a range
of Dementia patients at varying disease stages, subject to heterogeneous service
attributes.

We address this problem by designing an agent-based decision support system that
implements an auction-based communication protocol for efficient caregiving resource
allocation subject to a set of Dementia-specific service attributes. Resource allocation is
a well-established field in multiagent systems research [5]. Hence, we propose a
software system in which each individual actor is represented by an intelligent software
agent that acts on behalf of its user (patient respectively caregiver). The emerging
multiagent system captures two distinct features. First, it respects privacy-aware
information sharing. Second, the allocation process is based on a double-sided auction
which achieves a socially optimal allocation of caregiving resources across multiple
patients and professional caregivers from different mobile nursing service firms.
A generic overview of the described setting is presented in Fig. 1.

This research is conducted in accordance to the design science paradigm [6]. The
objectives are to: (1) develop and implement an auction-based protocol for allocating
Dementia caregiving resources in multiagent systems (method artifact) and (2) evaluate
this artifact in a Dementia scenario with multiple patients and caregivers (scenario-based
evaluation). The contribution of this research is the design and the initial prototype
implementation of an agent-based decision support system for supporting the caregiving
allocation among Dementia patients and their caregivers.

Fig. 1. Agent-based decision support system for allocating caregiving resources.

234 T. Widmer and M. Premm

The remainder of this paper is structured as follows: In Sect. 2, we review the extant
literature related to our research. In Sect. 3, we present the multi-attribute double
auction protocol for allocating caregiving resources. In Sect. 4, we report the
scenario-based evaluation of the protocol within the initial prototype implementation.
Section 5 concludes the paper and gives an outlook of future work.

2 Literature Review

We discuss extant literature on decision support in eHealth and auction-based resource
allocation approaches and examine the allocation of caregiving resources from a
multiagent system perspective.

2.1 Decision Support in eHealth

The support of patients suffering from Dementia with the help of electronic devices has
been analyzed and developed since the emergence of modern IT. There is a lot of work
in literature that tries to support the family caregiver or directly the patient itself with
computer supported guidance. In one of the first approaches, Brennan et al. developed
the electronic support ComputerLink and showed in field experiment that the use of
computer decision support for home caregivers could reduce isolation and enhance
decision making skills [7, 8]. However, the individual intensity of system usage sig-
nificantly varied between different end-users. Also, the static implementation has been
replaced by the use of adaptive and intelligent systems in the healthcare section [23].
The multiagent systems paradigm suits well for designing improved decision support
systems that are able to represent the interest of each individual actor. Schuele et al.
present a method that enables end users represented by software agents to cooperate in
the decision making process still ensuring data security and privacy for the participants
[9]. A similar approach has been presented by Corchado et al. with the stronger focus
on the monitoring aspect. The “Alzheimer Multi-Agent System” enables nurses to
optimize and dynamically adapt the working time and guarantees that each patient
assigned to a nurse receives the right care [3]. However, multi-attribute patient-nurse
allocation with multiple participants is not considered. With an optimizing approach
from Operations Research, Lanzarone and Matta [10] study the problem of assigning
the right caregiver to each patient by an analytical approach to provide decision support
of healthcare management with a focus on hospitals. Aktas et al. presented a similar
approach [11]. From the perspective of one professional caregiving provider all
information relevant for the problem optimization is available. However, this precon-
dition is not available in scenarios with multiple parties that have conflicting interests
like on a market for caregiving resources.

While the previously discussed approaches support only the work of the family or
the professional caregiver, the correlation between both also has to be considered for an
optimal system performance. For instance, at more severe stages of the disease family
members have to be replaced by professional caregivers because the caregiving burden
exceeds the family caregiver’s capacity. This requires an efficient resource allocation

Agent-Based Decision Support for Allocating Caregiving Resources 235

that includes the interest of all parties involved. Couch et al. present a model that
involves time and money for the allocation of caregiving resources [12]. The authors
examined different household types with family caregivers and their response on the
circumstances of the dementia patient. The study shows that the response is strongly
influenced by economic considerations and states that future demand for professional
caregivers that may help family caregivers will increase. Bargaining approaches for
family caregivers’ resources in intergenerational household formations have been
examined by Pezzin and Schone [13]. The theoretical framework includes one single
elderly parent’s well-being as well as the daughter’s time used to serve in caregiving
and in labor market participation.

Bearing in mind the monetary aspects of Dementia worldwide, one may not lose
sight of the disease itself. In any case, high-priority tasks such as assistance at meals
must be performed and cannot be shifted or even ignored by any allocation process.
One method that copes with the issue of prioritizing tasks in home caring scenarios is
presented by Hirdes et al. The method for assigning priority levels (MAPLe) is used to
categorize the need for caregiving activities of a patient [14]. The priorities are set on a
discrete scale from “low” to “very high” and were evaluated in numerous countries.
MAPLe furnishes an algorithm to set the appropriate priorities and can be connected
with an agent-based approach to ensure data security and privacy issues. Together with
a resource allocation approach that involves additional factors like time, money, or
caregiving skills, the overall efficiency of the caregiving system is significantly
improved. Since one major problem of the task aligning family and professional
caregivers is the absence of a central instance that holds all necessary information, the
method needed has to deal with the distributed nature of this problem.

2.2 Auction-Based Approaches in Resource Allocation

There are few approaches available that incorporate the previously stated requirements.
One prevalent possibility that is commonly used in resource allocation problems is the
design of an auction. Auctions support the distributed nature of the problem with
various groups and participants following different goals and, thus, inherent different
utility functions. New mechanisms even support the coincident usage of multiple
attributes [15] and, hence, include multiple attributes such as time, money, priority and
caregiving skills.

In multiagent systems research, auctions have become a popular means to effi-
ciently allocate resources among software agents [5]. Auction-based approaches pro-
mise a significant increase in efficiency when allocating resources in agent-based
systems. Such agent-based decision support systems allow for increasing the efficiency
in the context of allocating caregiving resources to patients. Therefore, what is still
missing is an auction-based approach that uses multiagent technology to cope with the
efficient allocation of caregiving resources of multiple caregiver or caregiving facilities
to numerous patients. For this setup, double auctions have been proven to outperform
other mechanisms and are also well-suited for the use with a multiagent system rep-
resenting real world actors [16].

236 T. Widmer and M. Premm

Paulussen et al. take a game-theoretic perspective to analyze an intra-unit
scheduling problem in hospitals [20–22]. In their work, patients and hospital resources
(e.g., physicians, medical devices) are represented by self-interested software agents
who coordinate with each other to resolve each individual’s goal conflicts. Multiple
competing market participants on both sides of the market, however, are not considered
in their work.

3 Multi-attribute Double Auction Protocol

This section introduces the protocol used by the multiagent system for allocating
caregiving resources among participating agents. We start by laying out the overall
software architecture of the decision support system, followed by an analysis of the
Dementia-specific requirements to the allocation of caregiving resources. Then, we
present the formal model of the underlying double auction and describe the high-level
communication protocol of the multiagent system.

3.1 Software Architecture

The overall software architecture of the multiagent system implementation is presented
in Fig. 2. Dementia patients and caregiving professionals interact via individualized
portals accessible through an Internet browser or a mobile application. External
interfaces allow for communication and interaction with the actual multiagent sub-
system which constitutes the core of the prototype implementation. Within the multi-
agent subsystem, each actor (i.e., patients and caregivers) is represented as a software
agent in the proposed approach. These agents are able to perform autonomous actions
in order to pursue its individual objectives [17].

Fig. 2. Software architecture of the multiagent system implementation.

Agent-Based Decision Support for Allocating Caregiving Resources 237

The multiagent subsystem enables individual agents to communicate and negotiate
with each other through an agent communication language. A standard language for
agent communication is the Contract Net protocol which is a high-level protocol for
achieving efficient cooperation through task sharing in networks of communicating
problem solvers [17].

The proposed communication and interaction scheme consists of two distinct pha-
ses. In the first phase, the formation phase, patient agents and caregiving agents
exchange data that is necessary for the allocation process. Due to the high sensibility of
health-related patient data, the formation phase is characterized by distributed, privacy-
aware knowledge sharing among the agents. Schuele et al. have identified software
design considerations that enable shared decision making in patient-health professional
relationships within the scope of a decision support system in eHealth [9]. This concept
is applied to the current proposal to enable privacy-aware patient-caregiver interaction.

In the second phase, the allocation phase, the agents use the data exchanged in the
first phase to perform the actual caregiving resource allocation. The protocol imple-
mentation internalizes an auction-based allocation approach for the optimal distribution
of caregiving resources among the agents. Optimality in this mechanism design
approach refers to maximizing the utilitarian social welfare, which is a common per-
formance measure in multiagent resource allocation [5]. Due to the double-sided nature
of the problem (patients and caregivers), the concept of a double auction [18] is applied
to guarantee the best possible outcome of the resource allocation. In a double auction,
both sides of the market submit bids to an auctioneer which then dictates the optimal
allocation of caregiving resources and determines the appropriate market-clearing
price.

The multiagent subsystem exposes interfaces to the data integration engine. The
data integration engine is a semantic-based knowledge management system that inte-
grates heterogeneous knowledge sources and provides access to these sources through
semantic reasoning processes. For example, this component is capable of representing
knowledge contained in a personal health record of a patient. Similarly, a professional
caregiver’s availability calendar can be accessed via the data integration engine.

In the following, we focus on the domain-specific requirements of the allocation
phase within the multiagent subsystem implementation.

3.2 Dementia-Specific Requirements

Caregiving resources and services require specific attributes that must be considered to
meet the needs in the Dementia scenario. These requirements are listed in the
following.

Caregiving Service and Required Time. The care for Dementia patients can be
divided into individual services. Each service requires a specified time to be completed
by the caregiving professional. Table 1 gives an overview of selected services with the
average time required for completion of the task.

238 T. Widmer and M. Premm

Service Quality. A patient must be able to specify a particular service quality when
requesting for a caregiving service. Examples of quality attributes include the com-
petency level of caregiving professional as well as the popularity level of caregiving
professional that is implemented by a rating system. In the following, we focus on the
competency level of caregiving professionals.

Patient Day Care. The daily routine of a Dementia patient is divided into five time
slots in which caring tasks should be completed. Each time slot has a duration of two
hours for a task to be completed. Tasks can be shorter than two hours, but cannot
exceed it. Figure 3 illustrates the individual time slots of the daily routine of a
Dementia patient (left hand side) and an example setting for possible caregiving ser-
vices during these time slots (right hand side).

Table 1. Caregiving services (tasks) and required time for patient care.

Fig. 3. Time slots of a patient day routine (left hand side) and an example setting for possible
caregiving services during these time slots (right hand side).

Agent-Based Decision Support for Allocating Caregiving Resources 239

Caregiving Availability. Different professional caregivers from mobile nursing ser-
vices are typically available at different times for different durations. Within the five
time slots described above, caregivers may specify several durations in which they are
available. An example of a caregiver’s availability is illustrated in Fig. 4.

Priority Services. A service which is requested by a patient receives a priority attri-
bute. For example, the services “assistance at meals” and “complete personal hygiene”
receive a high priority, while “activation (walking etc.)” obtains a lower priority. In this
way the services can be provided depending on the priority.

Valuation of Patients and Cost of Caregivers. When specifying its demand, the
patient agent expresses its valuation for the requested service. Similarly, the caregiving
professional agent specifies its cost to provide the requested service to a patient agent.
Valuation and cost can be seen as bids in an auction and are represented by monetary
units. The underlying auction mechanism is then responsible for finding the best match
between patient and caregiving professional.

3.3 Auction Model

The agents’ participation in the auction requires service requests and bids. Requests are
submitted by patient agents and include the requirements specified in the previous
section and must be considered in the underlying allocation process. Requests of
patient agents and offers by caregivers are assumed to be standardized so that they can
be matched together. In this work it is assumed that the number of requests and offers is
large enough to ensure appropriate matches. For instance, caregiving networks such as
the German organization “Pflegenetz Heilbronn” [19] manage an increasing number of
patients and caregivers (e.g., individuals and caregiving institutions). Such organiza-
tions guarantee that the market on both sides is large enough.

Request. Let i denote the index of a patient. Then each patient agent’s request is given
by the tuple

Fig. 4. Time slots of a caregiver’s availability requirements during a full day.

240 T. Widmer and M. Premm

Ri ¼ ðr1; r2; . . .; rkÞ; ð1Þ

where each individual request rk for k 2 1; . . .;Kf g is given by

rk ¼ s; q; t; p; vð Þ: ð2Þ

In the tuple rk, the quantity s denotes the required service including the average time
required to fulfill the task, q is the requested service quality (i.e., the requested com-
petency level), t is the time slot in which the service is needed, p is the priority of the
service, and v is the valuation the patient agent assigns to the requested service. In this
notation, parameter s contains the service description as well as the average time
needed to complete the service (see Table 1). The valuation of a patient may corre-
spond to a certain caregiving level assigned by the patient’s health insurance.
Depending on a patient’s health condition, an insurance will be willing to reimburse a
certain amount of money for a caregiving service. Hence, the valuation of a patient may
depend on the severity of her health condition. An example request of patient agent
i = 1 may be

r1 ¼ “dentalhygiene”; “medium”; “earlymorning”; “high” “20”ð Þ; ð3Þ

r2 ¼ “roomcleaning”; “medium”; “latemorning”; “low”; “15”ð Þ ð4Þ

R1 ¼ r1; r2ð Þ; ð5Þ

Patient agent i = 1 therefore requests for two services in two different time slots. First,
the service “dental hygiene” at service quality “medium” within the predefined time
slot “early morning” at a high priority. The valuation the patient agent assigns to this
multi-attribute service request in this example is given by the monetary unit “20”.
Second, the patient agent requests for the service “room cleaning” with similar attri-
butes. In this way, patients have the ability to plan out a full caregiving day routine.

Offer. Let j denote the index of a caregiver agent in the system. Each caregiving
agent’s offer is given by the tuple

Oj ¼ o1; o2; . . .; oLð Þ; ð6Þ

where each individual offer ol for l 2 1; . . .; Lf g is given by

ol ¼ q; t; d; cð Þ ð7Þ

In the tuple ol, the quantity q denotes the service quality (i.e., the competency level),
t is the time slot in which the caregiver is available for d minutes (the duration for
which the caregiver is available in this particular time slot), and c is the cost accruing to
the caregiver agent for completing the requested service. An example offer may be

Agent-Based Decision Support for Allocating Caregiving Resources 241

o1 ¼ “medium”; “early morning”; “15minutes”; “18”ð Þ ð8Þ

o2 ¼ “high”; “late morning”; “10minutes”; “20”ð Þ ð9Þ

O1 ¼ ðo1; o2Þ: ð10Þ

Caregiving agent j = 1 therefore offers two distinct availability bids to provide any
service (notice that a caregiver is not bound to a specific service). First, the caregiver is
available within the predefined time slot “early morning” for a duration of 15 min
within this time slot. The cost accruing to the caregiving agent to provide this
multi-attribute service is given by the monetary unit “18”. Similar attributes are given
for the second offer. Collusion formation among caregiving agents is out of scope in
this work.

Auctioneer. Let the number of patient agents in the system be I 2 N and the number
of caregiving agents be J 2 N. The auctioneer agent collects all patient requests
R1;R2; . . .;RIf g and caregiver offers O1;O2; . . .;OIf g from all agents, sorts these bids

into time slot and duration categories, and determines the optimal allocation of care-
giving resources to patients by considering the required attributes. For calculating the
optimal allocation within one category, the auctioneer agent employs the concept of a
double auction. This process is described in the following section in detail.

3.4 Auction Protocol

The auction protocol for allocation caregiving resources among the agents involves two
phases. In the first phase, the auctioneer agent sorts all received requests and offers into
appropriate categories for one whole day. Tasks of high priority are assigned imme-
diately before the actual action begins in order to ensure that these tasks are always
executed. Further, a category contains services of the same quality as well as the same
time slot and duration. In the second phase, the auctioneer performs a double auction
within each category and determines the optimal match between caregiver and patient
for that day. The auction protocol comprises the following steps:

• All patient agents submit their requests R1;R2; . . .;RIf g to the auctioneer agent,
each of which specifies a full day routine of necessary services.

• All caregiving agents submit their offers O1;O2; . . .;OIf g to the auctioneer agent,
each of which specifies a full day routine of offered services.

• The auctioneer agent sorts all requests and offers by matching the specified attri-
butes together. In particular, requested time slots by patients are matched to the
offered time slots by caregivers for one whole caregiving day. At this point all
requests and offers are sorted into distinct categories.

• For each category, the auctioneer agent performs a double auction by taking the
valuations and costs into account. In particular, the double auction performs the
following. Given a total of n requests with valuations v1; v2; . . .; vIf g within a
category, sort the valuations in descending order such that

242 T. Widmer and M. Premm

v1 � v2 � . . .� vn ð11Þ

Further, given a total number of m offers with costs c1; c2; . . .; cmf g within a
category, sort these costs in ascending order such that

c1 � c2 � . . .� cm: ð12Þ

Next, the auctioneer ranks both sequences against each other and matches the highest
valuation with the lowest cost, the second highest valuation with the second lowest
cost, and so on, as long as the valuation is strictly greater than the cost. The remaining
services that cannot be matched in the current round of the auction are postponed to the
next round if their assigned priority is low. High priority tasks will always be executed
and are not subject to the postponing process. Then, the auctioneer determines the
market-clearing price for each category via

price ¼ vk þ ck
2

; ð13Þ

where k is the largest index such that vk � ck . This market-clearing price is calculated
once per category. For subsequent categories a new price is determined which is
independent of the price of the previous category.

• The protocol is repeated until one full day for each patient’s care is allocated.

Hence, this communication protocol captures three distinct features. In a first step,
matching time slots and matching service durations are grouped together. In the second
step, within each group a double auction is performed and caregiving resources are
allocated to patients. In the final step, all remaining requests and offers are moved to the
next protocol iteration to be considered in the subsequent double auction for the next
day. Therefore, this iterated protocol allocates all caregiving resources for the current
full day and moves the unmatched service requests and offers to the next day. In this
way, no service request is ignored and high priority tasks are completed immediately.

4 Evaluation

We present a scenario-based evaluation [6] that applies the auction-based caregiving
resources approach within the scope of a software prototype implementation. Apart
from an initial proof-of-concept, we provide an early version of the implementation.
We first describe the scenario setup and then discuss the findings.

4.1 Description

The scenario includes a set of Dementia patients who request for caregiving services
from a set of caregivers. Through the respective portals, both patients and caregivers
submit their bids to the auctioneer. Figure 5 illustrates an example for an auction
market with two caregivers and two patients, each bidding their offers respectively
requests to the auctioneer.

Agent-Based Decision Support for Allocating Caregiving Resources 243

As specified by the interaction protocol of the multiagent system, all bids are sorted
with respect to the submitted attributes. For example, all bids for resources requested
for the “late morning” shift including the appropriate duration for service completion
are grouped together. Second, the concept of a double auction is applied to allocate the
caregiving resources in an optimal way.

The agent-based prototype implementation exposes a set of graphical user inter-
faces (GUI) that can be used by the individual portals of the system. Once a patient
agent submitted all bids requesting for caregiving resources for a full-day routine, these
bids are visible via the GUI of the patient portal as shown in Fig. 6. Notice that the
column “Caregiver” is empty in this stage as the auction has not been launched yet.
Therefore, the status of the allocation is set to PROPOSED in the “Status” column of
the submitted bid list. The column “Bid/Price” contains the submitted valuation of the
patient agent to receive the respective service. Once the allocation protocol terminates,
this column contains the calculated market-clearing price which the patient agents pays
the allocated caregiver for service provisioning.

Similarly, a caregiver agent submits its bids for a full day specifying the availability
of the caregiving professional. The bids submitted by a caregiving professional are
collected and displayed via the GUI of the caregiving portal as shown in Fig. 7. Here,
the column “Patient” is empty because no resource has been allocated at this point in
time. Similar to above, the “Status” column is set to PROPOSED. Again, the column
“Bid/Price” contains the submitted costs that accrue to the caregiving agent to provide

Fig. 5. An auction market with two caregivers and two patients.

Fig. 6. GUI of patient portal displaying the submitted bids.

244 T. Widmer and M. Premm

a service. Upon termination of the auction, this column contains the calculated
market-clearing price which the caregiving agents receives from the patient receiving
the service.

Once all bids are submitted by all patients and caregivers, the auctioneer agent
collects all these bids and starts the auction. The GUI of the auctioneer is presented in
Fig. 8. The upper part of the GUI shows a list of caregiving offers that could not be
matched to any patient request on that particular day. Reasons for unmatched requests
and offers include too high costs of caregivers or low valuations of patients.

The lower part of the GUI is the result page of successful matches. It displays a list
of patient requests that has been moved to the next day. Since “room cleaning” has a
rather low priority, it is moved to the next day’s allocation process where it will be
auctioned off automatically.

Figure 9 shows the GUI of the auctioneer portal containing a list of all successful
allocations for the current day. In particular, it shows the market-clearing price that was
calculated by the double auction (“Price” column).

Fig. 7. GUI of caregiving portal displaying the submitted bids.

Fig. 8. GUI of auctioneer portal displaying the failed matches (above) and the patient requests
moved to the next day (below).

Agent-Based Decision Support for Allocating Caregiving Resources 245

4.2 Discussion

With the proposed approach we provide an agent-based prototype implementation that
enables caregiving resource allocation in a shared patient-caregiver context considering
multiple Dementia-specific service attributes. The usability of the system is a very
important issue in order to not fail because of low technology acceptance of the users.
The multiagent system paradigm enables users to delegate their individual objectives to
an autonomous software agent while preserving privacy-related requirements with
regards to sensitive patient health data.

We aim to achieve the following benefits for the different participants. Caregivers
of Dementia patients are often family members of that patient undergoing severe
caregiving burdens depending on the stage of the disease. Hence, our approach pro-
vides an IT-based decision support system providing individual support for handling
the patient’s care. Family caregivers can specify the individualized needs of the
Dementia patient via an easy-to-use portal and thus obtain customized support from
professional caregivers working for mobile nursing services. Due to the high compe-
tition involving many patients and caregivers, the auction-based allocation process
guarantees an affordable market price for the caregiving service. Therefore, the pro-
posed software system can finally reduce the caregivers’ burdens and improve their
quality of life. At the same time, costs can be managed more efficiently allowing for a
more flexible caregiving service model.

Professional caregivers have the opportunity to plan their caregiving day routine in
a more efficient way. Mobile nursing services can submit service offers that cover all
times of the day and consider the specific competency levels of their employees. The
underlying auction-based allocation process allows for a more flexible payment scheme
that can be applied to the employees of the nursing service. At the same time, the daily
time management of professional caregiving personnel can be improved by allowing
for a flexible bidding language incorporating multiple service attributes. Hence, the full
time and service schedule of multiple competing mobile services is determined by a
double auction process that guarantees optimal caregiving allocations as well as market
usual prices.

The allocation outcome achieved by a double auction has a number of desirable
economic properties [18] which are listed briefly in the following. First, the resulting
allocation maximizes the social welfare. Second, all agents are sure to be better off in
terms of utility after they participated in the auction. Third, no third party must sub-
sidize the auctioneer, i.e., the auction is able to finance itself. At last, for a growing
number of agents, the allocation process is incentive compatible for all participating
agents.

Fig. 9. GUI of auctioneer portal displaying the results of the successful resource allocation.

246 T. Widmer and M. Premm

5 Conclusion

This work presents an agent-based decision support system for modelling caregiving
resource allocation in a Dementia scenario and proposes a communication protocol that
implements a double auction considering multiple attributes specific to the Dementia use
case. Patients and professional caregivers are represented as software agents that
autonomously negotiate service provisioning based on a set of different Dementia-
related service attributes. We evaluate this protocol in a scenario-based evaluation in
which multiple patients and caregivers submit bids to the auctioneer agent. Within the
scope of the evaluation, we present an initial prototype implementation of the proposed
multiagent system that exposes a set of graphical user interfaces for each actor. The
current protocol implementation is limited to two specific agent types, namely patient
agents and caregiving agents. Furthermore, collusion formation among caregiving
agents is not considered in this work. The formation of cartels or bidding rings among
the agents potentially entails severe efficiency losses in terms of the auction’s economic
properties [24]. However, the protocol developed by [25] as a special case of general
collusion in double auctions maintains a set of these crucial properties even if bidders
can submit false-name bids. In our future work, we plan to extend the current decision
support system to include further types of agents such as physician agents and facility
agents, each of which having their domain-specific service attributes.

Acknowledgement. This work has been supported by the eHealthMonitor project (http://www.
ehealthmonitor.eu) and has been partly funded by the European Commission under contract
FP7-287509.

References

1. Alzheimer’s Disease International: The World Alzheimer Report 2010. www.alz.co.uk
(2010). Accessed 21 August 2014

2. Etters, L., Goodall, D., Harrison, B.E.: Caregiver burden among dementia patient caregivers:
A review of the literature. J. Am. Acad. Nurse Pract. 20, 423–428 (2008)

3. Corachado, J.M., Bajo, J., de Paz, Y., Tapia, D.I.: Intelligent environment for monitoring
Alzheimer patients, agent technology for health care. Decis. Support Syst. 44(2), 382–396
(2008)

4. Hess, M., Meis, J.: Entwurf ausgewählter Spracherweiterungen zur Ressourcenmodellierung
in Pflegedienstleistungsmodellen. In: Wirtschaftsinformatik Proceedings 2011, paper 109
(2011)

5. Chevaleyre, Y., Dunne, P.E., Endriss, U., Lang, J., Lemaitre, M., Maudet, N., Padget, J.,
Phelps, S., Rodriguez-Aguilar, J.A., Sousa, P.: Issues in multiagent resource allocation.
Informatica 30, 3–31 (2006)

6. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information Systems
Research. MIS Q. 28(1), 75–105 (2004)

7. Brennan, P.F., Moore, S.M., Smyth, K.A.: Computerlink: electronic support for the home
caregiver. Adv. Nurs. Sci. 13(4), 14–27 (1991)

8. Brennan, P.F., Moore, S.M., Smyth, K.A.: The effects of a special computer network on
caregivers of persons with alzheimer’s disease. Nurs. Res. 44(3), 166–172 (1995)

Agent-Based Decision Support for Allocating Caregiving Resources 247

http://www.ehealthmonitor.eu
http://www.ehealthmonitor.eu
http://www.alz.co.uk

9. Schuele, M., Widmer, T., Premm, M., Criegee-Rieck, M., Wickramasinghe, N.: Improving
knowledge provision for shared decision making in patient-physician relationships– a
multiagent organizational approach. In: Proceedings of the 47th Annual Hawaii International
Conference on System Science (HICCS), pp. 646–655 (2014)

10. Lanzarone, E., Matta, A.: Robust nurse-to-patient assignment in home care services to
minimize overtimes under continuity of care. Oper. Res. Health Care 3, 48–58 (2014)

11. Aktas, E., Ülengin, F., Sahin, S.Ö.: A decision support system to improve the efficiency of
resource allocation in healthcare management. Socio-Econ. Plann. Sci. 41, 130–146 (2007)

12. Couch, K.A., Daly, M.C., Wolf, D.A.: Time? money? both? the allocation of resources to
older parents. Demography 36(2), 219–232 (1999)

13. Pezzin, L.E., Schone, B.S.: Intergenerational household formation, female labor supply and
informal caregiving– a bargaining approach. J. Hum. Resour. 34(3), 475–503 (1995)

14. Hirdes, J.P., Poss, J.W., Curtin-Telegdi, N.: The method for assigning priority levels
(MAPLe): a new decision-support system for allocating home care resources. BMC Med. 6
(9) (2008)

15. Bichler, M.: An experimental analysis of multi-attribute auctions. Decis. Support Syst. 29,
249–268 (2000)

16. Das, R., Hanson, J.E., Kephart, J.O., Tesauro, G.: Agent-human interactions in the
continuous double auction. In: Proceedings of the International Joint Conferences on
Artificial Intelligence (IJCAI), pp. 1169–1176 (2004)

17. Wooldridge, M.: An Introduction to MultiAgent Systems, 2nd edn. Wiley, Chichester
(2009)

18. Wilson, R.: Incentive efficiency of double auctions. Econometrica 53, 1101–1115 (1985)
19. Pflegenetz Heilbronn e.V. http://www.pflegenetz-heilbronn.de. Accessed 26 June 2015
20. Paulussen, T.O., Zöller, A., Rothlauf, F., Heinzl, A., Braubach, L., Pokahr, A., et al.:

Agent-based patient scheduling in hospitals. In: Kirn, S., Herzog, O., Lockemann, P.,
Spaniol, O. (eds.) Multiagent Engineering - Theory and Applications in Enterprises,
pp. 255–275. Springer, Berlin (2006)

21. Paulussen, T., Jennings, N.R., Decker, K.S., Heinzl, A.: Distributed patient scheduling in
hospitals. In: Proceedings of the Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI 2003). Morgan Kaufmann (2003)

22. Paulussen, T., Pokahr, A., Braubach, L., Zöller, A., Lamersdorf, W., Heinzl, A.: Dynamic
patient scheduling in hospitals. In: Mulitkonferenz Wirtschaftsinformatik, Agent
Technology in Business Applications, Essen (2004)

23. Tan, J., Wen, H.J., Awad, N.: Health care and services delivery systems as complex adaptive
systems. Commun. ACM 48(5), 36–44 (2005)

24. McAfee, R.P., McMillan, J.: Bidding rings. Am. Econ. Rev. 82(3), 579–599 (1992)
25. Yokoo, M., Sakurai, Y., Matsubara, S.: Robust double auction protocol against false-name

bids. Decis. Support Syst. 39(2), 214–252 (2005)

248 T. Widmer and M. Premm

http://www.pflegenetz-heilbronn.de

A Comparison of Agent-Based Coordination
Architecture Variants for Automotive Product

Change Management

Janek Bender, Stefan Kehl(B), and Jörg P. Müller

Department of Informatics, Clausthal University of Technology,
Clausthal-zellerfeld, Germany

{janek.bender,stefan.kehl,joerg.mueller}@tu-clausthal.de

Abstract. Automotive companies tend to apply modular approaches
in their product development processes in order to save costs and meet
increasingly diversified customer demands. In largely decentralized envi-
ronments with cross-branded development projects over multiple depart-
ments in different sites this modular approach leads to very complex and
large data structures. Maintaining consistency and transparency, as well
as coordinating information flows in such an environment is a major task
which is often accomplished manually. Based on a real world case study,
this paper analyzes a key development process: the connection of geomet-
ric (geometries) and logistical data (parts). During this time consuming
process information carriers (geometries and parts) with independent
lifecycles that are maintained by different stakeholders (designer and
purchaser) of different departments (and in this scenario even within
multiple brands) are linked as these carriers themselves are mutually
dependent. This paper then proceeds to model five agent-based architec-
ture variants to support this process. In addition, an algorithm to map
geometric and logistical data which aims to relieve the actors involved
(regarding the organizational overhead) is outlined.The paper concludes
with a comparison of the different agent architecture variants and empha-
sizes the most promising variants to partly automate the connection of
geometric and logistical data.

1 Introduction

Rising competitive pressure in the automotive industry forces manufacturers into
extensive cost saving measures. International markets constantly demand more
variety in shorter time periods. While in the 1990 s the product portfolio of most
car manufactures covered about eight different models, today’s industry offers a
steadily increasing amount of different products (e.g. the portfolio of the Audi
Group covers about 50 different products) in various configurations in order to
meet as many customer demands as possible [13,14]. This way of manufacturing
cars specifically suited to customer needs in mass production is known as mass
customization [11]. In order to achieve customized products at a cost level near
mass production some manufacturers pursue approaches to increase the degree of

c© Springer International Publishing Switzerland 2015
J.P. Müller et al. (Eds.): MATES 2015, LNAI 9433, pp. 249–267, 2015.
DOI: 10.1007/978-3-319-27343-3 14

250 J. Bender et al.

commonality. One approach to achieve this goal is the modularization of products
so that components are combined into interchangeable modules [2,5]. Ideally, a
complete product can be configured using the modular design principle. However,
this approach is not entirely applicable for complex products (such as vehicles),
because of the large amount of connections between those modules which have
to be considered [10]. Changes of such components may have a major impact on
other components [3]. Furthermore, a modularization beyond an optimum range
would lead to higher product costs [1].

In addition to the need for mass customization, international corporations often
operate in a decentralized fashion, with several brands, different business units,
and multiple departments and teams, all in geographically dispersed locations.
Thus, efficient communication and coordination between sites is mandatory [12].

This work is based on three real world use cases derived from case studies at
a major automotive OEM. Based on these use cases, Sect. 2 highlights certain
problems in the current development process of connecting geometric and logis-
tical data sets from different entities in a decentralized environment. Following
the Virtual Product Model (VPM) proposed by Kehl et al. in [6] five architecture
variants for an agent-based approach to automate this key development process
are modeled in Sect. 3. Section 4 discusses the pros and cons of these architec-
ture variants as well as their applicability to fulfill the requirements defined in
Sect. 3. Section 5 compares the architecture variants; Sect. 6 concludes this paper
and gives an outlook on future work.

2 Background

In previous work [6], we performed an analysis of challenges in managing devel-
opment processes of complex products in the automotive industry. We proposed
the concept of a Virtual Product Model (VPM) to manage such complex and
cross-branded development processes. In practice a product data is organized
in different hierarchical and static structures [4]. Each of these manually main-
tained structures represents a domain specific view on the product (e.g. a Bill of
Material (BOM) for purchasers or an Engineering BOM for designers) which are
linked to or transformed into one another [16]. In contrast, the VPM described
in [6] offers a more flexible and component-based view on a product, because
each domain specific structure is considered as a view on the overall product
which is built dynamically, based on the information it carries and the connec-
tions between them (VPM-C). The concept of a VPM aims to fulfill three crucial
requirements in a product development process:

Reusability. One VPM-C can be assigned to multiple products, yet there is an
element that holds context-specific information.

Patency. From the early stages to the end of a product’s development the
information flow should not be interrupted. Data has to be kept consistent
between all involved entities.

Transparency. It is mandatory to establish traceability of changes on com-
ponents and connections between them throughout the entire development
process.

A Comparison of Agent-Based Coordination Architecture Variants 251

Each Virtual Component (VPM-C). can be divided into four elements:

Part. A part represents a logistical data set describing a real world vehicle
part. It contains information such as the supplier, color, count or material.
In practice parts are organized in a BOM.

Geometry. A geometry is a 3D-CAD file which holds data such as the size, shape,
or position of a part. Furthermore, a part may be realized by a geometry.

Feature. A feature may be a technical description or a certain functionality of
the component.

Process. The production process(es) the component is assigned to. This element
might contain information about different production sites.

This paper builds on the VPM concept, yet some of its elements are rendered
out of scope for the problem at hand. The elements considered in this paper are
parts and geometries. Also, contrary to the original VPM proposal this work
limits itself (for the sake of clarity) to only two different roles involved in the
mentioned use cases:

Engineer. The engineer constructs and combines vehicle parts by using CAD
software. His work is based on geometries (3D-CAD files), containing infor-
mation like size, shape, or position of a component.

Purchaser. The counterpart in logistics is the purchaser whose main respon-
sibilities are the procurement of parts and materials and managing supply
chains. He views product models from a logistic perspective and works based
on parts (logistical data sets) containing information such as the supplier,
color, count, material, among others.

2.1 Use Cases

As part of this work, three use cases, totaling six distinct workflows, have been
derived from case studies from the automotive industry. These use cases show
the underlying problem this paper aims to tackle and are used to conceptualize
possible solutions. An overview about the three major use cases is given below.

Use Case 1: New Construction of a VPM-C. A new component is devel-
oped based on a given specification. First, the engineer designs the new
geometry with his CAD software. He will then proceed to position the newly
constructed geometry within a 3D environment, relative to other previously
constructed geometries. Lastly, the engineer assigns the geometry to one or
multiple vehicle contexts.

Use Case 2: Reuse of a VPM-C. An existing geometry is assigned to a new
context. It may have to be re-positioned within the 3D environment in order
to fit the new context.

Use Case 3: Further Development of a VPM-C. Contrary to use case 1,
an existing geometry is developed further within its context and may have
to be re-positioned within the 3D environment.

In each of the above use cases, geometric data must be connected with logistical
data. Steps to achieve this connection might vary depending on the use case.

252 J. Bender et al.

2.2 An Exemplary Workflow of a New Construction

To illustrate the problem and the solution statement a small example shall be
given at this point. Assuming that a new vehicle generation should receive a
door hinge constructed from scratch, the engineer would first have to design a
3D geometry using a CAD software. He would then position the new geometry
in relation to close-by components, like the door frame, wiring, or the window
lift, making sure the new geometry does not cut other geometries within the 3D
space. The engineer would thereafter proceed to assign the new geometry to the
respective vehicle context of the new vehicle generation. After the engineering
is completed the data is sent to the purchaser who requests a new distinct part
number. Using the part number, the purchaser will create a new branch within
the Bill of Material (BOM) data structure. Finally, the geometric data and the
logistical data are connected within the data structure. In the following, the
establishment of this connection is referred to as Part-Geometry-Mapping.

The first problem in the previously described process is the decentralized
generation and administration of data in multiple brands and departments. This
data must be kept consistent throughout all entities involved in the vehicle con-
struction process. Furthermore, there is little transparency on which parts belong
to which geometries and vice versa. The same geometry might realize multiple
parts in different vehicles and different markets. Especially when a certain part
in one vehicle has shown so far unforseen problems after the product launch, it
becomes crucial to quickly identify all other vehicles using this very part. Right
now, it is only possible to achieve the needed transparency by devoting a lot of
manual efforts to the cause. Also, by connecting and maintaining logistical and
geometric data within the same data structure the used BOMs exceed a healthy
size and develop redundancies at some point. Both engineers and purchasers
find themselves confronted with data irrelevant to their own tasks. For instance,
engineers need geometries to do their work while purchasers rely on logistical
data, yet it is stored in the very same structure.

3 An Agent-Based Approach to Part-Geometry-Mapping

The problems shown in the example above arise from largely decentralized
processes. Information is created and maintained in different brands with mul-
tiple departments and teams at geographically dispersed locations. Managing
changes on VPM-Cs and maintaining consistency throughout all involved parties
is a major task. However, there is no single entity overseeing the whole devel-
opment and all its changes. Furthermore (as described in Sect. 2.2), in practice,
the Part-Geometry-Mapping is a manual process. Due to the decentralized prob-
lem and the distributed stakeholders (purchasers and designers from different
brands), an agent-based solution is proposed in this paper, as mentioned in our
previous work [6]. The basic idea builds on so called active components represent-
ing certain entities in the process. An active component is controlled by an agent
which is considered “a software system that is situated in some environment, and
that is capable of autonomous action in this environment in order to meet its

A Comparison of Agent-Based Coordination Architecture Variants 253

delegated objectives” [8]. Furthermore, Wagner [15] has already deployed an
agent-based approach into a similar environment with success. In order to inves-
tigate whether an agent-based approach is feasible and offers real advantages
over the manual mapping of parts and geometries, five possible agent architec-
ture variants have been developed. These architecture variants model structural
and behavioral aspects of active components and may be realized through real
software agents in future research. This section is structured as follows: Sect. 3.1
describes the underlying problem in detail and in the Sects. 3.2 to 3.6 the five
architecture variants are illustrated.

3.1 Part-Geometry-Mapping

Before discussing the different agent architecture variants in detail, the under-
standing of the elements and their relations should be clarified. Figure 1 gives
an overview.

Part

Geometry

Context

used in

used in

realized
by

(1,n)

(1,1)

(1,1)

(1,n)

Context-Specific
Information

Context-Specific
Information

(1,1)

(1,n)
legend

A entity

relation..

(min,max)
cardinality in
MIN-MAX-notation

Fig. 1. Elements of the mapping process

As already mentioned parts are realized by geometries. A part or geometry
can be used in several contexts (platforms or vehicles). The usage of a part
or geometry comes with certain context-specific information, for example the
position of a geometry in a specific context.

Thus the main requirements are:

• Contribute to establishing transparency and traceability of changes in order
to be able to quickly answer the two questions:

1. Which revisions of a given component are used in which platforms, or
vehicles?

2. Which components in which revisions are used in a given context?
• By (partially) automating the part-geometry-mapping in order to get a hold of

the complex and decentralized information generation and maintenance. Make
key information available where it is needed and keep it consistent throughout
all involved entities.

254 J. Bender et al.

To simplify the modeling of possible solutions both geometries and parts are
abstracted into the generic term component. The necessary properties of the
component are described below:

• Parts and geometries are elements of a VPM-C as they are both offering
different views on the same real world counterpart.

• Over the iterative course of development a component forms multiple revi-
sions. Each change on the component causes a new revision which can be
assigned to a context (vehicle or platform). As an example, revision #1 might
be a development build only used as placeholder or prototype during the devel-
opment. Revision #2, a fully developed version of the component, goes into
production and is thereby part of the manufactured vehicle. Now the vehicle
series receives a facelift and the component needs to be adapted leading to
revision #3.

• Since multiple revisions of a component may be assigned to the same context
(in the above case revisions #1 and #2), each revision has a validity property
and is only used within a specified start and end date.

• A component can offer a certain function. For instance, a rim allows someone
to attach tires to a car which then are part of the feature “driving”.

• Based on an idea by Wagner in [15], the participating roles can define rules for
components. These are either configuration rules describing certain restrictions
of the component itself or connection rules which regulate the relations to
other components.

• A component belongs to a pre-defined category.
• A component is from a specified side. The side property allows for the division

of components and identification of possible counterparts of a component from
another side. In extension, the category property allows someone to draw con-
nections between two components from different sides. Thus, both properties
are mandatory and play a vital role in the mapping process.

For example, a new rim is developed from scratch. The component of the geom-
etry is on side 0 and the matching component of the part information on side 1.
However, both belong to the same category “Wheels”. There is no mapping
between these two thus far, but this information alone is sufficient to specify
that these two components are possible counterparts for each other. Figure 2
illustrates the component term.

In the following, the five proposed architecture variants for an agent-based
approach are discussed.

3.2 Architecture Variant I - Dedicated Element Agents

This architecture variant covers the most basic and intuitive approach in model-
ing a MAS capable of autonomously conducting part-geometry-mappings within
given contexts, or even more abstract: component-mappings. Figure 3 shows
an overview of proposed agent classes, marked by boxes. “Dedicated Element
Agents” refers to the fact that each element involved in the process (namely

A Comparison of Agent-Based Coordination Architecture Variants 255

Component

Geometry Part

• Category: „Wheels“
• Function (Opt): „Driving“
• (Head)Revision: 1234
• Configuration Rules (Opt): „Component must not

exceed 30x30x30mm!“
• Connection Rules (Opt): „Mapped Component(s)

must be made of Aluminum!“
• Side: 0 (Geometry)
• Validity: 01.01.2015 – 02.03.2016

generalization

Fig. 2. The component

Component Agents Usage Agents Context Agent

UsageComponent A

UsageComponent B

1 n n

1

1

n1 n

Context/
Vehicle/
Platform

Fig. 3. Architecture Variant I - Dedicated Element Agents

geometries, parts, their respective usages / revisions, and contexts) is repre-
sented by a single agent with specified tasks and goals.

Three basic agent classes are explained below. It should be noted that both
geometries and parts are considered components and thus be represented by a
Component Agent.

Component Agent. The Component Agent represents a component within the
system. It initializes once a component is first created and destroys when the
underlying component is disabled. Its main purpose is to maintain static informa-
tion about the component such as category or ID. Furthermore the Component
Agent knows all revisions of a component and retains data about its different
usages. A Component Agent will remain passive most of the time, monitoring
the engineers’ actions within the CAD-Program and tracking changes on the
component.

Figure 4 shows a behavioral view of the Component Agent. Upon initial-
ization a new Component Agent receives parameterized information regarding
category, component, function, rules, and side. It will then idle in its main loop
until either the underlying component is disabled, which results in the destruc-
tion of the Component Agent, or it receives new information. The latter happens
if another agent sends new information to the Component Agent or the engineer

256 J. Bender et al.

performs changes on the underlying component. If a current revision is assigned
to a new context, the Component Agent will trigger the creation of a Usage Agent
with the parameters category, context, function, revision, rules, side, and valid-
ity. Once the Component Agent registers a changed position of the underlying
component, it will send the new position to the respective Usage Agent.

start
usage
agent

new context?

initialize

wait

component disabled?

y
n

y

n

legend

action

decision

start

end

control flow

Fig. 4. Component agent behavioral view

Usage Agent. The Usage Agent represents the revision of a component in a
specific context. It initializes once a revision of a component has been assigned
to a new context. The initialization is triggered by a Component Agent. Passed
parameters are category, context, function, revision, rules, side, and validity.
A Usage Agent’s main task is to map his own component on another component
within the context. It therefore actively looks for mappable components of the
same category but different side and contacts them in order to find one or more
matches. A Usage Agent’s component can have multiple mappings and the Usage
Agent is only active as long as its component has zero mappings. After a Usage
Agent has been successfully mapped it will still react to mapping requests of
other agents but discontinue to actively look for mappings. If the component of
the respective Component Agent is being disabled or the given validity of the
revision runs out, the Usage Agent will be destroyed.

Figure 5 shows a behavioral view of the Usage Agent. The mapping process
itself is described in detail in Sect. 4. Upon initialization the Usage Agent receives
the parameters category, context, function, revision, rules, side, and validity. As
part of the initialization the Usage Agent will contact the Context Agent to reg-
ister itself. The Usage Agent remains in its main idle loop until it receives new
information from another agent or becomes active by looking for mappable com-
ponents or responding to incoming mapping requests from other Usage Agents.
If a Usage Agent does not have any mappings yet, its top priority is to find
a matching component from the same category but another side. Therefore, it
contacts the respective Context Agent in order to request a list of mappable com-
ponents based on category and side. It will then iterate through the returned list
and contact each component’s Usage Agent to take on mapping negotiations. If a
negotiation ends with a negative result the respective component is removed from
the list and the Usage Agent will approach the next in line. If the list has been

A Comparison of Agent-Based Coordination Architecture Variants 257

emptied and a successful mapping has not been found, the Usage Agent returns
to idle state and will request a new list in the next cycle. A positive negotiation
ending results in a successful preliminary mapping which is then communicated
to both the respective Context and Component Agents. The Usage Agent will
then return to the idle state and become reactive to incoming mapping requests
and new information.

Fig. 5. Usage agent behavioral view

Context Agent. The Context Agent overlooks a specific context. It holds
data concerning active Usage Agents within the context, assists in the mapping
process and knows all of the successful mappings. Once a new context is being
created the Context Agent initializes with the context parameter. It then remains
in the idle state until it receives new information or requests from other agents.

initialize

wait

register
mapping

register
usage agent

return list

context
disabled?

new usage
agent?

mappable
components
requested?

incoming
mapping
confirmation?

[else]

Fig. 6. Context agent behavioral view

258 J. Bender et al.

The Context Agent’s main tasks are to register new Usage Agents and successful
mappings and to compile and return lists of mappable components to Usage
Agents. With the termination of the context, the Context Agent is destroyed.

Figure 6 shows a behavioral view of the Context Agent. After initialization, it
will remain idle until it receives new information or requests from other agents.
If a Usage Agent requests a list of mappable components, the Context Agent
may run a simple query on its own database.

3.3 Architecture Variant II: Extended Component Agent

This second proposed architecture variant features one agent class less. Instead of
heaving dedicated agents for each element like in Architecture Variant I the Com-
ponent and Usage Agents are merged into one: an Extended Component Agent.
It takes over the duties of both original agents, rendering them obsolete (Fig. 7).

Extended Component Agents Context Agent

UsageComponent A

UsageComponent B

1 n n

1

1

n1 n

Context/
Vehicle/
Platform

Fig. 7. Architecture Variant II - Extended Component Agent

Extended Component Agent. The Extended Component Agent represents a
component and all its usages. It initializes once a component is first created and
destroys when the component is disabled. Its main purpose is to maintain static
information about the component such as category or ID and to conduct the
mappings on other components. Furthermore, the Extended Component Agent
knows all revisions of a component and retains about its different usages. The
Component Agent monitors the Engineers’ actions within the CAD-Program
and tracking changes on the component. It becomes reactive upon incoming
information requests from other agents or when the Engineer assigns a current
revision to a new context. In the latter case, the Component Agent will contact
the respective Context Agent in order to negotiate a component mapping.

Figure 8 shows a behavioral view of the Extended Component Agent. On
initialization, a new Extended Component Agent receives parameterized infor-
mation such as category, component, function, rules, and side. It idles in its main
loop until either the underlying component is disabled which results in destruc-
tion of the Extended Component Agent, another Extended Component Agent
sends a mapping request or it receives new information. The latter happens if
another agent sends new information to the Extended Component Agent or the

A Comparison of Agent-Based Coordination Architecture Variants 259

initialize

wait

component
disabled?

new context?

start
context
specific
thread n

y

n
y

legend

action

decision

start

end

control flow

split / join

Fig. 8. Extended component agent behavioral view

Engineer performs changes on the underlying component. If a current revision
is assigned to a new context, the Extended Component Agent will contact the
Context Agent with the parameters context, revision, validation, and category.
It opens a new thread in its behavior, dedicated to handle all context specific
matters, i.e. the matters that in Architecture Variant I have been covered by the
Usage Agent.

Context Agent. The Context Agent in Architecture Variant II has not changed
compared to Architecture Variant I. Both its tasks and behavior can be modeled
exactly the same way.

3.4 Architecture Variant III: Vertically Extended Usage Agent

Architecture Variant III models the idea of having a vertical approach at the
Usage Agent. Matching components from two different sides may be represented
by a single agent within a specific context. Figure 9 shows an overview of pro-
posed agent classes, marked by boxes.

Component Agents
Vertical Extended

Usage Agent Context Agent

UsageComponent A

UsageComponent B

1 n n

1

1

n1 n

Context/
Vehicle/
Platform

Fig. 9. Architecture variant III - vertically extended usage agent

Component Agent. This agent’s tasks and behavior stay the same, aside
from a small detail as shown in Fig. 10. Instead of triggering the initialization of
a Vertically Extended Usage Agent, the Component Agent notifies the respective

260 J. Bender et al.

initialize

wait

component
disabled?

new context?

notify
context
agent

n

y

y
n

Fig. 10. Component agent behavioral view

Context Agent which will then proceed to ensure the mapping is processed. As
soon as a component within a context has a Vertically Extended Usage Agent
assigned, the respective Component Agents can update the information base of
that Usage Agent.

Vertically Extended Usage Agent. The Vertically Extended Usage Agent
functions similar to the regular Usage Agent known from Architecture Variant I.
However, it will not try to achieve a mapping on its own. Instead, it remains
passive until contacted by the Context Agent. Figure 11 shows the behavior in
detail.

Fig. 11. Vertically extended usage agent behavioral view

Context Agent. The Context Agent in Architecture Variant III assumes a
more active role than in Architecture Variant I and II. Once it receives a notifi-
cation from a Component Agent about a new Component within its context, it
tries to convey it to all existing Vertically Extended Usage Agents. If that fails,
the new component is considered not mappable in this cycle and a new Usage
Agent is deployed, representing the component. In the next cycle another new
component may join the context and is shown to all existing Vertically Extended
Usage Agents in order to find a match. Figure 12 shows the behavior in detail.

A Comparison of Agent-Based Coordination Architecture Variants 261

initialize

wait
context
disabled?

new usage agent?

register
usage agent

register
mapping

contact existing
usage agents

mapping found?

new component
in context?

start new
usage agent

n y

y

n

y

n

n

y

Fig. 12. Context agent behavioral view

3.5 Architecture Variant IV: Extended Context Agent

This architecture variant is based on the idea of having Component Agents
directly communicating with an Extended Context Agent, which is processing
all context related matters, including the mapping. Figure 13 shows an overview
of proposed agent classes, marked by boxes.

Component Agent. This agent’s tasks and behavior remain unchanged, aside
from a small detail as already shown in Fig. 10. Instead of triggering the initial-
ization of a Usage Agent, the Component Agent notifies the respective Context
Agent which will then proceed to ensure the mapping is processed.

Fig. 13. Architecture Variant IV - Extended Context Agent

Extended Context Agent. As already stated, the Extended Context Agent
takes over all tasks of both the regular Context Agent as well as the Usage Agent.
The Extended Context Agent holds context-specific data, especially about the
mappings. When a new component enters the context, the Extended Context
Agent will try to map this component on an already existing component within

262 J. Bender et al.

initialize

wait

context
disabled?

new component
in context?

put on stack

attempt mapping
on existing
components

register
mapping

attempt successful?

ny

y

n

y

n

Fig. 14. Extended Context Agent behavioral view

the context. If there are no mappable components in the context or no mapping
was found, the component is moved on a stack for later. As soon as new context-
specific information comes up or another new component joins the context, the
Extended Context Agent again tries to map the components. Figure 14 shows
the behavior in detail.

3.6 Architecture Variant V: Vertically Extended Component Agent

Lastly, an agent architecture could be modeled with a Vertically Extended Com-
ponent Agent which vertically connects components from two different sides.

However, we consider this architectural variant not applicable to our case for
several reasons. Firstly, actual mappings can only exist between two revisions
of a component and are thus not directly applicable on underlying components.
Secondly, because of the decentralized nature of the problem and the genera-
tion of data throughout different brands and departments, Vertically Extended
Component Agents would have to act across sites, i.e. they would have to exist
in multiple spaces at the same time. Unlike in the prior architecture variants
where context-related agents used to exist within a context only.

4 Sketch of the Algorithm for Part-Geometry Mapping

To apply the model introduced so far, finding an efficient and automatable way of
mapping components is mandatory. At this point, an outline of such an algorithm
is given. An actual implementation is planned for future work. To recapture, the
agent architecture variants from Sect. 3 introduced the component term which,
when set into a context, comes with properties relevant for the mapping process.
Namely these properties are category, function1, rules, side, and validity. Where
1 It should be noted that the function property is optional as not every component

fulfills a specific function. For example, a simple screw that is used a few hundred
times across different locations within a vehicle. It does to some extend contribute
to several functions but cannot be connected to one specific function.

A Comparison of Agent-Based Coordination Architecture Variants 263

rules are divided into configuration rules and connection rules, as proposed by
Wagner in [15]. Configuration rules can be considered as internal, meaning they
specify certain regulations when creating or changing the component. For exam-
ple, a part needs to have a material specified. Connection rules on the other hand
can be considered external, as they regulate connections between components.
These rules may force or forbid a certain matter. For example, a geometry of a
rim has a connection rule in place that dictates a mapped part must be made of
aluminum.

In preparation of this paper, known consensus algorithms have been reviewed.
Primary subjects of investigation were the Paxos protocol [7] and Raft [9]. How-
ever, these algorithms have not been found suitable for the task at hand as their
main purpose is to coordinate client-server systems with a (fail safe) redundant
server architecture. An alternative approach which we studied is based on match-
ing algorithms known from the field of Operations Research / Graph Theory.
These methods were also rendered not suitable as reviewed matching algorithms
implicitely assume that matching compatibilities are a known fact. Thus, a new,
special algorithm to solve the mapping problem is needed. The idea of which is
outlined below.

In a first step the respective agent2 tries to find a proper subset of other com-
ponents that could fit his own. That means it compiles a subset of components
in which every has exactly not the same side as the own component but exactly
the same category. In extension, the respective agent rules out components with
validity data that does not exactly fit or include its own validity.

That leaves the respective agent with a proper subset of all components
within the context. It proceeds to contact these components’ respective agents
in order to attempt a mapping, i.e. enter mapping negotiations.3 Therefore, both
agents send each other information sets with data about the underlying compo-
nent, positional information, and its function. Both agents proceed to check each
others’ information set against their own data and connection rules. If no force
or forbid connection rules fail, and function and position parameters approxi-
mately map, an agent sends an accept to the other agent. If the other agent
returns an accept a preliminary mapping is established. Both agents proceed
to save the preliminary mapping and contact their respective users4 for confir-
mation. An accept by the user results in a confirmed mapping while a decline
revokes the preliminary mapping. More so, the respective agents will blacklist
declined mappings and refrain from attempting a mapping with these compo-
nents in the future again to prevent infite looping. Algorithm 1 summarizes this
behaviour in pseudo code.
2 Depending on the architecture variant this could be the Extended Component,

Extended Context or (Extended) Usage Agent.
3 It should be noted that the whole communication part does not apply to Architecture

Variant IV because there is only one agent (the Extended Context Agent) which
handles the mapping negotiations internally.

4 Engineers and Purchasers.

264 J. Bender et al.

Algorithm 1. Part-Geometry-Mapping
procedure mapComponents(List<Components> mappableComps)

for all Components c: mappableComps do
Agent a = c.getAgent() � Identify the comp’s agent
Set inInfo = a.attemptMapping(outInfo) � Contact the comp’s agent
bool positionMapped = tryPosMapping(inInfo) � Check incoming data
bool ruleCheck = checkRules(inInfo) � Check connection rules
bool outResp = positionMapped & ruleCheck
bool inResp = a.sendResponse(outResp) � Send and retreive responses
if outResp & inResp then � If both agents agree on mapping

savePreliminaryMapping()
requestConfirmation() � Contact user for confirmation

return mappedComponents

As shown, an agent-based approach might not be able to completely auto-
mate the mapping process. However, intelligent agents are able to cut down the
number of possible mappings at least, saving the users time, and assisting the
goal of establishing transparency.

5 Comparison

This section discusses the five agent architecture variants shown in Sect. 3 and
their stance on the mapping algorithm outlined in Sect. 4.

Architecture Variant I - Dedicated Element Agents. Covers the most
intuitive approach in which every element within the development process is rep-
resentend by a single, autonomous agent. It could be argued that this approach
is a variant of a peer-to-peer architecture as there are no real leading agents or
agents overseeing the bigger picture. It certainly fits the idea of a decentralized,
intelligent multi-agent system quite well and offers a lot of of room for exten-
sions. The downside is the massive amount of communication needed between
agents and possibly redundant data storage which needs to be kept consistent
and made easily accessible to the users. The only agent class where intelligence
is really needed is the Usage Agent as it is responsible for the negotiation of pre-
liminary mappings. All other agents could be modeled as reactive sub-systems
which follow a strict behavioural pattern and mainly serve as data storages or
communication arrays between Usage Agents and users.

Architecture Variant II - Extended Component Agent. Merges the Com-
ponent Agent and its Usage Agents into one. This reduces the communication
needed but adds to the complexity of the Extended Component Agent which
now has to manage all its contexts. As a revision is basically just an extension
of its component, it might be more logical to represent both elements in one
agent. Queries about what revisions are assigned to which contexts could be
answered faster than in Architecture Variant I as it is not necessary anymore

A Comparison of Agent-Based Coordination Architecture Variants 265

to contact the Usage Agents in order to acquire this context-specific informa-
tion. The intelligence is moved into the Extended Component Agent rendering
the Context Agent as sole data storage and administration system. Fewer agent
classes might make future extensions more difficult and change the system to be
less flexible.

Architecture Variant III - Vertically Extended Usage Agent. Tries to
realize a comprehensive approach where revisions from different sides are repre-
sented by a single agent. This approach causes less communication efforts during
the mapping process as it is all handeled internally by the Vertically Extended
Usage Agent, which in extend plays the only intelligent role again. If no match
is found on the first try, the component’s revision exists within the context but
lacks an agent to represent it until a mapping has been found. Furthermore, once
two revisions from different sides have been succesfully mapped, the Vertically
Extended Usage Agent needs to act across dispersed locations and departments.
Thus, Architecture Variant III might be feasible but probably not optimal.

Architecture Variant IV - Extended Context Agent. Leads the system’s
intelligence away from the components and towards the context. It is by that
more centralized but less communication efforts are needed. Contrary to the peer-
to-peer approach from Architecture Variant I, this architecture variant estab-
lishes a hirarchy, in which the Extended Context Agent is overseeing the whole
context and all its matters. Component Agents merely act as registers and entry
points for users who wish to find out where the revisions of a component are
used in. All context-specific information is stored within the Extended Context
Agent and by that leaves most likely the fewest redundancies of all architecture
variants. However, implementing future extensions might be harder.

Solely based on the requirements established in Sect. 3 Architecture Vari-
ants I-IV deliver satisfying concepts. Architecture Variants II and IV seem to
be the ones with the fewest drawbacks while Architecture Variant I offers the
most flexibility and should be easy to extend with more functionality. Future
implementations or more desired functionalities might lead to a clearer result or
alter the architecture in ways which could not be covered in this paper.

Table 1 summarizes the prior comparison:

Table 1. Comparison of Feasible Agent Architecture Variants

Architecture Variant I AV II AV III AV IV

Communication high medium medium low

Complexity low medium medium high

Redundancy high low medium low

Flexibility high medium medium low

Location of Possible Intelligence Usage Extended Vertically Extended

Agent Component Extended Context

Agent Agent Agent

266 J. Bender et al.

6 Conclusion

In this concept paper, an agent-based approach on automating a key devel-
opment process in the automotive industry, the connection of geometric data
(geometries) and logistical data (parts), within a decentralized environment has
been modeled. Based on the concept of a Virtual Product Model (Component)
by Kehl et al. in [6], which was applied on three use cases derived from case
studies in the automotive industry, five agent architecture variants have been
developed. Four of these five architecture variants have been rendered feasible
in order to support both the given requirement to (partly) automate the part-
geometry-mapping as well as contributing to a more transparent system with
changes made traceable. The four feasible agent architecture variants have been
discussed in detail, especially regarding their expected incurring communica-
tion, data redundancy, and extendability. In addition, an algorithm functioning
in each of the agent architecture variants for the mapping process itself has been
outlined which, based on given data, is not able to determine mappings fully on
its own but is at least capable of significantly curtailing the amount of possible
mappings.

Future work will include a prototyped implementation of the agent archi-
tecture variants. On a more conceptual level, additional requirements could be
determined and the architecture variants could be extended and enriched with
more functionality.

References

1. Cheng, H., Chu, X.: A network-based assessment approach for change
impacts on complex product. J. Intell. Manuf. 23(4), 1419–1431 (2012).
http://dx.doi.org/10.1007/s10845-010-0454-8

2. Clarkson, J.P., Simons, C., Eckert, C.: Predicting change propagation in complex
design. In: ASME 2001 Design Engineering Technical Conferences and Computers
and Information in Engineering Conference. Pittsburgh, Pennsylvania (2001)

3. Fricke, E., Gebhard, B., Negele, H., Igenbergs, E.: Coping with changes: Causes,
findings, and strategies. Syst. Eng. 3(4), 169–179 (2000)

4. Glauche, M., Rebel, M., Müller, J.P.: Produktstrukturierung als Erfolgsfaktor: Sys-
tematisierung und Analyse von Einflussfaktoren der Produktstrukturierung. ZWF -
Zeitschrift für wirtschaftlichen Fabrikbetrieb 11, 878–881 (2013)

5. Jarratt, T., Eckert, C.M., Caldwell, N., Clarkson, P.J.: Engineering change: an
overview and perspective on the literature. Res. Eng. Des. 22(2), 103–124 (2011).
http://dx.doi.org/10.1007/s00163-010-0097-y

6. Kehl, S., Stiefel, P., Müller, J.P.: Changes on changes: Towards an agent-based
approach for managing complexity in decentralized product development. In: Inter-
national Conference on Engineering Design (ICED 15). vol. 3, pp. 220–228. Milan,
Italy (2015)

7. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998)

8. Michael Wooldridge: An Introduction to MultiAgent Systems. John Wiley & Sons,
2 edn (2009)

http://dx.doi.org/10.1007/s10845-010-0454-8
http://dx.doi.org/10.1007/s00163-010-0097-y

A Comparison of Agent-Based Coordination Architecture Variants 267

9. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.
In: Proceedings of the 2014 USENIX Conference on USENIX Annual Technical
Conference. pp. 305–320. USENIX ATC 2014, USENIX Association, Berkeley, CA,
USA (2014). http://dl.acm.org/citation.cfm?id=2643634.2643666

10. Simon, H.A.: The sciences of the artificial, vol. 3. MIT Press, Cambridge (1996)
11. Tseng, M.M., Jiao, J.: Mass customization: 25. In: Handbook of Industrial Engi-

neering, pp. 684–709. John Wiley & Sons, Inc (2007). http://dx.doi.org/10.1002/
9780470172339.ch25

12. Verband der Automobilindustrie (VDA): Auto 2008 - jahresbericht. online (July
2008).www.vda.de/de/services/Publikationen/Publikation.489.html

13. Verband der Automobilindustrie (VDA): Jahresbericht 2012. online (July 2012).
https://www.vda.de/de/services/Publikationen/jahresbericht-2012.html

14. Verband der Automobilindustrie (VDA): Jahresbericht 2013. online (August 2013).
https://www.vda.de/de/services/Publikationen/jahresbericht-2013.html

15. Wagner, T.: Agentenunterstütztes engineering von automatisierungsanlagen. atp-
online Automatisierungstechnische. Praxis 50(4), 68–75 (2008)

16. Xu, H.C., Xu, X.F., He, T.: Research on transformation engineering bom into
manufacturing bom based on bop. Appl. Mech. Mater. 10–12, 99–103 (2008)

http://dl.acm.org/citation.cfm?id=2643634.2643666
http://dx.doi.org/10.1002/9780470172339.ch25
http://dx.doi.org/10.1002/9780470172339.ch25
www.vda.de/de/services/Publikationen/Publikation.489.html
https://www.vda.de/de/services/Publikationen/jahresbericht-2012.html
https://www.vda.de/de/services/Publikationen/jahresbericht-2013.html

Selected Extended Abstracts of Doctoral
Papers

Electric Vehicles: An Agent-Based Approach
to Sustainability

Micha Kahlen(B) and Wolfgang Ketter

Erasmus University Rotterdam, Burgemeester Oudlaan 50,
3062 Rotterdam, PA, The Netherlands

{kahlen,wketter}@rsm.nl

Abstract. Renewable energy sources such as wind and solar are dif-
ficult to balance for the grid because they are weather dependent. We
study how the storage of electric vehicles can balance a grid with an
increasing intermittent renewable energy content in the short term and
contribute to a more efficient and sustainable smart grid. In the Power
Trading Agent Competition, a mulitagent platform, we represent fleets
of electric vehicles to make a tradeoff between the conflicting interests
of storing intermittent energy in the electric vehicles and driving them.
The richness of this platform allows us to draw conclusions for the future
of a sustainable grid with electric vehicles.

Keywords: Electricity broker agents · Electric vehicles · Smart grid ·
Virtual power plants

1 Introduction

With rising greenhouse gas emissions we are faced with the global challenge of
climate change. A large share of these emissions come from electricity produc-
tion and transportation [3]. Increasingly, renewable energy sources, that work in
parallel with conventional energy sources, and electric vehicles come into opera-
tion to reduce greenhouse gas emission. However, renewable energy sources are
extremely weather dependent causing a change towards a more supply driven
(instead of demand) driven energy supply chain. Because of this high volatil-
ity and uncertainty we will need tools that facilitate decision making in these
fast changing markets [1]. Our solution to that is energy broker agents. Tradi-
tionally the grid has back up capacity to deal with variations in demand and
supply of electricity in the short term (seconds to minutes). However, as the
number of both renewable energy sources and electric vehicles increases, there
is insufficient back up power available. If energy demand and supply are not in
balance at all times, blackouts can occur endangering human lives and causing
large economic damage. The energy broker agents are able to (partially) shift
consumption to times when renewable energy is abundantly available. In partic-
ular, in our project we study how intelligent agents can facilitate the charging
and discharging process of electric vehicles in coordination with energy supply
(in the short term especially driven by renewable energy sources).
c© Springer International Publishing Switzerland 2015
J.P. Müller et al. (Eds.): MATES 2015, LNAI 9433, pp. 271–274, 2015.
DOI: 10.1007/978-3-319-27343-3 15

272 M. Kahlen and W. Ketter

Charging electric vehicles in coordination with the energy supply, especially
volatile renewable energy sources, is a paradigm shift in the energy sector. This
shift is related to the decentralization of energy, where no longer large power
plants dominate the energy landscape, but mostly distributed energy sources
[2]. In addition, electric vehicles are distributed and can both be a source of
energy and consume energy. In this case the management of electric vehicles
becomes a challenging task. When they should charge and provide electricity to
the grid is difficult to determine centrally because of the sheer number of electric
vehicles in the future. We take battery cost into account, the depreciation cost are
relatively high, but the short term balancing markets offer relatively high prices
to compensate for that. Therefore we create agents that guide the electric vehicle
charging based on pricing signals and preferences of owners to incentivize them
to charge at times when renewable energy sources are producing. Multiagent
systems are particularly suited to model this charging an discharging behavior,
as they are able to represent several autonomous interests of these people and
see their aggregate effects on the electricity system.

2 Research Design

We model the highly complex energy supply chain with the help of the Power
Trading Agent Competition (Power TAC, [6]). It is a state-of-the-art smart grid
simulation that includes consumers of electricity such as households and indus-
trial customers, but also conventional electricity generation and decentralized
energy sources such as wind and solar. It has been validated in previous studies
[5,8]. Energy is bought and sold by self-interested autonomous energy broker
agents that offer retail tariffs to energy consumers. These agents have to be in
balance, i.e. they have to purchase or produce as much electricity as their sub-
scribed customers consume. We build on Power TAC as a testbed to introduce
electric vehicles. Fleets of electric vehicles are represented by agents that serve
their energy need, but also sell the flexibility of when to charge the car as power
options to agents that need to balance their power supply.

Previous research has contributed to the understanding of the role of batteries
in the grid [7,9]. We focus more on the driving aspect, which makes the problem
more complex because there is uncertainty involved about the availability of
vehicles - people cannot always predict when they will use their cars. Yet the
agent needs to make an autonomous decision when to charge the electric vehicle
and make a trade off between selling flexibility to other agents, and having
the electric vehicle available for driving at all times. Our agent draws on real
world carsharing data to make an accurate allocation and pricing decision. We
use carsharing data where cars are rented on a minute or hour basis because
it allows us to make a monetary tradeoff between the availability of electric
vehicles and the benefit it has for the energy balancing market. On the one hand
it learns when and where electric vehicles have a high probability to be rented
out and on the other hand it learns from other agents how much it can earn from
selling flexibility. Selling flexibility means that the electric vehicles are charged

Electric Vehicles: An Agent-Based Approach to Sustainability 273

or discharged as usual, but the timing of the charging is flexible and coordinated
with renewable energy sources, which is valuable for the grid operator. It turns
out that this decision has asymmetric payoffs. Selling flexibility proves much less
profitable than renting; the agent has to be very certain that an electric vehicle
will not get rented out to make profits from selling flexibility. We use machine
learning algorithms which are able to incorporate and predict these asymmetric
payoffs and customer behavior as to maximize profits for the electric vehicle fleet
agent.

3 Contribution

Our goals are to enable a sustainable energy system that will provide stable
electricity output despite a high content of weather dependent renewable energy
sources. With a smart coordination of electric vehicle charging and discharging
this is possible, but is too tedious to be done manually because it needs to be
done around the clock. Intelligent software agents that control the charging prove
to be a reliable solution to do so. These are our preliminary conclusions from a
simulation study using the large scale smart grid simulation Power TAC. Even
though the agents that we have designed maximize their profits, the market in
Power TAC is designed and optimized to simultaneously maximize the welfare
for people, and the planet. We therefore use the triple bottom line account-
ing method to account for the impact on people, planet, and profit. We are
already able to demonstrate significant improvements for the grid and benefits
for carsharing fleet owners in all three areas [4]. If our agents participate in the
simulation people pay lower energy prices, there are fewer carbon emissions, and
the agents in charge of electric vehicle fleets make a profit. Furthermore we have
derived sustainable new revenue streams for electric vehicle rental companies
without compromising their rental business (customer inconvenience). Besides,
we are studying the limitations to profitability. We consider critical values for
the prices that the market is willing to pay for flexibility on short term balanc-
ing markets, how to account for battery degradation and the costs of replacing
them, and how the infrastructure needs to develop in order to make this possi-
ble in the first place. One limitation of is that we focus on carhsaring electric
vehicles only. However, the rising popularity of carsharing and the tendency to
move towards mobility rather than owning cars lead us to this design decision,
as we are interested in future developments.

For future research we are interested in the impact of autonomous driving on
the possibility of providing flexibility to the electrical grid with electric vehicles.
Specifically, how one can reroute electric vehicles to different neighbourhoods
and coordinating their operation with the charging process. Next, we are also
interested in training agents not only to treat driving patterns as necessary, but
to incentivize people to drive at times when the electric vehicles are needed
for flexibility and to give them incentives to return electric vehicles to charging
stations where they are most needed.

274 M. Kahlen and W. Ketter

References

1. Bichler, M., Gupta, A., Ketter, W.: Designing smart markets. Inf. Syst. Res. 21(4),
688–699 (2010)

2. Collins, J., Ketter, W.: Smart grid challenges for electricity retailers. KI-künstliche
Intelligenz 21(3), 191–198 (2014)

3. International Energy Agency: CO2 Emissions From Fuel Combustion Highlights
2014, OECD/IEA, Paris, France (2014)

4. Kahlen, M., Ketter, W.: Aggregating electric cars to sustainable virtual power
plants: the value of flexibility in future electricity markets. In: Proceedings of
the Association for the Advancement of Artificial Intelligence (AAAI) Conference,
Austin, TX, pp. 665–671 (2015)

5. Ketter, W., Peters, M., Collins, J.: Autonomous agents in future energy markets:
the 2012 power trading agent competition. In: Proceedings of the Association for
the Advancement of Artificial Intelligence (AAAI) Conference, Bellevue, WA, pp.
1298–1304 (2013)

6. Ketter, W., Collins, J., Reddy, P., de Weerdt, M.: The 2015 Power Trading Agent
Competition. Technical report, ERS-2015-001-LIS, RSM Erasmus University (2015)

7. Ramchurn, S., Vytelingum, P., Rogers, A., Jennings, N.: Agent-based control for
decentralised demand side management in the smart grid. In: International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS), Taipei, Taiwan,
pp. 5–12 (2011)

8. Urieli, D., Stone, P.: TacTex13: A champion adaptive power trading agent. In: Pro-
ceedings of the Association for the Advancement of Artificial Intelligence (AAAI)
Conference, Quebec, Canada, pp. 1447–1448 (2014)

9. Vytelingum, P., Voice, T., Ramchurn, S., Rogers, A., Jennings, N.: Theoretical and
practical foundations of large-scale agent-based micro-storage in the smart grid. J.
Artif. Intell. Res. 42, 765–813 (2011)

Towards A Formal Model of Opportunism
Based on Situation Calculus

Jieting Luo(B), Frank Dignum, and John-Jules Meyer

Utrecht University, PO Box 80089, 3508 TB Utrecht, The Netherlands
{J.Luo,F.P.M.Dignum,J.J.C.Meyer}@uu.nl

1 Introduction

Opportunism is a social behavior that achieves own gains at the expense of
others. In this study, we propose a formal model of opportunism, which consists
of the properties knowledge asymmetry, value opposition and intention, based
on situation calculus.

Consider a common social interaction. A seller sells a cup to a buyer. It is
known only by the seller beforehand that the cup is actually broken. The buyer
buys the cup for its good appearance, but of course gets disappointed when he
uses it. In this example, the seller earns money from the buyer by exploiting
the opportunity of knowledge asymmetry about the cup. Such a social behav-
ior intentionally performed by the seller is named by economist Williamson as
opportunism [1]. Opportunistic behavior commonly exists in business transac-
tions and other types of social interactions in various forms such as deceit, lying
and betraying. Viewing individuals as agents, we may have similar problems in
multi-agent system research. Interacting agents were modeled to behave in a
human-like way with characteristics of autonomy, local views and decentraliza-
tion [2]. When such agents possess different amounts of relevant information and
try to maximize their benefits, they may probably behave opportunistically to
others, which is against others’ benefits or the norms of the system.

In order to explore this problem, we first need to have a formal specification
of opportunism so that we can understand more clearly the elements in the def-
inition and how they constitute this social behavior. More importantly, we can
derive interesting properties that are useful for our future research such as bet-
ter understanding where and when opportunism arises, automatically detecting
opportunism in (computer-based) human interactions, or designing agents that
are (or are not) opportunistic. Therefore, in this extended abstract we present a
basic formal definition of opportunism with the notion of value, which outlines
the elements knowledge asymmetry, value opposition and intention that should
be represented in the model, thus introducing the first step towards building a
formal model of opportunism.

2 Defining Opportunism with Value

The classical definition of opportunism is offered by Williamson [1] as “self-
interest seeking with guile”. While this definition has been used in a large amount
c© Springer International Publishing Switzerland 2015
J.P. Müller et al. (Eds.): MATES 2015, LNAI 9433, pp. 275–279, 2015.
DOI: 10.1007/978-3-319-27343-3 16

276 J. Luo et al.

of research, it only makes two attributes, self-interest and guile, explicit, leaving
other attributes for researchers to interpret from different perspectives. In this
study, based on the definition of Williamson, we redefine this social behavior in
a more explicit way:

Opportunism is a behavior that is motivated by self-interest and takes advan-
tage of relevant knowledge asymmetry1 to achieve gains, regardless of the
principles.

From this informal definition, it is clear that opportunistic behavior is per-
formed with self-interest motivation in the precondition knowledge asymmetry,
ignoring the results to others. Furthermore, although we did not explicitly declare
the effect of such behavior, it must result in gains at the expense of others.

Value is something that we think is important, and various types of values
together with their orderings form a value system. By integrating the notion of
value into our model, the result of performing opportunistic behavior is repre-
sented as the promotion of opportunistic individuals’ value and the demotion
of others’ value. Furthermore, even though a value system is relatively stable
for individuals, it may differ across different individuals and societies. For soci-
eties, each has its own value system as part of the social context and it serves
as the basis for any judgment within the society. In this sense, some behaviors
which are regarded as opportunistic in one society may not be considered as
opportunistic in another society, if the two societies do not share the same value
system. Given the value system of the society, opportunistic behavior promotes
the self-interest which is in opposition with others’ value.

3 Formalizing Opportunism

Our formalization of opportunism is based on situation calculus, a formal lan-
guage for representing and reasoning about dynamical domains based on first-
order logic [3–5]. There are three sorts: actions A that can be performed by
agents, situations S representing a history of action occurrences and objects for
everything else. Situation S0 represents the initial situation that no action can
result in. The special predicate do(a, s) denotes the unique situation that results
from the performing of action a in situation s. Symbol Poss(a, s) represents the
set of preconditions to perform action a in situation s. The properties of situ-
ations are specified through relational and functional fluents taking a situation
term as their last argument, which means their truth value may vary from situ-
ation to situation. With situation calculus, we can reason about how the world
changes by actions. After John McCarthy’s introduction of this theory, people
made extensions capable of representing knowledge, belief, intention and obliga-
tion in order to better reason about actions and their effects on the world [6–9].

1 Many papers in social science use information asymmetry to represent the situation
where one party in a transaction knows more compared to another. We argue that
once the information is stored in our mind and can be used appropriately it becomes
our knowledge. For this reason, we would rather revise the term as knowledge asym-
metry in this paper, which is also consistent with our technical framework.

Towards A Formal Model of Opportunism Based on Situation Calculus 277

We will introduce and adopt those modalities Know and Intend as appropriate.
Since in situation calculus the last argument is always a situation, we will follow
this convention for any definition of fluents and predicates.

Relevant knowledge asymmetry provides the chance to individuals to be
opportunistic. Opportunistic individuals may break the contracts or the rela-
tional norms using the relevant knowledge that others don’t have. We first adopt
the epistemic fluent Know(φ, s) from [7],

Know(i, φ, s)
def
= (∀s′)Ki(s′, s) → φ[s′]

where K(s′, s) is a binary relation reading as situation s′ is epistemically acces-
sible from situation s. This definition shows that an agent has knowledge about
φ if and only if φ holds in all the epistemic possible situations of the agent. Then
we can have the definition of knowledge asymmetry:

KnowAsym(i, j, φ, s)
def
= Knowi(φ, s)∧¬Knowj(φ, s)∧Knowi(¬Knowj(φ, s), s)

It is a fluent expressing in situation s where agent i has knowledge about φ while
j does not have.

Using the notion of value, the effect of performing opportunistic behavior
can be represented as: agent i’s value gets promoted, while agent j’s value gets
demoted, as they evaluate the state transition by the behavior from their own
perspectives. This property of a state transition is named value opposition in
this study. In order to represent it, we first define a symbol V to denote agents’
value, and then a functional fluent Eval : A × V × S → R which returns a
real number that represents an agent’s evaluation over his value about a specific
situation. Based on it, we define value opposition for a state transition:

V alueOppo(i, j, v, s, s′)
def
= Eval(i, v, s) < Eval(i, v, s′) ∧ Eval(j, v, s) > Eval(j, v, s′)

This is a property of state transitions where a state transition from s to s′

promotes value v from the perspective of agent i but demotes value v from the
perspective of agent j.

As our informal definition suggests, opportunistic behavior is performed by
intent rather than by accident. We adopt the definition of intention from [8],

Intend(i, a, φ, s)
def
= (∀s′)Ii(s′, s) → done(a, s′) ∧ φ[s, s′]

where I(s′, s) is the intentional accessibility relation, and done(a, s′) is true
when action a is finished in situation s′, and φ is true for the state transi-
tion from s to s′. Based on it, we have instances for value promotion pro(j, v) =
Eval(j, v, s) < Eval(j, v, s′) and value demotion de(j, v) = Eval(j, v, s) >
Eval(j, v, s′) by action a:

Intend(i, a, pro(j, v), s)
def
= (∀s′)Ii(s

′, s) → done(a, s′) ∧ Eval(j, v, s) < Eval(j, v, s′)

Intend(i, a, de(j, v), s)
def
= (∀s′)Ii(s

′, s) → done(a, s′) ∧ Eval(j, v, s) > Eval(j, v, s′)

278 J. Luo et al.

Intend(i, a, pro(j, v), s) denotes that agent i intends to promote the value of
agent j by action a in situation s. Similar for Intend(i, a, de(j, v), s). When
i = j, agent i intends to promote or demote his own value by action a.

The above definitions are pivotal elements that we need for having the formal
model of opportunism: knowledge asymmetry as the precondition, value oppo-
sition as the effect, and intention as the mental state. Besides, based on the
informal definition we gave in Sect. 2, there are two more aspects that should
be suggested in the definition. Firstly, the asymmetric knowledge should be rel-
evant to the state transition. Secondly, opportunistic agents are aware of the
result caused by the behavior beforehand but still ignores it. Opportunism is
defined as follows:

Opportunism(i, j, a, s)
def
= (∃v ∈ V)(Poss(i, j, a, s) ≡ KnowAsym(i, j, φ, s))∧

Intend(i, a, pro(i, v), s) ∧ φ

where φ = V alueOppo(i, j, v, s, do(a, s)).

This formula defines a predicate Opportunism where action a is performed by
agent i in the situation s. The precondition of action a is knowledge asymmetry
about the state transition from s to do(a, s), and action a is performed by intent
and results in value opposition.

One observation from the model is about the subjectivity of opportunism.
We can see through the functional fluent Eval that agents always evaluate the
situations and consequently the state transition from their own perspectives. If
the value systems upon which they have evaluation change to another, the prop-
erty value opposition may be false. Our formalization also captures an interesting
property. Given an opportunistic behavior a performed by agent i to agent j in
situation s, it is not the intention, but the knowledge, of agent i to cause harm
to agent j. This is characterized by:

� Opportunism(i, j, a, s) → Knowi(de(j, v), s)

� Opportunism(i, j, a, s) → Intend(i, a, de(j, v), s)

The core of the proof lies in the distinct relations of knowledge and intention.
Certainly more interesting properties exist, but lie beyond the scope of this
extended abstract.

4 Conclusion

This extended abstract took the initiative to propose a formal model of oppor-
tunism based on the extended informal definition from Williamson and situa-
tion calculus. Through the model, we showed the subjectivity of opportunistic
behavior and an interesting property that the asymmetric knowledge owned by
agents is the knowledge about the state transition, rather than the intention of
opportunism. It is important to keep in mind that this is the first step of our
investigation about opportunism and we try to present a fundamental approach
that can be later extended to many contexts and scenarios. We plan to elaborate
the formalization and build a formal system based on it.

Towards A Formal Model of Opportunism Based on Situation Calculus 279

References

1. Williamson, O.E.: Markets and Hierarchies, Analysis and Antitrust Implications: A
Study in the Economics of Internal Organization. New York (1975)

2. Wooldridge, M.: An Introduction to Multiagent Systems. Wiley, New York (2009)
3. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of

artificial intelligence. In: Readings in Artificial Intelligence, pp. 431–450 (1969)
4. Reiter, R.: The frame problem in the situation calculus: A simple solution (some-

times) and a completeness result for goal regression. In: Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor of John McCarthy, vol. 27,
pp. 359–380 (1991)

5. Levesque, H., Pirri, F., Reiter, R.: Foundations for the situation calculus. In:
Linkping Electronic Articles in Computer and Information Science, vol. 3, Issue
18 (1998)

6. Shapiro, S., Pagnucco, M., Lesprance, Y., Levesque, H.J.: Iterated belief change in
the situation calculus. Artif. Intell. 175(1), 165–192 (2011)

7. Scherl, R.B., Levesque, H.J.: Knowledge, action, and the frame problem. Artif. Intell.
144(1), 1–39 (2003)

8. Parra, P.P., Nayak, A.C., Demolombe, R.: Theories of intentions in the framework
of situation calculus. In: Leite, J., Omicini, A., Torroni, P., Yolum, I. (eds.) DALT
2004. LNCS (LNAI), vol. 3476, pp. 19–34. Springer, Heidelberg (2005)

9. Demolombe, R., Parra, P.P.: Integrating state constraints and obligations in situa-
tion calculus. Inteligencia Artif. Rev. Iberoamericana de Inteligencia Artif. 13(41),
54–63 (2009)

Adaptive Services Reconfiguration
in Manufacturing Environments Using

a Multi-agent System Approach

Nelson Rodrigues1,2(&), Paulo Leitão1,2, and Eugénio Oliveira2,3

1 Polytechnic Institute of Bragança, Campus Sta Apolonia,
Apartado 1134, 5301-857 Bragança, Portugal

{nrodrigues,pleitao}@ipb.pt
2 Artificial Intelligence and Computer Science Laboratory,

Porto, Portugal
eco@fe.up.pt

3 Faculty of Engineering, University of Porto,
Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal

Abstract. The era of mass customization of goods forces manufacturing sys-
tems to promote agility, flexibility and responsiveness, leading to complex and
unpredictable systems. Such challenges have an impact in terms of the system
responsiveness and adaptation, production costs, product quality, etc. In order to
improve those aspects, some flexible control manufacturing paradigms were
proposed offering elasticity to change available skills and provide new services.
However, the understanding of when and how to (self-) reconfigure the system
aiming to perform a fast changeover, is a crucial issue. This work proposes a
self-organizing multi-agent system approach for an efficient and on the fly
reconfiguration of services in the manufacturing domain. Besides self-organizing
techniques, other dimensions, e.g., “social-based” trust and QoS metrics, are used
to ensure a constant QoS in an agile production system. The insertion of intel-
ligent agents facilitates the improvement of strategies that perform the service
reconfiguration, and in addition, permits to understand when and how
self-reconfiguration takes place in order to allow a continuous improvement of
the system performance. Additionally, this work addresses solutions for real
industrial applications, being aligned with some characteristics of the Industrie
4.0 initiative, namely the distributed intelligence and self-* methods, e.g.
self-adaptation, self-organization and self-configuration.

1 Introduction

Nowadays, due to the growing interest of customized products/services, companies are
forced to deliver high quality products facing the clients’ requirements at short time.
These complex and dynamic environments are usually favourable to perturbations,
such as broken machines, performance deviations and new product/service demand,
which requires adaptive and responsive systems. Given this fact, several researchers
suggest tackling this problem by considering new manufacturing paradigms that pro-
vide more flexibility, robustness and re-configurability, e.g. Flexible Manufacturing

© Springer International Publishing Switzerland 2015
J.P. Müller et al. (Eds.): MATES 2015, LNAI 9433, pp. 280–284, 2015.
DOI: 10.1007/978-3-319-27343-3_17

Systems (FMS) [1], Reconfigurable Manufacturing Systems (RMS) [2] and Evolvable
Manufacturing Systems (EPS) [3]. Typically, the implementation of such paradigms
mitigates the performance deviations that will delay the product delivery. To tackle this
sort of dynamic environments, mechanisms for service reconfiguration were analysed.
The adaptation performed on the demand and the provided services, transforms the way
the system works. There are already some projects addressing the service reconfigu-
ration in manufacturing, namely IMC-AESOP (www.imc-aesop.eu) that addresses
continuous monitoring and self-adaptation functions and FP6-SOCRADES (www.
socrades.eu) that is oriented to smart embedded devices with enterprise applications
[4]. More recently, the PRIME project (www.prime-eu.com) relies on a plug and
produce architecture for assembly systems, where automatic reconfiguration is mainly
performed at the design phase. The proposed approach takes a step forward by eval-
uating potential possibilities in advance, having the capability to self-reconfigure the
multi-agent system by performing run-time adaptation in the agents’ behaviours
without the need to stop or re-program, reducing the perturbation impact and
decreasing the need of external intervention. The analysis of the state of the art shows
that it is worth studying “when should the system evolve”, and “how should the system
be reconfigured in order to adapt and becoming more profitable”, without compro-
mising the quality of the product agreed. Thereby, intelligent agents are designed to
manage the device functionalities, which are encapsulated as services and are offered to
other agents that can invoke them according to their needs. The agents can improve
their functionalities and publish them across the network of agents as new services,
permitting new service compositions that allow to meet the desired quality. This
approach is not the solution for all reconfiguration problems, but it offers a continuous
and intelligent adjustment of triggers for the reconfiguration process, supported by the
inclusion of the following main capabilities:

(i) Learning mechanisms to assist the identification of opportunities to perform the
reconfiguration.

(ii) Self-organization principles to support the adaptation and evolution of the ser-
vice composition in a dynamic and automatic manner.

(iii) Quality of service (QoS) provides metrics to quantitatively measure the quality
of the generated service compositions. The QoS metrics join several
non-functional attributes, such as execution time, cost and availability as well as
trust evaluation for the judgment of the dynamic behaviours.

By using the previous capabilities, the system becomes more efficient, adaptive and
responsive, and consequently promoting a competitive advantage by offering
re-configurability benefits [3, 5].

2 Proposal

Traditional solutions, which rely on centralized decisions, provide good optimization
results under static operational conditions but fail to respond promptly to dynamic plan
disruption, unexpected disturbances or production changeovers. We propose a dynamic
approach consisting in the reconfiguration of services provided and performed by

Adaptive Services Reconfiguration in Manufacturing Environments 281

http://www.imc-aesop.eu
http://www.socrades.eu
http://www.socrades.eu
http://www.prime-eu.com

intelligent and autonomous agents. In a simple manner, each agent drives the contin-
uous self-adaptive reconfiguration process based on the potential improvement of the
system efficiency. Based on [6], two types of adaptation were selected to drive the
system into a more beneficial state, namely (i) changing its functionalities to provide
better services (behavioural adaptation), and (ii) changing the selection of service
providers to provide a better composed service (structural adaptation). The strategies
about when and how to execute the self-reconfiguration require concepts well known
from Service-oriented Architectures (SOA), namely service discovery, service moni-
toring, service composition and service orchestration. These concepts are logically set
up in the behaviour of the agents to support the expected reconfiguration (see Fig. 1).

The reconfiguration process can be reached by different triggers from different
agent’s roles for example: (i) when the agent is performing the role of a service
provider, i.e. providing atomic or composite services and (ii) when the agent is per-
forming the role of service consumer, i.e. requesting composite services or atomic
services as well. Despite the type of role played, it is vital to recognize when the
adaptation should be performed. Four situations were identified:

1. Promote new composite services periodically, triggering the division of the com-
posite services into atomic components allowing to test new combinations of ser-
vice compositions with different levels of granularity.

2. Discover new services (discovery behaviour), allowing to perceive modification on
available services and recognize new service providers, by searching in the service
repository or announcing to the other agent’s network the intention to discover a
specific service.

3. Detect the degradation of the service’s efficiency (monitoring behaviour), which
needs data analytic methods that are running continuously.

4. Recognize a new service demand (discovery behaviour), which realizes the need to
adapt the provided services to meet a new service reconfiguration.

Fig. 1. Architecture for a generic agent

282 N. Rodrigues et al.

To cope with the “how to make the composition” question, concepts of service
composition using top-down approaches with template-based or bottom-up approaches
using Artificial Intelligence methods were analysed together with self-organization
mechanisms. This inspiration on self-organization techniques allows to regulate the
service composition in environments where it is difficult to predict the global behaviour
(e.g. the overall production plan). Looking from a high-level perspective, the structural
adaptation works at the system level with a strong dependency on the physical layer.
The addition or removal of physical components in the system, is another responsibility
of the structural adaptation. This type of adaptation also has a larger impact on the
behavioural system adaptation that works at the operational level by adjusting the
provided services (e.g. add/remove/modify services).

In order to permit the module “when” to recognize unexpected events and react
appropriately to them, it was considered a learning mechanism. Basically, due to the
impossibility and uncertainty to model the entire world together with the self-
organization mechanism, a reinforcement learning algorithm was adopted, in particular
the Q-learning for modelling the feedbacks of the service performance. The feedback
values results into a set of non-functional criteria, e.g., service response time, throughput
and availability. Additionally, different kind of input values, like trust and reputation
associated to the provided services, can also be considered by the Q-learning algorithm.
The adopted trust model holds the historical knowledge about the services executed in
specific contexts, e.g. process plans, set of involved machines, different configurations,
etc. The outcome of the learning algorithm allows to select an accurate reconfiguration
trigger. In parallel, the same result also represents a context awareness reconfiguration,
which is an important characteristic to tune the nervousness module, and allows to
decide if continuing using the old settings or to explore potential new solutions. The
intra-/inter-communication modules permit the interaction with other agents and
physical devices, and lastly the service execution is responsible to execute the requested
service.

All these modules are independently designed, creating a generic architecture
capable to offer a solution for the dynamic reorganization of the manufacturing system
based on the adaptation and reconfiguration of services provided by intelligence of
agents. Particularly, a real flexible manufacturing cell [7] has been considered for the
evaluation of our proposal, for example, in terms of the downtime impact caused by
production variations [8]. Briefly, each machine is controlled by an agent that provides
a given set of services that are necessary for the production process; agents are
responsible to verify the need for service reconfiguration, adapting their skills and
behaviour accordingly and efficiently.

3 Conclusions and Future Work

The described research work explores the automatic service reconfiguration applied to a
flexible manufacturing system to cope with the challenges that arises from disturbances
or production changeovers. For this purpose, multi-agent systems and service-oriented
principles are combined to properly solve the dynamic reconfiguration of services. It is
also promoted on the agents, the need for service adaptation in order to meet given

Adaptive Services Reconfiguration in Manufacturing Environments 283

requirements in the presence of uncertainty. This implies not only the identification of
opportunities when the agents should reconfigure their services, but also how to
maintain the desired quality of products and at the same time become more valuable by
providing different services. In this sense, the agents adapt and work together as a
global behaviour, after recognizing opportunities or after the plug-in or plug-out of
hardware components. Such continuous cooperation among the agents reinforce the
system towards a better state. As future work, a further specification of the architecture
will be conducted as well as its implementation and validation into different case
studies.

References

1. El Maraghy, H.A.: Flexible and reconfigurable manufacturing systems paradigms. Flex. Serv.
Manuf. J. 17, 261–276 (2006)

2. Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G., Van Brussel, H.:
Reconfigurable manufacturing systems. CIRP Ann. Manuf. Technol. 48, 527–540 (1999)

3. Ribeiro, L., Barata, J., Colombo, A.: MAS and SOA: a case study exploring principles and
technologies to support self-properties in assembly systems. In: Self-Adaptive and
Self-Organizing Systems Workshops, 2008. (SASOW 2008), pp. 192–197 (2008)

4. Cannata, A., Gerosa, M., Taisch, M.: SOCRADES: a framework for developing intelligent
systems in manufacturing. In: Industrial Engineering and Engineering Management, 2008.
IEEM 2008, pp. 1904–1908 (2008)

5. Leitao, P., Marik, V., Vrba, P.: Past, present, and future of industrial agent applications. IEEE
Trans. Industr. Inf. pp. 1–11 (2012)

6. Dignum, V., Dignum, F., Sonenberg, L.: Towards dynamic reorganization of agent societies.
In: Proceedings of Workshop on Coordination in Emergent Agent Societies 2004, pp. 22–27
(2004)

7. Trentesaux, D., Pach, C., Bekrar, A., Sallez, Y., Berger, T., Bonte, T., Leitão, P., Barbosa, J.:
Benchmarking flexible job-shop scheduling and control systems. Control Eng. Pract. 21(9),
1204–1225 (2013)

8. Rodrigues, N., Leitão, P., Oliveira, E.: Self-interested service-oriented agents based on trust
and QoS for dynamic reconfiguration. In: Service Orientation in Holonic and Multi-Agent
Manufacturing (SOHOMA 2014), Nice, France (2014)

284 N. Rodrigues et al.

Hydrogen: A Fuel Option to Future
Transportation as a Part of Smart Grid

Serkan Özdemir(&) and Rainer Unland

DAWIS, University of Duisburg-Essen,
Schützenbahn 70, 45127 Essen, Germany

{serkan.oezdemir,rainer.unland}@icb.uni-due.de

Abstract. Fossil based liquid fuels, primarily used in transportation systems,
are likely to be replaced with renewable resources thanks to energy transition
policies. However, shifting from stable energy production (using coal, natural
gas) to highly volatile renewable production will bring a number of problems as
well. On the other side, tremendous developments in solar and wind power
technologies encourage energy investors to maximize their contributions over
the electricity grid. This highly volatile energy resources bring a strong research
question to the attention: How to benefit from excess energy? Power-to-gas
seems to be a strong candidate to store excess energy. Besides,
power-to-hydrogen is seen as a liquid fuel for fuel cell vehicles. This work aims
to analyze hydrogen as a future fuel option. Additionally, the role of energy
markets, on-site production, renewable penetrations, investment and optimiza-
tion problems will be also covered under this research. This research will reveal
the feasibility of hydrogen as a fuel option in future smart grid.

Keywords: Hydrogen � Transportation � Multi-agent � Simulation � Power
to gas

1 Introduction

Due to energy transition policies of governments and recent developments in renewable
energy technologies, fossil and nuclear based power plants tend to be replaced with
renewable resources. Recent developments show that the number of installed capacity
will dramatically increase in the near future. Solar siding and roof-top panel tech-
nologies are rapidly growing since they have a large footprint compared to other
renewable resources. This work assumes that energy transition will shift towards
renewables as already planned by many countries.

In case of high renewable penetration, future smart grid will face with a number of
challenges, such as meeting the supply and demand in balance. Since the renewable
energy production is highly weather-depended, a distributed energy storage is needed
at off-peak hours or days to benefit from excess energy. Among other storage options,
power-to-gas has the most storage capacity over other technologies [1, 9, 15]. The first
step product of power-to-gas, obtained through electrolysis process, can be used as fuel
in fuel cell vehicles. This way is more efficient than methane in terms of energy loss.
Hydrogen is also nature friendly fuel and the output of fuel cell vehicles is only water.

© Springer International Publishing Switzerland 2015
J.P. Müller et al. (Eds.): MATES 2015, LNAI 9433, pp. 285–289, 2015.
DOI: 10.1007/978-3-319-27343-3_18

However hydrogen cannot be delivered to far away due to high pressure problems. For
this reason, on-site production is proposed for hydrogen [8, 9, 11].

Fuel cell vehicles are not competitors of battery electric vehicles. Because fuel cells
are also a battery electric vehicles. In addition to battery electric vehicles, they have high
pressure hydrogen tank and fuel cell stack which converts hydrogen into electricity.
For this reason, fuel cell can be solution to charging, efficiency and driving-range
problems of battery electric vehicles (BEV) [12, 13].

This works aims to analyze hydrogen production through electrolysis process on
the city level. Power Trading Agent Competition (Power TAC) is selected to simulate
future smart grid conditions [16, 17]. A hydrogen station is designed as a server module
in which a number of fuel cell and conventional vehicles are simulated. Refilling station
consists of an electrolysis unit, high pressure storage unit, dispensers and on-site
renewable resources. The station is an active participant of a local wholesale market.
The wholesale market is a typical hour-ahead market which allows participants to
submit orders 24 h prior to delivery. Technical details and methodology are explained
in Sect. 3.

2 State of the Art

Both power-to-hydrogen (PtH2) and fuel cells are quite old concepts. Basically, the
electrolysis extracts water into oxygen and hydrogen (H2O→H2 + O). Among different
electrolysis approaches, alkaline electrolysis is the most common one in use. Conversion
efficiency rate depends on the load, but the typical rate is 60-70 % at full load. Hydrogen
can be also injected into natural gas grid [14]. In a typical PtH2 power plant, investment
and operation-management costs have severe roles on the profitability of the plant.
Following table shows the basic inputs and outputs of a PtH2 power plant (Table 1).

Besides the advantages of CO2 emission level and driving range, fuel cells also
performs a promising well-to-wheel performance for the future transportation. Fol-
lowing table compares roughly the well-to-wheel performances of fuel cell vehicles,
battery electric vehicles and diesel vehicles (Table 2).

Table 1. Inputs and Outputs of a PtH2 power plant and fuel station.

Today 2030

Investment (electrolysis) (ICe) [8] 1750 EUR/kWinput 700 EUR/kWinput

Investment (refueling st. + storage) (ICrs) [3] 16 % of ICe 8 % of ICe

Operational costs [10] 3 % of ICe + ICrs

Water consumption 0.2 l/kWinput

Hydrogen production 1 kg/48 kW -0.492
Oxygen output 6 kg/48 kW -1.281
Useful heat 11 % of input.
Wholesale market fees 15000-25000 EUR/year [7, 8]
Recurring market and grid fees, taxes 0.1-0.2 EUR/MWh Possible incentives.

286 S. Özdemir and R. Unland

There are a number of possible incentives that are subject to PtH2 plants. However,
on the legal side, some are not matured due to uncertainties on the future fuel options.
But the good news is, there are many ongoing acts regarding to hydrogen fuel utilizing
renewable electricity. Currently, many companies, such as OMV, Hydrogenics, Toyota
and e-on are active in the hydrogen business by producing fuel cell cars, power plants
and refilling stations.

On the other side, energy markets have the vital role on power-to-gas power plants
and will be more important in the future due to high fluctuations. In the current
situation, electric vehicles are exposed to retailer prices since it is not possible for each
electric vehicle to trade in wholesale markets. Unlike electric vehicles, power-to-gas
power plants and their refilling stations are able to trade in energy markets. For this
reason, fuel cell transportation is seen as one of the strongest candidates for the future
transportation system.

3 Methodology

In order to analyze hydrogen as a fuel option, a Power TAC server module is created.
This module simulates a hydrogen refilling station and on-site hydrogen production.
Local wholesale market and on-site renewables are electricity resources of hydrogen
production. Note that Power TAC is simulated on the city level with a population of
about 50 thousand residents, which fits to on-site PtH2 power plant scenario since the
long-haul distribution of hydrogen is not possible [14].

The proposed refilling station simulates the following components:

– Electrolysis Unit: Converts input power to hydrogen having an efficiency rate which
depends on the size of electrolysis unit and input power.

– Hydrogen Storage Unit: This unit stores the produced hydrogen thorough elec-
trolysis process. It also supplies hydrogen to dispensers.

– Dispensers: Final end-point where refilling hydrogen to simulated fuel cell vehicles
takes place.

– A number of fuel cell and traditional vehicles.
– On-site solar panels and wind mills which supply electricity to electrolysis unit.
– Trader module: Trades in the wholesale market and optimize the costs considering

various variables and on-site production.

Table 2. Comparison of different fuel types. Reference vehicles are B segment economy cars of
Mercedes, Toyota and Hyundai.

Fuel Cell Vehicle Battery Electric vehicle Diesel Vehicle

Range (100 km) 1 kg H2 (48 kWh el. input) 18 kWh 5 liter
Well-to-wheel wholesalea 1.2 EUR 0.62 EUR 2.9 EUR [2]
Well-to-wheel retail 9 EUR [4] 4.68 EUR [5] 5.75 EUR [6]
a The row indicates wholesale costs without taxes, profits and service fees.

Hydrogen: A Fuel Option to Future Transportation as a Part of Smart Grid 287

Trading in the wholesale market is the most significant part of the research since the
motivation of the research is to benefit from the excess energy. Unlike electricity
retailers, hydrogen trader unit can make flexible decisions and watch cheap prices at
future hours thanks to its hydrogen storage unit. Storage unit can easily tolerate several
time slots to let trader unit find cheaper energy in an hour-ahead market. To coordinate
these facilities, two methods are proposed. One of them is “Markov Decision Process”
with Q-learning. In this approach, all hours are represented as 24 individual processes.
Each process has 25 states which represent the time slot proximity as well as “success”
state. Other method is “Fuzzy Cognitive Maps” to take multiple variables into account.
Weather forecasts, production and consumption volumes are the examples of entities in
a cognitive map.

Proposed design above enables various studies from different perspectives. First,
a legal landscape (taxation, incentives and transition policies) and a future projection
will be covered under this research. Second, renewables have to be taken into account
deeply since they are the main drivers of the future energy production. Within this
scope, all of penetration levels will be simulated with the proposed trading methods.
Third, size of refilling station, such size of electrolysis unit, storage unit, dispensers and
so on, will be subject to an optimization problem considering investment and opera-
tional costs.

This work aims to control a number of variables.

– Size of electrolysis unit (MW). An electrolysis unit is the most efficient at 25 %
electricity input.

– Size of hydrogen storage (kg). A bigger size of storage unit can put trader unit into a
more flexible position.

– Share of vehicle groups. Percentages of fuel cells, battery electric vehicles and
traditional vehicles among all passenger vehicles (cars, buses, vans).

– Production volume (including local producers). Various production rates will be
subject to experiments.

– Distribution fee. This fee is paid if the bought energy is originated from wholesale
market. Incentives can waive this fee.

– Trading approaches. These approaches will be defined in Markov processes later on.
– Number of retailer/broker companies.

All of these variables are controlled to optimize the cost and investment problems
as well as further possible analysis. Existing works in the literature are usually based on
the static data or estimations. Power-to-gas is usually considered as a profitability
problem or balancing approach which are far away from transportation perspective.

In summary, the smart grid will bring a lot of benefits such as excess energy. On the
other side, fuel cells have all the functionalities of a battery electric vehicle in addition
to hydrogen storage and fuel cell stack. This capability provides opportunity to drive
with hydrogen or electricity no matter which one is available in the vehicle. Obviously,
both ways are nature friendly and do not replace each other.

288 S. Özdemir and R. Unland

References

1. Hall, P., Bain, P.: Energy-storage technologies and electricity generation. Elsevier, Oxford
(2008)

2. Mineralölwirtschaftsverbande. V. Statistiken–Preise, 03 December 2014. http://www.mwv.
de/index.php/daten/statistikenpreise/?loc=1

3. Pure Energy Centre. Hydrogen refueling station, 05 December 2014. http://pureenergycentre.
com/hydrogen-fueling-station/

4. Kurier. Erste Wasserstoff-Tankstelle: Künftig tanken wir Kilos, 12 December 2014. http://
kurier.at/wirtschaft/1-wasserstoff-tankstelle-kuenftig-tanken-wir-kilos/824.355

5. Verivox. Direktvergleich, 24 November 2014. http://www.verivox.de/strompreisvergleich
6. Clever Tanken. Aktuelle Diesel, Benzinpreise, 11 December 2014. http://www.clever-

tanken.de
7. Nord Pool Spot. Nordic and Baltic Trading Fees, 11 December 2014. http://www.

nordpoolspot.com/TAS/Fees/Nordic-Baltic/
8. EPEX Spot. Price List, 14 December 2014. http://static.epexspot.com/document/29089/

EPEXSPOT_Price_List_January_2015.pdf
9. Federal Ministry of Transport and Digital Infrastructure (BMVI). Power-to-Gas (PtG) in

transport: Status quo and perspectives for development. Berlin (2014)
10. National Renewable Energy Laboratory. Hydrogen Station Compression, Storage, and

Dispensing Technical Status and Costs (2014)
11. Zero Regio. The future cost and competitiveness of hydrogen as a transport fuel in Europe

(2010)
12. Lizbeth, C.G.M.: Assessment of usage of hydrogen as alternative fuel into NETPLAN (Ph.

D. dissertation). Iowa State University (2013)
13. Fuel Cell Today. Water Electrolysis & Renewable Energy Systems (2013)
14. Sterner, M.: Power-to-Gas: Perspektiven einer jungen Technologie (2013)
15. Reichert, F., Brian, V.M.: Wind-to-Gas-to-Money? Economics and Perspectives of the

Power-to-Gas Technology (master thesis). Aalborg University (2012)
16. Ketter, W., Collins, J., Reddy, P.P., Weerdt, M.D.: The 2015 Power Trading Agent

Competition. ERIM Report Series Reference No. ERS-2015-001-LIS (2015)
17. Ketter, W., Collins, J., Reddy, P.: Power TAC: A competitive economic simulation of the

smart grid. Energy Econ. 39, 262–270 (2013)

Hydrogen: A Fuel Option to Future Transportation as a Part of Smart Grid 289

http://www.mwv.de/index.php/daten/statistikenpreise/?loc=1
http://www.mwv.de/index.php/daten/statistikenpreise/?loc=1
http://pureenergycentre.com/hydrogen-fueling-station/
http://pureenergycentre.com/hydrogen-fueling-station/
http://kurier.at/wirtschaft/1-wasserstoff-tankstelle-kuenftig-tanken-wir-kilos/824.355
http://kurier.at/wirtschaft/1-wasserstoff-tankstelle-kuenftig-tanken-wir-kilos/824.355
http://www.verivox.de/strompreisvergleich
http://www.clever-tanken.de
http://www.clever-tanken.de
http://www.nordpoolspot.com/TAS/Fees/Nordic-Baltic/
http://www.nordpoolspot.com/TAS/Fees/Nordic-Baltic/
http://static.epexspot.com/document/29089/EPEXSPOT_Price_List_January_2015.pdf
http://static.epexspot.com/document/29089/EPEXSPOT_Price_List_January_2015.pdf

Author Index

Albayrak, Sahin 22
Apeldoorn, Daan 79

Bender, Janek 249
Braubach, Lars 3

Dammenhayn, Nils 42
Dennisen, Sophie L. 200
Diaconescu, Ion Mircea 137
Dignum, Frank 275

Edelkamp, Stefan 119
Eicke, Niels 119

Ghedira, Khaled 154
Giesen, Erik 173
Greulich, Christoph 119

Hachicha, Héla 154
Hrabia, Christopher-Eyk 22

Jander, Kai 3

Kahlen, Micha 271
Kalinowski, Julian 3
Kehl, Stefan 249
Ketter, Wolfgang 173, 271
Kirn, Stefan 101

Leitão, Paulo 280
Lorig, Fabian 42
Luo, Jieting 275

Masuch, Nils 22
Meyer, John-Jules 275
Moldt, Daniel 61
Müller, David-Johannes 42
Müller, Jörg P. 200, 249

Oliveira, Eugénio 280
Özdemir, Serkan 218, 285

Pokahr, Alexander 3
Premm, Marc 101, 233

Rodrigues, Nelson 280

Samet, Donies 154

Timm, Ingo J. 42

Unland, Rainer 218, 285

Wagner, Gerd 137
Wagner, Thomas 61
Widmer, Tobias 233

Zuidwijk, Rob 173

	Preface
	Organization
	Contents
	MAS Engineering, Modeling, and Simulation
	Tailoring Agent Platforms with Software Product Lines
	1 Introduction
	2 Usage Scenarios for Agent Platforms
	2.1 Android
	2.2 Game
	2.3 Workflow
	2.4 Summary of the Scenarios

	3 Background on Software Product Lines
	4 Feature Modeling
	4.1 Domain Analysis
	4.2 Asset Analysis
	4.3 Usage of the Feature Models

	5 Feature Implementation
	5.1 Analysis of Implementation Techniques
	5.2 Jadex Implementation Decisions

	6 Related Work
	7 Conclusion
	References

	A Metrics Framework for Quantifying Autonomy in Complex Systems
	1 Introduction
	2 Related Work
	2.1 Autonomous Systems Definitions
	2.2 Autonomous Systems Metrics

	3 Definition and Classification
	3.1 Classification
	3.2 Autonomous System

	4 Metric
	4.1 Perception and Acting Skills
	4.2 Belief and Reasoning
	4.3 Learning
	4.4 Motivation, Goals, Planning and Decision Making
	4.5 Scaling and Aggregation of the Capabilities

	5 Metric Application
	6 Example
	7 Conclusion
	References

	Measuring and Comparing Scalability of Agent-Based Simulation Frameworks
	1 Introduction
	1.1 Challenges in Agent-Based Social Simulation
	1.2 Scalable Simulation Frameworks

	2 Measuring Scalability
	2.1 Dimensions of Scalability
	2.2 Parameters
	2.3 Performance Metrics
	2.4 Frameworks

	3 Comparing Agent-Based Simulation Frameworks
	3.1 Experiment Specification
	3.2 Implementation of Simulation Model
	3.3 Configuration of Parameters

	4 Results
	4.1 Advantages and Disadvantages of the Frameworks

	5 Conclusions
	References

	Integrating Agent Actions and Workflow Operations
	1 Introduction
	2 Background
	3 Modelling Context
	3.1 Agents and Workflows in General
	3.2 Proposed Advantages

	4 The Agent Activity-System
	4.1 An Informal View on the Agent Activity
	4.2 The Agent Activity-System Architecture

	5 The Agent Activity Net Structure
	6 Practical Example
	7 Related Work
	8 General Discussion
	9 Summary and Conclusion
	References

	A Spatio-Temporal Multiagent Simulation Framework for Reusing Agents in Different Kinds of Scenarios
	1 Introduction
	2 Graphical Modeling Language
	2.1 Agents and Stations
	2.2 Relations
	2.3 Attributes
	2.4 Perspectives

	3 Simulation Framework
	3.1 Formal Semantics
	3.2 Simulation Algorithm
	3.3 Simulation Visualization
	3.4 Agent Programming Interface

	4 Use Case Examples
	4.1 School Timetabling
	4.2 Production Simulation
	4.3 Dissimilarity of the Scenarios
	4.4 A Simple Agent Model
	4.5 Simulation Results

	5 Conclusion and Future Work
	References

	Smart Things Working Together
	A Multiagent Systems Perspective on Industry 4.0 Supply Networks
	Abstract
	1 Introduction
	2 State of the Art
	2.1 Multiagent-Organization Models Revisited
	2.2 Comparison with Organizational Theory in Management Science
	2.3 Fractal Enterprises and Fractal Enterprise Processes

	3 Models for Logistics
	3.1 Systematic of Logistics Tasks
	3.2 Approaches for Formalizing Logistics Tasks
	3.3 Logistics in the Perspective of a Fractal Supply Network

	4 Multi-multiagent Systems
	4.1 Basic Approach
	4.2 Abstractions

	5 Examples
	5.1 Example 1: Agent.Hospital
	5.2 Example 2: BREIN
	5.3 Example 3: EwoMacs
	5.4 Lessons Learned

	6 Summary
	Acknowledgements
	References

	Cyber-Physical Multiagent-Simulation in Production Logistics
	1 Introduction
	2 Multiagent System
	2.1 The Product Agent
	2.2 Decision Making

	3 From Reality to Simulation
	3.1 Supporting Simulation Agents

	4 Multiagent Simulation Model
	5 Evaluation
	5.1 Simulation Accuracy
	5.2 System Performance

	6 Conclusion
	References

	Modeling and Simulation of Web-of-Things Systems as Multi-Agent Systems
	1 Introduction
	2 Related Work
	3 IoT and WoT Systems
	3.1 Sensor Nodes
	3.2 Actuator Nodes
	3.3 The Environment
	3.4 Examples of Sensors and Actuators

	4 The AOE Simulation Framework
	5 Modeling and Simulation of WoT Systems
	5.1 Simulation of Sensor Nodes
	5.2 Simulation of Actuator Nodes
	5.3 Simulation of the Environment
	5.4 Modeling and Simulation of a WoT System as a Whole

	6 A Green House Test Case
	6.1 Simulated Hardware Configuration
	6.2 Environment Simulation

	7 Conclusions
	References

	A Conceptual Approach to Place Security in Systems of Mobile Agents
	Abstract
	1 Introduction
	2 Mobile Agent and Security
	2.1 Security Requirements
	2.2 Security Issues in Systems of Mobile Agents
	2.3 Attacks Caused by a Mobile Agent to a Place

	3 Related Work
	3.1 The UMLSec Profile
	3.2 The SecureUML Profile
	3.3 The Adaptive Security Model for MAS
	3.4 The FAML Extensions
	3.5 Discussion

	4 The Proposed Extensions
	4.1 MA-UML Environment Diagram
	4.2 Extensions of MA-UML Environment Diagram
	4.2.1 Extension to Prevent Availability Attack
	4.2.2 Extension to Prevent Access Control Attack
	4.2.3 Extension to Prevent Non-repudiation Attack
	4.2.4 Extension to Prevent Authentication Attacks

	5 Scenarios Modeling and Implementation
	5.1 System Description and Modeling
	5.2 System Scenarios Implementation
	5.2.1 Scenario Implementation to Control the Resource Access
	5.2.2 Scenario Implementation to Control Cloning

	6 Conclusion
	References

	Innovative and Emerging Applications of MAS
	Dynamic Agent-based Scheduling of Treatments: Evidence from the Dutch Youth Health Care Sector
	1 Introduction
	2 Related Literature
	3 The Simulation Model
	3.1 Research Framework
	3.2 Model Parameters
	3.3 Structure of the Model
	3.4 Model Measures
	3.5 Scheduling Policies
	3.6 Care Types
	3.7 Acceptance Factors
	3.8 Key Performance Indicators (KPIs)

	4 Discussion of Results and Managerial Insights
	4.1 Key Performance Indicators
	4.2 Comparison of Scheduling Policies

	5 Conclusions and Future Work
	References

	Agent-Based Voting Architecture for Traffic Applications
	1 Introduction
	2 J-MADeM
	3 Voting Theory
	3.1 Voting Rules
	3.2 Committee Elections
	3.3 Interaction Protocols for Voting

	4 Scenarios
	4.1 Share-Taxi Scenario
	4.2 Platooning Scenario

	5 Functional Requirements
	6 Related Work
	7 J-Voting Architecture and Design
	7.1 Design
	7.2 Architecture Components
	7.3 Degree of Fulfillment
	7.4 Differences Between J-MADeM and J-Voting

	8 Conclusion and Outlook
	References

	Trading Strategies of a Champion Agent in a Multiagent Smart Grid Simulation Platform
	Abstract
	1 Introduction
	2 Power Trading Agent Competition and 2014 Final Games
	3 Related Work
	4 AgentUDE at a Glance
	4.1 Wholesale Market Activities
	4.2 Retail Market Activities
	4.3 Balancing Activities

	5 Future Work
	6 Conclusion
	References

	Agent-Based Decision Support for Allocating Caregiving Resources in a Dementia Scenario
	Abstract
	1 Introduction
	2 Literature Review
	2.1 Decision Support in eHealth
	2.2 Auction-Based Approaches in Resource Allocation

	3 Multi-attribute Double Auction Protocol
	3.1 Software Architecture
	3.2 Dementia-Specific Requirements
	3.3 Auction Model
	3.4 Auction Protocol

	4 Evaluation
	4.1 Description
	4.2 Discussion

	5 Conclusion
	Acknowledgement
	References

	A Comparison of Agent-Based Coordination Architecture Variants for Automotive Product Change Management
	1 Introduction
	2 Background
	2.1 Use Cases
	2.2 An Exemplary Workflow of a New Construction

	3 An Agent-Based Approach to Part-Geometry-Mapping
	3.1 Part-Geometry-Mapping
	3.2 Architecture Variant I - Dedicated Element Agents
	3.3 Architecture Variant II: Extended Component Agent
	3.4 Architecture Variant III: Vertically Extended Usage Agent
	3.5 Architecture Variant IV: Extended Context Agent
	3.6 Architecture Variant V: Vertically Extended Component Agent

	4 Sketch of the Algorithm for Part-Geometry Mapping
	5 Comparison
	6 Conclusion
	References

	Selected Extended Abstracts of Doctoral Papers
	Electric Vehicles: An Agent-Based Approach to Sustainability
	1 Introduction
	2 Research Design
	3 Contribution
	References

	Towards A Formal Model of Opportunism Based on Situation Calculus
	1 Introduction
	2 Defining Opportunism with Value
	3 Formalizing Opportunism
	4 Conclusion
	References

	Adaptive Services Reconfiguration in Manufacturing Environments Using a Multi-agent System Approach
	Abstract
	1 Introduction
	2 Proposal
	3 Conclusions and Future Work
	References

	Hydrogen: A Fuel Option to Future Transportation as a Part of Smart Grid
	Abstract
	1 Introduction
	2 State of the Art
	3 Methodology
	References

	Author Index

