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Abstract. The classical unbiasedness condition utilized e.g. by the best
linear unbiased estimator (BLUE) is very stringent. By softening the
“global” unbiasedness condition and introducing component-wise condi-
tional unbiasedness conditions instead, the number of constraints lim-
iting the estimator’s performance can in many cases significantly be
reduced. In this paper we extend the findings on the component-wise con-
ditionally unbiased linear minimum mean square error (CWCU LMMSE)
estimator under linear model assumptions. We discuss the CWCU
LMMSE estimator for complex proper Gaussian parameter vectors, and
for mutually independent (and otherwise arbitrarily distributed) parame-
ters. Finally, the beneficial properties of the CWCU LMMSE estimator
are demonstrated in two applications.

1 Introduction

Usually, when we talk about unbiased estimation of a parameter vector x ∈ C
n×1

out of a measurement vector y ∈ C
m×1, then the estimation problem is treated

in the classical framework [1]. Letting x̂ = g(y) be an estimator of x, then the
classical unbiased constraint asserts that

Ey[x̂] =
∫

g(y)p(y;x)dy = x for all possible x, (1)

where p(y;x) is the probability density function (PDF) of vector y parametrized
by the unknown parameter vector x. The index of the expectation operator shall
indicate the PDF over which the averaging is performed. Equation (1) can also be
formulated in the Bayesian framework, where the parameter vector x is treated
as random, and whose realization is to be estimated. Here, the corresponding
problem arises by demanding global conditional unbiasedness, i.e.

Ey|x[x̂|x] =
∫

g(y)p(y|x)dy = x for all possible x. (2)

The attribute global indicates that the condition is made on the whole parameter
vector x. However, the constricting requirement in (2) prevents the exploitation
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of prior knowledge about the parameters, and hence leads to a significant reduc-
tion in the benefits brought about by the Bayesian framework.

In component-wise conditionally unbiased (CWCU) Bayesian parameter esti-
mation [2–5], instead of constraining the estimator to be globally unbiased, we
aim for achieving conditional unbiasedness on one parameter component at a
time. Let xi be the ith element of x, and x̂i = gi(y) be an estimator of xi. Then
the CWCU constraints are

Ey|xi
[x̂i|xi] =

∫
gi(y)p(y|xi)dy = xi, (3)

for all possible xi (and all i = 1, 2, ..., n). The CWCU constraints are less strin-
gent than the global conditional unbiasedness condition in (2), and it turns out
that a CWCU estimator in many cases allows the incorporation of prior knowl-
edge about the statistical properties of the parameter vector.

The paper is organized as follows: In Sect. 2 we discuss the CWCU lin-
ear minimum mean square error (LMMSE) estimator under different linear
model assumptions, and we extend the findings of [2]. We particularly distin-
guish between complex proper jointly Gaussian (cf. [6]), and mutually indepen-
dent (and otherwise arbitrarily distributed) parameters. Then, in Sect. 3 the
CWCU LMMSE estimator is compared against the best linear unbiased estima-
tor (BLUE) and the LMMSE estimator in two different applications.

2 CWCU LMMSE Estimation

We assume that a complex vector parameter x ∈ C
n×1 is to be estimated based

on a measurement vector y ∈ C
m×1. Additionally, we assume that x and y are

connected via a linear model

y = Hx + n, (4)

where H ∈ C
m×n is a known observation matrix,x has mean Ex[x] and covariance

matrix Cxx, and n ∈ C
m×1 is a zero mean noise vector with covariance matrix

Cnn and independent of x. Additional assumptions on x will vary in the follow-
ing. We note that the CWCU LMMSE estimator for the linear model under the
assumption of complex proper Gaussianx and complex and proper white Gaussian
noise with covariance matrix Cnn = σ2

nI has already been derived in [2].
As in LMMSE estimation we constrain the estimator to be linear (or actually

affine), such that
x̂ = Ey + c, (5)

with E ∈ C
n×m and c ∈ C

n×1. Note that in LMMSE estimation no assumptions
on the specific form of the PDF p(x) have to be made. However, the situation is
different in CWCU LMMSE estimation as will be shown shortly. Let us consider
the ith component of the estimator

x̂i = eH
i y + ci, (6)
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where eH
i denotes the ith row of the estimator matrix E. Furthermore, let hi ∈

C
m×1 be the ith column of H, H̄i ∈ C

m×(n−1) the matrix resulting from H by
deleting hi, xi be the ith element of x, and x̄i ∈ C

(n−1)×1 the vector resulting
from x after deleting xi. Then we can write y = hixi+H̄ix̄i+n, and (6) becomes

x̂i = eH
i (hixi + H̄ix̄i + n) + ci. (7)

The conditional mean of x̂i therefore is

Ey|xi
[x̂i|xi] = eH

i hixi + eH
i H̄iEx̄i|xi

[x̄i|xi] + ci. (8)

From (8) we can derive conditions that guarantee that the CWCU constraints
(3) are fulfilled. There are at least the following possibilities:

1. (3) can be fulfilled for all possible xi if the conditional mean Ex̄i|xi
[x̄i|xi] is

a linear function of xi. For complex proper Gaussian x this condition holds
(for all i = 1, 2, ..., n).

2. (3) can be fulfilled for all possible xi (and all i = 1, 2, ..., n) if Ex̄i|xi
[x̄i|xi] =

Ex̄i
[x̄i] for all possible xi (and all i = 1, 2, ..., n), which is true if the elements

xi of x are mutually independent.
3. (3) is fulfilled for all possible xi (and all i = 1, 2, ..., n) if eH

i hi = 1, eH
i H̄i =

0T , and ci = 0 for i = 1, 2, · · · , n. These constraints and settings correspond
to the ones of the BLUE.

2.1 Complex Proper Gaussian Parameter Vectors

We start with the first case from above, assume a complex proper Gaussian
parameter vector, i.e. x ∼ CN (Ex[x],Cxx), and start with the derivation of
the ith component x̂i of the estimator. Because of the Gaussian assumption
we have Ex̄i|xi

[x̄i|xi] = Ex̄i
[x̄i] + (σ2

xi
)−1Cx̄ixi

(xi − Exi
[xi]), where Cx̄ixi

=
Ex[(x̄i − Ex̄i

[x̄i])(xi − Exi
[xi])H ], and σ2

xi
is the variance of xi. Consequently

(8) becomes

Ey|xi
[x̂i|xi] = eH

i hixi + eH
i H̄i

(
Ex̄i

[x̄i] + (σ2
xi

)−1Cx̄ixi
(xi − Exi

[xi])
)

+ ci. (9)

Note that the only requirement on the noise vector so far was its independence
on x. From (9) we see that Ey|xi

[x̂i|xi] = xi is fulfilled if

eH
i hi + eH

i H̄i(σ2
xi

)−1Cx̄ixi
= 1 (10)

and
ci = eH

i H̄i(σ2
xi

)−1Cx̄ixi
Exi

[xi] − eH
i H̄iEx̄i

[x̄i]. (11)

With (10) and (11) can be reformulated according to

ci = Exi
[xi] − eH

i hiExi
[xi] − eH

i H̄iEx̄i
[x̄i]

= Exi
[xi] − eH

i HEx[x]. (12)
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Furthermore, (10) can be simplified to obtain the constraint

eH
i HCxxi

= σ2
xi

. (13)

Inserting (6), (12) and (13) into the Bayesian MSE cost function Ey,x[|x̂i −
xi|2] immediately leads to the constrained optimization problem

eCL,i = arg min
ei

(
eH

i (HCxxHH + Cnn)ei − σ2
xi

)
s.t. eH

i HCxxi
= σ2

xi
, (14)

where “CL” shall stand for CWCU LMMSE. The solution can be found with
the Lagrange multiplier method and is given by

eH
CL,i =

σ2
xi

CxixHH(HCxxHH + Cnn)−1HCxxi

CxixH
H(HCxxHH + Cnn)−1.

(15)
Introducing the estimator matrix ECL = [eCL,1, eCL,2, . . . , eCL,n]H together with
(12) and (15) immediately leads us to the first part of the

Proposition 1. If the observed data y follow the linear model in (4), where y ∈
C

m×1 is the data vector, H ∈ C
m×n is a known observation matrix, x ∈ C

n×1 is
a parameter vector with prior complex proper Gaussian PDF CN (Ex[x],Cxx),
and n ∈ C

m×1 is a zero mean noise vector with covariance matrix Cnn and
independent of x (the PDF of n is otherwise arbitrary), then the CWCU LMMSE
estimator minimizing the Bayesian MSEs Ey,x[|x̂i − xi|2] under the constraints
Ey|xi

[x̂i|xi] = xi for i = 1, 2, · · · , n is given by

x̂CL = Ex[x] + ECL(y − HEx[x]), (16)

with
ECL = DCxxHH(HCxxHH + Cnn)−1, (17)

where the elements of the real diagonal matrix D are

[D]i,i =
σ2

xi

CxixHH(HCxxHH + Cnn)−1HCxxi

. (18)

The mean of the error e = x− x̂CL (in the Bayesian sense) is zero, and the error
covariance matrix Cee,CL which is also the minimum Bayesian MSE matrix
Mx̂CL is

Cee,CL = Mx̂CL = Cxx − AD − DA + DAD, (19)

with A = CxxHH(HCxxHH + Cnn)−1HCxx. The minimum Bayesian MSEs
are Bmse(x̂CL,i) = [Mx̂CL ]i,i.

The part on the error performance can simply be proved by inserting in the
definition of e and Cee, respectively. From (17) it can be seen that the CWCU
LMMSE estimator matrix can be derived as the product of the diagonal matrix
D with the LMMSE estimator matrix EL = CxyC−1

yy = CxxHH(HCxxHH +
Cnn)−1. Furthermore, we have Ey|xi

[x̂L,i|xi] = [D]−1
i,i xi + (1 − [D]−1

i,i )Exi
[xi] for

the LMMSE estimator. From (18) it also follows that
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D = diag{Cxx} (diag{A})−1
. (20)

The CWCU LMMSE estimator will in general not commute over linear trans-
formations, an exception is the transformation over a diagonal matrix as partly
discussed in [5].

2.2 Complex Parameter Vectors with Mutually Independent
Elements

In case the elements of the parameter vector are mutually independent (8)
becomes

Ey|xi
[x̂i|xi] = eH

i hixi + eH
i H̄iEx̄i

[x̄i] + ci. (21)

Ey|xi
[x̂i|xi] = xi is fulfilled if eH

i hi = 1 and ci = −eH
i H̄iEx̄i

[x̄i]. No further
assumptions on the PDF of x are required. Following similar arguments as above
again leads to a constrained optimization problem [5]. Solving it leads to

Proposition 2. If the observed data y follow the linear model in (4), where
y ∈ C

m×1 is the data vector, H ∈ C
m×n is a known observation matrix, x ∈

C
n×1 is a parameter vector with mean Ex[x], mutually independent elements and

covariance matrix Cxx = diag{σ2
x1

, σ2
x2

, · · · , σ2
xn

}, n ∈ C
m×1 is a zero mean

noise vector with covariance matrix Cnn and independent of x (the PDF of
n is otherwise arbitrary), then the CWCU LMMSE estimator minimizing the
Bayesian MSEs Ey,x[|x̂i − xi|2] under the constraints Ey|xi

[x̂i|xi] = xi for i =
1, 2, · · · , n is given by (16) and (17), where the elements of the real diagonal
matrix D are

[D]i,i =
1

σ2
xi
hH

i (HCxxHH + Cnn)−1hi
. (22)

Since for mutually independent parameters the ith row of the LMMSE esti-
mator is eH

L,i = σ2
xi
hH

i (HCxxHH + Cnn)−1 it follows from (22) that

[D]i,i = (eH
L,ihi)−1. (23)

It therefore holds that diag{ECLH} = 1. Furthermore, in [5] we showed that
for mutually independent parameters eCL,i does not depend on σ2

xi
and is also

given by eCL,i = (hH
i C−1

i hi)−1C−1
i hi, where Ci = H̄iCx̄ix̄i

H̄H
i + Cnn.

2.3 Other Cases

If x is whether complex proper Gaussian nor a vector with mutually independent
parameters, then we have the following possibilities: If Ey|xi

[x̂i|xi] is a linear
function of xi for all i = 1, 2, · · · , n then we can derive the CWCU LMMSE
estimator similar as in Sect. 2.1. In the remaining cases still an estimator can
be found that fulfills the CWCU constraints. As discussed above the choice
eH

i hi = 1, eH
i H̄i = 0T together with ci = 0 for all i = 1, 2, · · · , n ensures that

(3) holds. Inserting these constraints into the Bayesian MSE cost functions and
solving the constrained optimization problems leads to
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Fig. 1. Visualization of the relative frequencies of the estimates x̂B,1, x̂CL,1, and x̂L,1,
respectively. The black crosses mark the ideal 4-QAM constellation points (Color figure
online).

x̂B = EBy = (HHC−1
nnH)−1HHC−1

nny, (24)

with Cee,B = (HHC−1
nnH)−1 as the Bayesian error covariance matrix. eH

i hi =
1 & eH

i H̄i = 0 for all i = 1, 2, · · · , n is equivalent to EH = I. This implies
x̂B = EBy = x + EBn. It follows that the estimator in (24) also fulfills the
global unbiasedness condition Ey|x[x̂B|x] = x for every x ∈ C

n×1. This estimator
which is the BLUE is not able to exploit any prior knowledge about x. Usually
the BLUE is treated in the classical instead of the Bayesian framework.

3 Applications

3.1 QPSK Data Estimation

An example that exhibits the properties of the CWCU LMMSE concept most
demonstrative is the estimation of channel distorted and noisy received quadra-
ture amplitude modulated (QAM) data symbols. We assume an underlying linear
model as in (4), with a parameter vector x consisting of 4 mutually independent
4-QAM symbols, each out of {±1 ± j}, complex proper additive white Gaussian
noise (AWGN) with variance σ2

n, and a 4× 4 channel matrix H. Due to the
mutually independence of the 4-QAM data symbols we use the CWCU LMMSE
estimator from Proposition 2. The experiment is repeated a large number of times
for a fixed σ2

n and for a particularly chosen channel matrix H. Figure 1 visualizes
the relative frequencies of the estimates x̂B,1 = [x̂B]1 (BLUE), x̂CL,1 = [x̂CL]1
(CWCU LMMSE), x̂L,1 = [x̂L]1 (LMMSE) in the complex plane. The estimates
of both x̂B,1 and x̂CL,1 are centered around the true constellation points since
these estimators fulfill the CWCU constraints. The Bayesian MSE of x̂CL,1 is
clearly below the one of x̂B,1 since the former is able to incorporate the prior
knowledge inherent in Cxx = σ2

xI. x̂L,1 is conditionally biased towards the prior
mean which is 0. While the LMMSE estimator exhibits the lowest Bayesian MSE
it can be shown that the LMMSE and CWCU LMMSE estimator lead to the
same bit error ratio (BER) when the decision boundaries are adapted properly.
However, the BLUE shows a worse performance in the MSE and in the BER.
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Fig. 2. Top: Bayesian MSEs of the estimated CIR coefficients; Bottom: zoomed version
(Color figure online).

3.2 Channel Estimation

As a second example to demonstrate the properties of the CWCU LMMSE esti-
mator we choose the well-known channel estimation problem for IEEE 802.11a/n
WLAN standards [7], which extends our investigations in [5]. The standards define
two identical length N = 64 preamble symbols designed such that their discrete
Fourier transformed (DFT) versions show ±1 at 52 subcarrier positions (indexes
{1, ..., 26, 38, ...63}) and zeros at the remaining ones (indexes {0, 27, ..., 37}). The
channel impulse response (CIR) is modeled as a zero mean complex proper
Gaussian vector, i.e. h ∼ CN (0,Chh), with Chh = diag{σ2

0 , σ
2
1 , ..., σ

2
lh−1} and

exponentially decaying power delay profile with σ2
i =

(
1 − e−Ts/τrms)

)
e−iTs/τrms

for i = 0, 1, ..., lh − 1. Ts and τrms are the sampling time and the channel delay
spread, respectively, and lh is the channel length which can be assumed to be
considerably smaller than N . In our setup we chose Ts = 50ns, τrms = 100ns,
and lh = 16. The transmission of the training symbols over the channel can again
be written as a linear model with complex proper AWGN noise, and with h as
the vector parameter whose realization is to be estimated, cf. [5]. Figure 2 shows
the Bayesian MSEs of the BLUE (ĥB), the LMMSE estimator (ĥL), and the
CWCU LMMSE estimator (ĥCL) for a time domain noise variance of σ2

n = 0.01.
Proposition 2 has been used to derive ĥCL since the elements of h are mutually
independent. ĥCL almost reaches the performance of ĥL, and in contrast to the
latter it additionally shows the property of conditional unbiasedness. Both esti-
mators incorporate the prior knowledge inherent in Chh which results in a huge
performance gain over ĥB. We now turn to frequency response estimators and
note that the vector of frequency response coefficients h̃ ∈ C

64×1 (which cor-
responds to the DFT of the zero-padded impulse response

[
hT 0T

]T ) consists
of proper Gaussian elements, but the PDF of h̃ cannot be written in the form
of a multivariate proper Gaussian PDF. The LMMSE estimator ˆ̃hL is simply
obtained by the DFT of

[
ĥT
L 0T

]T
(since it commutes over linear transforma-

tions). As discussed in [5], the BLUE ˆ̃hB can be derived correspondingly. The

CWCU LMMSE estimator ˆ̃hCL cannot be derived in this way since it does
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Fig. 3. Bayesian MSEs for the elements of
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hL, and
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hCL, respectively.

not commute over general linear transformations. However, although h̃ is not a
proper Gaussian vector, E¯̃

hi|h̃i
[¯̃hi|h̃i] is linear in h̃i (for all i = 0, 1, · · · , N − 1),

and one can easily show that (16)–(18) can be applied to determine the CWCU
LMMSE estimator. The frequency domain version of the prior covariance matrix
Chh is required for its derivation. Figure 3 shows the Bayesian MSEs of ˆ̃hB, ˆ̃hL,
and ˆ̃hCL, respectively. ˆ̃hB is outperformed by ˆ̃hL and ˆ̃hCL at all frequencies, but
the performance loss is significant at the large gap from subcarrier 27 to 37,
where no training information is available. In contrast, ˆ̃hL and ˆ̃hCL show excel-
lent interpolation properties along this gap. Large estimation errors of ˆ̃hB in this
spectral region are spread over all time domain samples which explains the poor
performance of ĥB. Note that in practice this is only critical if ĥB is incorpo-
rated in the receiver processing, however, pure frequency domain receivers only
require estimates at the occupied 52 subcarrier positions.

4 Conclusion

In this work we investigated the CWCU LMMSE estimator for the linear model.
First, we derived the estimator for complex proper Gaussian parameter vectors,
and for the case of mutually independent (and otherwise arbitrarily distrib-
uted) parameters. For the remaining cases the CWCU LMMSE estimator may
correspond to a globally unbiased estimator. The implications of the CWCU
constraints have been demonstrated in a data estimation example using a dis-
crete alphabet, and in a channel estimation application. In both applications
the CWCU LMMSE estimator considerably outperforms the globally unbiased
BLUE.
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