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Abstract. We discuss possible approaches for the adaption of the step
width of Step-Adaptive Approximate Least Squares. We present and
compare two low complexity and practically feasible adaptation func-
tions whose parameters have been optimized based on computer sim-
ulations. We show that by applying these approaches the performance
deviation of Step-Adaptive Approximate Least Squares lies within the
single percentage range compared to the optimal least squares solution.
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1 Introduction

The linear least squares (LS) estimation approach is an important concept in
electrical engineering, especially in digital signal processing. Example applica-
tions range from localization [1] and positioning [2], over robotics [3], power and
battery applications [4], biomedical applications [5], as well as image process-
ing [6].

For LS estimation we assume the following system model:

y = Hx + n (1)

where y is a measured vector, H is a known system matrix of dimension m × p,
n is a noise vector and x is the parameter vector that we want to estimate.

The linear least squares solution to this estimation problem is well known as

x̂LS = H†y. (2)

with the pseudoinverse H† = (HTH)−1HT . Such a direct calculation of the
solution as is often called batch solution in literature [7].

For many realtime applications a low complexity implementation is preferred
over an exact solution. For this reason the calculation of the batch solution is
usually avoided for such applications, due to its computational complexity and its
large memory requirements. To provide a low complexity approximate approach
for the LS estimation problem we developed a method that we call Approximate
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Least Squares (ALS) [8]. It can be seen as a variant of the Kaczmarz algorithm
[9] for overdetermined and inconsistent linear equation systems.

ALS is based on the iterative least squares (ILS) approach that iteratively
calculates

x̂(k) = x̂(k−1) − μd(x̂(k−1)). (3)

Here hT
i is the ith row of H. The function

d(x(k−1)) =
m∑

i=1

2hi(hT
i x̂

(k−1) − yi) (4)

is the gradient of the least squares cost function

J(x̂) =
m∑

i=1

(yi − hT
i x̂)2 (5)

that has its minimum at x̂LS . It can be shown that for k → ∞, x̂(k) converges
to x̂LS given that the iteration step width μ fulfills 0 < μ < 1/(2s21(H)) [12],
with s1(H) as the largest singular value of H. Figure 1 schematically shows one
iteration of ILS. The gradient d(x(k−1)) can be seen as a sum of partial gradients

di(x̂(k−1)) = 2hi(hT
i x̂

(k−1) − yi). (6)

2 Approximate Least Squares

To reduce the complexity of this approach we proposed to use only one of these
partial gradients per iteration, leading to the ALS iteration:

x̂(k) = x̂(k−1) + 2μhk�(yk� − hT
k�x̂

(k−1)). (7)

Fig. 1. Schematical drawing of the gradient and partial gradients.
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In the above equation the operator “ �” is defined as: k� = ((k − 1) mod m) + 1
for a positive natural number k. For better readability we don’t write the depen-
dence of this operator on m in the operator’s symbol. For ALS m is always the
number of rows of the matrix H. Using this operator naturally allows to have
more iterations than the number of rows of H, which is typically required for
ALS to obtain a good performance.

As we described in [8], the error e(k) = x̂(k) − x of the above iteration can
be split into two parts

e(k) = e(k)0 + e(k)Δ , (8)

with e(k)0 as the error depending on the initial value x̂(0) of the algorithm before
the first iteration, and e(k)Δ as the error depending on the noise vector n. As we
showed in [8], the error e(k)0 goes to zero as the number of iterations goes to
infinity, while the noise dependent error e(k)Δ persists even if k → ∞. Due to the
cyclic re-use of the rows of H as well as the measurement values in y, the errors
e(k) converge to m different values for k → ∞:

e(mk+i) = e(mk+i)
Δ = e(i)Δ∞ for i = 1, . . . ,m (9)

In Fig. 2 we plotted a typical case of the error norm of x̂(k) for an example
100 × 10 matrix H over the iterations k as well as the error norm of the algo-
rithm’s output x̂ALS , as described below. For better visibility, the error norm
of x̂ALS has been depicted has a horizontal line, although it is available only at
the end of the algorithm. When analyzing the norm of the error e(k) over the
iterations, one can see an oscillatory behavior. This comes from the fact that for
large k the ALS algorithm produces approximately the same m recurring error
vectors (up to the vanishing deviation e(k)0 ). To reduce the final error norm of
the vector output by the ALS algorithm, we introduced an averaging step in the
final m iterations of the algorithm.
The basic ALS algorithm is summarized in the following pseudocode (Algorithm:
ALS).

Algorithm: ALS
x̂ALS = 0
x̂(0) = 0
for k = 1, . . . , N do

x̂(k) = x̂(k−1) + µ2hk�(yk� − hT
k�x̂

(k−1))
if k > N − m then

x̂ALS = x̂ALS + x̂(k)

end if
end for
x̂ALS = 1

m
x̂ALS

Here N denotes the number of iterations of the algorithm and x̂ALS is the
approximation of x̂LS that is output by the algorithm. 0 denotes the zero vector.
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Fig. 2. ALS error norms.

As one can see from the algorithm’s description the averaging only has to be
done once, it therefore presents only a minor complexity increase (overall only
pm additions and p multiplications with the constant 1/m have to be performed
additionally).

As one can see in the above algorithm, if k reaches m, then for the following
iterations the first rows of H and the first elements of y are re-used again in a
cyclic manner. This approach has the advantage, that compared to ILS, about
m times less multiplications per iteration are required.

But ALS also has the drawback – as we show in [8] and as discussed above –
that for a constant step width μ, a persistent oscillating error e(k) = x̂(k) − xLS

exists, even if k → ∞. This error depends on the noise as well as on the parameter
μ of the algorithm. While a large value of μ leads to a fast decrease of the error
e(k)0 at early iterations it leads to a higher error e(k)Δ and thus to a high final error.
Choosing small values leads to small final errors but requires a large number of
iterations because the error e(k)0 is decreasing more slowly. Supporting these
findings, in [10] it has been shown that the ALS iteration converges to the LS
solution, if μ → 0 and k → ∞. However, for a practical application of the
algorithm, one is interested in a reduction method providing a fast convergence
close to xLS .

For this reason we proposed to adjust the step width μ of the algorithm
during the iterations. We call this approach Step-Adaptive Approximate Least
Squares (SALS) [11].

3 Step-Adaptive Approximate Least Squares (SALS)

In [11] we proposed to adjust the step width μ = μk at every iteration. For this
we divide the overall ALS iteration process into two phases, the reduction phase
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and the oscillation phase. In the reduction phase the error norm ‖e(k)‖2 decreases
while in the oscillation phase the error norm is approximately cyclically repeating
as described above. In Fig. 2 the reduction phase lasts the first 500 iterations.
During the reduction phase, the error part e(k)0 (due to the initial value x(0))
contributes most to e(k) in (8), thus a high value of μk should be used to decrease
the overall error. In the oscillation phase, the error e(k)Δ contributes most to e(k).
Here a high value of μ would prevent a further decrease of the error, thus a low
value of μk is beneficial in this phase. For the reduction phase we propose, to
use

μk =
1

2‖hT
k�‖22

. (10)

As one can show [11], this is the largest value of μ for which e(k)0 → 0
as k → ∞. To detect whether or not the algorithm is already in the oscilla-
tion phase we used the following method. The oscillation phase is characterized
by the occurrence of approximately the same error vectors, every m iterations.
When inspecting (7) one can see that the error vector is only influenced by the
term (yk� − hT

k�x̂
(k−1)). By comparing this value with the value m iterations

before one can detect the oscillation phase if the difference is below a predefined
threshold. After the oscillation phase is detected, the idea for SALS is to reduce

Algorithm: SALS
x̂SALS ← 0
x̂(0) ← 0
vk ← 0
vk−m ← 1
DontReduceMu ← True
for k = 1 . . . N do

vk ← yk� − hT
k�x̂

(k−1)

if DontReduceMu then
µ ← µk� according to (10)
if k� = 1 then

if |vk − vk−m| < vth then
DontReduceMu ← False
µ ← 1

2 max
i=1...m

‖hT
i ‖2

2

end if
vk−m ← vk

end if
else

µ ← f(µ)
end if
x̂(k) ← x̂(k−1) + µ2hk�vk
if k > N − m then

x̂SALS ← x̂SALS + x̂(k)

end if
end for
x̂SALS ← 1

m
x̂SALS
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the step width μ to as well reduce the final error of the ALS solution. The overall
SALS algorithm is presented in the following pseudocode (Algorithm: SALS).
The function f(μ) is used to reduce μ once the oscillation phase is detected.
The first reduction is done by setting μ to the minimum of the m values used in
the iterations before. In every following iteration μ is furthermore reduced via
a reduction function f(μ). In the following section we present and compare two
low complexity variants of f(μ).

4 Simulation Results

The aim of Approximate Least Squares is to provide a low complexity approx-
imate solution of the linear least squares problem. For this reason we restrict
ourselves to reduction functions causing only a negligible complexity overhead
compared to the basic ALS algorithm. We specifically compare the two reduction
functions

μk = μk−1 − s = f1(μk−1) (11)

as well as
μk = (1 − 2−c)μk = f2(μk−1), (12)

with a positive fractional s and a positive integer c. For (11) only one subtraction
per iteration is required, while for (12) only one shift operation and a subtraction
is required per iteration. Figure 3 shows simulation results for random H matrices
for ALS and SALS using these reduction functions, respectively. The entries
of these matrices have been sampled from a uniform distribution out of [0, 1].
Every simulation has been done for white Gaussian noise with zero mean and
standard deviation σ ∈ S = {10−4, 10−3, 10−2, 10−1, 1}, respectively. In the
SALS algorithms vth was set to 10−6.

For (11), we used s = μi/(N − i), with i as the iteration when the oscillation
phase was detected and μi as the corresponding step width, respectively. For
(12), c was set to �log2(N)�. These values of s and c have been found and
optimized by extensive simulations, respectively.

The figure shows the relative error of ALS and SALS, respectively, com-
pared to the optimum least squares solution. It shows the maximum relative
increase of the error norms of ALS and SALS, respectively, over the aver-
aged error norms of LS. The maximization has been done over the elements of
S: rALS = max

S

(
||x̂ALS−x||2
||x̂LS−x||2 − 1

)
and rSALS = max

S

(
||x̂SALS−x||2

||x̂LS−x||2 − 1
)
, respec-

tively. As one can see from these results, SALS performs significantly better than
the basic ALS algorithm. Its deviation to the least squares error norm is within
the single percentage range. For large H matrices f1 performs significantly better
than f2. For the simulated matrices with 1000 rows, the average error norm devi-
ation rSALS was below 2%. For a practical application, especially when thinking
of an implementation in fixed point precision, such an error deviation is typically
considered negligible.
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Fig. 3. Simulation results.

5 Conclusion

We present and compare different low complexity approaches for reducing the
step width of Step-Adaptive Approximate Least Squares. We show that with
Step-Adaptive Approximate Least Squares an error norm performance can be
achieved that is within the single percentage range compared to the optimal
least squares error performance. For many applications such an error norm can
be considered practically equivalent to the optimum least squares solution that
is obtainable only with a much higher computational effort.

References

1. Choi, K.H., Ra, W.-S., Park, S.-Y., Park, J.B.: Robust least squares approach
to passive target localization using ultrasonic receiver array. IEEE Trans. Ind.
Electron. 61(4), 1993–2002 (2014)

2. Thomas, R.R., Maharaj, B.T., Zayen, B., Knopp, R.: Multiband time-of-arrival
positioning technique using an ultra-high-frequency bandwidth availability model
for cognitive radio. IET Radar Sonar Navig. 7(5), 544–552 (2013)

3. Gautier, M., Janot, A., Vandanjon, P.-O.: A new closed-loop output error method
for parameter identification of robot dynamics. IEEE Trans. Control Syst. Technol.
21(2), 428–444 (2013)

4. Unterrieder, C., Zhang, C., Lunglmayr, M., Priewasser, R., Marsili, S., Huemer,
M.: Battery state-of-charge estimation using approximate least squares. J. Power
Sources 278, 274–286 (2015)



528 M. Lunglmayr and M. Huemer

5. Yuqian, L., Sima, D.M., Van Cauter, S., Himmelreich, U., Sava, A.C., Yiming, P.,
Yipeng, L., Van Huffel, S.: Unsupervised nosologic imaging for glioma diagnosis.
IEEE Trans. Biomed. Eng. 60(6), 1760–1763 (2013)

6. Rouhani, M., Domingo Sappa, A.: The richer representation the better registration.
IEEE Trans. Image Process. 22(12), 5036–5049 (2013)

7. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Pren-
tice Hall, Englewood Cliffs (2005)

8. Lunglmayr, M., Unterrieder, C., Huemer, M.: Approximate least squares. In: 2014
Proceedings of the IEEE International Conference on Acoustic, Speech and Signal
Processing (ICASSP), pp. 4678–4682 (2014)

9. Kaczmarz, S.: Przyblizone rozwiazywanie ukladw rwnan liniowych. Angenäherte
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