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Abstract. Differential evolution is currently one of the most popular
population based stochastic meta-heuristics. In the paper, we propose
an extension of the Differential Evolution algorithm for multi-objective
optimization problem with constraints of chemotherapy scheduling for
a medical treatment. The differential evolution idea is used with some
significant improvements concerning the DE strategies and parameters
adaptation. The numerical results show that the proposed algorithm
is stable and robust in handling medical applications especially for a
chemotherapy planning process.
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1 Introduction

The Differential Evolution approach is nowadays in great interests. The simplic-
ity and the effectiveness in solving many multi-dimensional and multi-objective
constrained optimization problems gives the great popularity to this approach
[1,2,11,16,17]. The main idea is to construct, at each generation of the algorithm,
a mutant vector for each element of the population. The gradient information
could be available in this moment. The new mutant vector is constructed adding
differences between randomly selected individuals to another individual. The
proposed mutation operator allows a gradual exploration on the search space.

The quick convergence and robustness of differential evolution (DE) approach
has turned to be one of the best evolutionary algorithms in many areas [4,6,15,
20,21]. In many papers [5,11,12,20] it has been stated that fixed values of DE
control parameters is a poor idea. The limitations on DE structure had inspired
many researchers to propose modifications to the original DE approach. With
Differential Evolution being so popular and efficient algorithm, self-adaptation
of key parameters in crossover and mutation operations has been investigated
to make it even better and easier to use on various single- and multi-objective
optimization problems [2,11,18,20].
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Wide surveys of the research in the field of differential evolution were recently
published [1,2,11,12,22]. Often current knowledge on differential evolution and
its parameters values is based on empirical observations, not on a theoretical
analysis. So in the DE field for chemotherapy treatment planning it is necessary
to extract from numerical experiments some empirical rules on the algorithm
behavior. In the paper we propose an extension of the Differential Evolution algo-
rithm for multi-objective optimization problem with constraints of chemotherapy
scheduling for a medical treatment planning.

2 Multi-objective Nature of Chemotherapy Process

A chemotherapy is a treatment of cancer using set of cytotoxic drugs to control
and eradicate a cancer. The application of very toxic drugs reduces a tumor
meanwhile leading to damage to the immune system and giving unacceptable
effects to the patient. The drugs are administered to the body using schedules
of multi-drugs and drug doses in time intervals. The drugs create a certain
concentration in the bloodstream, which will systematically kill both cancerous
and normal healthy cells [3,8,13]. The toxic drugs have great influence on a
Patient Survival Time (PST) and it is very important to define very precisely
the feasible set of constraints.

The aim of a chemotherapy treatment depends on maintaining the effective
damage to the tumor burden while managing the toxic effects on the human
body. Looking for the best schedule for drugs and drug doses in time inter-
vals to be given with minimization of tumor burden and minimization of toxic
side-effects determines the balance between killing cancer cells and limiting the
damage of human body.

Mathematical model of tumour growth and reduction is based on most pop-
ular approach, taking under consideration the Gompertz growth model with a
linear cell-loss effect [10,13]. The model takes the following form:

dn(x, t)
dt

= Λn(x, t) ln(
θ

n(x, t)
− nc(x, t), (1)

where n(x,t) represents the number of tumor cells in time t for a variables vec-
tor x. The vector x = [x11, x12, ..., xij , ..., xND] is a template of drug doses for
i defined as index of time interval, i ∈ 1, ..., N and j is an index of j drug,
for indexes j ∈ 1, ...,D. Each dose is a cocktail of D drugs characterized by a
concentration level c1(x, t) of drug j at N switching periods of time in the blood-
plasma. The variable xij determines a schedule of drug j at time interval ti, the
two coefficients define the tumor parameters, nc(x, t) describes a cell-kill effect
of the multiple drugs on a cancer.

2.1 Constraints of an Chemotherapy Optimization Problem

The cancer chemotherapy treatment influences at a tumor site but also for the
normal organs. We have to ensure that the human body tolerates anticancer
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drugs toxic side-effects. The drugs cause damage to sensitive tissues elsewhere in
the body. So the toxicity constraints play the very important role in the cancer
chemotherapy treatment and the constraint concerning the tumor size must be
maintained below a lethal level.

The constraints of chemotherapy treatment process will be as follows:

1. The rate of drug j accumulation in urine is directly proportional to c1j(x, t)
and must not exceed the fixed value Cmaxj for each drug:

c1j(x, t) ≤ Cmaxj for i ∈ 1, ..., N (2)

2. The White Blood Cells (WBC ) count must be not less then a fixed down
level WD:

wj(x, ti) ≥ WD for i ∈ 1, ..., N (3)

3. An additional constraint concerns the time tu(x, Tmax) over which the White
Blood Cells count w(x,t) remains below a fixed upper level Wu, to be less
than time Tu:

tu(x, Tmax) ≤ Tu for i ∈ 1, ..., N (4)

4. Maximum feasible size n(x, t) of the tumor has not be greater then Nmax:

n(x, t) ≤ Nmax. (5)

The set X of constraints of chemotherapeutic treatment process is repre-
sented by the relations (2)–(5). The chemotherapy schedule determines the
dosages and drug combinations at each time interval throughout the whole treat-
ment period.

2.2 Treatment Objectives in a Chemotherapy Optimization
Problem

The first objective function, concerning the curative treatments attempt to erad-
icate the cancer tumor burden. The eradication means a reduction of the tumor
from an initial size of around 109 cells to below 103 cells. The tumor burden,
equal 109 is the minimum detectable tumour size [13]. The first objective func-
tion is to minimize the number of tumor cells n(x, t) at a fixed period of time:

minx∈X n(x, t) (6)

The cells loss is proportional to the number of tumor cells and to the con-
centration c1(x, t) of toxic drugs. One commonly used performance measure of
controlling treatment is toxic side-effect of anti-cancer drugs on human body,
which is equivalent to maximizing a Patient Survival Time, defined by mini-
mization of a concentration of toxic drugs in plasma in the form:

min
∑

i∈1,.,N

∑

j∈1,.,D

c1j(xij , ti) . (7)
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The two presented objectives on the set of constraints (2)–(5) character-
ize the cancer chemotherapy treatment as a complex treatment process. These
two objectives functions conflict with each other, due to the toxicity of used
anti-cancer drugs. The specific chemotherapy treatment with different objectives
defined on a complex set of constraints is an interesting and difficult domain for
a multi-objective optimization approach.

3 Multi-objective Optimization with Differential
Evolution Approach

Multi-objective optimization problem is to find a set of optimal vectors x∗ opti-
mizing a set of objective functions on the set X of all feasible solutions using
Differential Evolution approach [5,7,9,12]. The minimum is taken in the sense
of the standard Pareto order on an objective functions space. Thus, the idea of
Pareto-dominance is used. A solution is said to be dominated, if another solu-
tion exists in the search space with better performance on at least one objec-
tive. At each step of the optimization process in a multi-objective differential
evolution approach a set of solutions is constructed and we try to designate
non-dominated points among evaluated dominated solutions. Differential Evo-
lution (DE) for multi-objective (MO) optimization combines the MO algorithm
NSGA-II [5,17,18] with the strength and simplicity of the differential evolution
algorithm. DE is a new floating point encoded evolutionary algorithm for global
optimization, owing to the special kind of differential operator which create new
offspring from parents chromosomes instead of classical crossover and mutation.
The unique in the DE approach is a reproduction procedure. The Differential
Evolution algorithm aims evolving a population of NP (N ∗ D)-dimensional
individual vectors in the population t as below:

xi(t)=[xk
11, xk

12, ..., x
k
ND ] for k ∈ 1, ..., NP (8)

In the initial population the ijth variable of the kth individual takes the
following form:

xk
ij(0) = Lij + randij(0, 1) (Uij − Lij) (9)

where Lij and Uij determine the lower and upper bounds of variable ij and
randij(0, 1) is a uniformly distributed random variable from the range [0,1].

3.1 Differential Mutation and Crossover Operators

New candidate solutions are created by combining the parent individuals and
several other individuals of the same population. At each generation and for
each individual DE employs mutation and crossover operations to produce a
donor vector in the current population. There are many variants of offspring
creation procedures. These strategies diversify by the way how to choose three
vectors from the current population. The often applied mutation scheme uses
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a randomly selected vector xp(t). Only one weighted difference vector with the
coefficient F is used to perturb the received mutant vector vi(t) in the form:

vi(t) = xp + F (xr(t) − xs(t)) (10)

where p, r, s ∈ [1, ..., NP ]. The difference between two randomly chosen vec-
tor makes the mutation operation self-adaptive according to the decreasing
mutation step. The parameter F also influence on the mutation step and typ-
ically takes the value from the range [0,1]. The mutation scheme is referred as
DE/base/num/cross, where DE stands for Differential Evolution idea, base
represents a string denoting the vector to be perturbed (usually a random or
the best individual), num is the number of difference vectors considered for per-
turbation of base and cross stands for the type of crossover being used. The
parameter base can be randomly selected or it is the best vector in the popu-
lation with respect to fitness value. DE can use two kinds of crossover scheme:
exponential or binomial to increase the potential diversity of the population.
After the mutation phase the crossover operation, namely binomial or exponen-
tial, is used. The mutant vector with an individual xi

j create the new vector ui
j(t)

in the following form:
ui
j(t) = vi

j(t) (11)

in the case, when
randj(0, 1) ≤ Cr or j = jrand (12)

where Cr defines the crossover probability. Otherwise the new vector: ui
j(t) =

xi
j(t). The crossover operator determines, which variable xi

j(t) or vi
j(t) will cor-

respond to the trial vector ui
j(t).

We try to improve the strength Pareto differential evolution approach
for multi-objective optimization algorithm for design and optimization of a
chemotherapy treatment planning. The non-dominated optimal solutions are
found using modified differential evolution algorithm for bi-criteria optimization
problem with the help of standardization of constraints and constrained domi-
nance operator. In discussed problem the range of values for modified parameters
is very narrow for binomial crossover, but in the case of exponential crossover it
is impossible to identify it.

In a cancer chemotherapy optimization problem given schedules of drugs
doses can minimize a tumor size determining minimal toxic effects on human
body. A schedule of medical treatment plan can be calculated based on a math-
ematical growth model described by a set of differential equations, when used in
conjunction with an differential evolution approach. The drugs should be sched-
uled to ensure that the patients will tolerate its toxic side effects.

3.2 Chemotherapy Treatment Planning

The non-dominated optimal solutions are found with the help of proposed multi-
objective differential evolution algorithm using differential mutation algorithm
and differential crossover operator DE/rand/1/bin. The computer-based system,
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Fig. 1. The number of tumor cells n(x,t) and toxicity effects c2(x, t), based on optimal
drug doses schedule u(x,t) on 25 days treatment period.

Fig. 2. The effective drug concentration c1(x, t) and the constraint White Blood Cells
count w(x, t) on optimal drug dose schedule during 25 days treatment interval.

which supports the physicians, allow an user to input treatment and patient para-
meters [19]. The system has to analyze very carefully a feasibility of constraints,
because of the threat to life. For the problem of multi-objective chemother-
apy optimization it is very difficult to determine the true Pareto front of non-
dominated solutions. The system contains a database of chemotherapy treatment
for simulation and optimization of drug doses and schedules. The difficulties in
fulfilling the constraints are observed during numerical tests. Sometimes it is
more important to receive the feasible point, not Pareto-optimal to give the
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patient the quarantee of life. The parameters of the experimental treatment
process concern the curative regime for 25 days of treatment with calculated
drug doses. The Fig. 1 shows the first objective function n(x, t) the reduction
of the number of tumor cells during the time tN described by optimal drug
doses shown as u(x, t). The second objective function c1(x, t), the constraint
White Blood Cells count w(x, t) and optimal dose schedule are shown on the
Fig. 2 [14]. The drug concentration c1(x, t) is going to the minimal value on the
end of treatment process, but in the time intervals with great drug doses the
toxic drug concentration increases, but below the maximum allowed concentra-
tion value equal Cmin. The WBC count remains controlled at level higher than
a fixed down level WD.

The most difficult constraint to be fulfilled concerns the time tu, shown in
the relation (4), which ensures the necessary protection from leukopenia. The
time tu(x, Tmax) over which WBC count w(x, t) remains below a fixed upper
level Wu, has to be less than the time Tu. It is necessary to underline that the
different simulation results we can obtain for different patients, according to their
own properties. For some people the time Tu ought to be changed according the
individual features of a patient and according to the upper level for time tu.

4 Conclusion

The multi-objective optimization of chemotherapy treatment planning based on
differential evolution approach demonstrates the high capabilities that can be
effectively used especially for the complex set of constraints and objective func-
tions, describing the cancer treatment procedure. In the process the user has the
possibility to change input parameters in the search for a better optimization
result. This search may be very time-consuming, depending on patient med-
ical parameters, the experience of physicians and the complexity of the case.
All numerical results show that the proposed algorithm is stable and robust in
handling medical applications especially for a chemotherapy planning process.
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